1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::LegalizeTypes method. It transforms 11 // an arbitrary well-formed SelectionDAG to only consist of legal types. This 12 // is common code shared among the LegalizeTypes*.cpp files. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "LegalizeTypes.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/IR/CallingConv.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "legalize-types" 26 27 static cl::opt<bool> 28 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden); 29 30 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking. 31 void DAGTypeLegalizer::PerformExpensiveChecks() { 32 // If a node is not processed, then none of its values should be mapped by any 33 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues. 34 35 // If a node is processed, then each value with an illegal type must be mapped 36 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues. 37 // Values with a legal type may be mapped by ReplacedValues, but not by any of 38 // the other maps. 39 40 // Note that these invariants may not hold momentarily when processing a node: 41 // the node being processed may be put in a map before being marked Processed. 42 43 // Note that it is possible to have nodes marked NewNode in the DAG. This can 44 // occur in two ways. Firstly, a node may be created during legalization but 45 // never passed to the legalization core. This is usually due to the implicit 46 // folding that occurs when using the DAG.getNode operators. Secondly, a new 47 // node may be passed to the legalization core, but when analyzed may morph 48 // into a different node, leaving the original node as a NewNode in the DAG. 49 // A node may morph if one of its operands changes during analysis. Whether 50 // it actually morphs or not depends on whether, after updating its operands, 51 // it is equivalent to an existing node: if so, it morphs into that existing 52 // node (CSE). An operand can change during analysis if the operand is a new 53 // node that morphs, or it is a processed value that was mapped to some other 54 // value (as recorded in ReplacedValues) in which case the operand is turned 55 // into that other value. If a node morphs then the node it morphed into will 56 // be used instead of it for legalization, however the original node continues 57 // to live on in the DAG. 58 // The conclusion is that though there may be nodes marked NewNode in the DAG, 59 // all uses of such nodes are also marked NewNode: the result is a fungus of 60 // NewNodes growing on top of the useful nodes, and perhaps using them, but 61 // not used by them. 62 63 // If a value is mapped by ReplacedValues, then it must have no uses, except 64 // by nodes marked NewNode (see above). 65 66 // The final node obtained by mapping by ReplacedValues is not marked NewNode. 67 // Note that ReplacedValues should be applied iteratively. 68 69 // Note that the ReplacedValues map may also map deleted nodes (by iterating 70 // over the DAG we never dereference deleted nodes). This means that it may 71 // also map nodes marked NewNode if the deallocated memory was reallocated as 72 // another node, and that new node was not seen by the LegalizeTypes machinery 73 // (for example because it was created but not used). In general, we cannot 74 // distinguish between new nodes and deleted nodes. 75 SmallVector<SDNode*, 16> NewNodes; 76 for (SDNode &Node : DAG.allnodes()) { 77 // Remember nodes marked NewNode - they are subject to extra checking below. 78 if (Node.getNodeId() == NewNode) 79 NewNodes.push_back(&Node); 80 81 for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) { 82 SDValue Res(&Node, i); 83 bool Failed = false; 84 85 unsigned Mapped = 0; 86 if (ReplacedValues.find(Res) != ReplacedValues.end()) { 87 Mapped |= 1; 88 // Check that remapped values are only used by nodes marked NewNode. 89 for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end(); 90 UI != UE; ++UI) 91 if (UI.getUse().getResNo() == i) 92 assert(UI->getNodeId() == NewNode && 93 "Remapped value has non-trivial use!"); 94 95 // Check that the final result of applying ReplacedValues is not 96 // marked NewNode. 97 SDValue NewVal = ReplacedValues[Res]; 98 DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal); 99 while (I != ReplacedValues.end()) { 100 NewVal = I->second; 101 I = ReplacedValues.find(NewVal); 102 } 103 assert(NewVal.getNode()->getNodeId() != NewNode && 104 "ReplacedValues maps to a new node!"); 105 } 106 if (PromotedIntegers.find(Res) != PromotedIntegers.end()) 107 Mapped |= 2; 108 if (SoftenedFloats.find(Res) != SoftenedFloats.end()) 109 Mapped |= 4; 110 if (ScalarizedVectors.find(Res) != ScalarizedVectors.end()) 111 Mapped |= 8; 112 if (ExpandedIntegers.find(Res) != ExpandedIntegers.end()) 113 Mapped |= 16; 114 if (ExpandedFloats.find(Res) != ExpandedFloats.end()) 115 Mapped |= 32; 116 if (SplitVectors.find(Res) != SplitVectors.end()) 117 Mapped |= 64; 118 if (WidenedVectors.find(Res) != WidenedVectors.end()) 119 Mapped |= 128; 120 121 if (Node.getNodeId() != Processed) { 122 // Since we allow ReplacedValues to map deleted nodes, it may map nodes 123 // marked NewNode too, since a deleted node may have been reallocated as 124 // another node that has not been seen by the LegalizeTypes machinery. 