Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeVectors method.
     11 //
     12 // The vector legalizer looks for vector operations which might need to be
     13 // scalarized and legalizes them. This is a separate step from Legalize because
     14 // scalarizing can introduce illegal types.  For example, suppose we have an
     15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
     16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
     17 // operation, which introduces nodes with the illegal type i64 which must be
     18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
     19 // the operation must be unrolled, which introduces nodes with the illegal
     20 // type i8 which must be promoted.
     21 //
     22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
     23 // or operations that happen to take a vector which are custom-lowered;
     24 // the legalization for such operations never produces nodes
     25 // with illegal types, so it's okay to put off legalizing them until
     26 // SelectionDAG::Legalize runs.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "llvm/CodeGen/SelectionDAG.h"
     31 #include "llvm/Target/TargetLowering.h"
     32 using namespace llvm;
     33 
     34 namespace {
     35 class VectorLegalizer {
     36   SelectionDAG& DAG;
     37   const TargetLowering &TLI;
     38   bool Changed; // Keep track of whether anything changed
     39 
     40   /// For nodes that are of legal width, and that have more than one use, this
     41   /// map indicates what regularized operand to use.  This allows us to avoid
     42   /// legalizing the same thing more than once.
     43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
     44 
     45   /// \brief Adds a node to the translation cache.
     46   void AddLegalizedOperand(SDValue From, SDValue To) {
     47     LegalizedNodes.insert(std::make_pair(From, To));
     48     // If someone requests legalization of the new node, return itself.
     49     if (From != To)
     50       LegalizedNodes.insert(std::make_pair(To, To));
     51   }
     52 
     53   /// \brief Legalizes the given node.
     54   SDValue LegalizeOp(SDValue Op);
     55 
     56   /// \brief Assuming the node is legal, "legalize" the results.
     57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
     58 
     59   /// \brief Implements unrolling a VSETCC.
     60   SDValue UnrollVSETCC(SDValue Op);
     61 
     62   /// \brief Implement expand-based legalization of vector operations.
     63   ///
     64   /// This is just a high-level routine to dispatch to specific code paths for
     65   /// operations to legalize them.
     66   SDValue Expand(SDValue Op);
     67 
     68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
     69   /// FSUB isn't legal.
     70   ///
     71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
     72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
     73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
     74 
     75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
     76   SDValue ExpandSEXTINREG(SDValue Op);
     77 
     78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
     79   ///
     80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
     81   /// type. The contents of the bits in the extended part of each element are
     82   /// undef.
     83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
     84 
     85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
     86   ///
     87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
     88   /// type, then shifts left and arithmetic shifts right to introduce a sign
     89   /// extension.
     90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
     91 
     92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
     93   ///
     94   /// Shuffles the low lanes of the operand into place and blends zeros into
     95   /// the remaining lanes, finally bitcasting to the proper type.
     96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
     97 
     98   /// \brief Expand bswap of vectors into a shuffle if legal.
     99   SDValue ExpandBSWAP(SDValue Op);
    100 
    101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
    102   /// supported by the target.
    103   SDValue ExpandVSELECT(SDValue Op);
    104   SDValue ExpandSELECT(SDValue Op);
    105   SDValue ExpandLoad(SDValue Op);
    106   SDValue ExpandStore(SDValue Op);
    107   SDValue ExpandFNEG(SDValue Op);
    108 
    109   /// \brief Implements vector promotion.
    110   ///
    111   /// This is essentially just bitcasting the operands to a different type and
    112   /// bitcasting the result back to the original type.
    113   SDValue Promote(SDValue Op);
    114 
    115   /// \brief Implements [SU]INT_TO_FP vector promotion.
    116   ///
    117   /// This is a [zs]ext of the input operand to the next size up.
    118   SDValue PromoteINT_TO_FP(SDValue Op);
    119 
    120   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
    121   ///
    122   /// It is promoted to the next size up integer type.  The result is then
    123   /// truncated back to the original type.
    124   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
    125 
    126 public:
    127   /// \brief Begin legalizer the vector operations in the DAG.
    128   bool Run();
    129   VectorLegalizer(SelectionDAG& dag) :
    130       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
    131 };
    132 
    133 bool VectorLegalizer::Run() {
    134   // Before we start legalizing vector nodes, check if there are any vectors.
