Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86InstrInfo.h"
     15 #include "X86.h"
     16 #include "X86InstrBuilder.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/CodeGen/LiveVariables.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/StackMaps.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/MC/MCAsmInfo.h"
     32 #include "llvm/MC/MCExpr.h"
     33 #include "llvm/MC/MCInst.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 #include <limits>
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "x86-instr-info"
     44 
     45 #define GET_INSTRINFO_CTOR_DTOR
     46 #include "X86GenInstrInfo.inc"
     47 
     48 static cl::opt<bool>
     49 NoFusing("disable-spill-fusing",
     50          cl::desc("Disable fusing of spill code into instructions"));
     51 static cl::opt<bool>
     52 PrintFailedFusing("print-failed-fuse-candidates",
     53                   cl::desc("Print instructions that the allocator wants to"
     54                            " fuse, but the X86 backend currently can't"),
     55                   cl::Hidden);
     56 static cl::opt<bool>
     57 ReMatPICStubLoad("remat-pic-stub-load",
     58                  cl::desc("Re-materialize load from stub in PIC mode"),
     59                  cl::init(false), cl::Hidden);
     60 
     61 enum {
     62   // Select which memory operand is being unfolded.
     63   // (stored in bits 0 - 3)
     64   TB_INDEX_0    = 0,
     65   TB_INDEX_1    = 1,
     66   TB_INDEX_2    = 2,
     67   TB_INDEX_3    = 3,
     68   TB_INDEX_4    = 4,
     69   TB_INDEX_MASK = 0xf,
     70 
     71   // Do not insert the reverse map (MemOp -> RegOp) into the table.
     72   // This may be needed because there is a many -> one mapping.
     73   TB_NO_REVERSE   = 1 << 4,
     74 
     75   // Do not insert the forward map (RegOp -> MemOp) into the table.
     76   // This is needed for Native Client, which prohibits branch
     77   // instructions from using a memory operand.
     78   TB_NO_FORWARD   = 1 << 5,
     79 
     80   TB_FOLDED_LOAD  = 1 << 6,
     81   TB_FOLDED_STORE = 1 << 7,
     82 
     83   // Minimum alignment required for load/store.
     84   // Used for RegOp->MemOp conversion.
     85   // (stored in bits 8 - 15)
     86   TB_ALIGN_SHIFT = 8,
     87   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
     88   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
     89   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
     90   TB_ALIGN_64    =   64 << TB_ALIGN_SHIFT,
     91   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
     92 };
     93 
     94 struct X86MemoryFoldTableEntry {
     95   uint16_t RegOp;
     96   uint16_t MemOp;
     97   uint16_t Flags;
     98 };
     99 
    100 // Pin the vtable to this file.
    101 void X86InstrInfo::anchor() {}
    102 
    103 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
    104     : X86GenInstrInfo(
    105           (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32),
    106           (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)),
    107       Subtarget(STI), RI(STI.getTargetTriple()) {
    108 
    109   static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = {
    110     { X86::ADC32ri,     X86::ADC32mi,    0 },
    111     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
    112     { X86::ADC32rr,     X86::ADC32mr,    0 },
    113     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
    114     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
    115     { X86::ADC64rr,     X86::ADC64mr,    0 },
    116     { X86::ADD16ri,     X86::ADD16mi,    0 },
    117     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
    118     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
    119     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
    120     { X86::ADD16rr,     X86::ADD16mr,    0 },
    121     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
    122     { X86::ADD32ri,     X86::ADD32mi,    0 },
    123     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
    124     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
    125     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
    126     { X86::ADD32rr,     X86::ADD32mr,    0 },
    127     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
    128     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
    129     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
    130     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
    131     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
    132     { X86::ADD64rr,     X86::ADD64mr,    0 },
    133     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
    134     { X86::ADD8ri,      X86::ADD8mi,     0 },
    135     { X86::ADD8rr,      X86::ADD8mr,     0 },
    136     { X86::AND16ri,     X86::AND16mi,    0 },
    137     { X86::AND16ri8,    X86::AND16mi8,   0 },
    138     { X86::AND16rr,     X86::AND16mr,    0 },
    139     { X86::AND32ri,     X86::AND32mi,    0 },
    140     { X86::AND32ri8,    X86::AND32mi8,   0 },
    141     { X86::AND32rr,     X86::AND32mr,    0 },
    142     { X86::AND64ri32,   X86::AND64mi32,  0 },
    143     { X86::AND64ri8,    X86::AND64mi8,   0 },
    144     { X86::AND64rr,     X86::AND64mr,    0 },
    145     { X86::AND8ri,      X86::AND8mi,     0 },
    146     { X86::AND8rr,      X86::AND8mr,     0 },
    147     { X86::DEC16r,      X86::DEC16m,     0 },
    148     { X86::DEC32r,      X86::DEC32m,     0 },
    149     { X86::DEC64r,      X86::DEC64m,     0 },
    150     { X86::DEC8r,       X86::DEC8m,      0 },
    151     { X86::INC16r,      X86::INC16m,     0 },
    152     { X86::INC32r,      X86::INC32m,     0 },
    153     { X86::INC64r,      X86::INC64m,     0 },
    154     { X86::INC8r,       X86::INC8m,      0 },
    155     { X86::NEG16r,      X86::NEG16m,     0 },
    156     { X86::NEG32r,      X86::NEG32m,     0 },
    157     { X86::NEG64r,      X86::NEG64m,     0 },
    158     { X86::NEG8r,       X86::NEG8m,      0 },
    159     { X86::NOT16r,      X86::NOT16m,     0 },
    160     { X86::NOT32r,      X86::NOT32m,     0 },
    161     { X86::NOT64r,      X86::NOT64m,     0 },
    162     { X86::NOT8r,       X86::NOT8m,      0 },
    163     { X86::OR16ri,      X86::OR16mi,     0 },
    164     { X86::OR16ri8,     X86::OR16mi8,    0 },
    165     { X86::OR16rr,      X86::OR16mr,     0 },
    166     { X86::OR32ri,      X86::OR32mi,     0 },
    167     { X86::OR32ri8,     X86::OR32mi8,    0 },
    168     { X86::OR32rr,      X86::OR32mr,     0 },
    169     { X86::OR64ri32,    X86::OR64mi32,   0 },
    170     { X86::OR64ri8,     X86::OR64mi8,    0 },
    171     { X86::OR64rr,      X86::OR64mr,     0 },
    172     { X86::OR8ri,       X86::OR8mi,      0 },
    173     { X86::OR8rr,       X86::OR8mr,      0 },
    174     { X86::ROL16r1,     X86::ROL16m1,    0 },
    175     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
    176     { X86::ROL16ri,     X86::ROL16mi,    0 },
    177     { X86::ROL32r1,     X86::ROL32m1,    0 },
    178     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
    179     { X86::ROL32ri,     X86::ROL32mi,    0 },
    180     { X86::ROL64r1,     X86::ROL64m1,    0 },
    181     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
    182     { X86::ROL64ri,     X86::ROL64mi,    0 },
    183     { X86::ROL8r1,      X86::ROL8m1,     0 },
    184     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
    185     { X86::ROL8ri,      X86::ROL8mi,     0 },
    186     { X86::ROR16r1,     X86::ROR16m1,    0 },
    187     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
    188     { X86::ROR16ri,     X86::ROR16mi,    0 },
    189     { X86::ROR32r1,     X86::ROR32m1,    0 },
    190     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
    191     { X86::ROR32ri,     X86::ROR32mi,    0 },
    192     { X86::ROR64r1,     X86::ROR64m1,    0 },
    193     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
    194     { X86::ROR64ri,     X86::ROR64mi,    0 },
    195     { X86::ROR8r1,      X86::ROR8m1,     0 },
    196     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
    197     { X86::ROR8ri,      X86::ROR8mi,     0 },
    198     { X86::SAR16r1,     X86::SAR16m1,    0 },
    199     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
    200     { X86::SAR16ri,     X86::SAR16mi,    0 },
    201     { X86::SAR32r1,     X86::SAR32m1,    0 },
    202     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
    203     { X86::SAR32ri,     X86::SAR32mi,    0 },
    204     { X86::SAR64r1,     X86::SAR64m1,    0 },
    205     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
    206     { X86::SAR64ri,     X86::SAR64mi,    0 },
    207     { X86::SAR8r1,      X86::SAR8m1,     0 },
    208     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
    209     { X86::SAR8ri,      X86::SAR8mi,     0 },
    210     { X86::SBB32ri,     X86::SBB32mi,    0 },
    211     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
    212     { X86::SBB32rr,     X86::SBB32mr,    0 },
    213     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
    214     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
    215     { X86::SBB64rr,     X86::SBB64mr,    0 },
    216     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
    217     { X86::SHL16ri,     X86::SHL16mi,    0 },
    218     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
    219     { X86::SHL32ri,     X86::SHL32mi,    0 },
    220     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
    221     { X86::SHL64ri,     X86::SHL64mi,    0 },
    222     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
    223     { X86::SHL8ri,      X86::SHL8mi,     0 },
    224     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
    225     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
    226     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
    227     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
    228     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
    229     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
    230     { X86::SHR16r1,     X86::SHR16m1,    0 },
    231     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
    232     { X86::SHR16ri,     X86::SHR16mi,    0 },
    233     { X86::SHR32r1,     X86::SHR32m1,    0 },
    234     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
    235     { X86::SHR32ri,     X86::SHR32mi,    0 },
    236     { X86::SHR64r1,     X86::SHR64m1,    0 },
    237     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
    238     { X86::SHR64ri,     X86::SHR64mi,    0 },
    239     { X86::SHR8r1,      X86::SHR8m1,     0 },
    240     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
    241     { X86::SHR8ri,      X86::SHR8mi,     0 },
    242     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
    243     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
    244     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
    245     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
    246     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
    247     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
    248     { X86::SUB16ri,     X86::SUB16mi,    0 },
    249     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
    250     { X86::SUB16rr,     X86::SUB16mr,    0 },
    251     { X86::SUB32ri,     X86::SUB32mi,    0 },
    252     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
    253     { X86::SUB32rr,     X86::SUB32mr,    0 },
    254     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
    255     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
    256     { X86::SUB64rr,     X86::SUB64mr,    0 },
    257     { X86::SUB8ri,      X86::SUB8mi,     0 },
    258     { X86::SUB8rr,      X86::SUB8mr,     0 },
    259     { X86::XOR16ri,     X86::XOR16mi,    0 },
    260     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
    261     { X86::XOR16rr,     X86::XOR16mr,    0 },
    262     { X86::XOR32ri,     X86::XOR32mi,    0 },
    263     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
    264     { X86::XOR32rr,     X86::XOR32mr,    0 },
    265     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
    266     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
    267     { X86::XOR64rr,     X86::XOR64mr,    0 },
    268     { X86::XOR8ri,      X86::XOR8mi,     0 },
    269     { X86::XOR8rr,      X86::XOR8mr,     0 }
    270   };
    271 
    272   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) {
    273     unsigned RegOp = MemoryFoldTable2Addr[i].RegOp;
    274     unsigned MemOp = MemoryFoldTable2Addr[i].MemOp;
    275     unsigned Flags = MemoryFoldTable2Addr[i].Flags;
    276     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
    277                   RegOp, MemOp,
    278                   // Index 0, folded load and store, no alignment requirement.
    279                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
    280   }
    281 
    282   static const X86MemoryFoldTableEntry MemoryFoldTable0[] = {
    283     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
    284     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
    285     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
    286     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
    287     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
    288     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
    289     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
    290     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
    291     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
    292     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
    293     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
    294     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
    295     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
    296     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
    297     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
    298     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
    299     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
    300     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
    301     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
    302     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
    303     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE },
    304     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
    305     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
    306     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
    307     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
    308     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
    309     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
    310     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
    311     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
    312     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
    313     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
    314     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
    315     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
    316     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
    317     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
    318     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
    319     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
    320     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
    321     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
    322     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
    323     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    324     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    325     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
    326     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
    327     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
    328     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
    329     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
    330     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
    331     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
    332     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
    333     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
    334     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
    335     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
    336     { X86::PEXTRDrr,    X86::PEXTRDmr,      TB_FOLDED_STORE },
    337     { X86::PEXTRQrr,    X86::PEXTRQmr,      TB_FOLDED_STORE },
    338     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
    339     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
    340     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
    341     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
    342     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
    343     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
    344     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
    345     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
    346     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
    347     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
    348     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
    349     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
    350     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
    351     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
    352     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
    353     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
    354     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
    355     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
    356     { X86::TAILJMPr64_REX, X86::TAILJMPm64_REX, TB_FOLDED_LOAD },
    357     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
    358     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
    359     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
    360     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
    361 
    362     // AVX 128-bit versions of foldable instructions
    363     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE  },
    364     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    365     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    366     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    367     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
    368     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
    369     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
    370     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
    371     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
    372     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
    373     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
    374     { X86::VPEXTRDrr,   X86::VPEXTRDmr,     TB_FOLDED_STORE },
    375     { X86::VPEXTRQrr,   X86::VPEXTRQmr,     TB_FOLDED_STORE },
    376 
    377     // AVX 256-bit foldable instructions
    378     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
    379     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    380     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    381     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    382     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
    383     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE },
    384 
    385     // AVX-512 foldable instructions
    386     { X86::VMOVPDI2DIZrr,   X86::VMOVPDI2DIZmr, TB_FOLDED_STORE },
    387     { X86::VMOVAPDZrr,      X86::VMOVAPDZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
    388     { X86::VMOVAPSZrr,      X86::VMOVAPSZmr,    TB_FOLDED_STORE | TB_ALIGN_64 },
    389     { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
    390     { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zmr,  TB_FOLDED_STORE | TB_ALIGN_64 },
    391     { X86::VMOVUPDZrr,      X86::VMOVUPDZmr,    TB_FOLDED_STORE },
    392     { X86::VMOVUPSZrr,      X86::VMOVUPSZmr,    TB_FOLDED_STORE },
    393     { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zmr,   TB_FOLDED_STORE },
    394     { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zmr,  TB_FOLDED_STORE },
    395     { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zmr,  TB_FOLDED_STORE },
    396     { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zmr,  TB_FOLDED_STORE },
    397 
    398     // AVX-512 foldable instructions (256-bit versions)
    399     { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    400     { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256mr,    TB_FOLDED_STORE | TB_ALIGN_32 },
    401     { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
    402     { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256mr,  TB_FOLDED_STORE | TB_ALIGN_32 },
    403     { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256mr,    TB_FOLDED_STORE },
    404     { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256mr,    TB_FOLDED_STORE },
    405     { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256mr,   TB_FOLDED_STORE },
    406     { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256mr,  TB_FOLDED_STORE },
    407     { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256mr,  TB_FOLDED_STORE },
    408     { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256mr,  TB_FOLDED_STORE },
    409 
    410     // AVX-512 foldable instructions (128-bit versions)
    411     { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
    412     { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128mr,    TB_FOLDED_STORE | TB_ALIGN_16 },
    413     { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
    414     { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128mr,  TB_FOLDED_STORE | TB_ALIGN_16 },
    415     { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128mr,    TB_FOLDED_STORE },
    416     { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128mr,    TB_FOLDED_STORE },
    417     { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128mr,   TB_FOLDED_STORE },
    418     { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128mr,  TB_FOLDED_STORE },
    419     { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128mr,  TB_FOLDED_STORE },
    420     { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128mr,  TB_FOLDED_STORE },
    421 
    422     // F16C foldable instructions
    423     { X86::VCVTPS2PHrr,        X86::VCVTPS2PHmr,      TB_FOLDED_STORE },
    424     { X86::VCVTPS2PHYrr,       X86::VCVTPS2PHYmr,     TB_FOLDED_STORE }
    425   };
    426 
    427   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) {
    428     unsigned RegOp      = MemoryFoldTable0[i].RegOp;
    429     unsigned MemOp      = MemoryFoldTable0[i].MemOp;
    430     unsigned Flags      = MemoryFoldTable0[i].Flags;
    431     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
    432                   RegOp, MemOp, TB_INDEX_0 | Flags);
    433   }
    434 
    435   static const X86MemoryFoldTableEntry MemoryFoldTable1[] = {
    436     { X86::CMP16rr,         X86::CMP16rm,             0 },
    437     { X86::CMP32rr,         X86::CMP32rm,             0 },
    438     { X86::CMP64rr,         X86::CMP64rm,             0 },
    439     { X86::CMP8rr,          X86::CMP8rm,              0 },
    440     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
    441     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
    442     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
    443     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
    444     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
    445     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
    446     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
    447     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
    448     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
    449     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
    450     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
    451     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
    452     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
    453     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
    454     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
    455     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
    456     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
    457     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
    458     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
    459     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
    460     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
    461     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
    462     { X86::CVTDQ2PDrr,      X86::CVTDQ2PDrm,          TB_ALIGN_16 },
    463     { X86::CVTDQ2PSrr,      X86::CVTDQ2PSrm,          TB_ALIGN_16 },
    464     { X86::CVTPD2DQrr,      X86::CVTPD2DQrm,          TB_ALIGN_16 },
    465     { X86::CVTPD2PSrr,      X86::CVTPD2PSrm,          TB_ALIGN_16 },
    466     { X86::CVTPS2DQrr,      X86::CVTPS2DQrm,          TB_ALIGN_16 },
    467     { X86::CVTPS2PDrr,      X86::CVTPS2PDrm,          TB_ALIGN_16 },
    468     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
    469     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
    470     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
    471     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
    472     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
    473     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
    474     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
    475     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
    476     { X86::MOV16rr,         X86::MOV16rm,             0 },
    477     { X86::MOV32rr,         X86::MOV32rm,             0 },
    478     { X86::MOV64rr,         X86::MOV64rm,             0 },
    479     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
    480     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
    481     { X86::MOV8rr,          X86::MOV8rm,              0 },
    482     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
    483     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
    484     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
    485     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
    486     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
    487     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
    488     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
    489     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
    490     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
    491     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
    492     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
    493     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
    494     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
    495     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
    496     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
    497     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
    498     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
    499     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
    500     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
    501     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
    502     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
    503     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
    504     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
    505     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
    506     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
    507     { X86::PCMPESTRIrr,     X86::PCMPESTRIrm,         TB_ALIGN_16 },
    508     { X86::PCMPESTRM128rr,  X86::PCMPESTRM128rm,      TB_ALIGN_16 },
    509     { X86::PCMPISTRIrr,     X86::PCMPISTRIrm,         TB_ALIGN_16 },
    510     { X86::PCMPISTRM128rr,  X86::PCMPISTRM128rm,      TB_ALIGN_16 },
    511     { X86::PHMINPOSUWrr128, X86::PHMINPOSUWrm128,     TB_ALIGN_16 },
    512     { X86::PMOVSXBDrr,      X86::PMOVSXBDrm,          TB_ALIGN_16 },
    513     { X86::PMOVSXBQrr,      X86::PMOVSXBQrm,          TB_ALIGN_16 },
    514     { X86::PMOVSXBWrr,      X86::PMOVSXBWrm,          TB_ALIGN_16 },
    515     { X86::PMOVSXDQrr,      X86::PMOVSXDQrm,          TB_ALIGN_16 },
    516     { X86::PMOVSXWDrr,      X86::PMOVSXWDrm,          TB_ALIGN_16 },
    517     { X86::PMOVSXWQrr,      X86::PMOVSXWQrm,          TB_ALIGN_16 },
    518     { X86::PMOVZXBDrr,      X86::PMOVZXBDrm,          TB_ALIGN_16 },
    519     { X86::PMOVZXBQrr,      X86::PMOVZXBQrm,          TB_ALIGN_16 },
    520     { X86::PMOVZXBWrr,      X86::PMOVZXBWrm,          TB_ALIGN_16 },
    521     { X86::PMOVZXDQrr,      X86::PMOVZXDQrm,          TB_ALIGN_16 },
    522     { X86::PMOVZXWDrr,      X86::PMOVZXWDrm,          TB_ALIGN_16 },
    523     { X86::PMOVZXWQrr,      X86::PMOVZXWQrm,          TB_ALIGN_16 },
    524     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
    525     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
    526     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
    527     { X86::PTESTrr,         X86::PTESTrm,             TB_ALIGN_16 },
    528     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
    529     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
    530     { X86::ROUNDPDr,        X86::ROUNDPDm,            TB_ALIGN_16 },
    531     { X86::ROUNDPSr,        X86::ROUNDPSm,            TB_ALIGN_16 },
    532     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
    533     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
    534     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
    535     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
    536     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
    537     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
    538     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
    539     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
    540     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
    541     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
    542     { X86::TEST16rr,        X86::TEST16rm,            0 },
    543     { X86::TEST32rr,        X86::TEST32rm,            0 },
    544     { X86::TEST64rr,        X86::TEST64rm,            0 },
    545     { X86::TEST8rr,         X86::TEST8rm,             0 },
    546     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    547     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
    548     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
    549 
    550     // MMX version of foldable instructions
    551     { X86::MMX_CVTPD2PIirr,   X86::MMX_CVTPD2PIirm,   0 },
    552     { X86::MMX_CVTPI2PDirr,   X86::MMX_CVTPI2PDirm,   0 },
    553     { X86::MMX_CVTPS2PIirr,   X86::MMX_CVTPS2PIirm,   0 },
    554     { X86::MMX_CVTTPD2PIirr,  X86::MMX_CVTTPD2PIirm,  0 },
    555     { X86::MMX_CVTTPS2PIirr,  X86::MMX_CVTTPS2PIirm,  0 },
    556     { X86::MMX_MOVD64to64rr,  X86::MMX_MOVQ64rm,      0 },
    557     { X86::MMX_PABSBrr64,     X86::MMX_PABSBrm64,     0 },
    558     { X86::MMX_PABSDrr64,     X86::MMX_PABSDrm64,     0 },
    559     { X86::MMX_PABSWrr64,     X86::MMX_PABSWrm64,     0 },
    560     { X86::MMX_PSHUFWri,      X86::MMX_PSHUFWmi,      0 },
    561 
    562     // 3DNow! version of foldable instructions
    563     { X86::PF2IDrr,         X86::PF2IDrm,             0 },
    564     { X86::PF2IWrr,         X86::PF2IWrm,             0 },
    565     { X86::PFRCPrr,         X86::PFRCPrm,             0 },
    566     { X86::PFRSQRTrr,       X86::PFRSQRTrm,           0 },
    567     { X86::PI2FDrr,         X86::PI2FDrm,             0 },
    568     { X86::PI2FWrr,         X86::PI2FWrm,             0 },
    569     { X86::PSWAPDrr,        X86::PSWAPDrm,            0 },
    570 
    571     // AVX 128-bit versions of foldable instructions
    572     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
    573     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
    574     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
    575     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
    576     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
    577     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
    578     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
    579     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
    580     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
    581     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
    582     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
    583     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
    584     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
    585     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
    586     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
    587     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
    588     { X86::VCVTDQ2PDrr,     X86::VCVTDQ2PDrm,         0 },
    589     { X86::VCVTDQ2PSrr,     X86::VCVTDQ2PSrm,         0 },
    590     { X86::VCVTPD2DQrr,     X86::VCVTPD2DQXrm,        0 },
    591     { X86::VCVTPD2PSrr,     X86::VCVTPD2PSXrm,        0 },
    592     { X86::VCVTPS2DQrr,     X86::VCVTPS2DQrm,         0 },
    593     { X86::VCVTPS2PDrr,     X86::VCVTPS2PDrm,         0 },
    594     { X86::VCVTTPD2DQrr,    X86::VCVTTPD2DQXrm,       0 },
    595     { X86::VCVTTPS2DQrr,    X86::VCVTTPS2DQrm,        0 },
    596     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
    597     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
    598     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
    599     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
    600     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
    601     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
    602     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
    603     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
    604     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         0 },
    605     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         0 },
    606     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           0 },
    607     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
    608     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
    609     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
    610     { X86::VPABSBrr128,     X86::VPABSBrm128,         0 },
    611     { X86::VPABSDrr128,     X86::VPABSDrm128,         0 },
    612     { X86::VPABSWrr128,     X86::VPABSWrm128,         0 },
    613     { X86::VPCMPESTRIrr,    X86::VPCMPESTRIrm,        0 },
    614     { X86::VPCMPESTRM128rr, X86::VPCMPESTRM128rm,     0 },
    615     { X86::VPCMPISTRIrr,    X86::VPCMPISTRIrm,        0 },
    616     { X86::VPCMPISTRM128rr, X86::VPCMPISTRM128rm,     0 },
    617     { X86::VPHMINPOSUWrr128, X86::VPHMINPOSUWrm128,   0 },
    618     { X86::VPERMILPDri,     X86::VPERMILPDmi,         0 },
    619     { X86::VPERMILPSri,     X86::VPERMILPSmi,         0 },
    620     { X86::VPMOVSXBDrr,     X86::VPMOVSXBDrm,         0 },
    621     { X86::VPMOVSXBQrr,     X86::VPMOVSXBQrm,         0 },
    622     { X86::VPMOVSXBWrr,     X86::VPMOVSXBWrm,         0 },
    623     { X86::VPMOVSXDQrr,     X86::VPMOVSXDQrm,         0 },
    624     { X86::VPMOVSXWDrr,     X86::VPMOVSXWDrm,         0 },
    625     { X86::VPMOVSXWQrr,     X86::VPMOVSXWQrm,         0 },
    626     { X86::VPMOVZXBDrr,     X86::VPMOVZXBDrm,         0 },
    627     { X86::VPMOVZXBQrr,     X86::VPMOVZXBQrm,         0 },
    628     { X86::VPMOVZXBWrr,     X86::VPMOVZXBWrm,         0 },
    629     { X86::VPMOVZXDQrr,     X86::VPMOVZXDQrm,         0 },
    630     { X86::VPMOVZXWDrr,     X86::VPMOVZXWDrm,         0 },
    631     { X86::VPMOVZXWQrr,     X86::VPMOVZXWQrm,         0 },
    632     { X86::VPSHUFDri,       X86::VPSHUFDmi,           0 },
    633     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          0 },
    634     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          0 },
    635     { X86::VPTESTrr,        X86::VPTESTrm,            0 },
    636     { X86::VRCPPSr,         X86::VRCPPSm,             0 },
    637     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         0 },
    638     { X86::VROUNDPDr,       X86::VROUNDPDm,           0 },
    639     { X86::VROUNDPSr,       X86::VROUNDPSm,           0 },
    640     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           0 },
    641     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       0 },
    642     { X86::VSQRTPDr,        X86::VSQRTPDm,            0 },
    643     { X86::VSQRTPSr,        X86::VSQRTPSm,            0 },
    644     { X86::VTESTPDrr,       X86::VTESTPDrm,           0 },
    645     { X86::VTESTPSrr,       X86::VTESTPSrm,           0 },
    646     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
    647     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
    648 
    649     // AVX 256-bit foldable instructions
    650     { X86::VCVTDQ2PDYrr,    X86::VCVTDQ2PDYrm,        0 },
    651     { X86::VCVTDQ2PSYrr,    X86::VCVTDQ2PSYrm,        0 },
    652     { X86::VCVTPD2DQYrr,    X86::VCVTPD2DQYrm,        0 },
    653     { X86::VCVTPD2PSYrr,    X86::VCVTPD2PSYrm,        0 },
    654     { X86::VCVTPS2DQYrr,    X86::VCVTPS2DQYrm,        0 },
    655     { X86::VCVTPS2PDYrr,    X86::VCVTPS2PDYrm,        0 },
    656     { X86::VCVTTPD2DQYrr,   X86::VCVTTPD2DQYrm,       0 },
    657     { X86::VCVTTPS2DQYrr,   X86::VCVTTPS2DQYrm,       0 },
    658     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
    659     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
    660     { X86::VMOVDDUPYrr,     X86::VMOVDDUPYrm,         0 },
    661     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
    662     { X86::VMOVSLDUPYrr,    X86::VMOVSLDUPYrm,        0 },
    663     { X86::VMOVSHDUPYrr,    X86::VMOVSHDUPYrm,        0 },
    664     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
    665     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
    666     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        0 },
    667     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        0 },
    668     { X86::VPTESTYrr,       X86::VPTESTYrm,           0 },
    669     { X86::VRCPPSYr,        X86::VRCPPSYm,            0 },
    670     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        0 },
    671     { X86::VROUNDYPDr,      X86::VROUNDYPDm,          0 },
    672     { X86::VROUNDYPSr,      X86::VROUNDYPSm,          0 },
    673     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          0 },
    674     { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      0 },
    675     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           0 },
    676     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           0 },
    677     { X86::VTESTPDYrr,      X86::VTESTPDYrm,          0 },
    678     { X86::VTESTPSYrr,      X86::VTESTPSYrm,          0 },
    679 
    680     // AVX2 foldable instructions
    681 
    682     // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the
    683     // VBROADCASTS{SD}rm memory instructions were available from AVX1.
    684     // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction
    685     // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions
    686     // so they don't need an equivalent limitation.
