Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
     15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "CGBuilder.h"
     18 #include "CGDebugInfo.h"
     19 #include "CGLoopInfo.h"
     20 #include "CGValue.h"
     21 #include "CodeGenModule.h"
     22 #include "CodeGenPGO.h"
     23 #include "EHScopeStack.h"
     24 #include "clang/AST/CharUnits.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/Type.h"
     28 #include "clang/Basic/ABI.h"
     29 #include "clang/Basic/CapturedStmt.h"
     30 #include "clang/Basic/OpenMPKinds.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Frontend/CodeGenOptions.h"
     33 #include "llvm/ADT/ArrayRef.h"
     34 #include "llvm/ADT/DenseMap.h"
     35 #include "llvm/ADT/SmallVector.h"
     36 #include "llvm/IR/ValueHandle.h"
     37 #include "llvm/Support/Debug.h"
     38 
     39 namespace llvm {
     40 class BasicBlock;
     41 class LLVMContext;
     42 class MDNode;
     43 class Module;
     44 class SwitchInst;
     45 class Twine;
     46 class Value;
     47 class CallSite;
     48 }
     49 
     50 namespace clang {
     51 class ASTContext;
     52 class BlockDecl;
     53 class CXXDestructorDecl;
     54 class CXXForRangeStmt;
     55 class CXXTryStmt;
     56 class Decl;
     57 class LabelDecl;
     58 class EnumConstantDecl;
     59 class FunctionDecl;
     60 class FunctionProtoType;
     61 class LabelStmt;
     62 class ObjCContainerDecl;
     63 class ObjCInterfaceDecl;
     64 class ObjCIvarDecl;
     65 class ObjCMethodDecl;
     66 class ObjCImplementationDecl;
     67 class ObjCPropertyImplDecl;
     68 class TargetInfo;
     69 class TargetCodeGenInfo;
     70 class VarDecl;
     71 class ObjCForCollectionStmt;
     72 class ObjCAtTryStmt;
     73 class ObjCAtThrowStmt;
     74 class ObjCAtSynchronizedStmt;
     75 class ObjCAutoreleasePoolStmt;
     76 
     77 namespace CodeGen {
     78 class CodeGenTypes;
     79 class CGFunctionInfo;
     80 class CGRecordLayout;
     81 class CGBlockInfo;
     82 class CGCXXABI;
     83 class BlockFlags;
     84 class BlockFieldFlags;
     85 
     86 /// The kind of evaluation to perform on values of a particular
     87 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
     88 /// CGExprAgg?
     89 ///
     90 /// TODO: should vectors maybe be split out into their own thing?
     91 enum TypeEvaluationKind {
     92   TEK_Scalar,
     93   TEK_Complex,
     94   TEK_Aggregate
     95 };
     96 
     97 /// CodeGenFunction - This class organizes the per-function state that is used
     98 /// while generating LLVM code.
     99 class CodeGenFunction : public CodeGenTypeCache {
    100   CodeGenFunction(const CodeGenFunction &) = delete;
    101   void operator=(const CodeGenFunction &) = delete;
    102 
    103   friend class CGCXXABI;
    104 public:
    105   /// A jump destination is an abstract label, branching to which may
    106   /// require a jump out through normal cleanups.
    107   struct JumpDest {
    108     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
    109     JumpDest(llvm::BasicBlock *Block,
    110              EHScopeStack::stable_iterator Depth,
    111              unsigned Index)
    112       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    113 
    114     bool isValid() const { return Block != nullptr; }
    115     llvm::BasicBlock *getBlock() const { return Block; }
    116     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    117     unsigned getDestIndex() const { return Index; }
    118 
    119     // This should be used cautiously.
    120     void setScopeDepth(EHScopeStack::stable_iterator depth) {
    121       ScopeDepth = depth;
    122     }
    123 
    124   private:
    125     llvm::BasicBlock *Block;
    126     EHScopeStack::stable_iterator ScopeDepth;
    127     unsigned Index;
    128   };
    129 
    130   CodeGenModule &CGM;  // Per-module state.
    131   const TargetInfo &Target;
    132 
    133   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    134   LoopInfoStack LoopStack;
    135   CGBuilderTy Builder;
    136 
    137   /// \brief CGBuilder insert helper. This function is called after an
    138   /// instruction is created using Builder.
    139   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
    140                     llvm::BasicBlock *BB,
    141                     llvm::BasicBlock::iterator InsertPt) const;
    142 
    143   /// CurFuncDecl - Holds the Decl for the current outermost
    144   /// non-closure context.
    145   const Decl *CurFuncDecl;
    146   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    147   const Decl *CurCodeDecl;
    148   const CGFunctionInfo *CurFnInfo;
    149   QualType FnRetTy;
    150   llvm::Function *CurFn;
    151 
    152   /// CurGD - The GlobalDecl for the current function being compiled.
    153   GlobalDecl CurGD;
    154 
    155   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    156   /// cleanups associated with the parameters.
    157   EHScopeStack::stable_iterator PrologueCleanupDepth;
    158 
    159   /// ReturnBlock - Unified return block.
    160   JumpDest ReturnBlock;
    161 
    162   /// ReturnValue - The temporary alloca to hold the return value. This is null
    163   /// iff the function has no return value.
    164   llvm::Value *ReturnValue;
    165 
    166   /// AllocaInsertPoint - This is an instruction in the entry block before which
    167   /// we prefer to insert allocas.
    168   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    169 
    170   /// \brief API for captured statement code generation.
    171   class CGCapturedStmtInfo {
    172   public:
    173     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
    174         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
    175     explicit CGCapturedStmtInfo(const CapturedStmt &S,
    176                                 CapturedRegionKind K = CR_Default)
    177       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
    178 
    179       RecordDecl::field_iterator Field =
    180         S.getCapturedRecordDecl()->field_begin();
    181       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
    182                                                 E = S.capture_end();
    183            I != E; ++I, ++Field) {
    184         if (I->capturesThis())
    185           CXXThisFieldDecl = *Field;
    186         else if (I->capturesVariable())
    187           CaptureFields[I->getCapturedVar()] = *Field;
    188       }
    189     }
    190 
    191     virtual ~CGCapturedStmtInfo();
    192 
    193     CapturedRegionKind getKind() const { return Kind; }
    194 
    195     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
    196     // \brief Retrieve the value of the context parameter.
    197     virtual llvm::Value *getContextValue() const { return ThisValue; }
    198 
    199     /// \brief Lookup the captured field decl for a variable.
    200     virtual const FieldDecl *lookup(const VarDecl *VD) const {
    201       return CaptureFields.lookup(VD);
    202     }
    203 
    204     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
    205     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
    206 
    207     static bool classof(const CGCapturedStmtInfo *) {
    208       return true;
    209     }
    210 
    211     /// \brief Emit the captured statement body.
    212     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
    213       RegionCounter Cnt = CGF.getPGORegionCounter(S);
    214       Cnt.beginRegion(CGF.Builder);
    215       CGF.EmitStmt(S);
    216     }
    217 
    218     /// \brief Get the name of the capture helper.
    219     virtual StringRef getHelperName() const { return "__captured_stmt"; }
    220 
    221   private:
    222     /// \brief The kind of captured statement being generated.
    223     CapturedRegionKind Kind;
    224 
    225     /// \brief Keep the map between VarDecl and FieldDecl.
    226     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
    227 
    228     /// \brief The base address of the captured record, passed in as the first
    229     /// argument of the parallel region function.
    230     llvm::Value *ThisValue;
    231 
    232     /// \brief Captured 'this' type.
    233     FieldDecl *CXXThisFieldDecl;
    234   };
    235   CGCapturedStmtInfo *CapturedStmtInfo;
    236 
    237   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
    238   /// potentially higher performance penalties.
    239   unsigned char BoundsChecking;
    240 
    241   /// \brief Sanitizers enabled for this function.
    242   SanitizerSet SanOpts;
    243 
    244   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
    245   bool IsSanitizerScope;
    246 
    247   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
    248   class SanitizerScope {
    249     CodeGenFunction *CGF;
    250   public:
    251     SanitizerScope(CodeGenFunction *CGF);
    252     ~SanitizerScope();
    253   };
    254 
    255   /// In C++, whether we are code generating a thunk.  This controls whether we
    256   /// should emit cleanups.
    257   bool CurFuncIsThunk;
    258 
    259   /// In ARC, whether we should autorelease the return value.
    260   bool AutoreleaseResult;
    261 
    262   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
    263   /// potentially set the return value.
    264   bool SawAsmBlock;
    265 
    266   /// True if the current function is an outlined SEH helper. This can be a
    267   /// finally block or filter expression.
    268   bool IsOutlinedSEHHelper;
    269 
    270   const CodeGen::CGBlockInfo *BlockInfo;
    271   llvm::Value *BlockPointer;
    272 
    273   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    274   FieldDecl *LambdaThisCaptureField;
    275 
    276   /// \brief A mapping from NRVO variables to the flags used to indicate
    277   /// when the NRVO has been applied to this variable.
    278   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    279 
    280   EHScopeStack EHStack;
    281   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
    282   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
    283 
    284   /// Header for data within LifetimeExtendedCleanupStack.
    285   struct LifetimeExtendedCleanupHeader {
    286     /// The size of the following cleanup object.
    287     unsigned Size : 29;
    288     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
    289     unsigned Kind : 3;
    290 
    291     size_t getSize() const { return size_t(Size); }
    292     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
    293   };
    294 
    295   /// i32s containing the indexes of the cleanup destinations.
    296   llvm::AllocaInst *NormalCleanupDest;
    297 
    298   unsigned NextCleanupDestIndex;
    299 
    300   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
    301   CGBlockInfo *FirstBlockInfo;
    302 
    303   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
    304   llvm::BasicBlock *EHResumeBlock;
    305 
    306   /// The exception slot.  All landing pads write the current exception pointer
    307   /// into this alloca.
    308   llvm::Value *ExceptionSlot;
    309 
    310   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
    311   /// write the current selector value into this alloca.
    312   llvm::AllocaInst *EHSelectorSlot;
    313 
    314   llvm::AllocaInst *AbnormalTerminationSlot;
    315 
    316   /// The implicit parameter to SEH filter functions of type
    317   /// 'EXCEPTION_POINTERS*'.
    318   ImplicitParamDecl *SEHPointersDecl;
    319 
    320   /// Emits a landing pad for the current EH stack.
    321   llvm::BasicBlock *EmitLandingPad();
    322 
    323   llvm::BasicBlock *getInvokeDestImpl();
    324 
    325   template <class T>
    326   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    327     return DominatingValue<T>::save(*this, value);
    328   }
    329 
    330 public:
    331   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    332   /// rethrows.
    333   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    334 
    335   /// A class controlling the emission of a finally block.
    336   class FinallyInfo {
    337     /// Where the catchall's edge through the cleanup should go.
    338     JumpDest RethrowDest;
    339 
    340     /// A function to call to enter the catch.
    341     llvm::Constant *BeginCatchFn;
    342 
    343     /// An i1 variable indicating whether or not the @finally is
    344     /// running for an exception.
    345     llvm::AllocaInst *ForEHVar;
    346 
    347     /// An i8* variable into which the exception pointer to rethrow
    348     /// has been saved.
    349     llvm::AllocaInst *SavedExnVar;
    350 
    351   public:
    352     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    353                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    354                llvm::Constant *rethrowFn);
    355     void exit(CodeGenFunction &CGF);
    356   };
    357 
    358   /// Returns true inside SEH __try blocks.
    359   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
    360 
    361   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    362   /// current full-expression.  Safe against the possibility that
    363   /// we're currently inside a conditionally-evaluated expression.
    364   template <class T, class... As>
    365   void pushFullExprCleanup(CleanupKind kind, As... A) {
    366     // If we're not in a conditional branch, or if none of the
    367     // arguments requires saving, then use the unconditional cleanup.
    368     if (!isInConditionalBranch())
    369       return EHStack.pushCleanup<T>(kind, A...);
    370 
    371     // Stash values in a tuple so we can guarantee the order of saves.
    372     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    373     SavedTuple Saved{saveValueInCond(A)...};
    374 
    375     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    376     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
    377     initFullExprCleanup();
    378   }
    379 
    380   /// \brief Queue a cleanup to be pushed after finishing the current
    381   /// full-expression.
    382   template <class T, class... As>
    383   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
    384     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
    385 
    386     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
    387 
    388     size_t OldSize = LifetimeExtendedCleanupStack.size();
    389     LifetimeExtendedCleanupStack.resize(
    390         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
    391 
    392     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
    393     new (Buffer) LifetimeExtendedCleanupHeader(Header);
    394     new (Buffer + sizeof(Header)) T(A...);
    395   }
    396 
    397   /// Set up the last cleaup that was pushed as a conditional
    398   /// full-expression cleanup.
    399   void initFullExprCleanup();
    400 
    401   /// PushDestructorCleanup - Push a cleanup to call the
    402   /// complete-object destructor of an object of the given type at the
    403   /// given address.  Does nothing if T is not a C++ class type with a
    404   /// non-trivial destructor.