    135   bool HasVectors = false;
    136   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    137        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
    138     // Check if the values of the nodes contain vectors. We don't need to check
    139     // the operands because we are going to check their values at some point.
    140     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
    141          J != E; ++J)
    142       HasVectors |= J->isVector();
    143 
    144     // If we found a vector node we can start the legalization.
    145     if (HasVectors)
    146       break;
    147   }
    148 
    149   // If this basic block has no vectors then no need to legalize vectors.
    150   if (!HasVectors)
    151     return false;
    152 
    153   // The legalize process is inherently a bottom-up recursive process (users
    154   // legalize their uses before themselves).  Given infinite stack space, we
    155   // could just start legalizing on the root and traverse the whole graph.  In
    156   // practice however, this causes us to run out of stack space on large basic
    157   // blocks.  To avoid this problem, compute an ordering of the nodes where each
    158   // node is only legalized after all of its operands are legalized.
    159   DAG.AssignTopologicalOrder();
    160   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    161        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
    162     LegalizeOp(SDValue(I, 0));
    163 
    164   // Finally, it's possible the root changed.  Get the new root.
    165   SDValue OldRoot = DAG.getRoot();
    166   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
    167   DAG.setRoot(LegalizedNodes[OldRoot]);
    168 
    169   LegalizedNodes.clear();
    170 
    171   // Remove dead nodes now.
    172   DAG.RemoveDeadNodes();
    173 
    174   return Changed;
    175 }
    176 
    177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
    178   // Generic legalization: just pass the operand through.
    179   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
    180     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
    181   return Result.getValue(Op.getResNo());
    182 }
    183 
    184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
    185   // Note that LegalizeOp may be reentered even from single-use nodes, which
    186   // means that we always must cache transformed nodes.
    187   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
    188   if (I != LegalizedNodes.end()) return I->second;
    189 
    190   SDNode* Node = Op.getNode();
    191 
    192   // Legalize the operands
    193   SmallVector<SDValue, 8> Ops;
    194   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
    195     Ops.push_back(LegalizeOp(Node->getOperand(i)));
    196 
    197   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
    198 
    199   if (Op.getOpcode() == ISD::LOAD) {
    200     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
    201     ISD::LoadExtType ExtType = LD->getExtensionType();
    202     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
    203       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
    204                                    LD->getMemoryVT())) {
    205       default: llvm_unreachable("This action is not supported yet!");
    206       case TargetLowering::Legal:
    207         return TranslateLegalizeResults(Op, Result);
    208       case TargetLowering::Custom:
    209         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
    210           if (Lowered == Result)
    211             return TranslateLegalizeResults(Op, Lowered);
    212           Changed = true;
    213           if (Lowered->getNumValues() != Op->getNumValues()) {
    214             // This expanded to something other than the load. Assume the
    215             // lowering code took care of any chain values, and just handle the
    216             // returned value.
    217             assert(Result.getValue(1).use_empty() &&
    218                    "There are still live users of the old chain!");
    219             return LegalizeOp(Lowered);
    220           } else {
    221             return TranslateLegalizeResults(Op, Lowered);
    222           }
    223         }
    224       case TargetLowering::Expand:
    225         Changed = true;
    226         return LegalizeOp(ExpandLoad(Op));
    227       }
    228   } else if (Op.getOpcode() == ISD::STORE) {
    229     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
    230     EVT StVT = ST->getMemoryVT();
    231     MVT ValVT = ST->getValue().getSimpleValueType();
