Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "PHIEliminationUtils.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/LiveVariables.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/Compiler.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <algorithm>
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "phielim"
     39 
     40 static cl::opt<bool>
     41 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     42                      cl::Hidden, cl::desc("Disable critical edge splitting "
     43                                           "during PHI elimination"));
     44 
     45 static cl::opt<bool>
     46 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
     47                       cl::Hidden, cl::desc("Split all critical edges during "
     48                                            "PHI elimination"));
     49 
     50 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
     51     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
     52     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
     53 
     54 namespace {
     55   class PHIElimination : public MachineFunctionPass {
     56     MachineRegisterInfo *MRI; // Machine register information
     57     LiveVariables *LV;
     58     LiveIntervals *LIS;
     59 
     60   public:
     61     static char ID; // Pass identification, replacement for typeid
     62     PHIElimination() : MachineFunctionPass(ID) {
     63       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     64     }
     65 
     66     bool runOnMachineFunction(MachineFunction &Fn) override;
     67     void getAnalysisUsage(AnalysisUsage &AU) const override;
     68 
     69   private:
     70     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     71     /// in predecessor basic blocks.
     72     ///
     73     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     74     void LowerPHINode(MachineBasicBlock &MBB,
     75                       MachineBasicBlock::iterator LastPHIIt);
     76 
     77     /// analyzePHINodes - Gather information about the PHI nodes in
     78     /// here. In particular, we want to map the number of uses of a virtual
     79     /// register which is used in a PHI node. We map that to the BB the
     80     /// vreg is coming from. This is used later to determine when the vreg
     81     /// is killed in the BB.
     82     ///
     83     void analyzePHINodes(const MachineFunction& Fn);
     84 
     85     /// Split critical edges where necessary for good coalescer performance.
     86     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     87                        MachineLoopInfo *MLI);
     88 
     89     // These functions are temporary abstractions around LiveVariables and
     90     // LiveIntervals, so they can go away when LiveVariables does.
     91     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
     92     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
     93 
     94     typedef std::pair<unsigned, unsigned> BBVRegPair;
     95     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     96 
     97     VRegPHIUse VRegPHIUseCount;
     98 
     99     // Defs of PHI sources which are implicit_def.
    100     SmallPtrSet<MachineInstr*, 4> ImpDefs;
    101 
    102     // Map reusable lowered PHI node -> incoming join register.
    103     typedef DenseMap<MachineInstr*, unsigned,
    104                      MachineInstrExpressionTrait> LoweredPHIMap;
    105     LoweredPHIMap LoweredPHIs;
    106   };
    107 }
    108 
    109 STATISTIC(NumLowered, "Number of phis lowered");
    110 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
    111 STATISTIC(NumReused, "Number of reused lowered phis");
    112 
    113 char PHIElimination::ID = 0;
    114 char& llvm::PHIEliminationID = PHIElimination::ID;
    115 
    116 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
    117                       "Eliminate PHI nodes for register allocation",
    118                       false, false)
    119 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
    120 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
    121                     "Eliminate PHI nodes for register allocation", false, false)
    122 
    123 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    124   AU.addPreserved<LiveVariables>();
    125   AU.addPreserved<SlotIndexes>();
    126   AU.addPreserved<LiveIntervals>();
    127   AU.addPreserved<MachineDominatorTree>();
    128   AU.addPreserved<MachineLoopInfo>();
    129   MachineFunctionPass::getAnalysisUsage(AU);
    130 }
    131 
    132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    133   MRI = &MF.getRegInfo();
    134   LV = getAnalysisIfAvailable<LiveVariables>();
    135   LIS = getAnalysisIfAvailable<LiveIntervals>();
    136 
    137   bool Changed = false;
    138 
    139   // This pass takes the function out of SSA form.
    140   MRI->leaveSSA();
    141 
    142   // Split critical edges to help the coalescer. This does not yet support
    143   // updating LiveIntervals, so we disable it.
    144   if (!DisableEdgeSplitting && (LV || LIS)) {
    145     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    146     for (auto &MBB : MF)
    147       Changed |= SplitPHIEdges(MF, MBB, MLI);
    148   }
    149 
    150   // Populate VRegPHIUseCount
    151   analyzePHINodes(MF);
    152 
    153   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    154   for (auto &MBB : MF)
    155     Changed |= EliminatePHINodes(MF, MBB);
    156 
    157   // Remove dead IMPLICIT_DEF instructions.
