Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
     11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
     12 // is common code shared among the LegalizeTypes*.cpp files.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "LegalizeTypes.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/IR/CallingConv.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "legalize-types"
     26 
     27 static cl::opt<bool>
     28 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
     29 
     30 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
     31 void DAGTypeLegalizer::PerformExpensiveChecks() {
     32   // If a node is not processed, then none of its values should be mapped by any
     33   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     34 
     35   // If a node is processed, then each value with an illegal type must be mapped
     36   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     37   // Values with a legal type may be mapped by ReplacedValues, but not by any of
     38   // the other maps.
     39 
     40   // Note that these invariants may not hold momentarily when processing a node:
     41   // the node being processed may be put in a map before being marked Processed.
     42 
     43   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
     44   // occur in two ways.  Firstly, a node may be created during legalization but
     45   // never passed to the legalization core.  This is usually due to the implicit
     46   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
     47   // node may be passed to the legalization core, but when analyzed may morph
     48   // into a different node, leaving the original node as a NewNode in the DAG.
     49   // A node may morph if one of its operands changes during analysis.  Whether
     50   // it actually morphs or not depends on whether, after updating its operands,
     51   // it is equivalent to an existing node: if so, it morphs into that existing
     52   // node (CSE).  An operand can change during analysis if the operand is a new
     53   // node that morphs, or it is a processed value that was mapped to some other
     54   // value (as recorded in ReplacedValues) in which case the operand is turned
     55   // into that other value.  If a node morphs then the node it morphed into will
     56   // be used instead of it for legalization, however the original node continues
     57   // to live on in the DAG.
     58   // The conclusion is that though there may be nodes marked NewNode in the DAG,
     59   // all uses of such nodes are also marked NewNode: the result is a fungus of
     60   // NewNodes growing on top of the useful nodes, and perhaps using them, but
     61   // not used by them.
     62 
     63   // If a value is mapped by ReplacedValues, then it must have no uses, except
     64   // by nodes marked NewNode (see above).
     65 
     66   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
     67   // Note that ReplacedValues should be applied iteratively.
     68 
     69   // Note that the ReplacedValues map may also map deleted nodes (by iterating
     70   // over the DAG we never dereference deleted nodes).  This means that it may
     71   // also map nodes marked NewNode if the deallocated memory was reallocated as
     72   // another node, and that new node was not seen by the LegalizeTypes machinery
     73   // (for example because it was created but not used).  In general, we cannot
     74   // distinguish between new nodes and deleted nodes.
     75   SmallVector<SDNode*, 16> NewNodes;
     76   for (SDNode &Node : DAG.allnodes()) {
     77     // Remember nodes marked NewNode - they are subject to extra checking below.
     78     if (Node.getNodeId() == NewNode)
     79       NewNodes.push_back(&Node);
     80 
     81     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
     82       SDValue Res(&Node, i);
     83       bool Failed = false;
     84 
     85       unsigned Mapped = 0;
     86       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
     87         Mapped |= 1;
     88         // Check that remapped values are only used by nodes marked NewNode.
     89         for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
     90              UI != UE; ++UI)
     91           if (UI.getUse().getResNo() == i)
     92             assert(UI->getNodeId() == NewNode &&
     93                    "Remapped value has non-trivial use!");
     94 
     95         // Check that the final result of applying ReplacedValues is not
     96         // marked NewNode.
     97         SDValue NewVal = ReplacedValues[Res];
     98         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
     99         while (I != ReplacedValues.end()) {
    100           NewVal = I->second;
    101           I = ReplacedValues.find(NewVal);
    102         }
    103         assert(NewVal.getNode()->getNodeId() != NewNode &&
    104                "ReplacedValues maps to a new node!");
    105       }
    106       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
    107         Mapped |= 2;
    108       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
    109         Mapped |= 4;
    110       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
    111         Mapped |= 8;
    112       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
    113         Mapped |= 16;
    114       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
    115         Mapped |= 32;
    116       if (SplitVectors.find(Res) != SplitVectors.end())
    117         Mapped |= 64;
    118       if (WidenedVectors.find(Res) != WidenedVectors.end())
    119         Mapped |= 128;
    120 
    121       if (Node.getNodeId() != Processed) {
    122         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
    123         // marked NewNode too, since a deleted node may have been reallocated as
    124         // another node that has not been seen by the LegalizeTypes machinery.
    125         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
    126             (Node.getNodeId() != NewNode && Mapped != 0)) {
    127           dbgs() << "Unprocessed value in a map!";
    128           Failed = true;
    129         }
    130       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
    131         if (Mapped > 1) {
    132           dbgs() << "Value with legal type was transformed!";
    133           Failed = true;
    134         }
    135       } else {
    136         if (Mapped == 0) {
    137           dbgs() << "Processed value not in any map!";
    138           Failed = true;
    139         } else if (Mapped & (Mapped - 1)) {
    140           dbgs() << "Value in multiple maps!";
    141           Failed = true;
    142         }
    143       }
    144 
    145       if (Failed) {
    146         if (Mapped & 1)
    147           dbgs() << " ReplacedValues";
    148         if (Mapped & 2)
    149           dbgs() << " PromotedIntegers";
    150         if (Mapped & 4)
    151           dbgs() << " SoftenedFloats";
    152         if (Mapped & 8)
    153           dbgs() << " ScalarizedVectors";
    154         if (Mapped & 16)
    155           dbgs() << " ExpandedIntegers";
    156         if (Mapped & 32)
    157           dbgs() << " ExpandedFloats";
    158         if (Mapped & 64)
    159           dbgs() << " SplitVectors";
    160         if (Mapped & 128)
    161           dbgs() << " WidenedVectors";
    162         dbgs() << "\n";
    163         llvm_unreachable(nullptr);
    164       }
    165     }
    166   }
    167 
    168   // Checked that NewNodes are only used by other NewNodes.