    687     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
    688     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
    689     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
    690     { X86::VPABSBrr256,     X86::VPABSBrm256,         0 },
    691     { X86::VPABSDrr256,     X86::VPABSDrm256,         0 },
    692     { X86::VPABSWrr256,     X86::VPABSWrm256,         0 },
    693     { X86::VPBROADCASTBrr,  X86::VPBROADCASTBrm,      0 },
    694     { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm,     0 },
    695     { X86::VPBROADCASTDrr,  X86::VPBROADCASTDrm,      0 },
    696     { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm,     0 },
    697     { X86::VPBROADCASTQrr,  X86::VPBROADCASTQrm,      0 },
    698     { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm,     0 },
    699     { X86::VPBROADCASTWrr,  X86::VPBROADCASTWrm,      0 },
    700     { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm,     0 },
    701     { X86::VPERMPDYri,      X86::VPERMPDYmi,          0 },
    702     { X86::VPERMQYri,       X86::VPERMQYmi,           0 },
    703     { X86::VPMOVSXBDYrr,    X86::VPMOVSXBDYrm,        0 },
    704     { X86::VPMOVSXBQYrr,    X86::VPMOVSXBQYrm,        0 },
    705     { X86::VPMOVSXBWYrr,    X86::VPMOVSXBWYrm,        0 },
    706     { X86::VPMOVSXDQYrr,    X86::VPMOVSXDQYrm,        0 },
    707     { X86::VPMOVSXWDYrr,    X86::VPMOVSXWDYrm,        0 },
    708     { X86::VPMOVSXWQYrr,    X86::VPMOVSXWQYrm,        0 },
    709     { X86::VPMOVZXBDYrr,    X86::VPMOVZXBDYrm,        0 },
    710     { X86::VPMOVZXBQYrr,    X86::VPMOVZXBQYrm,        0 },
    711     { X86::VPMOVZXBWYrr,    X86::VPMOVZXBWYrm,        0 },
    712     { X86::VPMOVZXDQYrr,    X86::VPMOVZXDQYrm,        0 },
    713     { X86::VPMOVZXWDYrr,    X86::VPMOVZXWDYrm,        0 },
    714     { X86::VPMOVZXWQYrr,    X86::VPMOVZXWQYrm,        0 },
    715     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          0 },
    716     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         0 },
    717     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         0 },
    718 
    719     // XOP foldable instructions
    720     { X86::VFRCZPDrr,          X86::VFRCZPDrm,        0 },
    721     { X86::VFRCZPDrrY,         X86::VFRCZPDrmY,       0 },
    722     { X86::VFRCZPSrr,          X86::VFRCZPSrm,        0 },
    723     { X86::VFRCZPSrrY,         X86::VFRCZPSrmY,       0 },
    724     { X86::VFRCZSDrr,          X86::VFRCZSDrm,        0 },
    725     { X86::VFRCZSSrr,          X86::VFRCZSSrm,        0 },
    726     { X86::VPHADDBDrr,         X86::VPHADDBDrm,       0 },
    727     { X86::VPHADDBQrr,         X86::VPHADDBQrm,       0 },
    728     { X86::VPHADDBWrr,         X86::VPHADDBWrm,       0 },
    729     { X86::VPHADDDQrr,         X86::VPHADDDQrm,       0 },
    730     { X86::VPHADDWDrr,         X86::VPHADDWDrm,       0 },
    731     { X86::VPHADDWQrr,         X86::VPHADDWQrm,       0 },
    732     { X86::VPHADDUBDrr,        X86::VPHADDUBDrm,      0 },
    733     { X86::VPHADDUBQrr,        X86::VPHADDUBQrm,      0 },
    734     { X86::VPHADDUBWrr,        X86::VPHADDUBWrm,      0 },
    735     { X86::VPHADDUDQrr,        X86::VPHADDUDQrm,      0 },
    736     { X86::VPHADDUWDrr,        X86::VPHADDUWDrm,      0 },
    737     { X86::VPHADDUWQrr,        X86::VPHADDUWQrm,      0 },
    738     { X86::VPHSUBBWrr,         X86::VPHSUBBWrm,       0 },
    739     { X86::VPHSUBDQrr,         X86::VPHSUBDQrm,       0 },
    740     { X86::VPHSUBWDrr,         X86::VPHSUBWDrm,       0 },
    741     { X86::VPROTBri,           X86::VPROTBmi,         0 },
    742     { X86::VPROTBrr,           X86::VPROTBmr,         0 },
    743     { X86::VPROTDri,           X86::VPROTDmi,         0 },
    744     { X86::VPROTDrr,           X86::VPROTDmr,         0 },
    745     { X86::VPROTQri,           X86::VPROTQmi,         0 },
    746     { X86::VPROTQrr,           X86::VPROTQmr,         0 },
    747     { X86::VPROTWri,           X86::VPROTWmi,         0 },
    748     { X86::VPROTWrr,           X86::VPROTWmr,         0 },
    749     { X86::VPSHABrr,           X86::VPSHABmr,         0 },
    750     { X86::VPSHADrr,           X86::VPSHADmr,         0 },
    751     { X86::VPSHAQrr,           X86::VPSHAQmr,         0 },
    752     { X86::VPSHAWrr,           X86::VPSHAWmr,         0 },
    753     { X86::VPSHLBrr,           X86::VPSHLBmr,         0 },
    754     { X86::VPSHLDrr,           X86::VPSHLDmr,         0 },
    755     { X86::VPSHLQrr,           X86::VPSHLQmr,         0 },
    756     { X86::VPSHLWrr,           X86::VPSHLWmr,         0 },
    757 
    758     // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions
    759     { X86::BEXTR32rr,       X86::BEXTR32rm,           0 },
    760     { X86::BEXTR64rr,       X86::BEXTR64rm,           0 },
    761     { X86::BEXTRI32ri,      X86::BEXTRI32mi,          0 },
    762     { X86::BEXTRI64ri,      X86::BEXTRI64mi,          0 },
    763     { X86::BLCFILL32rr,     X86::BLCFILL32rm,         0 },
    764     { X86::BLCFILL64rr,     X86::BLCFILL64rm,         0 },
    765     { X86::BLCI32rr,        X86::BLCI32rm,            0 },
    766     { X86::BLCI64rr,        X86::BLCI64rm,            0 },
    767     { X86::BLCIC32rr,       X86::BLCIC32rm,           0 },
    768     { X86::BLCIC64rr,       X86::BLCIC64rm,           0 },
    769     { X86::BLCMSK32rr,      X86::BLCMSK32rm,          0 },
    770     { X86::BLCMSK64rr,      X86::BLCMSK64rm,          0 },
    771     { X86::BLCS32rr,        X86::BLCS32rm,            0 },
    772     { X86::BLCS64rr,        X86::BLCS64rm,            0 },
    773     { X86::BLSFILL32rr,     X86::BLSFILL32rm,         0 },
    774     { X86::BLSFILL64rr,     X86::BLSFILL64rm,         0 },
    775     { X86::BLSI32rr,        X86::BLSI32rm,            0 },
    776     { X86::BLSI64rr,        X86::BLSI64rm,            0 },
    777     { X86::BLSIC32rr,       X86::BLSIC32rm,           0 },
    778     { X86::BLSIC64rr,       X86::BLSIC64rm,           0 },
    779     { X86::BLSMSK32rr,      X86::BLSMSK32rm,          0 },
    780     { X86::BLSMSK64rr,      X86::BLSMSK64rm,          0 },
    781     { X86::BLSR32rr,        X86::BLSR32rm,            0 },
    782     { X86::BLSR64rr,        X86::BLSR64rm,            0 },
    783     { X86::BZHI32rr,        X86::BZHI32rm,            0 },
    784     { X86::BZHI64rr,        X86::BZHI64rm,            0 },
    785     { X86::LZCNT16rr,       X86::LZCNT16rm,           0 },
    786     { X86::LZCNT32rr,       X86::LZCNT32rm,           0 },
    787     { X86::LZCNT64rr,       X86::LZCNT64rm,           0 },
    788     { X86::POPCNT16rr,      X86::POPCNT16rm,          0 },
    789     { X86::POPCNT32rr,      X86::POPCNT32rm,          0 },
    790     { X86::POPCNT64rr,      X86::POPCNT64rm,          0 },
    791     { X86::RORX32ri,        X86::RORX32mi,            0 },
    792     { X86::RORX64ri,        X86::RORX64mi,            0 },
    793     { X86::SARX32rr,        X86::SARX32rm,            0 },
    794     { X86::SARX64rr,        X86::SARX64rm,            0 },
    795     { X86::SHRX32rr,        X86::SHRX32rm,            0 },
    796     { X86::SHRX64rr,        X86::SHRX64rm,            0 },
    797     { X86::SHLX32rr,        X86::SHLX32rm,            0 },
    798     { X86::SHLX64rr,        X86::SHLX64rm,            0 },
    799     { X86::T1MSKC32rr,      X86::T1MSKC32rm,          0 },
    800     { X86::T1MSKC64rr,      X86::T1MSKC64rm,          0 },
    801     { X86::TZCNT16rr,       X86::TZCNT16rm,           0 },
    802     { X86::TZCNT32rr,       X86::TZCNT32rm,           0 },
    803     { X86::TZCNT64rr,       X86::TZCNT64rm,           0 },
    804     { X86::TZMSK32rr,       X86::TZMSK32rm,           0 },
    805     { X86::TZMSK64rr,       X86::TZMSK64rm,           0 },
    806 
    807     // AVX-512 foldable instructions
    808     { X86::VMOV64toPQIZrr,  X86::VMOVQI2PQIZrm,       0 },
    809     { X86::VMOVDI2SSZrr,    X86::VMOVDI2SSZrm,        0 },
    810     { X86::VMOVAPDZrr,      X86::VMOVAPDZrm,          TB_ALIGN_64 },
    811     { X86::VMOVAPSZrr,      X86::VMOVAPSZrm,          TB_ALIGN_64 },
    812     { X86::VMOVDQA32Zrr,    X86::VMOVDQA32Zrm,        TB_ALIGN_64 },
    813     { X86::VMOVDQA64Zrr,    X86::VMOVDQA64Zrm,        TB_ALIGN_64 },
    814     { X86::VMOVDQU8Zrr,     X86::VMOVDQU8Zrm,         0 },
    815     { X86::VMOVDQU16Zrr,    X86::VMOVDQU16Zrm,        0 },
    816     { X86::VMOVDQU32Zrr,    X86::VMOVDQU32Zrm,        0 },
    817     { X86::VMOVDQU64Zrr,    X86::VMOVDQU64Zrm,        0 },
    818     { X86::VMOVUPDZrr,      X86::VMOVUPDZrm,          0 },
    819     { X86::VMOVUPSZrr,      X86::VMOVUPSZrm,          0 },
    820     { X86::VPABSDZrr,       X86::VPABSDZrm,           0 },
    821     { X86::VPABSQZrr,       X86::VPABSQZrm,           0 },
    822     { X86::VBROADCASTSSZr,  X86::VBROADCASTSSZm,      TB_NO_REVERSE },
    823     { X86::VBROADCASTSDZr,  X86::VBROADCASTSDZm,      TB_NO_REVERSE },
    824 
    825     // AVX-512 foldable instructions (256-bit versions)
    826     { X86::VMOVAPDZ256rr,      X86::VMOVAPDZ256rm,          TB_ALIGN_32 },
    827     { X86::VMOVAPSZ256rr,      X86::VMOVAPSZ256rm,          TB_ALIGN_32 },
    828     { X86::VMOVDQA32Z256rr,    X86::VMOVDQA32Z256rm,        TB_ALIGN_32 },
    829     { X86::VMOVDQA64Z256rr,    X86::VMOVDQA64Z256rm,        TB_ALIGN_32 },
    830     { X86::VMOVDQU8Z256rr,     X86::VMOVDQU8Z256rm,         0 },
    831     { X86::VMOVDQU16Z256rr,    X86::VMOVDQU16Z256rm,        0 },
    832     { X86::VMOVDQU32Z256rr,    X86::VMOVDQU32Z256rm,        0 },
    833     { X86::VMOVDQU64Z256rr,    X86::VMOVDQU64Z256rm,        0 },
    834     { X86::VMOVUPDZ256rr,      X86::VMOVUPDZ256rm,          0 },
    835     { X86::VMOVUPSZ256rr,      X86::VMOVUPSZ256rm,          0 },
    836     { X86::VBROADCASTSSZ256r,  X86::VBROADCASTSSZ256m,      TB_NO_REVERSE },
    837     { X86::VBROADCASTSDZ256r,  X86::VBROADCASTSDZ256m,      TB_NO_REVERSE },
    838 
    839     // AVX-512 foldable instructions (256-bit versions)
    840     { X86::VMOVAPDZ128rr,      X86::VMOVAPDZ128rm,          TB_ALIGN_16 },
    841     { X86::VMOVAPSZ128rr,      X86::VMOVAPSZ128rm,          TB_ALIGN_16 },
    842     { X86::VMOVDQA32Z128rr,    X86::VMOVDQA32Z128rm,        TB_ALIGN_16 },
    843     { X86::VMOVDQA64Z128rr,    X86::VMOVDQA64Z128rm,        TB_ALIGN_16 },
    844     { X86::VMOVDQU8Z128rr,     X86::VMOVDQU8Z128rm,         0 },
    845     { X86::VMOVDQU16Z128rr,    X86::VMOVDQU16Z128rm,        0 },
    846     { X86::VMOVDQU32Z128rr,    X86::VMOVDQU32Z128rm,        0 },
    847     { X86::VMOVDQU64Z128rr,    X86::VMOVDQU64Z128rm,        0 },
    848     { X86::VMOVUPDZ128rr,      X86::VMOVUPDZ128rm,          0 },
    849     { X86::VMOVUPSZ128rr,      X86::VMOVUPSZ128rm,          0 },
    850     { X86::VBROADCASTSSZ128r,  X86::VBROADCASTSSZ128m,      TB_NO_REVERSE },
    851 
    852     // F16C foldable instructions
    853     { X86::VCVTPH2PSrr,        X86::VCVTPH2PSrm,            0 },
    854     { X86::VCVTPH2PSYrr,       X86::VCVTPH2PSYrm,           0 },
    855 
    856     // AES foldable instructions
    857     { X86::AESIMCrr,              X86::AESIMCrm,              TB_ALIGN_16 },
    858     { X86::AESKEYGENASSIST128rr,  X86::AESKEYGENASSIST128rm,  TB_ALIGN_16 },
    859     { X86::VAESIMCrr,             X86::VAESIMCrm,             0 },
    860     { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 }
    861   };
    862 
    863   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) {
    864     unsigned RegOp = MemoryFoldTable1[i].RegOp;
    865     unsigned MemOp = MemoryFoldTable1[i].MemOp;
    866     unsigned Flags = MemoryFoldTable1[i].Flags;
    867     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
    868                   RegOp, MemOp,
    869                   // Index 1, folded load
    870                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
    871   }
    872 
    873   static const X86MemoryFoldTableEntry MemoryFoldTable2[] = {
    874     { X86::ADC32rr,         X86::ADC32rm,       0 },
    875     { X86::ADC64rr,         X86::ADC64rm,       0 },
    876     { X86::ADD16rr,         X86::ADD16rm,       0 },
    877     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
    878     { X86::ADD32rr,         X86::ADD32rm,       0 },
    879     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
    880     { X86::ADD64rr,         X86::ADD64rm,       0 },
    881     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
    882     { X86::ADD8rr,          X86::ADD8rm,        0 },
    883     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
    884     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
    885     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
    886     { X86::ADDSDrr_Int,     X86::ADDSDrm_Int,   0 },
    887     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
    888     { X86::ADDSSrr_Int,     X86::ADDSSrm_Int,   0 },
    889     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
    890     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
    891     { X86::AND16rr,         X86::AND16rm,       0 },
    892     { X86::AND32rr,         X86::AND32rm,       0 },
    893     { X86::AND64rr,         X86::AND64rm,       0 },
    894     { X86::AND8rr,          X86::AND8rm,        0 },
    895     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
    896     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
    897     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
    898     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
    899     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
    900     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
    901     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
    902     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
    903     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
    904     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
    905     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
    906     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
    907     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
    908     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
    909     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
    910     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
    911     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
    912     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
    913     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
    914     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
    915     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
    916     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
    917     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
    918     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
    919     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
    920     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
    921     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
    922     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
    923     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
    924     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
    925     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
    926     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
    927     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
    928     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
    929     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
    930     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
    931     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
    932     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
    933     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
    934     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
    935     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
    936     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
    937     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
    938     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
    939     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
    940     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
    941     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
    942     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
    943     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
    944     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
    945     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
    946     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
    947     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
    948     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
    949     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
    950     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
    951     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
    952     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
    953     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
    954     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
    955     { X86::CRC32r32r32,     X86::CRC32r32m32,   0 },
    956     { X86::CRC32r64r64,     X86::CRC32r64m64,   0 },
    957     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
    958     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
    959     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
    960     { X86::DIVSDrr_Int,     X86::DIVSDrm_Int,   0 },
    961     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
    962     { X86::DIVSSrr_Int,     X86::DIVSSrm_Int,   0 },
    963     { X86::DPPDrri,         X86::DPPDrmi,       TB_ALIGN_16 },
    964     { X86::DPPSrri,         X86::DPPSrmi,       TB_ALIGN_16 },
    965 
    966     // FIXME: We should not be folding Fs* scalar loads into vector
    967     // instructions because the vector instructions require vector-sized
    968     // loads. Lowering should create vector-sized instructions (the Fv*
    969     // variants below) to allow load folding.
    970     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
    971     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
    972     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
    973     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
    974     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
    975     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
    976     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
    977     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
    978 
    979     { X86::FvANDNPDrr,      X86::FvANDNPDrm,    TB_ALIGN_16 },
    980     { X86::FvANDNPSrr,      X86::FvANDNPSrm,    TB_ALIGN_16 },
    981     { X86::FvANDPDrr,       X86::FvANDPDrm,     TB_ALIGN_16 },
    982     { X86::FvANDPSrr,       X86::FvANDPSrm,     TB_ALIGN_16 },
    983     { X86::FvORPDrr,        X86::FvORPDrm,      TB_ALIGN_16 },
    984     { X86::FvORPSrr,        X86::FvORPSrm,      TB_ALIGN_16 },
    985     { X86::FvXORPDrr,       X86::FvXORPDrm,     TB_ALIGN_16 },
    986     { X86::FvXORPSrr,       X86::FvXORPSrm,     TB_ALIGN_16 },
    987     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
    988     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
    989     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
    990     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
    991     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
    992     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
    993     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
    994     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
    995     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
    996     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
    997     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
    998     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
    999     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
   1000     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
   1001     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
   1002     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
   1003     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
   1004     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
   1005     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
   1006     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
   1007     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
   1008     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
   1009     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
   1010     { X86::MINSDrr,         X86::MINSDrm,       0 },
   1011     { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
   1012     { X86::MINSSrr,         X86::MINSSrm,       0 },
   1013     { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
   1014     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
   1015     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
   1016     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
   1017     { X86::MULSDrr,         X86::MULSDrm,       0 },
   1018     { X86::MULSDrr_Int,     X86::MULSDrm_Int,   0 },
   1019     { X86::MULSSrr,         X86::MULSSrm,       0 },
   1020     { X86::MULSSrr_Int,     X86::MULSSrm_Int,   0 },
   1021     { X86::OR16rr,          X86::OR16rm,        0 },
   1022     { X86::OR32rr,          X86::OR32rm,        0 },
   1023     { X86::OR64rr,          X86::OR64rm,        0 },
   1024     { X86::OR8rr,           X86::OR8rm,         0 },
   1025     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
   1026     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
   1027     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
   1028     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
   1029     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
   1030     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
   1031     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
   1032     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
   1033     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
   1034     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
   1035     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
   1036     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
   1037     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
   1038     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
   1039     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
   1040     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
   1041     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
   1042     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
   1043     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
   1044     { X86::PBLENDVBrr0,     X86::PBLENDVBrm0,   TB_ALIGN_16 },
   1045     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
   1046     { X86::PCLMULQDQrr,     X86::PCLMULQDQrm,   TB_ALIGN_16 },
   1047     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
   1048     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
   1049     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
   1050     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
   1051     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
   1052     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
   1053     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
   1054     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
   1055     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
   1056     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
   1057     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
   1058     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
   1059     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
   1060     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
   1061     { X86::PINSRBrr,        X86::PINSRBrm,      0 },
   1062     { X86::PINSRDrr,        X86::PINSRDrm,      0 },
   1063     { X86::PINSRQrr,        X86::PINSRQrm,      0 },
   1064     { X86::PINSRWrri,       X86::PINSRWrmi,     0 },
   1065     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
   1066     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
   1067     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
   1068     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
   1069     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
   1070     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
   1071     { X86::PMINSBrr,        X86::PMINSBrm,      TB_ALIGN_16 },
   1072     { X86::PMINSDrr,        X86::PMINSDrm,      TB_ALIGN_16 },
   1073     { X86::PMINUDrr,        X86::PMINUDrm,      TB_ALIGN_16 },
   1074     { X86::PMINUWrr,        X86::PMINUWrm,      TB_ALIGN_16 },
   1075     { X86::PMAXSBrr,        X86::PMAXSBrm,      TB_ALIGN_16 },
   1076     { X86::PMAXSDrr,        X86::PMAXSDrm,      TB_ALIGN_16 },
   1077     { X86::PMAXUDrr,        X86::PMAXUDrm,      TB_ALIGN_16 },
   1078     { X86::PMAXUWrr,        X86::PMAXUWrm,      TB_ALIGN_16 },
   1079     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
   1080     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
   1081     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
   1082     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
   1083     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
   1084     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
   1085     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
   1086     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
   1087     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
   1088     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
   1089     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
   1090     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
   1091     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
   1092     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
   1093     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
   1094     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
   1095     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
   1096     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
   1097     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
   1098     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
   1099     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
   1100     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
   1101     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
   1102     { X86::PSUBQrr,         X86::PSUBQrm,       TB_ALIGN_16 },
   1103     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
   1104     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
   1105     { X86::PSUBUSBrr,       X86::PSUBUSBrm,     TB_ALIGN_16 },
   1106     { X86::PSUBUSWrr,       X86::PSUBUSWrm,     TB_ALIGN_16 },
   1107     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
   1108     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
   1109     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
   1110     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
   1111     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
   1112     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
   1113     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
   1114     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
   1115     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
   1116     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
   1117     { X86::SBB32rr,         X86::SBB32rm,       0 },
   1118     { X86::SBB64rr,         X86::SBB64rm,       0 },
   1119     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
   1120     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
   1121     { X86::SUB16rr,         X86::SUB16rm,       0 },
   1122     { X86::SUB32rr,         X86::SUB32rm,       0 },
   1123     { X86::SUB64rr,         X86::SUB64rm,       0 },
   1124     { X86::SUB8rr,          X86::SUB8rm,        0 },
   1125     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
   1126     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
   1127     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
   1128     { X86::SUBSDrr_Int,     X86::SUBSDrm_Int,   0 },
   1129     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
   1130     { X86::SUBSSrr_Int,     X86::SUBSSrm_Int,   0 },
   1131     // FIXME: TEST*rr -> swapped operand of TEST*mr.
   1132     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
   1133     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
   1134     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
   1135     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
   1136     { X86::XOR16rr,         X86::XOR16rm,       0 },
   1137     { X86::XOR32rr,         X86::XOR32rm,       0 },
   1138     { X86::XOR64rr,         X86::XOR64rm,       0 },
   1139     { X86::XOR8rr,          X86::XOR8rm,        0 },
   1140     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
   1141     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
   1142 
   1143     // MMX version of foldable instructions
   1144     { X86::MMX_CVTPI2PSirr,   X86::MMX_CVTPI2PSirm,   0 },
   1145     { X86::MMX_PACKSSDWirr,   X86::MMX_PACKSSDWirm,   0 },
   1146     { X86::MMX_PACKSSWBirr,   X86::MMX_PACKSSWBirm,   0 },
   1147     { X86::MMX_PACKUSWBirr,   X86::MMX_PACKUSWBirm,   0 },
   1148     { X86::MMX_PADDBirr,      X86::MMX_PADDBirm,      0 },
   1149     { X86::MMX_PADDDirr,      X86::MMX_PADDDirm,      0 },
   1150     { X86::MMX_PADDQirr,      X86::MMX_PADDQirm,      0 },
   1151     { X86::MMX_PADDSBirr,     X86::MMX_PADDSBirm,     0 },
   1152     { X86::MMX_PADDSWirr,     X86::MMX_PADDSWirm,     0 },
   1153     { X86::MMX_PADDUSBirr,    X86::MMX_PADDUSBirm,    0 },
   1154     { X86::MMX_PADDUSWirr,    X86::MMX_PADDUSWirm,    0 },
   1155     { X86::MMX_PADDWirr,      X86::MMX_PADDWirm,      0 },
   1156     { X86::MMX_PALIGNR64irr,  X86::MMX_PALIGNR64irm,  0 },
   1157     { X86::MMX_PANDNirr,      X86::MMX_PANDNirm,      0 },
   1158     { X86::MMX_PANDirr,       X86::MMX_PANDirm,       0 },
   1159     { X86::MMX_PAVGBirr,      X86::MMX_PAVGBirm,      0 },
   1160     { X86::MMX_PAVGWirr,      X86::MMX_PAVGWirm,      0 },
   1161     { X86::MMX_PCMPEQBirr,    X86::MMX_PCMPEQBirm,    0 },
   1162     { X86::MMX_PCMPEQDirr,    X86::MMX_PCMPEQDirm,    0 },
   1163     { X86::MMX_PCMPEQWirr,    X86::MMX_PCMPEQWirm,    0 },
   1164     { X86::MMX_PCMPGTBirr,    X86::MMX_PCMPGTBirm,    0 },
   1165     { X86::MMX_PCMPGTDirr,    X86::MMX_PCMPGTDirm,    0 },
   1166     { X86::MMX_PCMPGTWirr,    X86::MMX_PCMPGTWirm,    0 },
   1167     { X86::MMX_PHADDSWrr64,   X86::MMX_PHADDSWrm64,   0 },
   1168     { X86::MMX_PHADDWrr64,    X86::MMX_PHADDWrm64,    0 },
   1169     { X86::MMX_PHADDrr64,     X86::MMX_PHADDrm64,     0 },
   1170     { X86::MMX_PHSUBDrr64,    X86::MMX_PHSUBDrm64,    0 },
   1171     { X86::MMX_PHSUBSWrr64,   X86::MMX_PHSUBSWrm64,   0 },
   1172     { X86::MMX_PHSUBWrr64,    X86::MMX_PHSUBWrm64,    0 },
   1173     { X86::MMX_PINSRWirri,    X86::MMX_PINSRWirmi,    0 },
   1174     { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 },
   1175     { X86::MMX_PMADDWDirr,    X86::MMX_PMADDWDirm,    0 },
   1176     { X86::MMX_PMAXSWirr,     X86::MMX_PMAXSWirm,     0 },
   1177     { X86::MMX_PMAXUBirr,     X86::MMX_PMAXUBirm,     0 },
   1178     { X86::MMX_PMINSWirr,     X86::MMX_PMINSWirm,     0 },
   1179     { X86::MMX_PMINUBirr,     X86::MMX_PMINUBirm,     0 },
   1180     { X86::MMX_PMULHRSWrr64,  X86::MMX_PMULHRSWrm64,  0 },
   1181     { X86::MMX_PMULHUWirr,    X86::MMX_PMULHUWirm,    0 },
   1182     { X86::MMX_PMULHWirr,     X86::MMX_PMULHWirm,     0 },
   1183     { X86::MMX_PMULLWirr,     X86::MMX_PMULLWirm,     0 },
   1184     { X86::MMX_PMULUDQirr,    X86::MMX_PMULUDQirm,    0 },
   1185     { X86::MMX_PORirr,        X86::MMX_PORirm,        0 },
   1186     { X86::MMX_PSADBWirr,     X86::MMX_PSADBWirm,     0 },
   1187     { X86::MMX_PSHUFBrr64,    X86::MMX_PSHUFBrm64,    0 },
   1188     { X86::MMX_PSIGNBrr64,    X86::MMX_PSIGNBrm64,    0 },
   1189     { X86::MMX_PSIGNDrr64,    X86::MMX_PSIGNDrm64,    0 },
   1190     { X86::MMX_PSIGNWrr64,    X86::MMX_PSIGNWrm64,    0 },
   1191     { X86::MMX_PSLLDrr,       X86::MMX_PSLLDrm,       0 },
   1192     { X86::MMX_PSLLQrr,       X86::MMX_PSLLQrm,       0 },
   1193     { X86::MMX_PSLLWrr,       X86::MMX_PSLLWrm,       0 },
   1194     { X86::MMX_PSRADrr,       X86::MMX_PSRADrm,       0 },
   1195     { X86::MMX_PSRAWrr,       X86::MMX_PSRAWrm,       0 },
   1196     { X86::MMX_PSRLDrr,       X86::MMX_PSRLDrm,       0 },
   1197     { X86::MMX_PSRLQrr,       X86::MMX_PSRLQrm,       0 },
   1198     { X86::MMX_PSRLWrr,       X86::MMX_PSRLWrm,       0 },
   1199     { X86::MMX_PSUBBirr,      X86::MMX_PSUBBirm,      0 },
   1200     { X86::MMX_PSUBDirr,      X86::MMX_PSUBDirm,      0 },
   1201     { X86::MMX_PSUBQirr,      X86::MMX_PSUBQirm,      0 },
   1202     { X86::MMX_PSUBSBirr,     X86::MMX_PSUBSBirm,     0 },
   1203     { X86::MMX_PSUBSWirr,     X86::MMX_PSUBSWirm,     0 },
   1204     { X86::MMX_PSUBUSBirr,    X86::MMX_PSUBUSBirm,    0 },
   1205     { X86::MMX_PSUBUSWirr,    X86::MMX_PSUBUSWirm,    0 },
   1206     { X86::MMX_PSUBWirr,      X86::MMX_PSUBWirm,      0 },
   1207     { X86::MMX_PUNPCKHBWirr,  X86::MMX_PUNPCKHBWirm,  0 },
   1208     { X86::MMX_PUNPCKHDQirr,  X86::MMX_PUNPCKHDQirm,  0 },
   1209     { X86::MMX_PUNPCKHWDirr,  X86::MMX_PUNPCKHWDirm,  0 },
   1210     { X86::MMX_PUNPCKLBWirr,  X86::MMX_PUNPCKLBWirm,  0 },
   1211     { X86::MMX_PUNPCKLDQirr,  X86::MMX_PUNPCKLDQirm,  0 },
   1212     { X86::MMX_PUNPCKLWDirr,  X86::MMX_PUNPCKLWDirm,  0 },
   1213     { X86::MMX_PXORirr,       X86::MMX_PXORirm,       0 },
   1214 
   1215     // 3DNow! version of foldable instructions
   1216     { X86::PAVGUSBrr,         X86::PAVGUSBrm,         0 },
   1217     { X86::PFACCrr,           X86::PFACCrm,           0 },
   1218     { X86::PFADDrr,           X86::PFADDrm,           0 },
   1219     { X86::PFCMPEQrr,         X86::PFCMPEQrm,         0 },
   1220     { X86::PFCMPGErr,         X86::PFCMPGErm,         0 },
   1221     { X86::PFCMPGTrr,         X86::PFCMPGTrm,         0 },
   1222     { X86::PFMAXrr,           X86::PFMAXrm,           0 },
   1223     { X86::PFMINrr,           X86::PFMINrm,           0 },
   1224     { X86::PFMULrr,           X86::PFMULrm,           0 },
   1225     { X86::PFNACCrr,          X86::PFNACCrm,          0 },
   1226     { X86::PFPNACCrr,         X86::PFPNACCrm,         0 },
   1227     { X86::PFRCPIT1rr,        X86::PFRCPIT1rm,        0 },
   1228     { X86::PFRCPIT2rr,        X86::PFRCPIT2rm,        0 },
   1229     { X86::PFRSQIT1rr,        X86::PFRSQIT1rm,        0 },
   1230     { X86::PFSUBrr,           X86::PFSUBrm,           0 },
   1231     { X86::PFSUBRrr,          X86::PFSUBRrm,          0 },
   1232     { X86::PMULHRWrr,         X86::PMULHRWrm,         0 },
   1233 
   1234     // AVX 128-bit versions of foldable instructions
   1235     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
   1236     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
   1237     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
   1238     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
   1239     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
   1240     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
   1241     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
   1242     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
   1243     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
   1244     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
   1245     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
   1246     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
   1247     { X86::VRCPSSr,           X86::VRCPSSm,            0 },
   1248     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
   1249     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
   1250     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
   1251     { X86::VADDPDrr,          X86::VADDPDrm,           0 },
   1252     { X86::VADDPSrr,          X86::VADDPSrm,           0 },
   1253     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
   1254     { X86::VADDSDrr_Int,      X86::VADDSDrm_Int,       0 },
   1255     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
   1256     { X86::VADDSSrr_Int,      X86::VADDSSrm_Int,       0 },
   1257     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        0 },
   1258     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        0 },
   1259     { X86::VANDNPDrr,         X86::VANDNPDrm,          0 },
   1260     { X86::VANDNPSrr,         X86::VANDNPSrm,          0 },
   1261     { X86::VANDPDrr,          X86::VANDPDrm,           0 },
   1262     { X86::VANDPSrr,          X86::VANDPSrm,           0 },
   1263     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        0 },
   1264     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        0 },
   1265     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        0 },
   1266     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        0 },
   1267     { X86::VCMPPDrri,         X86::VCMPPDrmi,          0 },
   1268     { X86::VCMPPSrri,         X86::VCMPPSrmi,          0 },
   1269     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
   1270     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
   1271     { X86::VDIVPDrr,          X86::VDIVPDrm,           0 },
   1272     { X86::VDIVPSrr,          X86::VDIVPSrm,           0 },
   1273     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
   1274     { X86::VDIVSDrr_Int,      X86::VDIVSDrm_Int,       0 },
   1275     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
   1276     { X86::VDIVSSrr_Int,      X86::VDIVSSrm_Int,       0 },
   1277     { X86::VDPPDrri,          X86::VDPPDrmi,           0 },
   1278     { X86::VDPPSrri,          X86::VDPPSrmi,           0 },
   1279     // Do not fold VFs* loads because there are no scalar load variants for
   1280     // these instructions. When folded, the load is required to be 128-bits, so
   1281     // the load size would not match.
