Home | History | Annotate | Download | only in X86
      1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86-specific support for the FastISel class. Much
     11 // of the target-specific code is generated by tablegen in the file
     12 // X86GenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "X86.h"
     17 #include "X86CallingConv.h"
     18 #include "X86InstrBuilder.h"
     19 #include "X86InstrInfo.h"
     20 #include "X86MachineFunctionInfo.h"
     21 #include "X86RegisterInfo.h"
     22 #include "X86Subtarget.h"
     23 #include "X86TargetMachine.h"
     24 #include "llvm/Analysis/BranchProbabilityInfo.h"
     25 #include "llvm/CodeGen/Analysis.h"
     26 #include "llvm/CodeGen/FastISel.h"
     27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     28 #include "llvm/CodeGen/MachineConstantPool.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/GetElementPtrTypeIterator.h"
     35 #include "llvm/IR/GlobalAlias.h"
     36 #include "llvm/IR/GlobalVariable.h"
     37 #include "llvm/IR/Instructions.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Target/TargetOptions.h"
     42 using namespace llvm;
     43 
     44 namespace {
     45 
     46 class X86FastISel final : public FastISel {
     47   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
     48   /// make the right decision when generating code for different targets.
     49   const X86Subtarget *Subtarget;
     50 
     51   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
     52   /// floating point ops.
     53   /// When SSE is available, use it for f32 operations.
     54   /// When SSE2 is available, use it for f64 operations.
     55   bool X86ScalarSSEf64;
     56   bool X86ScalarSSEf32;
     57 
     58 public:
     59   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
     60                        const TargetLibraryInfo *libInfo)
     61     : FastISel(funcInfo, libInfo) {
     62     Subtarget = &TM.getSubtarget<X86Subtarget>();
     63     X86ScalarSSEf64 = Subtarget->hasSSE2();
     64     X86ScalarSSEf32 = Subtarget->hasSSE1();
     65   }
     66 
     67   bool TargetSelectInstruction(const Instruction *I) override;
     68 
     69   /// \brief The specified machine instr operand is a vreg, and that
     70   /// vreg is being provided by the specified load instruction.  If possible,
     71   /// try to fold the load as an operand to the instruction, returning true if
     72   /// possible.
     73   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
     74                            const LoadInst *LI) override;
     75 
     76   bool FastLowerArguments() override;
     77 
     78 #include "X86GenFastISel.inc"
     79 
     80 private:
     81   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
     82 
     83   bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO,
     84                        unsigned &ResultReg);
     85 
     86   bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
     87                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
     88   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
     89                         const X86AddressMode &AM,
     90                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
     91 
     92   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
     93                          unsigned &ResultReg);
     94 
     95   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
     96   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
     97 
     98   bool X86SelectLoad(const Instruction *I);
     99 
    100   bool X86SelectStore(const Instruction *I);
    101 
    102   bool X86SelectRet(const Instruction *I);
    103 
    104   bool X86SelectCmp(const Instruction *I);
    105 
    106   bool X86SelectZExt(const Instruction *I);
    107 
    108   bool X86SelectBranch(const Instruction *I);
    109 
    110   bool X86SelectShift(const Instruction *I);
    111 
    112   bool X86SelectDivRem(const Instruction *I);
    113 
    114   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
    115 
    116   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
    117 
    118   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
    119 
    120   bool X86SelectSelect(const Instruction *I);
    121 
    122   bool X86SelectTrunc(const Instruction *I);
    123 
    124   bool X86SelectFPExt(const Instruction *I);
    125   bool X86SelectFPTrunc(const Instruction *I);
    126 
    127   bool X86VisitIntrinsicCall(const IntrinsicInst &I);
    128   bool X86SelectCall(const Instruction *I);
    129 
    130   bool DoSelectCall(const Instruction *I, const char *MemIntName);
    131 
    132   const X86InstrInfo *getInstrInfo() const {
    133     return getTargetMachine()->getInstrInfo();
    134   }
    135   const X86TargetMachine *getTargetMachine() const {
    136     return static_cast<const X86TargetMachine *>(&TM);
    137   }
    138 
    139   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
    140 
    141   unsigned TargetMaterializeConstant(const Constant *C) override;
    142 
    143   unsigned TargetMaterializeAlloca(const AllocaInst *C) override;
    144 
    145   unsigned TargetMaterializeFloatZero(const ConstantFP *CF) override;
    146 
    147   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    148   /// computed in an SSE register, not on the X87 floating point stack.
    149   bool isScalarFPTypeInSSEReg(EVT VT) const {
    150     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    151       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    152   }
    153 
    154   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
    155 
    156   bool IsMemcpySmall(uint64_t Len);
    157 
    158   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
    159                           X86AddressMode SrcAM, uint64_t Len);
    160 
    161   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
    162                             const Value *Cond);
    163 };
    164 
    165 } // end anonymous namespace.
    166 
    167 static CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) {
    168   // If both operands are the same, then try to optimize or fold the cmp.
    169   CmpInst::Predicate Predicate = CI->getPredicate();
    170   if (CI->getOperand(0) != CI->getOperand(1))
    171     return Predicate;
    172 
    173   switch (Predicate) {
    174   default: llvm_unreachable("Invalid predicate!");
    175   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
    176   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
    177   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
    178   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
    179   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
    180   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
    181   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
    182   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
    183   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
    184   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
    185   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
    186   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
    187   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
    188   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
    189   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
    190   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
    191 
    192   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
    193   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
    194   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
    195   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
    196   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
    197   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
    198   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
    199   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
    200   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
    201   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
    202   }
    203 
    204   return Predicate;
    205 }
    206 
    207 static std::pair<X86::CondCode, bool>
    208 getX86ConditionCode(CmpInst::Predicate Predicate) {
    209   X86::CondCode CC = X86::COND_INVALID;
    210   bool NeedSwap = false;
    211   switch (Predicate) {
    212   default: break;
    213   // Floating-point Predicates
    214   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
    215   case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
    216   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
    217   case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
    218   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
    219   case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
    220   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
    221   case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
    222   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
    223   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
    224   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
    225   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
    226   case CmpInst::FCMP_OEQ: // fall-through
    227   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
    228 
    229   // Integer Predicates
    230   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
    231   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
    232   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
    233   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
    234   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
    235   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
    236   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
    237   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
    238   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
    239   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
    240   }
    241 
    242   return std::make_pair(CC, NeedSwap);
    243 }
    244 
    245 static std::pair<unsigned, bool>
    246 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
    247   unsigned CC;
    248   bool NeedSwap = false;
    249 
    250   // SSE Condition code mapping:
    251   //  0 - EQ
    252   //  1 - LT
    253   //  2 - LE
    254   //  3 - UNORD
    255   //  4 - NEQ
    256   //  5 - NLT
    257   //  6 - NLE
    258   //  7 - ORD
    259   switch (Predicate) {
    260   default: llvm_unreachable("Unexpected predicate");
    261   case CmpInst::FCMP_OEQ: CC = 0;          break;
    262   case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
    263   case CmpInst::FCMP_OLT: CC = 1;          break;
    264   case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
    265   case CmpInst::FCMP_OLE: CC = 2;          break;
    266   case CmpInst::FCMP_UNO: CC = 3;          break;
    267   case CmpInst::FCMP_UNE: CC = 4;          break;
    268   case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
    269   case CmpInst::FCMP_UGE: CC = 5;          break;
    270   case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
    271   case CmpInst::FCMP_UGT: CC = 6;          break;
    272   case CmpInst::FCMP_ORD: CC = 7;          break;
    273   case CmpInst::FCMP_UEQ:
    274   case CmpInst::FCMP_ONE: CC = 8;          break;
    275   }
    276 
    277   return std::make_pair(CC, NeedSwap);
    278 }
    279 
    280 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
    281 /// into the user. The condition code will only be updated on success.
    282 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
    283                                        const Value *Cond) {
    284   if (!isa<ExtractValueInst>(Cond))
    285     return false;
    286 
    287   const auto *EV = cast<ExtractValueInst>(Cond);
    288   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
    289     return false;
    290 
    291   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
    292   MVT RetVT;
    293   const Function *Callee = II->getCalledFunction();
    294   Type *RetTy =
    295     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
    296   if (!isTypeLegal(RetTy, RetVT))
    297     return false;
    298 
    299   if (RetVT != MVT::i32 && RetVT != MVT::i64)
    300     return false;
    301 
    302   X86::CondCode TmpCC;
    303   switch (II->getIntrinsicID()) {
    304   default: return false;
    305   case Intrinsic::sadd_with_overflow:
    306   case Intrinsic::ssub_with_overflow:
    307   case Intrinsic::smul_with_overflow:
    308   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
    309   case Intrinsic::uadd_with_overflow:
    310   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
    311   }
    312 
    313   // Check if both instructions are in the same basic block.
    314   if (II->getParent() != I->getParent())
    315     return false;
    316 
    317   // Make sure nothing is in the way
    318   BasicBlock::const_iterator Start = I;
    319   BasicBlock::const_iterator End = II;
    320   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
    321     // We only expect extractvalue instructions between the intrinsic and the
    322     // instruction to be selected.
    323     if (!isa<ExtractValueInst>(Itr))
    324       return false;
    325 
    326     // Check that the extractvalue operand comes from the intrinsic.
    327     const auto *EVI = cast<ExtractValueInst>(Itr);
    328     if (EVI->getAggregateOperand() != II)
    329       return false;
    330   }
    331 
    332   CC = TmpCC;
    333   return true;
    334 }
    335 
    336 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
    337   EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
    338   if (evt == MVT::Other || !evt.isSimple())
    339     // Unhandled type. Halt "fast" selection and bail.
    340     return false;
    341 
    342   VT = evt.getSimpleVT();
    343   // For now, require SSE/SSE2 for performing floating-point operations,
    344   // since x87 requires additional work.
    345   if (VT == MVT::f64 && !X86ScalarSSEf64)
    346     return false;
    347   if (VT == MVT::f32 && !X86ScalarSSEf32)
    348     return false;
    349   // Similarly, no f80 support yet.
    350   if (VT == MVT::f80)
    351     return false;
    352   // We only handle legal types. For example, on x86-32 the instruction
    353   // selector contains all of the 64-bit instructions from x86-64,
    354   // under the assumption that i64 won't be used if the target doesn't
    355   // support it.
    356   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
    357 }
    358 
    359 #include "X86GenCallingConv.inc"
    360 
    361 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
    362 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
    363 /// Return true and the result register by reference if it is possible.
    364 bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
    365                                   MachineMemOperand *MMO, unsigned &ResultReg) {
    366   // Get opcode and regclass of the output for the given load instruction.
    367   unsigned Opc = 0;
    368   const TargetRegisterClass *RC = nullptr;
    369   switch (VT.getSimpleVT().SimpleTy) {
    370   default: return false;
    371   case MVT::i1:
    372   case MVT::i8:
    373     Opc = X86::MOV8rm;
    374     RC  = &X86::GR8RegClass;
    375     break;
    376   case MVT::i16:
    377     Opc = X86::MOV16rm;
    378     RC  = &X86::GR16RegClass;
    379     break;
    380   case MVT::i32:
    381     Opc = X86::MOV32rm;
    382     RC  = &X86::GR32RegClass;
    383     break;
    384   case MVT::i64:
    385     // Must be in x86-64 mode.
    386     Opc = X86::MOV64rm;
    387     RC  = &X86::GR64RegClass;
    388     break;
    389   case MVT::f32:
    390     if (X86ScalarSSEf32) {
    391       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
    392       RC  = &X86::FR32RegClass;
    393     } else {
    394       Opc = X86::LD_Fp32m;
    395       RC  = &X86::RFP32RegClass;
    396     }
    397     break;
    398   case MVT::f64:
    399     if (X86ScalarSSEf64) {
    400       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
    401       RC  = &X86::FR64RegClass;
    402     } else {
    403       Opc = X86::LD_Fp64m;
    404       RC  = &X86::RFP64RegClass;
    405     }
    406     break;
    407   case MVT::f80:
    408     // No f80 support yet.
    409     return false;
    410   }
    411 
    412   ResultReg = createResultReg(RC);
    413   MachineInstrBuilder MIB =
    414     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
    415   addFullAddress(MIB, AM);
    416   if (MMO)
    417     MIB->addMemOperand(*FuncInfo.MF, MMO);
    418   return true;
    419 }
    420 
    421 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
    422 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
    423 /// and a displacement offset, or a GlobalAddress,
    424 /// i.e. V. Return true if it is possible.
    425 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
    426                                    const X86AddressMode &AM,
    427                                    MachineMemOperand *MMO, bool Aligned) {
    428   // Get opcode and regclass of the output for the given store instruction.
    429   unsigned Opc = 0;
    430   switch (VT.getSimpleVT().SimpleTy) {
    431   case MVT::f80: // No f80 support yet.
    432   default: return false;
    433   case MVT::i1: {
    434     // Mask out all but lowest bit.
    435     unsigned AndResult = createResultReg(&X86::GR8RegClass);
    436     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    437             TII.get(X86::AND8ri), AndResult)
    438       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
    439     ValReg = AndResult;
    440   }
    441   // FALLTHROUGH, handling i1 as i8.
    442   case MVT::i8:  Opc = X86::MOV8mr;  break;
    443   case MVT::i16: Opc = X86::MOV16mr; break;
    444   case MVT::i32: Opc = X86::MOV32mr; break;
    445   case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
    446   case MVT::f32:
    447     Opc = X86ScalarSSEf32 ?
    448           (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
    449     break;
    450   case MVT::f64:
    451     Opc = X86ScalarSSEf64 ?
    452           (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
    453     break;
    454   case MVT::v4f32:
    455     if (Aligned)
    456       Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
    457     else
    458       Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
    459     break;
    460   case MVT::v2f64:
    461     if (Aligned)
    462       Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
    463     else
    464       Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
    465     break;
    466   case MVT::v4i32:
    467   case MVT::v2i64:
    468   case MVT::v8i16:
    469   case MVT::v16i8:
    470     if (Aligned)
    471       Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
    472     else
    473       Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
    474     break;
    475   }
    476 
    477   MachineInstrBuilder MIB =
    478     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
    479   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
    480   if (MMO)
    481     MIB->addMemOperand(*FuncInfo.MF, MMO);
    482 
    483   return true;
    484 }
    485 
    486 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
    487                                    const X86AddressMode &AM,
    488                                    MachineMemOperand *MMO, bool Aligned) {
    489   // Handle 'null' like i32/i64 0.
    490   if (isa<ConstantPointerNull>(Val))
    491     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
    492 
    493   // If this is a store of a simple constant, fold the constant into the store.