    169   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
    170     SDNode *N = NewNodes[i];
    171     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
    172          UI != UE; ++UI)
    173       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
    174   }
    175 }
    176 
    177 /// run - This is the main entry point for the type legalizer.  This does a
    178 /// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
    179 /// if it made any changes.
    180 bool DAGTypeLegalizer::run() {
    181   bool Changed = false;
    182 
    183   // Create a dummy node (which is not added to allnodes), that adds a reference
    184   // to the root node, preventing it from being deleted, and tracking any
    185   // changes of the root.
    186   HandleSDNode Dummy(DAG.getRoot());
    187   Dummy.setNodeId(Unanalyzed);
    188 
    189   // The root of the dag may dangle to deleted nodes until the type legalizer is
    190   // done.  Set it to null to avoid confusion.
    191   DAG.setRoot(SDValue());
    192 
    193   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
    194   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
    195   // non-leaves.
    196   for (SDNode &Node : DAG.allnodes()) {
    197     if (Node.getNumOperands() == 0) {
    198       Node.setNodeId(ReadyToProcess);
    199       Worklist.push_back(&Node);
    200     } else {
    201       Node.setNodeId(Unanalyzed);
    202     }
    203   }
    204 
    205   // Now that we have a set of nodes to process, handle them all.
    206   while (!Worklist.empty()) {
    207 #ifndef XDEBUG
    208     if (EnableExpensiveChecks)
    209 #endif
    210       PerformExpensiveChecks();
    211 
    212     SDNode *N = Worklist.back();
    213     Worklist.pop_back();
    214     assert(N->getNodeId() == ReadyToProcess &&
    215            "Node should be ready if on worklist!");
    216 
    217     if (IgnoreNodeResults(N))
    218       goto ScanOperands;
    219 
    220     // Scan the values produced by the node, checking to see if any result
    221     // types are illegal.
    222     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
    223       EVT ResultVT = N->getValueType(i);
    224       switch (getTypeAction(ResultVT)) {
    225       case TargetLowering::TypeLegal:
    226         break;
    227       // The following calls must take care of *all* of the node's results,
    228       // not just the illegal result they were passed (this includes results
    229       // with a legal type).  Results can be remapped using ReplaceValueWith,
    230       // or their promoted/expanded/etc values registered in PromotedIntegers,
    231       // ExpandedIntegers etc.
    232       case TargetLowering::TypePromoteInteger:
    233         PromoteIntegerResult(N, i);
    234         Changed = true;
    235         goto NodeDone;
    236       case TargetLowering::TypeExpandInteger:
    237         ExpandIntegerResult(N, i);
    238         Changed = true;
    239         goto NodeDone;
    240       case TargetLowering::TypeSoftenFloat:
    241         Changed = SoftenFloatResult(N, i);
    242         if (Changed)
    243           goto NodeDone;
    244         // If not changed, the result type should be legally in register.
    245         assert(isLegalInHWReg(ResultVT) &&
    246                "Unchanged SoftenFloatResult should be legal in register!");
    247         goto ScanOperands;
    248       case TargetLowering::TypeExpandFloat:
    249         ExpandFloatResult(N, i);
    250         Changed = true;
    251         goto NodeDone;
    252       case TargetLowering::TypeScalarizeVector:
    253         ScalarizeVectorResult(N, i);
    254         Changed = true;
    255         goto NodeDone;
    256       case TargetLowering::TypeSplitVector:
    257         SplitVectorResult(N, i);
    258         Changed = true;
    259         goto NodeDone;
    260       case TargetLowering::TypeWidenVector:
    261         WidenVectorResult(N, i);
    262         Changed = true;
    263         goto NodeDone;
    264       case TargetLowering::TypePromoteFloat:
    265         PromoteFloatResult(N, i);
    266         Changed = true;
    267         goto NodeDone;
    268       }
    269     }
    270 
    271 ScanOperands:
    272     // Scan the operand list for the node, handling any nodes with operands that
    273     // are illegal.
    274     {
    275     unsigned NumOperands = N->getNumOperands();
    276     bool NeedsReanalyzing = false;
    277     unsigned i;
    278     for (i = 0; i != NumOperands; ++i) {
    279       if (IgnoreNodeResults(N->getOperand(i).getNode()))
    280         continue;
    281 
    282       EVT OpVT = N->getOperand(i).getValueType();
    283       switch (getTypeAction(OpVT)) {
    284       case TargetLowering::TypeLegal:
    285         continue;
    286       // The following calls must either replace all of the node's results
    287       // using ReplaceValueWith, and return "false"; or update the node's
    288       // operands in place, and return "true".