   1282     { X86::VFvANDNPDrr,       X86::VFvANDNPDrm,        0 },
   1283     { X86::VFvANDNPSrr,       X86::VFvANDNPSrm,        0 },
   1284     { X86::VFvANDPDrr,        X86::VFvANDPDrm,         0 },
   1285     { X86::VFvANDPSrr,        X86::VFvANDPSrm,         0 },
   1286     { X86::VFvORPDrr,         X86::VFvORPDrm,          0 },
   1287     { X86::VFvORPSrr,         X86::VFvORPSrm,          0 },
   1288     { X86::VFvXORPDrr,        X86::VFvXORPDrm,         0 },
   1289     { X86::VFvXORPSrr,        X86::VFvXORPSrm,         0 },
   1290     { X86::VHADDPDrr,         X86::VHADDPDrm,          0 },
   1291     { X86::VHADDPSrr,         X86::VHADDPSrm,          0 },
   1292     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          0 },
   1293     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          0 },
   1294     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
   1295     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
   1296     { X86::VMAXPDrr,          X86::VMAXPDrm,           0 },
   1297     { X86::VMAXPSrr,          X86::VMAXPSrm,           0 },
   1298     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
   1299     { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
   1300     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
   1301     { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
   1302     { X86::VMINPDrr,          X86::VMINPDrm,           0 },
   1303     { X86::VMINPSrr,          X86::VMINPSrm,           0 },
   1304     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
   1305     { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
   1306     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
   1307     { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
   1308     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        0 },
   1309     { X86::VMULPDrr,          X86::VMULPDrm,           0 },
   1310     { X86::VMULPSrr,          X86::VMULPSrm,           0 },
   1311     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
   1312     { X86::VMULSDrr_Int,      X86::VMULSDrm_Int,       0 },
   1313     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
   1314     { X86::VMULSSrr_Int,      X86::VMULSSrm_Int,       0 },
   1315     { X86::VORPDrr,           X86::VORPDrm,            0 },
   1316     { X86::VORPSrr,           X86::VORPSrm,            0 },
   1317     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        0 },
   1318     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        0 },
   1319     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        0 },
   1320     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        0 },
   1321     { X86::VPADDBrr,          X86::VPADDBrm,           0 },
   1322     { X86::VPADDDrr,          X86::VPADDDrm,           0 },
   1323     { X86::VPADDQrr,          X86::VPADDQrm,           0 },
   1324     { X86::VPADDSBrr,         X86::VPADDSBrm,          0 },
   1325     { X86::VPADDSWrr,         X86::VPADDSWrm,          0 },
   1326     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         0 },
   1327     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         0 },
   1328     { X86::VPADDWrr,          X86::VPADDWrm,           0 },
   1329     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      0 },
   1330     { X86::VPANDNrr,          X86::VPANDNrm,           0 },
   1331     { X86::VPANDrr,           X86::VPANDrm,            0 },
   1332     { X86::VPAVGBrr,          X86::VPAVGBrm,           0 },
   1333     { X86::VPAVGWrr,          X86::VPAVGWrm,           0 },
   1334     { X86::VPBLENDVBrr,       X86::VPBLENDVBrm,        0 },
   1335     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        0 },
   1336     { X86::VPCLMULQDQrr,      X86::VPCLMULQDQrm,       0 },
   1337     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         0 },
   1338     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         0 },
   1339     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         0 },
   1340     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         0 },
   1341     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         0 },
   1342     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         0 },
   1343     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         0 },
   1344     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         0 },
   1345     { X86::VPHADDDrr,         X86::VPHADDDrm,          0 },
   1346     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      0 },
   1347     { X86::VPHADDWrr,         X86::VPHADDWrm,          0 },
   1348     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          0 },
   1349     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      0 },
   1350     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          0 },
   1351     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        0 },
   1352     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        0 },
   1353     { X86::VPINSRBrr,         X86::VPINSRBrm,          0 },
   1354     { X86::VPINSRDrr,         X86::VPINSRDrm,          0 },
   1355     { X86::VPINSRQrr,         X86::VPINSRQrm,          0 },
   1356     { X86::VPINSRWrri,        X86::VPINSRWrmi,         0 },
   1357     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    0 },
   1358     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         0 },
   1359     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          0 },
   1360     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          0 },
   1361     { X86::VPMINSWrr,         X86::VPMINSWrm,          0 },
   1362     { X86::VPMINUBrr,         X86::VPMINUBrm,          0 },
   1363     { X86::VPMINSBrr,         X86::VPMINSBrm,          0 },
   1364     { X86::VPMINSDrr,         X86::VPMINSDrm,          0 },
   1365     { X86::VPMINUDrr,         X86::VPMINUDrm,          0 },
   1366     { X86::VPMINUWrr,         X86::VPMINUWrm,          0 },
   1367     { X86::VPMAXSBrr,         X86::VPMAXSBrm,          0 },
   1368     { X86::VPMAXSDrr,         X86::VPMAXSDrm,          0 },
   1369     { X86::VPMAXUDrr,         X86::VPMAXUDrm,          0 },
   1370     { X86::VPMAXUWrr,         X86::VPMAXUWrm,          0 },
   1371     { X86::VPMULDQrr,         X86::VPMULDQrm,          0 },
   1372     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     0 },
   1373     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         0 },
   1374     { X86::VPMULHWrr,         X86::VPMULHWrm,          0 },
   1375     { X86::VPMULLDrr,         X86::VPMULLDrm,          0 },
   1376     { X86::VPMULLWrr,         X86::VPMULLWrm,          0 },
   1377     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         0 },
   1378     { X86::VPORrr,            X86::VPORrm,             0 },
   1379     { X86::VPSADBWrr,         X86::VPSADBWrm,          0 },
   1380     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          0 },
   1381     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          0 },
   1382     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          0 },
   1383     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          0 },
   1384     { X86::VPSLLDrr,          X86::VPSLLDrm,           0 },
   1385     { X86::VPSLLQrr,          X86::VPSLLQrm,           0 },
   1386     { X86::VPSLLWrr,          X86::VPSLLWrm,           0 },
   1387     { X86::VPSRADrr,          X86::VPSRADrm,           0 },
   1388     { X86::VPSRAWrr,          X86::VPSRAWrm,           0 },
   1389     { X86::VPSRLDrr,          X86::VPSRLDrm,           0 },
   1390     { X86::VPSRLQrr,          X86::VPSRLQrm,           0 },
   1391     { X86::VPSRLWrr,          X86::VPSRLWrm,           0 },
   1392     { X86::VPSUBBrr,          X86::VPSUBBrm,           0 },
   1393     { X86::VPSUBDrr,          X86::VPSUBDrm,           0 },
   1394     { X86::VPSUBQrr,          X86::VPSUBQrm,           0 },
   1395     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          0 },
   1396     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          0 },
   1397     { X86::VPSUBUSBrr,        X86::VPSUBUSBrm,         0 },
   1398     { X86::VPSUBUSWrr,        X86::VPSUBUSWrm,         0 },
   1399     { X86::VPSUBWrr,          X86::VPSUBWrm,           0 },
   1400     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       0 },
   1401     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       0 },
   1402     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      0 },
   1403     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       0 },
   1404     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       0 },
   1405     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       0 },
   1406     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      0 },
   1407     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       0 },
   1408     { X86::VPXORrr,           X86::VPXORrm,            0 },
   1409     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         0 },
   1410     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         0 },
   1411     { X86::VSUBPDrr,          X86::VSUBPDrm,           0 },
   1412     { X86::VSUBPSrr,          X86::VSUBPSrm,           0 },
   1413     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
   1414     { X86::VSUBSDrr_Int,      X86::VSUBSDrm_Int,       0 },
   1415     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
   1416     { X86::VSUBSSrr_Int,      X86::VSUBSSrm_Int,       0 },
   1417     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        0 },
   1418     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        0 },
   1419     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        0 },
   1420     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        0 },
   1421     { X86::VXORPDrr,          X86::VXORPDrm,           0 },
   1422     { X86::VXORPSrr,          X86::VXORPSrm,           0 },
   1423 
   1424     // AVX 256-bit foldable instructions
   1425     { X86::VADDPDYrr,         X86::VADDPDYrm,          0 },
   1426     { X86::VADDPSYrr,         X86::VADDPSYrm,          0 },
   1427     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       0 },
   1428     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       0 },
   1429     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         0 },
   1430     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         0 },
   1431     { X86::VANDPDYrr,         X86::VANDPDYrm,          0 },
   1432     { X86::VANDPSYrr,         X86::VANDPSYrm,          0 },
   1433     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       0 },
   1434     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       0 },
   1435     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       0 },
   1436     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       0 },
   1437     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         0 },
   1438     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         0 },
   1439     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          0 },
   1440     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          0 },
   1441     { X86::VDPPSYrri,         X86::VDPPSYrmi,          0 },
   1442     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         0 },
   1443     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         0 },
   1444     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         0 },
   1445     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         0 },
   1446     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      0 },
   1447     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          0 },
   1448     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          0 },
   1449     { X86::VMINPDYrr,         X86::VMINPDYrm,          0 },
   1450     { X86::VMINPSYrr,         X86::VMINPSYrm,          0 },
   1451     { X86::VMULPDYrr,         X86::VMULPDYrm,          0 },
   1452     { X86::VMULPSYrr,         X86::VMULPSYrm,          0 },
   1453     { X86::VORPDYrr,          X86::VORPDYrm,           0 },
   1454     { X86::VORPSYrr,          X86::VORPSYrm,           0 },
   1455     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       0 },
   1456     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       0 },
   1457     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       0 },
   1458     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        0 },
   1459     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        0 },
   1460     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          0 },
   1461     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          0 },
   1462     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       0 },
   1463     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       0 },
   1464     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       0 },
   1465     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       0 },
   1466     { X86::VXORPDYrr,         X86::VXORPDYrm,          0 },
   1467     { X86::VXORPSYrr,         X86::VXORPSYrm,          0 },
   1468 
   1469     // AVX2 foldable instructions
   1470     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      0 },
   1471     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       0 },
   1472     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       0 },
   1473     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       0 },
   1474     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       0 },
   1475     { X86::VPADDBYrr,         X86::VPADDBYrm,          0 },
   1476     { X86::VPADDDYrr,         X86::VPADDDYrm,          0 },
   1477     { X86::VPADDQYrr,         X86::VPADDQYrm,          0 },
   1478     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         0 },
   1479     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         0 },
   1480     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        0 },
   1481     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        0 },
   1482     { X86::VPADDWYrr,         X86::VPADDWYrm,          0 },
   1483     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      0 },
   1484     { X86::VPANDNYrr,         X86::VPANDNYrm,          0 },
   1485     { X86::VPANDYrr,          X86::VPANDYrm,           0 },
   1486     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          0 },
   1487     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          0 },
   1488     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        0 },
   1489     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       0 },
   1490     { X86::VPBLENDVBYrr,      X86::VPBLENDVBYrm,       0 },
   1491     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       0 },
   1492     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        0 },
   1493     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        0 },
   1494     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        0 },
   1495     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        0 },
   1496     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        0 },
   1497     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        0 },
   1498     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        0 },
   1499     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        0 },
   1500     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       0 },
   1501     { X86::VPERMDYrr,         X86::VPERMDYrm,          0 },
   1502     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         0 },
   1503     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         0 },
   1504     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      0 },
   1505     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         0 },
   1506     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         0 },
   1507     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      0 },
   1508     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         0 },
   1509     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    0 },
   1510     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        0 },
   1511     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         0 },
   1512     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         0 },
   1513     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         0 },
   1514     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         0 },
   1515     { X86::VPMINSBYrr,        X86::VPMINSBYrm,         0 },
   1516     { X86::VPMINSDYrr,        X86::VPMINSDYrm,         0 },
   1517     { X86::VPMINUDYrr,        X86::VPMINUDYrm,         0 },
   1518     { X86::VPMINUWYrr,        X86::VPMINUWYrm,         0 },
   1519     { X86::VPMAXSBYrr,        X86::VPMAXSBYrm,         0 },
   1520     { X86::VPMAXSDYrr,        X86::VPMAXSDYrm,         0 },
   1521     { X86::VPMAXUDYrr,        X86::VPMAXUDYrm,         0 },
   1522     { X86::VPMAXUWYrr,        X86::VPMAXUWYrm,         0 },
   1523     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       0 },
   1524     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         0 },
   1525     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     0 },
   1526     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        0 },
   1527     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         0 },
   1528     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         0 },
   1529     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         0 },
   1530     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        0 },
   1531     { X86::VPORYrr,           X86::VPORYrm,            0 },
   1532     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         0 },
   1533     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         0 },
   1534     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         0 },
   1535     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         0 },
   1536     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         0 },
   1537     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          0 },
   1538     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          0 },
   1539     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          0 },
   1540     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          0 },
   1541     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         0 },
   1542     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          0 },
   1543     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         0 },
   1544     { X86::VPSRADYrr,         X86::VPSRADYrm,          0 },
   1545     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          0 },
   1546     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          0 },
   1547     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         0 },
   1548     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          0 },
   1549     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          0 },
   1550     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          0 },
   1551     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          0 },
   1552     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         0 },
   1553     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          0 },
   1554     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         0 },
   1555     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          0 },
   1556     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          0 },
   1557     { X86::VPSUBQYrr,         X86::VPSUBQYrm,          0 },
   1558     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         0 },
   1559     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         0 },
   1560     { X86::VPSUBUSBYrr,       X86::VPSUBUSBYrm,        0 },
   1561     { X86::VPSUBUSWYrr,       X86::VPSUBUSWYrm,        0 },
   1562     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          0 },
   1563     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      0 },
   1564     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      0 },
   1565     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     0 },
   1566     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      0 },
   1567     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      0 },
   1568     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      0 },
   1569     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     0 },
   1570     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      0 },
   1571     { X86::VPXORYrr,          X86::VPXORYrm,           0 },
   1572 
   1573     // FMA4 foldable patterns
   1574     { X86::VFMADDSS4rr,       X86::VFMADDSS4mr,        0 },
   1575     { X86::VFMADDSD4rr,       X86::VFMADDSD4mr,        0 },
   1576     { X86::VFMADDPS4rr,       X86::VFMADDPS4mr,        0 },
   1577     { X86::VFMADDPD4rr,       X86::VFMADDPD4mr,        0 },
   1578     { X86::VFMADDPS4rrY,      X86::VFMADDPS4mrY,       0 },
   1579     { X86::VFMADDPD4rrY,      X86::VFMADDPD4mrY,       0 },
   1580     { X86::VFNMADDSS4rr,      X86::VFNMADDSS4mr,       0 },
   1581     { X86::VFNMADDSD4rr,      X86::VFNMADDSD4mr,       0 },
   1582     { X86::VFNMADDPS4rr,      X86::VFNMADDPS4mr,       0 },
   1583     { X86::VFNMADDPD4rr,      X86::VFNMADDPD4mr,       0 },
   1584     { X86::VFNMADDPS4rrY,     X86::VFNMADDPS4mrY,      0 },
   1585     { X86::VFNMADDPD4rrY,     X86::VFNMADDPD4mrY,      0 },
   1586     { X86::VFMSUBSS4rr,       X86::VFMSUBSS4mr,        0 },
   1587     { X86::VFMSUBSD4rr,       X86::VFMSUBSD4mr,        0 },
   1588     { X86::VFMSUBPS4rr,       X86::VFMSUBPS4mr,        0 },
   1589     { X86::VFMSUBPD4rr,       X86::VFMSUBPD4mr,        0 },
   1590     { X86::VFMSUBPS4rrY,      X86::VFMSUBPS4mrY,       0 },
   1591     { X86::VFMSUBPD4rrY,      X86::VFMSUBPD4mrY,       0 },
   1592     { X86::VFNMSUBSS4rr,      X86::VFNMSUBSS4mr,       0 },
   1593     { X86::VFNMSUBSD4rr,      X86::VFNMSUBSD4mr,       0 },
   1594     { X86::VFNMSUBPS4rr,      X86::VFNMSUBPS4mr,       0 },
   1595     { X86::VFNMSUBPD4rr,      X86::VFNMSUBPD4mr,       0 },
   1596     { X86::VFNMSUBPS4rrY,     X86::VFNMSUBPS4mrY,      0 },
   1597     { X86::VFNMSUBPD4rrY,     X86::VFNMSUBPD4mrY,      0 },
   1598     { X86::VFMADDSUBPS4rr,    X86::VFMADDSUBPS4mr,     0 },
   1599     { X86::VFMADDSUBPD4rr,    X86::VFMADDSUBPD4mr,     0 },
   1600     { X86::VFMADDSUBPS4rrY,   X86::VFMADDSUBPS4mrY,    0 },
   1601     { X86::VFMADDSUBPD4rrY,   X86::VFMADDSUBPD4mrY,    0 },
   1602     { X86::VFMSUBADDPS4rr,    X86::VFMSUBADDPS4mr,     0 },
   1603     { X86::VFMSUBADDPD4rr,    X86::VFMSUBADDPD4mr,     0 },
   1604     { X86::VFMSUBADDPS4rrY,   X86::VFMSUBADDPS4mrY,    0 },
   1605     { X86::VFMSUBADDPD4rrY,   X86::VFMSUBADDPD4mrY,    0 },
   1606 
   1607     // XOP foldable instructions
   1608     { X86::VPCMOVrr,          X86::VPCMOVmr,            0 },
   1609     { X86::VPCMOVrrY,         X86::VPCMOVmrY,           0 },
   1610     { X86::VPCOMBri,          X86::VPCOMBmi,            0 },
   1611     { X86::VPCOMDri,          X86::VPCOMDmi,            0 },
   1612     { X86::VPCOMQri,          X86::VPCOMQmi,            0 },
   1613     { X86::VPCOMWri,          X86::VPCOMWmi,            0 },
   1614     { X86::VPCOMUBri,         X86::VPCOMUBmi,           0 },
   1615     { X86::VPCOMUDri,         X86::VPCOMUDmi,           0 },
   1616     { X86::VPCOMUQri,         X86::VPCOMUQmi,           0 },
   1617     { X86::VPCOMUWri,         X86::VPCOMUWmi,           0 },
   1618     { X86::VPERMIL2PDrr,      X86::VPERMIL2PDmr,        0 },
   1619     { X86::VPERMIL2PDrrY,     X86::VPERMIL2PDmrY,       0 },
   1620     { X86::VPERMIL2PSrr,      X86::VPERMIL2PSmr,        0 },
   1621     { X86::VPERMIL2PSrrY,     X86::VPERMIL2PSmrY,       0 },
   1622     { X86::VPMACSDDrr,        X86::VPMACSDDrm,          0 },
   1623     { X86::VPMACSDQHrr,       X86::VPMACSDQHrm,         0 },
   1624     { X86::VPMACSDQLrr,       X86::VPMACSDQLrm,         0 },
   1625     { X86::VPMACSSDDrr,       X86::VPMACSSDDrm,         0 },
   1626     { X86::VPMACSSDQHrr,      X86::VPMACSSDQHrm,        0 },
   1627     { X86::VPMACSSDQLrr,      X86::VPMACSSDQLrm,        0 },
   1628     { X86::VPMACSSWDrr,       X86::VPMACSSWDrm,         0 },
   1629     { X86::VPMACSSWWrr,       X86::VPMACSSWWrm,         0 },
   1630     { X86::VPMACSWDrr,        X86::VPMACSWDrm,          0 },
   1631     { X86::VPMACSWWrr,        X86::VPMACSWWrm,          0 },
   1632     { X86::VPMADCSSWDrr,      X86::VPMADCSSWDrm,        0 },
   1633     { X86::VPMADCSWDrr,       X86::VPMADCSWDrm,         0 },
   1634     { X86::VPPERMrr,          X86::VPPERMmr,            0 },
   1635     { X86::VPROTBrr,          X86::VPROTBrm,            0 },
   1636     { X86::VPROTDrr,          X86::VPROTDrm,            0 },
   1637     { X86::VPROTQrr,          X86::VPROTQrm,            0 },
   1638     { X86::VPROTWrr,          X86::VPROTWrm,            0 },
   1639     { X86::VPSHABrr,          X86::VPSHABrm,            0 },
   1640     { X86::VPSHADrr,          X86::VPSHADrm,            0 },
   1641     { X86::VPSHAQrr,          X86::VPSHAQrm,            0 },
   1642     { X86::VPSHAWrr,          X86::VPSHAWrm,            0 },
   1643     { X86::VPSHLBrr,          X86::VPSHLBrm,            0 },
   1644     { X86::VPSHLDrr,          X86::VPSHLDrm,            0 },
   1645     { X86::VPSHLQrr,          X86::VPSHLQrm,            0 },
   1646     { X86::VPSHLWrr,          X86::VPSHLWrm,            0 },
   1647 
   1648     // BMI/BMI2 foldable instructions
   1649     { X86::ANDN32rr,          X86::ANDN32rm,            0 },
   1650     { X86::ANDN64rr,          X86::ANDN64rm,            0 },
   1651     { X86::MULX32rr,          X86::MULX32rm,            0 },
   1652     { X86::MULX64rr,          X86::MULX64rm,            0 },
   1653     { X86::PDEP32rr,          X86::PDEP32rm,            0 },
   1654     { X86::PDEP64rr,          X86::PDEP64rm,            0 },
   1655     { X86::PEXT32rr,          X86::PEXT32rm,            0 },
   1656     { X86::PEXT64rr,          X86::PEXT64rm,            0 },
   1657 
   1658     // AVX-512 foldable instructions
   1659     { X86::VADDPSZrr,         X86::VADDPSZrm,           0 },
   1660     { X86::VADDPDZrr,         X86::VADDPDZrm,           0 },
   1661     { X86::VSUBPSZrr,         X86::VSUBPSZrm,           0 },
   1662     { X86::VSUBPDZrr,         X86::VSUBPDZrm,           0 },
   1663     { X86::VMULPSZrr,         X86::VMULPSZrm,           0 },
   1664     { X86::VMULPDZrr,         X86::VMULPDZrm,           0 },
   1665     { X86::VDIVPSZrr,         X86::VDIVPSZrm,           0 },
   1666     { X86::VDIVPDZrr,         X86::VDIVPDZrm,           0 },
   1667     { X86::VMINPSZrr,         X86::VMINPSZrm,           0 },
   1668     { X86::VMINPDZrr,         X86::VMINPDZrm,           0 },
   1669     { X86::VMAXPSZrr,         X86::VMAXPSZrm,           0 },
   1670     { X86::VMAXPDZrr,         X86::VMAXPDZrm,           0 },
   1671     { X86::VPADDDZrr,         X86::VPADDDZrm,           0 },
   1672     { X86::VPADDQZrr,         X86::VPADDQZrm,           0 },
   1673     { X86::VPERMPDZri,        X86::VPERMPDZmi,          0 },
   1674     { X86::VPERMPSZrr,        X86::VPERMPSZrm,          0 },
   1675     { X86::VPMAXSDZrr,        X86::VPMAXSDZrm,          0 },
   1676     { X86::VPMAXSQZrr,        X86::VPMAXSQZrm,          0 },
   1677     { X86::VPMAXUDZrr,        X86::VPMAXUDZrm,          0 },
   1678     { X86::VPMAXUQZrr,        X86::VPMAXUQZrm,          0 },
   1679     { X86::VPMINSDZrr,        X86::VPMINSDZrm,          0 },
   1680     { X86::VPMINSQZrr,        X86::VPMINSQZrm,          0 },
   1681     { X86::VPMINUDZrr,        X86::VPMINUDZrm,          0 },
   1682     { X86::VPMINUQZrr,        X86::VPMINUQZrm,          0 },
   1683     { X86::VPMULDQZrr,        X86::VPMULDQZrm,          0 },
   1684     { X86::VPSLLVDZrr,        X86::VPSLLVDZrm,          0 },
   1685     { X86::VPSLLVQZrr,        X86::VPSLLVQZrm,          0 },
   1686     { X86::VPSRAVDZrr,        X86::VPSRAVDZrm,          0 },
   1687     { X86::VPSRLVDZrr,        X86::VPSRLVDZrm,          0 },
   1688     { X86::VPSRLVQZrr,        X86::VPSRLVQZrm,          0 },
   1689     { X86::VPSUBDZrr,         X86::VPSUBDZrm,           0 },
   1690     { X86::VPSUBQZrr,         X86::VPSUBQZrm,           0 },
   1691     { X86::VSHUFPDZrri,       X86::VSHUFPDZrmi,         0 },
   1692     { X86::VSHUFPSZrri,       X86::VSHUFPSZrmi,         0 },
   1693     { X86::VALIGNQrri,        X86::VALIGNQrmi,          0 },
   1694     { X86::VALIGNDrri,        X86::VALIGNDrmi,          0 },
   1695     { X86::VPMULUDQZrr,       X86::VPMULUDQZrm,         0 },
   1696     { X86::VBROADCASTSSZrkz,  X86::VBROADCASTSSZmkz,    TB_NO_REVERSE },
   1697     { X86::VBROADCASTSDZrkz,  X86::VBROADCASTSDZmkz,    TB_NO_REVERSE },
   1698 
   1699     // AVX-512{F,VL} foldable instructions
   1700     { X86::VBROADCASTSSZ256rkz,  X86::VBROADCASTSSZ256mkz,      TB_NO_REVERSE },
   1701     { X86::VBROADCASTSDZ256rkz,  X86::VBROADCASTSDZ256mkz,      TB_NO_REVERSE },
   1702     { X86::VBROADCASTSSZ128rkz,  X86::VBROADCASTSSZ128mkz,      TB_NO_REVERSE },
   1703 
   1704     // AVX-512{F,VL} foldable instructions
   1705     { X86::VADDPDZ128rr,      X86::VADDPDZ128rm,        0 },
   1706     { X86::VADDPDZ256rr,      X86::VADDPDZ256rm,        0 },
   1707     { X86::VADDPSZ128rr,      X86::VADDPSZ128rm,        0 },
   1708     { X86::VADDPSZ256rr,      X86::VADDPSZ256rm,        0 },
   1709 
   1710     // AES foldable instructions
   1711     { X86::AESDECLASTrr,      X86::AESDECLASTrm,        TB_ALIGN_16 },
   1712     { X86::AESDECrr,          X86::AESDECrm,            TB_ALIGN_16 },
   1713     { X86::AESENCLASTrr,      X86::AESENCLASTrm,        TB_ALIGN_16 },
   1714     { X86::AESENCrr,          X86::AESENCrm,            TB_ALIGN_16 },
   1715     { X86::VAESDECLASTrr,     X86::VAESDECLASTrm,       0 },
   1716     { X86::VAESDECrr,         X86::VAESDECrm,           0 },
   1717     { X86::VAESENCLASTrr,     X86::VAESENCLASTrm,       0 },
   1718     { X86::VAESENCrr,         X86::VAESENCrm,           0 },
   1719 
   1720     // SHA foldable instructions
   1721     { X86::SHA1MSG1rr,        X86::SHA1MSG1rm,          TB_ALIGN_16 },
   1722     { X86::SHA1MSG2rr,        X86::SHA1MSG2rm,          TB_ALIGN_16 },
   1723     { X86::SHA1NEXTErr,       X86::SHA1NEXTErm,         TB_ALIGN_16 },
   1724     { X86::SHA1RNDS4rri,      X86::SHA1RNDS4rmi,        TB_ALIGN_16 },
   1725     { X86::SHA256MSG1rr,      X86::SHA256MSG1rm,        TB_ALIGN_16 },
   1726     { X86::SHA256MSG2rr,      X86::SHA256MSG2rm,        TB_ALIGN_16 },
   1727     { X86::SHA256RNDS2rr,     X86::SHA256RNDS2rm,       TB_ALIGN_16 }
   1728   };
   1729 
   1730   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) {
   1731     unsigned RegOp = MemoryFoldTable2[i].RegOp;
   1732     unsigned MemOp = MemoryFoldTable2[i].MemOp;
   1733     unsigned Flags = MemoryFoldTable2[i].Flags;
   1734     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
   1735                   RegOp, MemOp,
   1736                   // Index 2, folded load
   1737                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
   1738   }
   1739 
   1740   static const X86MemoryFoldTableEntry MemoryFoldTable3[] = {
   1741     // FMA foldable instructions
   1742     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         TB_ALIGN_NONE },
   1743     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         TB_ALIGN_NONE },
   1744     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         TB_ALIGN_NONE },
   1745     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         TB_ALIGN_NONE },
   1746     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         TB_ALIGN_NONE },
   1747     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         TB_ALIGN_NONE },
   1748 
   1749     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_NONE },
   1750     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_NONE },
   1751     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_NONE },
   1752     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_NONE },
   1753     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_NONE },
   1754     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_NONE },
   1755     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_NONE },
   1756     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_NONE },
   1757     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_NONE },
   1758     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_NONE },
   1759     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_NONE },
   1760     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_NONE },
   1761 
   1762     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        TB_ALIGN_NONE },
   1763     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        TB_ALIGN_NONE },
   1764     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        TB_ALIGN_NONE },
   1765     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        TB_ALIGN_NONE },
   1766     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        TB_ALIGN_NONE },
   1767     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        TB_ALIGN_NONE },
   1768 
   1769     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_NONE },
   1770     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_NONE },
   1771     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_NONE },
   1772     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_NONE },
   1773     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_NONE },
   1774     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_NONE },
   1775     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_NONE },
   1776     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_NONE },
   1777     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_NONE },
   1778     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_NONE },
   1779     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_NONE },
   1780     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_NONE },
   1781 
   1782     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         TB_ALIGN_NONE },
   1783     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         TB_ALIGN_NONE },
   1784     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         TB_ALIGN_NONE },
   1785     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         TB_ALIGN_NONE },
   1786     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         TB_ALIGN_NONE },
   1787     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         TB_ALIGN_NONE },
   1788 
   1789     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_NONE },
   1790     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_NONE },
   1791     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_NONE },
   1792     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_NONE },
   1793     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_NONE },
   1794     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_NONE },
   1795     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_NONE },
   1796     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_NONE },
   1797     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_NONE },
   1798     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_NONE },
   1799     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_NONE },
   1800     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_NONE },
   1801 
   1802     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        TB_ALIGN_NONE },
   1803     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        TB_ALIGN_NONE },
   1804     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        TB_ALIGN_NONE },
   1805     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        TB_ALIGN_NONE },
   1806     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        TB_ALIGN_NONE },
   1807     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        TB_ALIGN_NONE },
   1808 
   1809     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_NONE },
   1810     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_NONE },
   1811     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_NONE },
   1812     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_NONE },
   1813     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_NONE },
   1814     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_NONE },
   1815     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_NONE },
   1816     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_NONE },
   1817     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_NONE },
   1818     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_NONE },
   1819     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_NONE },
   1820     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_NONE },
   1821 
   1822     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_NONE },
   1823     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_NONE },
   1824     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_NONE },
   1825     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_NONE },
   1826     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_NONE },
   1827     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_NONE },
   1828     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_NONE },
   1829     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_NONE },
   1830     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_NONE },
   1831     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_NONE },
   1832     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_NONE },
   1833     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_NONE },
   1834 
   1835     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_NONE },
   1836     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_NONE },
   1837     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_NONE },
   1838     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_NONE },
   1839     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_NONE },
   1840     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_NONE },
   1841     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_NONE },
   1842     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_NONE },
   1843     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_NONE },
   1844     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_NONE },
   1845     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_NONE },
   1846     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_NONE },
   1847 
   1848     // FMA4 foldable patterns
   1849     { X86::VFMADDSS4rr,           X86::VFMADDSS4rm,           0           },
   1850     { X86::VFMADDSD4rr,           X86::VFMADDSD4rm,           0           },
   1851     { X86::VFMADDPS4rr,           X86::VFMADDPS4rm,           TB_ALIGN_16 },
   1852     { X86::VFMADDPD4rr,           X86::VFMADDPD4rm,           TB_ALIGN_16 },
   1853     { X86::VFMADDPS4rrY,          X86::VFMADDPS4rmY,          TB_ALIGN_32 },
   1854     { X86::VFMADDPD4rrY,          X86::VFMADDPD4rmY,          TB_ALIGN_32 },
   1855     { X86::VFNMADDSS4rr,          X86::VFNMADDSS4rm,          0           },
   1856     { X86::VFNMADDSD4rr,          X86::VFNMADDSD4rm,          0           },
   1857     { X86::VFNMADDPS4rr,          X86::VFNMADDPS4rm,          TB_ALIGN_16 },
   1858     { X86::VFNMADDPD4rr,          X86::VFNMADDPD4rm,          TB_ALIGN_16 },
   1859     { X86::VFNMADDPS4rrY,         X86::VFNMADDPS4rmY,         TB_ALIGN_32 },
   1860     { X86::VFNMADDPD4rrY,         X86::VFNMADDPD4rmY,         TB_ALIGN_32 },
   1861     { X86::VFMSUBSS4rr,           X86::VFMSUBSS4rm,           0           },
   1862     { X86::VFMSUBSD4rr,           X86::VFMSUBSD4rm,           0           },
   1863     { X86::VFMSUBPS4rr,           X86::VFMSUBPS4rm,           TB_ALIGN_16 },
   1864     { X86::VFMSUBPD4rr,           X86::VFMSUBPD4rm,           TB_ALIGN_16 },
   1865     { X86::VFMSUBPS4rrY,          X86::VFMSUBPS4rmY,          TB_ALIGN_32 },
   1866     { X86::VFMSUBPD4rrY,          X86::VFMSUBPD4rmY,          TB_ALIGN_32 },
   1867     { X86::VFNMSUBSS4rr,          X86::VFNMSUBSS4rm,          0           },
   1868     { X86::VFNMSUBSD4rr,          X86::VFNMSUBSD4rm,          0           },
   1869     { X86::VFNMSUBPS4rr,          X86::VFNMSUBPS4rm,          TB_ALIGN_16 },
   1870     { X86::VFNMSUBPD4rr,          X86::VFNMSUBPD4rm,          TB_ALIGN_16 },
   1871     { X86::VFNMSUBPS4rrY,         X86::VFNMSUBPS4rmY,         TB_ALIGN_32 },
   1872     { X86::VFNMSUBPD4rrY,         X86::VFNMSUBPD4rmY,         TB_ALIGN_32 },
   1873     { X86::VFMADDSUBPS4rr,        X86::VFMADDSUBPS4rm,        TB_ALIGN_16 },
   1874     { X86::VFMADDSUBPD4rr,        X86::VFMADDSUBPD4rm,        TB_ALIGN_16 },
   1875     { X86::VFMADDSUBPS4rrY,       X86::VFMADDSUBPS4rmY,       TB_ALIGN_32 },
   1876     { X86::VFMADDSUBPD4rrY,       X86::VFMADDSUBPD4rmY,       TB_ALIGN_32 },
   1877     { X86::VFMSUBADDPS4rr,        X86::VFMSUBADDPS4rm,        TB_ALIGN_16 },
   1878     { X86::VFMSUBADDPD4rr,        X86::VFMSUBADDPD4rm,        TB_ALIGN_16 },
   1879     { X86::VFMSUBADDPS4rrY,       X86::VFMSUBADDPS4rmY,       TB_ALIGN_32 },
   1880     { X86::VFMSUBADDPD4rrY,       X86::VFMSUBADDPD4rmY,       TB_ALIGN_32 },
   1881 
   1882     // XOP foldable instructions
   1883     { X86::VPCMOVrr,              X86::VPCMOVrm,              0 },
   1884     { X86::VPCMOVrrY,             X86::VPCMOVrmY,             0 },
   1885     { X86::VPERMIL2PDrr,          X86::VPERMIL2PDrm,          0 },
   1886     { X86::VPERMIL2PDrrY,         X86::VPERMIL2PDrmY,         0 },
   1887     { X86::VPERMIL2PSrr,          X86::VPERMIL2PSrm,          0 },
   1888     { X86::VPERMIL2PSrrY,         X86::VPERMIL2PSrmY,         0 },
   1889     { X86::VPPERMrr,              X86::VPPERMrm,              0 },
   1890 
   1891     // AVX-512 VPERMI instructions with 3 source operands.