    494   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    495     unsigned Opc = 0;
    496     bool Signed = true;
    497     switch (VT.getSimpleVT().SimpleTy) {
    498     default: break;
    499     case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
    500     case MVT::i8:  Opc = X86::MOV8mi;  break;
    501     case MVT::i16: Opc = X86::MOV16mi; break;
    502     case MVT::i32: Opc = X86::MOV32mi; break;
    503     case MVT::i64:
    504       // Must be a 32-bit sign extended value.
    505       if (isInt<32>(CI->getSExtValue()))
    506         Opc = X86::MOV64mi32;
    507       break;
    508     }
    509 
    510     if (Opc) {
    511       MachineInstrBuilder MIB =
    512         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
    513       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
    514                                             : CI->getZExtValue());
    515       if (MMO)
    516         MIB->addMemOperand(*FuncInfo.MF, MMO);
    517       return true;
    518     }
    519   }
    520 
    521   unsigned ValReg = getRegForValue(Val);
    522   if (ValReg == 0)
    523     return false;
    524 
    525   bool ValKill = hasTrivialKill(Val);
    526   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
    527 }
    528 
    529 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
    530 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
    531 /// ISD::SIGN_EXTEND).
    532 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
    533                                     unsigned Src, EVT SrcVT,
    534                                     unsigned &ResultReg) {
    535   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
    536                            Src, /*TODO: Kill=*/false);
    537   if (RR == 0)
    538     return false;
    539 
    540   ResultReg = RR;
    541   return true;
    542 }
    543 
    544 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
    545   // Handle constant address.
    546   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    547     // Can't handle alternate code models yet.
    548     if (TM.getCodeModel() != CodeModel::Small)
    549       return false;
    550 
    551     // Can't handle TLS yet.
    552     if (GV->isThreadLocal())
    553       return false;
    554 
    555     // RIP-relative addresses can't have additional register operands, so if
    556     // we've already folded stuff into the addressing mode, just force the
    557     // global value into its own register, which we can use as the basereg.
    558     if (!Subtarget->isPICStyleRIPRel() ||
    559         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
    560       // Okay, we've committed to selecting this global. Set up the address.
    561       AM.GV = GV;
    562 
    563       // Allow the subtarget to classify the global.
    564       unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
    565 
    566       // If this reference is relative to the pic base, set it now.
    567       if (isGlobalRelativeToPICBase(GVFlags)) {
    568         // FIXME: How do we know Base.Reg is free??
    569         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
    570       }
    571 
    572       // Unless the ABI requires an extra load, return a direct reference to
    573       // the global.
    574       if (!isGlobalStubReference(GVFlags)) {
    575         if (Subtarget->isPICStyleRIPRel()) {
    576           // Use rip-relative addressing if we can.  Above we verified that the
    577           // base and index registers are unused.
    578           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    579           AM.Base.Reg = X86::RIP;
    580         }
    581         AM.GVOpFlags = GVFlags;
    582         return true;
    583       }
    584 
    585       // Ok, we need to do a load from a stub.  If we've already loaded from
    586       // this stub, reuse the loaded pointer, otherwise emit the load now.
    587       DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
    588       unsigned LoadReg;
    589       if (I != LocalValueMap.end() && I->second != 0) {
    590         LoadReg = I->second;
    591       } else {
    592         // Issue load from stub.
    593         unsigned Opc = 0;
    594         const TargetRegisterClass *RC = nullptr;
    595         X86AddressMode StubAM;
    596         StubAM.Base.Reg = AM.Base.Reg;
    597         StubAM.GV = GV;
    598         StubAM.GVOpFlags = GVFlags;
    599 
    600         // Prepare for inserting code in the local-value area.
    601         SavePoint SaveInsertPt = enterLocalValueArea();
    602 
    603         if (TLI.getPointerTy() == MVT::i64) {
    604           Opc = X86::MOV64rm;
    605           RC  = &X86::GR64RegClass;
    606 
    607           if (Subtarget->isPICStyleRIPRel())
    608             StubAM.Base.Reg = X86::RIP;
    609         } else {
    610           Opc = X86::MOV32rm;
    611           RC  = &X86::GR32RegClass;
    612         }
    613 
    614         LoadReg = createResultReg(RC);
    615         MachineInstrBuilder LoadMI =
    616           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
    617         addFullAddress(LoadMI, StubAM);
    618 
    619         // Ok, back to normal mode.
    620         leaveLocalValueArea(SaveInsertPt);
    621 
    622         // Prevent loading GV stub multiple times in same MBB.
    623         LocalValueMap[V] = LoadReg;
    624       }
    625 
    626       // Now construct the final address. Note that the Disp, Scale,
    627       // and Index values may already be set here.
    628       AM.Base.Reg = LoadReg;
    629       AM.GV = nullptr;
    630       return true;
    631     }
    632   }
    633 
    634   // If all else fails, try to materialize the value in a register.
    635   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    636     if (AM.Base.Reg == 0) {
    637       AM.Base.Reg = getRegForValue(V);
    638       return AM.Base.Reg != 0;
    639     }
    640     if (AM.IndexReg == 0) {
    641       assert(AM.Scale == 1 && "Scale with no index!");
    642       AM.IndexReg = getRegForValue(V);
    643       return AM.IndexReg != 0;
    644     }
    645   }
    646 
    647   return false;
    648 }
    649 
    650 /// X86SelectAddress - Attempt to fill in an address from the given value.
    651 ///
    652 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
    653   SmallVector<const Value *, 32> GEPs;
    654 redo_gep:
    655   const User *U = nullptr;
    656   unsigned Opcode = Instruction::UserOp1;
    657   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    658     // Don't walk into other basic blocks; it's possible we haven't
    659     // visited them yet, so the instructions may not yet be assigned
    660     // virtual registers.
    661     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
    662         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    663       Opcode = I->getOpcode();
    664       U = I;
    665     }
    666   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    667     Opcode = C->getOpcode();
    668     U = C;
    669   }
    670 
    671   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
    672     if (Ty->getAddressSpace() > 255)
    673       // Fast instruction selection doesn't support the special
    674       // address spaces.
    675       return false;
    676 
    677   switch (Opcode) {
    678   default: break;
    679   case Instruction::BitCast:
    680     // Look past bitcasts.
    681     return X86SelectAddress(U->getOperand(0), AM);
    682 
    683   case Instruction::IntToPtr:
    684     // Look past no-op inttoptrs.
    685     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    686       return X86SelectAddress(U->getOperand(0), AM);
    687     break;
    688 
    689   case Instruction::PtrToInt:
    690     // Look past no-op ptrtoints.
    691     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    692       return X86SelectAddress(U->getOperand(0), AM);
    693     break;
    694 
    695   case Instruction::Alloca: {
    696     // Do static allocas.
    697     const AllocaInst *A = cast<AllocaInst>(V);
    698     DenseMap<const AllocaInst*, int>::iterator SI =
    699       FuncInfo.StaticAllocaMap.find(A);
    700     if (SI != FuncInfo.StaticAllocaMap.end()) {
    701       AM.BaseType = X86AddressMode::FrameIndexBase;
    702       AM.Base.FrameIndex = SI->second;
    703       return true;
    704     }
    705     break;
    706   }
    707 
    708   case Instruction::Add: {
    709     // Adds of constants are common and easy enough.
    710     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
    711       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
    712       // They have to fit in the 32-bit signed displacement field though.
    713       if (isInt<32>(Disp)) {
    714         AM.Disp = (uint32_t)Disp;
    715         return X86SelectAddress(U->getOperand(0), AM);
    716       }
    717     }
    718     break;
    719   }
    720 
    721   case Instruction::GetElementPtr: {
    722     X86AddressMode SavedAM = AM;
    723 
    724     // Pattern-match simple GEPs.
    725     uint64_t Disp = (int32_t)AM.Disp;
    726     unsigned IndexReg = AM.IndexReg;
    727     unsigned Scale = AM.Scale;
    728     gep_type_iterator GTI = gep_type_begin(U);
    729     // Iterate through the indices, folding what we can. Constants can be
    730     // folded, and one dynamic index can be handled, if the scale is supported.
    731     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    732          i != e; ++i, ++GTI) {
    733       const Value *Op = *i;
    734       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    735         const StructLayout *SL = DL.getStructLayout(STy);
    736         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
    737         continue;
    738       }
    739 
    740       // A array/variable index is always of the form i*S where S is the
    741       // constant scale size.  See if we can push the scale into immediates.
    742       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
    743       for (;;) {
    744         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    745           // Constant-offset addressing.
    746           Disp += CI->getSExtValue() * S;
    747           break;
    748         }
    749         if (canFoldAddIntoGEP(U, Op)) {
    750           // A compatible add with a constant operand. Fold the constant.
    751           ConstantInt *CI =
    752             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    753           Disp += CI->getSExtValue() * S;
    754           // Iterate on the other operand.
    755           Op = cast<AddOperator>(Op)->getOperand(0);
    756           continue;
    757         }
    758         if (IndexReg == 0 &&
    759             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
    760             (S == 1 || S == 2 || S == 4 || S == 8)) {
    761           // Scaled-index addressing.
    762           Scale = S;
    763           IndexReg = getRegForGEPIndex(Op).first;
    764           if (IndexReg == 0)
    765             return false;
    766           break;
    767         }
    768         // Unsupported.
    769         goto unsupported_gep;
    770       }
    771     }
    772 
    773     // Check for displacement overflow.
    774     if (!isInt<32>(Disp))
    775       break;
    776 
    777     AM.IndexReg = IndexReg;
    778     AM.Scale = Scale;
    779     AM.Disp = (uint32_t)Disp;
    780     GEPs.push_back(V);
    781 
    782     if (const GetElementPtrInst *GEP =
    783           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
    784       // Ok, the GEP indices were covered by constant-offset and scaled-index
    785       // addressing. Update the address state and move on to examining the base.
    786       V = GEP;
    787       goto redo_gep;
    788     } else if (X86SelectAddress(U->getOperand(0), AM)) {
    789       return true;
    790     }
    791 
    792     // If we couldn't merge the gep value into this addr mode, revert back to
    793     // our address and just match the value instead of completely failing.
    794     AM = SavedAM;
    795 
    796     for (SmallVectorImpl<const Value *>::reverse_iterator
    797            I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
    798       if (handleConstantAddresses(*I, AM))
    799         return true;
    800 
    801     return false;
    802   unsupported_gep:
    803     // Ok, the GEP indices weren't all covered.
    804     break;
    805   }
    806   }
    807 
    808   return handleConstantAddresses(V, AM);
    809 }
    810 
    811 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
    812 ///
    813 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
    814   const User *U = nullptr;
    815   unsigned Opcode = Instruction::UserOp1;
    816   const Instruction *I = dyn_cast<Instruction>(V);
    817   // Record if the value is defined in the same basic block.
    818   //
    819   // This information is crucial to know whether or not folding an
    820   // operand is valid.
    821   // Indeed, FastISel generates or reuses a virtual register for all
    822   // operands of all instructions it selects. Obviously, the definition and
    823   // its uses must use the same virtual register otherwise the produced
    824   // code is incorrect.
    825   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
    826   // registers for values that are alive across basic blocks. This ensures
    827   // that the values are consistently set between across basic block, even
    828   // if different instruction selection mechanisms are used (e.g., a mix of
    829   // SDISel and FastISel).
    830   // For values local to a basic block, the instruction selection process
    831   // generates these virtual registers with whatever method is appropriate
    832   // for its needs. In particular, FastISel and SDISel do not share the way
    833   // local virtual registers are set.
    834   // Therefore, this is impossible (or at least unsafe) to share values
    835   // between basic blocks unless they use the same instruction selection
    836   // method, which is not guarantee for X86.
    837   // Moreover, things like hasOneUse could not be used accurately, if we
    838   // allow to reference values across basic blocks whereas they are not
    839   // alive across basic blocks initially.
    840   bool InMBB = true;
    841   if (I) {
    842     Opcode = I->getOpcode();
    843     U = I;
    844     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
    845   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    846     Opcode = C->getOpcode();
    847     U = C;
    848   }
    849 
    850   switch (Opcode) {
    851   default: break;
    852   case Instruction::BitCast:
    853     // Look past bitcasts if its operand is in the same BB.
    854     if (InMBB)
    855       return X86SelectCallAddress(U->getOperand(0), AM);
    856     break;
    857 
    858   case Instruction::IntToPtr:
    859     // Look past no-op inttoptrs if its operand is in the same BB.
    860     if (InMBB &&
    861         TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    862       return X86SelectCallAddress(U->getOperand(0), AM);
    863     break;
    864 
    865   case Instruction::PtrToInt:
    866     // Look past no-op ptrtoints if its operand is in the same BB.
    867     if (InMBB &&
    868         TLI.getValueType(U->getType()) == TLI.getPointerTy())
    869       return X86SelectCallAddress(U->getOperand(0), AM);
    870     break;
    871   }
    872 
    873   // Handle constant address.
    874   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    875     // Can't handle alternate code models yet.
    876     if (TM.getCodeModel() != CodeModel::Small)
    877       return false;
    878 
    879     // RIP-relative addresses can't have additional register operands.
    880     if (Subtarget->isPICStyleRIPRel() &&
    881         (AM.Base.Reg != 0 || AM.IndexReg != 0))
    882       return false;
    883 
    884     // Can't handle DLL Import.
    885     if (GV->hasDLLImportStorageClass())
    886       return false;
    887 
    888     // Can't handle TLS.
    889     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
    890       if (GVar->isThreadLocal())
    891         return false;
    892 
    893     // Okay, we've committed to selecting this global. Set up the basic address.
    894     AM.GV = GV;
    895 
    896     // No ABI requires an extra load for anything other than DLLImport, which
    897     // we rejected above. Return a direct reference to the global.
    898     if (Subtarget->isPICStyleRIPRel()) {
    899       // Use rip-relative addressing if we can.  Above we verified that the
    900       // base and index registers are unused.
    901       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    902       AM.Base.Reg = X86::RIP;
    903     } else if (Subtarget->isPICStyleStubPIC()) {
    904       AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
    905     } else if (Subtarget->isPICStyleGOT()) {
    906       AM.GVOpFlags = X86II::MO_GOTOFF;
    907     }
    908 
    909     return true;
    910   }
    911 
    912   // If all else fails, try to materialize the value in a register.