    289       case TargetLowering::TypePromoteInteger:
    290         NeedsReanalyzing = PromoteIntegerOperand(N, i);
    291         Changed = true;
    292         break;
    293       case TargetLowering::TypeExpandInteger:
    294         NeedsReanalyzing = ExpandIntegerOperand(N, i);
    295         Changed = true;
    296         break;
    297       case TargetLowering::TypeSoftenFloat:
    298         NeedsReanalyzing = SoftenFloatOperand(N, i);
    299         Changed = true;
    300         break;
    301       case TargetLowering::TypeExpandFloat:
    302         NeedsReanalyzing = ExpandFloatOperand(N, i);
    303         Changed = true;
    304         break;
    305       case TargetLowering::TypeScalarizeVector:
    306         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
    307         Changed = true;
    308         break;
    309       case TargetLowering::TypeSplitVector:
    310         NeedsReanalyzing = SplitVectorOperand(N, i);
    311         Changed = true;
    312         break;
    313       case TargetLowering::TypeWidenVector:
    314         NeedsReanalyzing = WidenVectorOperand(N, i);
    315         Changed = true;
    316         break;
    317       case TargetLowering::TypePromoteFloat:
    318         NeedsReanalyzing = PromoteFloatOperand(N, i);
    319         Changed = true;
    320         break;
    321       }
    322       break;
    323     }
    324 
    325     // The sub-method updated N in place.  Check to see if any operands are new,
    326     // and if so, mark them.  If the node needs revisiting, don't add all users
    327     // to the worklist etc.
    328     if (NeedsReanalyzing) {
    329       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    330       N->setNodeId(NewNode);
    331       // Recompute the NodeId and correct processed operands, adding the node to
    332       // the worklist if ready.
    333       SDNode *M = AnalyzeNewNode(N);
    334       if (M == N)
    335         // The node didn't morph - nothing special to do, it will be revisited.
    336         continue;
    337 
    338       // The node morphed - this is equivalent to legalizing by replacing every
    339       // value of N with the corresponding value of M.  So do that now.
    340       assert(N->getNumValues() == M->getNumValues() &&
    341              "Node morphing changed the number of results!");
    342       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    343         // Replacing the value takes care of remapping the new value.
    344         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
    345       assert(N->getNodeId() == NewNode && "Unexpected node state!");
    346       // The node continues to live on as part of the NewNode fungus that
    347       // grows on top of the useful nodes.  Nothing more needs to be done
    348       // with it - move on to the next node.
    349       continue;
    350     }
    351 
    352     if (i == NumOperands) {
    353       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
    354     }
    355     }
    356 NodeDone:
    357 
    358     // If we reach here, the node was processed, potentially creating new nodes.
    359     // Mark it as processed and add its users to the worklist as appropriate.
    360     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    361     N->setNodeId(Processed);
    362 
    363     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    364          UI != E; ++UI) {
    365       SDNode *User = *UI;
    366       int NodeId = User->getNodeId();
    367 
    368       // This node has two options: it can either be a new node or its Node ID
    369       // may be a count of the number of operands it has that are not ready.
    370       if (NodeId > 0) {
    371         User->setNodeId(NodeId-1);
    372 
    373         // If this was the last use it was waiting on, add it to the ready list.
    374         if (NodeId-1 == ReadyToProcess)
    375           Worklist.push_back(User);
    376         continue;
    377       }
    378 
    379       // If this is an unreachable new node, then ignore it.  If it ever becomes
    380       // reachable by being used by a newly created node then it will be handled
    381       // by AnalyzeNewNode.
    382       if (NodeId == NewNode)
    383         continue;
    384 
    385       // Otherwise, this node is new: this is the first operand of it that
    386       // became ready.  Its new NodeId is the number of operands it has minus 1
    387       // (as this node is now processed).
    388       assert(NodeId == Unanalyzed && "Unknown node ID!");
    389       User->setNodeId(User->getNumOperands() - 1);
    390 
    391       // If the node only has a single operand, it is now ready.
    392       if (User->getNumOperands() == 1)
    393         Worklist.push_back(User);
    394     }
    395   }
    396 
    397 #ifndef XDEBUG
    398   if (EnableExpensiveChecks)
    399 #endif
    400     PerformExpensiveChecks();
    401 
    402   // If the root changed (e.g. it was a dead load) update the root.
    403   DAG.setRoot(Dummy.getValue());
    404 
    405   // Remove dead nodes.  This is important to do for cleanliness but also before
    406   // the checking loop below.  Implicit folding by the DAG.getNode operators and
    407   // node morphing can cause unreachable nodes to be around with their flags set
    408   // to new.
    409   DAG.RemoveDeadNodes();
    410 
    411   // In a debug build, scan all the nodes to make sure we found them all.  This
    412   // ensures that there are no cycles and that everything got processed.
    413 #ifndef NDEBUG
    414   for (SDNode &Node : DAG.allnodes()) {
    415     bool Failed = false;
    416 
    417     // Check that all result types are legal.
    418     // A value type is illegal if its TypeAction is not TypeLegal,
    419     // and TLI.RegClassForVT does not have a register class for this type.
    420     // For example, the x86_64 target has f128 that is not TypeLegal,
    421     // to have softened operators, but it also has FR128 register class to
    422     // pass and return f128 values. Hence a legalized node can have f128 type.
    423     if (!IgnoreNodeResults(&Node))
    424       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
    425         if (!isTypeLegal(Node.getValueType(i)) &&
    426             !TLI.isTypeLegal(Node.getValueType(i))) {
    427           dbgs() << "Result type " << i << " illegal: ";
    428           Node.dump();
    429           Failed = true;
    430         }
    431 
    432     // Check that all operand types are legal.