   1892     { X86::VPERMI2Drr,            X86::VPERMI2Drm,            0 },
   1893     { X86::VPERMI2Qrr,            X86::VPERMI2Qrm,            0 },
   1894     { X86::VPERMI2PSrr,           X86::VPERMI2PSrm,           0 },
   1895     { X86::VPERMI2PDrr,           X86::VPERMI2PDrm,           0 },
   1896     { X86::VBLENDMPDZrr,          X86::VBLENDMPDZrm,          0 },
   1897     { X86::VBLENDMPSZrr,          X86::VBLENDMPSZrm,          0 },
   1898     { X86::VPBLENDMDZrr,          X86::VPBLENDMDZrm,          0 },
   1899     { X86::VPBLENDMQZrr,          X86::VPBLENDMQZrm,          0 },
   1900     { X86::VBROADCASTSSZrk,       X86::VBROADCASTSSZmk,       TB_NO_REVERSE },
   1901     { X86::VBROADCASTSDZrk,       X86::VBROADCASTSDZmk,       TB_NO_REVERSE },
   1902     { X86::VBROADCASTSSZ256rk,    X86::VBROADCASTSSZ256mk,    TB_NO_REVERSE },
   1903     { X86::VBROADCASTSDZ256rk,    X86::VBROADCASTSDZ256mk,    TB_NO_REVERSE },
   1904     { X86::VBROADCASTSSZ128rk,    X86::VBROADCASTSSZ128mk,    TB_NO_REVERSE },
   1905      // AVX-512 arithmetic instructions
   1906     { X86::VADDPSZrrkz,           X86::VADDPSZrmkz,           0 },
   1907     { X86::VADDPDZrrkz,           X86::VADDPDZrmkz,           0 },
   1908     { X86::VSUBPSZrrkz,           X86::VSUBPSZrmkz,           0 },
   1909     { X86::VSUBPDZrrkz,           X86::VSUBPDZrmkz,           0 },
   1910     { X86::VMULPSZrrkz,           X86::VMULPSZrmkz,           0 },
   1911     { X86::VMULPDZrrkz,           X86::VMULPDZrmkz,           0 },
   1912     { X86::VDIVPSZrrkz,           X86::VDIVPSZrmkz,           0 },
   1913     { X86::VDIVPDZrrkz,           X86::VDIVPDZrmkz,           0 },
   1914     { X86::VMINPSZrrkz,           X86::VMINPSZrmkz,           0 },
   1915     { X86::VMINPDZrrkz,           X86::VMINPDZrmkz,           0 },
   1916     { X86::VMAXPSZrrkz,           X86::VMAXPSZrmkz,           0 },
   1917     { X86::VMAXPDZrrkz,           X86::VMAXPDZrmkz,           0 },
   1918     // AVX-512{F,VL} arithmetic instructions 256-bit
   1919     { X86::VADDPSZ256rrkz,        X86::VADDPSZ256rmkz,        0 },
   1920     { X86::VADDPDZ256rrkz,        X86::VADDPDZ256rmkz,        0 },
   1921     { X86::VSUBPSZ256rrkz,        X86::VSUBPSZ256rmkz,        0 },
   1922     { X86::VSUBPDZ256rrkz,        X86::VSUBPDZ256rmkz,        0 },
   1923     { X86::VMULPSZ256rrkz,        X86::VMULPSZ256rmkz,        0 },
   1924     { X86::VMULPDZ256rrkz,        X86::VMULPDZ256rmkz,        0 },
   1925     { X86::VDIVPSZ256rrkz,        X86::VDIVPSZ256rmkz,        0 },
   1926     { X86::VDIVPDZ256rrkz,        X86::VDIVPDZ256rmkz,        0 },
   1927     { X86::VMINPSZ256rrkz,        X86::VMINPSZ256rmkz,        0 },
   1928     { X86::VMINPDZ256rrkz,        X86::VMINPDZ256rmkz,        0 },
   1929     { X86::VMAXPSZ256rrkz,        X86::VMAXPSZ256rmkz,        0 },
   1930     { X86::VMAXPDZ256rrkz,        X86::VMAXPDZ256rmkz,        0 },
   1931     // AVX-512{F,VL} arithmetic instructions 128-bit
   1932     { X86::VADDPSZ128rrkz,        X86::VADDPSZ128rmkz,        0 },
   1933     { X86::VADDPDZ128rrkz,        X86::VADDPDZ128rmkz,        0 },
   1934     { X86::VSUBPSZ128rrkz,        X86::VSUBPSZ128rmkz,        0 },
   1935     { X86::VSUBPDZ128rrkz,        X86::VSUBPDZ128rmkz,        0 },
   1936     { X86::VMULPSZ128rrkz,        X86::VMULPSZ128rmkz,        0 },
   1937     { X86::VMULPDZ128rrkz,        X86::VMULPDZ128rmkz,        0 },
   1938     { X86::VDIVPSZ128rrkz,        X86::VDIVPSZ128rmkz,        0 },
   1939     { X86::VDIVPDZ128rrkz,        X86::VDIVPDZ128rmkz,        0 },
   1940     { X86::VMINPSZ128rrkz,        X86::VMINPSZ128rmkz,        0 },
   1941     { X86::VMINPDZ128rrkz,        X86::VMINPDZ128rmkz,        0 },
   1942     { X86::VMAXPSZ128rrkz,        X86::VMAXPSZ128rmkz,        0 },
   1943     { X86::VMAXPDZ128rrkz,        X86::VMAXPDZ128rmkz,        0 }
   1944   };
   1945 
   1946   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) {
   1947     unsigned RegOp = MemoryFoldTable3[i].RegOp;
   1948     unsigned MemOp = MemoryFoldTable3[i].MemOp;
   1949     unsigned Flags = MemoryFoldTable3[i].Flags;
   1950     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
   1951                   RegOp, MemOp,
   1952                   // Index 3, folded load
   1953                   Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
   1954   }
   1955 
   1956   static const X86MemoryFoldTableEntry MemoryFoldTable4[] = {
   1957      // AVX-512 foldable instructions
   1958     { X86::VADDPSZrrk,         X86::VADDPSZrmk,           0 },
   1959     { X86::VADDPDZrrk,         X86::VADDPDZrmk,           0 },
   1960     { X86::VSUBPSZrrk,         X86::VSUBPSZrmk,           0 },
   1961     { X86::VSUBPDZrrk,         X86::VSUBPDZrmk,           0 },
   1962     { X86::VMULPSZrrk,         X86::VMULPSZrmk,           0 },
   1963     { X86::VMULPDZrrk,         X86::VMULPDZrmk,           0 },
   1964     { X86::VDIVPSZrrk,         X86::VDIVPSZrmk,           0 },
   1965     { X86::VDIVPDZrrk,         X86::VDIVPDZrmk,           0 },
   1966     { X86::VMINPSZrrk,         X86::VMINPSZrmk,           0 },
   1967     { X86::VMINPDZrrk,         X86::VMINPDZrmk,           0 },
   1968     { X86::VMAXPSZrrk,         X86::VMAXPSZrmk,           0 },
   1969     { X86::VMAXPDZrrk,         X86::VMAXPDZrmk,           0 },
   1970     // AVX-512{F,VL} foldable instructions 256-bit
   1971     { X86::VADDPSZ256rrk,      X86::VADDPSZ256rmk,        0 },
   1972     { X86::VADDPDZ256rrk,      X86::VADDPDZ256rmk,        0 },
   1973     { X86::VSUBPSZ256rrk,      X86::VSUBPSZ256rmk,        0 },
   1974     { X86::VSUBPDZ256rrk,      X86::VSUBPDZ256rmk,        0 },
   1975     { X86::VMULPSZ256rrk,      X86::VMULPSZ256rmk,        0 },
   1976     { X86::VMULPDZ256rrk,      X86::VMULPDZ256rmk,        0 },
   1977     { X86::VDIVPSZ256rrk,      X86::VDIVPSZ256rmk,        0 },
   1978     { X86::VDIVPDZ256rrk,      X86::VDIVPDZ256rmk,        0 },
   1979     { X86::VMINPSZ256rrk,      X86::VMINPSZ256rmk,        0 },
   1980     { X86::VMINPDZ256rrk,      X86::VMINPDZ256rmk,        0 },
   1981     { X86::VMAXPSZ256rrk,      X86::VMAXPSZ256rmk,        0 },
   1982     { X86::VMAXPDZ256rrk,      X86::VMAXPDZ256rmk,        0 },
   1983     // AVX-512{F,VL} foldable instructions 128-bit
   1984     { X86::VADDPSZ128rrk,      X86::VADDPSZ128rmk,        0 },
   1985     { X86::VADDPDZ128rrk,      X86::VADDPDZ128rmk,        0 },
   1986     { X86::VSUBPSZ128rrk,      X86::VSUBPSZ128rmk,        0 },
   1987     { X86::VSUBPDZ128rrk,      X86::VSUBPDZ128rmk,        0 },
   1988     { X86::VMULPSZ128rrk,      X86::VMULPSZ128rmk,        0 },
   1989     { X86::VMULPDZ128rrk,      X86::VMULPDZ128rmk,        0 },
   1990     { X86::VDIVPSZ128rrk,      X86::VDIVPSZ128rmk,        0 },
   1991     { X86::VDIVPDZ128rrk,      X86::VDIVPDZ128rmk,        0 },
   1992     { X86::VMINPSZ128rrk,      X86::VMINPSZ128rmk,        0 },
   1993     { X86::VMINPDZ128rrk,      X86::VMINPDZ128rmk,        0 },
   1994     { X86::VMAXPSZ128rrk,      X86::VMAXPSZ128rmk,        0 },
   1995     { X86::VMAXPDZ128rrk,      X86::VMAXPDZ128rmk,        0 }
   1996   };
   1997 
   1998   for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) {
   1999     unsigned RegOp = MemoryFoldTable4[i].RegOp;
   2000     unsigned MemOp = MemoryFoldTable4[i].MemOp;
   2001     unsigned Flags = MemoryFoldTable4[i].Flags;
   2002     AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable,
   2003                   RegOp, MemOp,
   2004                   // Index 4, folded load
   2005                   Flags | TB_INDEX_4 | TB_FOLDED_LOAD);
   2006   }
   2007 }
   2008 
   2009 void
   2010 X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
   2011                             MemOp2RegOpTableType &M2RTable,
   2012                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
   2013     if ((Flags & TB_NO_FORWARD) == 0) {
   2014       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
   2015       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
   2016     }
   2017     if ((Flags & TB_NO_REVERSE) == 0) {
   2018       assert(!M2RTable.count(MemOp) &&
   2019            "Duplicated entries in unfolding maps?");
   2020       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
   2021     }
   2022 }
   2023 
   2024 bool
   2025 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
   2026                                     unsigned &SrcReg, unsigned &DstReg,
   2027                                     unsigned &SubIdx) const {
   2028   switch (MI.getOpcode()) {
   2029   default: break;
   2030   case X86::MOVSX16rr8:
   2031   case X86::MOVZX16rr8:
   2032   case X86::MOVSX32rr8:
   2033   case X86::MOVZX32rr8:
   2034   case X86::MOVSX64rr8:
   2035     if (!Subtarget.is64Bit())
   2036       // It's not always legal to reference the low 8-bit of the larger
   2037       // register in 32-bit mode.
   2038       return false;
   2039   case X86::MOVSX32rr16:
   2040   case X86::MOVZX32rr16:
   2041   case X86::MOVSX64rr16:
   2042   case X86::MOVSX64rr32: {
   2043     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
   2044       // Be conservative.
   2045       return false;
   2046     SrcReg = MI.getOperand(1).getReg();
   2047     DstReg = MI.getOperand(0).getReg();
   2048     switch (MI.getOpcode()) {
   2049     default: llvm_unreachable("Unreachable!");
   2050     case X86::MOVSX16rr8:
   2051     case X86::MOVZX16rr8:
   2052     case X86::MOVSX32rr8:
   2053     case X86::MOVZX32rr8:
   2054     case X86::MOVSX64rr8:
   2055       SubIdx = X86::sub_8bit;
   2056       break;
   2057     case X86::MOVSX32rr16:
   2058     case X86::MOVZX32rr16:
   2059     case X86::MOVSX64rr16:
   2060       SubIdx = X86::sub_16bit;
   2061       break;
   2062     case X86::MOVSX64rr32:
   2063       SubIdx = X86::sub_32bit;
   2064       break;
   2065     }
   2066     return true;
   2067   }
   2068   }
   2069   return false;
   2070 }
   2071 
   2072 int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const {
   2073   const MachineFunction *MF = MI->getParent()->getParent();
   2074   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
   2075 
   2076   if (MI->getOpcode() == getCallFrameSetupOpcode() ||
   2077       MI->getOpcode() == getCallFrameDestroyOpcode()) {
   2078     unsigned StackAlign = TFI->getStackAlignment();
   2079     int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign *
   2080                  StackAlign;
   2081 
   2082     SPAdj -= MI->getOperand(1).getImm();
   2083 
   2084     if (MI->getOpcode() == getCallFrameSetupOpcode())
   2085       return SPAdj;
   2086     else
   2087       return -SPAdj;
   2088   }
   2089 
   2090   // To know whether a call adjusts the stack, we need information
   2091   // that is bound to the following ADJCALLSTACKUP pseudo.
   2092   // Look for the next ADJCALLSTACKUP that follows the call.
   2093   if (MI->isCall()) {
   2094     const MachineBasicBlock* MBB = MI->getParent();
   2095     auto I = ++MachineBasicBlock::const_iterator(MI);
   2096     for (auto E = MBB->end(); I != E; ++I) {
   2097       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
   2098           I->isCall())
   2099         break;
   2100     }
   2101 
   2102     // If we could not find a frame destroy opcode, then it has already
   2103     // been simplified, so we don't care.
   2104     if (I->getOpcode() != getCallFrameDestroyOpcode())
   2105       return 0;
   2106 
   2107     return -(I->getOperand(1).getImm());
   2108   }
   2109 
   2110   // Currently handle only PUSHes we can reasonably expect to see
   2111   // in call sequences
   2112   switch (MI->getOpcode()) {
   2113   default:
   2114     return 0;
   2115   case X86::PUSH32i8:
   2116   case X86::PUSH32r:
   2117   case X86::PUSH32rmm:
   2118   case X86::PUSH32rmr:
   2119   case X86::PUSHi32:
   2120     return 4;
   2121   }
   2122 }
   2123 
   2124 /// Return true and the FrameIndex if the specified
   2125 /// operand and follow operands form a reference to the stack frame.
   2126 bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
   2127                                   int &FrameIndex) const {
   2128   if (MI->getOperand(Op+X86::AddrBaseReg).isFI() &&
   2129       MI->getOperand(Op+X86::AddrScaleAmt).isImm() &&
   2130       MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
   2131       MI->getOperand(Op+X86::AddrDisp).isImm() &&
   2132       MI->getOperand(Op+X86::AddrScaleAmt).getImm() == 1 &&
   2133       MI->getOperand(Op+X86::AddrIndexReg).getReg() == 0 &&
   2134       MI->getOperand(Op+X86::AddrDisp).getImm() == 0) {
   2135     FrameIndex = MI->getOperand(Op+X86::AddrBaseReg).getIndex();
   2136     return true;
   2137   }
   2138   return false;
   2139 }
   2140 
   2141 static bool isFrameLoadOpcode(int Opcode) {
   2142   switch (Opcode) {
   2143   default:
   2144     return false;
   2145   case X86::MOV8rm:
   2146   case X86::MOV16rm:
   2147   case X86::MOV32rm:
   2148   case X86::MOV64rm:
   2149   case X86::LD_Fp64m:
   2150   case X86::MOVSSrm:
   2151   case X86::MOVSDrm:
   2152   case X86::MOVAPSrm:
   2153   case X86::MOVAPDrm:
   2154   case X86::MOVDQArm:
   2155   case X86::VMOVSSrm:
   2156   case X86::VMOVSDrm:
   2157   case X86::VMOVAPSrm:
   2158   case X86::VMOVAPDrm:
   2159   case X86::VMOVDQArm:
   2160   case X86::VMOVUPSYrm:
   2161   case X86::VMOVAPSYrm:
   2162   case X86::VMOVUPDYrm:
   2163   case X86::VMOVAPDYrm:
   2164   case X86::VMOVDQUYrm:
   2165   case X86::VMOVDQAYrm:
   2166   case X86::MMX_MOVD64rm:
   2167   case X86::MMX_MOVQ64rm:
   2168   case X86::VMOVAPSZrm:
   2169   case X86::VMOVUPSZrm:
   2170     return true;
   2171   }
   2172 }
   2173 
   2174 static bool isFrameStoreOpcode(int Opcode) {
   2175   switch (Opcode) {
   2176   default: break;
   2177   case X86::MOV8mr:
   2178   case X86::MOV16mr:
   2179   case X86::MOV32mr:
   2180   case X86::MOV64mr:
   2181   case X86::ST_FpP64m:
   2182   case X86::MOVSSmr:
   2183   case X86::MOVSDmr:
   2184   case X86::MOVAPSmr:
   2185   case X86::MOVAPDmr:
   2186   case X86::MOVDQAmr:
   2187   case X86::VMOVSSmr:
   2188   case X86::VMOVSDmr:
   2189   case X86::VMOVAPSmr:
   2190   case X86::VMOVAPDmr:
   2191   case X86::VMOVDQAmr:
   2192   case X86::VMOVUPSYmr:
   2193   case X86::VMOVAPSYmr:
   2194   case X86::VMOVUPDYmr:
   2195   case X86::VMOVAPDYmr:
   2196   case X86::VMOVDQUYmr:
   2197   case X86::VMOVDQAYmr:
   2198   case X86::VMOVUPSZmr:
   2199   case X86::VMOVAPSZmr:
   2200   case X86::MMX_MOVD64mr:
   2201   case X86::MMX_MOVQ64mr:
   2202   case X86::MMX_MOVNTQmr:
   2203     return true;
   2204   }
   2205   return false;
   2206 }
   2207 
   2208 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   2209                                            int &FrameIndex) const {
   2210   if (isFrameLoadOpcode(MI->getOpcode()))
   2211     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
   2212       return MI->getOperand(0).getReg();
   2213   return 0;
   2214 }
   2215 
   2216 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   2217                                                  int &FrameIndex) const {
   2218   if (isFrameLoadOpcode(MI->getOpcode())) {
   2219     unsigned Reg;
   2220     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
   2221       return Reg;
   2222     // Check for post-frame index elimination operations
   2223     const MachineMemOperand *Dummy;
   2224     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   2225   }
   2226   return 0;
   2227 }
   2228 
   2229 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
   2230                                           int &FrameIndex) const {
   2231   if (isFrameStoreOpcode(MI->getOpcode()))
   2232     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
   2233         isFrameOperand(MI, 0, FrameIndex))
   2234       return MI->getOperand(X86::AddrNumOperands).getReg();
   2235   return 0;
   2236 }
   2237 
   2238 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
   2239                                                 int &FrameIndex) const {
   2240   if (isFrameStoreOpcode(MI->getOpcode())) {
   2241     unsigned Reg;
   2242     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
   2243       return Reg;
   2244     // Check for post-frame index elimination operations
   2245     const MachineMemOperand *Dummy;
   2246     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
   2247   }
   2248   return 0;
   2249 }
   2250 
   2251 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
   2252 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
   2253   // Don't waste compile time scanning use-def chains of physregs.
   2254   if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
   2255     return false;
   2256   bool isPICBase = false;
   2257   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
   2258          E = MRI.def_instr_end(); I != E; ++I) {
   2259     MachineInstr *DefMI = &*I;
   2260     if (DefMI->getOpcode() != X86::MOVPC32r)
   2261       return false;
   2262     assert(!isPICBase && "More than one PIC base?");
   2263     isPICBase = true;
   2264   }
   2265   return isPICBase;
   2266 }
   2267 
   2268 bool
   2269 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
   2270                                                 AliasAnalysis *AA) const {
   2271   switch (MI->getOpcode()) {
   2272   default: break;
   2273   case X86::MOV8rm:
   2274   case X86::MOV16rm:
   2275   case X86::MOV32rm:
   2276   case X86::MOV64rm:
   2277   case X86::LD_Fp64m:
   2278   case X86::MOVSSrm:
   2279   case X86::MOVSDrm:
   2280   case X86::MOVAPSrm:
   2281   case X86::MOVUPSrm:
   2282   case X86::MOVAPDrm:
   2283   case X86::MOVDQArm:
   2284   case X86::MOVDQUrm:
   2285   case X86::VMOVSSrm:
   2286   case X86::VMOVSDrm:
   2287   case X86::VMOVAPSrm:
   2288   case X86::VMOVUPSrm:
   2289   case X86::VMOVAPDrm:
   2290   case X86::VMOVDQArm:
   2291   case X86::VMOVDQUrm:
   2292   case X86::VMOVAPSYrm:
   2293   case X86::VMOVUPSYrm:
   2294   case X86::VMOVAPDYrm:
   2295   case X86::VMOVDQAYrm:
   2296   case X86::VMOVDQUYrm:
   2297   case X86::MMX_MOVD64rm:
   2298   case X86::MMX_MOVQ64rm:
   2299   case X86::FsVMOVAPSrm:
   2300   case X86::FsVMOVAPDrm:
   2301   case X86::FsMOVAPSrm:
   2302   case X86::FsMOVAPDrm: {
   2303     // Loads from constant pools are trivially rematerializable.
   2304     if (MI->getOperand(1+X86::AddrBaseReg).isReg() &&
   2305         MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
   2306         MI->getOperand(1+X86::AddrIndexReg).isReg() &&
   2307         MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
   2308         MI->isInvariantLoad(AA)) {
   2309       unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
   2310       if (BaseReg == 0 || BaseReg == X86::RIP)
   2311         return true;
   2312       // Allow re-materialization of PIC load.
   2313       if (!ReMatPICStubLoad && MI->getOperand(1+X86::AddrDisp).isGlobal())
   2314         return false;
   2315       const MachineFunction &MF = *MI->getParent()->getParent();
   2316       const MachineRegisterInfo &MRI = MF.getRegInfo();
   2317       return regIsPICBase(BaseReg, MRI);
   2318     }
   2319     return false;
   2320   }
   2321 
   2322   case X86::LEA32r:
   2323   case X86::LEA64r: {
   2324     if (MI->getOperand(1+X86::AddrScaleAmt).isImm() &&
   2325         MI->getOperand(1+X86::AddrIndexReg).isReg() &&
   2326         MI->getOperand(1+X86::AddrIndexReg).getReg() == 0 &&
   2327         !MI->getOperand(1+X86::AddrDisp).isReg()) {
   2328       // lea fi#, lea GV, etc. are all rematerializable.
   2329       if (!MI->getOperand(1+X86::AddrBaseReg).isReg())
   2330         return true;
   2331       unsigned BaseReg = MI->getOperand(1+X86::AddrBaseReg).getReg();
   2332       if (BaseReg == 0)
   2333         return true;
   2334       // Allow re-materialization of lea PICBase + x.
   2335       const MachineFunction &MF = *MI->getParent()->getParent();
   2336       const MachineRegisterInfo &MRI = MF.getRegInfo();
   2337       return regIsPICBase(BaseReg, MRI);
   2338     }
   2339     return false;
   2340   }
   2341   }
   2342 
   2343   // All other instructions marked M_REMATERIALIZABLE are always trivially
   2344   // rematerializable.
   2345   return true;
   2346 }
   2347 
   2348 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
   2349                                          MachineBasicBlock::iterator I) const {
   2350   MachineBasicBlock::iterator E = MBB.end();
   2351 
   2352   // For compile time consideration, if we are not able to determine the
   2353   // safety after visiting 4 instructions in each direction, we will assume
   2354   // it's not safe.
   2355   MachineBasicBlock::iterator Iter = I;
   2356   for (unsigned i = 0; Iter != E && i < 4; ++i) {
   2357     bool SeenDef = false;
   2358     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   2359       MachineOperand &MO = Iter->getOperand(j);
   2360       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   2361         SeenDef = true;
   2362       if (!MO.isReg())
   2363         continue;
   2364       if (MO.getReg() == X86::EFLAGS) {
   2365         if (MO.isUse())
   2366           return false;
   2367         SeenDef = true;
   2368       }
   2369     }
   2370 
   2371     if (SeenDef)
   2372       // This instruction defines EFLAGS, no need to look any further.
   2373       return true;
   2374     ++Iter;
   2375     // Skip over DBG_VALUE.
   2376     while (Iter != E && Iter->isDebugValue())
   2377       ++Iter;
   2378   }
   2379 
   2380   // It is safe to clobber EFLAGS at the end of a block of no successor has it
   2381   // live in.
   2382   if (Iter == E) {
   2383     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
   2384            SE = MBB.succ_end(); SI != SE; ++SI)
   2385       if ((*SI)->isLiveIn(X86::EFLAGS))
   2386         return false;
   2387     return true;
   2388   }
   2389 
   2390   MachineBasicBlock::iterator B = MBB.begin();
   2391   Iter = I;
   2392   for (unsigned i = 0; i < 4; ++i) {
   2393     // If we make it to the beginning of the block, it's safe to clobber
   2394     // EFLAGS iff EFLAGS is not live-in.
   2395     if (Iter == B)
   2396       return !MBB.isLiveIn(X86::EFLAGS);
   2397 
   2398     --Iter;
   2399     // Skip over DBG_VALUE.
   2400     while (Iter != B && Iter->isDebugValue())
   2401       --Iter;
   2402 
   2403     bool SawKill = false;
   2404     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
   2405       MachineOperand &MO = Iter->getOperand(j);
   2406       // A register mask may clobber EFLAGS, but we should still look for a
   2407       // live EFLAGS def.
   2408       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
   2409         SawKill = true;
   2410       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
   2411         if (MO.isDef()) return MO.isDead();
   2412         if (MO.isKill()) SawKill = true;
   2413       }
   2414     }
   2415 
   2416     if (SawKill)
   2417       // This instruction kills EFLAGS and doesn't redefine it, so
   2418       // there's no need to look further.
   2419       return true;
   2420   }
   2421 
   2422   // Conservative answer.
   2423   return false;
   2424 }
   2425 
   2426 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
   2427                                  MachineBasicBlock::iterator I,
   2428                                  unsigned DestReg, unsigned SubIdx,
   2429                                  const MachineInstr *Orig,
   2430                                  const TargetRegisterInfo &TRI) const {
   2431   // MOV32r0 is implemented with a xor which clobbers condition code.
   2432   // Re-materialize it as movri instructions to avoid side effects.
   2433   unsigned Opc = Orig->getOpcode();
   2434   if (Opc == X86::MOV32r0 && !isSafeToClobberEFLAGS(MBB, I)) {
   2435     DebugLoc DL = Orig->getDebugLoc();
   2436     BuildMI(MBB, I, DL, get(X86::MOV32ri)).addOperand(Orig->getOperand(0))
   2437       .addImm(0);
   2438   } else {
   2439     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   2440     MBB.insert(I, MI);
   2441   }
   2442 
   2443   MachineInstr *NewMI = std::prev(I);
   2444   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   2445 }
   2446 
   2447 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
   2448 static bool hasLiveCondCodeDef(MachineInstr *MI) {
   2449   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   2450     MachineOperand &MO = MI->getOperand(i);
   2451     if (MO.isReg() && MO.isDef() &&
   2452         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
   2453       return true;
   2454     }
   2455   }
   2456   return false;
   2457 }
   2458 
   2459 /// Check whether the shift count for a machine operand is non-zero.
   2460 inline static unsigned getTruncatedShiftCount(MachineInstr *MI,
   2461                                               unsigned ShiftAmtOperandIdx) {
   2462   // The shift count is six bits with the REX.W prefix and five bits without.
   2463   unsigned ShiftCountMask = (MI->getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
   2464   unsigned Imm = MI->getOperand(ShiftAmtOperandIdx).getImm();
   2465   return Imm & ShiftCountMask;
   2466 }
   2467 
   2468 /// Check whether the given shift count is appropriate
   2469 /// can be represented by a LEA instruction.
   2470 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
   2471   // Left shift instructions can be transformed into load-effective-address
   2472   // instructions if we can encode them appropriately.
   2473   // A LEA instruction utilizes a SIB byte to encode it's scale factor.
   2474   // The SIB.scale field is two bits wide which means that we can encode any
   2475   // shift amount less than 4.
   2476   return ShAmt < 4 && ShAmt > 0;
   2477 }
   2478 
   2479 bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
   2480                                   unsigned Opc, bool AllowSP,
   2481                                   unsigned &NewSrc, bool &isKill, bool &isUndef,
   2482                                   MachineOperand &ImplicitOp) const {
   2483   MachineFunction &MF = *MI->getParent()->getParent();
   2484   const TargetRegisterClass *RC;
   2485   if (AllowSP) {
   2486     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
   2487   } else {
   2488     RC = Opc != X86::LEA32r ?
   2489       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
   2490   }
   2491   unsigned SrcReg = Src.getReg();
   2492 
   2493   // For both LEA64 and LEA32 the register already has essentially the right
   2494   // type (32-bit or 64-bit) we may just need to forbid SP.
   2495   if (Opc != X86::LEA64_32r) {
   2496     NewSrc = SrcReg;
   2497     isKill = Src.isKill();
   2498     isUndef = Src.isUndef();
   2499 
   2500     if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
   2501         !MF.getRegInfo().constrainRegClass(NewSrc, RC))
   2502       return false;
   2503 
   2504     return true;
   2505   }
   2506 
   2507   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
   2508   // another we need to add 64-bit registers to the final MI.
   2509   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
   2510     ImplicitOp = Src;
   2511     ImplicitOp.setImplicit();
   2512 
   2513     NewSrc = getX86SubSuperRegister(Src.getReg(), MVT::i64);
   2514     MachineBasicBlock::LivenessQueryResult LQR =
   2515       MI->getParent()->computeRegisterLiveness(&getRegisterInfo(), NewSrc, MI);
   2516 
   2517     switch (LQR) {
   2518     case MachineBasicBlock::LQR_Unknown:
   2519       // We can't give sane liveness flags to the instruction, abandon LEA
   2520       // formation.
   2521       return false;
   2522     case MachineBasicBlock::LQR_Live:
   2523       isKill = MI->killsRegister(SrcReg);
   2524       isUndef = false;
   2525       break;
   2526     default:
   2527       // The physreg itself is dead, so we have to use it as an <undef>.
   2528       isKill = false;
   2529       isUndef = true;
   2530       break;
   2531     }
   2532   } else {
   2533     // Virtual register of the wrong class, we have to create a temporary 64-bit
   2534     // vreg to feed into the LEA.
   2535     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
   2536     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   2537             get(TargetOpcode::COPY))
   2538       .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
   2539         .addOperand(Src);
   2540 
   2541     // Which is obviously going to be dead after we're done with it.
   2542     isKill = true;
   2543     isUndef = false;
   2544   }
   2545 
   2546   // We've set all the parameters without issue.
   2547   return true;
   2548 }
   2549 
   2550 /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
   2551 /// LEA to form 3-address code by promoting to a 32-bit superregister and then
   2552 /// truncating back down to a 16-bit subregister.
   2553 MachineInstr *
   2554 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
   2555                                            MachineFunction::iterator &MFI,
   2556                                            MachineBasicBlock::iterator &MBBI,
   2557                                            LiveVariables *LV) const {
   2558   MachineInstr *MI = MBBI;
   2559   unsigned Dest = MI->getOperand(0).getReg();
   2560   unsigned Src = MI->getOperand(1).getReg();
   2561   bool isDead = MI->getOperand(0).isDead();
   2562   bool isKill = MI->getOperand(1).isKill();
   2563 
   2564   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
   2565   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   2566   unsigned Opc, leaInReg;
   2567   if (Subtarget.is64Bit()) {
   2568     Opc = X86::LEA64_32r;
   2569     leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   2570   } else {
   2571     Opc = X86::LEA32r;
   2572     leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   2573   }
   2574 
   2575   // Build and insert into an implicit UNDEF value. This is OK because
   2576   // well be shifting and then extracting the lower 16-bits.
   2577   // This has the potential to cause partial register stall. e.g.
   2578   //   movw    (%rbp,%rcx,2), %dx
   2579   //   leal    -65(%rdx), %esi
   2580   // But testing has shown this *does* help performance in 64-bit mode (at
   2581   // least on modern x86 machines).
   2582   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
   2583   MachineInstr *InsMI =
   2584     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   2585     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
   2586     .addReg(Src, getKillRegState(isKill));
   2587 
   2588   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
   2589                                     get(Opc), leaOutReg);
   2590   switch (MIOpc) {
   2591   default: llvm_unreachable("Unreachable!");
   2592   case X86::SHL16ri: {
   2593     unsigned ShAmt = MI->getOperand(2).getImm();
   2594     MIB.addReg(0).addImm(1 << ShAmt)
   2595        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
   2596     break;
   2597   }
   2598   case X86::INC16r:
   2599     addRegOffset(MIB, leaInReg, true, 1);
   2600     break;
   2601   case X86::DEC16r:
   2602     addRegOffset(MIB, leaInReg, true, -1);
   2603     break;
   2604   case X86::ADD16ri:
   2605   case X86::ADD16ri8:
   2606   case X86::ADD16ri_DB:
   2607   case X86::ADD16ri8_DB:
   2608     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
   2609     break;
   2610   case X86::ADD16rr:
   2611   case X86::ADD16rr_DB: {
   2612     unsigned Src2 = MI->getOperand(2).getReg();
   2613     bool isKill2 = MI->getOperand(2).isKill();
   2614     unsigned leaInReg2 = 0;
   2615     MachineInstr *InsMI2 = nullptr;
   2616     if (Src == Src2) {
   2617       // ADD16rr %reg1028<kill>, %reg1028
   2618       // just a single insert_subreg.
   2619       addRegReg(MIB, leaInReg, true, leaInReg, false);
   2620     } else {
   2621       if (Subtarget.is64Bit())
   2622         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
   2623       else
   2624         leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   2625       // Build and insert into an implicit UNDEF value. This is OK because
   2626       // well be shifting and then extracting the lower 16-bits.
   2627       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
   2628       InsMI2 =
   2629         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
   2630         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
   2631         .addReg(Src2, getKillRegState(isKill2));
   2632       addRegReg(MIB, leaInReg, true, leaInReg2, true);
   2633     }
   2634     if (LV && isKill2 && InsMI2)
   2635       LV->replaceKillInstruction(Src2, MI, InsMI2);
   2636     break;
   2637   }
   2638   }
   2639 
   2640   MachineInstr *NewMI = MIB;
   2641   MachineInstr *ExtMI =
   2642     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
   2643     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
   2644     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
   2645 
   2646   if (LV) {
   2647     // Update live variables
   2648     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
   2649     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
   2650     if (isKill)
   2651       LV->replaceKillInstruction(Src, MI, InsMI);
   2652     if (isDead)
   2653       LV->replaceKillInstruction(Dest, MI, ExtMI);
   2654   }
   2655 
   2656   return ExtMI;
   2657 }
   2658 
   2659 /// This method must be implemented by targets that
   2660 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
   2661 /// may be able to convert a two-address instruction into a true
   2662 /// three-address instruction on demand.  This allows the X86 target (for
   2663 /// example) to convert ADD and SHL instructions into LEA instructions if they
   2664 /// would require register copies due to two-addressness.
   2665 ///
   2666 /// This method returns a null pointer if the transformation cannot be
   2667 /// performed, otherwise it returns the new instruction.
   2668 ///
   2669 MachineInstr *
   2670 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
   2671                                     MachineBasicBlock::iterator &MBBI,
   2672                                     LiveVariables *LV) const {
   2673   MachineInstr *MI = MBBI;
   2674 
   2675   // The following opcodes also sets the condition code register(s). Only
   2676   // convert them to equivalent lea if the condition code register def's
   2677   // are dead!
   2678   if (hasLiveCondCodeDef(MI))
   2679     return nullptr;
   2680 
   2681   MachineFunction &MF = *MI->getParent()->getParent();
   2682   // All instructions input are two-addr instructions.  Get the known operands.
   2683   const MachineOperand &Dest = MI->getOperand(0);
   2684   const MachineOperand &Src = MI->getOperand(1);
   2685 
   2686   MachineInstr *NewMI = nullptr;
   2687   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
   2688   // we have better subtarget support, enable the 16-bit LEA generation here.
   2689   // 16-bit LEA is also slow on Core2.
   2690   bool DisableLEA16 = true;
   2691   bool is64Bit = Subtarget.is64Bit();
   2692 
   2693   unsigned MIOpc = MI->getOpcode();
   2694   switch (MIOpc) {
   2695   default: return nullptr;
   2696   case X86::SHL64ri: {
   2697     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2698     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2699     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2700 
   2701     // LEA can't handle RSP.
   2702     if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
   2703         !MF.getRegInfo().constrainRegClass(Src.getReg(),
   2704                                            &X86::GR64_NOSPRegClass))
   2705       return nullptr;
   2706 
   2707     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2708       .addOperand(Dest)
   2709       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   2710     break;
   2711   }
   2712   case X86::SHL32ri: {
   2713     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2714     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2715     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2716 
   2717     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2718 
   2719     // LEA can't handle ESP.