    913   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    914     if (AM.Base.Reg == 0) {
    915       AM.Base.Reg = getRegForValue(V);
    916       return AM.Base.Reg != 0;
    917     }
    918     if (AM.IndexReg == 0) {
    919       assert(AM.Scale == 1 && "Scale with no index!");
    920       AM.IndexReg = getRegForValue(V);
    921       return AM.IndexReg != 0;
    922     }
    923   }
    924 
    925   return false;
    926 }
    927 
    928 
    929 /// X86SelectStore - Select and emit code to implement store instructions.
    930 bool X86FastISel::X86SelectStore(const Instruction *I) {
    931   // Atomic stores need special handling.
    932   const StoreInst *S = cast<StoreInst>(I);
    933 
    934   if (S->isAtomic())
    935     return false;
    936 
    937   const Value *Val = S->getValueOperand();
    938   const Value *Ptr = S->getPointerOperand();
    939 
    940   MVT VT;
    941   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
    942     return false;
    943 
    944   unsigned Alignment = S->getAlignment();
    945   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
    946   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
    947     Alignment = ABIAlignment;
    948   bool Aligned = Alignment >= ABIAlignment;
    949 
    950   X86AddressMode AM;
    951   if (!X86SelectAddress(Ptr, AM))
    952     return false;
    953 
    954   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
    955 }
    956 
    957 /// X86SelectRet - Select and emit code to implement ret instructions.
    958 bool X86FastISel::X86SelectRet(const Instruction *I) {
    959   const ReturnInst *Ret = cast<ReturnInst>(I);
    960   const Function &F = *I->getParent()->getParent();
    961   const X86MachineFunctionInfo *X86MFInfo =
    962       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
    963 
    964   if (!FuncInfo.CanLowerReturn)
    965     return false;
    966 
    967   CallingConv::ID CC = F.getCallingConv();
    968   if (CC != CallingConv::C &&
    969       CC != CallingConv::Fast &&
    970       CC != CallingConv::X86_FastCall &&
    971       CC != CallingConv::X86_64_SysV)
    972     return false;
    973 
    974   if (Subtarget->isCallingConvWin64(CC))
    975     return false;
    976 
    977   // Don't handle popping bytes on return for now.
    978   if (X86MFInfo->getBytesToPopOnReturn() != 0)
    979     return false;
    980 
    981   // fastcc with -tailcallopt is intended to provide a guaranteed
    982   // tail call optimization. Fastisel doesn't know how to do that.
    983   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
    984     return false;
    985 
    986   // Let SDISel handle vararg functions.
    987   if (F.isVarArg())
    988     return false;
    989 
    990   // Build a list of return value registers.
    991   SmallVector<unsigned, 4> RetRegs;
    992 
    993   if (Ret->getNumOperands() > 0) {
    994     SmallVector<ISD::OutputArg, 4> Outs;
    995     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
    996 
    997     // Analyze operands of the call, assigning locations to each operand.
    998     SmallVector<CCValAssign, 16> ValLocs;
    999     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
   1000                    I->getContext());
   1001     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1002 
   1003     const Value *RV = Ret->getOperand(0);
   1004     unsigned Reg = getRegForValue(RV);
   1005     if (Reg == 0)
   1006       return false;
   1007 
   1008     // Only handle a single return value for now.
   1009     if (ValLocs.size() != 1)
   1010       return false;
   1011 
   1012     CCValAssign &VA = ValLocs[0];
   1013 
   1014     // Don't bother handling odd stuff for now.
   1015     if (VA.getLocInfo() != CCValAssign::Full)
   1016       return false;
   1017     // Only handle register returns for now.
   1018     if (!VA.isRegLoc())
   1019       return false;
   1020 
   1021     // The calling-convention tables for x87 returns don't tell
   1022     // the whole story.
   1023     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
   1024       return false;
   1025 
   1026     unsigned SrcReg = Reg + VA.getValNo();
   1027     EVT SrcVT = TLI.getValueType(RV->getType());
   1028     EVT DstVT = VA.getValVT();
   1029     // Special handling for extended integers.
   1030     if (SrcVT != DstVT) {
   1031       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
   1032         return false;
   1033 
   1034       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
   1035         return false;
   1036 
   1037       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
   1038 
   1039       if (SrcVT == MVT::i1) {
   1040         if (Outs[0].Flags.isSExt())
   1041           return false;
   1042         SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
   1043         SrcVT = MVT::i8;
   1044       }
   1045       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
   1046                                              ISD::SIGN_EXTEND;
   1047       SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
   1048                           SrcReg, /*TODO: Kill=*/false);
   1049     }
   1050 
   1051     // Make the copy.
   1052     unsigned DstReg = VA.getLocReg();
   1053     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
   1054     // Avoid a cross-class copy. This is very unlikely.
   1055     if (!SrcRC->contains(DstReg))
   1056       return false;
   1057     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
   1058             DstReg).addReg(SrcReg);
   1059 
   1060     // Add register to return instruction.
   1061     RetRegs.push_back(VA.getLocReg());
   1062   }
   1063 
   1064   // The x86-64 ABI for returning structs by value requires that we copy
   1065   // the sret argument into %rax for the return. We saved the argument into
   1066   // a virtual register in the entry block, so now we copy the value out
   1067   // and into %rax. We also do the same with %eax for Win32.
   1068   if (F.hasStructRetAttr() &&
   1069       (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
   1070     unsigned Reg = X86MFInfo->getSRetReturnReg();
   1071     assert(Reg &&
   1072            "SRetReturnReg should have been set in LowerFormalArguments()!");
   1073     unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   1074     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
   1075             RetReg).addReg(Reg);
   1076     RetRegs.push_back(RetReg);
   1077   }
   1078 
   1079   // Now emit the RET.
   1080   MachineInstrBuilder MIB =
   1081     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
   1082   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   1083     MIB.addReg(RetRegs[i], RegState::Implicit);
   1084   return true;
   1085 }
   1086 
   1087 /// X86SelectLoad - Select and emit code to implement load instructions.
   1088 ///
   1089 bool X86FastISel::X86SelectLoad(const Instruction *I) {
   1090   const LoadInst *LI = cast<LoadInst>(I);
   1091 
   1092   // Atomic loads need special handling.
   1093   if (LI->isAtomic())
   1094     return false;
   1095 
   1096   MVT VT;
   1097   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
   1098     return false;
   1099 
   1100   const Value *Ptr = LI->getPointerOperand();
   1101 
   1102   X86AddressMode AM;
   1103   if (!X86SelectAddress(Ptr, AM))
   1104     return false;
   1105 
   1106   unsigned ResultReg = 0;
   1107   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg))
   1108     return false;
   1109 
   1110   UpdateValueMap(I, ResultReg);
   1111   return true;
   1112 }
   1113 
   1114 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
   1115   bool HasAVX = Subtarget->hasAVX();
   1116   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
   1117   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
   1118 
   1119   switch (VT.getSimpleVT().SimpleTy) {
   1120   default:       return 0;
   1121   case MVT::i8:  return X86::CMP8rr;
   1122   case MVT::i16: return X86::CMP16rr;
   1123   case MVT::i32: return X86::CMP32rr;
   1124   case MVT::i64: return X86::CMP64rr;
   1125   case MVT::f32:
   1126     return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
   1127   case MVT::f64:
   1128     return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
   1129   }
   1130 }
   1131 
   1132 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
   1133 /// of the comparison, return an opcode that works for the compare (e.g.
   1134 /// CMP32ri) otherwise return 0.
   1135 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
   1136   switch (VT.getSimpleVT().SimpleTy) {
   1137   // Otherwise, we can't fold the immediate into this comparison.
   1138   default: return 0;
   1139   case MVT::i8: return X86::CMP8ri;
   1140   case MVT::i16: return X86::CMP16ri;
   1141   case MVT::i32: return X86::CMP32ri;
   1142   case MVT::i64:
   1143     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
   1144     // field.
   1145     if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
   1146       return X86::CMP64ri32;
   1147     return 0;
   1148   }
   1149 }
   1150 
   1151 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
   1152                                      EVT VT) {
   1153   unsigned Op0Reg = getRegForValue(Op0);
   1154   if (Op0Reg == 0) return false;
   1155 
   1156   // Handle 'null' like i32/i64 0.
   1157   if (isa<ConstantPointerNull>(Op1))
   1158     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
   1159 
   1160   // We have two options: compare with register or immediate.  If the RHS of
   1161   // the compare is an immediate that we can fold into this compare, use
   1162   // CMPri, otherwise use CMPrr.
   1163   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
   1164     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
   1165       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareImmOpc))
   1166         .addReg(Op0Reg)
   1167         .addImm(Op1C->getSExtValue());
   1168       return true;
   1169     }
   1170   }
   1171 
   1172   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
   1173   if (CompareOpc == 0) return false;
   1174 
   1175   unsigned Op1Reg = getRegForValue(Op1);
   1176   if (Op1Reg == 0) return false;
   1177   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareOpc))
   1178     .addReg(Op0Reg)
   1179     .addReg(Op1Reg);
   1180 
   1181   return true;
   1182 }
   1183 
   1184 bool X86FastISel::X86SelectCmp(const Instruction *I) {
   1185   const CmpInst *CI = cast<CmpInst>(I);
   1186 
   1187   MVT VT;
   1188   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
   1189     return false;
   1190 
   1191   // Try to optimize or fold the cmp.
   1192   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1193   unsigned ResultReg = 0;
   1194   switch (Predicate) {
   1195   default: break;
   1196   case CmpInst::FCMP_FALSE: {
   1197     ResultReg = createResultReg(&X86::GR32RegClass);
   1198     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
   1199             ResultReg);
   1200     ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
   1201                                            X86::sub_8bit);
   1202     if (!ResultReg)
   1203       return false;
   1204     break;
   1205   }
   1206   case CmpInst::FCMP_TRUE: {
   1207     ResultReg = createResultReg(&X86::GR8RegClass);
   1208     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
   1209             ResultReg).addImm(1);
   1210     break;
   1211   }
   1212   }
   1213 
   1214   if (ResultReg) {
   1215     UpdateValueMap(I, ResultReg);
   1216     return true;
   1217   }
   1218 
   1219   const Value *LHS = CI->getOperand(0);
   1220   const Value *RHS = CI->getOperand(1);
   1221 
   1222   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
   1223   // We don't have to materialize a zero constant for this case and can just use
   1224   // %x again on the RHS.
   1225   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
   1226     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
   1227     if (RHSC && RHSC->isNullValue())
   1228       RHS = LHS;
   1229   }
   1230 
   1231   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
   1232   static unsigned SETFOpcTable[2][3] = {
   1233     { X86::SETEr,  X86::SETNPr, X86::AND8rr },
   1234     { X86::SETNEr, X86::SETPr,  X86::OR8rr  }
   1235   };
   1236   unsigned *SETFOpc = nullptr;
   1237   switch (Predicate) {
   1238   default: break;
   1239   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
   1240   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
   1241   }
   1242 
   1243   ResultReg = createResultReg(&X86::GR8RegClass);
   1244   if (SETFOpc) {
   1245     if (!X86FastEmitCompare(LHS, RHS, VT))
   1246       return false;
   1247 
   1248     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
   1249     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
   1250     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
   1251             FlagReg1);
   1252     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
   1253             FlagReg2);
   1254     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
   1255             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
   1256     UpdateValueMap(I, ResultReg);
   1257     return true;
   1258   }
   1259 
   1260   X86::CondCode CC;
   1261   bool SwapArgs;
   1262   std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
   1263   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
   1264   unsigned Opc = X86::getSETFromCond(CC);
   1265 
   1266   if (SwapArgs)
   1267     std::swap(LHS, RHS);
   1268 
   1269   // Emit a compare of LHS/RHS.
   1270   if (!X86FastEmitCompare(LHS, RHS, VT))
   1271     return false;
   1272 
   1273   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
   1274   UpdateValueMap(I, ResultReg);
   1275   return true;
   1276 }
   1277 
   1278 bool X86FastISel::X86SelectZExt(const Instruction *I) {
   1279   EVT DstVT = TLI.getValueType(I->getType());
   1280   if (!TLI.isTypeLegal(DstVT))
   1281     return false;
   1282 
   1283   unsigned ResultReg = getRegForValue(I->getOperand(0));
   1284   if (ResultReg == 0)
   1285     return false;
   1286 
   1287   // Handle zero-extension from i1 to i8, which is common.
   1288   MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
   1289   if (SrcVT.SimpleTy == MVT::i1) {
   1290     // Set the high bits to zero.
   1291     ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
   1292     SrcVT = MVT::i8;
   1293 
   1294     if (ResultReg == 0)
   1295       return false;
   1296   }
   1297 
   1298   if (DstVT == MVT::i64) {
   1299     // Handle extension to 64-bits via sub-register shenanigans.
   1300     unsigned MovInst;
   1301 
   1302     switch (SrcVT.SimpleTy) {
   1303     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
   1304     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
   1305     case MVT::i32: MovInst = X86::MOV32rr;     break;
   1306     default: llvm_unreachable("Unexpected zext to i64 source type");
   1307     }
   1308 
   1309     unsigned Result32 = createResultReg(&X86::GR32RegClass);
   1310     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
   1311       .addReg(ResultReg);
   1312 
   1313     ResultReg = createResultReg(&X86::GR64RegClass);
   1314     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
   1315             ResultReg)
   1316       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
   1317   } else if (DstVT != MVT::i8) {
   1318     ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
   1319                            ResultReg, /*Kill=*/true);
   1320     if (ResultReg == 0)
   1321       return false;
   1322   }
   1323 
   1324   UpdateValueMap(I, ResultReg);
   1325   return true;
   1326 }
   1327 
   1328 
   1329 bool X86FastISel::X86SelectBranch(const Instruction *I) {
   1330   // Unconditional branches are selected by tablegen-generated code.
   1331   // Handle a conditional branch.
   1332   const BranchInst *BI = cast<BranchInst>(I);
   1333   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1334   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1335 
   1336   // Fold the common case of a conditional branch with a comparison
   1337   // in the same block (values defined on other blocks may not have
   1338   // initialized registers).
   1339   X86::CondCode CC;
   1340   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1341     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
   1342       EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
   1343 
   1344       // Try to optimize or fold the cmp.
   1345       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1346       switch (Predicate) {
   1347       default: break;
   1348       case CmpInst::FCMP_FALSE: FastEmitBranch(FalseMBB, DbgLoc); return true;
   1349       case CmpInst::FCMP_TRUE:  FastEmitBranch(TrueMBB, DbgLoc); return true;
   1350       }
   1351 
   1352       const Value *CmpLHS = CI->getOperand(0);
   1353       const Value *CmpRHS = CI->getOperand(1);
   1354 
   1355       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
   1356       // 0.0.
   1357       // We don't have to materialize a zero constant for this case and can just
   1358       // use %x again on the RHS.