    433     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
    434       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
    435           !isTypeLegal(Node.getOperand(i).getValueType()) &&
    436           !TLI.isTypeLegal(Node.getOperand(i).getValueType())) {
    437         dbgs() << "Operand type " << i << " illegal: ";
    438         Node.getOperand(i).dump();
    439         Failed = true;
    440       }
    441 
    442     if (Node.getNodeId() != Processed) {
    443        if (Node.getNodeId() == NewNode)
    444          dbgs() << "New node not analyzed?\n";
    445        else if (Node.getNodeId() == Unanalyzed)
    446          dbgs() << "Unanalyzed node not noticed?\n";
    447        else if (Node.getNodeId() > 0)
    448          dbgs() << "Operand not processed?\n";
    449        else if (Node.getNodeId() == ReadyToProcess)
    450          dbgs() << "Not added to worklist?\n";
    451        Failed = true;
    452     }
    453 
    454     if (Failed) {
    455       Node.dump(&DAG); dbgs() << "\n";
    456       llvm_unreachable(nullptr);
    457     }
    458   }
    459 #endif
    460 
    461   return Changed;
    462 }
    463 
    464 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
    465 /// new nodes.  Correct any processed operands (this may change the node) and
    466 /// calculate the NodeId.  If the node itself changes to a processed node, it
    467 /// is not remapped - the caller needs to take care of this.
    468 /// Returns the potentially changed node.
    469 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
    470   // If this was an existing node that is already done, we're done.
    471   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
    472     return N;
    473 
    474   // Remove any stale map entries.
    475   ExpungeNode(N);
    476 
    477   // Okay, we know that this node is new.  Recursively walk all of its operands
    478   // to see if they are new also.  The depth of this walk is bounded by the size
    479   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
    480   // about revisiting of nodes.
    481   //
    482   // As we walk the operands, keep track of the number of nodes that are
    483   // processed.  If non-zero, this will become the new nodeid of this node.
    484   // Operands may morph when they are analyzed.  If so, the node will be
    485   // updated after all operands have been analyzed.  Since this is rare,
    486   // the code tries to minimize overhead in the non-morphing case.
    487 
    488   SmallVector<SDValue, 8> NewOps;
    489   unsigned NumProcessed = 0;
    490   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    491     SDValue OrigOp = N->getOperand(i);
    492     SDValue Op = OrigOp;
    493 
    494     AnalyzeNewValue(Op); // Op may morph.
    495 
    496     if (Op.getNode()->getNodeId() == Processed)
    497       ++NumProcessed;
    498 
    499     if (!NewOps.empty()) {
    500       // Some previous operand changed.  Add this one to the list.
    501       NewOps.push_back(Op);
    502     } else if (Op != OrigOp) {
    503       // This is the first operand to change - add all operands so far.
    504       NewOps.append(N->op_begin(), N->op_begin() + i);
    505       NewOps.push_back(Op);
    506     }
    507   }
    508 
    509   // Some operands changed - update the node.
    510   if (!NewOps.empty()) {
    511     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
    512     if (M != N) {
    513       // The node morphed into a different node.  Normally for this to happen
    514       // the original node would have to be marked NewNode.  However this can
    515       // in theory momentarily not be the case while ReplaceValueWith is doing
    516       // its stuff.  Mark the original node NewNode to help sanity checking.
    517       N->setNodeId(NewNode);
    518       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
    519         // It morphed into a previously analyzed node - nothing more to do.
    520         return M;
    521 
    522       // It morphed into a different new node.  Do the equivalent of passing
    523       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
    524       // to remap the operands, since they are the same as the operands we
    525       // remapped above.
    526       N = M;
    527       ExpungeNode(N);
    528     }
    529   }
    530 
    531   // Calculate the NodeId.
    532   N->setNodeId(N->getNumOperands() - NumProcessed);
    533   if (N->getNodeId() == ReadyToProcess)
    534     Worklist.push_back(N);
    535 
    536   return N;
    537 }
    538 
    539 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
    540 /// If the node changes to a processed node, then remap it.
    541 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
    542   Val.setNode(AnalyzeNewNode(Val.getNode()));
    543   if (Val.getNode()->getNodeId() == Processed)
    544     // We were passed a processed node, or it morphed into one - remap it.
    545     RemapValue(Val);
    546 }
    547 
    548 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
    549 /// This can occur when a node is deleted then reallocated as a new node -
    550 /// the mapping in ReplacedValues applies to the deleted node, not the new
    551 /// one.
    552 /// The only map that can have a deleted node as a source is ReplacedValues.
    553 /// Other maps can have deleted nodes as targets, but since their looked-up
    554 /// values are always immediately remapped using RemapValue, resulting in a
    555 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
    556 /// always performs correct mappings.  In order to keep the mapping correct,
    557 /// ExpungeNode should be called on any new nodes *before* adding them as
    558 /// either source or target to ReplacedValues (which typically means calling
    559 /// Expunge when a new node is first seen, since it may no longer be marked
    560 /// NewNode by the time it is added to ReplacedValues).
    561 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
    562   if (N->getNodeId() != NewNode)
    563     return;
    564 
    565   // If N is not remapped by ReplacedValues then there is nothing to do.