    405   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
    406 
    407   /// PushDestructorCleanup - Push a cleanup to call the
    408   /// complete-object variant of the given destructor on the object at
    409   /// the given address.
    410   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
    411                              llvm::Value *Addr);
    412 
    413   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    414   /// process all branch fixups.
    415   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    416 
    417   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    418   /// The block cannot be reactivated.  Pops it if it's the top of the
    419   /// stack.
    420   ///
    421   /// \param DominatingIP - An instruction which is known to
    422   ///   dominate the current IP (if set) and which lies along
    423   ///   all paths of execution between the current IP and the
    424   ///   the point at which the cleanup comes into scope.
    425   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    426                               llvm::Instruction *DominatingIP);
    427 
    428   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    429   /// Cannot be used to resurrect a deactivated cleanup.
    430   ///
    431   /// \param DominatingIP - An instruction which is known to
    432   ///   dominate the current IP (if set) and which lies along
    433   ///   all paths of execution between the current IP and the
    434   ///   the point at which the cleanup comes into scope.
    435   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    436                             llvm::Instruction *DominatingIP);
    437 
    438   /// \brief Enters a new scope for capturing cleanups, all of which
    439   /// will be executed once the scope is exited.
    440   class RunCleanupsScope {
    441     EHScopeStack::stable_iterator CleanupStackDepth;
    442     size_t LifetimeExtendedCleanupStackSize;
    443     bool OldDidCallStackSave;
    444   protected:
    445     bool PerformCleanup;
    446   private:
    447 
    448     RunCleanupsScope(const RunCleanupsScope &) = delete;
    449     void operator=(const RunCleanupsScope &) = delete;
    450 
    451   protected:
    452     CodeGenFunction& CGF;
    453 
    454   public:
    455     /// \brief Enter a new cleanup scope.
    456     explicit RunCleanupsScope(CodeGenFunction &CGF)
    457       : PerformCleanup(true), CGF(CGF)
    458     {
    459       CleanupStackDepth = CGF.EHStack.stable_begin();
    460       LifetimeExtendedCleanupStackSize =
    461           CGF.LifetimeExtendedCleanupStack.size();
    462       OldDidCallStackSave = CGF.DidCallStackSave;
    463       CGF.DidCallStackSave = false;
    464     }
    465 
    466     /// \brief Exit this cleanup scope, emitting any accumulated
    467     /// cleanups.
    468     ~RunCleanupsScope() {
    469       if (PerformCleanup) {
    470         CGF.DidCallStackSave = OldDidCallStackSave;
    471         CGF.PopCleanupBlocks(CleanupStackDepth,
    472                              LifetimeExtendedCleanupStackSize);
    473       }
    474     }
    475 
    476     /// \brief Determine whether this scope requires any cleanups.
    477     bool requiresCleanups() const {
    478       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    479     }
    480 
    481     /// \brief Force the emission of cleanups now, instead of waiting
    482     /// until this object is destroyed.
    483     void ForceCleanup() {
    484       assert(PerformCleanup && "Already forced cleanup");
    485       CGF.DidCallStackSave = OldDidCallStackSave;
    486       CGF.PopCleanupBlocks(CleanupStackDepth,
    487                            LifetimeExtendedCleanupStackSize);
    488       PerformCleanup = false;
    489     }
    490   };
    491 
    492   class LexicalScope : public RunCleanupsScope {
    493     SourceRange Range;
    494     SmallVector<const LabelDecl*, 4> Labels;
    495     LexicalScope *ParentScope;
    496 
    497     LexicalScope(const LexicalScope &) = delete;
    498     void operator=(const LexicalScope &) = delete;
    499 
    500   public:
    501     /// \brief Enter a new cleanup scope.
    502     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
    503       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
    504       CGF.CurLexicalScope = this;
    505       if (CGDebugInfo *DI = CGF.getDebugInfo())
    506         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    507     }
    508 
    509     void addLabel(const LabelDecl *label) {
    510       assert(PerformCleanup && "adding label to dead scope?");
    511       Labels.push_back(label);
    512     }
    513 
    514     /// \brief Exit this cleanup scope, emitting any accumulated
    515     /// cleanups.
    516     ~LexicalScope() {
    517       if (CGDebugInfo *DI = CGF.getDebugInfo())
    518         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    519 
    520       // If we should perform a cleanup, force them now.  Note that
    521       // this ends the cleanup scope before rescoping any labels.
    522       if (PerformCleanup) {
    523         ApplyDebugLocation DL(CGF, Range.getEnd());
    524         ForceCleanup();
    525       }
    526     }
    527 
    528     /// \brief Force the emission of cleanups now, instead of waiting
    529     /// until this object is destroyed.
    530     void ForceCleanup() {
    531       CGF.CurLexicalScope = ParentScope;
    532       RunCleanupsScope::ForceCleanup();
    533 
    534       if (!Labels.empty())
    535         rescopeLabels();
    536     }
    537 
    538     void rescopeLabels();
    539   };
    540 
    541   /// \brief The scope used to remap some variables as private in the OpenMP
    542   /// loop body (or other captured region emitted without outlining), and to
    543   /// restore old vars back on exit.
    544   class OMPPrivateScope : public RunCleanupsScope {
    545     typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
    546     VarDeclMapTy SavedLocals;
    547     VarDeclMapTy SavedPrivates;
    548 
    549   private:
    550     OMPPrivateScope(const OMPPrivateScope &) = delete;
    551     void operator=(const OMPPrivateScope &) = delete;
    552 
    553   public:
    554     /// \brief Enter a new OpenMP private scope.
    555     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
    556 
    557     /// \brief Registers \a LocalVD variable as a private and apply \a
    558     /// PrivateGen function for it to generate corresponding private variable.
    559     /// \a PrivateGen returns an address of the generated private variable.
    560     /// \return true if the variable is registered as private, false if it has
    561     /// been privatized already.
    562     bool
    563     addPrivate(const VarDecl *LocalVD,
    564                const std::function<llvm::Value *()> &PrivateGen) {
    565       assert(PerformCleanup && "adding private to dead scope");
    566       if (SavedLocals.count(LocalVD) > 0) return false;
    567       SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
    568       CGF.LocalDeclMap.erase(LocalVD);
    569       SavedPrivates[LocalVD] = PrivateGen();
    570       CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
    571       return true;
    572     }
    573 
    574     /// \brief Privatizes local variables previously registered as private.
    575     /// Registration is separate from the actual privatization to allow
    576     /// initializers use values of the original variables, not the private one.
    577     /// This is important, for example, if the private variable is a class
    578     /// variable initialized by a constructor that references other private
    579     /// variables. But at initialization original variables must be used, not
    580     /// private copies.
    581     /// \return true if at least one variable was privatized, false otherwise.
    582     bool Privatize() {
    583       for (auto VDPair : SavedPrivates) {
    584         CGF.LocalDeclMap[VDPair.first] = VDPair.second;
    585       }
    586       SavedPrivates.clear();
    587       return !SavedLocals.empty();
    588     }
    589 
    590     void ForceCleanup() {
    591       RunCleanupsScope::ForceCleanup();
    592       // Remap vars back to the original values.
    593       for (auto I : SavedLocals) {
    594         CGF.LocalDeclMap[I.first] = I.second;
    595       }
    596       SavedLocals.clear();
    597     }
    598 
    599     /// \brief Exit scope - all the mapped variables are restored.
    600     ~OMPPrivateScope() {
    601       if (PerformCleanup)
    602         ForceCleanup();
    603     }
    604   };
    605 
    606   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
    607   /// that have been added.
    608   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    609 
    610   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
    611   /// that have been added, then adds all lifetime-extended cleanups from
    612   /// the given position to the stack.
    613   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
    614                         size_t OldLifetimeExtendedStackSize);
    615 
    616   void ResolveBranchFixups(llvm::BasicBlock *Target);
    617 
    618   /// The given basic block lies in the current EH scope, but may be a
    619   /// target of a potentially scope-crossing jump; get a stable handle
    620   /// to which we can perform this jump later.
    621   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    622     return JumpDest(Target,
    623                     EHStack.getInnermostNormalCleanup(),
    624                     NextCleanupDestIndex++);
    625   }
    626 
    627   /// The given basic block lies in the current EH scope, but may be a
    628   /// target of a potentially scope-crossing jump; get a stable handle
    629   /// to which we can perform this jump later.
    630   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    631     return getJumpDestInCurrentScope(createBasicBlock(Name));
    632   }
    633 
    634   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    635   /// block through the normal cleanup handling code (if any) and then
    636   /// on to \arg Dest.
    637   void EmitBranchThroughCleanup(JumpDest Dest);
    638 
    639   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    640   /// specified destination obviously has no cleanups to run.  'false' is always
    641   /// a conservatively correct answer for this method.
    642   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    643 
    644   /// popCatchScope - Pops the catch scope at the top of the EHScope
    645   /// stack, emitting any required code (other than the catch handlers
    646   /// themselves).
    647   void popCatchScope();
    648 
    649   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
    650   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
    651 
    652   /// An object to manage conditionally-evaluated expressions.
    653   class ConditionalEvaluation {
    654     llvm::BasicBlock *StartBB;
    655 
    656   public:
    657     ConditionalEvaluation(CodeGenFunction &CGF)
    658       : StartBB(CGF.Builder.GetInsertBlock()) {}
    659 
    660     void begin(CodeGenFunction &CGF) {
    661       assert(CGF.OutermostConditional != this);
    662       if (!CGF.OutermostConditional)
    663         CGF.OutermostConditional = this;
    664     }
    665 
    666     void end(CodeGenFunction &CGF) {
    667       assert(CGF.OutermostConditional != nullptr);
    668       if (CGF.OutermostConditional == this)
    669         CGF.OutermostConditional = nullptr;
    670     }
    671 
    672     /// Returns a block which will be executed prior to each
    673     /// evaluation of the conditional code.
    674     llvm::BasicBlock *getStartingBlock() const {
    675       return StartBB;
    676     }
    677   };
    678 
    679   /// isInConditionalBranch - Return true if we're currently emitting
    680   /// one branch or the other of a conditional expression.
    681   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
    682 
    683   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
    684     assert(isInConditionalBranch());
    685     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    686     new llvm::StoreInst(value, addr, &block->back());
    687   }
    688 
    689   /// An RAII object to record that we're evaluating a statement
    690   /// expression.
    691   class StmtExprEvaluation {
    692     CodeGenFunction &CGF;
    693 
    694     /// We have to save the outermost conditional: cleanups in a
    695     /// statement expression aren't conditional just because the
    696     /// StmtExpr is.
    697     ConditionalEvaluation *SavedOutermostConditional;
    698 
    699   public:
    700     StmtExprEvaluation(CodeGenFunction &CGF)
    701       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    702       CGF.OutermostConditional = nullptr;
    703     }
    704 
    705     ~StmtExprEvaluation() {
    706       CGF.OutermostConditional = SavedOutermostConditional;
    707       CGF.EnsureInsertPoint();
    708     }
    709   };
    710 
    711   /// An object which temporarily prevents a value from being
    712   /// destroyed by aggressive peephole optimizations that assume that
    713   /// all uses of a value have been realized in the IR.
    714   class PeepholeProtection {
    715     llvm::Instruction *Inst;
    716     friend class CodeGenFunction;
    717 
    718   public:
    719     PeepholeProtection() : Inst(nullptr) {}
    720   };
    721 
    722   /// A non-RAII class containing all the information about a bound
    723   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
    724   /// this which makes individual mappings very simple; using this
    725   /// class directly is useful when you have a variable number of
    726   /// opaque values or don't want the RAII functionality for some
    727   /// reason.
    728   class OpaqueValueMappingData {
    729     const OpaqueValueExpr *OpaqueValue;
    730     bool BoundLValue;
    731     CodeGenFunction::PeepholeProtection Protection;
    732 
    733     OpaqueValueMappingData(const OpaqueValueExpr *ov,
    734                            bool boundLValue)
    735       : OpaqueValue(ov), BoundLValue(boundLValue) {}
    736   public:
    737     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
    738 
    739     static bool shouldBindAsLValue(const Expr *expr) {
    740       // gl-values should be bound as l-values for obvious reasons.
    741       // Records should be bound as l-values because IR generation
    742       // always keeps them in memory.  Expressions of function type
    743       // act exactly like l-values but are formally required to be
    744       // r-values in C.
    745       return expr->isGLValue() ||
    746              expr->getType()->isFunctionType() ||
    747              hasAggregateEvaluationKind(expr->getType());
    748     }
    749 
    750     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    751                                        const OpaqueValueExpr *ov,
    752                                        const Expr *e) {
    753       if (shouldBindAsLValue(ov))
    754         return bind(CGF, ov, CGF.EmitLValue(e));
    755       return bind(CGF, ov, CGF.EmitAnyExpr(e));
    756     }
    757 
    758     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    759                                        const OpaqueValueExpr *ov,
    760                                        const LValue &lv) {
    761       assert(shouldBindAsLValue(ov));
    762       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
    763       return OpaqueValueMappingData(ov, true);
    764     }
    765 
    766     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    767                                        const OpaqueValueExpr *ov,
    768                                        const RValue &rv) {
    769       assert(!shouldBindAsLValue(ov));
    770       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
    771 
    772       OpaqueValueMappingData data(ov, false);
    773 
    774       // Work around an extremely aggressive peephole optimization in
    775       // EmitScalarConversion which assumes that all other uses of a
    776       // value are extant.