   2720     bool isKill, isUndef;
   2721     unsigned SrcReg;
   2722     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2723     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2724                         SrcReg, isKill, isUndef, ImplicitOp))
   2725       return nullptr;
   2726 
   2727     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2728       .addOperand(Dest)
   2729       .addReg(0).addImm(1 << ShAmt)
   2730       .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
   2731       .addImm(0).addReg(0);
   2732     if (ImplicitOp.getReg() != 0)
   2733       MIB.addOperand(ImplicitOp);
   2734     NewMI = MIB;
   2735 
   2736     break;
   2737   }
   2738   case X86::SHL16ri: {
   2739     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
   2740     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   2741     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
   2742 
   2743     if (DisableLEA16)
   2744       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : nullptr;
   2745     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2746       .addOperand(Dest)
   2747       .addReg(0).addImm(1 << ShAmt).addOperand(Src).addImm(0).addReg(0);
   2748     break;
   2749   }
   2750   case X86::INC64r:
   2751   case X86::INC32r: {
   2752     assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2753     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
   2754       : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2755     bool isKill, isUndef;
   2756     unsigned SrcReg;
   2757     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2758     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2759                         SrcReg, isKill, isUndef, ImplicitOp))
   2760       return nullptr;
   2761 
   2762     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2763         .addOperand(Dest)
   2764         .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef));
   2765     if (ImplicitOp.getReg() != 0)
   2766       MIB.addOperand(ImplicitOp);
   2767 
   2768     NewMI = addOffset(MIB, 1);
   2769     break;
   2770   }
   2771   case X86::INC16r:
   2772     if (DisableLEA16)
   2773       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2774                      : nullptr;
   2775     assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
   2776     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2777                       .addOperand(Dest).addOperand(Src), 1);
   2778     break;
   2779   case X86::DEC64r:
   2780   case X86::DEC32r: {
   2781     assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2782     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
   2783       : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
   2784 
   2785     bool isKill, isUndef;
   2786     unsigned SrcReg;
   2787     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2788     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
   2789                         SrcReg, isKill, isUndef, ImplicitOp))
   2790       return nullptr;
   2791 
   2792     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2793         .addOperand(Dest)
   2794         .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
   2795     if (ImplicitOp.getReg() != 0)
   2796       MIB.addOperand(ImplicitOp);
   2797 
   2798     NewMI = addOffset(MIB, -1);
   2799 
   2800     break;
   2801   }
   2802   case X86::DEC16r:
   2803     if (DisableLEA16)
   2804       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2805                      : nullptr;
   2806     assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
   2807     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2808                       .addOperand(Dest).addOperand(Src), -1);
   2809     break;
   2810   case X86::ADD64rr:
   2811   case X86::ADD64rr_DB:
   2812   case X86::ADD32rr:
   2813   case X86::ADD32rr_DB: {
   2814     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2815     unsigned Opc;
   2816     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
   2817       Opc = X86::LEA64r;
   2818     else
   2819       Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2820 
   2821     bool isKill, isUndef;
   2822     unsigned SrcReg;
   2823     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2824     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2825                         SrcReg, isKill, isUndef, ImplicitOp))
   2826       return nullptr;
   2827 
   2828     const MachineOperand &Src2 = MI->getOperand(2);
   2829     bool isKill2, isUndef2;
   2830     unsigned SrcReg2;
   2831     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
   2832     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
   2833                         SrcReg2, isKill2, isUndef2, ImplicitOp2))
   2834       return nullptr;
   2835 
   2836     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2837       .addOperand(Dest);
   2838     if (ImplicitOp.getReg() != 0)
   2839       MIB.addOperand(ImplicitOp);
   2840     if (ImplicitOp2.getReg() != 0)
   2841       MIB.addOperand(ImplicitOp2);
   2842 
   2843     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
   2844 
   2845     // Preserve undefness of the operands.
   2846     NewMI->getOperand(1).setIsUndef(isUndef);
   2847     NewMI->getOperand(3).setIsUndef(isUndef2);
   2848 
   2849     if (LV && Src2.isKill())
   2850       LV->replaceKillInstruction(SrcReg2, MI, NewMI);
   2851     break;
   2852   }
   2853   case X86::ADD16rr:
   2854   case X86::ADD16rr_DB: {
   2855     if (DisableLEA16)
   2856       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2857                      : nullptr;
   2858     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2859     unsigned Src2 = MI->getOperand(2).getReg();
   2860     bool isKill2 = MI->getOperand(2).isKill();
   2861     NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2862                       .addOperand(Dest),
   2863                       Src.getReg(), Src.isKill(), Src2, isKill2);
   2864 
   2865     // Preserve undefness of the operands.
   2866     bool isUndef = MI->getOperand(1).isUndef();
   2867     bool isUndef2 = MI->getOperand(2).isUndef();
   2868     NewMI->getOperand(1).setIsUndef(isUndef);
   2869     NewMI->getOperand(3).setIsUndef(isUndef2);
   2870 
   2871     if (LV && isKill2)
   2872       LV->replaceKillInstruction(Src2, MI, NewMI);
   2873     break;
   2874   }
   2875   case X86::ADD64ri32:
   2876   case X86::ADD64ri8:
   2877   case X86::ADD64ri32_DB:
   2878   case X86::ADD64ri8_DB:
   2879     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2880     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
   2881                       .addOperand(Dest).addOperand(Src),
   2882                       MI->getOperand(2).getImm());
   2883     break;
   2884   case X86::ADD32ri:
   2885   case X86::ADD32ri8:
   2886   case X86::ADD32ri_DB:
   2887   case X86::ADD32ri8_DB: {
   2888     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2889     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
   2890 
   2891     bool isKill, isUndef;
   2892     unsigned SrcReg;
   2893     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
   2894     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
   2895                         SrcReg, isKill, isUndef, ImplicitOp))
   2896       return nullptr;
   2897 
   2898     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(Opc))
   2899         .addOperand(Dest)
   2900         .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill));
   2901     if (ImplicitOp.getReg() != 0)
   2902       MIB.addOperand(ImplicitOp);
   2903 
   2904     NewMI = addOffset(MIB, MI->getOperand(2).getImm());
   2905     break;
   2906   }
   2907   case X86::ADD16ri:
   2908   case X86::ADD16ri8:
   2909   case X86::ADD16ri_DB:
   2910   case X86::ADD16ri8_DB:
   2911     if (DisableLEA16)
   2912       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV)
   2913                      : nullptr;
   2914     assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
   2915     NewMI = addOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
   2916                       .addOperand(Dest).addOperand(Src),
   2917                       MI->getOperand(2).getImm());
   2918     break;
   2919   }
   2920 
   2921   if (!NewMI) return nullptr;
   2922 
   2923   if (LV) {  // Update live variables
   2924     if (Src.isKill())
   2925       LV->replaceKillInstruction(Src.getReg(), MI, NewMI);
   2926     if (Dest.isDead())
   2927       LV->replaceKillInstruction(Dest.getReg(), MI, NewMI);
   2928   }
   2929 
   2930   MFI->insert(MBBI, NewMI);          // Insert the new inst
   2931   return NewMI;
   2932 }
   2933 
   2934 /// We have a few instructions that must be hacked on to commute them.
   2935 ///
   2936 MachineInstr *
   2937 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   2938   switch (MI->getOpcode()) {
   2939   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
   2940   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
   2941   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
   2942   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
   2943   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
   2944   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
   2945     unsigned Opc;
   2946     unsigned Size;
   2947     switch (MI->getOpcode()) {
   2948     default: llvm_unreachable("Unreachable!");
   2949     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
   2950     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
   2951     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
   2952     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
   2953     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
   2954     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
   2955     }
   2956     unsigned Amt = MI->getOperand(3).getImm();
   2957     if (NewMI) {
   2958       MachineFunction &MF = *MI->getParent()->getParent();
   2959       MI = MF.CloneMachineInstr(MI);
   2960       NewMI = false;
   2961     }
   2962     MI->setDesc(get(Opc));
   2963     MI->getOperand(3).setImm(Size-Amt);
   2964     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   2965   }
   2966   case X86::BLENDPDrri:
   2967   case X86::BLENDPSrri:
   2968   case X86::PBLENDWrri:
   2969   case X86::VBLENDPDrri:
   2970   case X86::VBLENDPSrri:
   2971   case X86::VBLENDPDYrri:
   2972   case X86::VBLENDPSYrri:
   2973   case X86::VPBLENDDrri:
   2974   case X86::VPBLENDWrri:
   2975   case X86::VPBLENDDYrri:
   2976   case X86::VPBLENDWYrri:{
   2977     unsigned Mask;
   2978     switch (MI->getOpcode()) {
   2979     default: llvm_unreachable("Unreachable!");
   2980     case X86::BLENDPDrri:    Mask = 0x03; break;
   2981     case X86::BLENDPSrri:    Mask = 0x0F; break;
   2982     case X86::PBLENDWrri:    Mask = 0xFF; break;
   2983     case X86::VBLENDPDrri:   Mask = 0x03; break;
   2984     case X86::VBLENDPSrri:   Mask = 0x0F; break;
   2985     case X86::VBLENDPDYrri:  Mask = 0x0F; break;
   2986     case X86::VBLENDPSYrri:  Mask = 0xFF; break;
   2987     case X86::VPBLENDDrri:   Mask = 0x0F; break;
   2988     case X86::VPBLENDWrri:   Mask = 0xFF; break;
   2989     case X86::VPBLENDDYrri:  Mask = 0xFF; break;
   2990     case X86::VPBLENDWYrri:  Mask = 0xFF; break;
   2991     }
   2992     // Only the least significant bits of Imm are used.
   2993     unsigned Imm = MI->getOperand(3).getImm() & Mask;
   2994     if (NewMI) {
   2995       MachineFunction &MF = *MI->getParent()->getParent();
   2996       MI = MF.CloneMachineInstr(MI);
   2997       NewMI = false;
   2998     }
   2999     MI->getOperand(3).setImm(Mask ^ Imm);
   3000     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   3001   }
   3002   case X86::PCLMULQDQrr:
   3003   case X86::VPCLMULQDQrr:{
   3004     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
   3005     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
   3006     unsigned Imm = MI->getOperand(3).getImm();
   3007     unsigned Src1Hi = Imm & 0x01;
   3008     unsigned Src2Hi = Imm & 0x10;
   3009     if (NewMI) {
   3010       MachineFunction &MF = *MI->getParent()->getParent();
   3011       MI = MF.CloneMachineInstr(MI);
   3012       NewMI = false;
   3013     }
   3014     MI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
   3015     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   3016   }
   3017   case X86::CMPPDrri:
   3018   case X86::CMPPSrri:
   3019   case X86::VCMPPDrri:
   3020   case X86::VCMPPSrri:
   3021   case X86::VCMPPDYrri:
   3022   case X86::VCMPPSYrri: {
   3023     // Float comparison can be safely commuted for
   3024     // Ordered/Unordered/Equal/NotEqual tests
   3025     unsigned Imm = MI->getOperand(3).getImm() & 0x7;
   3026     switch (Imm) {
   3027     case 0x00: // EQUAL
   3028     case 0x03: // UNORDERED
   3029     case 0x04: // NOT EQUAL
   3030     case 0x07: // ORDERED
   3031       if (NewMI) {
   3032         MachineFunction &MF = *MI->getParent()->getParent();
   3033         MI = MF.CloneMachineInstr(MI);
   3034         NewMI = false;
   3035       }
   3036       return TargetInstrInfo::commuteInstruction(MI, NewMI);
   3037     default:
   3038       return nullptr;
   3039     }
   3040   }
   3041   case X86::VPCOMBri: case X86::VPCOMUBri:
   3042   case X86::VPCOMDri: case X86::VPCOMUDri:
   3043   case X86::VPCOMQri: case X86::VPCOMUQri:
   3044   case X86::VPCOMWri: case X86::VPCOMUWri: {
   3045     // Flip comparison mode immediate (if necessary).
   3046     unsigned Imm = MI->getOperand(3).getImm() & 0x7;
   3047     switch (Imm) {
   3048     case 0x00: Imm = 0x02; break; // LT -> GT
   3049     case 0x01: Imm = 0x03; break; // LE -> GE
   3050     case 0x02: Imm = 0x00; break; // GT -> LT
   3051     case 0x03: Imm = 0x01; break; // GE -> LE
   3052     case 0x04: // EQ
   3053     case 0x05: // NE
   3054     case 0x06: // FALSE
   3055     case 0x07: // TRUE
   3056     default:
   3057       break;
   3058     }
   3059     if (NewMI) {
   3060       MachineFunction &MF = *MI->getParent()->getParent();
   3061       MI = MF.CloneMachineInstr(MI);
   3062       NewMI = false;
   3063     }
   3064     MI->getOperand(3).setImm(Imm);
   3065     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   3066   }
   3067   case X86::CMOVB16rr:  case X86::CMOVB32rr:  case X86::CMOVB64rr:
   3068   case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
   3069   case X86::CMOVE16rr:  case X86::CMOVE32rr:  case X86::CMOVE64rr:
   3070   case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
   3071   case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
   3072   case X86::CMOVA16rr:  case X86::CMOVA32rr:  case X86::CMOVA64rr:
   3073   case X86::CMOVL16rr:  case X86::CMOVL32rr:  case X86::CMOVL64rr:
   3074   case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
   3075   case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
   3076   case X86::CMOVG16rr:  case X86::CMOVG32rr:  case X86::CMOVG64rr:
   3077   case X86::CMOVS16rr:  case X86::CMOVS32rr:  case X86::CMOVS64rr:
   3078   case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
   3079   case X86::CMOVP16rr:  case X86::CMOVP32rr:  case X86::CMOVP64rr:
   3080   case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
   3081   case X86::CMOVO16rr:  case X86::CMOVO32rr:  case X86::CMOVO64rr:
   3082   case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
   3083     unsigned Opc;
   3084     switch (MI->getOpcode()) {
   3085     default: llvm_unreachable("Unreachable!");
   3086     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
   3087     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
   3088     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
   3089     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
   3090     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
   3091     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
   3092     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
   3093     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
   3094     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
   3095     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
   3096     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
   3097     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
   3098     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
   3099     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
   3100     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
   3101     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
   3102     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
   3103     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
   3104     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
   3105     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
   3106     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
   3107     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
   3108     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
   3109     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
   3110     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
   3111     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
   3112     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
   3113     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
   3114     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
   3115     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
   3116     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
   3117     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
   3118     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
   3119     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
   3120     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
   3121     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
   3122     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
   3123     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
   3124     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
   3125     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
   3126     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
   3127     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
   3128     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
   3129     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
   3130     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
   3131     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
   3132     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
   3133     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
   3134     }
   3135     if (NewMI) {
   3136       MachineFunction &MF = *MI->getParent()->getParent();
   3137       MI = MF.CloneMachineInstr(MI);
   3138       NewMI = false;
   3139     }
   3140     MI->setDesc(get(Opc));
   3141     // Fallthrough intended.
   3142   }
   3143   default:
   3144     return TargetInstrInfo::commuteInstruction(MI, NewMI);
   3145   }
   3146 }
   3147 
   3148 bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
   3149                                          unsigned &SrcOpIdx2) const {
   3150   switch (MI->getOpcode()) {
   3151     case X86::CMPPDrri:
   3152     case X86::CMPPSrri:
   3153     case X86::VCMPPDrri:
   3154     case X86::VCMPPSrri:
   3155     case X86::VCMPPDYrri:
   3156     case X86::VCMPPSYrri: {
   3157       // Float comparison can be safely commuted for
   3158       // Ordered/Unordered/Equal/NotEqual tests
   3159       unsigned Imm = MI->getOperand(3).getImm() & 0x7;
   3160       switch (Imm) {
   3161       case 0x00: // EQUAL
   3162       case 0x03: // UNORDERED
   3163       case 0x04: // NOT EQUAL
   3164       case 0x07: // ORDERED
   3165         SrcOpIdx1 = 1;
   3166         SrcOpIdx2 = 2;
   3167         return true;
   3168       }
   3169       return false;
   3170     }
   3171     case X86::VFMADDPDr231r:
   3172     case X86::VFMADDPSr231r:
   3173     case X86::VFMADDSDr231r:
   3174     case X86::VFMADDSSr231r:
   3175     case X86::VFMSUBPDr231r:
   3176     case X86::VFMSUBPSr231r:
   3177     case X86::VFMSUBSDr231r:
   3178     case X86::VFMSUBSSr231r:
   3179     case X86::VFNMADDPDr231r:
   3180     case X86::VFNMADDPSr231r:
   3181     case X86::VFNMADDSDr231r:
   3182     case X86::VFNMADDSSr231r:
   3183     case X86::VFNMSUBPDr231r:
   3184     case X86::VFNMSUBPSr231r:
   3185     case X86::VFNMSUBSDr231r:
   3186     case X86::VFNMSUBSSr231r:
   3187     case X86::VFMADDPDr231rY:
   3188     case X86::VFMADDPSr231rY:
   3189     case X86::VFMSUBPDr231rY:
   3190     case X86::VFMSUBPSr231rY:
   3191     case X86::VFNMADDPDr231rY:
   3192     case X86::VFNMADDPSr231rY:
   3193     case X86::VFNMSUBPDr231rY:
   3194     case X86::VFNMSUBPSr231rY:
   3195       SrcOpIdx1 = 2;
   3196       SrcOpIdx2 = 3;
   3197       return true;
   3198     default:
   3199       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
   3200   }
   3201 }
   3202 
   3203 static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
   3204   switch (BrOpc) {
   3205   default: return X86::COND_INVALID;
   3206   case X86::JE_1:  return X86::COND_E;
   3207   case X86::JNE_1: return X86::COND_NE;
   3208   case X86::JL_1:  return X86::COND_L;
   3209   case X86::JLE_1: return X86::COND_LE;
   3210   case X86::JG_1:  return X86::COND_G;
   3211   case X86::JGE_1: return X86::COND_GE;
   3212   case X86::JB_1:  return X86::COND_B;
   3213   case X86::JBE_1: return X86::COND_BE;
   3214   case X86::JA_1:  return X86::COND_A;
   3215   case X86::JAE_1: return X86::COND_AE;
   3216   case X86::JS_1:  return X86::COND_S;
   3217   case X86::JNS_1: return X86::COND_NS;
   3218   case X86::JP_1:  return X86::COND_P;
   3219   case X86::JNP_1: return X86::COND_NP;
   3220   case X86::JO_1:  return X86::COND_O;
   3221   case X86::JNO_1: return X86::COND_NO;
   3222   }
   3223 }
   3224 
   3225 /// Return condition code of a SET opcode.
   3226 static X86::CondCode getCondFromSETOpc(unsigned Opc) {
   3227   switch (Opc) {
   3228   default: return X86::COND_INVALID;
   3229   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
   3230   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
   3231   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
   3232   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
   3233   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
   3234   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
   3235   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
   3236   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
   3237   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
   3238   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
   3239   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
   3240   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
   3241   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
   3242   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
   3243   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
   3244   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
   3245   }
   3246 }
   3247 
   3248 /// Return condition code of a CMov opcode.
   3249 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
   3250   switch (Opc) {
   3251   default: return X86::COND_INVALID;
   3252   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
   3253   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
   3254     return X86::COND_A;
   3255   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
   3256   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
   3257     return X86::COND_AE;
   3258   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
   3259   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
   3260     return X86::COND_B;
   3261   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
   3262   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
   3263     return X86::COND_BE;
   3264   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
   3265   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
   3266     return X86::COND_E;
   3267   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
   3268   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
   3269     return X86::COND_G;
   3270   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
   3271   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
   3272     return X86::COND_GE;
   3273   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
   3274   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
   3275     return X86::COND_L;
   3276   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
   3277   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
   3278     return X86::COND_LE;
   3279   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
   3280   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
   3281     return X86::COND_NE;
   3282   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
   3283   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
   3284     return X86::COND_NO;
   3285   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
   3286   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
   3287     return X86::COND_NP;
   3288   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
   3289   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
   3290     return X86::COND_NS;
   3291   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
   3292   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
   3293     return X86::COND_O;
   3294   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
   3295   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
   3296     return X86::COND_P;
   3297   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
   3298   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
   3299     return X86::COND_S;
   3300   }
   3301 }
   3302 
   3303 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
   3304   switch (CC) {
   3305   default: llvm_unreachable("Illegal condition code!");
   3306   case X86::COND_E:  return X86::JE_1;
   3307   case X86::COND_NE: return X86::JNE_1;
   3308   case X86::COND_L:  return X86::JL_1;
   3309   case X86::COND_LE: return X86::JLE_1;
   3310   case X86::COND_G:  return X86::JG_1;
   3311   case X86::COND_GE: return X86::JGE_1;
   3312   case X86::COND_B:  return X86::JB_1;
   3313   case X86::COND_BE: return X86::JBE_1;
   3314   case X86::COND_A:  return X86::JA_1;
   3315   case X86::COND_AE: return X86::JAE_1;
   3316   case X86::COND_S:  return X86::JS_1;
   3317   case X86::COND_NS: return X86::JNS_1;
   3318   case X86::COND_P:  return X86::JP_1;
   3319   case X86::COND_NP: return X86::JNP_1;
   3320   case X86::COND_O:  return X86::JO_1;
   3321   case X86::COND_NO: return X86::JNO_1;
   3322   }
   3323 }
   3324 
   3325 /// Return the inverse of the specified condition,
   3326 /// e.g. turning COND_E to COND_NE.
   3327 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
   3328   switch (CC) {
   3329   default: llvm_unreachable("Illegal condition code!");
   3330   case X86::COND_E:  return X86::COND_NE;
   3331   case X86::COND_NE: return X86::COND_E;
   3332   case X86::COND_L:  return X86::COND_GE;
   3333   case X86::COND_LE: return X86::COND_G;
   3334   case X86::COND_G:  return X86::COND_LE;
   3335   case X86::COND_GE: return X86::COND_L;
   3336   case X86::COND_B:  return X86::COND_AE;
   3337   case X86::COND_BE: return X86::COND_A;
   3338   case X86::COND_A:  return X86::COND_BE;
   3339   case X86::COND_AE: return X86::COND_B;
   3340   case X86::COND_S:  return X86::COND_NS;
   3341   case X86::COND_NS: return X86::COND_S;
   3342   case X86::COND_P:  return X86::COND_NP;
   3343   case X86::COND_NP: return X86::COND_P;
   3344   case X86::COND_O:  return X86::COND_NO;
   3345   case X86::COND_NO: return X86::COND_O;
   3346   }
   3347 }
   3348 
   3349 /// Assuming the flags are set by MI(a,b), return the condition code if we
   3350 /// modify the instructions such that flags are set by MI(b,a).
   3351 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
   3352   switch (CC) {
   3353   default: return X86::COND_INVALID;
   3354   case X86::COND_E:  return X86::COND_E;
   3355   case X86::COND_NE: return X86::COND_NE;
   3356   case X86::COND_L:  return X86::COND_G;
   3357   case X86::COND_LE: return X86::COND_GE;
   3358   case X86::COND_G:  return X86::COND_L;
   3359   case X86::COND_GE: return X86::COND_LE;
   3360   case X86::COND_B:  return X86::COND_A;
   3361   case X86::COND_BE: return X86::COND_AE;
   3362   case X86::COND_A:  return X86::COND_B;
   3363   case X86::COND_AE: return X86::COND_BE;
   3364   }
   3365 }
   3366 
   3367 /// Return a set opcode for the given condition and
   3368 /// whether it has memory operand.
   3369 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
   3370   static const uint16_t Opc[16][2] = {
   3371     { X86::SETAr,  X86::SETAm  },
   3372     { X86::SETAEr, X86::SETAEm },
   3373     { X86::SETBr,  X86::SETBm  },
   3374     { X86::SETBEr, X86::SETBEm },
   3375     { X86::SETEr,  X86::SETEm  },
   3376     { X86::SETGr,  X86::SETGm  },
   3377     { X86::SETGEr, X86::SETGEm },
   3378     { X86::SETLr,  X86::SETLm  },
   3379     { X86::SETLEr, X86::SETLEm },
   3380     { X86::SETNEr, X86::SETNEm },
   3381     { X86::SETNOr, X86::SETNOm },
   3382     { X86::SETNPr, X86::SETNPm },
   3383     { X86::SETNSr, X86::SETNSm },
   3384     { X86::SETOr,  X86::SETOm  },
   3385     { X86::SETPr,  X86::SETPm  },
   3386     { X86::SETSr,  X86::SETSm  }
   3387   };
   3388 
   3389   assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
   3390   return Opc[CC][HasMemoryOperand ? 1 : 0];
   3391 }
   3392 
   3393 /// Return a cmov opcode for the given condition,
   3394 /// register size in bytes, and operand type.
   3395 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
   3396                               bool HasMemoryOperand) {
   3397   static const uint16_t Opc[32][3] = {
   3398     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
   3399     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
   3400     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
   3401     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
   3402     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
   3403     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
   3404     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
   3405     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
   3406     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
   3407     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
   3408     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
   3409     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
   3410     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
   3411     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
   3412     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
   3413     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
   3414     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
   3415     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
   3416     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
   3417     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
   3418     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
   3419     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
   3420     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
   3421     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
   3422     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
   3423     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
   3424     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
   3425     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
   3426     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
   3427     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
   3428     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
   3429     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
   3430   };
   3431 
   3432   assert(CC < 16 && "Can only handle standard cond codes");
   3433   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
   3434   switch(RegBytes) {
   3435   default: llvm_unreachable("Illegal register size!");
   3436   case 2: return Opc[Idx][0];
   3437   case 4: return Opc[Idx][1];
   3438   case 8: return Opc[Idx][2];
   3439   }
   3440 }
   3441 
   3442 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   3443   if (!MI->isTerminator()) return false;
   3444 
   3445   // Conditional branch is a special case.
   3446   if (MI->isBranch() && !MI->isBarrier())
   3447     return true;
   3448   if (!MI->isPredicable())
   3449     return true;
   3450   return !isPredicated(MI);
   3451 }
   3452 
   3453 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   3454                                  MachineBasicBlock *&TBB,
   3455                                  MachineBasicBlock *&FBB,
   3456                                  SmallVectorImpl<MachineOperand> &Cond,
   3457                                  bool AllowModify) const {
   3458   // Start from the bottom of the block and work up, examining the
   3459   // terminator instructions.
   3460   MachineBasicBlock::iterator I = MBB.end();
   3461   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
   3462   while (I != MBB.begin()) {
   3463     --I;
   3464     if (I->isDebugValue())
   3465       continue;
   3466 
   3467     // Working from the bottom, when we see a non-terminator instruction, we're
   3468     // done.
   3469     if (!isUnpredicatedTerminator(I))
   3470       break;
   3471 
   3472     // A terminator that isn't a branch can't easily be handled by this
   3473     // analysis.
   3474     if (!I->isBranch())
   3475       return true;
   3476 
   3477     // Handle unconditional branches.
   3478     if (I->getOpcode() == X86::JMP_1) {
   3479       UnCondBrIter = I;
   3480 
   3481       if (!AllowModify) {
   3482         TBB = I->getOperand(0).getMBB();
   3483         continue;
   3484       }
   3485 
   3486       // If the block has any instructions after a JMP, delete them.
   3487       while (std::next(I) != MBB.end())
   3488         std::next(I)->eraseFromParent();
   3489 
   3490       Cond.clear();
   3491       FBB = nullptr;
   3492 
   3493       // Delete the JMP if it's equivalent to a fall-through.
   3494       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
   3495         TBB = nullptr;
   3496         I->eraseFromParent();
   3497         I = MBB.end();
   3498         UnCondBrIter = MBB.end();
   3499         continue;
   3500       }
   3501 
   3502       // TBB is used to indicate the unconditional destination.
   3503       TBB = I->getOperand(0).getMBB();
   3504       continue;
   3505     }
   3506 
   3507     // Handle conditional branches.
   3508     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
   3509     if (BranchCode == X86::COND_INVALID)
   3510       return true;  // Can't handle indirect branch.
   3511 
   3512     // Working from the bottom, handle the first conditional branch.
   3513     if (Cond.empty()) {
   3514       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
   3515       if (AllowModify && UnCondBrIter != MBB.end() &&
   3516           MBB.isLayoutSuccessor(TargetBB)) {
   3517         // If we can modify the code and it ends in something like:
   3518         //
   3519         //     jCC L1
   3520         //     jmp L2
   3521         //   L1:
   3522         //     ...
   3523         //   L2:
   3524         //
   3525         // Then we can change this to:
   3526         //
   3527         //     jnCC L2
   3528         //   L1:
   3529         //     ...
   3530         //   L2:
   3531         //
   3532         // Which is a bit more efficient.
   3533         // We conditionally jump to the fall-through block.
   3534         BranchCode = GetOppositeBranchCondition(BranchCode);
   3535         unsigned JNCC = GetCondBranchFromCond(BranchCode);
   3536         MachineBasicBlock::iterator OldInst = I;
   3537 
   3538         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
   3539           .addMBB(UnCondBrIter->getOperand(0).getMBB());
   3540         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
   3541           .addMBB(TargetBB);
   3542 
   3543         OldInst->eraseFromParent();
   3544         UnCondBrIter->eraseFromParent();
   3545 
   3546         // Restart the analysis.
   3547         UnCondBrIter = MBB.end();
   3548         I = MBB.end();
   3549         continue;
   3550       }
   3551 
   3552       FBB = TBB;
   3553       TBB = I->getOperand(0).getMBB();
   3554       Cond.push_back(MachineOperand::CreateImm(BranchCode));
   3555       continue;
   3556     }
   3557 
   3558     // Handle subsequent conditional branches. Only handle the case where all
   3559     // conditional branches branch to the same destination and their condition
   3560     // opcodes fit one of the special multi-branch idioms.
   3561     assert(Cond.size() == 1);
   3562     assert(TBB);
   3563 
   3564     // Only handle the case where all conditional branches branch to the same
   3565     // destination.
   3566     if (TBB != I->getOperand(0).getMBB())
   3567       return true;
   3568 
   3569     // If the conditions are the same, we can leave them alone.
   3570     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
   3571     if (OldBranchCode == BranchCode)
   3572       continue;
   3573 
   3574     // If they differ, see if they fit one of the known patterns. Theoretically,
   3575     // we could handle more patterns here, but we shouldn't expect to see them
   3576     // if instruction selection has done a reasonable job.
   3577     if ((OldBranchCode == X86::COND_NP &&
   3578          BranchCode == X86::COND_E) ||
   3579         (OldBranchCode == X86::COND_E &&
   3580          BranchCode == X86::COND_NP))
   3581       BranchCode = X86::COND_NP_OR_E;
   3582     else if ((OldBranchCode == X86::COND_P &&
   3583               BranchCode == X86::COND_NE) ||
   3584              (OldBranchCode == X86::COND_NE &&
   3585               BranchCode == X86::COND_P))
   3586       BranchCode = X86::COND_NE_OR_P;
   3587     else
   3588       return true;
   3589 
   3590     // Update the MachineOperand.
   3591     Cond[0].setImm(BranchCode);
   3592   }
   3593 
   3594   return false;
   3595 }
   3596 
   3597 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   3598   MachineBasicBlock::iterator I = MBB.end();
   3599   unsigned Count = 0;
   3600 
   3601   while (I != MBB.begin()) {
   3602     --I;
   3603     if (I->isDebugValue())
   3604       continue;
   3605     if (I->getOpcode() != X86::JMP_1 &&
   3606         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
   3607       break;
   3608     // Remove the branch.
   3609     I->eraseFromParent();
   3610     I = MBB.end();
   3611     ++Count;
   3612   }
   3613 
   3614   return Count;
   3615 }
   3616 
   3617 unsigned
   3618 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
   3619                            MachineBasicBlock *FBB,
   3620                            const SmallVectorImpl<MachineOperand> &Cond,
   3621                            DebugLoc DL) const {
   3622   // Shouldn't be a fall through.
   3623   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
   3624   assert((Cond.size() == 1 || Cond.size() == 0) &&
   3625          "X86 branch conditions have one component!");
   3626 
   3627   if (Cond.empty()) {
   3628     // Unconditional branch?
   3629     assert(!FBB && "Unconditional branch with multiple successors!");
   3630     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
   3631     return 1;
   3632   }
   3633 
   3634   // Conditional branch.
   3635   unsigned Count = 0;
   3636   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
   3637   switch (CC) {
   3638   case X86::COND_NP_OR_E:
   3639     // Synthesize NP_OR_E with two branches.
   3640     BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
   3641     ++Count;
   3642     BuildMI(&MBB, DL, get(X86::JE_1)).addMBB(TBB);
   3643     ++Count;
   3644     break;
   3645   case X86::COND_NE_OR_P:
   3646     // Synthesize NE_OR_P with two branches.
   3647     BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
   3648     ++Count;
   3649     BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
   3650     ++Count;
   3651     break;
   3652   default: {
   3653     unsigned Opc = GetCondBranchFromCond(CC);
   3654     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
   3655     ++Count;
   3656   }
   3657   }
   3658   if (FBB) {
   3659     // Two-way Conditional branch. Insert the second branch.
   3660     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
   3661     ++Count;
   3662   }
   3663   return Count;
   3664 }
   3665 
   3666 bool X86InstrInfo::
   3667 canInsertSelect(const MachineBasicBlock &MBB,
   3668                 const SmallVectorImpl<MachineOperand> &Cond,
   3669                 unsigned TrueReg, unsigned FalseReg,
   3670                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
   3671   // Not all subtargets have cmov instructions.
   3672   if (!Subtarget.hasCMov())
   3673     return false;
   3674   if (Cond.size() != 1)
   3675     return false;
   3676   // We cannot do the composite conditions, at least not in SSA form.
   3677   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
   3678     return false;
   3679 
   3680   // Check register classes.
   3681   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   3682   const TargetRegisterClass *RC =
   3683     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
   3684   if (!RC)
   3685     return false;
   3686 
   3687   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
   3688   if (X86::GR16RegClass.hasSubClassEq(RC) ||
   3689       X86::GR32RegClass.hasSubClassEq(RC) ||
   3690       X86::GR64RegClass.hasSubClassEq(RC)) {
   3691     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
   3692     // Bridge. Probably Ivy Bridge as well.
   3693     CondCycles = 2;
   3694     TrueCycles = 2;
   3695     FalseCycles = 2;
   3696     return true;
   3697   }
   3698 
   3699   // Can't do vectors.
   3700   return false;
   3701 }
   3702 
   3703 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
   3704                                 MachineBasicBlock::iterator I, DebugLoc DL,
   3705                                 unsigned DstReg,
   3706                                 const SmallVectorImpl<MachineOperand> &Cond,
   3707                                 unsigned TrueReg, unsigned FalseReg) const {
   3708    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
   3709    assert(Cond.size() == 1 && "Invalid Cond array");
   3710    unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
   3711                                   MRI.getRegClass(DstReg)->getSize(),
   3712                                   false/*HasMemoryOperand*/);
   3713    BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
   3714 }
   3715 
   3716 /// Test if the given register is a physical h register.
   3717 static bool isHReg(unsigned Reg) {
   3718   return X86::GR8_ABCD_HRegClass.contains(Reg);
   3719 }
   3720 
   3721 // Try and copy between VR128/VR64 and GR64 registers.