125 if ((Node.getNodeId() == NewNode && Mapped > 1) || 126 (Node.getNodeId() != NewNode && Mapped != 0)) { 127 dbgs() << "Unprocessed value in a map!"; 128 Failed = true; 129 } 130 } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) { 131 if (Mapped > 1) { 132 dbgs() << "Value with legal type was transformed!"; 133 Failed = true; 134 } 135 } else { 136 if (Mapped == 0) { 137 dbgs() << "Processed value not in any map!"; 138 Failed = true; 139 } else if (Mapped & (Mapped - 1)) { 140 dbgs() << "Value in multiple maps!"; 141 Failed = true; 142 } 143 } 144 145 if (Failed) { 146 if (Mapped & 1) 147 dbgs() << " ReplacedValues"; 148 if (Mapped & 2) 149 dbgs() << " PromotedIntegers"; 150 if (Mapped & 4) 151 dbgs() << " SoftenedFloats"; 152 if (Mapped & 8) 153 dbgs() << " ScalarizedVectors"; 154 if (Mapped & 16) 155 dbgs() << " ExpandedIntegers"; 156 if (Mapped & 32) 157 dbgs() << " ExpandedFloats"; 158 if (Mapped & 64) 159 dbgs() << " SplitVectors"; 160 if (Mapped & 128) 161 dbgs() << " WidenedVectors"; 162 dbgs() << "\n"; 163 llvm_unreachable(nullptr); 164 } 165 } 166 } 167 168 // Checked that NewNodes are only used by other NewNodes. 169 for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) { 170 SDNode *N = NewNodes[i]; 171 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 172 UI != UE; ++UI) 173 assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!"); 174 } 175 } 176 177 /// run - This is the main entry point for the type legalizer. This does a 178 /// top-down traversal of the dag, legalizing types as it goes. Returns "true" 179 /// if it made any changes. 180 bool DAGTypeLegalizer::run() { 181 bool Changed = false; 182 183 // Create a dummy node (which is not added to allnodes), that adds a reference 184 // to the root node, preventing it from being deleted, and tracking any 185 // changes of the root. 186 HandleSDNode Dummy(DAG.getRoot()); 187 Dummy.setNodeId(Unanalyzed); 188 189 // The root of the dag may dangle to deleted nodes until the type legalizer is 190 // done. Set it to null to avoid confusion. 191 DAG.setRoot(SDValue()); 192 193 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess' 194 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if 195 // non-leaves. 196 for (SDNode &Node : DAG.allnodes()) { 197 if (Node.getNumOperands() == 0) { 198 Node.setNodeId(ReadyToProcess); 199 Worklist.push_back(&Node); 200 } else { 201 Node.setNodeId(Unanalyzed); 202 } 203 } 204 205 // Now that we have a set of nodes to process, handle them all. 206 while (!Worklist.empty()) { 207 #ifndef XDEBUG 208 if (EnableExpensiveChecks) 209 #endif 210 PerformExpensiveChecks(); 211 212 SDNode *N = Worklist.back(); 213 Worklist.pop_back(); 214 assert(N->getNodeId() == ReadyToProcess && 215 "Node should be ready if on worklist!"); 216 217 if (IgnoreNodeResults(N)) 218 goto ScanOperands; 219 220 // Scan the values produced by the node, checking to see if any result 221 // types are illegal. 222 for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) { 223 EVT ResultVT = N->getValueType(i); 224 switch (getTypeAction(ResultVT)) { 225 case TargetLowering::TypeLegal: 226 break; 227 // The following calls must take care of *all* of the node's results, 228 // not just the illegal result they were passed (this includes results 229 // with a legal type). Results can be remapped using ReplaceValueWith, 230 // or their promoted/expanded/etc values registered in PromotedIntegers, 231 // ExpandedIntegers etc. 232 case TargetLowering::TypePromoteInteger: 233 PromoteIntegerResult(N, i); 234 Changed = true; 235 goto NodeDone; 236 case TargetLowering::TypeExpandInteger: 237 ExpandIntegerResult(N, i); 238 Changed = true; 239 goto NodeDone; 240 case TargetLowering::TypeSoftenFloat: 241 Changed = SoftenFloatResult(N, i); 242 if (Changed) 243 goto NodeDone; 244 // If not changed, the result type should be legally in register. 245 assert(isLegalInHWReg(ResultVT) && 246 "Unchanged SoftenFloatResult should be legal in register!"); 247 goto ScanOperands; 248 case TargetLowering::TypeExpandFloat: 249 ExpandFloatResult(N, i); 250 Changed = true; 251 goto NodeDone; 252 case TargetLowering::TypeScalarizeVector: 253 ScalarizeVectorResult(N, i); 254 Changed = true; 255 goto NodeDone; 256 case TargetLowering::TypeSplitVector: 257 SplitVectorResult(N, i); 258 Changed = true; 259 goto NodeDone; 260 case TargetLowering::TypeWidenVector: 261 WidenVectorResult(N, i); 262 Changed = true; 263 goto NodeDone; 264 case TargetLowering::TypePromoteFloat: 265 PromoteFloatResult(N, i); 266 Changed = true; 267 goto NodeDone; 268 } 269 } 270 271 ScanOperands: 272 // Scan the operand list for the node, handling any nodes with operands that 273 // are illegal. 274 { 275 unsigned NumOperands = N->getNumOperands(); 276 bool NeedsReanalyzing = false; 277 unsigned i; 278 for (i = 0; i != NumOperands; ++i) { 279 if (IgnoreNodeResults(N->getOperand(i).getNode())) 280 continue; 281 282 EVT OpVT = N->getOperand(i).getValueType(); 283 switch (getTypeAction(OpVT)) { 284 case TargetLowering::TypeLegal: 285 continue; 286 // The following calls must either replace all of the node's results 287 // using ReplaceValueWith, and return "false"; or update the node's 288 // operands in place, and return "true". 289 case TargetLowering::TypePromoteInteger: 290 NeedsReanalyzing = PromoteIntegerOperand(N, i); 291 Changed = true; 292 break; 293 case TargetLowering::TypeExpandInteger: 294 NeedsReanalyzing = ExpandIntegerOperand(N, i); 295 Changed = true; 296 break; 297 case TargetLowering::TypeSoftenFloat: 298 NeedsReanalyzing = SoftenFloatOperand(N, i); 299 Changed = true; 300 break; 301 case TargetLowering::TypeExpandFloat: 302 NeedsReanalyzing = ExpandFloatOperand(N, i); 303 Changed = true; 304 break; 305 case TargetLowering::TypeScalarizeVector: 306 NeedsReanalyzing = ScalarizeVectorOperand(N, i); 307 Changed = true; 308 break; 309 case TargetLowering::TypeSplitVector: 310 NeedsReanalyzing = SplitVectorOperand(N, i); 311 Changed = true; 312 break; 313 case TargetLowering::TypeWidenVector: 314 NeedsReanalyzing = WidenVectorOperand(N, i); 315 Changed = true; 316 break; 317 case TargetLowering::TypePromoteFloat: 318 NeedsReanalyzing = PromoteFloatOperand(N, i); 319 Changed = true; 320 break; 321 } 322 break; 323 } 324 325 // The sub-method updated N in place. Check to see if any operands are new, 326 // and if so, mark them. If the node needs revisiting, don't add all users 327 // to the worklist etc. 328 if (NeedsReanalyzing) { 329 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?"); 330 N->setNodeId(NewNode); 331 // Recompute the NodeId and correct processed operands, adding the node to 332 // the worklist if ready. 