    232     if (StVT.isVector() && ST->isTruncatingStore())
    233       switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
    234       default: llvm_unreachable("This action is not supported yet!");
    235       case TargetLowering::Legal:
    236         return TranslateLegalizeResults(Op, Result);
    237       case TargetLowering::Custom: {
    238         SDValue Lowered = TLI.LowerOperation(Result, DAG);
    239         Changed = Lowered != Result;
    240         return TranslateLegalizeResults(Op, Lowered);
    241       }
    242       case TargetLowering::Expand:
    243         Changed = true;
    244         return LegalizeOp(ExpandStore(Op));
    245       }
    246   }
    247 
    248   bool HasVectorValue = false;
    249   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
    250        J != E;
    251        ++J)
    252     HasVectorValue |= J->isVector();
    253   if (!HasVectorValue)
    254     return TranslateLegalizeResults(Op, Result);
    255 
    256   EVT QueryType;
    257   switch (Op.getOpcode()) {
    258   default:
    259     return TranslateLegalizeResults(Op, Result);
    260   case ISD::ADD:
    261   case ISD::SUB:
    262   case ISD::MUL:
    263   case ISD::SDIV:
    264   case ISD::UDIV:
    265   case ISD::SREM:
    266   case ISD::UREM:
    267   case ISD::FADD:
    268   case ISD::FSUB:
    269   case ISD::FMUL:
    270   case ISD::FDIV:
    271   case ISD::FREM:
    272   case ISD::AND:
    273   case ISD::OR:
    274   case ISD::XOR:
    275   case ISD::SHL:
    276   case ISD::SRA:
    277   case ISD::SRL:
    278   case ISD::ROTL:
    279   case ISD::ROTR:
    280   case ISD::BSWAP:
    281   case ISD::CTLZ:
    282   case ISD::CTTZ:
    283   case ISD::CTLZ_ZERO_UNDEF:
    284   case ISD::CTTZ_ZERO_UNDEF:
    285   case ISD::CTPOP:
    286   case ISD::SELECT:
    287   case ISD::VSELECT:
    288   case ISD::SELECT_CC:
    289   case ISD::SETCC:
    290   case ISD::ZERO_EXTEND:
    291   case ISD::ANY_EXTEND:
    292   case ISD::TRUNCATE:
    293   case ISD::SIGN_EXTEND:
    294   case ISD::FP_TO_SINT:
    295   case ISD::FP_TO_UINT:
    296   case ISD::FNEG:
    297   case ISD::FABS:
    298   case ISD::FMINNUM:
    299   case ISD::FMAXNUM:
    300   case ISD::FCOPYSIGN:
    301   case ISD::FSQRT:
    302   case ISD::FSIN:
    303   case ISD::FCOS:
    304   case ISD::FPOWI:
    305   case ISD::FPOW:
    306   case ISD::FLOG:
    307   case ISD::FLOG2:
    308   case ISD::FLOG10:
    309   case ISD::FEXP:
    310   case ISD::FEXP2:
    311   case ISD::FCEIL:
    312   case ISD::FTRUNC:
    313   case ISD::FRINT:
    314   case ISD::FNEARBYINT:
    315   case ISD::FROUND:
    316   case ISD::FFLOOR:
    317   case ISD::FP_ROUND:
    318   case ISD::FP_EXTEND:
    319   case ISD::FMA:
    320   case ISD::SIGN_EXTEND_INREG:
    321   case ISD::ANY_EXTEND_VECTOR_INREG:
    322   case ISD::SIGN_EXTEND_VECTOR_INREG:
    323   case ISD::ZERO_EXTEND_VECTOR_INREG:
    324     QueryType = Node->getValueType(0);
    325     break;
    326   case ISD::FP_ROUND_INREG:
    327     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
    328     break;
    329   case ISD::SINT_TO_FP:
    330   case ISD::UINT_TO_FP:
    331     QueryType = Node->getOperand(0).getValueType();
    332     break;
    333   }
    334 
    335   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
    336   case TargetLowering::Promote:
    337     Result = Promote(Op);
    338     Changed = true;
    339     break;
    340   case TargetLowering::Legal:
    341     break;
    342   case TargetLowering::Custom: {
    343     SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
    344     if (Tmp1.getNode()) {
    345       Result = Tmp1;
    346       break;
    347     }
    348     // FALL THROUGH
    349   }
    350   case TargetLowering::Expand:
    351     Result = Expand(Op);
    352   }
    353 
    354   // Make sure that the generated code is itself legal.
    355   if (Result != Op) {
    356     Result = LegalizeOp(Result);
    357     Changed = true;
    358   }
    359 
    360   // Note that LegalizeOp may be reentered even from single-use nodes, which
    361   // means that we always must cache transformed nodes.
    362   AddLegalizedOperand(Op, Result);
    363   return Result;
    364 }
    365 
    366 SDValue VectorLegalizer::Promote(SDValue Op) {
    367   // For a few operations there is a specific concept for promotion based on
    368   // the operand's type.
    369   switch (Op.getOpcode()) {
    370   case ISD::SINT_TO_FP:
    371   case ISD::UINT_TO_FP:
    372     // "Promote" the operation by extending the operand.