   3722 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
   3723                                         const X86Subtarget &Subtarget) {
   3724 
   3725   // SrcReg(VR128) -> DestReg(GR64)
   3726   // SrcReg(VR64)  -> DestReg(GR64)
   3727   // SrcReg(GR64)  -> DestReg(VR128)
   3728   // SrcReg(GR64)  -> DestReg(VR64)
   3729 
   3730   bool HasAVX = Subtarget.hasAVX();
   3731   bool HasAVX512 = Subtarget.hasAVX512();
   3732   if (X86::GR64RegClass.contains(DestReg)) {
   3733     if (X86::VR128XRegClass.contains(SrcReg))
   3734       // Copy from a VR128 register to a GR64 register.
   3735       return HasAVX512 ? X86::VMOVPQIto64Zrr: (HasAVX ? X86::VMOVPQIto64rr :
   3736                                                X86::MOVPQIto64rr);
   3737     if (X86::VR64RegClass.contains(SrcReg))
   3738       // Copy from a VR64 register to a GR64 register.
   3739       return X86::MOVSDto64rr;
   3740   } else if (X86::GR64RegClass.contains(SrcReg)) {
   3741     // Copy from a GR64 register to a VR128 register.
   3742     if (X86::VR128XRegClass.contains(DestReg))
   3743       return HasAVX512 ? X86::VMOV64toPQIZrr: (HasAVX ? X86::VMOV64toPQIrr :
   3744                                                X86::MOV64toPQIrr);
   3745     // Copy from a GR64 register to a VR64 register.
   3746     if (X86::VR64RegClass.contains(DestReg))
   3747       return X86::MOV64toSDrr;
   3748   }
   3749 
   3750   // SrcReg(FR32) -> DestReg(GR32)
   3751   // SrcReg(GR32) -> DestReg(FR32)
   3752 
   3753   if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg))
   3754     // Copy from a FR32 register to a GR32 register.
   3755     return HasAVX512 ? X86::VMOVSS2DIZrr : (HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr);
   3756 
   3757   if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
   3758     // Copy from a GR32 register to a FR32 register.
   3759     return HasAVX512 ? X86::VMOVDI2SSZrr : (HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr);
   3760   return 0;
   3761 }
   3762 
   3763 inline static bool MaskRegClassContains(unsigned Reg) {
   3764   return X86::VK8RegClass.contains(Reg) ||
   3765          X86::VK16RegClass.contains(Reg) ||
   3766          X86::VK32RegClass.contains(Reg) ||
   3767          X86::VK64RegClass.contains(Reg) ||
   3768          X86::VK1RegClass.contains(Reg);
   3769 }
   3770 static
   3771 unsigned copyPhysRegOpcode_AVX512(unsigned& DestReg, unsigned& SrcReg) {
   3772   if (X86::VR128XRegClass.contains(DestReg, SrcReg) ||
   3773       X86::VR256XRegClass.contains(DestReg, SrcReg) ||
   3774       X86::VR512RegClass.contains(DestReg, SrcReg)) {
   3775      DestReg = get512BitSuperRegister(DestReg);
   3776      SrcReg = get512BitSuperRegister(SrcReg);
   3777      return X86::VMOVAPSZrr;
   3778   }
   3779   if (MaskRegClassContains(DestReg) &&
   3780       MaskRegClassContains(SrcReg))
   3781     return X86::KMOVWkk;
   3782   if (MaskRegClassContains(DestReg) &&
   3783       (X86::GR32RegClass.contains(SrcReg) ||
   3784        X86::GR16RegClass.contains(SrcReg) ||
   3785        X86::GR8RegClass.contains(SrcReg))) {
   3786     SrcReg = getX86SubSuperRegister(SrcReg, MVT::i32);
   3787     return X86::KMOVWkr;
   3788   }
   3789   if ((X86::GR32RegClass.contains(DestReg) ||
   3790        X86::GR16RegClass.contains(DestReg) ||
   3791        X86::GR8RegClass.contains(DestReg)) &&
   3792        MaskRegClassContains(SrcReg)) {
   3793     DestReg = getX86SubSuperRegister(DestReg, MVT::i32);
   3794     return X86::KMOVWrk;
   3795   }
   3796   return 0;
   3797 }
   3798 
   3799 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   3800                                MachineBasicBlock::iterator MI, DebugLoc DL,
   3801                                unsigned DestReg, unsigned SrcReg,
   3802                                bool KillSrc) const {
   3803   // First deal with the normal symmetric copies.
   3804   bool HasAVX = Subtarget.hasAVX();
   3805   bool HasAVX512 = Subtarget.hasAVX512();
   3806   unsigned Opc = 0;
   3807   if (X86::GR64RegClass.contains(DestReg, SrcReg))
   3808     Opc = X86::MOV64rr;
   3809   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
   3810     Opc = X86::MOV32rr;
   3811   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
   3812     Opc = X86::MOV16rr;
   3813   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
   3814     // Copying to or from a physical H register on x86-64 requires a NOREX
   3815     // move.  Otherwise use a normal move.
   3816     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
   3817         Subtarget.is64Bit()) {
   3818       Opc = X86::MOV8rr_NOREX;
   3819       // Both operands must be encodable without an REX prefix.
   3820       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
   3821              "8-bit H register can not be copied outside GR8_NOREX");
   3822     } else
   3823       Opc = X86::MOV8rr;
   3824   }
   3825   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
   3826     Opc = X86::MMX_MOVQ64rr;
   3827   else if (HasAVX512)
   3828     Opc = copyPhysRegOpcode_AVX512(DestReg, SrcReg);
   3829   else if (X86::VR128RegClass.contains(DestReg, SrcReg))
   3830     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
   3831   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
   3832     Opc = X86::VMOVAPSYrr;
   3833   if (!Opc)
   3834     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
   3835 
   3836   if (Opc) {
   3837     BuildMI(MBB, MI, DL, get(Opc), DestReg)
   3838       .addReg(SrcReg, getKillRegState(KillSrc));
   3839     return;
   3840   }
   3841 
   3842   // Moving EFLAGS to / from another register requires a push and a pop.
   3843   // Notice that we have to adjust the stack if we don't want to clobber the
   3844   // first frame index. See X86FrameLowering.cpp - clobbersTheStack.
   3845   if (SrcReg == X86::EFLAGS) {
   3846     if (X86::GR64RegClass.contains(DestReg)) {
   3847       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
   3848       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
   3849       return;
   3850     }
   3851     if (X86::GR32RegClass.contains(DestReg)) {
   3852       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
   3853       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
   3854       return;
   3855     }
   3856   }
   3857   if (DestReg == X86::EFLAGS) {
   3858     if (X86::GR64RegClass.contains(SrcReg)) {
   3859       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
   3860         .addReg(SrcReg, getKillRegState(KillSrc));
   3861       BuildMI(MBB, MI, DL, get(X86::POPF64));
   3862       return;
   3863     }
   3864     if (X86::GR32RegClass.contains(SrcReg)) {
   3865       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
   3866         .addReg(SrcReg, getKillRegState(KillSrc));
   3867       BuildMI(MBB, MI, DL, get(X86::POPF32));
   3868       return;
   3869     }
   3870   }
   3871 
   3872   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
   3873                << " to " << RI.getName(DestReg) << '\n');
   3874   llvm_unreachable("Cannot emit physreg copy instruction");
   3875 }
   3876 
   3877 static unsigned getLoadStoreRegOpcode(unsigned Reg,
   3878                                       const TargetRegisterClass *RC,
   3879                                       bool isStackAligned,
   3880                                       const X86Subtarget &STI,
   3881                                       bool load) {
   3882   if (STI.hasAVX512()) {
   3883     if (X86::VK8RegClass.hasSubClassEq(RC)  ||
   3884       X86::VK16RegClass.hasSubClassEq(RC))
   3885       return load ? X86::KMOVWkm : X86::KMOVWmk;
   3886     if (RC->getSize() == 4 && X86::FR32XRegClass.hasSubClassEq(RC))
   3887       return load ? X86::VMOVSSZrm : X86::VMOVSSZmr;
   3888     if (RC->getSize() == 8 && X86::FR64XRegClass.hasSubClassEq(RC))
   3889       return load ? X86::VMOVSDZrm : X86::VMOVSDZmr;
   3890     if (X86::VR512RegClass.hasSubClassEq(RC))
   3891       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   3892   }
   3893 
   3894   bool HasAVX = STI.hasAVX();
   3895   switch (RC->getSize()) {
   3896   default:
   3897     llvm_unreachable("Unknown spill size");
   3898   case 1:
   3899     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
   3900     if (STI.is64Bit())
   3901       // Copying to or from a physical H register on x86-64 requires a NOREX
   3902       // move.  Otherwise use a normal move.
   3903       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
   3904         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
   3905     return load ? X86::MOV8rm : X86::MOV8mr;
   3906   case 2:
   3907     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
   3908     return load ? X86::MOV16rm : X86::MOV16mr;
   3909   case 4:
   3910     if (X86::GR32RegClass.hasSubClassEq(RC))
   3911       return load ? X86::MOV32rm : X86::MOV32mr;
   3912     if (X86::FR32RegClass.hasSubClassEq(RC))
   3913       return load ?
   3914         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
   3915         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
   3916     if (X86::RFP32RegClass.hasSubClassEq(RC))
   3917       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
   3918     llvm_unreachable("Unknown 4-byte regclass");
   3919   case 8:
   3920     if (X86::GR64RegClass.hasSubClassEq(RC))
   3921       return load ? X86::MOV64rm : X86::MOV64mr;
   3922     if (X86::FR64RegClass.hasSubClassEq(RC))
   3923       return load ?
   3924         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
   3925         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
   3926     if (X86::VR64RegClass.hasSubClassEq(RC))
   3927       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
   3928     if (X86::RFP64RegClass.hasSubClassEq(RC))
   3929       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
   3930     llvm_unreachable("Unknown 8-byte regclass");
   3931   case 10:
   3932     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
   3933     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
   3934   case 16: {
   3935     assert((X86::VR128RegClass.hasSubClassEq(RC) ||
   3936             X86::VR128XRegClass.hasSubClassEq(RC))&& "Unknown 16-byte regclass");
   3937     // If stack is realigned we can use aligned stores.
   3938     if (isStackAligned)
   3939       return load ?
   3940         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
   3941         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
   3942     else
   3943       return load ?
   3944         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
   3945         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
   3946   }
   3947   case 32:
   3948     assert((X86::VR256RegClass.hasSubClassEq(RC) ||
   3949             X86::VR256XRegClass.hasSubClassEq(RC)) && "Unknown 32-byte regclass");
   3950     // If stack is realigned we can use aligned stores.
   3951     if (isStackAligned)
   3952       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
   3953     else
   3954       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
   3955   case 64:
   3956     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
   3957     if (isStackAligned)
   3958       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
   3959     else
   3960       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
   3961   }
   3962 }
   3963 
   3964 static unsigned getStoreRegOpcode(unsigned SrcReg,
   3965                                   const TargetRegisterClass *RC,
   3966                                   bool isStackAligned,
   3967                                   const X86Subtarget &STI) {
   3968   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
   3969 }
   3970 
   3971 
   3972 static unsigned getLoadRegOpcode(unsigned DestReg,
   3973                                  const TargetRegisterClass *RC,
   3974                                  bool isStackAligned,
   3975                                  const X86Subtarget &STI) {
   3976   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
   3977 }
   3978 
   3979 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   3980                                        MachineBasicBlock::iterator MI,
   3981                                        unsigned SrcReg, bool isKill, int FrameIdx,
   3982                                        const TargetRegisterClass *RC,
   3983                                        const TargetRegisterInfo *TRI) const {
   3984   const MachineFunction &MF = *MBB.getParent();
   3985   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
   3986          "Stack slot too small for store");
   3987   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   3988   bool isAligned =
   3989       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
   3990       RI.canRealignStack(MF);
   3991   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   3992   DebugLoc DL = MBB.findDebugLoc(MI);
   3993   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
   3994     .addReg(SrcReg, getKillRegState(isKill));
   3995 }
   3996 
   3997 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
   3998                                   bool isKill,
   3999                                   SmallVectorImpl<MachineOperand> &Addr,
   4000                                   const TargetRegisterClass *RC,
   4001                                   MachineInstr::mmo_iterator MMOBegin,
   4002                                   MachineInstr::mmo_iterator MMOEnd,
   4003                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4004   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4005   bool isAligned = MMOBegin != MMOEnd &&
   4006                    (*MMOBegin)->getAlignment() >= Alignment;
   4007   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
   4008   DebugLoc DL;
   4009   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
   4010   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   4011     MIB.addOperand(Addr[i]);
   4012   MIB.addReg(SrcReg, getKillRegState(isKill));
   4013   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   4014   NewMIs.push_back(MIB);
   4015 }
   4016 
   4017 
   4018 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   4019                                         MachineBasicBlock::iterator MI,
   4020                                         unsigned DestReg, int FrameIdx,
   4021                                         const TargetRegisterClass *RC,
   4022                                         const TargetRegisterInfo *TRI) const {
   4023   const MachineFunction &MF = *MBB.getParent();
   4024   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4025   bool isAligned =
   4026       (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
   4027       RI.canRealignStack(MF);
   4028   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   4029   DebugLoc DL = MBB.findDebugLoc(MI);
   4030   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
   4031 }
   4032 
   4033 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
   4034                                  SmallVectorImpl<MachineOperand> &Addr,
   4035                                  const TargetRegisterClass *RC,
   4036                                  MachineInstr::mmo_iterator MMOBegin,
   4037                                  MachineInstr::mmo_iterator MMOEnd,
   4038                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
   4039   unsigned Alignment = std::max<uint32_t>(RC->getSize(), 16);
   4040   bool isAligned = MMOBegin != MMOEnd &&
   4041                    (*MMOBegin)->getAlignment() >= Alignment;
   4042   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
   4043   DebugLoc DL;
   4044   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
   4045   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
   4046     MIB.addOperand(Addr[i]);
   4047   (*MIB).setMemRefs(MMOBegin, MMOEnd);
   4048   NewMIs.push_back(MIB);
   4049 }
   4050 
   4051 bool X86InstrInfo::
   4052 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
   4053                int &CmpMask, int &CmpValue) const {
   4054   switch (MI->getOpcode()) {
   4055   default: break;
   4056   case X86::CMP64ri32:
   4057   case X86::CMP64ri8:
   4058   case X86::CMP32ri:
   4059   case X86::CMP32ri8:
   4060   case X86::CMP16ri:
   4061   case X86::CMP16ri8:
   4062   case X86::CMP8ri:
   4063     SrcReg = MI->getOperand(0).getReg();
   4064     SrcReg2 = 0;
   4065     CmpMask = ~0;
   4066     CmpValue = MI->getOperand(1).getImm();
   4067     return true;
   4068   // A SUB can be used to perform comparison.
   4069   case X86::SUB64rm:
   4070   case X86::SUB32rm:
   4071   case X86::SUB16rm:
   4072   case X86::SUB8rm:
   4073     SrcReg = MI->getOperand(1).getReg();
   4074     SrcReg2 = 0;
   4075     CmpMask = ~0;
   4076     CmpValue = 0;
   4077     return true;
   4078   case X86::SUB64rr:
   4079   case X86::SUB32rr:
   4080   case X86::SUB16rr:
   4081   case X86::SUB8rr:
   4082     SrcReg = MI->getOperand(1).getReg();
   4083     SrcReg2 = MI->getOperand(2).getReg();
   4084     CmpMask = ~0;
   4085     CmpValue = 0;
   4086     return true;
   4087   case X86::SUB64ri32:
   4088   case X86::SUB64ri8:
   4089   case X86::SUB32ri:
   4090   case X86::SUB32ri8:
   4091   case X86::SUB16ri:
   4092   case X86::SUB16ri8:
   4093   case X86::SUB8ri:
   4094     SrcReg = MI->getOperand(1).getReg();
   4095     SrcReg2 = 0;
   4096     CmpMask = ~0;
   4097     CmpValue = MI->getOperand(2).getImm();
   4098     return true;
   4099   case X86::CMP64rr:
   4100   case X86::CMP32rr:
   4101   case X86::CMP16rr:
   4102   case X86::CMP8rr:
   4103     SrcReg = MI->getOperand(0).getReg();
   4104     SrcReg2 = MI->getOperand(1).getReg();
   4105     CmpMask = ~0;
   4106     CmpValue = 0;
   4107     return true;
   4108   case X86::TEST8rr:
   4109   case X86::TEST16rr:
   4110   case X86::TEST32rr:
   4111   case X86::TEST64rr:
   4112     SrcReg = MI->getOperand(0).getReg();
   4113     if (MI->getOperand(1).getReg() != SrcReg) return false;
   4114     // Compare against zero.
   4115     SrcReg2 = 0;
   4116     CmpMask = ~0;
   4117     CmpValue = 0;
   4118     return true;
   4119   }
   4120   return false;
   4121 }
   4122 
   4123 /// Check whether the first instruction, whose only
   4124 /// purpose is to update flags, can be made redundant.
   4125 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   4126 /// This function can be extended later on.
   4127 /// SrcReg, SrcRegs: register operands for FlagI.
   4128 /// ImmValue: immediate for FlagI if it takes an immediate.
   4129 inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
   4130                                         unsigned SrcReg2, int ImmValue,
   4131                                         MachineInstr *OI) {
   4132   if (((FlagI->getOpcode() == X86::CMP64rr &&
   4133         OI->getOpcode() == X86::SUB64rr) ||
   4134        (FlagI->getOpcode() == X86::CMP32rr &&
   4135         OI->getOpcode() == X86::SUB32rr)||
   4136        (FlagI->getOpcode() == X86::CMP16rr &&
   4137         OI->getOpcode() == X86::SUB16rr)||
   4138        (FlagI->getOpcode() == X86::CMP8rr &&
   4139         OI->getOpcode() == X86::SUB8rr)) &&
   4140       ((OI->getOperand(1).getReg() == SrcReg &&
   4141         OI->getOperand(2).getReg() == SrcReg2) ||
   4142        (OI->getOperand(1).getReg() == SrcReg2 &&
   4143         OI->getOperand(2).getReg() == SrcReg)))
   4144     return true;
   4145 
   4146   if (((FlagI->getOpcode() == X86::CMP64ri32 &&
   4147         OI->getOpcode() == X86::SUB64ri32) ||
   4148        (FlagI->getOpcode() == X86::CMP64ri8 &&
   4149         OI->getOpcode() == X86::SUB64ri8) ||
   4150        (FlagI->getOpcode() == X86::CMP32ri &&
   4151         OI->getOpcode() == X86::SUB32ri) ||
   4152        (FlagI->getOpcode() == X86::CMP32ri8 &&
   4153         OI->getOpcode() == X86::SUB32ri8) ||
   4154        (FlagI->getOpcode() == X86::CMP16ri &&
   4155         OI->getOpcode() == X86::SUB16ri) ||
   4156        (FlagI->getOpcode() == X86::CMP16ri8 &&
   4157         OI->getOpcode() == X86::SUB16ri8) ||
   4158        (FlagI->getOpcode() == X86::CMP8ri &&
   4159         OI->getOpcode() == X86::SUB8ri)) &&
   4160       OI->getOperand(1).getReg() == SrcReg &&
   4161       OI->getOperand(2).getImm() == ImmValue)
   4162     return true;
   4163   return false;
   4164 }
   4165 
   4166 /// Check whether the definition can be converted
   4167 /// to remove a comparison against zero.
   4168 inline static bool isDefConvertible(MachineInstr *MI) {
   4169   switch (MI->getOpcode()) {
   4170   default: return false;
   4171 
   4172   // The shift instructions only modify ZF if their shift count is non-zero.
   4173   // N.B.: The processor truncates the shift count depending on the encoding.
   4174   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
   4175   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
   4176      return getTruncatedShiftCount(MI, 2) != 0;
   4177 
   4178   // Some left shift instructions can be turned into LEA instructions but only
   4179   // if their flags aren't used. Avoid transforming such instructions.
   4180   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
   4181     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
   4182     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
   4183     return ShAmt != 0;
   4184   }
   4185 
   4186   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
   4187   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
   4188      return getTruncatedShiftCount(MI, 3) != 0;
   4189 
   4190   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
   4191   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
   4192   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
   4193   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
   4194   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
   4195   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
   4196   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
   4197   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
   4198   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
   4199   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
   4200   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
   4201   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
   4202   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
   4203   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
   4204   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
   4205   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
   4206   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
   4207   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
   4208   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
   4209   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
   4210   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
   4211   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
   4212   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
   4213   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
   4214   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
   4215   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
   4216   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
   4217   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
   4218   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
   4219   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
   4220   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
   4221   case X86::ADC32ri:   case X86::ADC32ri8:
   4222   case X86::ADC32rr:   case X86::ADC64ri32:
   4223   case X86::ADC64ri8:  case X86::ADC64rr:
   4224   case X86::SBB32ri:   case X86::SBB32ri8:
   4225   case X86::SBB32rr:   case X86::SBB64ri32:
   4226   case X86::SBB64ri8:  case X86::SBB64rr:
   4227   case X86::ANDN32rr:  case X86::ANDN32rm:
   4228   case X86::ANDN64rr:  case X86::ANDN64rm:
   4229   case X86::BEXTR32rr: case X86::BEXTR64rr:
   4230   case X86::BEXTR32rm: case X86::BEXTR64rm:
   4231   case X86::BLSI32rr:  case X86::BLSI32rm:
   4232   case X86::BLSI64rr:  case X86::BLSI64rm:
   4233   case X86::BLSMSK32rr:case X86::BLSMSK32rm:
   4234   case X86::BLSMSK64rr:case X86::BLSMSK64rm:
   4235   case X86::BLSR32rr:  case X86::BLSR32rm:
   4236   case X86::BLSR64rr:  case X86::BLSR64rm:
   4237   case X86::BZHI32rr:  case X86::BZHI32rm:
   4238   case X86::BZHI64rr:  case X86::BZHI64rm:
   4239   case X86::LZCNT16rr: case X86::LZCNT16rm:
   4240   case X86::LZCNT32rr: case X86::LZCNT32rm:
   4241   case X86::LZCNT64rr: case X86::LZCNT64rm:
   4242   case X86::POPCNT16rr:case X86::POPCNT16rm:
   4243   case X86::POPCNT32rr:case X86::POPCNT32rm:
   4244   case X86::POPCNT64rr:case X86::POPCNT64rm:
   4245   case X86::TZCNT16rr: case X86::TZCNT16rm:
   4246   case X86::TZCNT32rr: case X86::TZCNT32rm:
   4247   case X86::TZCNT64rr: case X86::TZCNT64rm:
   4248     return true;
   4249   }
   4250 }
   4251 
   4252 /// Check whether the use can be converted to remove a comparison against zero.
   4253 static X86::CondCode isUseDefConvertible(MachineInstr *MI) {
   4254   switch (MI->getOpcode()) {
   4255   default: return X86::COND_INVALID;
   4256   case X86::LZCNT16rr: case X86::LZCNT16rm:
   4257   case X86::LZCNT32rr: case X86::LZCNT32rm:
   4258   case X86::LZCNT64rr: case X86::LZCNT64rm:
   4259     return X86::COND_B;
   4260   case X86::POPCNT16rr:case X86::POPCNT16rm:
   4261   case X86::POPCNT32rr:case X86::POPCNT32rm:
   4262   case X86::POPCNT64rr:case X86::POPCNT64rm:
   4263     return X86::COND_E;
   4264   case X86::TZCNT16rr: case X86::TZCNT16rm:
   4265   case X86::TZCNT32rr: case X86::TZCNT32rm:
   4266   case X86::TZCNT64rr: case X86::TZCNT64rm:
   4267     return X86::COND_B;
   4268   }
   4269 }
   4270 
   4271 /// Check if there exists an earlier instruction that
   4272 /// operates on the same source operands and sets flags in the same way as
   4273 /// Compare; remove Compare if possible.
   4274 bool X86InstrInfo::
   4275 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   4276                      int CmpMask, int CmpValue,
   4277                      const MachineRegisterInfo *MRI) const {
   4278   // Check whether we can replace SUB with CMP.
   4279   unsigned NewOpcode = 0;
   4280   switch (CmpInstr->getOpcode()) {
   4281   default: break;
   4282   case X86::SUB64ri32:
   4283   case X86::SUB64ri8:
   4284   case X86::SUB32ri:
   4285   case X86::SUB32ri8:
   4286   case X86::SUB16ri:
   4287   case X86::SUB16ri8:
   4288   case X86::SUB8ri:
   4289   case X86::SUB64rm:
   4290   case X86::SUB32rm:
   4291   case X86::SUB16rm:
   4292   case X86::SUB8rm:
   4293   case X86::SUB64rr:
   4294   case X86::SUB32rr:
   4295   case X86::SUB16rr:
   4296   case X86::SUB8rr: {
   4297     if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
   4298       return false;
   4299     // There is no use of the destination register, we can replace SUB with CMP.
   4300     switch (CmpInstr->getOpcode()) {
   4301     default: llvm_unreachable("Unreachable!");
   4302     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
   4303     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
   4304     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
   4305     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
   4306     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
   4307     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
   4308     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
   4309     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
   4310     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
   4311     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
   4312     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
   4313     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
   4314     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
   4315     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
   4316     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
   4317     }
   4318     CmpInstr->setDesc(get(NewOpcode));
   4319     CmpInstr->RemoveOperand(0);
   4320     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
   4321     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
   4322         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
   4323       return false;
   4324   }
   4325   }
   4326 
   4327   // Get the unique definition of SrcReg.
   4328   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   4329   if (!MI) return false;
   4330 
   4331   // CmpInstr is the first instruction of the BB.
   4332   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
   4333 
   4334   // If we are comparing against zero, check whether we can use MI to update
   4335   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
   4336   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
   4337   if (IsCmpZero && MI->getParent() != CmpInstr->getParent())
   4338     return false;
   4339 
   4340   // If we have a use of the source register between the def and our compare
   4341   // instruction we can eliminate the compare iff the use sets EFLAGS in the
   4342   // right way.
   4343   bool ShouldUpdateCC = false;
   4344   X86::CondCode NewCC = X86::COND_INVALID;
   4345   if (IsCmpZero && !isDefConvertible(MI)) {
   4346     // Scan forward from the use until we hit the use we're looking for or the
   4347     // compare instruction.
   4348     for (MachineBasicBlock::iterator J = MI;; ++J) {
   4349       // Do we have a convertible instruction?
   4350       NewCC = isUseDefConvertible(J);
   4351       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
   4352           J->getOperand(1).getReg() == SrcReg) {
   4353         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
   4354         ShouldUpdateCC = true; // Update CC later on.
   4355         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
   4356         // with the new def.
   4357         MI = Def = J;
   4358         break;
   4359       }
   4360 
   4361       if (J == I)
   4362         return false;
   4363     }
   4364   }
   4365 
   4366   // We are searching for an earlier instruction that can make CmpInstr
   4367   // redundant and that instruction will be saved in Sub.
   4368   MachineInstr *Sub = nullptr;
   4369   const TargetRegisterInfo *TRI = &getRegisterInfo();
   4370 
   4371   // We iterate backward, starting from the instruction before CmpInstr and
   4372   // stop when reaching the definition of a source register or done with the BB.
   4373   // RI points to the instruction before CmpInstr.
   4374   // If the definition is in this basic block, RE points to the definition;
   4375   // otherwise, RE is the rend of the basic block.
   4376   MachineBasicBlock::reverse_iterator
   4377       RI = MachineBasicBlock::reverse_iterator(I),
   4378       RE = CmpInstr->getParent() == MI->getParent() ?
   4379            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
   4380            CmpInstr->getParent()->rend();
   4381   MachineInstr *Movr0Inst = nullptr;
   4382   for (; RI != RE; ++RI) {
   4383     MachineInstr *Instr = &*RI;
   4384     // Check whether CmpInstr can be made redundant by the current instruction.
   4385     if (!IsCmpZero &&
   4386         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
   4387       Sub = Instr;
   4388       break;
   4389     }
   4390 
   4391     if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
   4392         Instr->readsRegister(X86::EFLAGS, TRI)) {
   4393       // This instruction modifies or uses EFLAGS.
   4394 
   4395       // MOV32r0 etc. are implemented with xor which clobbers condition code.
   4396       // They are safe to move up, if the definition to EFLAGS is dead and
   4397       // earlier instructions do not read or write EFLAGS.
   4398       if (!Movr0Inst && Instr->getOpcode() == X86::MOV32r0 &&
   4399           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
   4400         Movr0Inst = Instr;
   4401         continue;
   4402       }
   4403 
   4404       // We can't remove CmpInstr.
   4405       return false;
   4406     }
   4407   }
   4408 
   4409   // Return false if no candidates exist.
   4410   if (!IsCmpZero && !Sub)
   4411     return false;
   4412 
   4413   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   4414                     Sub->getOperand(2).getReg() == SrcReg);
   4415 
   4416   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
   4417   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
   4418   // If we are done with the basic block, we need to check whether EFLAGS is
   4419   // live-out.
   4420   bool IsSafe = false;
   4421   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
   4422   MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
   4423   for (++I; I != E; ++I) {
   4424     const MachineInstr &Instr = *I;
   4425     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
   4426     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
   4427     // We should check the usage if this instruction uses and updates EFLAGS.
   4428     if (!UseEFLAGS && ModifyEFLAGS) {
   4429       // It is safe to remove CmpInstr if EFLAGS is updated again.
   4430       IsSafe = true;
   4431       break;
   4432     }
   4433     if (!UseEFLAGS && !ModifyEFLAGS)
   4434       continue;
   4435 
   4436     // EFLAGS is used by this instruction.
   4437     X86::CondCode OldCC = X86::COND_INVALID;
   4438     bool OpcIsSET = false;
   4439     if (IsCmpZero || IsSwapped) {
   4440       // We decode the condition code from opcode.
   4441       if (Instr.isBranch())
   4442         OldCC = getCondFromBranchOpc(Instr.getOpcode());
   4443       else {
   4444         OldCC = getCondFromSETOpc(Instr.getOpcode());
   4445         if (OldCC != X86::COND_INVALID)
   4446           OpcIsSET = true;
   4447         else
   4448           OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
   4449       }
   4450       if (OldCC == X86::COND_INVALID) return false;
   4451     }
   4452     if (IsCmpZero) {
   4453       switch (OldCC) {
   4454       default: break;
   4455       case X86::COND_A: case X86::COND_AE:
   4456       case X86::COND_B: case X86::COND_BE:
   4457       case X86::COND_G: case X86::COND_GE:
   4458       case X86::COND_L: case X86::COND_LE:
   4459       case X86::COND_O: case X86::COND_NO:
   4460         // CF and OF are used, we can't perform this optimization.
   4461         return false;
   4462       }
   4463 
   4464       // If we're updating the condition code check if we have to reverse the
   4465       // condition.
   4466       if (ShouldUpdateCC)
   4467         switch (OldCC) {
   4468         default:
   4469           return false;
   4470         case X86::COND_E:
   4471           break;
   4472         case X86::COND_NE:
   4473           NewCC = GetOppositeBranchCondition(NewCC);
   4474           break;
   4475         }
   4476     } else if (IsSwapped) {
   4477       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
   4478       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   4479       // We swap the condition code and synthesize the new opcode.
   4480       NewCC = getSwappedCondition(OldCC);
   4481       if (NewCC == X86::COND_INVALID) return false;
   4482     }
   4483 
   4484     if ((ShouldUpdateCC || IsSwapped) && NewCC != OldCC) {
   4485       // Synthesize the new opcode.
   4486       bool HasMemoryOperand = Instr.hasOneMemOperand();
   4487       unsigned NewOpc;
   4488       if (Instr.isBranch())
   4489         NewOpc = GetCondBranchFromCond(NewCC);
   4490       else if(OpcIsSET)
   4491         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
   4492       else {
   4493         unsigned DstReg = Instr.getOperand(0).getReg();
   4494         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
   4495                                  HasMemoryOperand);
   4496       }
   4497 
   4498       // Push the MachineInstr to OpsToUpdate.
   4499       // If it is safe to remove CmpInstr, the condition code of these
   4500       // instructions will be modified.
   4501       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
   4502     }
   4503     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
   4504       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
   4505       IsSafe = true;
   4506       break;
   4507     }
   4508   }
   4509 
   4510   // If EFLAGS is not killed nor re-defined, we should check whether it is
   4511   // live-out. If it is live-out, do not optimize.
   4512   if ((IsCmpZero || IsSwapped) && !IsSafe) {
   4513     MachineBasicBlock *MBB = CmpInstr->getParent();
   4514     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   4515              SE = MBB->succ_end(); SI != SE; ++SI)
   4516       if ((*SI)->isLiveIn(X86::EFLAGS))
   4517         return false;
   4518   }
   4519 
   4520   // The instruction to be updated is either Sub or MI.
   4521   Sub = IsCmpZero ? MI : Sub;
   4522   // Move Movr0Inst to the appropriate place before Sub.
   4523   if (Movr0Inst) {
   4524     // Look backwards until we find a def that doesn't use the current EFLAGS.
   4525     Def = Sub;
   4526     MachineBasicBlock::reverse_iterator
   4527       InsertI = MachineBasicBlock::reverse_iterator(++Def),
   4528                 InsertE = Sub->getParent()->rend();
   4529     for (; InsertI != InsertE; ++InsertI) {
   4530       MachineInstr *Instr = &*InsertI;
   4531       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
   4532           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
   4533         Sub->getParent()->remove(Movr0Inst);
   4534         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
   4535                                    Movr0Inst);
   4536         break;
   4537       }
   4538     }
   4539     if (InsertI == InsertE)
   4540       return false;
   4541   }
   4542 
   4543   // Make sure Sub instruction defines EFLAGS and mark the def live.
   4544   unsigned i = 0, e = Sub->getNumOperands();
   4545   for (; i != e; ++i) {
   4546     MachineOperand &MO = Sub->getOperand(i);
   4547     if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
   4548       MO.setIsDead(false);
   4549       break;
   4550     }
   4551   }
   4552   assert(i != e && "Unable to locate a def EFLAGS operand");
   4553 
   4554   CmpInstr->eraseFromParent();
   4555 
   4556   // Modify the condition code of instructions in OpsToUpdate.
   4557   for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
   4558     OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
   4559   return true;
   4560 }
   4561 
   4562 /// Try to remove the load by folding it to a register
   4563 /// operand at the use. We fold the load instructions if load defines a virtual
   4564 /// register, the virtual register is used once in the same BB, and the
   4565 /// instructions in-between do not load or store, and have no side effects.