333 SDNode *M = AnalyzeNewNode(N); 334 if (M == N) 335 // The node didn't morph - nothing special to do, it will be revisited. 336 continue; 337 338 // The node morphed - this is equivalent to legalizing by replacing every 339 // value of N with the corresponding value of M. So do that now. 340 assert(N->getNumValues() == M->getNumValues() && 341 "Node morphing changed the number of results!"); 342 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) 343 // Replacing the value takes care of remapping the new value. 344 ReplaceValueWith(SDValue(N, i), SDValue(M, i)); 345 assert(N->getNodeId() == NewNode && "Unexpected node state!"); 346 // The node continues to live on as part of the NewNode fungus that 347 // grows on top of the useful nodes. Nothing more needs to be done 348 // with it - move on to the next node. 349 continue; 350 } 351 352 if (i == NumOperands) { 353 DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n"); 354 } 355 } 356 NodeDone: 357 358 // If we reach here, the node was processed, potentially creating new nodes. 359 // Mark it as processed and add its users to the worklist as appropriate. 360 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?"); 361 N->setNodeId(Processed); 362 363 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 364 UI != E; ++UI) { 365 SDNode *User = *UI; 366 int NodeId = User->getNodeId(); 367 368 // This node has two options: it can either be a new node or its Node ID 369 // may be a count of the number of operands it has that are not ready. 370 if (NodeId > 0) { 371 User->setNodeId(NodeId-1); 372 373 // If this was the last use it was waiting on, add it to the ready list. 374 if (NodeId-1 == ReadyToProcess) 375 Worklist.push_back(User); 376 continue; 377 } 378 379 // If this is an unreachable new node, then ignore it. If it ever becomes 380 // reachable by being used by a newly created node then it will be handled 381 // by AnalyzeNewNode. 382 if (NodeId == NewNode) 383 continue; 384 385 // Otherwise, this node is new: this is the first operand of it that 386 // became ready. Its new NodeId is the number of operands it has minus 1 387 // (as this node is now processed). 388 assert(NodeId == Unanalyzed && "Unknown node ID!"); 389 User->setNodeId(User->getNumOperands() - 1); 390 391 // If the node only has a single operand, it is now ready. 392 if (User->getNumOperands() == 1) 393 Worklist.push_back(User); 394 } 395 } 396 397 #ifndef XDEBUG 398 if (EnableExpensiveChecks) 399 #endif 400 PerformExpensiveChecks(); 401 402 // If the root changed (e.g. it was a dead load) update the root. 403 DAG.setRoot(Dummy.getValue()); 404 405 // Remove dead nodes. This is important to do for cleanliness but also before 406 // the checking loop below. Implicit folding by the DAG.getNode operators and 407 // node morphing can cause unreachable nodes to be around with their flags set 408 // to new. 409 DAG.RemoveDeadNodes(); 410 411 // In a debug build, scan all the nodes to make sure we found them all. This 412 // ensures that there are no cycles and that everything got processed. 413 #ifndef NDEBUG 414 for (SDNode &Node : DAG.allnodes()) { 415 bool Failed = false; 416 417 // Check that all result types are legal. 418 // A value type is illegal if its TypeAction is not TypeLegal, 419 // and TLI.RegClassForVT does not have a register class for this type. 420 // For example, the x86_64 target has f128 that is not TypeLegal, 421 // to have softened operators, but it also has FR128 register class to 422 // pass and return f128 values. Hence a legalized node can have f128 type. 423 if (!IgnoreNodeResults(&Node)) 424 for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i) 425 if (!isTypeLegal(Node.getValueType(i)) && 426 !TLI.isTypeLegal(Node.getValueType(i))) { 427 dbgs() << "Result type " << i << " illegal: "; 428 Node.dump(); 429 Failed = true; 430 } 431 432 // Check that all operand types are legal. 433 for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i) 434 if (!IgnoreNodeResults(Node.getOperand(i).getNode()) && 435 !isTypeLegal(Node.getOperand(i).getValueType()) && 436 !TLI.isTypeLegal(Node.getOperand(i).getValueType())) { 437 dbgs() << "Operand type " << i << " illegal: "; 438 Node.getOperand(i).dump(); 439 Failed = true; 440 } 441 442 if (Node.getNodeId() != Processed) { 443 if (Node.getNodeId() == NewNode) 444 dbgs() << "New node not analyzed?\n"; 445 else if (Node.getNodeId() == Unanalyzed) 446 dbgs() << "Unanalyzed node not noticed?\n"; 447 else if (Node.getNodeId() > 0) 448 dbgs() << "Operand not processed?\n"; 449 else if (Node.getNodeId() == ReadyToProcess) 450 dbgs() << "Not added to worklist?