   1359       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
   1360         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
   1361         if (CmpRHSC && CmpRHSC->isNullValue())
   1362           CmpRHS = CmpLHS;
   1363       }
   1364 
   1365       // Try to take advantage of fallthrough opportunities.
   1366       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1367         std::swap(TrueMBB, FalseMBB);
   1368         Predicate = CmpInst::getInversePredicate(Predicate);
   1369       }
   1370 
   1371       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
   1372       // code check. Instead two branch instructions are required to check all
   1373       // the flags. First we change the predicate to a supported condition code,
   1374       // which will be the first branch. Later one we will emit the second
   1375       // branch.
   1376       bool NeedExtraBranch = false;
   1377       switch (Predicate) {
   1378       default: break;
   1379       case CmpInst::FCMP_OEQ:
   1380         std::swap(TrueMBB, FalseMBB); // fall-through
   1381       case CmpInst::FCMP_UNE:
   1382         NeedExtraBranch = true;
   1383         Predicate = CmpInst::FCMP_ONE;
   1384         break;
   1385       }
   1386 
   1387       bool SwapArgs;
   1388       unsigned BranchOpc;
   1389       std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
   1390       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
   1391 
   1392       BranchOpc = X86::GetCondBranchFromCond(CC);
   1393       if (SwapArgs)
   1394         std::swap(CmpLHS, CmpRHS);
   1395 
   1396       // Emit a compare of the LHS and RHS, setting the flags.
   1397       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT))
   1398         return false;
   1399 
   1400       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
   1401         .addMBB(TrueMBB);
   1402 
   1403       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
   1404       // to UNE above).
   1405       if (NeedExtraBranch) {
   1406         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_4))
   1407           .addMBB(TrueMBB);
   1408       }
   1409 
   1410       // Obtain the branch weight and add the TrueBB to the successor list.
   1411       uint32_t BranchWeight = 0;
   1412       if (FuncInfo.BPI)
   1413         BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   1414                                                    TrueMBB->getBasicBlock());
   1415       FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
   1416 
   1417       // Emits an unconditional branch to the FalseBB, obtains the branch
   1418       // weight, and adds it to the successor list.
   1419       FastEmitBranch(FalseMBB, DbgLoc);
   1420 
   1421       return true;
   1422     }
   1423   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1424     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
   1425     // typically happen for _Bool and C++ bools.
   1426     MVT SourceVT;
   1427     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1428         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
   1429       unsigned TestOpc = 0;
   1430       switch (SourceVT.SimpleTy) {
   1431       default: break;
   1432       case MVT::i8:  TestOpc = X86::TEST8ri; break;
   1433       case MVT::i16: TestOpc = X86::TEST16ri; break;
   1434       case MVT::i32: TestOpc = X86::TEST32ri; break;
   1435       case MVT::i64: TestOpc = X86::TEST64ri32; break;
   1436       }
   1437       if (TestOpc) {
   1438         unsigned OpReg = getRegForValue(TI->getOperand(0));
   1439         if (OpReg == 0) return false;
   1440         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
   1441           .addReg(OpReg).addImm(1);
   1442 
   1443         unsigned JmpOpc = X86::JNE_4;
   1444         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1445           std::swap(TrueMBB, FalseMBB);
   1446           JmpOpc = X86::JE_4;
   1447         }
   1448 
   1449         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
   1450           .addMBB(TrueMBB);
   1451         FastEmitBranch(FalseMBB, DbgLoc);
   1452         uint32_t BranchWeight = 0;
   1453         if (FuncInfo.BPI)
   1454           BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   1455                                                      TrueMBB->getBasicBlock());
   1456         FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
   1457         return true;
   1458       }
   1459     }
   1460   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
   1461     // Fake request the condition, otherwise the intrinsic might be completely
   1462     // optimized away.
   1463     unsigned TmpReg = getRegForValue(BI->getCondition());
   1464     if (TmpReg == 0)
   1465       return false;
   1466 
   1467     unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
   1468 
   1469     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
   1470       .addMBB(TrueMBB);
   1471     FastEmitBranch(FalseMBB, DbgLoc);
   1472     uint32_t BranchWeight = 0;
   1473     if (FuncInfo.BPI)
   1474       BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   1475                                                  TrueMBB->getBasicBlock());
   1476     FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
   1477     return true;
   1478   }
   1479 
   1480   // Otherwise do a clumsy setcc and re-test it.
   1481   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
   1482   // in an explicit cast, so make sure to handle that correctly.
   1483   unsigned OpReg = getRegForValue(BI->getCondition());
   1484   if (OpReg == 0) return false;
   1485 
   1486   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
   1487     .addReg(OpReg).addImm(1);
   1488   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_4))
   1489     .addMBB(TrueMBB);
   1490   FastEmitBranch(FalseMBB, DbgLoc);
   1491   uint32_t BranchWeight = 0;
   1492   if (FuncInfo.BPI)
   1493     BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   1494                                                TrueMBB->getBasicBlock());
   1495   FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
   1496   return true;
   1497 }
   1498 
   1499 bool X86FastISel::X86SelectShift(const Instruction *I) {
   1500   unsigned CReg = 0, OpReg = 0;
   1501   const TargetRegisterClass *RC = nullptr;
   1502   if (I->getType()->isIntegerTy(8)) {
   1503     CReg = X86::CL;
   1504     RC = &X86::GR8RegClass;
   1505     switch (I->getOpcode()) {
   1506     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
   1507     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
   1508     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
   1509     default: return false;
   1510     }
   1511   } else if (I->getType()->isIntegerTy(16)) {
   1512     CReg = X86::CX;
   1513     RC = &X86::GR16RegClass;
   1514     switch (I->getOpcode()) {
   1515     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
   1516     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
   1517     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
   1518     default: return false;
   1519     }
   1520   } else if (I->getType()->isIntegerTy(32)) {
   1521     CReg = X86::ECX;
   1522     RC = &X86::GR32RegClass;
   1523     switch (I->getOpcode()) {
   1524     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
   1525     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
   1526     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
   1527     default: return false;
   1528     }
   1529   } else if (I->getType()->isIntegerTy(64)) {
   1530     CReg = X86::RCX;
   1531     RC = &X86::GR64RegClass;
   1532     switch (I->getOpcode()) {
   1533     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
   1534     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
   1535     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
   1536     default: return false;
   1537     }
   1538   } else {
   1539     return false;
   1540   }
   1541 
   1542   MVT VT;
   1543   if (!isTypeLegal(I->getType(), VT))
   1544     return false;
   1545 
   1546   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1547   if (Op0Reg == 0) return false;
   1548 
   1549   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1550   if (Op1Reg == 0) return false;
   1551   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
   1552           CReg).addReg(Op1Reg);
   1553 
   1554   // The shift instruction uses X86::CL. If we defined a super-register
   1555   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
   1556   if (CReg != X86::CL)
   1557     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1558             TII.get(TargetOpcode::KILL), X86::CL)
   1559       .addReg(CReg, RegState::Kill);
   1560 
   1561   unsigned ResultReg = createResultReg(RC);
   1562   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
   1563     .addReg(Op0Reg);
   1564   UpdateValueMap(I, ResultReg);
   1565   return true;
   1566 }
   1567 
   1568 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
   1569   const static unsigned NumTypes = 4; // i8, i16, i32, i64
   1570   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
   1571   const static bool S = true;  // IsSigned
   1572   const static bool U = false; // !IsSigned
   1573   const static unsigned Copy = TargetOpcode::COPY;
   1574   // For the X86 DIV/IDIV instruction, in most cases the dividend
   1575   // (numerator) must be in a specific register pair highreg:lowreg,
   1576   // producing the quotient in lowreg and the remainder in highreg.
   1577   // For most data types, to set up the instruction, the dividend is
   1578   // copied into lowreg, and lowreg is sign-extended or zero-extended
   1579   // into highreg.  The exception is i8, where the dividend is defined
   1580   // as a single register rather than a register pair, and we
   1581   // therefore directly sign-extend or zero-extend the dividend into
   1582   // lowreg, instead of copying, and ignore the highreg.
   1583   const static struct DivRemEntry {
   1584     // The following portion depends only on the data type.
   1585     const TargetRegisterClass *RC;
   1586     unsigned LowInReg;  // low part of the register pair
   1587     unsigned HighInReg; // high part of the register pair
   1588     // The following portion depends on both the data type and the operation.
   1589     struct DivRemResult {
   1590     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
   1591     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
   1592                               // highreg, or copying a zero into highreg.
   1593     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
   1594                               // zero/sign-extending into lowreg for i8.
   1595     unsigned DivRemResultReg; // Register containing the desired result.
   1596     bool IsOpSigned;          // Whether to use signed or unsigned form.
   1597     } ResultTable[NumOps];
   1598   } OpTable[NumTypes] = {
   1599     { &X86::GR8RegClass,  X86::AX,  0, {
   1600         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
   1601         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
   1602         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
   1603         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
   1604       }
   1605     }, // i8
   1606     { &X86::GR16RegClass, X86::AX,  X86::DX, {
   1607         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
   1608         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
   1609         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
   1610         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
   1611       }
   1612     }, // i16
   1613     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
   1614         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
   1615         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
   1616         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
   1617         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
   1618       }
   1619     }, // i32
   1620     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
   1621         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
   1622         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
   1623         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
   1624         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
   1625       }
   1626     }, // i64
   1627   };
   1628 
   1629   MVT VT;
   1630   if (!isTypeLegal(I->getType(), VT))
   1631     return false;
   1632 
   1633   unsigned TypeIndex, OpIndex;
   1634   switch (VT.SimpleTy) {
   1635   default: return false;
   1636   case MVT::i8:  TypeIndex = 0; break;
   1637   case MVT::i16: TypeIndex = 1; break;
   1638   case MVT::i32: TypeIndex = 2; break;
   1639   case MVT::i64: TypeIndex = 3;
   1640     if (!Subtarget->is64Bit())
   1641       return false;
   1642     break;
   1643   }
   1644 
   1645   switch (I->getOpcode()) {
   1646   default: llvm_unreachable("Unexpected div/rem opcode");
   1647   case Instruction::SDiv: OpIndex = 0; break;
   1648   case Instruction::SRem: OpIndex = 1; break;
   1649   case Instruction::UDiv: OpIndex = 2; break;
   1650   case Instruction::URem: OpIndex = 3; break;
   1651   }
   1652 
   1653   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
   1654   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
   1655   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1656   if (Op0Reg == 0)
   1657     return false;
   1658   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1659   if (Op1Reg == 0)
   1660     return false;
   1661 
   1662   // Move op0 into low-order input register.
   1663   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1664           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
   1665   // Zero-extend or sign-extend into high-order input register.
   1666   if (OpEntry.OpSignExtend) {
   1667     if (OpEntry.IsOpSigned)
   1668       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1669               TII.get(OpEntry.OpSignExtend));
   1670     else {
   1671       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
   1672       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1673               TII.get(X86::MOV32r0), Zero32);
   1674 
   1675       // Copy the zero into the appropriate sub/super/identical physical
   1676       // register. Unfortunately the operations needed are not uniform enough to
   1677       // fit neatly into the table above.
   1678       if (VT.SimpleTy == MVT::i16) {
   1679         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1680                 TII.get(Copy), TypeEntry.HighInReg)
   1681           .addReg(Zero32, 0, X86::sub_16bit);
   1682       } else if (VT.SimpleTy == MVT::i32) {
   1683         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1684                 TII.get(Copy), TypeEntry.HighInReg)
   1685             .addReg(Zero32);
   1686       } else if (VT.SimpleTy == MVT::i64) {
   1687         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1688                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
   1689             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
   1690       }
   1691     }
   1692   }
   1693   // Generate the DIV/IDIV instruction.
   1694   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1695           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
   1696   // For i8 remainder, we can't reference AH directly, as we'll end
   1697   // up with bogus copies like %R9B = COPY %AH. Reference AX
   1698   // instead to prevent AH references in a REX instruction.
   1699   //
   1700   // The current assumption of the fast register allocator is that isel
   1701   // won't generate explicit references to the GPR8_NOREX registers. If
   1702   // the allocator and/or the backend get enhanced to be more robust in
   1703   // that regard, this can be, and should be, removed.
   1704   unsigned ResultReg = 0;
   1705   if ((I->getOpcode() == Instruction::SRem ||
   1706        I->getOpcode() == Instruction::URem) &&
   1707       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
   1708     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
   1709     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
   1710     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1711             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
   1712 
   1713     // Shift AX right by 8 bits instead of using AH.
   1714     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
   1715             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
   1716 
   1717     // Now reference the 8-bit subreg of the result.
   1718     ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
   1719                                            /*Kill=*/true, X86::sub_8bit);
   1720   }
   1721   // Copy the result out of the physreg if we haven't already.
   1722   if (!ResultReg) {
   1723     ResultReg = createResultReg(TypeEntry.RC);
   1724     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
   1725         .addReg(OpEntry.DivRemResultReg);
   1726   }
   1727   UpdateValueMap(I, ResultReg);
   1728 
   1729   return true;
   1730 }
   1731 
   1732 /// \brief Emit a conditional move instruction (if the are supported) to lower
   1733 /// the select.
   1734 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
   1735   // Check if the subtarget supports these instructions.
   1736   if (!Subtarget->hasCMov())
   1737     return false;
   1738 
   1739   // FIXME: Add support for i8.
   1740   if (RetVT < MVT::i16 || RetVT > MVT::i64)
   1741     return false;
   1742 
   1743   const Value *Cond = I->getOperand(0);
   1744   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   1745   bool NeedTest = true;
   1746   X86::CondCode CC = X86::COND_NE;
   1747 
   1748   // Optimize conditions coming from a compare if both instructions are in the
   1749   // same basic block (values defined in other basic blocks may not have
   1750   // initialized registers).
   1751   const auto *CI = dyn_cast<CmpInst>(Cond);
   1752   if (CI && (CI->getParent() == I->getParent())) {
   1753     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1754 
   1755     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
   1756     static unsigned SETFOpcTable[2][3] = {
   1757       { X86::SETNPr, X86::SETEr , X86::TEST8rr },
   1758       { X86::SETPr,  X86::SETNEr, X86::OR8rr   }
   1759     };
   1760     unsigned *SETFOpc = nullptr;
   1761     switch (Predicate) {
   1762     default: break;
   1763     case CmpInst::FCMP_OEQ:
   1764       SETFOpc = &SETFOpcTable[0][0];
   1765       Predicate = CmpInst::ICMP_NE;
   1766       break;
   1767     case CmpInst::FCMP_UNE:
   1768       SETFOpc = &SETFOpcTable[1][0];
   1769       Predicate = CmpInst::ICMP_NE;
   1770       break;
   1771     }
   1772 
   1773     bool NeedSwap;
   1774     std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
   1775     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
   1776 
   1777     const Value *CmpLHS = CI->getOperand(0);
   1778     const Value *CmpRHS = CI->getOperand(1);
   1779     if (NeedSwap)
   1780       std::swap(CmpLHS, CmpRHS);
   1781 
   1782     EVT CmpVT = TLI.getValueType(CmpLHS->getType());
   1783     // Emit a compare of the LHS and RHS, setting the flags.