    373     return PromoteINT_TO_FP(Op);
    374   case ISD::FP_TO_UINT:
    375   case ISD::FP_TO_SINT:
    376     // Promote the operation by extending the operand.
    377     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
    378   }
    379 
    380   // There are currently two cases of vector promotion:
    381   // 1) Bitcasting a vector of integers to a different type to a vector of the
    382   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
    383   // 2) Extending a vector of floats to a vector of the same number of larger
    384   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
    385   MVT VT = Op.getSimpleValueType();
    386   assert(Op.getNode()->getNumValues() == 1 &&
    387          "Can't promote a vector with multiple results!");
    388   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
    389   SDLoc dl(Op);
    390   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
    391 
    392   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
    393     if (Op.getOperand(j).getValueType().isVector())
    394       if (Op.getOperand(j)
    395               .getValueType()
    396               .getVectorElementType()
    397               .isFloatingPoint() &&
    398           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
    399         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
    400       else
    401         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
    402     else
    403       Operands[j] = Op.getOperand(j);
    404   }
    405 
    406   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
    407   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
    408       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
    409        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
    410     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0));
    411   else
    412     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
    413 }
    414 
    415 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
    416   // INT_TO_FP operations may require the input operand be promoted even
    417   // when the type is otherwise legal.
    418   EVT VT = Op.getOperand(0).getValueType();
    419   assert(Op.getNode()->getNumValues() == 1 &&
    420          "Can't promote a vector with multiple results!");
    421 
    422   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
    423   // by widening the vector w/ the same element width and twice the number
    424   // of elements. We want the other way around, the same number of elements,
    425   // each twice the width.
    426   //
    427   // Increase the bitwidth of the element to the next pow-of-two
    428   // (which is greater than 8 bits).
    429 
    430   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
    431   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
    432   SDLoc dl(Op);
    433   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
    434 
    435   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
    436     ISD::SIGN_EXTEND;
    437   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
    438     if (Op.getOperand(j).getValueType().isVector())
    439       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
    440     else
    441       Operands[j] = Op.getOperand(j);
    442   }
    443 
    444   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
    445 }
    446 
    447 // For FP_TO_INT we promote the result type to a vector type with wider
    448 // elements and then truncate the result.  This is different from the default
    449 // PromoteVector which uses bitcast to promote thus assumning that the
    450 // promoted vector type has the same overall size.
    451 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
    452   assert(Op.getNode()->getNumValues() == 1 &&
    453          "Can't promote a vector with multiple results!");
    454   EVT VT = Op.getValueType();
    455 
    456   EVT NewVT;
    457   unsigned NewOpc;
    458   while (1) {
    459     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
    460     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
    461     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
    462       NewOpc = ISD::FP_TO_SINT;
    463       break;
    464     }
    465     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
    466       NewOpc = ISD::FP_TO_UINT;
    467       break;
    468     }
    469   }
    470 
    471   SDLoc loc(Op);
    472   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
    473   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
    474 }
    475 
    476 
    477 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
    478   SDLoc dl(Op);
    479   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
    480   SDValue Chain = LD->getChain();
    481   SDValue BasePTR = LD->getBasePtr();
    482   EVT SrcVT = LD->getMemoryVT();
    483   ISD::LoadExtType ExtType = LD->getExtensionType();
    484 
    485   SmallVector<SDValue, 8> Vals;
    486   SmallVector<SDValue, 8> LoadChains;
    487   unsigned NumElem = SrcVT.getVectorNumElements();
    488 
    489   EVT SrcEltVT = SrcVT.getScalarType();
    490   EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
    491 
    492   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
    493     // When elements in a vector is not byte-addressable, we cannot directly
    494     // load each element by advancing pointer, which could only address bytes.
    495     // Instead, we load all significant words, mask bits off, and concatenate
    496     // them to form each element. Finally, they are extended to destination
    497     // scalar type to build the destination vector.