\n"; 451 Failed = true; 452 } 453 454 if (Failed) { 455 Node.dump(&DAG); dbgs() << "\n"; 456 llvm_unreachable(nullptr); 457 } 458 } 459 #endif 460 461 return Changed; 462 } 463 464 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially 465 /// new nodes. Correct any processed operands (this may change the node) and 466 /// calculate the NodeId. If the node itself changes to a processed node, it 467 /// is not remapped - the caller needs to take care of this. 468 /// Returns the potentially changed node. 469 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) { 470 // If this was an existing node that is already done, we're done. 471 if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed) 472 return N; 473 474 // Remove any stale map entries. 475 ExpungeNode(N); 476 477 // Okay, we know that this node is new. Recursively walk all of its operands 478 // to see if they are new also. The depth of this walk is bounded by the size 479 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry 480 // about revisiting of nodes. 481 // 482 // As we walk the operands, keep track of the number of nodes that are 483 // processed. If non-zero, this will become the new nodeid of this node. 484 // Operands may morph when they are analyzed. If so, the node will be 485 // updated after all operands have been analyzed. Since this is rare, 486 // the code tries to minimize overhead in the non-morphing case. 487 488 SmallVector<SDValue, 8> NewOps; 489 unsigned NumProcessed = 0; 490 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 491 SDValue OrigOp = N->getOperand(i); 492 SDValue Op = OrigOp; 493 494 AnalyzeNewValue(Op); // Op may morph. 495 496 if (Op.getNode()->getNodeId() == Processed) 497 ++NumProcessed; 498 499 if (!NewOps.empty()) { 500 // Some previous operand changed. Add this one to the list. 501 NewOps.push_back(Op); 502 } else if (Op != OrigOp) { 503 // This is the first operand to change - add all operands so far. 504 NewOps.append(N->op_begin(), N->op_begin() + i); 505 NewOps.push_back(Op); 506 } 507 } 508 509 // Some operands changed - update the node. 510 if (!NewOps.empty()) { 511 SDNode *M = DAG.UpdateNodeOperands(N, NewOps); 512 if (M != N) { 513 // The node morphed into a different node. Normally for this to happen 514 // the original node would have to be marked NewNode. However this can 515 // in theory momentarily not be the case while ReplaceValueWith is doing 516 // its stuff. Mark the original node NewNode to help sanity checking. 517 N->setNodeId(NewNode); 518 if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed) 519 // It morphed into a previously analyzed node - nothing more to do. 520 return M; 521 522 // It morphed into a different new node. Do the equivalent of passing 523 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need 524 // to remap the operands, since they are the same as the operands we 525 // remapped above. 526 N = M; 527 ExpungeNode(N); 528 } 529 } 530 531 // Calculate the NodeId. 532 N->setNodeId(N->getNumOperands() - NumProcessed); 533 if (N->getNodeId() == ReadyToProcess) 534 Worklist.push_back(N); 535 536 return N; 537 } 538 539 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed. 540 /// If the node changes to a processed node, then remap it. 541 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) { 542 Val.setNode(AnalyzeNewNode(Val.getNode())); 543 if (Val.getNode()->getNodeId() == Processed) 544 // We were passed a processed node, or it morphed into one - remap it. 545 RemapValue(Val); 546 } 547 548 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it. 549 /// This can occur when a node is deleted then reallocated as a new node - 550 /// the mapping in ReplacedValues applies to the deleted node, not the new 551 /// one. 552 /// The only map that can have a deleted node as a source is ReplacedValues. 553 /// Other maps can have deleted nodes as targets, but since their looked-up 554 /// values are always immediately remapped using RemapValue, resulting in a 555 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue 556 /// always performs correct mappings. In order to keep the mapping correct, 557 /// ExpungeNode should be called on any new nodes *before* adding them as 558 /// either source or target to ReplacedValues (which typically means calling 559 /// Expunge when a new node is first seen, since it may no longer be marked 560 /// NewNode by the time it is added to ReplacedValues). 561 void DAGTypeLegalizer::ExpungeNode(SDNode *N) { 562 if (N->getNodeId() != NewNode) 563 return; 564 565 // If N is not remapped by ReplacedValues then there is nothing to do. 566 unsigned i, e; 567 for (i = 0, e = N->getNumValues(); i != e; ++i) 568 if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end()) 569 break; 570 571 if (i == e) 572 return; 573 574 // Remove N from all maps - this is expensive but rare. 575 576 for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(), 577 E = PromotedIntegers.end(); I != E; ++I) { 578 assert(I->first.getNode() != N); 579 RemapValue(I->second); 580 } 581 582 for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(), 583 E = SoftenedFloats.end(); I != E; ++I) { 584 assert(I->first.getNode() != N); 585 RemapValue(I->second); 586 } 587 588 for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(), 589 E = ScalarizedVectors.end(); I != E; ++I) { 590 assert(I->first.getNode() != N); 591 RemapValue(I->second); 592 } 593 594 for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(), 595 E = WidenedVectors.end(); I != E; ++I) { 596 assert(I->first.getNode() != N); 597 RemapValue(I->second); 598 } 599 600 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator 601 I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){ 602 assert(I->first.getNode() != N); 603 RemapValue(I->second.first); 604 RemapValue(I->second.second); 605 } 606 607 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator 608 I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) { 609 assert(I->first.getNode() != N); 610 RemapValue(I->second.first); 611 RemapValue(I->second.second); 612 } 613 614 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator 615 I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) { 616 assert(I->first.getNode() != N); 617 RemapValue(I->second.first); 618 RemapValue(I->second.second); 619 } 620 621 for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(), 622 E = ReplacedValues.end(); I != E; ++I) 623 RemapValue(I->second); 624 625 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) 626 ReplacedValues.erase(SDValue(N, i)); 627 } 628 629 /// RemapValue - If the specified value was already legalized to another value, 630 /// replace it by that value. 