   1784     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT))
   1785      return false;
   1786 
   1787     if (SETFOpc) {
   1788       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
   1789       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
   1790       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
   1791               FlagReg1);
   1792       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
   1793               FlagReg2);
   1794       auto const &II = TII.get(SETFOpc[2]);
   1795       if (II.getNumDefs()) {
   1796         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
   1797         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
   1798           .addReg(FlagReg2).addReg(FlagReg1);
   1799       } else {
   1800         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
   1801           .addReg(FlagReg2).addReg(FlagReg1);
   1802       }
   1803     }
   1804     NeedTest = false;
   1805   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
   1806     // Fake request the condition, otherwise the intrinsic might be completely
   1807     // optimized away.
   1808     unsigned TmpReg = getRegForValue(Cond);
   1809     if (TmpReg == 0)
   1810       return false;
   1811 
   1812     NeedTest = false;
   1813   }
   1814 
   1815   if (NeedTest) {
   1816     // Selects operate on i1, however, CondReg is 8 bits width and may contain
   1817     // garbage. Indeed, only the less significant bit is supposed to be
   1818     // accurate. If we read more than the lsb, we may see non-zero values
   1819     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
   1820     // the select. This is achieved by performing TEST against 1.
   1821     unsigned CondReg = getRegForValue(Cond);
   1822     if (CondReg == 0)
   1823       return false;
   1824     bool CondIsKill = hasTrivialKill(Cond);
   1825 
   1826     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
   1827       .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
   1828   }
   1829 
   1830   const Value *LHS = I->getOperand(1);
   1831   const Value *RHS = I->getOperand(2);
   1832 
   1833   unsigned RHSReg = getRegForValue(RHS);
   1834   bool RHSIsKill = hasTrivialKill(RHS);
   1835 
   1836   unsigned LHSReg = getRegForValue(LHS);
   1837   bool LHSIsKill = hasTrivialKill(LHS);
   1838 
   1839   if (!LHSReg || !RHSReg)
   1840     return false;
   1841 
   1842   unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
   1843   unsigned ResultReg = FastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
   1844                                        LHSReg, LHSIsKill);
   1845   UpdateValueMap(I, ResultReg);
   1846   return true;
   1847 }
   1848 
   1849 /// \brief Emit SSE instructions to lower the select.
   1850 ///
   1851 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
   1852 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
   1853 /// SSE instructions are available.
   1854 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
   1855   // Optimize conditions coming from a compare if both instructions are in the
   1856   // same basic block (values defined in other basic blocks may not have
   1857   // initialized registers).
   1858   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
   1859   if (!CI || (CI->getParent() != I->getParent()))
   1860     return false;
   1861 
   1862   if (I->getType() != CI->getOperand(0)->getType() ||
   1863       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
   1864         (Subtarget->hasSSE2() && RetVT == MVT::f64)    ))
   1865     return false;
   1866 
   1867   const Value *CmpLHS = CI->getOperand(0);
   1868   const Value *CmpRHS = CI->getOperand(1);
   1869   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   1870 
   1871   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
   1872   // We don't have to materialize a zero constant for this case and can just use
   1873   // %x again on the RHS.
   1874   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
   1875     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
   1876     if (CmpRHSC && CmpRHSC->isNullValue())
   1877       CmpRHS = CmpLHS;
   1878   }
   1879 
   1880   unsigned CC;
   1881   bool NeedSwap;
   1882   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
   1883   if (CC > 7)
   1884     return false;
   1885 
   1886   if (NeedSwap)
   1887     std::swap(CmpLHS, CmpRHS);
   1888 
   1889   static unsigned OpcTable[2][2][4] = {
   1890     { { X86::CMPSSrr,  X86::FsANDPSrr,  X86::FsANDNPSrr,  X86::FsORPSrr  },
   1891       { X86::VCMPSSrr, X86::VFsANDPSrr, X86::VFsANDNPSrr, X86::VFsORPSrr }  },
   1892     { { X86::CMPSDrr,  X86::FsANDPDrr,  X86::FsANDNPDrr,  X86::FsORPDrr  },
   1893       { X86::VCMPSDrr, X86::VFsANDPDrr, X86::VFsANDNPDrr, X86::VFsORPDrr }  }
   1894   };
   1895 
   1896   bool HasAVX = Subtarget->hasAVX();
   1897   unsigned *Opc = nullptr;
   1898   switch (RetVT.SimpleTy) {
   1899   default: return false;
   1900   case MVT::f32: Opc = &OpcTable[0][HasAVX][0]; break;
   1901   case MVT::f64: Opc = &OpcTable[1][HasAVX][0]; break;
   1902   }
   1903 
   1904   const Value *LHS = I->getOperand(1);
   1905   const Value *RHS = I->getOperand(2);
   1906 
   1907   unsigned LHSReg = getRegForValue(LHS);
   1908   bool LHSIsKill = hasTrivialKill(LHS);
   1909 
   1910   unsigned RHSReg = getRegForValue(RHS);
   1911   bool RHSIsKill = hasTrivialKill(RHS);
   1912 
   1913   unsigned CmpLHSReg = getRegForValue(CmpLHS);
   1914   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
   1915 
   1916   unsigned CmpRHSReg = getRegForValue(CmpRHS);
   1917   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
   1918 
   1919   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
   1920     return false;
   1921 
   1922   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   1923   unsigned CmpReg = FastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
   1924                                      CmpRHSReg, CmpRHSIsKill, CC);
   1925   unsigned AndReg = FastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
   1926                                     LHSReg, LHSIsKill);
   1927   unsigned AndNReg = FastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
   1928                                      RHSReg, RHSIsKill);
   1929   unsigned ResultReg = FastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
   1930                                        AndReg, /*IsKill=*/true);
   1931   UpdateValueMap(I, ResultReg);
   1932   return true;
   1933 }
   1934 
   1935 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
   1936   // These are pseudo CMOV instructions and will be later expanded into control-
   1937   // flow.
   1938   unsigned Opc;
   1939   switch (RetVT.SimpleTy) {
   1940   default: return false;
   1941   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
   1942   case MVT::i16: Opc = X86::CMOV_GR16; break;
   1943   case MVT::i32: Opc = X86::CMOV_GR32; break;
   1944   case MVT::f32: Opc = X86::CMOV_FR32; break;
   1945   case MVT::f64: Opc = X86::CMOV_FR64; break;
   1946   }
   1947 
   1948   const Value *Cond = I->getOperand(0);
   1949   X86::CondCode CC = X86::COND_NE;
   1950 
   1951   // Optimize conditions coming from a compare if both instructions are in the
   1952   // same basic block (values defined in other basic blocks may not have
   1953   // initialized registers).
   1954   const auto *CI = dyn_cast<CmpInst>(Cond);
   1955   if (CI && (CI->getParent() == I->getParent())) {
   1956     bool NeedSwap;
   1957     std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
   1958     if (CC > X86::LAST_VALID_COND)
   1959       return false;
   1960 
   1961     const Value *CmpLHS = CI->getOperand(0);
   1962     const Value *CmpRHS = CI->getOperand(1);
   1963 
   1964     if (NeedSwap)
   1965       std::swap(CmpLHS, CmpRHS);
   1966 
   1967     EVT CmpVT = TLI.getValueType(CmpLHS->getType());
   1968     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT))
   1969       return false;
   1970   } else {
   1971     unsigned CondReg = getRegForValue(Cond);
   1972     if (CondReg == 0)
   1973       return false;
   1974     bool CondIsKill = hasTrivialKill(Cond);
   1975     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
   1976       .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
   1977   }
   1978 
   1979   const Value *LHS = I->getOperand(1);
   1980   const Value *RHS = I->getOperand(2);
   1981 
   1982   unsigned LHSReg = getRegForValue(LHS);
   1983   bool LHSIsKill = hasTrivialKill(LHS);
   1984 
   1985   unsigned RHSReg = getRegForValue(RHS);
   1986   bool RHSIsKill = hasTrivialKill(RHS);
   1987 
   1988   if (!LHSReg || !RHSReg)
   1989     return false;
   1990 
   1991   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   1992 
   1993   unsigned ResultReg =
   1994     FastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
   1995   UpdateValueMap(I, ResultReg);
   1996   return true;
   1997 }
   1998 
   1999 bool X86FastISel::X86SelectSelect(const Instruction *I) {
   2000   MVT RetVT;
   2001   if (!isTypeLegal(I->getType(), RetVT))
   2002     return false;
   2003 
   2004   // Check if we can fold the select.
   2005   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
   2006     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   2007     const Value *Opnd = nullptr;
   2008     switch (Predicate) {
   2009     default:                              break;
   2010     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
   2011     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
   2012     }
   2013     // No need for a select anymore - this is an unconditional move.
   2014     if (Opnd) {
   2015       unsigned OpReg = getRegForValue(Opnd);
   2016       if (OpReg == 0)
   2017         return false;
   2018       bool OpIsKill = hasTrivialKill(Opnd);
   2019       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
   2020       unsigned ResultReg = createResultReg(RC);
   2021       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2022               TII.get(TargetOpcode::COPY), ResultReg)
   2023         .addReg(OpReg, getKillRegState(OpIsKill));
   2024       UpdateValueMap(I, ResultReg);
   2025       return true;
   2026     }
   2027   }
   2028 
   2029   // First try to use real conditional move instructions.
   2030   if (X86FastEmitCMoveSelect(RetVT, I))
   2031     return true;
   2032 
   2033   // Try to use a sequence of SSE instructions to simulate a conditional move.
   2034   if (X86FastEmitSSESelect(RetVT, I))
   2035     return true;
   2036 
   2037   // Fall-back to pseudo conditional move instructions, which will be later
   2038   // converted to control-flow.
   2039   if (X86FastEmitPseudoSelect(RetVT, I))
   2040     return true;
   2041 
   2042   return false;
   2043 }
   2044 
   2045 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
   2046   // fpext from float to double.
   2047   if (X86ScalarSSEf64 &&
   2048       I->getType()->isDoubleTy()) {
   2049     const Value *V = I->getOperand(0);
   2050     if (V->getType()->isFloatTy()) {
   2051       unsigned OpReg = getRegForValue(V);
   2052       if (OpReg == 0) return false;
   2053       unsigned ResultReg = createResultReg(&X86::FR64RegClass);
   2054       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2055               TII.get(X86::CVTSS2SDrr), ResultReg)
   2056         .addReg(OpReg);
   2057       UpdateValueMap(I, ResultReg);
   2058       return true;
   2059     }
   2060   }
   2061 
   2062   return false;
   2063 }
   2064 
   2065 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
   2066   if (X86ScalarSSEf64) {
   2067     if (I->getType()->isFloatTy()) {
   2068       const Value *V = I->getOperand(0);
   2069       if (V->getType()->isDoubleTy()) {
   2070         unsigned OpReg = getRegForValue(V);
   2071         if (OpReg == 0) return false;
   2072         unsigned ResultReg = createResultReg(&X86::FR32RegClass);
   2073         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2074                 TII.get(X86::CVTSD2SSrr), ResultReg)
   2075           .addReg(OpReg);
   2076         UpdateValueMap(I, ResultReg);
   2077         return true;
   2078       }
   2079     }
   2080   }
   2081 
   2082   return false;
   2083 }
   2084 
   2085 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
   2086   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   2087   EVT DstVT = TLI.getValueType(I->getType());
   2088 
   2089   // This code only handles truncation to byte.
   2090   if (DstVT != MVT::i8 && DstVT != MVT::i1)
   2091     return false;
   2092   if (!TLI.isTypeLegal(SrcVT))
   2093     return false;
   2094 
   2095   unsigned InputReg = getRegForValue(I->getOperand(0));
   2096   if (!InputReg)
   2097     // Unhandled operand.  Halt "fast" selection and bail.
   2098     return false;
   2099 
   2100   if (SrcVT == MVT::i8) {
   2101     // Truncate from i8 to i1; no code needed.
   2102     UpdateValueMap(I, InputReg);
   2103     return true;
   2104   }
   2105 
   2106   if (!Subtarget->is64Bit()) {
   2107     // If we're on x86-32; we can't extract an i8 from a general register.
   2108     // First issue a copy to GR16_ABCD or GR32_ABCD.
   2109     const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
   2110       (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
   2111       (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
   2112     unsigned CopyReg = createResultReg(CopyRC);
   2113     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
   2114             CopyReg).addReg(InputReg);
   2115     InputReg = CopyReg;
   2116   }
   2117 
   2118   // Issue an extract_subreg.
   2119   unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
   2120                                                   InputReg, /*Kill=*/true,
   2121                                                   X86::sub_8bit);
   2122   if (!ResultReg)
   2123     return false;
   2124 
   2125   UpdateValueMap(I, ResultReg);
   2126   return true;
   2127 }
   2128 
   2129 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
   2130   return Len <= (Subtarget->is64Bit() ? 32 : 16);
   2131 }
   2132 
   2133 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
   2134                                      X86AddressMode SrcAM, uint64_t Len) {
   2135 
   2136   // Make sure we don't bloat code by inlining very large memcpy's.
   2137   if (!IsMemcpySmall(Len))
   2138     return false;
   2139 
   2140   bool i64Legal = Subtarget->is64Bit();
   2141 
   2142   // We don't care about alignment here since we just emit integer accesses.
   2143   while (Len) {
   2144     MVT VT;
   2145     if (Len >= 8 && i64Legal)
   2146       VT = MVT::i64;
   2147     else if (Len >= 4)
   2148       VT = MVT::i32;
   2149     else if (Len >= 2)
   2150       VT = MVT::i16;
   2151     else {
   2152       VT = MVT::i8;
   2153     }
   2154 
   2155     unsigned Reg;
   2156     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
   2157     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
   2158     assert(RV && "Failed to emit load or store??");
   2159 
   2160     unsigned Size = VT.getSizeInBits()/8;
   2161     Len -= Size;
   2162     DestAM.Disp += Size;
   2163     SrcAM.Disp += Size;
   2164   }
   2165 
   2166   return true;
   2167 }
   2168 
   2169 static bool isCommutativeIntrinsic(IntrinsicInst const &I) {
   2170   switch (I.getIntrinsicID()) {
   2171   case Intrinsic::sadd_with_overflow:
   2172   case Intrinsic::uadd_with_overflow:
   2173   case Intrinsic::smul_with_overflow:
   2174   case Intrinsic::umul_with_overflow:
   2175     return true;
   2176   default:
   2177     return false;
   2178   }
   2179 }
   2180 
   2181 bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
   2182   // FIXME: Handle more intrinsics.