    498     EVT WideVT = TLI.getPointerTy();
    499 
    500     assert(WideVT.isRound() &&
    501            "Could not handle the sophisticated case when the widest integer is"
    502            " not power of 2.");
    503     assert(WideVT.bitsGE(SrcEltVT) &&
    504            "Type is not legalized?");
    505 
    506     unsigned WideBytes = WideVT.getStoreSize();
    507     unsigned Offset = 0;
    508     unsigned RemainingBytes = SrcVT.getStoreSize();
    509     SmallVector<SDValue, 8> LoadVals;
    510 
    511     while (RemainingBytes > 0) {
    512       SDValue ScalarLoad;
    513       unsigned LoadBytes = WideBytes;
    514 
    515       if (RemainingBytes >= LoadBytes) {
    516         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
    517                                  LD->getPointerInfo().getWithOffset(Offset),
    518                                  LD->isVolatile(), LD->isNonTemporal(),
    519                                  LD->isInvariant(),
    520                                  MinAlign(LD->getAlignment(), Offset),
    521                                  LD->getAAInfo());
    522       } else {
    523         EVT LoadVT = WideVT;
    524         while (RemainingBytes < LoadBytes) {
    525           LoadBytes >>= 1; // Reduce the load size by half.
    526           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
    527         }
    528         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
    529                                     LD->getPointerInfo().getWithOffset(Offset),
    530                                     LoadVT, LD->isVolatile(),
    531                                     LD->isNonTemporal(), LD->isInvariant(),
    532                                     MinAlign(LD->getAlignment(), Offset),
    533                                     LD->getAAInfo());
    534       }
    535 
    536       RemainingBytes -= LoadBytes;
    537       Offset += LoadBytes;
    538       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
    539                             DAG.getConstant(LoadBytes, BasePTR.getValueType()));
    540 
    541       LoadVals.push_back(ScalarLoad.getValue(0));
    542       LoadChains.push_back(ScalarLoad.getValue(1));
    543     }
    544 
    545     // Extract bits, pack and extend/trunc them into destination type.
    546     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
    547     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
    548 
    549     unsigned BitOffset = 0;
    550     unsigned WideIdx = 0;
    551     unsigned WideBits = WideVT.getSizeInBits();
    552 
    553     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
    554       SDValue Lo, Hi, ShAmt;
    555 
    556       if (BitOffset < WideBits) {
    557         ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
    558         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
    559         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
    560       }
    561 
    562       BitOffset += SrcEltBits;
    563       if (BitOffset >= WideBits) {
    564         WideIdx++;
    565         BitOffset -= WideBits;
    566         if (BitOffset > 0) {
    567           ShAmt = DAG.getConstant(SrcEltBits - BitOffset,
    568                                   TLI.getShiftAmountTy(WideVT));
    569           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
    570           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
    571         }
    572       }
    573 
    574       if (Hi.getNode())
    575         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
    576 
    577       switch (ExtType) {
    578       default: llvm_unreachable("Unknown extended-load op!");
    579       case ISD::EXTLOAD:
    580         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
    581         break;
    582       case ISD::ZEXTLOAD:
    583         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
    584         break;
    585       case ISD::SEXTLOAD:
    586         ShAmt = DAG.getConstant(WideBits - SrcEltBits,
    587                                 TLI.getShiftAmountTy(WideVT));
    588         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
    589         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
    590         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
    591         break;
    592       }
    593       Vals.push_back(Lo);
    594     }
    595   } else {
    596     unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
    597 
    598     for (unsigned Idx=0; Idx<NumElem; Idx++) {
    599       SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
    600                 Op.getNode()->getValueType(0).getScalarType(),
    601                 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
    602                 SrcVT.getScalarType(),
    603                 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
    604                 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
    605 
    606       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
    607                          DAG.getConstant(Stride, BasePTR.getValueType()));
    608 
    609       Vals.push_back(ScalarLoad.getValue(0));
    610       LoadChains.push_back(ScalarLoad.getValue(1));
    611     }
    612   }
    613 
    614   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
    615   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
    616                               Op.getNode()->getValueType(0), Vals);
    617 
    618   AddLegalizedOperand(Op.getValue(0), Value);
    619   AddLegalizedOperand(Op.getValue(1), NewChain);
    620 
    621   return (Op.getResNo() ? NewChain : Value);
    622 }
    623 
    624 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
    625   SDLoc dl(Op);
    626   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
    627   SDValue Chain = ST->getChain();
    628   SDValue BasePTR = ST->getBasePtr();
    629   SDValue Value = ST->getValue();
    630   EVT StVT = ST->getMemoryVT();
    631 
    632   unsigned Alignment = ST->getAlignment();
    633   bool isVolatile = ST->isVolatile();
    634   bool isNonTemporal = ST->isNonTemporal();
    635   AAMDNodes AAInfo = ST->getAAInfo();
    636 
    637   unsigned NumElem = StVT.getVectorNumElements();
    638   // The type of the data we want to save
    639   EVT RegVT = Value.getValueType();
    640   EVT RegSclVT = RegVT.getScalarType();
    641   // The type of data as saved in memory.