631 void DAGTypeLegalizer::RemapValue(SDValue &N) { 632 DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N); 633 if (I != ReplacedValues.end()) { 634 // Use path compression to speed up future lookups if values get multiply 635 // replaced with other values. 636 RemapValue(I->second); 637 N = I->second; 638 639 // Note that it is possible to have N.getNode()->getNodeId() == NewNode at 640 // this point because it is possible for a node to be put in the map before 641 // being processed. 642 } 643 } 644 645 namespace { 646 /// NodeUpdateListener - This class is a DAGUpdateListener that listens for 647 /// updates to nodes and recomputes their ready state. 648 class NodeUpdateListener : public SelectionDAG::DAGUpdateListener { 649 DAGTypeLegalizer &DTL; 650 SmallSetVector<SDNode*, 16> &NodesToAnalyze; 651 public: 652 explicit NodeUpdateListener(DAGTypeLegalizer &dtl, 653 SmallSetVector<SDNode*, 16> &nta) 654 : SelectionDAG::DAGUpdateListener(dtl.getDAG()), 655 DTL(dtl), NodesToAnalyze(nta) {} 656 657 void NodeDeleted(SDNode *N, SDNode *E) override { 658 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && 659 N->getNodeId() != DAGTypeLegalizer::Processed && 660 "Invalid node ID for RAUW deletion!"); 661 // It is possible, though rare, for the deleted node N to occur as a 662 // target in a map, so note the replacement N -> E in ReplacedValues. 663 assert(E && "Node not replaced?"); 664 DTL.NoteDeletion(N, E); 665 666 // In theory the deleted node could also have been scheduled for analysis. 667 // So remove it from the set of nodes which will be analyzed. 668 NodesToAnalyze.remove(N); 669 670 // In general nothing needs to be done for E, since it didn't change but 671 // only gained new uses. However N -> E was just added to ReplacedValues, 672 // and the result of a ReplacedValues mapping is not allowed to be marked 673 // NewNode. So if E is marked NewNode, then it needs to be analyzed. 674 if (E->getNodeId() == DAGTypeLegalizer::NewNode) 675 NodesToAnalyze.insert(E); 676 } 677 678 void NodeUpdated(SDNode *N) override { 679 // Node updates can mean pretty much anything. It is possible that an 680 // operand was set to something already processed (f.e.) in which case 681 // this node could become ready. Recompute its flags. 682 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess && 683 N->getNodeId() != DAGTypeLegalizer::Processed && 684 "Invalid node ID for RAUW deletion!"); 685 N->setNodeId(DAGTypeLegalizer::NewNode); 686 NodesToAnalyze.insert(N); 687 } 688 }; 689 } 690 691 692 /// ReplaceValueWith - The specified value was legalized to the specified other 693 /// value. Update the DAG and NodeIds replacing any uses of From to use To 694 /// instead. 695 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) { 696 assert(From.getNode() != To.getNode() && "Potential legalization loop!"); 697 698 // If expansion produced new nodes, make sure they are properly marked. 699 ExpungeNode(From.getNode()); 700 AnalyzeNewValue(To); // Expunges To. 701 702 // Anything that used the old node should now use the new one. Note that this 703 // can potentially cause recursive merging. 704 SmallSetVector<SDNode*, 16> NodesToAnalyze; 705 NodeUpdateListener NUL(*this, NodesToAnalyze); 706 do { 707 DAG.ReplaceAllUsesOfValueWith(From, To); 708 709 // The old node may still be present in a map like ExpandedIntegers or 710 // PromotedIntegers. Inform maps about the replacement. 711 ReplacedValues[From] = To; 712 713 // Process the list of nodes that need to be reanalyzed. 714 while (!NodesToAnalyze.empty()) { 715 SDNode *N = NodesToAnalyze.back(); 716 NodesToAnalyze.pop_back(); 717 if (N->getNodeId() != DAGTypeLegalizer::NewNode) 718 // The node was analyzed while reanalyzing an earlier node - it is safe 719 // to skip. Note that this is not a morphing node - otherwise it would 720 // still be marked NewNode. 721 continue; 722 723 // Analyze the node's operands and recalculate the node ID. 724 SDNode *M = AnalyzeNewNode(N); 725 if (M != N) { 726 // The node morphed into a different node. Make everyone use the new 727 // node instead. 728 assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!"); 729 assert(N->getNumValues() == M->getNumValues() && 730 "Node morphing changed the number of results!"); 731 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 732 SDValue OldVal(N, i); 733 SDValue NewVal(M, i); 734 if (M->getNodeId() == Processed) 735 RemapValue(NewVal); 736 DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal); 737 // OldVal may be a target of the ReplacedValues map which was marked 738 // NewNode to force reanalysis because it was updated. Ensure that 739 // anything that ReplacedValues mapped to OldVal will now be mapped 740 // all the way to NewVal. 741 ReplacedValues[OldVal] = NewVal; 742 } 743 // The original node continues to exist in the DAG, marked NewNode. 