    777       data.Protection = CGF.protectFromPeepholes(rv);
    778 
    779       return data;
    780     }
    781 
    782     bool isValid() const { return OpaqueValue != nullptr; }
    783     void clear() { OpaqueValue = nullptr; }
    784 
    785     void unbind(CodeGenFunction &CGF) {
    786       assert(OpaqueValue && "no data to unbind!");
    787 
    788       if (BoundLValue) {
    789         CGF.OpaqueLValues.erase(OpaqueValue);
    790       } else {
    791         CGF.OpaqueRValues.erase(OpaqueValue);
    792         CGF.unprotectFromPeepholes(Protection);
    793       }
    794     }
    795   };
    796 
    797   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
    798   class OpaqueValueMapping {
    799     CodeGenFunction &CGF;
    800     OpaqueValueMappingData Data;
    801 
    802   public:
    803     static bool shouldBindAsLValue(const Expr *expr) {
    804       return OpaqueValueMappingData::shouldBindAsLValue(expr);
    805     }
    806 
    807     /// Build the opaque value mapping for the given conditional
    808     /// operator if it's the GNU ?: extension.  This is a common
    809     /// enough pattern that the convenience operator is really
    810     /// helpful.
    811     ///
    812     OpaqueValueMapping(CodeGenFunction &CGF,
    813                        const AbstractConditionalOperator *op) : CGF(CGF) {
    814       if (isa<ConditionalOperator>(op))
    815         // Leave Data empty.
    816         return;
    817 
    818       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
    819       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
    820                                           e->getCommon());
    821     }
    822 
    823     OpaqueValueMapping(CodeGenFunction &CGF,
    824                        const OpaqueValueExpr *opaqueValue,
    825                        LValue lvalue)
    826       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
    827     }
    828 
    829     OpaqueValueMapping(CodeGenFunction &CGF,
    830                        const OpaqueValueExpr *opaqueValue,
    831                        RValue rvalue)
    832       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
    833     }
    834 
    835     void pop() {
    836       Data.unbind(CGF);
    837       Data.clear();
    838     }
    839 
    840     ~OpaqueValueMapping() {
    841       if (Data.isValid()) Data.unbind(CGF);
    842     }
    843   };
    844 
    845   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
    846   /// number that holds the value.
    847   std::pair<llvm::Type *, unsigned>
    848   getByRefValueLLVMField(const ValueDecl *VD) const;
    849 
    850   /// BuildBlockByrefAddress - Computes address location of the
    851   /// variable which is declared as __block.
    852   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
    853                                       const VarDecl *V);
    854 private:
    855   CGDebugInfo *DebugInfo;
    856   bool DisableDebugInfo;
    857 
    858   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
    859   /// calling llvm.stacksave for multiple VLAs in the same scope.
    860   bool DidCallStackSave;
    861 
    862   /// IndirectBranch - The first time an indirect goto is seen we create a block
    863   /// with an indirect branch.  Every time we see the address of a label taken,
    864   /// we add the label to the indirect goto.  Every subsequent indirect goto is
    865   /// codegen'd as a jump to the IndirectBranch's basic block.
    866   llvm::IndirectBrInst *IndirectBranch;
    867 
    868   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
    869   /// decls.
    870   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
    871   DeclMapTy LocalDeclMap;
    872 
    873   /// Track escaped local variables with auto storage. Used during SEH
    874   /// outlining to produce a call to llvm.frameescape.
    875   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
    876 
    877   /// LabelMap - This keeps track of the LLVM basic block for each C label.
    878   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
    879 
    880   // BreakContinueStack - This keeps track of where break and continue
    881   // statements should jump to.
    882   struct BreakContinue {
    883     BreakContinue(JumpDest Break, JumpDest Continue)
    884       : BreakBlock(Break), ContinueBlock(Continue) {}
    885 
    886     JumpDest BreakBlock;
    887     JumpDest ContinueBlock;
    888   };
    889   SmallVector<BreakContinue, 8> BreakContinueStack;
    890 
    891   CodeGenPGO PGO;
    892 
    893 public:
    894   /// Get a counter for instrumentation of the region associated with the given
    895   /// statement.
    896   RegionCounter getPGORegionCounter(const Stmt *S) {
    897     return RegionCounter(PGO, S);
    898   }
    899 private:
    900 
    901   /// SwitchInsn - This is nearest current switch instruction. It is null if
    902   /// current context is not in a switch.
    903   llvm::SwitchInst *SwitchInsn;
    904   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
    905   SmallVector<uint64_t, 16> *SwitchWeights;
    906 
    907   /// CaseRangeBlock - This block holds if condition check for last case
    908   /// statement range in current switch instruction.
    909   llvm::BasicBlock *CaseRangeBlock;
    910 
    911   /// OpaqueLValues - Keeps track of the current set of opaque value
    912   /// expressions.
    913   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
    914   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
    915 
    916   // VLASizeMap - This keeps track of the associated size for each VLA type.
    917   // We track this by the size expression rather than the type itself because
    918   // in certain situations, like a const qualifier applied to an VLA typedef,
    919   // multiple VLA types can share the same size expression.
    920   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
    921   // enter/leave scopes.
    922   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
    923 
    924   /// A block containing a single 'unreachable' instruction.  Created
    925   /// lazily by getUnreachableBlock().
    926   llvm::BasicBlock *UnreachableBlock;
    927 
    928   /// Counts of the number return expressions in the function.
    929   unsigned NumReturnExprs;
    930 
    931   /// Count the number of simple (constant) return expressions in the function.
    932   unsigned NumSimpleReturnExprs;
    933 
    934   /// The last regular (non-return) debug location (breakpoint) in the function.
    935   SourceLocation LastStopPoint;
    936 
    937 public:
    938   /// A scope within which we are constructing the fields of an object which
    939   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
    940   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
    941   class FieldConstructionScope {
    942   public:
    943     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
    944         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
    945       CGF.CXXDefaultInitExprThis = This;
    946     }
    947     ~FieldConstructionScope() {
    948       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
    949     }
    950 
    951   private:
    952     CodeGenFunction &CGF;
    953     llvm::Value *OldCXXDefaultInitExprThis;
    954   };
    955 
    956   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
    957   /// is overridden to be the object under construction.
    958   class CXXDefaultInitExprScope {
    959   public:
    960     CXXDefaultInitExprScope(CodeGenFunction &CGF)
    961         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
    962       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
    963     }
    964     ~CXXDefaultInitExprScope() {
    965       CGF.CXXThisValue = OldCXXThisValue;
    966     }
    967 
    968   public:
    969     CodeGenFunction &CGF;
    970     llvm::Value *OldCXXThisValue;
    971   };
    972 
    973 private:
    974   /// CXXThisDecl - When generating code for a C++ member function,
    975   /// this will hold the implicit 'this' declaration.
    976   ImplicitParamDecl *CXXABIThisDecl;
    977   llvm::Value *CXXABIThisValue;
    978   llvm::Value *CXXThisValue;
    979 
    980   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
    981   /// this expression.
    982   llvm::Value *CXXDefaultInitExprThis;
    983 
    984   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
    985   /// destructor, this will hold the implicit argument (e.g. VTT).
    986   ImplicitParamDecl *CXXStructorImplicitParamDecl;
    987   llvm::Value *CXXStructorImplicitParamValue;
    988 
    989   /// OutermostConditional - Points to the outermost active
    990   /// conditional control.  This is used so that we know if a
    991   /// temporary should be destroyed conditionally.
    992   ConditionalEvaluation *OutermostConditional;
    993 
    994   /// The current lexical scope.
    995   LexicalScope *CurLexicalScope;
    996 
    997   /// The current source location that should be used for exception
    998   /// handling code.
    999   SourceLocation CurEHLocation;
   1000 
   1001   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
   1002   /// type as well as the field number that contains the actual data.
   1003   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
   1004                                               unsigned> > ByRefValueInfo;
   1005 
   1006   llvm::BasicBlock *TerminateLandingPad;
   1007   llvm::BasicBlock *TerminateHandler;
   1008   llvm::BasicBlock *TrapBB;
   1009 
   1010   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
   1011   /// In the kernel metadata node, reference the kernel function and metadata
   1012   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
   1013   /// - A node for the vec_type_hint(<type>) qualifier contains string
   1014   ///   "vec_type_hint", an undefined value of the <type> data type,
   1015   ///   and a Boolean that is true if the <type> is integer and signed.
   1016   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
   1017   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
   1018   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
   1019   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
   1020   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
   1021                                 llvm::Function *Fn);
   1022 
   1023 public:
   1024   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
   1025   ~CodeGenFunction();
   1026 
   1027   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1028   ASTContext &getContext() const { return CGM.getContext(); }
   1029   CGDebugInfo *getDebugInfo() {
   1030     if (DisableDebugInfo)
   1031       return nullptr;
   1032     return DebugInfo;
   1033   }
   1034   void disableDebugInfo() { DisableDebugInfo = true; }
   1035   void enableDebugInfo() { DisableDebugInfo = false; }
   1036 
   1037   bool shouldUseFusedARCCalls() {
   1038     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1039   }
   1040 
   1041   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
   1042 
   1043   /// Returns a pointer to the function's exception object and selector slot,
   1044   /// which is assigned in every landing pad.
   1045   llvm::Value *getExceptionSlot();
   1046   llvm::Value *getEHSelectorSlot();
   1047 
   1048   /// Returns the contents of the function's exception object and selector
   1049   /// slots.
   1050   llvm::Value *getExceptionFromSlot();
   1051   llvm::Value *getSelectorFromSlot();
   1052 
   1053   llvm::Value *getNormalCleanupDestSlot();
   1054 
   1055   llvm::BasicBlock *getUnreachableBlock() {
   1056     if (!UnreachableBlock) {
   1057       UnreachableBlock = createBasicBlock("unreachable");
   1058       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1059     }
   1060     return UnreachableBlock;
   1061   }
   1062 
   1063   llvm::BasicBlock *getInvokeDest() {
   1064     if (!EHStack.requiresLandingPad()) return nullptr;
   1065     return getInvokeDestImpl();
   1066   }
   1067 
   1068   bool currentFunctionUsesSEHTry() const {
   1069     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
   1070     return FD && FD->usesSEHTry();
   1071   }
   1072 
   1073   const TargetInfo &getTarget() const { return Target; }
   1074   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1075 
   1076   //===--------------------------------------------------------------------===//
   1077   //                                  Cleanups
   1078   //===--------------------------------------------------------------------===//
   1079 
   1080   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
   1081 
   1082   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1083                                         llvm::Value *arrayEndPointer,
   1084                                         QualType elementType,
   1085                                         Destroyer *destroyer);
   1086   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1087                                       llvm::Value *arrayEnd,
   1088                                       QualType elementType,
   1089                                       Destroyer *destroyer);
   1090 
   1091   void pushDestroy(QualType::DestructionKind dtorKind,
   1092                    llvm::Value *addr, QualType type);
   1093   void pushEHDestroy(QualType::DestructionKind dtorKind,
   1094                      llvm::Value *addr, QualType type);
   1095   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
   1096                    Destroyer *destroyer, bool useEHCleanupForArray);
   1097   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
   1098                                    QualType type, Destroyer *destroyer,
   1099                                    bool useEHCleanupForArray);
   1100   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
   1101                                    llvm::Value *CompletePtr,
   1102                                    QualType ElementType);
   1103   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
   1104   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
   1105                    bool useEHCleanupForArray);
   1106   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
   1107                                         Destroyer *destroyer,
   1108                                         bool useEHCleanupForArray,
   1109                                         const VarDecl *VD);
   1110   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1111                         QualType type, Destroyer *destroyer,
   1112                         bool checkZeroLength, bool useEHCleanup);
   1113 
   1114   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
   1115 
   1116   /// Determines whether an EH cleanup is required to destroy a type
   1117   /// with the given destruction kind.
   1118   bool needsEHCleanup(QualType::DestructionKind kind) {
   1119     switch (kind) {
   1120     case QualType::DK_none:
   1121       return false;
   1122     case QualType::DK_cxx_destructor:
   1123     case QualType::DK_objc_weak_lifetime:
   1124       return getLangOpts().Exceptions;
   1125     case QualType::DK_objc_strong_lifetime:
   1126       return getLangOpts().Exceptions &&
   1127              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1128     }
   1129     llvm_unreachable("bad destruction kind");
   1130   }
   1131 
   1132   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1133     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1134   }
   1135 
   1136   //===--------------------------------------------------------------------===//
   1137   //                                  Objective-C
   1138   //===--------------------------------------------------------------------===//
   1139 
   1140   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1141 
   1142   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
   1143 
   1144   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1145   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1146                           const ObjCPropertyImplDecl *PID);
   1147   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
   1148                               const ObjCPropertyImplDecl *propImpl,
   1149                               const ObjCMethodDecl *GetterMothodDecl,
   1150                               llvm::Constant *AtomicHelperFn);
   1151 
   1152   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1153                                   ObjCMethodDecl *MD, bool ctor);
   1154 
   1155   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1156   /// for the given property.