   2183   switch (I.getIntrinsicID()) {
   2184   default: return false;
   2185   case Intrinsic::frameaddress: {
   2186     Type *RetTy = I.getCalledFunction()->getReturnType();
   2187 
   2188     MVT VT;
   2189     if (!isTypeLegal(RetTy, VT))
   2190       return false;
   2191 
   2192     unsigned Opc;
   2193     const TargetRegisterClass *RC = nullptr;
   2194 
   2195     switch (VT.SimpleTy) {
   2196     default: llvm_unreachable("Invalid result type for frameaddress.");
   2197     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
   2198     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
   2199     }
   2200 
   2201     // This needs to be set before we call getFrameRegister, otherwise we get
   2202     // the wrong frame register.
   2203     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
   2204     MFI->setFrameAddressIsTaken(true);
   2205 
   2206     const X86RegisterInfo *RegInfo =
   2207       static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
   2208     unsigned FrameReg = RegInfo->getFrameRegister(*(FuncInfo.MF));
   2209     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
   2210             (FrameReg == X86::EBP && VT == MVT::i32)) &&
   2211            "Invalid Frame Register!");
   2212 
   2213     // Always make a copy of the frame register to to a vreg first, so that we
   2214     // never directly reference the frame register (the TwoAddressInstruction-
   2215     // Pass doesn't like that).
   2216     unsigned SrcReg = createResultReg(RC);
   2217     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2218             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
   2219 
   2220     // Now recursively load from the frame address.
   2221     // movq (%rbp), %rax
   2222     // movq (%rax), %rax
   2223     // movq (%rax), %rax
   2224     // ...
   2225     unsigned DestReg;
   2226     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
   2227     while (Depth--) {
   2228       DestReg = createResultReg(RC);
   2229       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2230                            TII.get(Opc), DestReg), SrcReg);
   2231       SrcReg = DestReg;
   2232     }
   2233 
   2234     UpdateValueMap(&I, SrcReg);
   2235     return true;
   2236   }
   2237   case Intrinsic::memcpy: {
   2238     const MemCpyInst &MCI = cast<MemCpyInst>(I);
   2239     // Don't handle volatile or variable length memcpys.
   2240     if (MCI.isVolatile())
   2241       return false;
   2242 
   2243     if (isa<ConstantInt>(MCI.getLength())) {
   2244       // Small memcpy's are common enough that we want to do them
   2245       // without a call if possible.
   2246       uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
   2247       if (IsMemcpySmall(Len)) {
   2248         X86AddressMode DestAM, SrcAM;
   2249         if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
   2250             !X86SelectAddress(MCI.getRawSource(), SrcAM))
   2251           return false;
   2252         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
   2253         return true;
   2254       }
   2255     }
   2256 
   2257     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   2258     if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
   2259       return false;
   2260 
   2261     if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
   2262       return false;
   2263 
   2264     return DoSelectCall(&I, "memcpy");
   2265   }
   2266   case Intrinsic::memset: {
   2267     const MemSetInst &MSI = cast<MemSetInst>(I);
   2268 
   2269     if (MSI.isVolatile())
   2270       return false;
   2271 
   2272     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   2273     if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
   2274       return false;
   2275 
   2276     if (MSI.getDestAddressSpace() > 255)
   2277       return false;
   2278 
   2279     return DoSelectCall(&I, "memset");
   2280   }
   2281   case Intrinsic::stackprotector: {
   2282     // Emit code to store the stack guard onto the stack.
   2283     EVT PtrTy = TLI.getPointerTy();
   2284 
   2285     const Value *Op1 = I.getArgOperand(0); // The guard's value.
   2286     const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   2287 
   2288     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
   2289 
   2290     // Grab the frame index.
   2291     X86AddressMode AM;
   2292     if (!X86SelectAddress(Slot, AM)) return false;
   2293     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
   2294     return true;
   2295   }
   2296   case Intrinsic::dbg_declare: {
   2297     const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
   2298     X86AddressMode AM;
   2299     assert(DI->getAddress() && "Null address should be checked earlier!");
   2300     if (!X86SelectAddress(DI->getAddress(), AM))
   2301       return false;
   2302     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
   2303     // FIXME may need to add RegState::Debug to any registers produced,
   2304     // although ESP/EBP should be the only ones at the moment.
   2305     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM).
   2306       addImm(0).addMetadata(DI->getVariable());
   2307     return true;
   2308   }
   2309   case Intrinsic::trap: {
   2310     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
   2311     return true;
   2312   }
   2313   case Intrinsic::sqrt: {
   2314     if (!Subtarget->hasSSE1())
   2315       return false;
   2316 
   2317     Type *RetTy = I.getCalledFunction()->getReturnType();
   2318 
   2319     MVT VT;
   2320     if (!isTypeLegal(RetTy, VT))
   2321       return false;
   2322 
   2323     // Unfortunately we can't use FastEmit_r, because the AVX version of FSQRT
   2324     // is not generated by FastISel yet.
   2325     // FIXME: Update this code once tablegen can handle it.
   2326     static const unsigned SqrtOpc[2][2] = {
   2327       {X86::SQRTSSr, X86::VSQRTSSr},
   2328       {X86::SQRTSDr, X86::VSQRTSDr}
   2329     };
   2330     bool HasAVX = Subtarget->hasAVX();
   2331     unsigned Opc;
   2332     const TargetRegisterClass *RC;
   2333     switch (VT.SimpleTy) {
   2334     default: return false;
   2335     case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
   2336     case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
   2337     }
   2338 
   2339     const Value *SrcVal = I.getArgOperand(0);
   2340     unsigned SrcReg = getRegForValue(SrcVal);
   2341 
   2342     if (SrcReg == 0)
   2343       return false;
   2344 
   2345     unsigned ImplicitDefReg = 0;
   2346     if (HasAVX) {
   2347       ImplicitDefReg = createResultReg(RC);
   2348       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2349               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
   2350     }
   2351 
   2352     unsigned ResultReg = createResultReg(RC);
   2353     MachineInstrBuilder MIB;
   2354     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
   2355                   ResultReg);
   2356 
   2357     if (ImplicitDefReg)
   2358       MIB.addReg(ImplicitDefReg);
   2359 
   2360     MIB.addReg(SrcReg);
   2361 
   2362     UpdateValueMap(&I, ResultReg);
   2363     return true;
   2364   }
   2365   case Intrinsic::sadd_with_overflow:
   2366   case Intrinsic::uadd_with_overflow:
   2367   case Intrinsic::ssub_with_overflow:
   2368   case Intrinsic::usub_with_overflow:
   2369   case Intrinsic::smul_with_overflow:
   2370   case Intrinsic::umul_with_overflow: {
   2371     // This implements the basic lowering of the xalu with overflow intrinsics
   2372     // into add/sub/mul followed by either seto or setb.
   2373     const Function *Callee = I.getCalledFunction();
   2374     auto *Ty = cast<StructType>(Callee->getReturnType());
   2375     Type *RetTy = Ty->getTypeAtIndex(0U);
   2376     Type *CondTy = Ty->getTypeAtIndex(1);
   2377 
   2378     MVT VT;
   2379     if (!isTypeLegal(RetTy, VT))
   2380       return false;
   2381 
   2382     if (VT < MVT::i8 || VT > MVT::i64)
   2383       return false;
   2384 
   2385     const Value *LHS = I.getArgOperand(0);
   2386     const Value *RHS = I.getArgOperand(1);
   2387 
   2388     // Canonicalize immediate to the RHS.
   2389     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
   2390         isCommutativeIntrinsic(I))
   2391       std::swap(LHS, RHS);
   2392 
   2393     unsigned BaseOpc, CondOpc;
   2394     switch (I.getIntrinsicID()) {
   2395     default: llvm_unreachable("Unexpected intrinsic!");
   2396     case Intrinsic::sadd_with_overflow:
   2397       BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
   2398     case Intrinsic::uadd_with_overflow:
   2399       BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
   2400     case Intrinsic::ssub_with_overflow:
   2401       BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break;
   2402     case Intrinsic::usub_with_overflow:
   2403       BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
   2404     case Intrinsic::smul_with_overflow:
   2405       BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
   2406     case Intrinsic::umul_with_overflow:
   2407       BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
   2408     }
   2409 
   2410     unsigned LHSReg = getRegForValue(LHS);
   2411     if (LHSReg == 0)
   2412       return false;
   2413     bool LHSIsKill = hasTrivialKill(LHS);
   2414 
   2415     unsigned ResultReg = 0;
   2416     // Check if we have an immediate version.
   2417     if (auto const *C = dyn_cast<ConstantInt>(RHS)) {
   2418       ResultReg = FastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
   2419                               C->getZExtValue());
   2420     }
   2421 
   2422     unsigned RHSReg;
   2423     bool RHSIsKill;
   2424     if (!ResultReg) {
   2425       RHSReg = getRegForValue(RHS);
   2426       if (RHSReg == 0)
   2427         return false;
   2428       RHSIsKill = hasTrivialKill(RHS);
   2429       ResultReg = FastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
   2430                               RHSIsKill);
   2431     }
   2432 
   2433     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
   2434     // it manually.
   2435     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
   2436       static const unsigned MULOpc[] =
   2437         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
   2438       static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
   2439       // First copy the first operand into RAX, which is an implicit input to
   2440       // the X86::MUL*r instruction.
   2441       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2442               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
   2443         .addReg(LHSReg, getKillRegState(LHSIsKill));
   2444       ResultReg = FastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
   2445                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
   2446     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
   2447       static const unsigned MULOpc[] =
   2448         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
   2449       if (VT == MVT::i8) {
   2450         // Copy the first operand into AL, which is an implicit input to the
   2451         // X86::IMUL8r instruction.
   2452         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2453                TII.get(TargetOpcode::COPY), X86::AL)
   2454           .addReg(LHSReg, getKillRegState(LHSIsKill));
   2455         ResultReg = FastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
   2456                                    RHSIsKill);
   2457       } else
   2458         ResultReg = FastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
   2459                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
   2460                                     RHSReg, RHSIsKill);
   2461     }
   2462 
   2463     if (!ResultReg)
   2464       return false;
   2465 
   2466     unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
   2467     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
   2468     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
   2469             ResultReg2);
   2470 
   2471     UpdateValueMap(&I, ResultReg, 2);
   2472     return true;
   2473   }
   2474   case Intrinsic::x86_sse_cvttss2si:
   2475   case Intrinsic::x86_sse_cvttss2si64:
   2476   case Intrinsic::x86_sse2_cvttsd2si:
   2477   case Intrinsic::x86_sse2_cvttsd2si64: {
   2478     bool IsInputDouble;
   2479     switch (I.getIntrinsicID()) {
   2480     default: llvm_unreachable("Unexpected intrinsic.");
   2481     case Intrinsic::x86_sse_cvttss2si:
   2482     case Intrinsic::x86_sse_cvttss2si64:
   2483       if (!Subtarget->hasSSE1())
   2484         return false;
   2485       IsInputDouble = false;
   2486       break;
   2487     case Intrinsic::x86_sse2_cvttsd2si:
   2488     case Intrinsic::x86_sse2_cvttsd2si64:
   2489       if (!Subtarget->hasSSE2())
   2490         return false;
   2491       IsInputDouble = true;
   2492       break;
   2493     }
   2494 
   2495     Type *RetTy = I.getCalledFunction()->getReturnType();
   2496     MVT VT;
   2497     if (!isTypeLegal(RetTy, VT))
   2498       return false;
   2499 
   2500     static const unsigned CvtOpc[2][2][2] = {
   2501       { { X86::CVTTSS2SIrr,   X86::VCVTTSS2SIrr   },
   2502         { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr }  },
   2503       { { X86::CVTTSD2SIrr,   X86::VCVTTSD2SIrr   },
   2504         { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr }  }
   2505     };
   2506     bool HasAVX = Subtarget->hasAVX();
   2507     unsigned Opc;
   2508     switch (VT.SimpleTy) {
   2509     default: llvm_unreachable("Unexpected result type.");
   2510     case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
   2511     case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
   2512     }
   2513 
   2514     // Check if we can fold insertelement instructions into the convert.
   2515     const Value *Op = I.getArgOperand(0);
   2516     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
   2517       const Value *Index = IE->getOperand(2);
   2518       if (!isa<ConstantInt>(Index))
   2519         break;
   2520       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
   2521 
   2522       if (Idx == 0) {
   2523         Op = IE->getOperand(1);
   2524         break;
   2525       }
   2526       Op = IE->getOperand(0);
   2527     }
   2528 
   2529     unsigned Reg = getRegForValue(Op);
   2530     if (Reg == 0)
   2531       return false;
   2532 
   2533     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
   2534     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
   2535       .addReg(Reg);
   2536 
   2537     UpdateValueMap(&I, ResultReg);
   2538     return true;
   2539   }
   2540   }
   2541 }
   2542 
   2543 bool X86FastISel::FastLowerArguments() {
   2544   if (!FuncInfo.CanLowerReturn)
   2545     return false;
   2546 
   2547   const Function *F = FuncInfo.Fn;
   2548   if (F->isVarArg())
   2549     return false;
   2550 
   2551   CallingConv::ID CC = F->getCallingConv();
   2552   if (CC != CallingConv::C)
   2553     return false;
   2554 
   2555   if (Subtarget->isCallingConvWin64(CC))
   2556     return false;
   2557 
   2558   if (!Subtarget->is64Bit())
   2559     return false;
   2560 
   2561   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
   2562   unsigned GPRCnt = 0;
   2563   unsigned FPRCnt = 0;
   2564   unsigned Idx = 0;
   2565   for (auto const &Arg : F->args()) {
   2566     // The first argument is at index 1.