    642   EVT MemSclVT = StVT.getScalarType();
    643 
    644   // Cast floats into integers
    645   unsigned ScalarSize = MemSclVT.getSizeInBits();
    646 
    647   // Round odd types to the next pow of two.
    648   if (!isPowerOf2_32(ScalarSize))
    649     ScalarSize = NextPowerOf2(ScalarSize);
    650 
    651   // Store Stride in bytes
    652   unsigned Stride = ScalarSize/8;
    653   // Extract each of the elements from the original vector
    654   // and save them into memory individually.
    655   SmallVector<SDValue, 8> Stores;
    656   for (unsigned Idx = 0; Idx < NumElem; Idx++) {
    657     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
    658                RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy()));
    659 
    660     // This scalar TruncStore may be illegal, but we legalize it later.
    661     SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
    662                ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
    663                isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
    664                AAInfo);
    665 
    666     BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
    667                                DAG.getConstant(Stride, BasePTR.getValueType()));
    668 
    669     Stores.push_back(Store);
    670   }
    671   SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
    672   AddLegalizedOperand(Op, TF);
    673   return TF;
    674 }
    675 
    676 SDValue VectorLegalizer::Expand(SDValue Op) {
    677   switch (Op->getOpcode()) {
    678   case ISD::SIGN_EXTEND_INREG:
    679     return ExpandSEXTINREG(Op);
    680   case ISD::ANY_EXTEND_VECTOR_INREG:
    681     return ExpandANY_EXTEND_VECTOR_INREG(Op);
    682   case ISD::SIGN_EXTEND_VECTOR_INREG:
    683     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
    684   case ISD::ZERO_EXTEND_VECTOR_INREG:
    685     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
    686   case ISD::BSWAP:
    687     return ExpandBSWAP(Op);
    688   case ISD::VSELECT:
    689     return ExpandVSELECT(Op);
    690   case ISD::SELECT:
    691     return ExpandSELECT(Op);
    692   case ISD::UINT_TO_FP:
    693     return ExpandUINT_TO_FLOAT(Op);
    694   case ISD::FNEG:
    695     return ExpandFNEG(Op);
    696   case ISD::SETCC:
    697     return UnrollVSETCC(Op);
    698   default:
    699     return DAG.UnrollVectorOp(Op.getNode());
    700   }
    701 }
    702 
    703 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
    704   // Lower a select instruction where the condition is a scalar and the
    705   // operands are vectors. Lower this select to VSELECT and implement it
    706   // using XOR AND OR. The selector bit is broadcasted.
    707   EVT VT = Op.getValueType();
    708   SDLoc DL(Op);
    709 
    710   SDValue Mask = Op.getOperand(0);
    711   SDValue Op1 = Op.getOperand(1);
    712   SDValue Op2 = Op.getOperand(2);
    713 
    714   assert(VT.isVector() && !Mask.getValueType().isVector()
    715          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
    716 
    717   unsigned NumElem = VT.getVectorNumElements();
    718 
    719   // If we can't even use the basic vector operations of
    720   // AND,OR,XOR, we will have to scalarize the op.
    721   // Notice that the operation may be 'promoted' which means that it is
    722   // 'bitcasted' to another type which is handled.
    723   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
    724   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
    725       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
    726       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
    727       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
    728     return DAG.UnrollVectorOp(Op.getNode());
    729 
    730   // Generate a mask operand.
    731   EVT MaskTy = VT.changeVectorElementTypeToInteger();
    732 
    733   // What is the size of each element in the vector mask.
    734   EVT BitTy = MaskTy.getScalarType();
    735 
    736   Mask = DAG.getSelect(DL, BitTy, Mask,
    737           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
    738           DAG.getConstant(0, BitTy));
    739 
    740   // Broadcast the mask so that the entire vector is all-one or all zero.
