Home | History | Annotate | Download | only in CodeGen
      1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ScheduleDAGInstrs class, which implements
     11 // scheduling for a MachineInstr-based dependency graph.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
     16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
     17 
     18 #include "llvm/ADT/SparseMultiSet.h"
     19 #include "llvm/ADT/SparseSet.h"
     20 #include "llvm/CodeGen/ScheduleDAG.h"
     21 #include "llvm/CodeGen/TargetSchedule.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 
     25 namespace llvm {
     26   class MachineFrameInfo;
     27   class MachineLoopInfo;
     28   class MachineDominatorTree;
     29   class RegPressureTracker;
     30   class PressureDiffs;
     31 
     32   /// An individual mapping from virtual register number to SUnit.
     33   struct VReg2SUnit {
     34     unsigned VirtReg;
     35     LaneBitmask LaneMask;
     36     SUnit *SU;
     37 
     38     VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
     39       : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
     40 
     41     unsigned getSparseSetIndex() const {
     42       return TargetRegisterInfo::virtReg2Index(VirtReg);
     43     }
     44   };
     45 
     46   /// Mapping from virtual register to SUnit including an operand index.
     47   struct VReg2SUnitOperIdx : public VReg2SUnit {
     48     unsigned OperandIndex;
     49 
     50     VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
     51                       unsigned OperandIndex, SUnit *SU)
     52       : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
     53   };
     54 
     55   /// Record a physical register access.
     56   /// For non-data-dependent uses, OpIdx == -1.
     57   struct PhysRegSUOper {
     58     SUnit *SU;
     59     int OpIdx;
     60     unsigned Reg;
     61 
     62     PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
     63 
     64     unsigned getSparseSetIndex() const { return Reg; }
     65   };
     66 
     67   /// Use a SparseMultiSet to track physical registers. Storage is only
     68   /// allocated once for the pass. It can be cleared in constant time and reused
     69   /// without any frees.
     70   typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t>
     71   Reg2SUnitsMap;
     72 
     73   /// Use SparseSet as a SparseMap by relying on the fact that it never
     74   /// compares ValueT's, only unsigned keys. This allows the set to be cleared
     75   /// between scheduling regions in constant time as long as ValueT does not
     76   /// require a destructor.
     77   typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap;
     78 
     79   /// Track local uses of virtual registers. These uses are gathered by the DAG
     80   /// builder and may be consulted by the scheduler to avoid iterating an entire
     81   /// vreg use list.
     82   typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMultiMap;
     83 
     84   typedef SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>
     85     VReg2SUnitOperIdxMultiMap;
     86 
     87   /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
     88   /// MachineInstrs.
     89   class ScheduleDAGInstrs : public ScheduleDAG {
     90   protected:
     91     const MachineLoopInfo *MLI;
     92     const MachineFrameInfo *MFI;
     93 
     94     /// TargetSchedModel provides an interface to the machine model.
     95     TargetSchedModel SchedModel;
     96 
     97     /// True if the DAG builder should remove kill flags (in preparation for
     98     /// rescheduling).
     99     bool RemoveKillFlags;
    100 
    101     /// The standard DAG builder does not normally include terminators as DAG
    102     /// nodes because it does not create the necessary dependencies to prevent
    103     /// reordering. A specialized scheduler can override
    104     /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
    105     /// it has taken responsibility for scheduling the terminator correctly.
    106     bool CanHandleTerminators;
    107 
    108     /// Whether lane masks should get tracked.
    109     bool TrackLaneMasks;
    110 
    111     /// State specific to the current scheduling region.
    112     /// ------------------------------------------------
    113 
    114     /// The block in which to insert instructions
    115     MachineBasicBlock *BB;
    116 
    117     /// The beginning of the range to be scheduled.
    118     MachineBasicBlock::iterator RegionBegin;
    119 
    120     /// The end of the range to be scheduled.
    121     MachineBasicBlock::iterator RegionEnd;
    122 
    123     /// Instructions in this region (distance(RegionBegin, RegionEnd)).
    124     unsigned NumRegionInstrs;
    125 
    126     /// After calling BuildSchedGraph, each machine instruction in the current
    127     /// scheduling region is mapped to an SUnit.
    128     DenseMap<MachineInstr*, SUnit*> MISUnitMap;
    129 
    130     /// After calling BuildSchedGraph, each vreg used in the scheduling region
    131     /// is mapped to a set of SUnits. These include all local vreg uses, not
    132     /// just the uses for a singly defined vreg.
    133     VReg2SUnitMultiMap VRegUses;
    134 
    135     /// State internal to DAG building.
    136     /// -------------------------------
    137 
    138     /// Defs, Uses - Remember where defs and uses of each register are as we
    139     /// iterate upward through the instructions. This is allocated here instead
    140     /// of inside BuildSchedGraph to avoid the need for it to be initialized and
    141     /// destructed for each block.
    142     Reg2SUnitsMap Defs;
    143     Reg2SUnitsMap Uses;
    144 
    145     /// Tracks the last instruction(s) in this region defining each virtual
    146     /// register. There may be multiple current definitions for a register with
    147     /// disjunct lanemasks.
    148     VReg2SUnitMultiMap CurrentVRegDefs;
    149     /// Tracks the last instructions in this region using each virtual register.
    150     VReg2SUnitOperIdxMultiMap CurrentVRegUses;
    151 
    152     /// PendingLoads - Remember where unknown loads are after the most recent
    153     /// unknown store, as we iterate. As with Defs and Uses, this is here
    154     /// to minimize construction/destruction.