   4566 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI,
   4567                                               const MachineRegisterInfo *MRI,
   4568                                               unsigned &FoldAsLoadDefReg,
   4569                                               MachineInstr *&DefMI) const {
   4570   if (FoldAsLoadDefReg == 0)
   4571     return nullptr;
   4572   // To be conservative, if there exists another load, clear the load candidate.
   4573   if (MI->mayLoad()) {
   4574     FoldAsLoadDefReg = 0;
   4575     return nullptr;
   4576   }
   4577 
   4578   // Check whether we can move DefMI here.
   4579   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
   4580   assert(DefMI);
   4581   bool SawStore = false;
   4582   if (!DefMI->isSafeToMove(this, nullptr, SawStore))
   4583     return nullptr;
   4584 
   4585   // Collect information about virtual register operands of MI.
   4586   unsigned SrcOperandId = 0;
   4587   bool FoundSrcOperand = false;
   4588   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   4589     MachineOperand &MO = MI->getOperand(i);
   4590     if (!MO.isReg())
   4591       continue;
   4592     unsigned Reg = MO.getReg();
   4593     if (Reg != FoldAsLoadDefReg)
   4594       continue;
   4595     // Do not fold if we have a subreg use or a def or multiple uses.
   4596     if (MO.getSubReg() || MO.isDef() || FoundSrcOperand)
   4597       return nullptr;
   4598 
   4599     SrcOperandId = i;
   4600     FoundSrcOperand = true;
   4601   }
   4602   if (!FoundSrcOperand)
   4603     return nullptr;
   4604 
   4605   // Check whether we can fold the def into SrcOperandId.
   4606   MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI);
   4607   if (FoldMI) {
   4608     FoldAsLoadDefReg = 0;
   4609     return FoldMI;
   4610   }
   4611 
   4612   return nullptr;
   4613 }
   4614 
   4615 /// Expand a single-def pseudo instruction to a two-addr
   4616 /// instruction with two undef reads of the register being defined.
   4617 /// This is used for mapping:
   4618 ///   %xmm4 = V_SET0
   4619 /// to:
   4620 ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
   4621 ///
   4622 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
   4623                              const MCInstrDesc &Desc) {
   4624   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
   4625   unsigned Reg = MIB->getOperand(0).getReg();
   4626   MIB->setDesc(Desc);
   4627 
   4628   // MachineInstr::addOperand() will insert explicit operands before any
   4629   // implicit operands.
   4630   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   4631   // But we don't trust that.
   4632   assert(MIB->getOperand(1).getReg() == Reg &&
   4633          MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
   4634   return true;
   4635 }
   4636 
   4637 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
   4638 // code sequence is needed for other targets.
   4639 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
   4640                                  const TargetInstrInfo &TII) {
   4641   MachineBasicBlock &MBB = *MIB->getParent();
   4642   DebugLoc DL = MIB->getDebugLoc();
   4643   unsigned Reg = MIB->getOperand(0).getReg();
   4644   const GlobalValue *GV =
   4645       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
   4646   unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
   4647   MachineMemOperand *MMO = MBB.getParent()->
   4648       getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 8, 8);
   4649   MachineBasicBlock::iterator I = MIB.getInstr();
   4650 
   4651   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
   4652       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
   4653       .addMemOperand(MMO);
   4654   MIB->setDebugLoc(DL);
   4655   MIB->setDesc(TII.get(X86::MOV64rm));
   4656   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
   4657 }
   4658 
   4659 bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
   4660   bool HasAVX = Subtarget.hasAVX();
   4661   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   4662   switch (MI->getOpcode()) {
   4663   case X86::MOV32r0:
   4664     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
   4665   case X86::SETB_C8r:
   4666     return Expand2AddrUndef(MIB, get(X86::SBB8rr));
   4667   case X86::SETB_C16r:
   4668     return Expand2AddrUndef(MIB, get(X86::SBB16rr));
   4669   case X86::SETB_C32r:
   4670     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
   4671   case X86::SETB_C64r:
   4672     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
   4673   case X86::V_SET0:
   4674   case X86::FsFLD0SS:
   4675   case X86::FsFLD0SD:
   4676     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
   4677   case X86::AVX_SET0:
   4678     assert(HasAVX && "AVX not supported");
   4679     return Expand2AddrUndef(MIB, get(X86::VXORPSYrr));
   4680   case X86::AVX512_512_SET0:
   4681     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
   4682   case X86::V_SETALLONES:
   4683     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
   4684   case X86::AVX2_SETALLONES:
   4685     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
   4686   case X86::TEST8ri_NOREX:
   4687     MI->setDesc(get(X86::TEST8ri));
   4688     return true;
   4689   case X86::KSET0B:
   4690   case X86::KSET0W: return Expand2AddrUndef(MIB, get(X86::KXORWrr));
   4691   case X86::KSET1B:
   4692   case X86::KSET1W: return Expand2AddrUndef(MIB, get(X86::KXNORWrr));
   4693   case TargetOpcode::LOAD_STACK_GUARD:
   4694     expandLoadStackGuard(MIB, *this);
   4695     return true;
   4696   }
   4697   return false;
   4698 }
   4699 
   4700 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
   4701                                      ArrayRef<MachineOperand> MOs,
   4702                                      MachineInstr *MI,
   4703                                      const TargetInstrInfo &TII) {
   4704   // Create the base instruction with the memory operand as the first part.
   4705   // Omit the implicit operands, something BuildMI can't do.
   4706   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   4707                                               MI->getDebugLoc(), true);
   4708   MachineInstrBuilder MIB(MF, NewMI);
   4709   unsigned NumAddrOps = MOs.size();
   4710   for (unsigned i = 0; i != NumAddrOps; ++i)
   4711     MIB.addOperand(MOs[i]);
   4712   if (NumAddrOps < 4)  // FrameIndex only
   4713     addOffset(MIB, 0);
   4714 
   4715   // Loop over the rest of the ri operands, converting them over.
   4716   unsigned NumOps = MI->getDesc().getNumOperands()-2;
   4717   for (unsigned i = 0; i != NumOps; ++i) {
   4718     MachineOperand &MO = MI->getOperand(i+2);
   4719     MIB.addOperand(MO);
   4720   }
   4721   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
   4722     MachineOperand &MO = MI->getOperand(i);
   4723     MIB.addOperand(MO);
   4724   }
   4725   return MIB;
   4726 }
   4727 
   4728 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
   4729                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
   4730                               MachineInstr *MI, const TargetInstrInfo &TII) {
   4731   // Omit the implicit operands, something BuildMI can't do.
   4732   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
   4733                                               MI->getDebugLoc(), true);
   4734   MachineInstrBuilder MIB(MF, NewMI);
   4735 
   4736   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   4737     MachineOperand &MO = MI->getOperand(i);
   4738     if (i == OpNo) {
   4739       assert(MO.isReg() && "Expected to fold into reg operand!");
   4740       unsigned NumAddrOps = MOs.size();
   4741       for (unsigned i = 0; i != NumAddrOps; ++i)
   4742         MIB.addOperand(MOs[i]);
   4743       if (NumAddrOps < 4)  // FrameIndex only
   4744         addOffset(MIB, 0);
   4745     } else {
   4746       MIB.addOperand(MO);
   4747     }
   4748   }
   4749   return MIB;
   4750 }
   4751 
   4752 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
   4753                                 ArrayRef<MachineOperand> MOs,
   4754                                 MachineInstr *MI) {
   4755   MachineFunction &MF = *MI->getParent()->getParent();
   4756   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
   4757 
   4758   unsigned NumAddrOps = MOs.size();
   4759   for (unsigned i = 0; i != NumAddrOps; ++i)
   4760     MIB.addOperand(MOs[i]);
   4761   if (NumAddrOps < 4)  // FrameIndex only
   4762     addOffset(MIB, 0);
   4763   return MIB.addImm(0);
   4764 }
   4765 
   4766 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   4767                                                   MachineInstr *MI,
   4768                                                   unsigned OpNum,
   4769                                                   ArrayRef<MachineOperand> MOs,
   4770                                                   unsigned Size, unsigned Align,
   4771                                                   bool AllowCommute) const {
   4772   const DenseMap<unsigned,
   4773                  std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
   4774   bool isCallRegIndirect = Subtarget.callRegIndirect();
   4775   bool isTwoAddrFold = false;
   4776 
   4777   // For CPUs that favor the register form of a call,
   4778   // do not fold loads into calls.
   4779   if (isCallRegIndirect &&
   4780     (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r))
   4781     return nullptr;
   4782 
   4783   unsigned NumOps = MI->getDesc().getNumOperands();
   4784   bool isTwoAddr = NumOps > 1 &&
   4785     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   4786 
   4787   // FIXME: AsmPrinter doesn't know how to handle
   4788   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   4789   if (MI->getOpcode() == X86::ADD32ri &&
   4790       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   4791     return nullptr;
   4792 
   4793   MachineInstr *NewMI = nullptr;
   4794   // Folding a memory location into the two-address part of a two-address
   4795   // instruction is different than folding it other places.  It requires
   4796   // replacing the *two* registers with the memory location.
   4797   if (isTwoAddr && NumOps >= 2 && OpNum < 2 &&
   4798       MI->getOperand(0).isReg() &&
   4799       MI->getOperand(1).isReg() &&
   4800       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
   4801     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   4802     isTwoAddrFold = true;
   4803   } else if (OpNum == 0) {
   4804     if (MI->getOpcode() == X86::MOV32r0) {
   4805       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
   4806       if (NewMI)
   4807         return NewMI;
   4808     }
   4809 
   4810     OpcodeTablePtr = &RegOp2MemOpTable0;
   4811   } else if (OpNum == 1) {
   4812     OpcodeTablePtr = &RegOp2MemOpTable1;
   4813   } else if (OpNum == 2) {
   4814     OpcodeTablePtr = &RegOp2MemOpTable2;
   4815   } else if (OpNum == 3) {
   4816     OpcodeTablePtr = &RegOp2MemOpTable3;
   4817   } else if (OpNum == 4) {
   4818     OpcodeTablePtr = &RegOp2MemOpTable4;
   4819   }
   4820 
   4821   // If table selected...
   4822   if (OpcodeTablePtr) {
   4823     // Find the Opcode to fuse
   4824     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   4825       OpcodeTablePtr->find(MI->getOpcode());
   4826     if (I != OpcodeTablePtr->end()) {
   4827       unsigned Opcode = I->second.first;
   4828       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
   4829       if (Align < MinAlign)
   4830         return nullptr;
   4831       bool NarrowToMOV32rm = false;
   4832       if (Size) {
   4833         unsigned RCSize = getRegClass(MI->getDesc(), OpNum, &RI, MF)->getSize();
   4834         if (Size < RCSize) {
   4835           // Check if it's safe to fold the load. If the size of the object is
   4836           // narrower than the load width, then it's not.
   4837           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
   4838             return nullptr;
   4839           // If this is a 64-bit load, but the spill slot is 32, then we can do
   4840           // a 32-bit load which is implicitly zero-extended. This likely is
   4841           // due to live interval analysis remat'ing a load from stack slot.
   4842           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
   4843             return nullptr;
   4844           Opcode = X86::MOV32rm;
   4845           NarrowToMOV32rm = true;
   4846         }
   4847       }
   4848 
   4849       if (isTwoAddrFold)
   4850         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
   4851       else
   4852         NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this);
   4853 
   4854       if (NarrowToMOV32rm) {
   4855         // If this is the special case where we use a MOV32rm to load a 32-bit
   4856         // value and zero-extend the top bits. Change the destination register
   4857         // to a 32-bit one.
   4858         unsigned DstReg = NewMI->getOperand(0).getReg();
   4859         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
   4860           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
   4861         else
   4862           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
   4863       }
   4864       return NewMI;
   4865     }
   4866   }
   4867 
   4868   // If the instruction and target operand are commutable, commute the
   4869   // instruction and try again.
   4870   if (AllowCommute) {
   4871     unsigned OriginalOpIdx = OpNum, CommuteOpIdx1, CommuteOpIdx2;
   4872     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
   4873       bool HasDef = MI->getDesc().getNumDefs();
   4874       unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
   4875       unsigned Reg1 = MI->getOperand(CommuteOpIdx1).getReg();
   4876       unsigned Reg2 = MI->getOperand(CommuteOpIdx2).getReg();
   4877       bool Tied0 =
   4878           0 == MI->getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
   4879       bool Tied1 =
   4880           0 == MI->getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
   4881 
   4882       // If either of the commutable operands are tied to the destination
   4883       // then we can not commute + fold.
   4884       if ((HasDef && Reg0 == Reg1 && Tied0) ||
   4885           (HasDef && Reg0 == Reg2 && Tied1))
   4886         return nullptr;
   4887 
   4888       if ((CommuteOpIdx1 == OriginalOpIdx) ||
   4889           (CommuteOpIdx2 == OriginalOpIdx)) {
   4890         MachineInstr *CommutedMI = commuteInstruction(MI, false);
   4891         if (!CommutedMI) {
   4892           // Unable to commute.
   4893           return nullptr;
   4894         }
   4895         if (CommutedMI != MI) {
   4896           // New instruction. We can't fold from this.
   4897           CommutedMI->eraseFromParent();
   4898           return nullptr;
   4899         }
   4900 
   4901         // Attempt to fold with the commuted version of the instruction.
   4902         unsigned CommuteOp =
   4903             (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1);
   4904         NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align,
   4905                                       /*AllowCommute=*/false);
   4906         if (NewMI)
   4907           return NewMI;
   4908 
   4909         // Folding failed again - undo the commute before returning.
   4910         MachineInstr *UncommutedMI = commuteInstruction(MI, false);
   4911         if (!UncommutedMI) {
   4912           // Unable to commute.
   4913           return nullptr;
   4914         }
   4915         if (UncommutedMI != MI) {
   4916           // New instruction. It doesn't need to be kept.
   4917           UncommutedMI->eraseFromParent();
   4918           return nullptr;
   4919         }
   4920 
   4921         // Return here to prevent duplicate fuse failure report.
   4922         return nullptr;
   4923       }
   4924     }
   4925   }
   4926 
   4927   // No fusion
   4928   if (PrintFailedFusing && !MI->isCopy())
   4929     dbgs() << "We failed to fuse operand " << OpNum << " in " << *MI;
   4930   return nullptr;
   4931 }
   4932 
   4933 /// Return true for all instructions that only update
   4934 /// the first 32 or 64-bits of the destination register and leave the rest
   4935 /// unmodified. This can be used to avoid folding loads if the instructions
   4936 /// only update part of the destination register, and the non-updated part is
   4937 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
   4938 /// instructions breaks the partial register dependency and it can improve
   4939 /// performance. e.g.:
   4940 ///
   4941 ///   movss (%rdi), %xmm0
   4942 ///   cvtss2sd %xmm0, %xmm0
   4943 ///
   4944 /// Instead of
   4945 ///   cvtss2sd (%rdi), %xmm0
   4946 ///
   4947 /// FIXME: This should be turned into a TSFlags.
   4948 ///
   4949 static bool hasPartialRegUpdate(unsigned Opcode) {
   4950   switch (Opcode) {
   4951   case X86::CVTSI2SSrr:
   4952   case X86::CVTSI2SSrm:
   4953   case X86::CVTSI2SS64rr:
   4954   case X86::CVTSI2SS64rm:
   4955   case X86::CVTSI2SDrr:
   4956   case X86::CVTSI2SDrm:
   4957   case X86::CVTSI2SD64rr:
   4958   case X86::CVTSI2SD64rm:
   4959   case X86::CVTSD2SSrr:
   4960   case X86::CVTSD2SSrm:
   4961   case X86::Int_CVTSD2SSrr:
   4962   case X86::Int_CVTSD2SSrm:
   4963   case X86::CVTSS2SDrr:
   4964   case X86::CVTSS2SDrm:
   4965   case X86::Int_CVTSS2SDrr:
   4966   case X86::Int_CVTSS2SDrm:
   4967   case X86::RCPSSr:
   4968   case X86::RCPSSm:
   4969   case X86::RCPSSr_Int:
   4970   case X86::RCPSSm_Int:
   4971   case X86::ROUNDSDr:
   4972   case X86::ROUNDSDm:
   4973   case X86::ROUNDSDr_Int:
   4974   case X86::ROUNDSSr:
   4975   case X86::ROUNDSSm:
   4976   case X86::ROUNDSSr_Int:
   4977   case X86::RSQRTSSr:
   4978   case X86::RSQRTSSm:
   4979   case X86::RSQRTSSr_Int:
   4980   case X86::RSQRTSSm_Int:
   4981   case X86::SQRTSSr:
   4982   case X86::SQRTSSm:
   4983   case X86::SQRTSSr_Int:
   4984   case X86::SQRTSSm_Int:
   4985   case X86::SQRTSDr:
   4986   case X86::SQRTSDm:
   4987   case X86::SQRTSDr_Int:
   4988   case X86::SQRTSDm_Int:
   4989     return true;
   4990   }
   4991 
   4992   return false;
   4993 }
   4994 
   4995 /// Inform the ExeDepsFix pass how many idle
   4996 /// instructions we would like before a partial register update.
   4997 unsigned X86InstrInfo::
   4998 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
   4999                              const TargetRegisterInfo *TRI) const {
   5000   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
   5001     return 0;
   5002 
   5003   // If MI is marked as reading Reg, the partial register update is wanted.
   5004   const MachineOperand &MO = MI->getOperand(0);
   5005   unsigned Reg = MO.getReg();
   5006   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   5007     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
   5008       return 0;
   5009   } else {
   5010     if (MI->readsRegister(Reg, TRI))
   5011       return 0;
   5012   }
   5013 
   5014   // If any of the preceding 16 instructions are reading Reg, insert a
   5015   // dependency breaking instruction.  The magic number is based on a few
   5016   // Nehalem experiments.
   5017   return 16;
   5018 }
   5019 
   5020 // Return true for any instruction the copies the high bits of the first source
   5021 // operand into the unused high bits of the destination operand.
   5022 static bool hasUndefRegUpdate(unsigned Opcode) {
   5023   switch (Opcode) {
   5024   case X86::VCVTSI2SSrr:
   5025   case X86::VCVTSI2SSrm:
   5026   case X86::Int_VCVTSI2SSrr:
   5027   case X86::Int_VCVTSI2SSrm:
   5028   case X86::VCVTSI2SS64rr:
   5029   case X86::VCVTSI2SS64rm:
   5030   case X86::Int_VCVTSI2SS64rr:
   5031   case X86::Int_VCVTSI2SS64rm:
   5032   case X86::VCVTSI2SDrr:
   5033   case X86::VCVTSI2SDrm:
   5034   case X86::Int_VCVTSI2SDrr:
   5035   case X86::Int_VCVTSI2SDrm:
   5036   case X86::VCVTSI2SD64rr:
   5037   case X86::VCVTSI2SD64rm:
   5038   case X86::Int_VCVTSI2SD64rr:
   5039   case X86::Int_VCVTSI2SD64rm:
   5040   case X86::VCVTSD2SSrr:
   5041   case X86::VCVTSD2SSrm:
   5042   case X86::Int_VCVTSD2SSrr:
   5043   case X86::Int_VCVTSD2SSrm:
   5044   case X86::VCVTSS2SDrr:
   5045   case X86::VCVTSS2SDrm:
   5046   case X86::Int_VCVTSS2SDrr:
   5047   case X86::Int_VCVTSS2SDrm:
   5048   case X86::VRCPSSr:
   5049   case X86::VRCPSSm:
   5050   case X86::VRCPSSm_Int:
   5051   case X86::VROUNDSDr:
   5052   case X86::VROUNDSDm:
   5053   case X86::VROUNDSDr_Int:
   5054   case X86::VROUNDSSr:
   5055   case X86::VROUNDSSm:
   5056   case X86::VROUNDSSr_Int:
   5057   case X86::VRSQRTSSr:
   5058   case X86::VRSQRTSSm:
   5059   case X86::VRSQRTSSm_Int:
   5060   case X86::VSQRTSSr:
   5061   case X86::VSQRTSSm:
   5062   case X86::VSQRTSSm_Int:
   5063   case X86::VSQRTSDr:
   5064   case X86::VSQRTSDm:
   5065   case X86::VSQRTSDm_Int:
   5066     // AVX-512
   5067   case X86::VCVTSD2SSZrr:
   5068   case X86::VCVTSD2SSZrm:
   5069   case X86::VCVTSS2SDZrr:
   5070   case X86::VCVTSS2SDZrm:
   5071     return true;
   5072   }
   5073 
   5074   return false;
   5075 }
   5076 
   5077 /// Inform the ExeDepsFix pass how many idle instructions we would like before
   5078 /// certain undef register reads.
   5079 ///
   5080 /// This catches the VCVTSI2SD family of instructions:
   5081 ///
   5082 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
   5083 ///
   5084 /// We should to be careful *not* to catch VXOR idioms which are presumably
   5085 /// handled specially in the pipeline:
   5086 ///
   5087 /// vxorps %xmm1<undef>, %xmm1<undef>, %xmm1
   5088 ///
   5089 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
   5090 /// high bits that are passed-through are not live.
   5091 unsigned X86InstrInfo::
   5092 getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
   5093                      const TargetRegisterInfo *TRI) const {
   5094   if (!hasUndefRegUpdate(MI->getOpcode()))
   5095     return 0;
   5096 
   5097   // Set the OpNum parameter to the first source operand.
   5098   OpNum = 1;
   5099 
   5100   const MachineOperand &MO = MI->getOperand(OpNum);
   5101   if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
   5102     // Use the same magic number as getPartialRegUpdateClearance.
   5103     return 16;
   5104   }
   5105   return 0;
   5106 }
   5107 
   5108 void X86InstrInfo::
   5109 breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
   5110                           const TargetRegisterInfo *TRI) const {
   5111   unsigned Reg = MI->getOperand(OpNum).getReg();
   5112   // If MI kills this register, the false dependence is already broken.
   5113   if (MI->killsRegister(Reg, TRI))
   5114     return;
   5115   if (X86::VR128RegClass.contains(Reg)) {
   5116     // These instructions are all floating point domain, so xorps is the best
   5117     // choice.
   5118     bool HasAVX = Subtarget.hasAVX();
   5119     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
   5120     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
   5121       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
   5122   } else if (X86::VR256RegClass.contains(Reg)) {
   5123     // Use vxorps to clear the full ymm register.
   5124     // It wants to read and write the xmm sub-register.
   5125     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
   5126     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
   5127       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
   5128       .addReg(Reg, RegState::ImplicitDefine);
   5129   } else
   5130     return;
   5131   MI->addRegisterKilled(Reg, TRI, true);
   5132 }
   5133 
   5134 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   5135                                                   MachineInstr *MI,
   5136                                                   ArrayRef<unsigned> Ops,
   5137                                                   int FrameIndex) const {
   5138   // Check switch flag
   5139   if (NoFusing) return nullptr;
   5140 
   5141   // Unless optimizing for size, don't fold to avoid partial
   5142   // register update stalls
   5143   if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
   5144       hasPartialRegUpdate(MI->getOpcode()))
   5145     return nullptr;
   5146 
   5147   const MachineFrameInfo *MFI = MF.getFrameInfo();
   5148   unsigned Size = MFI->getObjectSize(FrameIndex);
   5149   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
   5150   // If the function stack isn't realigned we don't want to fold instructions
   5151   // that need increased alignment.
   5152   if (!RI.needsStackRealignment(MF))
   5153     Alignment =
   5154         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
   5155   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   5156     unsigned NewOpc = 0;
   5157     unsigned RCSize = 0;
   5158     switch (MI->getOpcode()) {
   5159     default: return nullptr;
   5160     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
   5161     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
   5162     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
   5163     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
   5164     }
   5165     // Check if it's safe to fold the load. If the size of the object is
   5166     // narrower than the load width, then it's not.
   5167     if (Size < RCSize)
   5168       return nullptr;
   5169     // Change to CMPXXri r, 0 first.
   5170     MI->setDesc(get(NewOpc));
   5171     MI->getOperand(1).ChangeToImmediate(0);
   5172   } else if (Ops.size() != 1)
   5173     return nullptr;
   5174 
   5175   return foldMemoryOperandImpl(MF, MI, Ops[0],
   5176                                MachineOperand::CreateFI(FrameIndex), Size,
   5177                                Alignment, /*AllowCommute=*/true);
   5178 }
   5179 
   5180 static bool isPartialRegisterLoad(const MachineInstr &LoadMI,
   5181                                   const MachineFunction &MF) {
   5182   unsigned Opc = LoadMI.getOpcode();
   5183   unsigned RegSize =
   5184       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize();
   5185 
   5186   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4)
   5187     // These instructions only load 32 bits, we can't fold them if the
   5188     // destination register is wider than 32 bits (4 bytes).
   5189     return true;
   5190 
   5191   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8)
   5192     // These instructions only load 64 bits, we can't fold them if the
   5193     // destination register is wider than 64 bits (8 bytes).
   5194     return true;
   5195 
   5196   return false;
   5197 }
   5198 
   5199 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
   5200                                                   MachineInstr *MI,
   5201                                                   ArrayRef<unsigned> Ops,
   5202                                                   MachineInstr *LoadMI) const {
   5203   // If loading from a FrameIndex, fold directly from the FrameIndex.
   5204   unsigned NumOps = LoadMI->getDesc().getNumOperands();
   5205   int FrameIndex;
   5206   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
   5207     if (isPartialRegisterLoad(*LoadMI, MF))
   5208       return nullptr;
   5209     return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
   5210   }
   5211 
   5212   // Check switch flag
   5213   if (NoFusing) return nullptr;
   5214 
   5215   // Unless optimizing for size, don't fold to avoid partial
   5216   // register update stalls
   5217   if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) &&
   5218       hasPartialRegUpdate(MI->getOpcode()))
   5219     return nullptr;
   5220 
   5221   // Determine the alignment of the load.
   5222   unsigned Alignment = 0;
   5223   if (LoadMI->hasOneMemOperand())
   5224     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
   5225   else
   5226     switch (LoadMI->getOpcode()) {
   5227     case X86::AVX2_SETALLONES:
   5228     case X86::AVX_SET0:
   5229       Alignment = 32;
   5230       break;
   5231     case X86::V_SET0:
   5232     case X86::V_SETALLONES:
   5233       Alignment = 16;
   5234       break;
   5235     case X86::FsFLD0SD:
   5236       Alignment = 8;
   5237       break;
   5238     case X86::FsFLD0SS:
   5239       Alignment = 4;
   5240       break;
   5241     default:
   5242       return nullptr;
   5243     }
   5244   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   5245     unsigned NewOpc = 0;
   5246     switch (MI->getOpcode()) {
   5247     default: return nullptr;
   5248     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
   5249     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
   5250     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
   5251     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
   5252     }
   5253     // Change to CMPXXri r, 0 first.
   5254     MI->setDesc(get(NewOpc));
   5255     MI->getOperand(1).ChangeToImmediate(0);
   5256   } else if (Ops.size() != 1)
   5257     return nullptr;
   5258 
   5259   // Make sure the subregisters match.
   5260   // Otherwise we risk changing the size of the load.
   5261   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
   5262     return nullptr;
   5263 
   5264   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
   5265   switch (LoadMI->getOpcode()) {
   5266   case X86::V_SET0:
   5267   case X86::V_SETALLONES:
   5268   case X86::AVX2_SETALLONES:
   5269   case X86::AVX_SET0:
   5270   case X86::FsFLD0SD:
   5271   case X86::FsFLD0SS: {
   5272     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
   5273     // Create a constant-pool entry and operands to load from it.
   5274 
   5275     // Medium and large mode can't fold loads this way.
   5276     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
   5277         MF.getTarget().getCodeModel() != CodeModel::Kernel)
   5278       return nullptr;
   5279 
   5280     // x86-32 PIC requires a PIC base register for constant pools.
   5281     unsigned PICBase = 0;
   5282     if (MF.getTarget().getRelocationModel() == Reloc::PIC_) {
   5283       if (Subtarget.is64Bit())
   5284         PICBase = X86::RIP;
   5285       else
   5286         // FIXME: PICBase = getGlobalBaseReg(&MF);
   5287         // This doesn't work for several reasons.
   5288         // 1. GlobalBaseReg may have been spilled.
   5289         // 2. It may not be live at MI.
   5290         return nullptr;
   5291     }
   5292 
   5293     // Create a constant-pool entry.
   5294     MachineConstantPool &MCP = *MF.getConstantPool();
   5295     Type *Ty;
   5296     unsigned Opc = LoadMI->getOpcode();
   5297     if (Opc == X86::FsFLD0SS)
   5298       Ty = Type::getFloatTy(MF.getFunction()->getContext());
   5299     else if (Opc == X86::FsFLD0SD)
   5300       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
   5301     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0)
   5302       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
   5303     else
   5304       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
   5305 
   5306     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES);
   5307     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
   5308                                     Constant::getNullValue(Ty);
   5309     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
   5310 
   5311     // Create operands to load from the constant pool entry.
   5312     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
   5313     MOs.push_back(MachineOperand::CreateImm(1));
   5314     MOs.push_back(MachineOperand::CreateReg(0, false));
   5315     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
   5316     MOs.push_back(MachineOperand::CreateReg(0, false));
   5317     break;
   5318   }
   5319   default: {
   5320     if (isPartialRegisterLoad(*LoadMI, MF))
   5321       return nullptr;
   5322 
   5323     // Folding a normal load. Just copy the load's address operands.
   5324     MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands,
   5325                LoadMI->operands_begin() + NumOps);
   5326     break;
   5327   }
   5328   }
   5329   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs,
   5330                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
   5331 }
   5332 
   5333 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
   5334                                         ArrayRef<unsigned> Ops) const {
   5335   // Check switch flag
   5336   if (NoFusing) return 0;
   5337 
   5338   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
   5339     switch (MI->getOpcode()) {
   5340     default: return false;
   5341     case X86::TEST8rr:
   5342     case X86::TEST16rr:
   5343     case X86::TEST32rr:
   5344     case X86::TEST64rr:
   5345       return true;
   5346     case X86::ADD32ri:
   5347       // FIXME: AsmPrinter doesn't know how to handle
   5348       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
   5349       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
   5350         return false;
   5351       break;
   5352     }
   5353   }
   5354 
   5355   if (Ops.size() != 1)
   5356     return false;
   5357 
   5358   unsigned OpNum = Ops[0];
   5359   unsigned Opc = MI->getOpcode();
   5360   unsigned NumOps = MI->getDesc().getNumOperands();
   5361   bool isTwoAddr = NumOps > 1 &&
   5362     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
   5363 
   5364   // Folding a memory location into the two-address part of a two-address
   5365   // instruction is different than folding it other places.  It requires
   5366   // replacing the *two* registers with the memory location.
   5367   const DenseMap<unsigned,
   5368                  std::pair<unsigned,unsigned> > *OpcodeTablePtr = nullptr;
   5369   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
   5370     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
   5371   } else if (OpNum == 0) {
   5372     if (Opc == X86::MOV32r0)
   5373       return true;
   5374 
   5375     OpcodeTablePtr = &RegOp2MemOpTable0;
   5376   } else if (OpNum == 1) {
   5377     OpcodeTablePtr = &RegOp2MemOpTable1;
   5378   } else if (OpNum == 2) {
   5379     OpcodeTablePtr = &RegOp2MemOpTable2;
   5380   } else if (OpNum == 3) {
   5381     OpcodeTablePtr = &RegOp2MemOpTable3;
   5382   }
   5383 
   5384   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
   5385     return true;
   5386   return TargetInstrInfo::canFoldMemoryOperand(MI, Ops);
   5387 }
   5388 
   5389 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
   5390                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
   5391                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
   5392   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   5393     MemOp2RegOpTable.find(MI->getOpcode());
   5394   if (I == MemOp2RegOpTable.end())
   5395     return false;
   5396   unsigned Opc = I->second.first;
   5397   unsigned Index = I->second.second & TB_INDEX_MASK;
   5398   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   5399   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   5400   if (UnfoldLoad && !FoldedLoad)
   5401     return false;
   5402   UnfoldLoad &= FoldedLoad;
   5403   if (UnfoldStore && !FoldedStore)
   5404     return false;
   5405   UnfoldStore &= FoldedStore;
   5406 
   5407   const MCInstrDesc &MCID = get(Opc);
   5408   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   5409   if (!MI->hasOneMemOperand() &&
   5410       RC == &X86::VR128RegClass &&
   5411       !Subtarget.isUnalignedMemAccessFast())
   5412     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
   5413     // conservatively assume the address is unaligned. That's bad for
   5414     // performance.
   5415     return false;
   5416   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
   5417   SmallVector<MachineOperand,2> BeforeOps;
   5418   SmallVector<MachineOperand,2> AfterOps;
   5419   SmallVector<MachineOperand,4> ImpOps;
   5420   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   5421     MachineOperand &Op = MI->getOperand(i);
   5422     if (i >= Index && i < Index + X86::AddrNumOperands)
   5423       AddrOps.push_back(Op);
   5424     else if (Op.isReg() && Op.isImplicit())
   5425       ImpOps.push_back(Op);
   5426     else if (i < Index)
   5427       BeforeOps.push_back(Op);
   5428     else if (i > Index)
   5429       AfterOps.push_back(Op);
   5430   }
   5431 
   5432   // Emit the load instruction.
   5433   if (UnfoldLoad) {
   5434     std::pair<MachineInstr::mmo_iterator,
   5435               MachineInstr::mmo_iterator> MMOs =
   5436       MF.extractLoadMemRefs(MI->memoperands_begin(),
   5437                             MI->memoperands_end());
   5438     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
   5439     if (UnfoldStore) {
   5440       // Address operands cannot be marked isKill.
   5441       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
   5442         MachineOperand &MO = NewMIs[0]->getOperand(i);
   5443         if (MO.isReg())
   5444           MO.setIsKill(false);
   5445       }
   5446     }
   5447   }
   5448 
   5449   // Emit the data processing instruction.