   1157   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1158                           const ObjCPropertyImplDecl *PID);
   1159   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1160                               const ObjCPropertyImplDecl *propImpl,
   1161                               llvm::Constant *AtomicHelperFn);
   1162   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
   1163   bool IvarTypeWithAggrGCObjects(QualType Ty);
   1164 
   1165   //===--------------------------------------------------------------------===//
   1166   //                                  Block Bits
   1167   //===--------------------------------------------------------------------===//
   1168 
   1169   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1170   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
   1171   static void destroyBlockInfos(CGBlockInfo *info);
   1172   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
   1173                                            const CGBlockInfo &Info,
   1174                                            llvm::StructType *,
   1175                                            llvm::Constant *BlockVarLayout);
   1176 
   1177   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1178                                         const CGBlockInfo &Info,
   1179                                         const DeclMapTy &ldm,
   1180                                         bool IsLambdaConversionToBlock);
   1181 
   1182   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1183   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1184   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
   1185                                              const ObjCPropertyImplDecl *PID);
   1186   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
   1187                                              const ObjCPropertyImplDecl *PID);
   1188   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
   1189 
   1190   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1191 
   1192   class AutoVarEmission;
   1193 
   1194   void emitByrefStructureInit(const AutoVarEmission &emission);
   1195   void enterByrefCleanup(const AutoVarEmission &emission);
   1196 
   1197   llvm::Value *LoadBlockStruct() {
   1198     assert(BlockPointer && "no block pointer set!");
   1199     return BlockPointer;
   1200   }
   1201 
   1202   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
   1203   void AllocateBlockDecl(const DeclRefExpr *E);
   1204   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1205   llvm::Type *BuildByRefType(const VarDecl *var);
   1206 
   1207   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1208                     const CGFunctionInfo &FnInfo);
   1209   /// \brief Emit code for the start of a function.
   1210   /// \param Loc       The location to be associated with the function.
   1211   /// \param StartLoc  The location of the function body.
   1212   void StartFunction(GlobalDecl GD,
   1213                      QualType RetTy,
   1214                      llvm::Function *Fn,
   1215                      const CGFunctionInfo &FnInfo,
   1216                      const FunctionArgList &Args,
   1217                      SourceLocation Loc = SourceLocation(),
   1218                      SourceLocation StartLoc = SourceLocation());
   1219 
   1220   void EmitConstructorBody(FunctionArgList &Args);
   1221   void EmitDestructorBody(FunctionArgList &Args);
   1222   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
   1223   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
   1224   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
   1225 
   1226   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
   1227                                   CallArgList &CallArgs);
   1228   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
   1229   void EmitLambdaBlockInvokeBody();
   1230   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
   1231   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
   1232   void EmitAsanPrologueOrEpilogue(bool Prologue);
   1233 
   1234   /// \brief Emit the unified return block, trying to avoid its emission when
   1235   /// possible.
   1236   /// \return The debug location of the user written return statement if the
   1237   /// return block is is avoided.
   1238   llvm::DebugLoc EmitReturnBlock();
   1239 
   1240   /// FinishFunction - Complete IR generation of the current function. It is
   1241   /// legal to call this function even if there is no current insertion point.
   1242   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1243 
   1244   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
   1245                   const CGFunctionInfo &FnInfo);
   1246 
   1247   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
   1248 
   1249   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
   1250   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
   1251                          llvm::Value *Callee);
   1252 
   1253   /// GenerateThunk - Generate a thunk for the given method.
   1254   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1255                      GlobalDecl GD, const ThunkInfo &Thunk);
   1256 
   1257   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1258                             GlobalDecl GD, const ThunkInfo &Thunk);
   1259 
   1260   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1261                         FunctionArgList &Args);
   1262 
   1263   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
   1264                                ArrayRef<VarDecl *> ArrayIndexes);
   1265 
   1266   /// InitializeVTablePointer - Initialize the vtable pointer of the given
   1267   /// subobject.
   1268   ///
   1269   void InitializeVTablePointer(BaseSubobject Base,
   1270                                const CXXRecordDecl *NearestVBase,
   1271                                CharUnits OffsetFromNearestVBase,
   1272                                const CXXRecordDecl *VTableClass);
   1273 
   1274   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1275   void InitializeVTablePointers(BaseSubobject Base,
   1276                                 const CXXRecordDecl *NearestVBase,
   1277                                 CharUnits OffsetFromNearestVBase,
   1278                                 bool BaseIsNonVirtualPrimaryBase,
   1279                                 const CXXRecordDecl *VTableClass,
   1280                                 VisitedVirtualBasesSetTy& VBases);
   1281 
   1282   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1283 
   1284   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1285   /// to by This.
   1286   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
   1287 
   1288   /// \brief Derived is the presumed address of an object of type T after a
   1289   /// cast. If T is a polymorphic class type, emit a check that the virtual
   1290   /// table for Derived belongs to a class derived from T.
   1291   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
   1292                                  bool MayBeNull);
   1293 
   1294   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
   1295   /// If vptr CFI is enabled, emit a check that VTable is valid.
   1296   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable);
   1297 
   1298   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
   1299   /// RD using llvm.bitset.test.
   1300   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable);
   1301 
   1302   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
   1303   /// expr can be devirtualized.
   1304   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
   1305                                          const CXXMethodDecl *MD);
   1306 
   1307   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1308   /// given phase of destruction for a destructor.  The end result
   1309   /// should call destructors on members and base classes in reverse
   1310   /// order of their construction.
   1311   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1312 
   1313   /// ShouldInstrumentFunction - Return true if the current function should be
   1314   /// instrumented with __cyg_profile_func_* calls
   1315   bool ShouldInstrumentFunction();
   1316 
   1317   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1318   /// instrumentation function with the current function and the call site, if
   1319   /// function instrumentation is enabled.
   1320   void EmitFunctionInstrumentation(const char *Fn);
   1321 
   1322   /// EmitMCountInstrumentation - Emit call to .mcount.
   1323   void EmitMCountInstrumentation();
   1324 
   1325   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1326   /// arguments for the given function. This is also responsible for naming the
   1327   /// LLVM function arguments.
   1328   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1329                           llvm::Function *Fn,
   1330                           const FunctionArgList &Args);
   1331 
   1332   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1333   /// given temporary.
   1334   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
   1335                           SourceLocation EndLoc);
   1336 
   1337   /// EmitStartEHSpec - Emit the start of the exception spec.
   1338   void EmitStartEHSpec(const Decl *D);
   1339 
   1340   /// EmitEndEHSpec - Emit the end of the exception spec.
   1341   void EmitEndEHSpec(const Decl *D);
   1342 
   1343   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1344   llvm::BasicBlock *getTerminateLandingPad();
   1345 
   1346   /// getTerminateHandler - Return a handler (not a landing pad, just
   1347   /// a catch handler) that just calls terminate.  This is used when
   1348   /// a terminate scope encloses a try.
   1349   llvm::BasicBlock *getTerminateHandler();
   1350 
   1351   llvm::Type *ConvertTypeForMem(QualType T);
   1352   llvm::Type *ConvertType(QualType T);
   1353   llvm::Type *ConvertType(const TypeDecl *T) {
   1354     return ConvertType(getContext().getTypeDeclType(T));
   1355   }
   1356 
   1357   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1358   /// generating code for an Objective-C method.
   1359   llvm::Value *LoadObjCSelf();
   1360 
   1361   /// TypeOfSelfObject - Return type of object that this self represents.
   1362   QualType TypeOfSelfObject();
   1363 
   1364   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1365   /// an aggregate LLVM type or is void.
   1366   static TypeEvaluationKind getEvaluationKind(QualType T);
   1367 
   1368   static bool hasScalarEvaluationKind(QualType T) {
   1369     return getEvaluationKind(T) == TEK_Scalar;
   1370   }
   1371 
   1372   static bool hasAggregateEvaluationKind(QualType T) {
   1373     return getEvaluationKind(T) == TEK_Aggregate;
   1374   }
   1375 
   1376   /// createBasicBlock - Create an LLVM basic block.
   1377   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
   1378                                      llvm::Function *parent = nullptr,
   1379                                      llvm::BasicBlock *before = nullptr) {
   1380 #ifdef NDEBUG
   1381     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1382 #else
   1383     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1384 #endif
   1385   }
   1386 
   1387   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1388   /// label maps to.
   1389   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1390 
   1391   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1392   /// another basic block, simplify it. This assumes that no other code could
   1393   /// potentially reference the basic block.
   1394   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1395 
   1396   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1397   /// adding a fall-through branch from the current insert block if
   1398   /// necessary. It is legal to call this function even if there is no current
   1399   /// insertion point.
   1400   ///
   1401   /// IsFinished - If true, indicates that the caller has finished emitting
   1402   /// branches to the given block and does not expect to emit code into it. This
   1403   /// means the block can be ignored if it is unreachable.
   1404   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1405 
   1406   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
   1407   /// near its uses, and leave the insertion point in it.
   1408   void EmitBlockAfterUses(llvm::BasicBlock *BB);
   1409 
   1410   /// EmitBranch - Emit a branch to the specified basic block from the current
   1411   /// insert block, taking care to avoid creation of branches from dummy
   1412   /// blocks. It is legal to call this function even if there is no current
   1413   /// insertion point.
   1414   ///
   1415   /// This function clears the current insertion point. The caller should follow
   1416   /// calls to this function with calls to Emit*Block prior to generation new
   1417   /// code.
   1418   void EmitBranch(llvm::BasicBlock *Block);
   1419 
   1420   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1421   /// indicates that the current code being emitted is unreachable.
   1422   bool HaveInsertPoint() const {
   1423     return Builder.GetInsertBlock() != nullptr;
   1424   }
   1425 
   1426   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1427   /// emitted IR has a place to go. Note that by definition, if this function
   1428   /// creates a block then that block is unreachable; callers may do better to
   1429   /// detect when no insertion point is defined and simply skip IR generation.
   1430   void EnsureInsertPoint() {
   1431     if (!HaveInsertPoint())
   1432       EmitBlock(createBasicBlock());
   1433   }
   1434 
   1435   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1436   /// specified stmt yet.
   1437   void ErrorUnsupported(const Stmt *S, const char *Type);
   1438 
   1439   //===--------------------------------------------------------------------===//
   1440   //                                  Helpers
   1441   //===--------------------------------------------------------------------===//
   1442 
   1443   LValue MakeAddrLValue(llvm::Value *V, QualType T,
   1444                         CharUnits Alignment = CharUnits()) {
   1445     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1446                             CGM.getTBAAInfo(T));
   1447   }
   1448 
   1449   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
   1450 
   1451   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1452   /// block. The caller is responsible for setting an appropriate alignment on
   1453   /// the alloca.
   1454   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1455                                      const Twine &Name = "tmp");
   1456 
   1457   /// InitTempAlloca - Provide an initial value for the given alloca.
   1458   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
   1459 
   1460   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1461   /// appropriate alignment. This routine should only be used when an temporary
   1462   /// value needs to be stored into an alloca (for example, to avoid explicit
   1463   /// PHI construction), but the type is the IR type, not the type appropriate
   1464   /// for storing in memory.
   1465   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
   1466 
   1467   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1468   /// appropriate alignment.
   1469   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
   1470 
   1471   /// CreateAggTemp - Create a temporary memory object for the given
   1472   /// aggregate type.
   1473   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
   1474     CharUnits Alignment = getContext().getTypeAlignInChars(T);
   1475     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
   1476                                  T.getQualifiers(),
   1477                                  AggValueSlot::IsNotDestructed,
   1478                                  AggValueSlot::DoesNotNeedGCBarriers,
   1479                                  AggValueSlot::IsNotAliased);
   1480   }
   1481 
   1482   /// CreateInAllocaTmp - Create a temporary memory object for the given
   1483   /// aggregate type.
   1484   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
   1485 
   1486   /// Emit a cast to void* in the appropriate address space.
   1487   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1488 
   1489   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1490   /// expression and compare the result against zero, returning an Int1Ty value.
   1491   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1492 
   1493   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1494   void EmitIgnoredExpr(const Expr *E);
   1495 
   1496   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1497   /// any type.  The result is returned as an RValue struct.  If this is an
   1498   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1499   /// the result should be returned.
   1500   ///
   1501   /// \param ignoreResult True if the resulting value isn't used.
   1502   RValue EmitAnyExpr(const Expr *E,
   1503                      AggValueSlot aggSlot = AggValueSlot::ignored(),
   1504                      bool ignoreResult = false);
   1505 
   1506   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1507   // or the value of the expression, depending on how va_list is defined.
   1508   llvm::Value *EmitVAListRef(const Expr *E);
   1509 
   1510   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1511   /// always be accessible even if no aggregate location is provided.
   1512   RValue EmitAnyExprToTemp(const Expr *E);
   1513 
   1514   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1515   /// arbitrary expression into the given memory location.
   1516   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
   1517                         Qualifiers Quals, bool IsInitializer);
   1518 
   1519   void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
   1520 
   1521   /// EmitExprAsInit - Emits the code necessary to initialize a
   1522   /// location in memory with the given initializer.