    155     std::vector<SUnit *> PendingLoads;
    156 
    157     /// DbgValues - Remember instruction that precedes DBG_VALUE.
    158     /// These are generated by buildSchedGraph but persist so they can be
    159     /// referenced when emitting the final schedule.
    160     typedef std::vector<std::pair<MachineInstr *, MachineInstr *> >
    161       DbgValueVector;
    162     DbgValueVector DbgValues;
    163     MachineInstr *FirstDbgValue;
    164 
    165     /// Set of live physical registers for updating kill flags.
    166     BitVector LiveRegs;
    167 
    168   public:
    169     explicit ScheduleDAGInstrs(MachineFunction &mf,
    170                                const MachineLoopInfo *mli,
    171                                bool RemoveKillFlags = false);
    172 
    173     ~ScheduleDAGInstrs() override {}
    174 
    175     /// \brief Get the machine model for instruction scheduling.
    176     const TargetSchedModel *getSchedModel() const { return &SchedModel; }
    177 
    178     /// \brief Resolve and cache a resolved scheduling class for an SUnit.
    179     const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
    180       if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
    181         SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
    182       return SU->SchedClass;
    183     }
    184 
    185     /// begin - Return an iterator to the top of the current scheduling region.
    186     MachineBasicBlock::iterator begin() const { return RegionBegin; }
    187 
    188     /// end - Return an iterator to the bottom of the current scheduling region.
    189     MachineBasicBlock::iterator end() const { return RegionEnd; }
    190 
    191     /// newSUnit - Creates a new SUnit and return a ptr to it.
    192     SUnit *newSUnit(MachineInstr *MI);
    193 
    194     /// getSUnit - Return an existing SUnit for this MI, or NULL.
    195     SUnit *getSUnit(MachineInstr *MI) const;
    196 
    197     /// startBlock - Prepare to perform scheduling in the given block.
    198     virtual void startBlock(MachineBasicBlock *BB);
    199 
    200     /// finishBlock - Clean up after scheduling in the given block.
    201     virtual void finishBlock();
    202 
    203     /// Initialize the scheduler state for the next scheduling region.
    204     virtual void enterRegion(MachineBasicBlock *bb,
    205                              MachineBasicBlock::iterator begin,
    206                              MachineBasicBlock::iterator end,
    207                              unsigned regioninstrs);
    208 
    209     /// Notify that the scheduler has finished scheduling the current region.
    210     virtual void exitRegion();
    211 
    212     /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are
    213     /// input.
    214     void buildSchedGraph(AliasAnalysis *AA,
    215                          RegPressureTracker *RPTracker = nullptr,
    216                          PressureDiffs *PDiffs = nullptr,
    217                          bool TrackLaneMasks = false);
    218 
    219     /// addSchedBarrierDeps - Add dependencies from instructions in the current
    220     /// list of instructions being scheduled to scheduling barrier. We want to
    221     /// make sure instructions which define registers that are either used by
    222     /// the terminator or are live-out are properly scheduled. This is
    223     /// especially important when the definition latency of the return value(s)
    224     /// are too high to be hidden by the branch or when the liveout registers
    225     /// used by instructions in the fallthrough block.
    226     void addSchedBarrierDeps();
    227 
    228     /// schedule - Order nodes according to selected style, filling
    229     /// in the Sequence member.
    230     ///
    231     /// Typically, a scheduling algorithm will implement schedule() without
    232     /// overriding enterRegion() or exitRegion().
    233     virtual void schedule() = 0;
    234 
    235     /// finalizeSchedule - Allow targets to perform final scheduling actions at
    236     /// the level of the whole MachineFunction. By default does nothing.
    237     virtual void finalizeSchedule() {}
    238 
    239     void dumpNode(const SUnit *SU) const override;
    240 
    241     /// Return a label for a DAG node that points to an instruction.
    242     std::string getGraphNodeLabel(const SUnit *SU) const override;
    243 
    244     /// Return a label for the region of code covered by the DAG.
    245     std::string getDAGName() const override;
    246 
    247     /// \brief Fix register kill flags that scheduling has made invalid.
    248     void fixupKills(MachineBasicBlock *MBB);
    249   protected:
    250     void initSUnits();
    251     void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
    252     void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
    253     void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
    254     void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
    255 
    256     /// \brief PostRA helper for rewriting kill flags.
    257     void startBlockForKills(MachineBasicBlock *BB);
    258 
    259     /// \brief Toggle a register operand kill flag.
    260     ///
    261     /// Other adjustments may be made to the instruction if necessary. Return
    262     /// true if the operand has been deleted, false if not.
    263     bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO);
    264 
    265     /// Returns a mask for which lanes get read/written by the given (register)
    266     /// machine operand.
    267     LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
    268 
    269     void collectVRegUses(SUnit *SU);
    270   };
    271 
    272   /// newSUnit - Creates a new SUnit and return a ptr to it.
    273   inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
    274 #ifndef NDEBUG
    275     const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
    276 #endif
    277     SUnits.emplace_back(MI, (unsigned)SUnits.size());
    278     assert((Addr == nullptr || Addr == &SUnits[0]) &&
    279            "SUnits std::vector reallocated on the fly!");
    280     SUnits.back().OrigNode = &SUnits.back();
    281     return &SUnits.back();
    282   }
    283 
    284   /// getSUnit - Return an existing SUnit for this MI, or NULL.
    285   inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
    286     DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI);
    287     if (I == MISUnitMap.end())
    288       return nullptr;
    289     return I->second;
    290   }
    291 } // namespace llvm
    292 
    293 #endif
    294