    566   unsigned i, e;
    567   for (i = 0, e = N->getNumValues(); i != e; ++i)
    568     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
    569       break;
    570 
    571   if (i == e)
    572     return;
    573 
    574   // Remove N from all maps - this is expensive but rare.
    575 
    576   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
    577        E = PromotedIntegers.end(); I != E; ++I) {
    578     assert(I->first.getNode() != N);
    579     RemapValue(I->second);
    580   }
    581 
    582   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
    583        E = SoftenedFloats.end(); I != E; ++I) {
    584     assert(I->first.getNode() != N);
    585     RemapValue(I->second);
    586   }
    587 
    588   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
    589        E = ScalarizedVectors.end(); I != E; ++I) {
    590     assert(I->first.getNode() != N);
    591     RemapValue(I->second);
    592   }
    593 
    594   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
    595        E = WidenedVectors.end(); I != E; ++I) {
    596     assert(I->first.getNode() != N);
    597     RemapValue(I->second);
    598   }
    599 
    600   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    601        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    602     assert(I->first.getNode() != N);
    603     RemapValue(I->second.first);
    604     RemapValue(I->second.second);
    605   }
    606 
    607   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    608        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    609     assert(I->first.getNode() != N);
    610     RemapValue(I->second.first);
    611     RemapValue(I->second.second);
    612   }
    613 
    614   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    615        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    616     assert(I->first.getNode() != N);
    617     RemapValue(I->second.first);
    618     RemapValue(I->second.second);
    619   }
    620 
    621   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
    622        E = ReplacedValues.end(); I != E; ++I)
    623     RemapValue(I->second);
    624 
    625   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    626     ReplacedValues.erase(SDValue(N, i));
    627 }
    628 
    629 /// RemapValue - If the specified value was already legalized to another value,
    630 /// replace it by that value.
    631 void DAGTypeLegalizer::RemapValue(SDValue &N) {
    632   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
    633   if (I != ReplacedValues.end()) {
    634     // Use path compression to speed up future lookups if values get multiply
    635     // replaced with other values.
    636     RemapValue(I->second);
    637     N = I->second;
    638 
    639     // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
    640     // this point because it is possible for a node to be put in the map before
    641     // being processed.
    642   }
    643 }
    644 
    645 namespace {
    646   /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
    647   /// updates to nodes and recomputes their ready state.
    648   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
    649     DAGTypeLegalizer &DTL;
    650     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
    651   public:
    652     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
    653                                 SmallSetVector<SDNode*, 16> &nta)
    654       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
    655         DTL(dtl), NodesToAnalyze(nta) {}
    656 
    657     void NodeDeleted(SDNode *N, SDNode *E) override {
    658       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    659              N->getNodeId() != DAGTypeLegalizer::Processed &&
    660              "Invalid node ID for RAUW deletion!");
    661       // It is possible, though rare, for the deleted node N to occur as a
    662       // target in a map, so note the replacement N -> E in ReplacedValues.
    663       assert(E && "Node not replaced?");
    664       DTL.NoteDeletion(N, E);
    665 
    666       // In theory the deleted node could also have been scheduled for analysis.
    667       // So remove it from the set of nodes which will be analyzed.
    668       NodesToAnalyze.remove(N);
    669 
    670       // In general nothing needs to be done for E, since it didn't change but
    671       // only gained new uses.  However N -> E was just added to ReplacedValues,
    672       // and the result of a ReplacedValues mapping is not allowed to be marked
    673       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
    674       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
    675         NodesToAnalyze.insert(E);
    676     }
    677 
    678     void NodeUpdated(SDNode *N) override {
    679       // Node updates can mean pretty much anything.  It is possible that an
    680       // operand was set to something already processed (f.e.) in which case
    681       // this node could become ready.  Recompute its flags.
    682       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    683              N->getNodeId() != DAGTypeLegalizer::Processed &&
    684              "Invalid node ID for RAUW deletion!");
    685       N->setNodeId(DAGTypeLegalizer::NewNode);
    686       NodesToAnalyze.insert(N);
    687     }
    688   };
    689 }
    690 
    691 
    692 /// ReplaceValueWith - The specified value was legalized to the specified other
    693 /// value.  Update the DAG and NodeIds replacing any uses of From to use To
    694 /// instead.
    695 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
    696   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
    697 
    698   // If expansion produced new nodes, make sure they are properly marked.
    699   ExpungeNode(From.getNode());
    700   AnalyzeNewValue(To); // Expunges To.
    701 
    702   // Anything that used the old node should now use the new one.  Note that this
    703   // can potentially cause recursive merging.
    704   SmallSetVector<SDNode*, 16> NodesToAnalyze;
    705   NodeUpdateListener NUL(*this, NodesToAnalyze);
    706   do {
    707     DAG.ReplaceAllUsesOfValueWith(From, To);
    708 
    709     // The old node may still be present in a map like ExpandedIntegers or
    710     // PromotedIntegers.  Inform maps about the replacement.
    711     ReplacedValues[From] = To;
    712 
    713     // Process the list of nodes that need to be reanalyzed.
    714     while (!NodesToAnalyze.empty()) {
    715       SDNode *N = NodesToAnalyze.back();
    716       NodesToAnalyze.pop_back();
    717       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
    718         // The node was analyzed while reanalyzing an earlier node - it is safe
    719         // to skip.  Note that this is not a morphing node - otherwise it would
    720         // still be marked NewNode.
    721         continue;
    722 
    723       // Analyze the node's operands and recalculate the node ID.