   1523   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
   1524                       bool capturedByInit);
   1525 
   1526   /// hasVolatileMember - returns true if aggregate type has a volatile
   1527   /// member.
   1528   bool hasVolatileMember(QualType T) {
   1529     if (const RecordType *RT = T->getAs<RecordType>()) {
   1530       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
   1531       return RD->hasVolatileMember();
   1532     }
   1533     return false;
   1534   }
   1535   /// EmitAggregateCopy - Emit an aggregate assignment.
   1536   ///
   1537   /// The difference to EmitAggregateCopy is that tail padding is not copied.
   1538   /// This is required for correctness when assigning non-POD structures in C++.
   1539   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1540                            QualType EltTy) {
   1541     bool IsVolatile = hasVolatileMember(EltTy);
   1542     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
   1543                       true);
   1544   }
   1545 
   1546   void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1547                            QualType DestTy, QualType SrcTy) {
   1548     CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
   1549     CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
   1550     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
   1551                       std::min(DestTypeAlign, SrcTypeAlign),
   1552                       /*IsAssignment=*/false);
   1553   }
   1554 
   1555   /// EmitAggregateCopy - Emit an aggregate copy.
   1556   ///
   1557   /// \param isVolatile - True iff either the source or the destination is
   1558   /// volatile.
   1559   /// \param isAssignment - If false, allow padding to be copied.  This often
   1560   /// yields more efficient.
   1561   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1562                          QualType EltTy, bool isVolatile=false,
   1563                          CharUnits Alignment = CharUnits::Zero(),
   1564                          bool isAssignment = false);
   1565 
   1566   /// StartBlock - Start new block named N. If insert block is a dummy block
   1567   /// then reuse it.
   1568   void StartBlock(const char *N);
   1569 
   1570   /// GetAddrOfLocalVar - Return the address of a local variable.
   1571   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
   1572     llvm::Value *Res = LocalDeclMap[VD];
   1573     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1574     return Res;
   1575   }
   1576 
   1577   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1578   /// must be mapped to an l-value), return its mapping.
   1579   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1580     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1581 
   1582     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1583       it = OpaqueLValues.find(e);
   1584     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1585     return it->second;
   1586   }
   1587 
   1588   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1589   /// must be mapped to an r-value), return its mapping.
   1590   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1591     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1592 
   1593     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1594       it = OpaqueRValues.find(e);
   1595     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1596     return it->second;
   1597   }
   1598 
   1599   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1600   /// the input field number being accessed.
   1601   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1602 
   1603   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1604   llvm::BasicBlock *GetIndirectGotoBlock();
   1605 
   1606   /// EmitNullInitialization - Generate code to set a value of the given type to
   1607   /// null, If the type contains data member pointers, they will be initialized
   1608   /// to -1 in accordance with the Itanium C++ ABI.
   1609   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
   1610 
   1611   // EmitVAArg - Generate code to get an argument from the passed in pointer
   1612   // and update it accordingly. The return value is a pointer to the argument.
   1613   // FIXME: We should be able to get rid of this method and use the va_arg
   1614   // instruction in LLVM instead once it works well enough.
   1615   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
   1616 
   1617   /// emitArrayLength - Compute the length of an array, even if it's a
   1618   /// VLA, and drill down to the base element type.
   1619   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1620                                QualType &baseType,
   1621                                llvm::Value *&addr);
   1622 
   1623   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1624   /// the given variably-modified type and store them in the VLASizeMap.
   1625   ///
   1626   /// This function can be called with a null (unreachable) insert point.
   1627   void EmitVariablyModifiedType(QualType Ty);
   1628 
   1629   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1630   /// in non-variably-sized elements, of a variable length array type,
   1631   /// plus that largest non-variably-sized element type.  Assumes that
   1632   /// the type has already been emitted with EmitVariablyModifiedType.
   1633   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1634   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1635 
   1636   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1637   /// generating code for an C++ member function.
   1638   llvm::Value *LoadCXXThis() {
   1639     assert(CXXThisValue && "no 'this' value for this function");
   1640     return CXXThisValue;
   1641   }
   1642 
   1643   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1644   /// virtual bases.
   1645   // FIXME: Every place that calls LoadCXXVTT is something
   1646   // that needs to be abstracted properly.
   1647   llvm::Value *LoadCXXVTT() {
   1648     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
   1649     return CXXStructorImplicitParamValue;
   1650   }
   1651 
   1652   /// LoadCXXStructorImplicitParam - Load the implicit parameter
   1653   /// for a constructor/destructor.
   1654   llvm::Value *LoadCXXStructorImplicitParam() {
   1655     assert(CXXStructorImplicitParamValue &&
   1656            "no implicit argument value for this function");
   1657     return CXXStructorImplicitParamValue;
   1658   }
   1659 
   1660   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1661   /// complete class to the given direct base.
   1662   llvm::Value *
   1663   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
   1664                                         const CXXRecordDecl *Derived,
   1665                                         const CXXRecordDecl *Base,
   1666                                         bool BaseIsVirtual);
   1667 
   1668   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1669   /// load of 'this' and returns address of the base class.
   1670   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
   1671                                      const CXXRecordDecl *Derived,
   1672                                      CastExpr::path_const_iterator PathBegin,
   1673                                      CastExpr::path_const_iterator PathEnd,
   1674                                      bool NullCheckValue, SourceLocation Loc);
   1675 
   1676   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
   1677                                         const CXXRecordDecl *Derived,
   1678                                         CastExpr::path_const_iterator PathBegin,
   1679                                         CastExpr::path_const_iterator PathEnd,
   1680                                         bool NullCheckValue);
   1681 
   1682   /// GetVTTParameter - Return the VTT parameter that should be passed to a
   1683   /// base constructor/destructor with virtual bases.
   1684   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
   1685   /// to ItaniumCXXABI.cpp together with all the references to VTT.
   1686   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
   1687                                bool Delegating);
   1688 
   1689   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1690                                       CXXCtorType CtorType,
   1691                                       const FunctionArgList &Args,
   1692                                       SourceLocation Loc);
   1693   // It's important not to confuse this and the previous function. Delegating
   1694   // constructors are the C++0x feature. The constructor delegate optimization
   1695   // is used to reduce duplication in the base and complete consturctors where
   1696   // they are substantially the same.
   1697   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1698                                         const FunctionArgList &Args);
   1699   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1700                               bool ForVirtualBase, bool Delegating,
   1701                               llvm::Value *This, const CXXConstructExpr *E);
   1702 
   1703   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1704                               llvm::Value *This, llvm::Value *Src,
   1705                               const CXXConstructExpr *E);
   1706 
   1707   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1708                                   const ConstantArrayType *ArrayTy,
   1709                                   llvm::Value *ArrayPtr,
   1710                                   const CXXConstructExpr *E,
   1711                                   bool ZeroInitialization = false);
   1712 
   1713   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1714                                   llvm::Value *NumElements,
   1715                                   llvm::Value *ArrayPtr,
   1716                                   const CXXConstructExpr *E,
   1717                                   bool ZeroInitialization = false);
   1718 
   1719   static Destroyer destroyCXXObject;
   1720 
   1721   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   1722                              bool ForVirtualBase, bool Delegating,
   1723                              llvm::Value *This);
   1724 
   1725   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
   1726                                llvm::Type *ElementTy, llvm::Value *NewPtr,
   1727                                llvm::Value *NumElements,
   1728                                llvm::Value *AllocSizeWithoutCookie);
   1729 
   1730   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
   1731                         llvm::Value *Ptr);
   1732 
   1733   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   1734   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   1735 
   1736   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   1737                       QualType DeleteTy);
   1738 
   1739   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
   1740                                   const Expr *Arg, bool IsDelete);
   1741 
   1742   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   1743   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
   1744   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
   1745 
   1746   /// \brief Situations in which we might emit a check for the suitability of a
   1747   ///        pointer or glvalue.
   1748   enum TypeCheckKind {
   1749     /// Checking the operand of a load. Must be suitably sized and aligned.
   1750     TCK_Load,
   1751     /// Checking the destination of a store. Must be suitably sized and aligned.
   1752     TCK_Store,
   1753     /// Checking the bound value in a reference binding. Must be suitably sized
   1754     /// and aligned, but is not required to refer to an object (until the
   1755     /// reference is used), per core issue 453.
   1756     TCK_ReferenceBinding,
   1757     /// Checking the object expression in a non-static data member access. Must
   1758     /// be an object within its lifetime.
   1759     TCK_MemberAccess,
   1760     /// Checking the 'this' pointer for a call to a non-static member function.
   1761     /// Must be an object within its lifetime.
   1762     TCK_MemberCall,
   1763     /// Checking the 'this' pointer for a constructor call.
   1764     TCK_ConstructorCall,
   1765     /// Checking the operand of a static_cast to a derived pointer type. Must be
   1766     /// null or an object within its lifetime.
   1767     TCK_DowncastPointer,
   1768     /// Checking the operand of a static_cast to a derived reference type. Must
   1769     /// be an object within its lifetime.
   1770     TCK_DowncastReference,
   1771     /// Checking the operand of a cast to a base object. Must be suitably sized
   1772     /// and aligned.
   1773     TCK_Upcast,
   1774     /// Checking the operand of a cast to a virtual base object. Must be an
   1775     /// object within its lifetime.
   1776     TCK_UpcastToVirtualBase
   1777   };
   1778 
   1779   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
   1780   /// calls to EmitTypeCheck can be skipped.
   1781   bool sanitizePerformTypeCheck() const;
   1782 
   1783   /// \brief Emit a check that \p V is the address of storage of the
   1784   /// appropriate size and alignment for an object of type \p Type.
   1785   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
   1786                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
   1787                      bool SkipNullCheck = false);
   1788 
   1789   /// \brief Emit a check that \p Base points into an array object, which
   1790   /// we can access at index \p Index. \p Accessed should be \c false if we
   1791   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
   1792   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
   1793                        QualType IndexType, bool Accessed);
   1794 
   1795   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1796                                        bool isInc, bool isPre);
   1797   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   1798                                          bool isInc, bool isPre);
   1799 
   1800   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
   1801                                llvm::Value *OffsetValue = nullptr) {
   1802     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
   1803                                       OffsetValue);
   1804   }
   1805 
   1806   //===--------------------------------------------------------------------===//
   1807   //                            Declaration Emission
   1808   //===--------------------------------------------------------------------===//
   1809 
   1810   /// EmitDecl - Emit a declaration.
   1811   ///
   1812   /// This function can be called with a null (unreachable) insert point.
   1813   void EmitDecl(const Decl &D);
   1814 
   1815   /// EmitVarDecl - Emit a local variable declaration.
   1816   ///
   1817   /// This function can be called with a null (unreachable) insert point.
   1818   void EmitVarDecl(const VarDecl &D);
   1819 
   1820   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
   1821                       bool capturedByInit);
   1822   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   1823 
   1824   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   1825                              llvm::Value *Address);
   1826 
   1827   /// \brief Determine whether the given initializer is trivial in the sense
   1828   /// that it requires no code to be generated.
   1829   bool isTrivialInitializer(const Expr *Init);
   1830 
   1831   /// EmitAutoVarDecl - Emit an auto variable declaration.
   1832   ///
   1833   /// This function can be called with a null (unreachable) insert point.
   1834   void EmitAutoVarDecl(const VarDecl &D);
   1835 
   1836   class AutoVarEmission {
   1837     friend class CodeGenFunction;
   1838 
   1839     const VarDecl *Variable;
   1840 
   1841     /// The alignment of the variable.
   1842     CharUnits Alignment;
   1843 
   1844     /// The address of the alloca.  Null if the variable was emitted
   1845     /// as a global constant.
   1846     llvm::Value *Address;
   1847 
   1848     llvm::Value *NRVOFlag;
   1849 
   1850     /// True if the variable is a __block variable.
   1851     bool IsByRef;
   1852 
   1853     /// True if the variable is of aggregate type and has a constant
   1854     /// initializer.
   1855     bool IsConstantAggregate;
   1856 
   1857     /// Non-null if we should use lifetime annotations.
   1858     llvm::Value *SizeForLifetimeMarkers;
   1859 
   1860     struct Invalid {};
   1861     AutoVarEmission(Invalid) : Variable(nullptr) {}
   1862 
   1863     AutoVarEmission(const VarDecl &variable)
   1864       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
   1865         IsByRef(false), IsConstantAggregate(false),
   1866         SizeForLifetimeMarkers(nullptr) {}
   1867 
   1868     bool wasEmittedAsGlobal() const { return Address == nullptr; }
   1869 
   1870   public:
   1871     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   1872 
   1873     bool useLifetimeMarkers() const {
   1874       return SizeForLifetimeMarkers != nullptr;
   1875     }
   1876     llvm::Value *getSizeForLifetimeMarkers() const {
   1877       assert(useLifetimeMarkers());
   1878       return SizeForLifetimeMarkers;
   1879     }
   1880 
   1881     /// Returns the raw, allocated address, which is not necessarily
   1882     /// the address of the object itself.