    741   SmallVector<SDValue, 8> Ops(NumElem, Mask);
    742   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
    743 
    744   // Bitcast the operands to be the same type as the mask.
    745   // This is needed when we select between FP types because
    746   // the mask is a vector of integers.
    747   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
    748   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
    749 
    750   SDValue AllOnes = DAG.getConstant(
    751             APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
    752   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
    753 
    754   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
    755   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
    756   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
    757   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
    758 }
    759 
    760 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
    761   EVT VT = Op.getValueType();
    762 
    763   // Make sure that the SRA and SHL instructions are available.
    764   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
    765       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
    766     return DAG.UnrollVectorOp(Op.getNode());
    767 
    768   SDLoc DL(Op);
    769   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
    770 
    771   unsigned BW = VT.getScalarType().getSizeInBits();
    772   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
    773   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
    774 
    775   Op = Op.getOperand(0);
    776   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
    777   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
    778 }
    779 
    780 // Generically expand a vector anyext in register to a shuffle of the relevant
    781 // lanes into the appropriate locations, with other lanes left undef.
    782 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
    783   SDLoc DL(Op);
    784   EVT VT = Op.getValueType();
    785   int NumElements = VT.getVectorNumElements();
    786   SDValue Src = Op.getOperand(0);
    787   EVT SrcVT = Src.getValueType();
    788   int NumSrcElements = SrcVT.getVectorNumElements();
    789 
    790   // Build a base mask of undef shuffles.
    791   SmallVector<int, 16> ShuffleMask;
    792   ShuffleMask.resize(NumSrcElements, -1);
    793 
    794   // Place the extended lanes into the correct locations.
    795   int ExtLaneScale = NumSrcElements / NumElements;
    796   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
    797   for (int i = 0; i < NumElements; ++i)
    798     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
    799 
    800   return DAG.getNode(
    801       ISD::BITCAST, DL, VT,
    802       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
    803 }
    804 
    805 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
    806   SDLoc DL(Op);
    807   EVT VT = Op.getValueType();
    808   SDValue Src = Op.getOperand(0);
    809   EVT SrcVT = Src.getValueType();
    810 
    811   // First build an any-extend node which can be legalized above when we
    812   // recurse through it.
    813   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
    814 
    815   // Now we need sign extend. Do this by shifting the elements. Even if these
    816   // aren't legal operations, they have a better chance of being legalized
    817   // without full scalarization than the sign extension does.
    818   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
    819   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
    820   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT);
    821   return DAG.getNode(ISD::SRA, DL, VT,
    822                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
    823                      ShiftAmount);
    824 }
    825 
    826 // Generically expand a vector zext in register to a shuffle of the relevant
    827 // lanes into the appropriate locations, a blend of zero into the high bits,
    828 // and a bitcast to the wider element type.
    829 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
    830   SDLoc DL(Op);
    831   EVT VT = Op.getValueType();
    832   int NumElements = VT.getVectorNumElements();
    833   SDValue Src = Op.getOperand(0);
    834   EVT SrcVT = Src.getValueType();
    835   int NumSrcElements = SrcVT.getVectorNumElements();
    836 
    837   // Build up a zero vector to blend into this one.
    838   EVT SrcScalarVT = SrcVT.getScalarType();
    839   SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT);
    840   SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
    841   SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
    842 
    843   // Shuffle the incoming lanes into the correct position, and pull all other
    844   // lanes from the zero vector.
    845   SmallVector<int, 16> ShuffleMask;
    846   ShuffleMask.reserve(NumSrcElements);
    847   for (int i = 0; i < NumSrcElements; ++i)
    848     ShuffleMask.push_back(i);
    849 
    850   int ExtLaneScale = NumSrcElements / NumElements;
    851   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
    852   for (int i = 0; i < NumElements; ++i)
    853     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
    854 
    855   return DAG.getNode(ISD::BITCAST, DL, VT,
    856                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
    857 }
    858 
    859 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
    860   EVT VT = Op.getValueType();
    861 
    862   // Generate a byte wise shuffle mask for the BSWAP.
    863   SmallVector<int, 16> ShuffleMask;
    864   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
    865   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
    866     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
    867       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
    868 
    869   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
    870 
    871   // Only emit a shuffle if the mask is legal.