    158   for (MachineInstr *DefMI : ImpDefs) {
    159     unsigned DefReg = DefMI->getOperand(0).getReg();
    160     if (MRI->use_nodbg_empty(DefReg)) {
    161       if (LIS)
    162         LIS->RemoveMachineInstrFromMaps(DefMI);
    163       DefMI->eraseFromParent();
    164     }
    165   }
    166 
    167   // Clean up the lowered PHI instructions.
    168   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    169        I != E; ++I) {
    170     if (LIS)
    171       LIS->RemoveMachineInstrFromMaps(I->first);
    172     MF.DeleteMachineInstr(I->first);
    173   }
    174 
    175   LoweredPHIs.clear();
    176   ImpDefs.clear();
    177   VRegPHIUseCount.clear();
    178 
    179   return Changed;
    180 }
    181 
    182 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    183 /// predecessor basic blocks.
    184 ///
    185 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    186                                              MachineBasicBlock &MBB) {
    187   if (MBB.empty() || !MBB.front().isPHI())
    188     return false;   // Quick exit for basic blocks without PHIs.
    189 
    190   // Get an iterator to the first instruction after the last PHI node (this may
    191   // also be the end of the basic block).
    192   MachineBasicBlock::iterator LastPHIIt =
    193     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
    194 
    195   while (MBB.front().isPHI())
    196     LowerPHINode(MBB, LastPHIIt);
    197 
    198   return true;
    199 }
    200 
    201 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
    202 /// This includes registers with no defs.
    203 static bool isImplicitlyDefined(unsigned VirtReg,
    204                                 const MachineRegisterInfo *MRI) {
    205   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
    206     if (!DI.isImplicitDef())
    207       return false;
    208   return true;
    209 }
    210 
    211 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    212 /// are implicit_def's.
    213 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    214                                          const MachineRegisterInfo *MRI) {
    215   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    216     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
    217       return false;
    218   return true;
    219 }
    220 
    221 
    222 /// LowerPHINode - Lower the PHI node at the top of the specified block,
    223 ///
    224 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
    225                                   MachineBasicBlock::iterator LastPHIIt) {
    226   ++NumLowered;
    227 
    228   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
    229 
    230   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    231   MachineInstr *MPhi = MBB.remove(MBB.begin());
    232 
    233   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    234   unsigned DestReg = MPhi->getOperand(0).getReg();
    235   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    236   bool isDead = MPhi->getOperand(0).isDead();
    237 
    238   // Create a new register for the incoming PHI arguments.
    239   MachineFunction &MF = *MBB.getParent();
    240   unsigned IncomingReg = 0;
    241   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    242 
    243   // Insert a register to register copy at the top of the current block (but
    244   // after any remaining phi nodes) which copies the new incoming register
    245   // into the phi node destination.
    246   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
    247   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    248     // If all sources of a PHI node are implicit_def, just emit an
    249     // implicit_def instead of a copy.
    250     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    251             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    252   else {
    253     // Can we reuse an earlier PHI node? This only happens for critical edges,
    254     // typically those created by tail duplication.
    255     unsigned &entry = LoweredPHIs[MPhi];
    256     if (entry) {
    257       // An identical PHI node was already lowered. Reuse the incoming register.
    258       IncomingReg = entry;
    259       reusedIncoming = true;
    260       ++NumReused;
    261       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    262     } else {
    263       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    264       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    265     }
    266     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    267             TII->get(TargetOpcode::COPY), DestReg)
    268       .addReg(IncomingReg);
    269   }
    270 
    271   // Update live variable information if there is any.
    272   if (LV) {
    273     MachineInstr *PHICopy = std::prev(AfterPHIsIt);
    274 
    275     if (IncomingReg) {
    276       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    277 
    278       // Increment use count of the newly created virtual register.
    279       LV->setPHIJoin(IncomingReg);
    280 
    281       // When we are reusing the incoming register, it may already have been
    282       // killed in this block. The old kill will also have been inserted at
    283       // AfterPHIsIt, so it appears before the current PHICopy.