   5450   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
   5451   MachineInstrBuilder MIB(MF, DataMI);
   5452 
   5453   if (FoldedStore)
   5454     MIB.addReg(Reg, RegState::Define);
   5455   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
   5456     MIB.addOperand(BeforeOps[i]);
   5457   if (FoldedLoad)
   5458     MIB.addReg(Reg);
   5459   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
   5460     MIB.addOperand(AfterOps[i]);
   5461   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
   5462     MachineOperand &MO = ImpOps[i];
   5463     MIB.addReg(MO.getReg(),
   5464                getDefRegState(MO.isDef()) |
   5465                RegState::Implicit |
   5466                getKillRegState(MO.isKill()) |
   5467                getDeadRegState(MO.isDead()) |
   5468                getUndefRegState(MO.isUndef()));
   5469   }
   5470   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
   5471   switch (DataMI->getOpcode()) {
   5472   default: break;
   5473   case X86::CMP64ri32:
   5474   case X86::CMP64ri8:
   5475   case X86::CMP32ri:
   5476   case X86::CMP32ri8:
   5477   case X86::CMP16ri:
   5478   case X86::CMP16ri8:
   5479   case X86::CMP8ri: {
   5480     MachineOperand &MO0 = DataMI->getOperand(0);
   5481     MachineOperand &MO1 = DataMI->getOperand(1);
   5482     if (MO1.getImm() == 0) {
   5483       unsigned NewOpc;
   5484       switch (DataMI->getOpcode()) {
   5485       default: llvm_unreachable("Unreachable!");
   5486       case X86::CMP64ri8:
   5487       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
   5488       case X86::CMP32ri8:
   5489       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
   5490       case X86::CMP16ri8:
   5491       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
   5492       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
   5493       }
   5494       DataMI->setDesc(get(NewOpc));
   5495       MO1.ChangeToRegister(MO0.getReg(), false);
   5496     }
   5497   }
   5498   }
   5499   NewMIs.push_back(DataMI);
   5500 
   5501   // Emit the store instruction.
   5502   if (UnfoldStore) {
   5503     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
   5504     std::pair<MachineInstr::mmo_iterator,
   5505               MachineInstr::mmo_iterator> MMOs =
   5506       MF.extractStoreMemRefs(MI->memoperands_begin(),
   5507                              MI->memoperands_end());
   5508     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
   5509   }
   5510 
   5511   return true;
   5512 }
   5513 
   5514 bool
   5515 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
   5516                                   SmallVectorImpl<SDNode*> &NewNodes) const {
   5517   if (!N->isMachineOpcode())
   5518     return false;
   5519 
   5520   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   5521     MemOp2RegOpTable.find(N->getMachineOpcode());
   5522   if (I == MemOp2RegOpTable.end())
   5523     return false;
   5524   unsigned Opc = I->second.first;
   5525   unsigned Index = I->second.second & TB_INDEX_MASK;
   5526   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   5527   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   5528   const MCInstrDesc &MCID = get(Opc);
   5529   MachineFunction &MF = DAG.getMachineFunction();
   5530   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
   5531   unsigned NumDefs = MCID.NumDefs;
   5532   std::vector<SDValue> AddrOps;
   5533   std::vector<SDValue> BeforeOps;
   5534   std::vector<SDValue> AfterOps;
   5535   SDLoc dl(N);
   5536   unsigned NumOps = N->getNumOperands();
   5537   for (unsigned i = 0; i != NumOps-1; ++i) {
   5538     SDValue Op = N->getOperand(i);
   5539     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
   5540       AddrOps.push_back(Op);
   5541     else if (i < Index-NumDefs)
   5542       BeforeOps.push_back(Op);
   5543     else if (i > Index-NumDefs)
   5544       AfterOps.push_back(Op);
   5545   }
   5546   SDValue Chain = N->getOperand(NumOps-1);
   5547   AddrOps.push_back(Chain);
   5548 
   5549   // Emit the load instruction.
   5550   SDNode *Load = nullptr;
   5551   if (FoldedLoad) {
   5552     EVT VT = *RC->vt_begin();
   5553     std::pair<MachineInstr::mmo_iterator,
   5554               MachineInstr::mmo_iterator> MMOs =
   5555       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   5556                             cast<MachineSDNode>(N)->memoperands_end());
   5557     if (!(*MMOs.first) &&
   5558         RC == &X86::VR128RegClass &&
   5559         !Subtarget.isUnalignedMemAccessFast())
   5560       // Do not introduce a slow unaligned load.
   5561       return false;
   5562     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   5563     bool isAligned = (*MMOs.first) &&
   5564                      (*MMOs.first)->getAlignment() >= Alignment;
   5565     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
   5566                               VT, MVT::Other, AddrOps);
   5567     NewNodes.push_back(Load);
   5568 
   5569     // Preserve memory reference information.
   5570     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
   5571   }
   5572 
   5573   // Emit the data processing instruction.
   5574   std::vector<EVT> VTs;
   5575   const TargetRegisterClass *DstRC = nullptr;
   5576   if (MCID.getNumDefs() > 0) {
   5577     DstRC = getRegClass(MCID, 0, &RI, MF);
   5578     VTs.push_back(*DstRC->vt_begin());
   5579   }
   5580   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
   5581     EVT VT = N->getValueType(i);
   5582     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
   5583       VTs.push_back(VT);
   5584   }
   5585   if (Load)
   5586     BeforeOps.push_back(SDValue(Load, 0));
   5587   BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
   5588   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
   5589   NewNodes.push_back(NewNode);
   5590 
   5591   // Emit the store instruction.
   5592   if (FoldedStore) {
   5593     AddrOps.pop_back();
   5594     AddrOps.push_back(SDValue(NewNode, 0));
   5595     AddrOps.push_back(Chain);
   5596     std::pair<MachineInstr::mmo_iterator,
   5597               MachineInstr::mmo_iterator> MMOs =
   5598       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
   5599                              cast<MachineSDNode>(N)->memoperands_end());
   5600     if (!(*MMOs.first) &&
   5601         RC == &X86::VR128RegClass &&
   5602         !Subtarget.isUnalignedMemAccessFast())
   5603       // Do not introduce a slow unaligned store.
   5604       return false;
   5605     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
   5606     bool isAligned = (*MMOs.first) &&
   5607                      (*MMOs.first)->getAlignment() >= Alignment;
   5608     SDNode *Store =
   5609         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
   5610                            dl, MVT::Other, AddrOps);
   5611     NewNodes.push_back(Store);
   5612 
   5613     // Preserve memory reference information.
   5614     cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
   5615   }
   5616 
   5617   return true;
   5618 }
   5619 
   5620 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
   5621                                       bool UnfoldLoad, bool UnfoldStore,
   5622                                       unsigned *LoadRegIndex) const {
   5623   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
   5624     MemOp2RegOpTable.find(Opc);
   5625   if (I == MemOp2RegOpTable.end())
   5626     return 0;
   5627   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
   5628   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
   5629   if (UnfoldLoad && !FoldedLoad)
   5630     return 0;
   5631   if (UnfoldStore && !FoldedStore)
   5632     return 0;
   5633   if (LoadRegIndex)
   5634     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
   5635   return I->second.first;
   5636 }
   5637 
   5638 bool
   5639 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   5640                                      int64_t &Offset1, int64_t &Offset2) const {
   5641   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   5642     return false;
   5643   unsigned Opc1 = Load1->getMachineOpcode();
   5644   unsigned Opc2 = Load2->getMachineOpcode();
   5645   switch (Opc1) {
   5646   default: return false;
   5647   case X86::MOV8rm:
   5648   case X86::MOV16rm:
   5649   case X86::MOV32rm:
   5650   case X86::MOV64rm:
   5651   case X86::LD_Fp32m:
   5652   case X86::LD_Fp64m:
   5653   case X86::LD_Fp80m:
   5654   case X86::MOVSSrm:
   5655   case X86::MOVSDrm:
   5656   case X86::MMX_MOVD64rm:
   5657   case X86::MMX_MOVQ64rm:
   5658   case X86::FsMOVAPSrm:
   5659   case X86::FsMOVAPDrm:
   5660   case X86::MOVAPSrm:
   5661   case X86::MOVUPSrm:
   5662   case X86::MOVAPDrm:
   5663   case X86::MOVDQArm:
   5664   case X86::MOVDQUrm:
   5665   // AVX load instructions
   5666   case X86::VMOVSSrm:
   5667   case X86::VMOVSDrm:
   5668   case X86::FsVMOVAPSrm:
   5669   case X86::FsVMOVAPDrm:
   5670   case X86::VMOVAPSrm:
   5671   case X86::VMOVUPSrm:
   5672   case X86::VMOVAPDrm:
   5673   case X86::VMOVDQArm:
   5674   case X86::VMOVDQUrm:
   5675   case X86::VMOVAPSYrm:
   5676   case X86::VMOVUPSYrm:
   5677   case X86::VMOVAPDYrm:
   5678   case X86::VMOVDQAYrm:
   5679   case X86::VMOVDQUYrm:
   5680     break;
   5681   }
   5682   switch (Opc2) {
   5683   default: return false;
   5684   case X86::MOV8rm:
   5685   case X86::MOV16rm:
   5686   case X86::MOV32rm:
   5687   case X86::MOV64rm:
   5688   case X86::LD_Fp32m:
   5689   case X86::LD_Fp64m:
   5690   case X86::LD_Fp80m:
   5691   case X86::MOVSSrm:
   5692   case X86::MOVSDrm:
   5693   case X86::MMX_MOVD64rm:
   5694   case X86::MMX_MOVQ64rm:
   5695   case X86::FsMOVAPSrm:
   5696   case X86::FsMOVAPDrm:
   5697   case X86::MOVAPSrm:
   5698   case X86::MOVUPSrm:
   5699   case X86::MOVAPDrm:
   5700   case X86::MOVDQArm:
   5701   case X86::MOVDQUrm:
   5702   // AVX load instructions
   5703   case X86::VMOVSSrm:
   5704   case X86::VMOVSDrm:
   5705   case X86::FsVMOVAPSrm:
   5706   case X86::FsVMOVAPDrm:
   5707   case X86::VMOVAPSrm:
   5708   case X86::VMOVUPSrm:
   5709   case X86::VMOVAPDrm:
   5710   case X86::VMOVDQArm:
   5711   case X86::VMOVDQUrm:
   5712   case X86::VMOVAPSYrm:
   5713   case X86::VMOVUPSYrm:
   5714   case X86::VMOVAPDYrm:
   5715   case X86::VMOVDQAYrm:
   5716   case X86::VMOVDQUYrm:
   5717     break;
   5718   }
   5719 
   5720   // Check if chain operands and base addresses match.
   5721   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   5722       Load1->getOperand(5) != Load2->getOperand(5))
   5723     return false;
   5724   // Segment operands should match as well.
   5725   if (Load1->getOperand(4) != Load2->getOperand(4))
   5726     return false;
   5727   // Scale should be 1, Index should be Reg0.
   5728   if (Load1->getOperand(1) == Load2->getOperand(1) &&
   5729       Load1->getOperand(2) == Load2->getOperand(2)) {
   5730     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
   5731       return false;
   5732 
   5733     // Now let's examine the displacements.
   5734     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
   5735         isa<ConstantSDNode>(Load2->getOperand(3))) {
   5736       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
   5737       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
   5738       return true;
   5739     }
   5740   }
   5741   return false;
   5742 }
   5743 
   5744 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   5745                                            int64_t Offset1, int64_t Offset2,
   5746                                            unsigned NumLoads) const {
   5747   assert(Offset2 > Offset1);
   5748   if ((Offset2 - Offset1) / 8 > 64)
   5749     return false;
   5750 
   5751   unsigned Opc1 = Load1->getMachineOpcode();
   5752   unsigned Opc2 = Load2->getMachineOpcode();
   5753   if (Opc1 != Opc2)
   5754     return false;  // FIXME: overly conservative?
   5755 
   5756   switch (Opc1) {
   5757   default: break;
   5758   case X86::LD_Fp32m:
   5759   case X86::LD_Fp64m:
   5760   case X86::LD_Fp80m:
   5761   case X86::MMX_MOVD64rm:
   5762   case X86::MMX_MOVQ64rm:
   5763     return false;
   5764   }
   5765 
   5766   EVT VT = Load1->getValueType(0);
   5767   switch (VT.getSimpleVT().SimpleTy) {
   5768   default:
   5769     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
   5770     // have 16 of them to play with.
   5771     if (Subtarget.is64Bit()) {
   5772       if (NumLoads >= 3)
   5773         return false;
   5774     } else if (NumLoads) {
   5775       return false;
   5776     }
   5777     break;
   5778   case MVT::i8:
   5779   case MVT::i16:
   5780   case MVT::i32:
   5781   case MVT::i64:
   5782   case MVT::f32:
   5783   case MVT::f64:
   5784     if (NumLoads)
   5785       return false;
   5786     break;
   5787   }
   5788 
   5789   return true;
   5790 }
   5791 
   5792 bool X86InstrInfo::shouldScheduleAdjacent(MachineInstr* First,
   5793                                           MachineInstr *Second) const {
   5794   // Check if this processor supports macro-fusion. Since this is a minor
   5795   // heuristic, we haven't specifically reserved a feature. hasAVX is a decent
   5796   // proxy for SandyBridge+.
   5797   if (!Subtarget.hasAVX())
   5798     return false;
   5799 
   5800   enum {
   5801     FuseTest,
   5802     FuseCmp,
   5803     FuseInc
   5804   } FuseKind;
   5805 
   5806   switch(Second->getOpcode()) {
   5807   default:
   5808     return false;
   5809   case X86::JE_1:
   5810   case X86::JNE_1:
   5811   case X86::JL_1:
   5812   case X86::JLE_1:
   5813   case X86::JG_1:
   5814   case X86::JGE_1:
   5815     FuseKind = FuseInc;
   5816     break;
   5817   case X86::JB_1:
   5818   case X86::JBE_1:
   5819   case X86::JA_1:
   5820   case X86::JAE_1:
   5821     FuseKind = FuseCmp;
   5822     break;
   5823   case X86::JS_1:
   5824   case X86::JNS_1:
   5825   case X86::JP_1:
   5826   case X86::JNP_1:
   5827   case X86::JO_1:
   5828   case X86::JNO_1:
   5829     FuseKind = FuseTest;
   5830     break;
   5831   }
   5832   switch (First->getOpcode()) {
   5833   default:
   5834     return false;
   5835   case X86::TEST8rr:
   5836   case X86::TEST16rr:
   5837   case X86::TEST32rr:
   5838   case X86::TEST64rr:
   5839   case X86::TEST8ri:
   5840   case X86::TEST16ri:
   5841   case X86::TEST32ri:
   5842   case X86::TEST32i32:
   5843   case X86::TEST64i32:
   5844   case X86::TEST64ri32:
   5845   case X86::TEST8rm:
   5846   case X86::TEST16rm:
   5847   case X86::TEST32rm:
   5848   case X86::TEST64rm:
   5849   case X86::TEST8ri_NOREX:
   5850   case X86::AND16i16:
   5851   case X86::AND16ri:
   5852   case X86::AND16ri8:
   5853   case X86::AND16rm:
   5854   case X86::AND16rr:
   5855   case X86::AND32i32:
   5856   case X86::AND32ri:
   5857   case X86::AND32ri8:
   5858   case X86::AND32rm:
   5859   case X86::AND32rr:
   5860   case X86::AND64i32:
   5861   case X86::AND64ri32:
   5862   case X86::AND64ri8:
   5863   case X86::AND64rm:
   5864   case X86::AND64rr:
   5865   case X86::AND8i8:
   5866   case X86::AND8ri:
   5867   case X86::AND8rm:
   5868   case X86::AND8rr:
   5869     return true;
   5870   case X86::CMP16i16:
   5871   case X86::CMP16ri:
   5872   case X86::CMP16ri8:
   5873   case X86::CMP16rm:
   5874   case X86::CMP16rr:
   5875   case X86::CMP32i32:
   5876   case X86::CMP32ri:
   5877   case X86::CMP32ri8:
   5878   case X86::CMP32rm:
   5879   case X86::CMP32rr:
   5880   case X86::CMP64i32:
   5881   case X86::CMP64ri32:
   5882   case X86::CMP64ri8:
   5883   case X86::CMP64rm:
   5884   case X86::CMP64rr:
   5885   case X86::CMP8i8:
   5886   case X86::CMP8ri:
   5887   case X86::CMP8rm:
   5888   case X86::CMP8rr:
   5889   case X86::ADD16i16:
   5890   case X86::ADD16ri:
   5891   case X86::ADD16ri8:
   5892   case X86::ADD16ri8_DB:
   5893   case X86::ADD16ri_DB:
   5894   case X86::ADD16rm:
   5895   case X86::ADD16rr:
   5896   case X86::ADD16rr_DB:
   5897   case X86::ADD32i32:
   5898   case X86::ADD32ri:
   5899   case X86::ADD32ri8:
   5900   case X86::ADD32ri8_DB:
   5901   case X86::ADD32ri_DB:
   5902   case X86::ADD32rm:
   5903   case X86::ADD32rr:
   5904   case X86::ADD32rr_DB:
   5905   case X86::ADD64i32:
   5906   case X86::ADD64ri32:
   5907   case X86::ADD64ri32_DB:
   5908   case X86::ADD64ri8:
   5909   case X86::ADD64ri8_DB:
   5910   case X86::ADD64rm:
   5911   case X86::ADD64rr:
   5912   case X86::ADD64rr_DB:
   5913   case X86::ADD8i8:
   5914   case X86::ADD8mi:
   5915   case X86::ADD8mr:
   5916   case X86::ADD8ri:
   5917   case X86::ADD8rm:
   5918   case X86::ADD8rr:
   5919   case X86::SUB16i16:
   5920   case X86::SUB16ri:
   5921   case X86::SUB16ri8:
   5922   case X86::SUB16rm:
   5923   case X86::SUB16rr:
   5924   case X86::SUB32i32:
   5925   case X86::SUB32ri:
   5926   case X86::SUB32ri8:
   5927   case X86::SUB32rm:
   5928   case X86::SUB32rr:
   5929   case X86::SUB64i32:
   5930   case X86::SUB64ri32:
   5931   case X86::SUB64ri8:
   5932   case X86::SUB64rm:
   5933   case X86::SUB64rr:
   5934   case X86::SUB8i8:
   5935   case X86::SUB8ri:
   5936   case X86::SUB8rm:
   5937   case X86::SUB8rr:
   5938     return FuseKind == FuseCmp || FuseKind == FuseInc;
   5939   case X86::INC16r:
   5940   case X86::INC32r:
   5941   case X86::INC64r:
   5942   case X86::INC8r:
   5943   case X86::DEC16r:
   5944   case X86::DEC32r:
   5945   case X86::DEC64r:
   5946   case X86::DEC8r:
   5947     return FuseKind == FuseInc;
   5948   }
   5949 }
   5950 
   5951 bool X86InstrInfo::
   5952 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   5953   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
   5954   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
   5955   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
   5956     return true;
   5957   Cond[0].setImm(GetOppositeBranchCondition(CC));
   5958   return false;
   5959 }
   5960 
   5961 bool X86InstrInfo::
   5962 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
   5963   // FIXME: Return false for x87 stack register classes for now. We can't
   5964   // allow any loads of these registers before FpGet_ST0_80.
   5965   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
   5966            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
   5967 }
   5968 
   5969 /// Return a virtual register initialized with the
   5970 /// the global base register value. Output instructions required to
   5971 /// initialize the register in the function entry block, if necessary.
   5972 ///
   5973 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
   5974 ///
   5975 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
   5976   assert(!Subtarget.is64Bit() &&
   5977          "X86-64 PIC uses RIP relative addressing");
   5978 
   5979   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
   5980   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   5981   if (GlobalBaseReg != 0)
   5982     return GlobalBaseReg;
   5983 
   5984   // Create the register. The code to initialize it is inserted
   5985   // later, by the CGBR pass (below).
   5986   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   5987   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
   5988   X86FI->setGlobalBaseReg(GlobalBaseReg);
   5989   return GlobalBaseReg;
   5990 }
   5991 
   5992 // These are the replaceable SSE instructions. Some of these have Int variants
   5993 // that we don't include here. We don't want to replace instructions selected
   5994 // by intrinsics.
   5995 static const uint16_t ReplaceableInstrs[][3] = {
   5996   //PackedSingle     PackedDouble    PackedInt
   5997   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
   5998   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
   5999   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
   6000   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
   6001   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
   6002   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr  },
   6003   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
   6004   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
   6005   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
   6006   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
   6007   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
   6008   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
   6009   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
   6010   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
   6011   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
   6012   // AVX 128-bit support
   6013   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
   6014   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
   6015   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
   6016   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
   6017   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
   6018   // TODO: Add the AVX versions of MOVLPSmr
   6019   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
   6020   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
   6021   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
   6022   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
   6023   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
   6024   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
   6025   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
   6026   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
   6027   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
   6028   // AVX 256-bit support
   6029   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
   6030   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
   6031   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
   6032   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
   6033   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
   6034   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
   6035 };
   6036 
   6037 static const uint16_t ReplaceableInstrsAVX2[][3] = {
   6038   //PackedSingle       PackedDouble       PackedInt
   6039   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
   6040   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
   6041   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
   6042   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
   6043   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
   6044   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
   6045   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
   6046   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
   6047   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
   6048   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
   6049   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
   6050   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
   6051   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
   6052   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
   6053   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
   6054   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
   6055   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
   6056   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
   6057   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
   6058   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}
   6059 };
   6060 
   6061 // FIXME: Some shuffle and unpack instructions have equivalents in different
   6062 // domains, but they require a bit more work than just switching opcodes.
   6063 
   6064 static const uint16_t *lookup(unsigned opcode, unsigned domain) {
   6065   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
   6066     if (ReplaceableInstrs[i][domain-1] == opcode)
   6067       return ReplaceableInstrs[i];
   6068   return nullptr;
   6069 }
   6070 
   6071 static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
   6072   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
   6073     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
   6074       return ReplaceableInstrsAVX2[i];
   6075   return nullptr;
   6076 }
   6077 
   6078 std::pair<uint16_t, uint16_t>
   6079 X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   6080   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   6081   bool hasAVX2 = Subtarget.hasAVX2();
   6082   uint16_t validDomains = 0;
   6083   if (domain && lookup(MI->getOpcode(), domain))
   6084     validDomains = 0xe;
   6085   else if (domain && lookupAVX2(MI->getOpcode(), domain))
   6086     validDomains = hasAVX2 ? 0xe : 0x6;
   6087   return std::make_pair(domain, validDomains);
   6088 }
   6089 
   6090 void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   6091   assert(Domain>0 && Domain<4 && "Invalid execution domain");
   6092   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
   6093   assert(dom && "Not an SSE instruction");
   6094   const uint16_t *table = lookup(MI->getOpcode(), dom);
   6095   if (!table) { // try the other table
   6096     assert((Subtarget.hasAVX2() || Domain < 3) &&
   6097            "256-bit vector operations only available in AVX2");
   6098     table = lookupAVX2(MI->getOpcode(), dom);
   6099   }
   6100   assert(table && "Cannot change domain");
   6101   MI->setDesc(get(table[Domain-1]));
   6102 }
   6103 
   6104 /// Return the noop instruction to use for a noop.
   6105 void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   6106   NopInst.setOpcode(X86::NOOP);
   6107 }
   6108 
   6109 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
   6110 // In particular, getJumpInstrTableEntryBound must always return an upper bound
   6111 // on the encoding lengths of the instructions generated by
   6112 // getUnconditionalBranch and getTrap.
   6113 void X86InstrInfo::getUnconditionalBranch(
   6114     MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
   6115   Branch.setOpcode(X86::JMP_1);
   6116   Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
   6117 }
   6118 
   6119 // This code must remain in sync with getJumpInstrTableEntryBound in this class!
   6120 // In particular, getJumpInstrTableEntryBound must always return an upper bound
   6121 // on the encoding lengths of the instructions generated by
   6122 // getUnconditionalBranch and getTrap.
   6123 void X86InstrInfo::getTrap(MCInst &MI) const {
   6124   MI.setOpcode(X86::TRAP);
   6125 }
   6126 
   6127 // See getTrap and getUnconditionalBranch for conditions on the value returned
   6128 // by this function.
   6129 unsigned X86InstrInfo::getJumpInstrTableEntryBound() const {
   6130   // 5 bytes suffice: JMP_4 Symbol@PLT is uses 1 byte (E9) for the JMP_4 and 4
   6131   // bytes for the symbol offset. And TRAP is ud2, which is two bytes (0F 0B).
   6132   return 5;
   6133 }
   6134 
   6135 bool X86InstrInfo::isHighLatencyDef(int opc) const {
   6136   switch (opc) {
   6137   default: return false;
   6138   case X86::DIVSDrm:
   6139   case X86::DIVSDrm_Int:
   6140   case X86::DIVSDrr:
   6141   case X86::DIVSDrr_Int:
   6142   case X86::DIVSSrm:
   6143   case X86::DIVSSrm_Int:
   6144   case X86::DIVSSrr:
   6145   case X86::DIVSSrr_Int:
   6146   case X86::SQRTPDm:
   6147   case X86::SQRTPDr:
   6148   case X86::SQRTPSm:
   6149   case X86::SQRTPSr:
   6150   case X86::SQRTSDm:
   6151   case X86::SQRTSDm_Int:
   6152   case X86::SQRTSDr:
   6153   case X86::SQRTSDr_Int:
   6154   case X86::SQRTSSm:
   6155   case X86::SQRTSSm_Int:
   6156   case X86::SQRTSSr:
   6157   case X86::SQRTSSr_Int:
   6158   // AVX instructions with high latency
   6159   case X86::VDIVSDrm:
   6160   case X86::VDIVSDrm_Int:
   6161   case X86::VDIVSDrr:
   6162   case X86::VDIVSDrr_Int:
   6163   case X86::VDIVSSrm:
   6164   case X86::VDIVSSrm_Int:
   6165   case X86::VDIVSSrr:
   6166   case X86::VDIVSSrr_Int:
   6167   case X86::VSQRTPDm:
   6168   case X86::VSQRTPDr:
   6169   case X86::VSQRTPSm:
   6170   case X86::VSQRTPSr:
   6171   case X86::VSQRTSDm:
   6172   case X86::VSQRTSDm_Int:
   6173   case X86::VSQRTSDr:
   6174   case X86::VSQRTSSm:
   6175   case X86::VSQRTSSm_Int:
   6176   case X86::VSQRTSSr:
   6177   case X86::VSQRTPDZm:
   6178   case X86::VSQRTPDZr:
   6179   case X86::VSQRTPSZm:
   6180   case X86::VSQRTPSZr:
   6181   case X86::VSQRTSDZm:
   6182   case X86::VSQRTSDZm_Int:
   6183   case X86::VSQRTSDZr:
   6184   case X86::VSQRTSSZm_Int:
   6185   case X86::VSQRTSSZr:
   6186   case X86::VSQRTSSZm:
   6187   case X86::VDIVSDZrm:
   6188   case X86::VDIVSDZrr:
   6189   case X86::VDIVSSZrm:
   6190   case X86::VDIVSSZrr:
   6191 
   6192   case X86::VGATHERQPSZrm:
   6193   case X86::VGATHERQPDZrm:
   6194   case X86::VGATHERDPDZrm:
   6195   case X86::VGATHERDPSZrm:
   6196   case X86::VPGATHERQDZrm:
   6197   case X86::VPGATHERQQZrm:
   6198   case X86::VPGATHERDDZrm:
   6199   case X86::VPGATHERDQZrm:
   6200   case X86::VSCATTERQPDZmr:
   6201   case X86::VSCATTERQPSZmr:
   6202   case X86::VSCATTERDPDZmr:
   6203   case X86::VSCATTERDPSZmr:
   6204   case X86::VPSCATTERQDZmr:
   6205   case X86::VPSCATTERQQZmr:
   6206   case X86::VPSCATTERDDZmr:
   6207   case X86::VPSCATTERDQZmr:
   6208     return true;
   6209   }
   6210 }
   6211 
   6212 bool X86InstrInfo::
   6213 hasHighOperandLatency(const InstrItineraryData *ItinData,
   6214                       const MachineRegisterInfo *MRI,
   6215                       const MachineInstr *DefMI, unsigned DefIdx,
   6216                       const MachineInstr *UseMI, unsigned UseIdx) const {
   6217   return isHighLatencyDef(DefMI->getOpcode());
   6218 }
   6219 
   6220 namespace {
   6221   /// Create Global Base Reg pass. This initializes the PIC
   6222   /// global base register for x86-32.
   6223   struct CGBR : public MachineFunctionPass {
   6224     static char ID;
   6225     CGBR() : MachineFunctionPass(ID) {}
   6226 
   6227     bool runOnMachineFunction(MachineFunction &MF) override {
   6228       const X86TargetMachine *TM =
   6229         static_cast<const X86TargetMachine *>(&MF.getTarget());
   6230       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
   6231 
   6232       // Don't do anything if this is 64-bit as 64-bit PIC
   6233       // uses RIP relative addressing.
   6234       if (STI.is64Bit())
   6235         return false;
   6236 
   6237       // Only emit a global base reg in PIC mode.
   6238       if (TM->getRelocationModel() != Reloc::PIC_)
   6239         return false;
   6240 
   6241       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   6242       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
   6243 
   6244       // If we didn't need a GlobalBaseReg, don't insert code.
   6245       if (GlobalBaseReg == 0)
   6246         return false;
   6247 
   6248       // Insert the set of GlobalBaseReg into the first MBB of the function
   6249       MachineBasicBlock &FirstMBB = MF.front();
   6250       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
   6251       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
   6252       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   6253       const X86InstrInfo *TII = STI.getInstrInfo();
   6254 
   6255       unsigned PC;
   6256       if (STI.isPICStyleGOT())
   6257         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
   6258       else
   6259         PC = GlobalBaseReg;
   6260 
   6261       // Operand of MovePCtoStack is completely ignored by asm printer. It's
   6262       // only used in JIT code emission as displacement to pc.
   6263       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
   6264 
   6265       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
   6266       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
   6267       if (STI.isPICStyleGOT()) {
   6268         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
   6269         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
   6270           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
   6271                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
   6272       }
   6273 
   6274       return true;
   6275     }
   6276 
   6277     const char *getPassName() const override {
   6278       return "X86 PIC Global Base Reg Initialization";
   6279     }
   6280 
   6281     void getAnalysisUsage(AnalysisUsage &AU) const override {
   6282       AU.setPreservesCFG();
   6283       MachineFunctionPass::getAnalysisUsage(AU);
   6284     }
   6285   };
   6286 }
   6287 
   6288 char CGBR::ID = 0;
   6289 FunctionPass*
   6290 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
   6291 
   6292 namespace {
   6293   struct LDTLSCleanup : public MachineFunctionPass {
   6294     static char ID;
   6295     LDTLSCleanup() : MachineFunctionPass(ID) {}
   6296 
   6297     bool runOnMachineFunction(MachineFunction &MF) override {
   6298       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
   6299       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
   6300         // No point folding accesses if there isn't at least two.
   6301         return false;
   6302       }
   6303 
   6304       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
   6305       return VisitNode(DT->getRootNode(), 0);
   6306     }
   6307 
   6308     // Visit the dominator subtree rooted at Node in pre-order.
   6309     // If TLSBaseAddrReg is non-null, then use that to replace any
   6310     // TLS_base_addr instructions. Otherwise, create the register
   6311     // when the first such instruction is seen, and then use it
   6312     // as we encounter more instructions.
   6313     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
   6314       MachineBasicBlock *BB = Node->getBlock();
   6315       bool Changed = false;
   6316 
   6317       // Traverse the current block.
   6318       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
   6319            ++I) {
   6320         switch (I->getOpcode()) {
   6321           case X86::TLS_base_addr32:
   6322           case X86::TLS_base_addr64:
   6323             if (TLSBaseAddrReg)
   6324               I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
   6325             else
   6326               I = SetRegister(I, &TLSBaseAddrReg);
   6327             Changed = true;
   6328             break;
   6329           default:
   6330             break;
   6331         }
   6332       }
   6333 
   6334       // Visit the children of this block in the dominator tree.
   6335       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
   6336            I != E; ++I) {
   6337         Changed |= VisitNode(*I, TLSBaseAddrReg);
   6338       }
   6339 
   6340       return Changed;
   6341     }
   6342 
   6343     // Replace the TLS_base_addr instruction I with a copy from
   6344     // TLSBaseAddrReg, returning the new instruction.
   6345     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
   6346                                          unsigned TLSBaseAddrReg) {
   6347       MachineFunction *MF = I->getParent()->getParent();
   6348       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
   6349       const bool is64Bit = STI.is64Bit();
   6350       const X86InstrInfo *TII = STI.getInstrInfo();
   6351 
   6352       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
   6353       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
   6354                                    TII->get(TargetOpcode::COPY),
   6355                                    is64Bit ? X86::RAX : X86::EAX)
   6356                                    .addReg(TLSBaseAddrReg);
   6357 
   6358       // Erase the TLS_base_addr instruction.
   6359       I->eraseFromParent();
   6360 
   6361       return Copy;
   6362     }
   6363 
   6364     // Create a virtal register in *TLSBaseAddrReg, and populate it by
   6365     // inserting a copy instruction after I. Returns the new instruction.
   6366     MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
   6367       MachineFunction *MF = I->getParent()->getParent();
   6368       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
   6369       const bool is64Bit = STI.is64Bit();
   6370       const X86InstrInfo *TII = STI.getInstrInfo();
   6371 
   6372       // Create a virtual register for the TLS base address.
   6373       MachineRegisterInfo &RegInfo = MF->getRegInfo();
   6374       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
   6375                                                       ? &X86::GR64RegClass
   6376                                                       : &X86::GR32RegClass);
   6377 
   6378       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
   6379       MachineInstr *Next = I->getNextNode();
   6380       MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
   6381                                    TII->get(TargetOpcode::COPY),
   6382                                    *TLSBaseAddrReg)
   6383                                    .addReg(is64Bit ? X86::RAX : X86::EAX);
   6384 
   6385       return Copy;
   6386     }
   6387 
   6388     const char *getPassName() const override {
   6389       return "Local Dynamic TLS Access Clean-up";
   6390     }
   6391 
   6392     void getAnalysisUsage(AnalysisUsage &AU) const override {
   6393       AU.setPreservesCFG();
   6394       AU.addRequired<MachineDominatorTree>();
   6395       MachineFunctionPass::getAnalysisUsage(AU);
   6396     }
   6397   };
   6398 }
   6399 
   6400 char LDTLSCleanup::ID = 0;
   6401 FunctionPass*
   6402 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
   6403