   2567     ++Idx;
   2568     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
   2569         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
   2570         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
   2571         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
   2572       return false;
   2573 
   2574     Type *ArgTy = Arg.getType();
   2575     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
   2576       return false;
   2577 
   2578     EVT ArgVT = TLI.getValueType(ArgTy);
   2579     if (!ArgVT.isSimple()) return false;
   2580     switch (ArgVT.getSimpleVT().SimpleTy) {
   2581     default: return false;
   2582     case MVT::i32:
   2583     case MVT::i64:
   2584       ++GPRCnt;
   2585       break;
   2586     case MVT::f32:
   2587     case MVT::f64:
   2588       if (!Subtarget->hasSSE1())
   2589         return false;
   2590       ++FPRCnt;
   2591       break;
   2592     }
   2593 
   2594     if (GPRCnt > 6)
   2595       return false;
   2596 
   2597     if (FPRCnt > 8)
   2598       return false;
   2599   }
   2600 
   2601   static const MCPhysReg GPR32ArgRegs[] = {
   2602     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
   2603   };
   2604   static const MCPhysReg GPR64ArgRegs[] = {
   2605     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
   2606   };
   2607   static const MCPhysReg XMMArgRegs[] = {
   2608     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2609     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2610   };
   2611 
   2612   unsigned GPRIdx = 0;
   2613   unsigned FPRIdx = 0;
   2614   for (auto const &Arg : F->args()) {
   2615     MVT VT = TLI.getSimpleValueType(Arg.getType());
   2616     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
   2617     unsigned SrcReg;
   2618     switch (VT.SimpleTy) {
   2619     default: llvm_unreachable("Unexpected value type.");
   2620     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
   2621     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
   2622     case MVT::f32: // fall-through
   2623     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
   2624     }
   2625     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
   2626     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
   2627     // Without this, EmitLiveInCopies may eliminate the livein if its only
   2628     // use is a bitcast (which isn't turned into an instruction).
   2629     unsigned ResultReg = createResultReg(RC);
   2630     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2631             TII.get(TargetOpcode::COPY), ResultReg)
   2632       .addReg(DstReg, getKillRegState(true));
   2633     UpdateValueMap(&Arg, ResultReg);
   2634   }
   2635   return true;
   2636 }
   2637 
   2638 bool X86FastISel::X86SelectCall(const Instruction *I) {
   2639   const CallInst *CI = cast<CallInst>(I);
   2640   const Value *Callee = CI->getCalledValue();
   2641 
   2642   // Can't handle inline asm yet.
   2643   if (isa<InlineAsm>(Callee))
   2644     return false;
   2645 
   2646   // Handle intrinsic calls.
   2647   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
   2648     return X86VisitIntrinsicCall(*II);
   2649 
   2650   // Allow SelectionDAG isel to handle tail calls.
   2651   if (cast<CallInst>(I)->isTailCall())
   2652     return false;
   2653 
   2654   return DoSelectCall(I, nullptr);
   2655 }
   2656 
   2657 static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
   2658                                            const ImmutableCallSite &CS) {
   2659   if (Subtarget.is64Bit())
   2660     return 0;
   2661   if (Subtarget.getTargetTriple().isOSMSVCRT())
   2662     return 0;
   2663   CallingConv::ID CC = CS.getCallingConv();
   2664   if (CC == CallingConv::Fast || CC == CallingConv::GHC)
   2665     return 0;
   2666   if (!CS.paramHasAttr(1, Attribute::StructRet))
   2667     return 0;
   2668   if (CS.paramHasAttr(1, Attribute::InReg))
   2669     return 0;
   2670   return 4;
   2671 }
   2672 
   2673 // Select either a call, or an llvm.memcpy/memmove/memset intrinsic
   2674 bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
   2675   const CallInst *CI = cast<CallInst>(I);
   2676   const Value *Callee = CI->getCalledValue();
   2677 
   2678   // Handle only C and fastcc calling conventions for now.
   2679   ImmutableCallSite CS(CI);
   2680   CallingConv::ID CC = CS.getCallingConv();
   2681   bool isWin64 = Subtarget->isCallingConvWin64(CC);
   2682   if (CC != CallingConv::C && CC != CallingConv::Fast &&
   2683       CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
   2684       CC != CallingConv::X86_64_SysV)
   2685     return false;
   2686 
   2687   // fastcc with -tailcallopt is intended to provide a guaranteed
   2688   // tail call optimization. Fastisel doesn't know how to do that.
   2689   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
   2690     return false;
   2691 
   2692   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   2693   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   2694   bool isVarArg = FTy->isVarArg();
   2695 
   2696   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
   2697   // x86-32.  Special handling for x86-64 is implemented.
   2698   if (isVarArg && isWin64)
   2699     return false;
   2700 
   2701   // Don't know about inalloca yet.
   2702   if (CS.hasInAllocaArgument())
   2703     return false;
   2704 
   2705   // Fast-isel doesn't know about callee-pop yet.
   2706   if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
   2707                        TM.Options.GuaranteedTailCallOpt))
   2708     return false;
   2709 
   2710   // Check whether the function can return without sret-demotion.
   2711   SmallVector<ISD::OutputArg, 4> Outs;
   2712   GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
   2713   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
   2714                                            *FuncInfo.MF, FTy->isVarArg(),
   2715                                            Outs, FTy->getContext());
   2716   if (!CanLowerReturn)
   2717     return false;
   2718 
   2719   // Materialize callee address in a register. FIXME: GV address can be
   2720   // handled with a CALLpcrel32 instead.
   2721   X86AddressMode CalleeAM;
   2722   if (!X86SelectCallAddress(Callee, CalleeAM))
   2723     return false;
   2724   unsigned CalleeOp = 0;
   2725   const GlobalValue *GV = nullptr;
   2726   if (CalleeAM.GV != nullptr) {
   2727     GV = CalleeAM.GV;
   2728   } else if (CalleeAM.Base.Reg != 0) {
   2729     CalleeOp = CalleeAM.Base.Reg;
   2730   } else
   2731     return false;
   2732 
   2733   // Deal with call operands first.
   2734   SmallVector<const Value *, 8> ArgVals;
   2735   SmallVector<unsigned, 8> Args;
   2736   SmallVector<MVT, 8> ArgVTs;
   2737   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2738   unsigned arg_size = CS.arg_size();
   2739   Args.reserve(arg_size);
   2740   ArgVals.reserve(arg_size);
   2741   ArgVTs.reserve(arg_size);
   2742   ArgFlags.reserve(arg_size);
   2743   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   2744        i != e; ++i) {
   2745     // If we're lowering a mem intrinsic instead of a regular call, skip the
   2746     // last two arguments, which should not passed to the underlying functions.
   2747     if (MemIntName && e-i <= 2)
   2748       break;
   2749     Value *ArgVal = *i;
   2750     ISD::ArgFlagsTy Flags;
   2751     unsigned AttrInd = i - CS.arg_begin() + 1;
   2752     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   2753       Flags.setSExt();
   2754     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   2755       Flags.setZExt();
   2756 
   2757     if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
   2758       PointerType *Ty = cast<PointerType>(ArgVal->getType());
   2759       Type *ElementTy = Ty->getElementType();
   2760       unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
   2761       unsigned FrameAlign = CS.getParamAlignment(AttrInd);
   2762       if (!FrameAlign)
   2763         FrameAlign = TLI.getByValTypeAlignment(ElementTy);
   2764       Flags.setByVal();
   2765       Flags.setByValSize(FrameSize);
   2766       Flags.setByValAlign(FrameAlign);
   2767       if (!IsMemcpySmall(FrameSize))
   2768         return false;
   2769     }
   2770 
   2771     if (CS.paramHasAttr(AttrInd, Attribute::InReg))
   2772       Flags.setInReg();
   2773     if (CS.paramHasAttr(AttrInd, Attribute::Nest))
   2774       Flags.setNest();
   2775 
   2776     // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
   2777     // instruction.  This is safe because it is common to all fastisel supported
   2778     // calling conventions on x86.
   2779     if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
   2780       if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
   2781           CI->getBitWidth() == 16) {
   2782         if (Flags.isSExt())
   2783           ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
   2784         else
   2785           ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
   2786       }
   2787     }
   2788 
   2789     unsigned ArgReg;
   2790 
   2791     // Passing bools around ends up doing a trunc to i1 and passing it.
   2792     // Codegen this as an argument + "and 1".
   2793     if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
   2794         cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
   2795         ArgVal->hasOneUse()) {
   2796       ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
   2797       ArgReg = getRegForValue(ArgVal);
   2798       if (ArgReg == 0) return false;
   2799 
   2800       MVT ArgVT;
   2801       if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
   2802 
   2803       ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
   2804                            ArgVal->hasOneUse(), 1);
   2805     } else {
   2806       ArgReg = getRegForValue(ArgVal);
   2807     }
   2808 
   2809     if (ArgReg == 0) return false;
   2810 
   2811     Type *ArgTy = ArgVal->getType();
   2812     MVT ArgVT;
   2813     if (!isTypeLegal(ArgTy, ArgVT))
   2814       return false;
   2815     if (ArgVT == MVT::x86mmx)
   2816       return false;
   2817     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
   2818     Flags.setOrigAlign(OriginalAlignment);
   2819 
   2820     Args.push_back(ArgReg);
   2821     ArgVals.push_back(ArgVal);
   2822     ArgVTs.push_back(ArgVT);
   2823     ArgFlags.push_back(Flags);
   2824   }
   2825 
   2826   // Analyze operands of the call, assigning locations to each operand.
   2827   SmallVector<CCValAssign, 16> ArgLocs;
   2828   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
   2829                  I->getParent()->getContext());
   2830 
   2831   // Allocate shadow area for Win64
   2832   if (isWin64)
   2833     CCInfo.AllocateStack(32, 8);
   2834 
   2835   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
   2836 
   2837   // Get a count of how many bytes are to be pushed on the stack.
   2838   unsigned NumBytes = CCInfo.getNextStackOffset();
   2839 
   2840   // Issue CALLSEQ_START
   2841   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   2842   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
   2843     .addImm(NumBytes);
   2844 
   2845   // Process argument: walk the register/memloc assignments, inserting
   2846   // copies / loads.
   2847   SmallVector<unsigned, 4> RegArgs;
   2848   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2849     CCValAssign &VA = ArgLocs[i];
   2850     unsigned Arg = Args[VA.getValNo()];
   2851     EVT ArgVT = ArgVTs[VA.getValNo()];
   2852 
   2853     // Promote the value if needed.
   2854     switch (VA.getLocInfo()) {
   2855     case CCValAssign::Full: break;
   2856     case CCValAssign::SExt: {
   2857       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2858              "Unexpected extend");
   2859       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   2860                                        Arg, ArgVT, Arg);
   2861       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
   2862       ArgVT = VA.getLocVT();
   2863       break;
   2864     }
   2865     case CCValAssign::ZExt: {
   2866       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2867              "Unexpected extend");
   2868       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   2869                                        Arg, ArgVT, Arg);
   2870       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
   2871       ArgVT = VA.getLocVT();
   2872       break;
   2873     }
   2874     case CCValAssign::AExt: {
   2875       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2876              "Unexpected extend");
   2877       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
   2878                                        Arg, ArgVT, Arg);
   2879       if (!Emitted)
   2880         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   2881                                     Arg, ArgVT, Arg);
   2882       if (!Emitted)
   2883         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   2884                                     Arg, ArgVT, Arg);
   2885 
   2886       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
   2887       ArgVT = VA.getLocVT();
   2888       break;
   2889     }
   2890     case CCValAssign::BCvt: {
   2891       unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
   2892                                ISD::BITCAST, Arg, /*TODO: Kill=*/false);
   2893       assert(BC != 0 && "Failed to emit a bitcast!");
   2894       Arg = BC;
   2895       ArgVT = VA.getLocVT();
   2896       break;
   2897     }
   2898     case CCValAssign::VExt:
   2899       // VExt has not been implemented, so this should be impossible to reach
   2900       // for now.  However, fallback to Selection DAG isel once implemented.
   2901       return false;
   2902     case CCValAssign::Indirect:
   2903       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
   2904       // support this.
   2905       return false;
   2906     case CCValAssign::FPExt:
   2907       llvm_unreachable("Unexpected loc info!");
   2908     }
   2909 
   2910     if (VA.isRegLoc()) {
   2911       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2912               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
   2913       RegArgs.push_back(VA.getLocReg());
   2914     } else {
   2915       unsigned LocMemOffset = VA.getLocMemOffset();
   2916       X86AddressMode AM;
   2917       const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
   2918           getTargetMachine()->getRegisterInfo());
   2919       AM.Base.Reg = RegInfo->getStackRegister();
   2920       AM.Disp = LocMemOffset;
   2921       const Value *ArgVal = ArgVals[VA.getValNo()];
   2922       ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
   2923 
   2924       if (Flags.isByVal()) {
   2925         X86AddressMode SrcAM;
   2926         SrcAM.Base.Reg = Arg;
   2927         bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
   2928         assert(Res && "memcpy length already checked!"); (void)Res;
   2929       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
   2930         // If this is a really simple value, emit this with the Value* version
   2931         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
   2932         // as it can cause us to reevaluate the argument.
   2933         if (!X86FastEmitStore(ArgVT, ArgVal, AM))
   2934           return false;
   2935       } else {
   2936         if (!X86FastEmitStore(ArgVT, Arg, /*ValIsKill=*/false, AM))
   2937           return false;
   2938       }
   2939     }
   2940   }
   2941 
   2942   // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2943   // GOT pointer.
   2944   if (Subtarget->isPICStyleGOT()) {
   2945     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   2946     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2947             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
   2948   }
   2949 
   2950   if (Subtarget->is64Bit() && isVarArg && !isWin64) {
   2951     // Count the number of XMM registers allocated.
   2952     static const MCPhysReg XMMArgRegs[] = {
   2953       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2954       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2955     };
   2956     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2957     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
   2958             X86::AL).addImm(NumXMMRegs);
   2959   }
   2960 
   2961   // Issue the call.
   2962   MachineInstrBuilder MIB;
   2963   if (CalleeOp) {
   2964     // Register-indirect call.
   2965     unsigned CallOpc;
   2966     if (Subtarget->is64Bit())
   2967       CallOpc = X86::CALL64r;
   2968     else
   2969       CallOpc = X86::CALL32r;
   2970     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
   2971       .addReg(CalleeOp);
   2972 
   2973   } else {
   2974     // Direct call.
   2975     assert(GV && "Not a direct call");
   2976     unsigned CallOpc;
   2977     if (Subtarget->is64Bit())
   2978       CallOpc = X86::CALL64pcrel32;
   2979     else
   2980       CallOpc = X86::CALLpcrel32;
   2981 
   2982     // See if we need any target-specific flags on the GV operand.
   2983     unsigned char OpFlags = 0;
   2984 
   2985     // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2986     // external symbols most go through the PLT in PIC mode.  If the symbol
   2987     // has hidden or protected visibility, or if it is static or local, then
   2988     // we don't need to use the PLT - we can directly call it.