   1883     llvm::Value *getAllocatedAddress() const {
   1884       return Address;
   1885     }
   1886 
   1887     /// Returns the address of the object within this declaration.
   1888     /// Note that this does not chase the forwarding pointer for
   1889     /// __block decls.
   1890     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
   1891       if (!IsByRef) return Address;
   1892 
   1893       auto F = CGF.getByRefValueLLVMField(Variable);
   1894       return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
   1895                                          Variable->getNameAsString());
   1896     }
   1897   };
   1898   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   1899   void EmitAutoVarInit(const AutoVarEmission &emission);
   1900   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   1901   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   1902                               QualType::DestructionKind dtorKind);
   1903 
   1904   void EmitStaticVarDecl(const VarDecl &D,
   1905                          llvm::GlobalValue::LinkageTypes Linkage);
   1906 
   1907   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   1908   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
   1909                     unsigned ArgNo);
   1910 
   1911   /// protectFromPeepholes - Protect a value that we're intending to
   1912   /// store to the side, but which will probably be used later, from
   1913   /// aggressive peepholing optimizations that might delete it.
   1914   ///
   1915   /// Pass the result to unprotectFromPeepholes to declare that
   1916   /// protection is no longer required.
   1917   ///
   1918   /// There's no particular reason why this shouldn't apply to
   1919   /// l-values, it's just that no existing peepholes work on pointers.
   1920   PeepholeProtection protectFromPeepholes(RValue rvalue);
   1921   void unprotectFromPeepholes(PeepholeProtection protection);
   1922 
   1923   //===--------------------------------------------------------------------===//
   1924   //                             Statement Emission
   1925   //===--------------------------------------------------------------------===//
   1926 
   1927   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   1928   void EmitStopPoint(const Stmt *S);
   1929 
   1930   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   1931   /// this function even if there is no current insertion point.
   1932   ///
   1933   /// This function may clear the current insertion point; callers should use
   1934   /// EnsureInsertPoint if they wish to subsequently generate code without first
   1935   /// calling EmitBlock, EmitBranch, or EmitStmt.
   1936   void EmitStmt(const Stmt *S);
   1937 
   1938   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   1939   /// necessarily require an insertion point or debug information; typically
   1940   /// because the statement amounts to a jump or a container of other
   1941   /// statements.
   1942   ///
   1943   /// \return True if the statement was handled.
   1944   bool EmitSimpleStmt(const Stmt *S);
   1945 
   1946   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   1947                                 AggValueSlot AVS = AggValueSlot::ignored());
   1948   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
   1949                                             bool GetLast = false,
   1950                                             AggValueSlot AVS =
   1951                                                 AggValueSlot::ignored());
   1952 
   1953   /// EmitLabel - Emit the block for the given label. It is legal to call this
   1954   /// function even if there is no current insertion point.
   1955   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   1956 
   1957   void EmitLabelStmt(const LabelStmt &S);
   1958   void EmitAttributedStmt(const AttributedStmt &S);
   1959   void EmitGotoStmt(const GotoStmt &S);
   1960   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   1961   void EmitIfStmt(const IfStmt &S);
   1962 
   1963   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
   1964                        ArrayRef<const Attr *> Attrs);
   1965   void EmitWhileStmt(const WhileStmt &S,
   1966                      ArrayRef<const Attr *> Attrs = None);
   1967   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
   1968   void EmitForStmt(const ForStmt &S,
   1969                    ArrayRef<const Attr *> Attrs = None);
   1970   void EmitReturnStmt(const ReturnStmt &S);
   1971   void EmitDeclStmt(const DeclStmt &S);
   1972   void EmitBreakStmt(const BreakStmt &S);
   1973   void EmitContinueStmt(const ContinueStmt &S);
   1974   void EmitSwitchStmt(const SwitchStmt &S);
   1975   void EmitDefaultStmt(const DefaultStmt &S);
   1976   void EmitCaseStmt(const CaseStmt &S);
   1977   void EmitCaseStmtRange(const CaseStmt &S);
   1978   void EmitAsmStmt(const AsmStmt &S);
   1979 
   1980   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   1981   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   1982   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   1983   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   1984   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   1985 
   1986   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   1987   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   1988 
   1989   void EmitCXXTryStmt(const CXXTryStmt &S);
   1990   void EmitSEHTryStmt(const SEHTryStmt &S);
   1991   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
   1992   void EnterSEHTryStmt(const SEHTryStmt &S);
   1993   void ExitSEHTryStmt(const SEHTryStmt &S);
   1994 
   1995   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name,
   1996                               QualType RetTy, FunctionArgList &Args,
   1997                               const Stmt *OutlinedStmt);
   1998 
   1999   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
   2000                                             const SEHExceptStmt &Except);
   2001 
   2002   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
   2003                                              const SEHFinallyStmt &Finally);
   2004 
   2005   void EmitSEHExceptionCodeSave();
   2006   llvm::Value *EmitSEHExceptionCode();
   2007   llvm::Value *EmitSEHExceptionInfo();
   2008   llvm::Value *EmitSEHAbnormalTermination();
   2009 
   2010   /// Scan the outlined statement for captures from the parent function. For
   2011   /// each capture, mark the capture as escaped and emit a call to
   2012   /// llvm.framerecover. Insert the framerecover result into the LocalDeclMap.
   2013   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
   2014                           llvm::Value *ParentFP);
   2015 
   2016   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
   2017                            ArrayRef<const Attr *> Attrs = None);
   2018 
   2019   LValue InitCapturedStruct(const CapturedStmt &S);
   2020   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
   2021   void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
   2022   llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
   2023   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
   2024   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
   2025   /// \brief Perform element by element copying of arrays with type \a
   2026   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
   2027   /// generated by \a CopyGen.
   2028   ///
   2029   /// \param DestAddr Address of the destination array.
   2030   /// \param SrcAddr Address of the source array.
   2031   /// \param OriginalType Type of destination and source arrays.
   2032   /// \param CopyGen Copying procedure that copies value of single array element
   2033   /// to another single array element.
   2034   void EmitOMPAggregateAssign(
   2035       llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
   2036       const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
   2037   /// \brief Emit proper copying of data from one variable to another.
   2038   ///
   2039   /// \param OriginalType Original type of the copied variables.
   2040   /// \param DestAddr Destination address.
   2041   /// \param SrcAddr Source address.
   2042   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
   2043   /// type of the base array element).
   2044   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
   2045   /// the base array element).
   2046   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
   2047   /// DestVD.
   2048   void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
   2049                    llvm::Value *DestAddr, llvm::Value *SrcAddr,
   2050                    const VarDecl *DestVD, const VarDecl *SrcVD,
   2051                    const Expr *Copy);
   2052   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
   2053   /// \a X = \a E \a BO \a E.
   2054   ///
   2055   /// \param X Value to be updated.
   2056   /// \param E Update value.
   2057   /// \param BO Binary operation for update operation.
   2058   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
   2059   /// expression, false otherwise.
   2060   /// \param AO Atomic ordering of the generated atomic instructions.
   2061   /// \param CommonGen Code generator for complex expressions that cannot be
   2062   /// expressed through atomicrmw instruction.
   2063   void EmitOMPAtomicSimpleUpdateExpr(
   2064       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
   2065       llvm::AtomicOrdering AO, SourceLocation Loc,
   2066       const llvm::function_ref<RValue(RValue)> &CommonGen);
   2067   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
   2068                                  OMPPrivateScope &PrivateScope);
   2069   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
   2070                             OMPPrivateScope &PrivateScope);
   2071   /// \brief Emit code for copyin clause in \a D directive. The next code is
   2072   /// generated at the start of outlined functions for directives:
   2073   /// \code
   2074   /// threadprivate_var1 = master_threadprivate_var1;
   2075   /// operator=(threadprivate_var2, master_threadprivate_var2);
   2076   /// ...
   2077   /// __kmpc_barrier(&loc, global_tid);
   2078   /// \endcode
   2079   ///
   2080   /// \param D OpenMP directive possibly with 'copyin' clause(s).
   2081   /// \returns true if at least one copyin variable is found, false otherwise.
   2082   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
   2083   /// \brief Emit initial code for lastprivate variables. If some variable is
   2084   /// not also firstprivate, then the default initialization is used. Otherwise
   2085   /// initialization of this variable is performed by EmitOMPFirstprivateClause
   2086   /// method.
   2087   ///
   2088   /// \param D Directive that may have 'lastprivate' directives.
   2089   /// \param PrivateScope Private scope for capturing lastprivate variables for
   2090   /// proper codegen in internal captured statement.
   2091   ///
   2092   /// \returns true if there is at least one lastprivate variable, false
   2093   /// otherwise.
   2094   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
   2095                                     OMPPrivateScope &PrivateScope);
   2096   /// \brief Emit final copying of lastprivate values to original variables at
   2097   /// the end of the worksharing or simd directive.
   2098   ///
   2099   /// \param D Directive that has at least one 'lastprivate' directives.
   2100   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
   2101   /// it is the last iteration of the loop code in associated directive, or to
   2102   /// 'i1 false' otherwise.
   2103   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
   2104                                      llvm::Value *IsLastIterCond);
   2105   /// \brief Emit initial code for reduction variables. Creates reduction copies
   2106   /// and initializes them with the values according to OpenMP standard.
   2107   ///
   2108   /// \param D Directive (possibly) with the 'reduction' clause.
   2109   /// \param PrivateScope Private scope for capturing reduction variables for
   2110   /// proper codegen in internal captured statement.
   2111   ///
   2112   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
   2113                                   OMPPrivateScope &PrivateScope);
   2114   /// \brief Emit final update of reduction values to original variables at
   2115   /// the end of the directive.
   2116   ///
   2117   /// \param D Directive that has at least one 'reduction' directives.
   2118   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
   2119 
   2120   void EmitOMPParallelDirective(const OMPParallelDirective &S);
   2121   void EmitOMPSimdDirective(const OMPSimdDirective &S);
   2122   void EmitOMPForDirective(const OMPForDirective &S);
   2123   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
   2124   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
   2125   void EmitOMPSectionDirective(const OMPSectionDirective &S);
   2126   void EmitOMPSingleDirective(const OMPSingleDirective &S);
   2127   void EmitOMPMasterDirective(const OMPMasterDirective &S);
   2128   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
   2129   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
   2130   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
   2131   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
   2132   void EmitOMPTaskDirective(const OMPTaskDirective &S);
   2133   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
   2134   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
   2135   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
   2136   void EmitOMPFlushDirective(const OMPFlushDirective &S);
   2137   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
   2138   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
   2139   void EmitOMPTargetDirective(const OMPTargetDirective &S);
   2140   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
   2141 
   2142   void
   2143   EmitOMPInnerLoop(const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
   2144                    const Expr *IncExpr,
   2145                    const llvm::function_ref<void(CodeGenFunction &)> &BodyGen);
   2146 
   2147 private:
   2148 
   2149   /// Helpers for the OpenMP loop directives.
   2150   void EmitOMPLoopBody(const OMPLoopDirective &Directive,
   2151                        bool SeparateIter = false);
   2152   void EmitOMPSimdFinal(const OMPLoopDirective &S);
   2153   /// \brief Emit code for the worksharing loop-based directive.
   2154   /// \return true, if this construct has any lastprivate clause, false -
   2155   /// otherwise.
   2156   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
   2157   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
   2158                            const OMPLoopDirective &S,
   2159                            OMPPrivateScope &LoopScope, llvm::Value *LB,
   2160                            llvm::Value *UB, llvm::Value *ST, llvm::Value *IL,
   2161                            llvm::Value *Chunk);
   2162 
   2163 public:
   2164 
   2165   //===--------------------------------------------------------------------===//
   2166   //                         LValue Expression Emission
   2167   //===--------------------------------------------------------------------===//
   2168 
   2169   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   2170   RValue GetUndefRValue(QualType Ty);
   2171 
   2172   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   2173   /// and issue an ErrorUnsupported style diagnostic (using the
   2174   /// provided Name).
   2175   RValue EmitUnsupportedRValue(const Expr *E,
   2176                                const char *Name);
   2177 
   2178   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   2179   /// an ErrorUnsupported style diagnostic (using the provided Name).
   2180   LValue EmitUnsupportedLValue(const Expr *E,
   2181                                const char *Name);
   2182 
   2183   /// EmitLValue - Emit code to compute a designator that specifies the location
   2184   /// of the expression.
   2185   ///
   2186   /// This can return one of two things: a simple address or a bitfield
   2187   /// reference.  In either case, the LLVM Value* in the LValue structure is
   2188   /// guaranteed to be an LLVM pointer type.
   2189   ///
   2190   /// If this returns a bitfield reference, nothing about the pointee type of
   2191   /// the LLVM value is known: For example, it may not be a pointer to an
   2192   /// integer.
   2193   ///
   2194   /// If this returns a normal address, and if the lvalue's C type is fixed
   2195   /// size, this method guarantees that the returned pointer type will point to
   2196   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   2197   /// variable length type, this is not possible.
   2198   ///
   2199   LValue EmitLValue(const Expr *E);
   2200 
   2201   /// \brief Same as EmitLValue but additionally we generate checking code to
   2202   /// guard against undefined behavior.  This is only suitable when we know
   2203   /// that the address will be used to access the object.