    284       if (reusedIncoming)
    285         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    286           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    287           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    288           DEBUG(MBB.dump());
    289         }
    290 
    291       // Add information to LiveVariables to know that the incoming value is
    292       // killed.  Note that because the value is defined in several places (once
    293       // each for each incoming block), the "def" block and instruction fields
    294       // for the VarInfo is not filled in.
    295       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    296     }
    297 
    298     // Since we are going to be deleting the PHI node, if it is the last use of
    299     // any registers, or if the value itself is dead, we need to move this
    300     // information over to the new copy we just inserted.
    301     LV->removeVirtualRegistersKilled(MPhi);
    302 
    303     // If the result is dead, update LV.
    304     if (isDead) {
    305       LV->addVirtualRegisterDead(DestReg, PHICopy);
    306       LV->removeVirtualRegisterDead(DestReg, MPhi);
    307     }
    308   }
    309 
    310   // Update LiveIntervals for the new copy or implicit def.
    311   if (LIS) {
    312     MachineInstr *NewInstr = std::prev(AfterPHIsIt);
    313     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
    314 
    315     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
    316     if (IncomingReg) {
    317       // Add the region from the beginning of MBB to the copy instruction to
    318       // IncomingReg's live interval.
    319       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
    320       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
    321       if (!IncomingVNI)
    322         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
    323                                               LIS->getVNInfoAllocator());
    324       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
    325                                                   DestCopyIndex.getRegSlot(),
    326                                                   IncomingVNI));
    327     }
    328 
    329     LiveInterval &DestLI = LIS->getInterval(DestReg);
    330     assert(DestLI.begin() != DestLI.end() &&
    331            "PHIs should have nonempty LiveIntervals.");
    332     if (DestLI.endIndex().isDead()) {
    333       // A dead PHI's live range begins and ends at the start of the MBB, but
    334       // the lowered copy, which will still be dead, needs to begin and end at
    335       // the copy instruction.
    336       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
    337       assert(OrigDestVNI && "PHI destination should be live at block entry.");
    338       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
    339       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
    340                            LIS->getVNInfoAllocator());
    341       DestLI.removeValNo(OrigDestVNI);
    342     } else {
    343       // Otherwise, remove the region from the beginning of MBB to the copy
    344       // instruction from DestReg's live interval.
    345       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
    346       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
    347       assert(DestVNI && "PHI destination should be live at its definition.");
    348       DestVNI->def = DestCopyIndex.getRegSlot();
    349     }
    350   }
    351 
    352   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    353   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    354     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    355                                  MPhi->getOperand(i).getReg())];
    356 
    357   // Now loop over all of the incoming arguments, changing them to copy into the
    358   // IncomingReg register in the corresponding predecessor basic block.
    359   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    360   for (int i = NumSrcs - 1; i >= 0; --i) {
    361     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    362     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    363     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
    364       isImplicitlyDefined(SrcReg, MRI);
    365     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    366            "Machine PHI Operands must all be virtual registers!");
    367 
    368     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    369     // path the PHI.
    370     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    371 
    372     // Check to make sure we haven't already emitted the copy for this block.
    373     // This can happen because PHI nodes may have multiple entries for the same
    374     // basic block.
    375     if (!MBBsInsertedInto.insert(&opBlock).second)
    376       continue;  // If the copy has already been emitted, we're done.
    377 
    378     // Find a safe location to insert the copy, this may be the first terminator
    379     // in the block (or end()).
    380     MachineBasicBlock::iterator InsertPos =
    381       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    382 
    383     // Insert the copy.
    384     MachineInstr *NewSrcInstr = nullptr;
    385     if (!reusedIncoming && IncomingReg) {
    386       if (SrcUndef) {
    387         // The source register is undefined, so there is no need for a real
    388         // COPY, but we still need to ensure joint dominance by defs.
    389         // Insert an IMPLICIT_DEF instruction.
    390         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    391                               TII->get(TargetOpcode::IMPLICIT_DEF),
    392                               IncomingReg);
    393 
    394         // Clean up the old implicit-def, if there even was one.