    872   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
    873     return DAG.UnrollVectorOp(Op.getNode());
    874 
    875   SDLoc DL(Op);
    876   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
    877   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
    878                             ShuffleMask.data());
    879   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
    880 }
    881 
    882 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
    883   // Implement VSELECT in terms of XOR, AND, OR
    884   // on platforms which do not support blend natively.
    885   SDLoc DL(Op);
    886 
    887   SDValue Mask = Op.getOperand(0);
    888   SDValue Op1 = Op.getOperand(1);
    889   SDValue Op2 = Op.getOperand(2);
    890 
    891   EVT VT = Mask.getValueType();
    892 
    893   // If we can't even use the basic vector operations of
    894   // AND,OR,XOR, we will have to scalarize the op.
    895   // Notice that the operation may be 'promoted' which means that it is
    896   // 'bitcasted' to another type which is handled.
    897   // This operation also isn't safe with AND, OR, XOR when the boolean
    898   // type is 0/1 as we need an all ones vector constant to mask with.
    899   // FIXME: Sign extend 1 to all ones if thats legal on the target.
    900   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
    901       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
    902       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
    903       TLI.getBooleanContents(Op1.getValueType()) !=
    904           TargetLowering::ZeroOrNegativeOneBooleanContent)
    905     return DAG.UnrollVectorOp(Op.getNode());
    906 
    907   // If the mask and the type are different sizes, unroll the vector op. This
    908   // can occur when getSetCCResultType returns something that is different in
    909   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
    910   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
    911     return DAG.UnrollVectorOp(Op.getNode());
    912 
    913   // Bitcast the operands to be the same type as the mask.
    914   // This is needed when we select between FP types because
    915   // the mask is a vector of integers.
    916   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
    917   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
    918 
    919   SDValue AllOnes = DAG.getConstant(
    920     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
    921   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
    922 
    923   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
    924   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
    925   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
    926   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
    927 }
    928 
    929 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
    930   EVT VT = Op.getOperand(0).getValueType();
    931   SDLoc DL(Op);
    932 
    933   // Make sure that the SINT_TO_FP and SRL instructions are available.
    934   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
    935       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
    936     return DAG.UnrollVectorOp(Op.getNode());
    937 
    938  EVT SVT = VT.getScalarType();
    939   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
    940       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
    941 
    942   unsigned BW = SVT.getSizeInBits();
    943   SDValue HalfWord = DAG.getConstant(BW/2, VT);
    944 
    945   // Constants to clear the upper part of the word.
    946   // Notice that we can also use SHL+SHR, but using a constant is slightly
    947   // faster on x86.
    948   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
    949   SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
    950 
    951   // Two to the power of half-word-size.
    952   SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
    953 
    954   // Clear upper part of LO, lower HI
    955   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
    956   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
    957 
    958   // Convert hi and lo to floats
    959   // Convert the hi part back to the upper values
    960   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
    961           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
    962   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
    963 
    964   // Add the two halves
    965   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
    966 }
    967 
    968 
    969 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
    970   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
    971     SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
    972     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
    973                        Zero, Op.getOperand(0));
    974   }
    975   return DAG.UnrollVectorOp(Op.getNode());
    976 }
    977 
    978 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
    979   EVT VT = Op.getValueType();
    980   unsigned NumElems = VT.getVectorNumElements();
    981   EVT EltVT = VT.getVectorElementType();
    982   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
    983   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
    984   SDLoc dl(Op);
    985   SmallVector<SDValue, 8> Ops(NumElems);
    986   for (unsigned i = 0; i < NumElems; ++i) {
    987     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
    988                                   DAG.getConstant(i, TLI.getVectorIdxTy()));
    989     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
    990                                   DAG.getConstant(i, TLI.getVectorIdxTy()));
    991     Ops[i] = DAG.getNode(ISD::SETCC, dl,
    992                          TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
    993                          LHSElem, RHSElem, CC);
    994     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
    995                            DAG.getConstant(APInt::getAllOnesValue
    996                                            (EltVT.getSizeInBits()), EltVT),
    997                            DAG.getConstant(0, EltVT));
    998   }
    999   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   1000 }
   1001 
   1002 }
   1003 
   1004 bool SelectionDAG::LegalizeVectors() {
   1005   return VectorLegalizer(*this).Run();
   1006 }
   1007