    724       SDNode *M = AnalyzeNewNode(N);
    725       if (M != N) {
    726         // The node morphed into a different node.  Make everyone use the new
    727         // node instead.
    728         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
    729         assert(N->getNumValues() == M->getNumValues() &&
    730                "Node morphing changed the number of results!");
    731         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    732           SDValue OldVal(N, i);
    733           SDValue NewVal(M, i);
    734           if (M->getNodeId() == Processed)
    735             RemapValue(NewVal);
    736           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
    737           // OldVal may be a target of the ReplacedValues map which was marked
    738           // NewNode to force reanalysis because it was updated.  Ensure that
    739           // anything that ReplacedValues mapped to OldVal will now be mapped
    740           // all the way to NewVal.
    741           ReplacedValues[OldVal] = NewVal;
    742         }
    743         // The original node continues to exist in the DAG, marked NewNode.
    744       }
    745     }
    746     // When recursively update nodes with new nodes, it is possible to have
    747     // new uses of From due to CSE. If this happens, replace the new uses of
    748     // From with To.
    749   } while (!From.use_empty());
    750 }
    751 
    752 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
    753   assert(Result.getValueType() ==
    754          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    755          "Invalid type for promoted integer");
    756   AnalyzeNewValue(Result);
    757 
    758   SDValue &OpEntry = PromotedIntegers[Op];
    759   assert(!OpEntry.getNode() && "Node is already promoted!");
    760   OpEntry = Result;
    761 }
    762 
    763 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
    764   // f128 of x86_64 could be kept in SSE registers,
    765   // but sometimes softened to i128.
    766   assert((Result.getValueType() ==
    767           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) ||
    768           Op.getValueType() ==
    769           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
    770          "Invalid type for softened float");
    771   AnalyzeNewValue(Result);
    772 
    773   SDValue &OpEntry = SoftenedFloats[Op];
    774   // Allow repeated calls to save f128 type nodes
    775   // or any node with type that transforms to itself.
    776   // Many operations on these types are not softened.
    777   assert((!OpEntry.getNode()||
    778           Op.getValueType() ==
    779           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
    780          "Node is already converted to integer!");
    781   OpEntry = Result;
    782 }
    783 
    784 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
    785   assert(Result.getValueType() ==
    786          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    787          "Invalid type for promoted float");
    788   AnalyzeNewValue(Result);
    789 
    790   SDValue &OpEntry = PromotedFloats[Op];
    791   assert(!OpEntry.getNode() && "Node is already promoted!");
    792   OpEntry = Result;
    793 }
    794 
    795 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
    796   // Note that in some cases vector operation operands may be greater than
    797   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
    798   // a constant i8 operand.
    799   assert(Result.getValueType().getSizeInBits() >=
    800          Op.getValueType().getVectorElementType().getSizeInBits() &&
    801          "Invalid type for scalarized vector");
    802   AnalyzeNewValue(Result);
    803 
    804   SDValue &OpEntry = ScalarizedVectors[Op];
    805   assert(!OpEntry.getNode() && "Node is already scalarized!");
    806   OpEntry = Result;
    807 }
    808 
    809 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
    810                                           SDValue &Hi) {
    811   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    812   RemapValue(Entry.first);
    813   RemapValue(Entry.second);
    814   assert(Entry.first.getNode() && "Operand isn't expanded");
    815   Lo = Entry.first;
    816   Hi = Entry.second;
    817 }
    818 
    819 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
    820                                           SDValue Hi) {
    821   assert(Lo.getValueType() ==
    822          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    823          Hi.getValueType() == Lo.getValueType() &&
    824          "Invalid type for expanded integer");
    825   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    826   AnalyzeNewValue(Lo);
    827   AnalyzeNewValue(Hi);
    828 
    829   // Remember that this is the result of the node.
    830   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    831   assert(!Entry.first.getNode() && "Node already expanded");
    832   Entry.first = Lo;
    833   Entry.second = Hi;
    834 }
    835 
    836 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
    837                                         SDValue &Hi) {
    838   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    839   RemapValue(Entry.first);
    840   RemapValue(Entry.second);
    841   assert(Entry.first.getNode() && "Operand isn't expanded");
    842   Lo = Entry.first;
    843   Hi = Entry.second;
    844 }
    845 
    846 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
    847                                         SDValue Hi) {
    848   assert(Lo.getValueType() ==
    849          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    850          Hi.getValueType() == Lo.getValueType() &&
    851          "Invalid type for expanded float");
    852   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    853   AnalyzeNewValue(Lo);
    854   AnalyzeNewValue(Hi);
    855 
    856   // Remember that this is the result of the node.
    857   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    858   assert(!Entry.first.getNode() && "Node already expanded");
    859   Entry.first = Lo;
    860   Entry.second = Hi;
    861 }
    862 
    863 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
    864                                       SDValue &Hi) {
    865   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    866   RemapValue(Entry.first);
    867   RemapValue(Entry.second);
    868   assert(Entry.first.getNode() && "Operand isn't split");
    869   Lo = Entry.first;
    870   Hi = Entry.second;
    871 }
    872 
    873 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
    874                                       SDValue Hi) {
    875   assert(Lo.getValueType().getVectorElementType() ==
    876          Op.getValueType().getVectorElementType() &&
    877          2*Lo.getValueType().getVectorNumElements() ==
    878          Op.getValueType().getVectorNumElements() &&
    879          Hi.getValueType() == Lo.getValueType() &&
    880          "Invalid type for split vector");
    881   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    882   AnalyzeNewValue(Lo);
    883   AnalyzeNewValue(Hi);
    884 
    885   // Remember that this is the result of the node.