744 } 745 } 746 // When recursively update nodes with new nodes, it is possible to have 747 // new uses of From due to CSE. If this happens, replace the new uses of 748 // From with To. 749 } while (!From.use_empty()); 750 } 751 752 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) { 753 assert(Result.getValueType() == 754 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) && 755 "Invalid type for promoted integer"); 756 AnalyzeNewValue(Result); 757 758 SDValue &OpEntry = PromotedIntegers[Op]; 759 assert(!OpEntry.getNode() && "Node is already promoted!"); 760 OpEntry = Result; 761 } 762 763 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) { 764 // f128 of x86_64 could be kept in SSE registers, 765 // but sometimes softened to i128. 766 assert((Result.getValueType() == 767 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) || 768 Op.getValueType() == 769 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) && 770 "Invalid type for softened float"); 771 AnalyzeNewValue(Result); 772 773 SDValue &OpEntry = SoftenedFloats[Op]; 774 // Allow repeated calls to save f128 type nodes 775 // or any node with type that transforms to itself. 776 // Many operations on these types are not softened. 777 assert((!OpEntry.getNode()|| 778 Op.getValueType() == 779 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) && 780 "Node is already converted to integer!"); 781 OpEntry = Result; 782 } 783 784 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) { 785 assert(Result.getValueType() == 786 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) && 787 "Invalid type for promoted float"); 788 AnalyzeNewValue(Result); 789 790 SDValue &OpEntry = PromotedFloats[Op]; 791 assert(!OpEntry.getNode() && "Node is already promoted!"); 792 OpEntry = Result; 793 } 794 795 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) { 796 // Note that in some cases vector operation operands may be greater than 797 // the vector element type. For example BUILD_VECTOR of type <1 x i1> with 798 // a constant i8 operand. 799 assert(Result.getValueType().getSizeInBits() >= 800 Op.getValueType().getVectorElementType().getSizeInBits() && 801 "Invalid type for scalarized vector"); 802 AnalyzeNewValue(Result); 803 804 SDValue &OpEntry = ScalarizedVectors[Op]; 805 assert(!OpEntry.getNode() && "Node is already scalarized!"); 806 OpEntry = Result; 807 } 808 809 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo, 810 SDValue &Hi) { 811 std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op]; 812 RemapValue(Entry.first); 813 RemapValue(Entry.second); 814 assert(Entry.first.getNode() && "Operand isn't expanded"); 815 Lo = Entry.first; 816 Hi = Entry.second; 817 } 818 819 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo, 820 SDValue Hi) { 821 assert(Lo.getValueType() == 822 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) && 823 Hi.getValueType() == Lo.getValueType() && 824 "Invalid type for expanded integer"); 825 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. 826 AnalyzeNewValue(Lo); 827 AnalyzeNewValue(Hi); 828 829 // Remember that this is the result of the node. 830 std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op]; 831 assert(!Entry.first.getNode() && "Node already expanded"); 832 Entry.first = Lo; 833 Entry.second = Hi; 834 } 835 836 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo, 837 SDValue &Hi) { 838 std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op]; 839 RemapValue(Entry.first); 840 RemapValue(Entry.second); 841 assert(Entry.first.getNode() && "Operand isn't expanded"); 842 Lo = Entry.first; 843 Hi = Entry.second; 844 } 845 846 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo, 847 SDValue Hi) { 848 assert(Lo.getValueType() == 849 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) && 850 Hi.getValueType() == Lo.getValueType() && 851 "Invalid type for expanded float"); 852 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. 853 AnalyzeNewValue(Lo); 854 AnalyzeNewValue(Hi); 855 856 // Remember that this is the result of the node. 857 std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op]; 858 assert(!Entry.first.getNode() && "Node already expanded"); 859 Entry.first = Lo; 860 Entry.second = Hi; 861 } 862 863 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo, 864 SDValue &Hi) { 865 std::pair<SDValue, SDValue> &Entry = SplitVectors[Op]; 866 RemapValue(Entry.first); 867 RemapValue(Entry.second); 868 assert(Entry.first.getNode() && "Operand isn't split"); 869 Lo = Entry.first; 870 Hi = Entry.second; 871 } 872 873 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo, 874 SDValue Hi) { 875 assert(Lo.getValueType().getVectorElementType() == 876 Op.getValueType().getVectorElementType() && 877 2*Lo.getValueType().getVectorNumElements() == 878 Op.getValueType().getVectorNumElements() && 879 Hi.getValueType() == Lo.getValueType() && 880 "Invalid type for split vector"); 881 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. 882 AnalyzeNewValue(Lo); 883 AnalyzeNewValue(Hi); 884 885 // Remember that this is the result of the node. 886 std::pair<SDValue, SDValue> &Entry = SplitVectors[Op]; 887 assert(!Entry.first.getNode() && "Node already split"); 888 Entry.first = Lo; 889 Entry.second = Hi; 890 } 891 892 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) { 893 assert(Result.getValueType() == 894 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) && 895 "Invalid type for widened vector"); 896 AnalyzeNewValue(Result); 897 898 SDValue &OpEntry = WidenedVectors[Op]; 899 assert(!OpEntry.getNode() && "Node already widened!"); 900 OpEntry = Result; 901 } 902 903 904 //===----------------------------------------------------------------------===// 905 // Utilities. 