   2204   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
   2205 
   2206   RValue convertTempToRValue(llvm::Value *addr, QualType type,
   2207                              SourceLocation Loc);
   2208 
   2209   void EmitAtomicInit(Expr *E, LValue lvalue);
   2210 
   2211   bool LValueIsSuitableForInlineAtomic(LValue Src);
   2212   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
   2213 
   2214   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
   2215                         AggValueSlot Slot = AggValueSlot::ignored());
   2216 
   2217   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
   2218                         llvm::AtomicOrdering AO, bool IsVolatile = false,
   2219                         AggValueSlot slot = AggValueSlot::ignored());
   2220 
   2221   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
   2222 
   2223   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
   2224                        bool IsVolatile, bool isInit);
   2225 
   2226   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
   2227       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
   2228       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
   2229       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
   2230       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
   2231 
   2232   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
   2233                         const std::function<RValue(RValue)> &UpdateOp,
   2234                         bool IsVolatile);
   2235 
   2236   /// EmitToMemory - Change a scalar value from its value
   2237   /// representation to its in-memory representation.
   2238   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   2239 
   2240   /// EmitFromMemory - Change a scalar value from its memory
   2241   /// representation to its value representation.
   2242   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   2243 
   2244   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2245   /// care to appropriately convert from the memory representation to
   2246   /// the LLVM value representation.
   2247   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   2248                                 unsigned Alignment, QualType Ty,
   2249                                 SourceLocation Loc,
   2250                                 llvm::MDNode *TBAAInfo = nullptr,
   2251                                 QualType TBAABaseTy = QualType(),
   2252                                 uint64_t TBAAOffset = 0);
   2253 
   2254   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2255   /// care to appropriately convert from the memory representation to
   2256   /// the LLVM value representation.  The l-value must be a simple
   2257   /// l-value.
   2258   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
   2259 
   2260   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2261   /// care to appropriately convert from the memory representation to
   2262   /// the LLVM value representation.
   2263   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   2264                          bool Volatile, unsigned Alignment, QualType Ty,
   2265                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
   2266                          QualType TBAABaseTy = QualType(),
   2267                          uint64_t TBAAOffset = 0);
   2268 
   2269   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2270   /// care to appropriately convert from the memory representation to
   2271   /// the LLVM value representation.  The l-value must be a simple
   2272   /// l-value.  The isInit flag indicates whether this is an initialization.
   2273   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
   2274   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
   2275 
   2276   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   2277   /// this method emits the address of the lvalue, then loads the result as an
   2278   /// rvalue, returning the rvalue.
   2279   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
   2280   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   2281   RValue EmitLoadOfBitfieldLValue(LValue LV);
   2282   RValue EmitLoadOfGlobalRegLValue(LValue LV);
   2283 
   2284   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   2285   /// lvalue, where both are guaranteed to the have the same type, and that type
   2286   /// is 'Ty'.
   2287   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
   2288   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   2289   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
   2290 
   2291   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
   2292   /// as EmitStoreThroughLValue.
   2293   ///
   2294   /// \param Result [out] - If non-null, this will be set to a Value* for the
   2295   /// bit-field contents after the store, appropriate for use as the result of
   2296   /// an assignment to the bit-field.
   2297   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   2298                                       llvm::Value **Result=nullptr);
   2299 
   2300   /// Emit an l-value for an assignment (simple or compound) of complex type.
   2301   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   2302   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2303   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
   2304                                              llvm::Value *&Result);
   2305 
   2306   // Note: only available for agg return types
   2307   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   2308   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2309   // Note: only available for agg return types
   2310   LValue EmitCallExprLValue(const CallExpr *E);
   2311   // Note: only available for agg return types
   2312   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   2313   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   2314   LValue EmitReadRegister(const VarDecl *VD);
   2315   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2316   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2317   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2318   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2319   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2320                                 bool Accessed = false);
   2321   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2322   LValue EmitMemberExpr(const MemberExpr *E);
   2323   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2324   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2325   LValue EmitInitListLValue(const InitListExpr *E);
   2326   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2327   LValue EmitCastLValue(const CastExpr *E);
   2328   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2329   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2330 
   2331   llvm::Value *EmitExtVectorElementLValue(LValue V);
   2332 
   2333   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
   2334 
   2335   class ConstantEmission {
   2336     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
   2337     ConstantEmission(llvm::Constant *C, bool isReference)
   2338       : ValueAndIsReference(C, isReference) {}
   2339   public:
   2340     ConstantEmission() {}
   2341     static ConstantEmission forReference(llvm::Constant *C) {
   2342       return ConstantEmission(C, true);
   2343     }
   2344     static ConstantEmission forValue(llvm::Constant *C) {
   2345       return ConstantEmission(C, false);
   2346     }
   2347 
   2348     explicit operator bool() const {
   2349       return ValueAndIsReference.getOpaqueValue() != nullptr;
   2350     }
   2351 
   2352     bool isReference() const { return ValueAndIsReference.getInt(); }
   2353     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
   2354       assert(isReference());
   2355       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
   2356                                             refExpr->getType());
   2357     }
   2358 
   2359     llvm::Constant *getValue() const {
   2360       assert(!isReference());
   2361       return ValueAndIsReference.getPointer();
   2362     }
   2363   };
   2364 
   2365   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
   2366 
   2367   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
   2368                                 AggValueSlot slot = AggValueSlot::ignored());
   2369   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
   2370 
   2371   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2372                               const ObjCIvarDecl *Ivar);
   2373   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
   2374   LValue EmitLValueForLambdaField(const FieldDecl *Field);
   2375 
   2376   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2377   /// if the Field is a reference, this will return the address of the reference
   2378   /// and not the address of the value stored in the reference.
   2379   LValue EmitLValueForFieldInitialization(LValue Base,
   2380                                           const FieldDecl* Field);
   2381 
   2382   LValue EmitLValueForIvar(QualType ObjectTy,
   2383                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2384                            unsigned CVRQualifiers);
   2385 
   2386   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2387   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2388   LValue EmitLambdaLValue(const LambdaExpr *E);
   2389   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2390   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
   2391 
   2392   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2393   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2394   LValue EmitStmtExprLValue(const StmtExpr *E);
   2395   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2396   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2397   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2398 
   2399   //===--------------------------------------------------------------------===//
   2400   //                         Scalar Expression Emission
   2401   //===--------------------------------------------------------------------===//
   2402 
   2403   /// EmitCall - Generate a call of the given function, expecting the given
   2404   /// result type, and using the given argument list which specifies both the
   2405   /// LLVM arguments and the types they were derived from.
   2406   ///
   2407   /// \param TargetDecl - If given, the decl of the function in a direct call;
   2408   /// used to set attributes on the call (noreturn, etc.).
   2409   RValue EmitCall(const CGFunctionInfo &FnInfo,
   2410                   llvm::Value *Callee,
   2411                   ReturnValueSlot ReturnValue,
   2412                   const CallArgList &Args,
   2413                   const Decl *TargetDecl = nullptr,
   2414                   llvm::Instruction **callOrInvoke = nullptr);
   2415 
   2416   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
   2417                   ReturnValueSlot ReturnValue,
   2418                   const Decl *TargetDecl = nullptr,
   2419                   llvm::Value *Chain = nullptr);
   2420   RValue EmitCallExpr(const CallExpr *E,
   2421                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2422 
   2423   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2424                                   const Twine &name = "");
   2425   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2426                                   ArrayRef<llvm::Value*> args,
   2427                                   const Twine &name = "");
   2428   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2429                                           const Twine &name = "");
   2430   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2431                                           ArrayRef<llvm::Value*> args,
   2432                                           const Twine &name = "");
   2433 
   2434   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2435                                   ArrayRef<llvm::Value *> Args,
   2436                                   const Twine &Name = "");
   2437   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2438                                   const Twine &Name = "");
   2439   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2440                                          ArrayRef<llvm::Value*> args,
   2441                                          const Twine &name = "");
   2442   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2443                                          const Twine &name = "");
   2444   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   2445                                        ArrayRef<llvm::Value*> args);
   2446 
   2447   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2448                                          NestedNameSpecifier *Qual,
   2449                                          llvm::Type *Ty);
   2450 
   2451   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2452                                                    CXXDtorType Type,
   2453                                                    const CXXRecordDecl *RD);
   2454 
   2455   RValue
   2456   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
   2457                               ReturnValueSlot ReturnValue, llvm::Value *This,
   2458                               llvm::Value *ImplicitParam,
   2459                               QualType ImplicitParamTy, const CallExpr *E);
   2460   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
   2461                              ReturnValueSlot ReturnValue, llvm::Value *This,
   2462                              llvm::Value *ImplicitParam,
   2463                              QualType ImplicitParamTy, const CallExpr *E,
   2464                              StructorType Type);
   2465   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2466                                ReturnValueSlot ReturnValue);
   2467   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
   2468                                                const CXXMethodDecl *MD,
   2469                                                ReturnValueSlot ReturnValue,
   2470                                                bool HasQualifier,
   2471                                                NestedNameSpecifier *Qualifier,
   2472                                                bool IsArrow, const Expr *Base);
   2473   // Compute the object pointer.
   2474   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2475                                       ReturnValueSlot ReturnValue);
   2476 
   2477   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2478                                        const CXXMethodDecl *MD,
   2479                                        ReturnValueSlot ReturnValue);
   2480 
   2481   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
   2482                                 ReturnValueSlot ReturnValue);
   2483 
   2484 
   2485   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2486                          unsigned BuiltinID, const CallExpr *E,
   2487                          ReturnValueSlot ReturnValue);
   2488 
   2489   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2490 
   2491   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2492   /// is unhandled by the current target.
   2493   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2494 
   2495   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
   2496                                              const llvm::CmpInst::Predicate Fp,
   2497                                              const llvm::CmpInst::Predicate Ip,
   2498                                              const llvm::Twine &Name = "");
   2499   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2500 
   2501   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
   2502                                          unsigned LLVMIntrinsic,
   2503                                          unsigned AltLLVMIntrinsic,
   2504                                          const char *NameHint,
   2505                                          unsigned Modifier,
   2506                                          const CallExpr *E,
   2507                                          SmallVectorImpl<llvm::Value *> &Ops,
   2508                                          llvm::Value *Align = nullptr);
   2509   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
   2510                                           unsigned Modifier, llvm::Type *ArgTy,
   2511                                           const CallExpr *E);
   2512   llvm::Value *EmitNeonCall(llvm::Function *F,
   2513                             SmallVectorImpl<llvm::Value*> &O,
   2514                             const char *name,
   2515                             unsigned shift = 0, bool rightshift = false);
   2516   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2517   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2518                                    bool negateForRightShift);
   2519   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
   2520                                  llvm::Type *Ty, bool usgn, const char *name);
   2521   // Helper functions for EmitAArch64BuiltinExpr.
   2522   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
   2523   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
   2524   llvm::Value *emitVectorWrappedScalar8Intrinsic(
   2525       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
   2526   llvm::Value *emitVectorWrappedScalar16Intrinsic(
   2527       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
   2528   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2529   llvm::Value *EmitNeon64Call(llvm::Function *F,
   2530                               llvm::SmallVectorImpl<llvm::Value *> &O,
   2531                               const char *name);
   2532 
   2533   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
   2534   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2535   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2536   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2537   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2538 
   2539   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2540   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2541   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
   2542   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
   2543   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
   2544   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
   2545                                 const ObjCMethodDecl *MethodWithObjects);
   2546   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2547   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2548                              ReturnValueSlot Return = ReturnValueSlot());
   2549 
   2550   /// Retrieves the default cleanup kind for an ARC cleanup.
   2551   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2552   CleanupKind getARCCleanupKind() {
   2553     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2554              ? NormalAndEHCleanup : NormalCleanup;
   2555   }
   2556 
   2557   // ARC primitives.
   2558   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
   2559   void EmitARCDestroyWeak(llvm::Value *addr);
   2560   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
   2561   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
   2562   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
   2563                                 bool ignored);
   2564   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
   2565   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
   2566   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2567   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2568   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2569                                   bool resultIgnored);
   2570   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
   2571                                       bool resultIgnored);
   2572   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2573   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2574   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
   2575   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
   2576   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
   2577   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2578   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2579   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2580   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2581 
   2582   std::pair<LValue,llvm::Value*>
   2583   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2584   std::pair<LValue,llvm::Value*>
   2585   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2586 
   2587   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
   2588 
   2589   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
   2590   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2591   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2592 
   2593   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
   2594   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   2595   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   2596 
   2597   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
   2598 
   2599   static Destroyer destroyARCStrongImprecise;
   2600   static Destroyer destroyARCStrongPrecise;
   2601   static Destroyer destroyARCWeak;
   2602 
   2603   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   2604   llvm::Value *EmitObjCAutoreleasePoolPush();
   2605   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   2606   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   2607   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   2608 
   2609   /// \brief Emits a reference binding to the passed in expression.
   2610   RValue EmitReferenceBindingToExpr(const Expr *E);
   2611 
   2612   //===--------------------------------------------------------------------===//
   2613   //                           Expression Emission
   2614   //===--------------------------------------------------------------------===//
   2615 
   2616   // Expressions are broken into three classes: scalar, complex, aggregate.