    886   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    887   assert(!Entry.first.getNode() && "Node already split");
    888   Entry.first = Lo;
    889   Entry.second = Hi;
    890 }
    891 
    892 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
    893   assert(Result.getValueType() ==
    894          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    895          "Invalid type for widened vector");
    896   AnalyzeNewValue(Result);
    897 
    898   SDValue &OpEntry = WidenedVectors[Op];
    899   assert(!OpEntry.getNode() && "Node already widened!");
    900   OpEntry = Result;
    901 }
    902 
    903 
    904 //===----------------------------------------------------------------------===//
    905 // Utilities.
    906 //===----------------------------------------------------------------------===//
    907 
    908 /// BitConvertToInteger - Convert to an integer of the same size.
    909 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
    910   unsigned BitWidth = Op.getValueType().getSizeInBits();
    911   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    912                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
    913 }
    914 
    915 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
    916 /// same size.
    917 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
    918   assert(Op.getValueType().isVector() && "Only applies to vectors!");
    919   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
    920   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
    921   unsigned NumElts = Op.getValueType().getVectorNumElements();
    922   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    923                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
    924 }
    925 
    926 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
    927                                                EVT DestVT) {
    928   SDLoc dl(Op);
    929   // Create the stack frame object.  Make sure it is aligned for both
    930   // the source and destination types.
    931   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
    932   // Emit a store to the stack slot.
    933   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
    934                                MachinePointerInfo(), false, false, 0);
    935   // Result is a load from the stack slot.
    936   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
    937                      false, false, false, 0);
    938 }
    939 
    940 /// CustomLowerNode - Replace the node's results with custom code provided
    941 /// by the target and return "true", or do nothing and return "false".
    942 /// The last parameter is FALSE if we are dealing with a node with legal
    943 /// result types and illegal operand. The second parameter denotes the type of
    944 /// illegal OperandNo in that case.
    945 /// The last parameter being TRUE means we are dealing with a
    946 /// node with illegal result types. The second parameter denotes the type of
    947 /// illegal ResNo in that case.
    948 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
    949   // See if the target wants to custom lower this node.
    950   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    951     return false;
    952 
    953   SmallVector<SDValue, 8> Results;
    954   if (LegalizeResult)
    955     TLI.ReplaceNodeResults(N, Results, DAG);
    956   else
    957     TLI.LowerOperationWrapper(N, Results, DAG);
    958 
    959   if (Results.empty())
    960     // The target didn't want to custom lower it after all.
    961     return false;
    962 
    963   // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
    964   // provide the same kind of custom splitting behavior.
    965   if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
    966     // We've legalized a return type by splitting it. If there is a chain,
    967     // replace that too.
    968     SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
    969     if (N->getNumValues() > 1)
    970       ReplaceValueWith(SDValue(N, 1), Results[2]);
    971     return true;
    972   }
    973 
    974   // Make everything that once used N's values now use those in Results instead.
    975   assert(Results.size() == N->getNumValues() &&
    976          "Custom lowering returned the wrong number of results!");
    977   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
    978     ReplaceValueWith(SDValue(N, i), Results[i]);
    979   }
    980   return true;
    981 }
    982 
    983 
    984 /// CustomWidenLowerNode - Widen the node's results with custom code provided
    985 /// by the target and return "true", or do nothing and return "false".
    986 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
    987   // See if the target wants to custom lower this node.
    988   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    989     return false;
    990 
    991   SmallVector<SDValue, 8> Results;
    992   TLI.ReplaceNodeResults(N, Results, DAG);
    993 
    994   if (Results.empty())
    995     // The target didn't want to custom widen lower its result  after all.
    996     return false;
    997 
    998   // Update the widening map.
    999   assert(Results.size() == N->getNumValues() &&
   1000          "Custom lowering returned the wrong number of results!");
   1001   for (unsigned i = 0, e = Results.size(); i != e; ++i)
   1002     SetWidenedVector(SDValue(N, i), Results[i]);
   1003   return true;
   1004 }
   1005 
   1006 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
   1007   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
   1008     if (i != ResNo)
   1009       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
   1010   return SDValue(N->getOperand(ResNo));
   1011 }
   1012 
   1013 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
   1014 /// high parts of the given value.
   1015 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
   1016                                        SDValue &Lo, SDValue &Hi) {
   1017   SDLoc dl(Pair);
   1018   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
   1019   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
   1020                    DAG.getIntPtrConstant(0, dl));
   1021   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
   1022                    DAG.getIntPtrConstant(1, dl));
   1023 }
   1024 
   1025 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
   1026                                                   SDValue Index) {
   1027   SDLoc dl(Index);
   1028   // Make sure the index type is big enough to compute in.
   1029   Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy(DAG.getDataLayout()));
   1030 
   1031   // Calculate the element offset and add it to the pointer.