   2989     if (Subtarget->isTargetELF() &&
   2990         TM.getRelocationModel() == Reloc::PIC_ &&
   2991         GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2992       OpFlags = X86II::MO_PLT;
   2993     } else if (Subtarget->isPICStyleStubAny() &&
   2994                (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2995                (!Subtarget->getTargetTriple().isMacOSX() ||
   2996                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2997       // PC-relative references to external symbols should go through $stub,
   2998       // unless we're building with the leopard linker or later, which
   2999       // automatically synthesizes these stubs.
   3000       OpFlags = X86II::MO_DARWIN_STUB;
   3001     }
   3002 
   3003 
   3004     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
   3005     if (MemIntName)
   3006       MIB.addExternalSymbol(MemIntName, OpFlags);
   3007     else
   3008       MIB.addGlobalAddress(GV, 0, OpFlags);
   3009   }
   3010 
   3011   // Add a register mask with the call-preserved registers.
   3012   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   3013   MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
   3014 
   3015   // Add an implicit use GOT pointer in EBX.
   3016   if (Subtarget->isPICStyleGOT())
   3017     MIB.addReg(X86::EBX, RegState::Implicit);
   3018 
   3019   if (Subtarget->is64Bit() && isVarArg && !isWin64)
   3020     MIB.addReg(X86::AL, RegState::Implicit);
   3021 
   3022   // Add implicit physical register uses to the call.
   3023   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   3024     MIB.addReg(RegArgs[i], RegState::Implicit);
   3025 
   3026   // Issue CALLSEQ_END
   3027   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   3028   const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
   3029   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
   3030     .addImm(NumBytes).addImm(NumBytesCallee);
   3031 
   3032   // Build info for return calling conv lowering code.
   3033   // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
   3034   SmallVector<ISD::InputArg, 32> Ins;
   3035   SmallVector<EVT, 4> RetTys;
   3036   ComputeValueVTs(TLI, I->getType(), RetTys);
   3037   for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
   3038     EVT VT = RetTys[i];
   3039     MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
   3040     unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
   3041     for (unsigned j = 0; j != NumRegs; ++j) {
   3042       ISD::InputArg MyFlags;
   3043       MyFlags.VT = RegisterVT;
   3044       MyFlags.Used = !CS.getInstruction()->use_empty();
   3045       if (CS.paramHasAttr(0, Attribute::SExt))
   3046         MyFlags.Flags.setSExt();
   3047       if (CS.paramHasAttr(0, Attribute::ZExt))
   3048         MyFlags.Flags.setZExt();
   3049       if (CS.paramHasAttr(0, Attribute::InReg))
   3050         MyFlags.Flags.setInReg();
   3051       Ins.push_back(MyFlags);
   3052     }
   3053   }
   3054 
   3055   // Now handle call return values.
   3056   SmallVector<unsigned, 4> UsedRegs;
   3057   SmallVector<CCValAssign, 16> RVLocs;
   3058   CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
   3059                     I->getParent()->getContext());
   3060   unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
   3061   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
   3062   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   3063     EVT CopyVT = RVLocs[i].getValVT();
   3064     unsigned CopyReg = ResultReg + i;
   3065 
   3066     // If this is a call to a function that returns an fp value on the x87 fp
   3067     // stack, but where we prefer to use the value in xmm registers, copy it
   3068     // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
   3069     if ((RVLocs[i].getLocReg() == X86::ST0 ||
   3070          RVLocs[i].getLocReg() == X86::ST1)) {
   3071       if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
   3072         CopyVT = MVT::f80;
   3073         CopyReg = createResultReg(&X86::RFP80RegClass);
   3074       }
   3075       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3076               TII.get(X86::FpPOP_RETVAL), CopyReg);
   3077     } else {
   3078       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3079               TII.get(TargetOpcode::COPY),
   3080               CopyReg).addReg(RVLocs[i].getLocReg());
   3081       UsedRegs.push_back(RVLocs[i].getLocReg());
   3082     }
   3083 
   3084     if (CopyVT != RVLocs[i].getValVT()) {
   3085       // Round the F80 the right size, which also moves to the appropriate xmm
   3086       // register. This is accomplished by storing the F80 value in memory and
   3087       // then loading it back. Ewww...
   3088       EVT ResVT = RVLocs[i].getValVT();
   3089       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
   3090       unsigned MemSize = ResVT.getSizeInBits()/8;
   3091       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
   3092       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3093                                 TII.get(Opc)), FI)
   3094         .addReg(CopyReg);
   3095       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
   3096       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3097                                 TII.get(Opc), ResultReg + i), FI);
   3098     }
   3099   }
   3100 
   3101   if (RVLocs.size())
   3102     UpdateValueMap(I, ResultReg, RVLocs.size());
   3103 
   3104   // Set all unused physreg defs as dead.
   3105   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   3106 
   3107   return true;
   3108 }
   3109 
   3110 
   3111 bool
   3112 X86FastISel::TargetSelectInstruction(const Instruction *I)  {
   3113   switch (I->getOpcode()) {
   3114   default: break;
   3115   case Instruction::Load:
   3116     return X86SelectLoad(I);
   3117   case Instruction::Store:
   3118     return X86SelectStore(I);
   3119   case Instruction::Ret:
   3120     return X86SelectRet(I);
   3121   case Instruction::ICmp:
   3122   case Instruction::FCmp:
   3123     return X86SelectCmp(I);
   3124   case Instruction::ZExt:
   3125     return X86SelectZExt(I);
   3126   case Instruction::Br:
   3127     return X86SelectBranch(I);
   3128   case Instruction::Call:
   3129     return X86SelectCall(I);
   3130   case Instruction::LShr:
   3131   case Instruction::AShr:
   3132   case Instruction::Shl:
   3133     return X86SelectShift(I);
   3134   case Instruction::SDiv:
   3135   case Instruction::UDiv:
   3136   case Instruction::SRem:
   3137   case Instruction::URem:
   3138     return X86SelectDivRem(I);
   3139   case Instruction::Select:
   3140     return X86SelectSelect(I);
   3141   case Instruction::Trunc:
   3142     return X86SelectTrunc(I);
   3143   case Instruction::FPExt:
   3144     return X86SelectFPExt(I);
   3145   case Instruction::FPTrunc:
   3146     return X86SelectFPTrunc(I);
   3147   case Instruction::IntToPtr: // Deliberate fall-through.
   3148   case Instruction::PtrToInt: {
   3149     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   3150     EVT DstVT = TLI.getValueType(I->getType());
   3151     if (DstVT.bitsGT(SrcVT))
   3152       return X86SelectZExt(I);
   3153     if (DstVT.bitsLT(SrcVT))
   3154       return X86SelectTrunc(I);
   3155     unsigned Reg = getRegForValue(I->getOperand(0));
   3156     if (Reg == 0) return false;
   3157     UpdateValueMap(I, Reg);
   3158     return true;
   3159   }
   3160   }
   3161 
   3162   return false;
   3163 }
   3164 
   3165 unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
   3166   MVT VT;
   3167   if (!isTypeLegal(C->getType(), VT))
   3168     return 0;
   3169 
   3170   // Can't handle alternate code models yet.
   3171   if (TM.getCodeModel() != CodeModel::Small)
   3172     return 0;
   3173 
   3174   // Get opcode and regclass of the output for the given load instruction.
   3175   unsigned Opc = 0;
   3176   const TargetRegisterClass *RC = nullptr;
   3177   switch (VT.SimpleTy) {
   3178   default: return 0;
   3179   case MVT::i8:
   3180     Opc = X86::MOV8rm;
   3181     RC  = &X86::GR8RegClass;
   3182     break;
   3183   case MVT::i16:
   3184     Opc = X86::MOV16rm;
   3185     RC  = &X86::GR16RegClass;
   3186     break;
   3187   case MVT::i32:
   3188     Opc = X86::MOV32rm;
   3189     RC  = &X86::GR32RegClass;
   3190     break;
   3191   case MVT::i64:
   3192     // Must be in x86-64 mode.
   3193     Opc = X86::MOV64rm;
   3194     RC  = &X86::GR64RegClass;
   3195     break;
   3196   case MVT::f32:
   3197     if (X86ScalarSSEf32) {
   3198       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
   3199       RC  = &X86::FR32RegClass;
   3200     } else {
   3201       Opc = X86::LD_Fp32m;
   3202       RC  = &X86::RFP32RegClass;
   3203     }
   3204     break;
   3205   case MVT::f64:
   3206     if (X86ScalarSSEf64) {
   3207       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
   3208       RC  = &X86::FR64RegClass;
   3209     } else {
   3210       Opc = X86::LD_Fp64m;
   3211       RC  = &X86::RFP64RegClass;
   3212     }
   3213     break;
   3214   case MVT::f80:
   3215     // No f80 support yet.
   3216     return 0;
   3217   }
   3218 
   3219   // Materialize addresses with LEA/MOV instructions.
   3220   if (isa<GlobalValue>(C)) {
   3221     X86AddressMode AM;
   3222     if (X86SelectAddress(C, AM)) {
   3223       // If the expression is just a basereg, then we're done, otherwise we need
   3224       // to emit an LEA.
   3225       if (AM.BaseType == X86AddressMode::RegBase &&
   3226           AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
   3227         return AM.Base.Reg;
   3228 
   3229       unsigned ResultReg = createResultReg(RC);
   3230       if (TM.getRelocationModel() == Reloc::Static &&
   3231           TLI.getPointerTy() == MVT::i64) {
   3232         // The displacement code be more than 32 bits away so we need to use
   3233         // an instruction with a 64 bit immediate
   3234         Opc = X86::MOV64ri;
   3235         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3236               TII.get(Opc), ResultReg).addGlobalAddress(cast<GlobalValue>(C));
   3237       } else {
   3238         Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
   3239         addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3240                              TII.get(Opc), ResultReg), AM);
   3241       }
   3242       return ResultReg;
   3243     }
   3244     return 0;
   3245   }
   3246 
   3247   // MachineConstantPool wants an explicit alignment.
   3248   unsigned Align = DL.getPrefTypeAlignment(C->getType());
   3249   if (Align == 0) {
   3250     // Alignment of vector types.  FIXME!
   3251     Align = DL.getTypeAllocSize(C->getType());
   3252   }
   3253 
   3254   // x86-32 PIC requires a PIC base register for constant pools.
   3255   unsigned PICBase = 0;
   3256   unsigned char OpFlag = 0;
   3257   if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
   3258     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   3259     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   3260   } else if (Subtarget->isPICStyleGOT()) {
   3261     OpFlag = X86II::MO_GOTOFF;
   3262     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   3263   } else if (Subtarget->isPICStyleRIPRel() &&
   3264              TM.getCodeModel() == CodeModel::Small) {
   3265     PICBase = X86::RIP;
   3266   }
   3267 
   3268   // Create the load from the constant pool.
   3269   unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
   3270   unsigned ResultReg = createResultReg(RC);
   3271   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3272                                    TII.get(Opc), ResultReg),
   3273                            MCPOffset, PICBase, OpFlag);
   3274 
   3275   return ResultReg;
   3276 }
   3277 
   3278 unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
   3279   // Fail on dynamic allocas. At this point, getRegForValue has already
   3280   // checked its CSE maps, so if we're here trying to handle a dynamic
   3281   // alloca, we're not going to succeed. X86SelectAddress has a
   3282   // check for dynamic allocas, because it's called directly from
   3283   // various places, but TargetMaterializeAlloca also needs a check
   3284   // in order to avoid recursion between getRegForValue,
   3285   // X86SelectAddrss, and TargetMaterializeAlloca.
   3286   if (!FuncInfo.StaticAllocaMap.count(C))
   3287     return 0;
   3288   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
   3289 
   3290   X86AddressMode AM;
   3291   if (!X86SelectAddress(C, AM))
   3292     return 0;
   3293   unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   3294   const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
   3295   unsigned ResultReg = createResultReg(RC);
   3296   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3297                          TII.get(Opc), ResultReg), AM);
   3298   return ResultReg;
   3299 }
   3300 
   3301 unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
   3302   MVT VT;
   3303   if (!isTypeLegal(CF->getType(), VT))
   3304     return 0;
   3305 
   3306   // Get opcode and regclass for the given zero.
   3307   unsigned Opc = 0;
   3308   const TargetRegisterClass *RC = nullptr;
   3309   switch (VT.SimpleTy) {
   3310   default: return 0;
   3311   case MVT::f32:
   3312     if (X86ScalarSSEf32) {
   3313       Opc = X86::FsFLD0SS;
   3314       RC  = &X86::FR32RegClass;
   3315     } else {
   3316       Opc = X86::LD_Fp032;
   3317       RC  = &X86::RFP32RegClass;
   3318     }
   3319     break;
   3320   case MVT::f64:
   3321     if (X86ScalarSSEf64) {
   3322       Opc = X86::FsFLD0SD;
   3323       RC  = &X86::FR64RegClass;
   3324     } else {
   3325       Opc = X86::LD_Fp064;
   3326       RC  = &X86::RFP64RegClass;
   3327     }
   3328     break;
   3329   case MVT::f80:
   3330     // No f80 support yet.
   3331     return 0;
   3332   }
   3333 
   3334   unsigned ResultReg = createResultReg(RC);
   3335   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
   3336   return ResultReg;
   3337 }
   3338 
   3339 
   3340 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
   3341                                       const LoadInst *LI) {
   3342   const Value *Ptr = LI->getPointerOperand();
   3343   X86AddressMode AM;
   3344   if (!X86SelectAddress(Ptr, AM))
   3345     return false;
   3346 
   3347   const X86InstrInfo &XII = (const X86InstrInfo&)TII;
   3348 
   3349   unsigned Size = DL.getTypeAllocSize(LI->getType());
   3350   unsigned Alignment = LI->getAlignment();
   3351 
   3352   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
   3353     Alignment = DL.getABITypeAlignment(LI->getType());
   3354 
   3355   SmallVector<MachineOperand, 8> AddrOps;
   3356   AM.getFullAddress(AddrOps);
   3357 
   3358   MachineInstr *Result =
   3359     XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
   3360   if (!Result)
   3361     return false;
   3362 
   3363   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
   3364   FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
   3365   MI->eraseFromParent();
   3366   return true;
   3367 }
   3368 
   3369 
   3370 namespace llvm {
   3371   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
   3372                                 const TargetLibraryInfo *libInfo) {
   3373     return new X86FastISel(funcInfo, libInfo);
   3374   }
   3375 }
   3376