   2617 
   2618   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   2619   /// scalar type, returning the result.
   2620   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   2621 
   2622   /// EmitScalarConversion - Emit a conversion from the specified type to the
   2623   /// specified destination type, both of which are LLVM scalar types.
   2624   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   2625                                     QualType DstTy);
   2626 
   2627   /// EmitComplexToScalarConversion - Emit a conversion from the specified
   2628   /// complex type to the specified destination type, where the destination type
   2629   /// is an LLVM scalar type.
   2630   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   2631                                              QualType DstTy);
   2632 
   2633 
   2634   /// EmitAggExpr - Emit the computation of the specified expression
   2635   /// of aggregate type.  The result is computed into the given slot,
   2636   /// which may be null to indicate that the value is not needed.
   2637   void EmitAggExpr(const Expr *E, AggValueSlot AS);
   2638 
   2639   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   2640   /// aggregate type into a temporary LValue.
   2641   LValue EmitAggExprToLValue(const Expr *E);
   2642 
   2643   /// EmitGCMemmoveCollectable - Emit special API for structs with object
   2644   /// pointers.
   2645   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   2646                                 QualType Ty);
   2647 
   2648   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2649   /// make sure it survives garbage collection until this point.
   2650   void EmitExtendGCLifetime(llvm::Value *object);
   2651 
   2652   /// EmitComplexExpr - Emit the computation of the specified expression of
   2653   /// complex type, returning the result.
   2654   ComplexPairTy EmitComplexExpr(const Expr *E,
   2655                                 bool IgnoreReal = false,
   2656                                 bool IgnoreImag = false);
   2657 
   2658   /// EmitComplexExprIntoLValue - Emit the given expression of complex
   2659   /// type and place its result into the specified l-value.
   2660   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
   2661 
   2662   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
   2663   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
   2664 
   2665   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
   2666   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
   2667 
   2668   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   2669   /// global variable that has already been created for it.  If the initializer
   2670   /// has a different type than GV does, this may free GV and return a different
   2671   /// one.  Otherwise it just returns GV.
   2672   llvm::GlobalVariable *
   2673   AddInitializerToStaticVarDecl(const VarDecl &D,
   2674                                 llvm::GlobalVariable *GV);
   2675 
   2676 
   2677   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   2678   /// variable with global storage.
   2679   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
   2680                                 bool PerformInit);
   2681 
   2682   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
   2683                                    llvm::Constant *Addr);
   2684 
   2685   /// Call atexit() with a function that passes the given argument to
   2686   /// the given function.
   2687   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
   2688                                     llvm::Constant *addr);
   2689 
   2690   /// Emit code in this function to perform a guarded variable
   2691   /// initialization.  Guarded initializations are used when it's not
   2692   /// possible to prove that an initialization will be done exactly
   2693   /// once, e.g. with a static local variable or a static data member
   2694   /// of a class template.
   2695   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
   2696                           bool PerformInit);
   2697 
   2698   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   2699   /// variables.
   2700   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   2701                                  ArrayRef<llvm::Function *> CXXThreadLocals,
   2702                                  llvm::GlobalVariable *Guard = nullptr);
   2703 
   2704   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
   2705   /// variables.
   2706   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
   2707                                   const std::vector<std::pair<llvm::WeakVH,
   2708                                   llvm::Constant*> > &DtorsAndObjects);
   2709 
   2710   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   2711                                         const VarDecl *D,
   2712                                         llvm::GlobalVariable *Addr,
   2713                                         bool PerformInit);
   2714 
   2715   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   2716 
   2717   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
   2718                                   const Expr *Exp);
   2719 
   2720   void enterFullExpression(const ExprWithCleanups *E) {
   2721     if (E->getNumObjects() == 0) return;
   2722     enterNonTrivialFullExpression(E);
   2723   }
   2724   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
   2725 
   2726   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
   2727 
   2728   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
   2729 
   2730   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
   2731 
   2732   //===--------------------------------------------------------------------===//
   2733   //                         Annotations Emission
   2734   //===--------------------------------------------------------------------===//
   2735 
   2736   /// Emit an annotation call (intrinsic or builtin).
   2737   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
   2738                                   llvm::Value *AnnotatedVal,
   2739                                   StringRef AnnotationStr,
   2740                                   SourceLocation Location);
   2741 
   2742   /// Emit local annotations for the local variable V, declared by D.
   2743   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
   2744 
   2745   /// Emit field annotations for the given field & value. Returns the
   2746   /// annotation result.
   2747   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
   2748 
   2749   //===--------------------------------------------------------------------===//
   2750   //                             Internal Helpers
   2751   //===--------------------------------------------------------------------===//
   2752 
   2753   /// ContainsLabel - Return true if the statement contains a label in it.  If
   2754   /// this statement is not executed normally, it not containing a label means
   2755   /// that we can just remove the code.
   2756   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   2757 
   2758   /// containsBreak - Return true if the statement contains a break out of it.
   2759   /// If the statement (recursively) contains a switch or loop with a break
   2760   /// inside of it, this is fine.
   2761   static bool containsBreak(const Stmt *S);
   2762 
   2763   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2764   /// to a constant, or if it does but contains a label, return false.  If it
   2765   /// constant folds return true and set the boolean result in Result.
   2766   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
   2767 
   2768   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2769   /// to a constant, or if it does but contains a label, return false.  If it
   2770   /// constant folds return true and set the folded value.
   2771   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
   2772 
   2773   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   2774   /// if statement) to the specified blocks.  Based on the condition, this might
   2775   /// try to simplify the codegen of the conditional based on the branch.
   2776   /// TrueCount should be the number of times we expect the condition to
   2777   /// evaluate to true based on PGO data.
   2778   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   2779                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
   2780 
   2781   /// \brief Emit a description of a type in a format suitable for passing to
   2782   /// a runtime sanitizer handler.
   2783   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
   2784 
   2785   /// \brief Convert a value into a format suitable for passing to a runtime
   2786   /// sanitizer handler.
   2787   llvm::Value *EmitCheckValue(llvm::Value *V);
   2788 
   2789   /// \brief Emit a description of a source location in a format suitable for
   2790   /// passing to a runtime sanitizer handler.
   2791   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
   2792 
   2793   /// \brief Create a basic block that will call a handler function in a
   2794   /// sanitizer runtime with the provided arguments, and create a conditional
   2795   /// branch to it.
   2796   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
   2797                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
   2798                  ArrayRef<llvm::Value *> DynamicArgs);
   2799 
   2800   /// \brief Create a basic block that will call the trap intrinsic, and emit a
   2801   /// conditional branch to it, for the -ftrapv checks.
   2802   void EmitTrapCheck(llvm::Value *Checked);
   2803 
   2804   /// EmitCallArg - Emit a single call argument.
   2805   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   2806 
   2807   /// EmitDelegateCallArg - We are performing a delegate call; that
   2808   /// is, the current function is delegating to another one.  Produce
   2809   /// a r-value suitable for passing the given parameter.
   2810   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
   2811                            SourceLocation loc);
   2812 
   2813   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
   2814   /// point operation, expressed as the maximum relative error in ulp.
   2815   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
   2816 
   2817 private:
   2818   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
   2819   void EmitReturnOfRValue(RValue RV, QualType Ty);
   2820 
   2821   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
   2822 
   2823   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
   2824   DeferredReplacements;
   2825 
   2826   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   2827   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   2828   ///
   2829   /// \param AI - The first function argument of the expansion.
   2830   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
   2831                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
   2832 
   2833   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
   2834   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
   2835   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
   2836   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
   2837                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
   2838                         unsigned &IRCallArgPos);
   2839 
   2840   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
   2841                             const Expr *InputExpr, std::string &ConstraintStr);
   2842 
   2843   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   2844                                   LValue InputValue, QualType InputType,
   2845                                   std::string &ConstraintStr,
   2846                                   SourceLocation Loc);
   2847 
   2848 public:
   2849   /// EmitCallArgs - Emit call arguments for a function.
   2850   template <typename T>
   2851   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
   2852                     CallExpr::const_arg_iterator ArgBeg,
   2853                     CallExpr::const_arg_iterator ArgEnd,
   2854                     const FunctionDecl *CalleeDecl = nullptr,
   2855                     unsigned ParamsToSkip = 0) {
   2856     SmallVector<QualType, 16> ArgTypes;
   2857     CallExpr::const_arg_iterator Arg = ArgBeg;
   2858 
   2859     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
   2860            "Can't skip parameters if type info is not provided");
   2861     if (CallArgTypeInfo) {
   2862       // First, use the argument types that the type info knows about
   2863       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
   2864                 E = CallArgTypeInfo->param_type_end();
   2865            I != E; ++I, ++Arg) {
   2866         assert(Arg != ArgEnd && "Running over edge of argument list!");
   2867         assert(
   2868             ((*I)->isVariablyModifiedType() ||
   2869              getContext()
   2870                      .getCanonicalType((*I).getNonReferenceType())
   2871                      .getTypePtr() ==
   2872                  getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
   2873             "type mismatch in call argument!");
   2874         ArgTypes.push_back(*I);
   2875       }
   2876     }
   2877 
   2878     // Either we've emitted all the call args, or we have a call to variadic
   2879     // function.
   2880     assert(
   2881         (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
   2882         "Extra arguments in non-variadic function!");
   2883 
   2884     // If we still have any arguments, emit them using the type of the argument.
   2885     for (; Arg != ArgEnd; ++Arg)
   2886       ArgTypes.push_back(getVarArgType(*Arg));
   2887 
   2888     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
   2889   }
   2890 
   2891   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
   2892                     CallExpr::const_arg_iterator ArgBeg,
   2893                     CallExpr::const_arg_iterator ArgEnd,
   2894                     const FunctionDecl *CalleeDecl = nullptr,
   2895                     unsigned ParamsToSkip = 0);
   2896 
   2897 private:
   2898   QualType getVarArgType(const Expr *Arg);
   2899 
   2900   const TargetCodeGenInfo &getTargetHooks() const {
   2901     return CGM.getTargetCodeGenInfo();
   2902   }
   2903 
   2904   void EmitDeclMetadata();
   2905 
   2906   CodeGenModule::ByrefHelpers *
   2907   buildByrefHelpers(llvm::StructType &byrefType,
   2908                     const AutoVarEmission &emission);
   2909 
   2910   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
   2911 
   2912   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
   2913   /// value and compute our best estimate of the alignment of the pointee.
   2914   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
   2915 
   2916   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
   2917 };
   2918 
   2919 /// Helper class with most of the code for saving a value for a
   2920 /// conditional expression cleanup.
   2921 struct DominatingLLVMValue {
   2922   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   2923 
   2924   /// Answer whether the given value needs extra work to be saved.
   2925   static bool needsSaving(llvm::Value *value) {
   2926     // If it's not an instruction, we don't need to save.
   2927     if (!isa<llvm::Instruction>(value)) return false;
   2928 
   2929     // If it's an instruction in the entry block, we don't need to save.
   2930     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   2931     return (block != &block->getParent()->getEntryBlock());
   2932   }
   2933 
   2934   /// Try to save the given value.
   2935   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   2936     if (!needsSaving(value)) return saved_type(value, false);
   2937 
   2938     // Otherwise we need an alloca.
   2939     llvm::Value *alloca =
   2940       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
   2941     CGF.Builder.CreateStore(value, alloca);
   2942 
   2943     return saved_type(alloca, true);
   2944   }
   2945 
   2946   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   2947     if (!value.getInt()) return value.getPointer();
   2948     return CGF.Builder.CreateLoad(value.getPointer());
   2949   }
   2950 };
   2951 
   2952 /// A partial specialization of DominatingValue for llvm::Values that
   2953 /// might be llvm::Instructions.
   2954 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   2955   typedef T *type;
   2956   static type restore(CodeGenFunction &CGF, saved_type value) {
   2957     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   2958   }
   2959 };
   2960 
   2961 /// A specialization of DominatingValue for RValue.
   2962 template <> struct DominatingValue<RValue> {
   2963   typedef RValue type;
   2964   class saved_type {
   2965     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   2966                 AggregateAddress, ComplexAddress };
   2967 
   2968     llvm::Value *Value;
   2969     Kind K;
   2970     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
   2971 
   2972   public:
   2973     static bool needsSaving(RValue value);
   2974     static saved_type save(CodeGenFunction &CGF, RValue value);
   2975     RValue restore(CodeGenFunction &CGF);
   2976 
   2977     // implementations in CGExprCXX.cpp
   2978   };
   2979 
   2980   static bool needsSaving(type value) {
   2981     return saved_type::needsSaving(value);
   2982   }
   2983   static saved_type save(CodeGenFunction &CGF, type value) {
   2984     return saved_type::save(CGF, value);
   2985   }
   2986   static type restore(CodeGenFunction &CGF, saved_type value) {
   2987     return value.restore(CGF);
   2988   }
   2989 };
   2990 
   2991 }  // end namespace CodeGen
   2992 }  // end namespace clang
   2993 
   2994 #endif
   2995