   1032   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
   1033   assert(EltSize * 8 == EltVT.getSizeInBits() &&
   1034          "Converting bits to bytes lost precision");
   1035 
   1036   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
   1037                       DAG.getConstant(EltSize, dl, Index.getValueType()));
   1038   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
   1039 }
   1040 
   1041 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
   1042 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
   1043   // Arbitrarily use dlHi for result SDLoc
   1044   SDLoc dlHi(Hi);
   1045   SDLoc dlLo(Lo);
   1046   EVT LVT = Lo.getValueType();
   1047   EVT HVT = Hi.getValueType();
   1048   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
   1049                               LVT.getSizeInBits() + HVT.getSizeInBits());
   1050 
   1051   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
   1052   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
   1053   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
   1054                    DAG.getConstant(LVT.getSizeInBits(), dlHi,
   1055                                    TLI.getPointerTy(DAG.getDataLayout())));
   1056   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
   1057 }
   1058 
   1059 /// LibCallify - Convert the node into a libcall with the same prototype.
   1060 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
   1061                                      bool isSigned) {
   1062   unsigned NumOps = N->getNumOperands();
   1063   SDLoc dl(N);
   1064   if (NumOps == 0) {
   1065     return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned,
   1066                            dl).first;
   1067   } else if (NumOps == 1) {
   1068     SDValue Op = N->getOperand(0);
   1069     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned,
   1070                            dl).first;
   1071   } else if (NumOps == 2) {
   1072     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
   1073     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned,
   1074                            dl).first;
   1075   }
   1076   SmallVector<SDValue, 8> Ops(NumOps);
   1077   for (unsigned i = 0; i < NumOps; ++i)
   1078     Ops[i] = N->getOperand(i);
   1079 
   1080   return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first;
   1081 }
   1082 
   1083 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1084 // ExpandLibCall except that the first operand is the in-chain.
   1085 std::pair<SDValue, SDValue>
   1086 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
   1087                                          SDNode *Node,
   1088                                          bool isSigned) {
   1089   SDValue InChain = Node->getOperand(0);
   1090 
   1091   TargetLowering::ArgListTy Args;
   1092   TargetLowering::ArgListEntry Entry;
   1093   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1094     EVT ArgVT = Node->getOperand(i).getValueType();
   1095     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1096     Entry.Node = Node->getOperand(i);
   1097     Entry.Ty = ArgTy;
   1098     Entry.isSExt = isSigned;
   1099     Entry.isZExt = !isSigned;
   1100     Args.push_back(Entry);
   1101   }
   1102   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1103                                          TLI.getPointerTy(DAG.getDataLayout()));
   1104 
   1105   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1106 
   1107   TargetLowering::CallLoweringInfo CLI(DAG);
   1108   CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
   1109     .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
   1110     .setSExtResult(isSigned).setZExtResult(!isSigned);
   1111 
   1112   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1113 
   1114   return CallInfo;
   1115 }
   1116 
   1117 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
   1118 /// of the given type.  A target boolean is an integer value, not necessarily of
   1119 /// type i1, the bits of which conform to getBooleanContents.
   1120 ///
   1121 /// ValVT is the type of values that produced the boolean.
   1122 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
   1123   SDLoc dl(Bool);
   1124   EVT BoolVT = getSetCCResultType(ValVT);
   1125   ISD::NodeType ExtendCode =
   1126       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
   1127   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
   1128 }
   1129 
   1130 /// WidenTargetBoolean - Widen the given target boolean to a target boolean
   1131 /// of the given type. The boolean vector is widened and then promoted to match
   1132 /// the target boolean type of the given ValVT.
   1133 SDValue DAGTypeLegalizer::WidenTargetBoolean(SDValue Bool, EVT ValVT,
   1134                                              bool WithZeroes) {
   1135   SDLoc dl(Bool);
   1136   EVT BoolVT = Bool.getValueType();
   1137 
   1138   assert(ValVT.getVectorNumElements() > BoolVT.getVectorNumElements() &&
   1139          TLI.isTypeLegal(ValVT) &&
   1140          "Unexpected types in WidenTargetBoolean");
   1141   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), BoolVT.getScalarType(),
   1142                                 ValVT.getVectorNumElements());
   1143   Bool = ModifyToType(Bool, WideVT, WithZeroes);
   1144   return PromoteTargetBoolean(Bool, ValVT);
   1145 }
   1146 
   1147 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
   1148 /// bits in Hi.
   1149 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1150                                     EVT LoVT, EVT HiVT,
   1151                                     SDValue &Lo, SDValue &Hi) {
   1152   SDLoc dl(Op);
   1153   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
   1154          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
   1155   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
   1156   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
   1157                    DAG.getConstant(LoVT.getSizeInBits(), dl,
   1158                                    TLI.getPointerTy(DAG.getDataLayout())));
   1159   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
   1160 }
   1161 
   1162 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
   1163 /// type half the size of Op's.
   1164 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1165                                     SDValue &Lo, SDValue &Hi) {
   1166   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
   1167                                  Op.getValueType().getSizeInBits()/2);
   1168   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
   1169 }
   1170 
   1171 
   1172 //===----------------------------------------------------------------------===//
   1173 //  Entry Point
   1174 //===----------------------------------------------------------------------===//
   1175 
   1176 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
   1177 /// only uses types natively supported by the target.  Returns "true" if it made
   1178 /// any changes.
   1179 ///
   1180 /// Note that this is an involved process that may invalidate pointers into
   1181 /// the graph.
   1182 bool SelectionDAG::LegalizeTypes() {
   1183   return DAGTypeLegalizer(*this).run();
   1184 }
   1185