906 //===----------------------------------------------------------------------===// 907 908 /// BitConvertToInteger - Convert to an integer of the same size. 909 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) { 910 unsigned BitWidth = Op.getValueType().getSizeInBits(); 911 return DAG.getNode(ISD::BITCAST, SDLoc(Op), 912 EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op); 913 } 914 915 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the 916 /// same size. 917 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) { 918 assert(Op.getValueType().isVector() && "Only applies to vectors!"); 919 unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits(); 920 EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth); 921 unsigned NumElts = Op.getValueType().getVectorNumElements(); 922 return DAG.getNode(ISD::BITCAST, SDLoc(Op), 923 EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op); 924 } 925 926 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op, 927 EVT DestVT) { 928 SDLoc dl(Op); 929 // Create the stack frame object. Make sure it is aligned for both 930 // the source and destination types. 931 SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT); 932 // Emit a store to the stack slot. 933 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, 934 MachinePointerInfo(), false, false, 0); 935 // Result is a load from the stack slot. 936 return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), 937 false, false, false, 0); 938 } 939 940 /// CustomLowerNode - Replace the node's results with custom code provided 941 /// by the target and return "true", or do nothing and return "false". 942 /// The last parameter is FALSE if we are dealing with a node with legal 943 /// result types and illegal operand. The second parameter denotes the type of 944 /// illegal OperandNo in that case. 945 /// The last parameter being TRUE means we are dealing with a 946 /// node with illegal result types. The second parameter denotes the type of 947 /// illegal ResNo in that case. 948 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) { 949 // See if the target wants to custom lower this node. 950 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom) 951 return false; 952 953 SmallVector<SDValue, 8> Results; 954 if (LegalizeResult) 955 TLI.ReplaceNodeResults(N, Results, DAG); 956 else 957 TLI.LowerOperationWrapper(N, Results, DAG); 958 959 if (Results.empty()) 960 // The target didn't want to custom lower it after all. 961 return false; 962 963 // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to 964 // provide the same kind of custom splitting behavior. 965 if (Results.size() == N->getNumValues() + 1 && LegalizeResult) { 966 // We've legalized a return type by splitting it. If there is a chain, 967 // replace that too. 968 SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]); 969 if (N->getNumValues() > 1) 970 ReplaceValueWith(SDValue(N, 1), Results[2]); 971 return true; 972 } 973 974 // Make everything that once used N's values now use those in Results instead. 975 assert(Results.size() == N->getNumValues() && 976 "Custom lowering returned the wrong number of results!"); 977 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 978 ReplaceValueWith(SDValue(N, i), Results[i]); 979 } 980 return true; 981 } 982 983 984 /// CustomWidenLowerNode - Widen the node's results with custom code provided 985 /// by the target and return "true", or do nothing and return "false". 986 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) { 987 // See if the target wants to custom lower this node. 988 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom) 989 return false; 990 991 SmallVector<SDValue, 8> Results; 992 TLI.ReplaceNodeResults(N, Results, DAG); 993 994 if (Results.empty()) 995 // The target didn't want to custom widen lower its result after all. 996 return false; 997 998 // Update the widening map. 999 assert(Results.size() == N->getNumValues() && 1000 "Custom lowering returned the wrong number of results!"); 1001 for (unsigned i = 0, e = Results.size(); i != e; ++i) 1002 SetWidenedVector(SDValue(N, i), Results[i]); 1003 return true; 1004 } 1005 1006 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) { 1007 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) 1008 if (i != ResNo) 1009 ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i))); 1010 return SDValue(N->getOperand(ResNo)); 1011 } 1012 1013 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and 1014 /// high parts of the given value. 1015 void DAGTypeLegalizer::GetPairElements(SDValue Pair, 1016 SDValue &Lo, SDValue &Hi) { 1017 SDLoc dl(Pair); 1018 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType()); 1019 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair, 1020 DAG.getIntPtrConstant(0, dl)); 1021 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair, 1022 DAG.getIntPtrConstant(1, dl)); 1023 } 1024 1025 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT, 1026 SDValue Index) { 1027 SDLoc dl(Index); 1028 // Make sure the index type is big enough to compute in. 1029 Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy(DAG.getDataLayout())); 1030 1031 // Calculate the element offset and add it to the pointer. 