    395         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
    396           if (DefMI->isImplicitDef())
    397             ImpDefs.insert(DefMI);
    398       } else {
    399         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    400                             TII->get(TargetOpcode::COPY), IncomingReg)
    401                         .addReg(SrcReg, 0, SrcSubReg);
    402       }
    403     }
    404 
    405     // We only need to update the LiveVariables kill of SrcReg if this was the
    406     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
    407     // out of the predecessor. We can also ignore undef sources.
    408     if (LV && !SrcUndef &&
    409         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
    410         !LV->isLiveOut(SrcReg, opBlock)) {
    411       // We want to be able to insert a kill of the register if this PHI (aka,
    412       // the copy we just inserted) is the last use of the source value. Live
    413       // variable analysis conservatively handles this by saying that the value
    414       // is live until the end of the block the PHI entry lives in. If the value
    415       // really is dead at the PHI copy, there will be no successor blocks which
    416       // have the value live-in.
    417 
    418       // Okay, if we now know that the value is not live out of the block, we
    419       // can add a kill marker in this block saying that it kills the incoming
    420       // value!
    421 
    422       // In our final twist, we have to decide which instruction kills the
    423       // register.  In most cases this is the copy, however, terminator
    424       // instructions at the end of the block may also use the value. In this
    425       // case, we should mark the last such terminator as being the killing
    426       // block, not the copy.
    427       MachineBasicBlock::iterator KillInst = opBlock.end();
    428       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    429       for (MachineBasicBlock::iterator Term = FirstTerm;
    430           Term != opBlock.end(); ++Term) {
    431         if (Term->readsRegister(SrcReg))
    432           KillInst = Term;
    433       }
    434 
    435       if (KillInst == opBlock.end()) {
    436         // No terminator uses the register.
    437 
    438         if (reusedIncoming || !IncomingReg) {
    439           // We may have to rewind a bit if we didn't insert a copy this time.
    440           KillInst = FirstTerm;
    441           while (KillInst != opBlock.begin()) {
    442             --KillInst;
    443             if (KillInst->isDebugValue())
    444               continue;
    445             if (KillInst->readsRegister(SrcReg))
    446               break;
    447           }
    448         } else {
    449           // We just inserted this copy.
    450           KillInst = std::prev(InsertPos);
    451         }
    452       }
    453       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    454 
    455       // Finally, mark it killed.
    456       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    457 
    458       // This vreg no longer lives all of the way through opBlock.
    459       unsigned opBlockNum = opBlock.getNumber();
    460       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    461     }
    462 
    463     if (LIS) {
    464       if (NewSrcInstr) {
    465         LIS->InsertMachineInstrInMaps(NewSrcInstr);
    466         LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
    467       }
    468 
    469       if (!SrcUndef &&
    470           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
    471         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
    472 
    473         bool isLiveOut = false;
    474         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
    475              SE = opBlock.succ_end(); SI != SE; ++SI) {
    476           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
    477           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
    478 
    479           // Definitions by other PHIs are not truly live-in for our purposes.
    480           if (VNI && VNI->def != startIdx) {
    481             isLiveOut = true;
    482             break;
    483           }
    484         }
    485 
    486         if (!isLiveOut) {
    487           MachineBasicBlock::iterator KillInst = opBlock.end();
    488           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    489           for (MachineBasicBlock::iterator Term = FirstTerm;
    490               Term != opBlock.end(); ++Term) {
    491             if (Term->readsRegister(SrcReg))
    492               KillInst = Term;
    493           }
    494 
    495           if (KillInst == opBlock.end()) {
    496             // No terminator uses the register.
    497 
    498             if (reusedIncoming || !IncomingReg) {
    499               // We may have to rewind a bit if we didn't just insert a copy.
    500               KillInst = FirstTerm;
    501               while (KillInst != opBlock.begin()) {
    502                 --KillInst;
    503                 if (KillInst->isDebugValue())
    504                   continue;
    505                 if (KillInst->readsRegister(SrcReg))
    506                   break;
    507               }
    508             } else {
    509               // We just inserted this copy.
    510               KillInst = std::prev(InsertPos);
    511             }
    512           }
    513           assert(KillInst->readsRegister(SrcReg) &&
    514                  "Cannot find kill instruction");
    515 
    516           SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
    517           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
    518                               LIS->getMBBEndIdx(&opBlock));
    519         }
    520       }
    521     }
    522   }
    523 
    524   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    525   if (reusedIncoming || !IncomingReg) {
    526     if (LIS)
    527       LIS->RemoveMachineInstrFromMaps(MPhi);
    528     MF.DeleteMachineInstr(MPhi);
    529   }
    530 }
    531 
    532 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    533 /// particular, we want to map the number of uses of a virtual register which is
    534 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    535 /// used later to determine when the vreg is killed in the BB.
    536 ///
    537 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    538   for (const auto &MBB : MF)
    539     for (const auto &BBI : MBB) {
    540       if (!BBI.isPHI())
    541         break;
    542       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
    543         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
    544                                      BBI.getOperand(i).getReg())];
    545     }
    546 }
    547 
    548 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    549                                    MachineBasicBlock &MBB,
    550                                    MachineLoopInfo *MLI) {
    551   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
    552     return false;   // Quick exit for basic blocks without PHIs.
    553 
    554   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
    555   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
    556 
    557   bool Changed = false;
    558   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
    559        BBI != BBE && BBI->isPHI(); ++BBI) {
    560     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    561       unsigned Reg = BBI->getOperand(i).getReg();
    562       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    563       // Is there a critical edge from PreMBB to MBB?
    564       if (PreMBB->succ_size() == 1)
    565         continue;
    566 
    567       // Avoid splitting backedges of loops. It would introduce small
    568       // out-of-line blocks into the loop which is very bad for code placement.
    569       if (PreMBB == &MBB && !SplitAllCriticalEdges)
    570         continue;
    571       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
    572       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
    573         continue;
    574 
    575       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
    576       // when the source register is live-out for some other reason than a phi
    577       // use. That means the copy we will insert in PreMBB won't be a kill, and
    578       // there is a risk it may not be coalesced away.
    579       //
    580       // If the copy would be a kill, there is no need to split the edge.
    581       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
    582       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
    583         continue;
    584       if (ShouldSplit) {
    585         DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
    586                      << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
    587                      << ": " << *BBI);
    588       }
    589 
    590       // If Reg is not live-in to MBB, it means it must be live-in to some
    591       // other PreMBB successor, and we can avoid the interference by splitting
    592       // the edge.
    593       //
    594       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
    595       // is likely to be left after coalescing. If we are looking at a loop
    596       // exiting edge, split it so we won't insert code in the loop, otherwise
    597       // don't bother.
    598       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
    599 
    600       // Check for a loop exiting edge.
    601       if (!ShouldSplit && CurLoop != PreLoop) {
    602         DEBUG({
    603           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
    604           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
    605           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
    606         });
    607         // This edge could be entering a loop, exiting a loop, or it could be
    608         // both: Jumping directly form one loop to the header of a sibling
    609         // loop.
    610         // Split unless this edge is entering CurLoop from an outer loop.
    611         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
    612       }
    613       if (!ShouldSplit && !SplitAllCriticalEdges)
    614         continue;
    615       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
    616         DEBUG(dbgs() << "Failed to split critical edge.\n");
    617         continue;
    618       }
    619       Changed = true;
    620       ++NumCriticalEdgesSplit;
    621     }
    622   }
    623   return Changed;
    624 }
    625 
    626 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
    627   assert((LV || LIS) &&
    628          "isLiveIn() requires either LiveVariables or LiveIntervals");
    629   if (LIS)
    630     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
    631   else
    632     return LV->isLiveIn(Reg, *MBB);
    633 }
    634 
    635 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
    636                                        const MachineBasicBlock *MBB) {
    637   assert((LV || LIS) &&
    638          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
    639   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
    640   // so that a register used only in a PHI is not live out of the block. In
    641   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
    642   // in the predecessor basic block, so that a register used only in a PHI is live
    643   // out of the block.
    644   if (LIS) {
    645     const LiveInterval &LI = LIS->getInterval(Reg);
    646     for (const MachineBasicBlock *SI : MBB->successors())
    647       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
    648         return true;
    649     return false;
    650   } else {
    651     return LV->isLiveOut(Reg, *MBB);
    652   }
    653 }
    654