1032 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 1033 assert(EltSize * 8 == EltVT.getSizeInBits() && 1034 "Converting bits to bytes lost precision"); 1035 1036 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 1037 DAG.getConstant(EltSize, dl, Index.getValueType())); 1038 return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr); 1039 } 1040 1041 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi. 1042 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) { 1043 // Arbitrarily use dlHi for result SDLoc 1044 SDLoc dlHi(Hi); 1045 SDLoc dlLo(Lo); 1046 EVT LVT = Lo.getValueType(); 1047 EVT HVT = Hi.getValueType(); 1048 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 1049 LVT.getSizeInBits() + HVT.getSizeInBits()); 1050 1051 Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo); 1052 Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi); 1053 Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi, 1054 DAG.getConstant(LVT.getSizeInBits(), dlHi, 1055 TLI.getPointerTy(DAG.getDataLayout()))); 1056 return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi); 1057 } 1058 1059 /// LibCallify - Convert the node into a libcall with the same prototype. 1060 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N, 1061 bool isSigned) { 1062 unsigned NumOps = N->getNumOperands(); 1063 SDLoc dl(N); 1064 if (NumOps == 0) { 1065 return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned, 1066 dl).first; 1067 } else if (NumOps == 1) { 1068 SDValue Op = N->getOperand(0); 1069 return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned, 1070 dl).first; 1071 } else if (NumOps == 2) { 1072 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 1073 return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, 1074 dl).first; 1075 } 1076 SmallVector<SDValue, 8> Ops(NumOps); 1077 for (unsigned i = 0; i < NumOps; ++i) 1078 Ops[i] = N->getOperand(i); 1079 1080 return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first; 1081 } 1082 1083 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to 1084 // ExpandLibCall except that the first operand is the in-chain. 1085 std::pair<SDValue, SDValue> 1086 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC, 1087 SDNode *Node, 1088 bool isSigned) { 1089 SDValue InChain = Node->getOperand(0); 1090 1091 TargetLowering::ArgListTy Args; 1092 TargetLowering::ArgListEntry Entry; 1093 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 1094 EVT ArgVT = Node->getOperand(i).getValueType(); 1095 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 1096 Entry.Node = Node->getOperand(i); 1097 Entry.Ty = ArgTy; 1098 Entry.isSExt = isSigned; 1099 Entry.isZExt = !isSigned; 1100 Args.push_back(Entry); 1101 } 1102 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 1103 TLI.getPointerTy(DAG.getDataLayout())); 1104 1105 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 1106 1107 TargetLowering::CallLoweringInfo CLI(DAG); 1108 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 1109 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 1110 .setSExtResult(isSigned).setZExtResult(!isSigned); 1111 1112 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 1113 1114 return CallInfo; 1115 } 1116 1117 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean 1118 /// of the given type. A target boolean is an integer value, not necessarily of 1119 /// type i1, the bits of which conform to getBooleanContents. 1120 /// 1121 /// ValVT is the type of values that produced the boolean. 1122 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) { 1123 SDLoc dl(Bool); 1124 EVT BoolVT = getSetCCResultType(ValVT); 1125 ISD::NodeType ExtendCode = 1126 TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT)); 1127 return DAG.getNode(ExtendCode, dl, BoolVT, Bool); 1128 } 1129 1130 /// WidenTargetBoolean - Widen the given target boolean to a target boolean 1131 /// of the given type. The boolean vector is widened and then promoted to match 1132 /// the target boolean type of the given ValVT. 1133 SDValue DAGTypeLegalizer::WidenTargetBoolean(SDValue Bool, EVT ValVT, 1134 bool WithZeroes) { 1135 SDLoc dl(Bool); 1136 EVT BoolVT = Bool.getValueType(); 1137 1138 assert(ValVT.getVectorNumElements() > BoolVT.getVectorNumElements() && 1139 TLI.isTypeLegal(ValVT) && 1140 "Unexpected types in WidenTargetBoolean"); 1141 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), BoolVT.getScalarType(), 1142 ValVT.getVectorNumElements()); 1143 Bool = ModifyToType(Bool, WideVT, WithZeroes); 1144 return PromoteTargetBoolean(Bool, ValVT); 1145 } 1146 1147 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT 1148 /// bits in Hi. 1149 void DAGTypeLegalizer::SplitInteger(SDValue Op, 1150 EVT LoVT, EVT HiVT, 1151 SDValue &Lo, SDValue &Hi) { 1152 SDLoc dl(Op); 1153 assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() == 1154 Op.getValueType().getSizeInBits() && "Invalid integer splitting!"); 1155 Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op); 1156 Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op, 1157 DAG.getConstant(LoVT.getSizeInBits(), dl, 1158 TLI.getPointerTy(DAG.getDataLayout()))); 1159 Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi); 1160 } 1161 1162 /// SplitInteger - Return the lower and upper halves of Op's bits in a value 1163 /// type half the size of Op's. 1164 void DAGTypeLegalizer::SplitInteger(SDValue Op, 1165 SDValue &Lo, SDValue &Hi) { 1166 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), 1167 Op.getValueType().getSizeInBits()/2); 1168 SplitInteger(Op, HalfVT, HalfVT, Lo, Hi); 1169 } 1170 1171 1172 //===----------------------------------------------------------------------===// 1173 // Entry Point 1174 //===----------------------------------------------------------------------===// 1175 1176 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that 1177 /// only uses types natively supported by the target. Returns "true" if it made 1178 /// any changes. 1179 /// 1180 /// Note that this is an involved process that may invalidate pointers into 1181 /// the graph. 1182 bool SelectionDAG::LegalizeTypes() { 1183 return DAGTypeLegalizer(*this).run(); 1184 } 1185