Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a pattern matching instruction selector for PowerPC,
     11 // converting from a legalized dag to a PPC dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "PPC.h"
     16 #include "MCTargetDesc/PPCPredicates.h"
     17 #include "PPCMachineFunctionInfo.h"
     18 #include "PPCTargetMachine.h"
     19 #include "llvm/Analysis/BranchProbabilityInfo.h"
     20 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/SelectionDAG.h"
     25 #include "llvm/CodeGen/SelectionDAGISel.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/GlobalAlias.h"
     29 #include "llvm/IR/GlobalValue.h"
     30 #include "llvm/IR/GlobalVariable.h"
     31 #include "llvm/IR/Intrinsics.h"
     32 #include "llvm/IR/Module.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/MathExtras.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "ppc-codegen"
     42 
     43 // FIXME: Remove this once the bug has been fixed!
     44 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
     45 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
     46 
     47 static cl::opt<bool>
     48     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
     49                        cl::desc("use aggressive ppc isel for bit permutations"),
     50                        cl::Hidden);
     51 static cl::opt<bool> BPermRewriterNoMasking(
     52     "ppc-bit-perm-rewriter-stress-rotates",
     53     cl::desc("stress rotate selection in aggressive ppc isel for "
     54              "bit permutations"),
     55     cl::Hidden);
     56 
     57 static cl::opt<bool> EnableBranchHint(
     58   "ppc-use-branch-hint", cl::init(true),
     59     cl::desc("Enable static hinting of branches on ppc"),
     60     cl::Hidden);
     61 
     62 namespace llvm {
     63   void initializePPCDAGToDAGISelPass(PassRegistry&);
     64 }
     65 
     66 namespace {
     67   //===--------------------------------------------------------------------===//
     68   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
     69   /// instructions for SelectionDAG operations.
     70   ///
     71   class PPCDAGToDAGISel : public SelectionDAGISel {
     72     const PPCTargetMachine &TM;
     73     const PPCSubtarget *PPCSubTarget;
     74     const PPCTargetLowering *PPCLowering;
     75     unsigned GlobalBaseReg;
     76   public:
     77     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
     78         : SelectionDAGISel(tm), TM(tm) {
     79       initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
     80     }
     81 
     82     bool runOnMachineFunction(MachineFunction &MF) override {
     83       // Make sure we re-emit a set of the global base reg if necessary
     84       GlobalBaseReg = 0;
     85       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
     86       PPCLowering = PPCSubTarget->getTargetLowering();
     87       SelectionDAGISel::runOnMachineFunction(MF);
     88 
     89       if (!PPCSubTarget->isSVR4ABI())
     90         InsertVRSaveCode(MF);
     91 
     92       return true;
     93     }
     94 
     95     void PreprocessISelDAG() override;
     96     void PostprocessISelDAG() override;
     97 
     98     /// getI32Imm - Return a target constant with the specified value, of type
     99     /// i32.
    100     inline SDValue getI32Imm(unsigned Imm, SDLoc dl) {
    101       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
    102     }
    103 
    104     /// getI64Imm - Return a target constant with the specified value, of type
    105     /// i64.
    106     inline SDValue getI64Imm(uint64_t Imm, SDLoc dl) {
    107       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
    108     }
    109 
    110     /// getSmallIPtrImm - Return a target constant of pointer type.
    111     inline SDValue getSmallIPtrImm(unsigned Imm, SDLoc dl) {
    112       return CurDAG->getTargetConstant(
    113           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
    114     }
    115 
    116     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
    117     /// rotate and mask opcode and mask operation.
    118     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
    119                                 unsigned &SH, unsigned &MB, unsigned &ME);
    120 
    121     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    122     /// base register.  Return the virtual register that holds this value.
    123     SDNode *getGlobalBaseReg();
    124 
    125     SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
    126 
    127     // Select - Convert the specified operand from a target-independent to a
    128     // target-specific node if it hasn't already been changed.
    129     SDNode *Select(SDNode *N) override;
    130 
    131     SDNode *SelectBitfieldInsert(SDNode *N);
    132     SDNode *SelectBitPermutation(SDNode *N);
    133 
    134     /// SelectCC - Select a comparison of the specified values with the
    135     /// specified condition code, returning the CR# of the expression.
    136     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
    137 
    138     /// SelectAddrImm - Returns true if the address N can be represented by
    139     /// a base register plus a signed 16-bit displacement [r+imm].
    140     bool SelectAddrImm(SDValue N, SDValue &Disp,
    141                        SDValue &Base) {
    142       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
    143     }
    144 
    145     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    146     /// immediate field.  Note that the operand at this point is already the
    147     /// result of a prior SelectAddressRegImm call.
    148     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
    149       if (N.getOpcode() == ISD::TargetConstant ||
    150           N.getOpcode() == ISD::TargetGlobalAddress) {
    151         Out = N;
    152         return true;
    153       }
    154 
    155       return false;
    156     }
    157 
    158     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    159     /// represented as an indexed [r+r] operation.  Returns false if it can
    160     /// be represented by [r+imm], which are preferred.
    161     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
    162       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
    163     }
    164 
    165     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    166     /// represented as an indexed [r+r] operation.
    167     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
    168       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    169     }
    170 
    171     /// SelectAddrImmX4 - Returns true if the address N can be represented by
    172     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
    173     /// Suitable for use by STD and friends.
    174     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
    175       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
    176     }
    177 
    178     // Select an address into a single register.
    179     bool SelectAddr(SDValue N, SDValue &Base) {
    180       Base = N;
    181       return true;
    182     }
    183 
    184     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    185     /// inline asm expressions.  It is always correct to compute the value into
    186     /// a register.  The case of adding a (possibly relocatable) constant to a
    187     /// register can be improved, but it is wrong to substitute Reg+Reg for
    188     /// Reg in an asm, because the load or store opcode would have to change.
    189     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    190                                       unsigned ConstraintID,
    191                                       std::vector<SDValue> &OutOps) override {
    192 
    193       switch(ConstraintID) {
    194       default:
    195         errs() << "ConstraintID: " << ConstraintID << "\n";
    196         llvm_unreachable("Unexpected asm memory constraint");
    197       case InlineAsm::Constraint_es:
    198       case InlineAsm::Constraint_i:
    199       case InlineAsm::Constraint_m:
    200       case InlineAsm::Constraint_o:
    201       case InlineAsm::Constraint_Q:
    202       case InlineAsm::Constraint_Z:
    203       case InlineAsm::Constraint_Zy:
    204         // We need to make sure that this one operand does not end up in r0
    205         // (because we might end up lowering this as 0(%op)).
    206         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
    207         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
    208         SDLoc dl(Op);
    209         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
    210         SDValue NewOp =
    211           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
    212                                          dl, Op.getValueType(),
    213                                          Op, RC), 0);
    214 
    215         OutOps.push_back(NewOp);
    216         return false;
    217       }
    218       return true;
    219     }
    220 
    221     void InsertVRSaveCode(MachineFunction &MF);
    222 
    223     const char *getPassName() const override {
    224       return "PowerPC DAG->DAG Pattern Instruction Selection";
    225     }
    226 
    227 // Include the pieces autogenerated from the target description.
    228 #include "PPCGenDAGISel.inc"
    229 
    230 private:
    231     SDNode *SelectSETCC(SDNode *N);
    232 
    233     void PeepholePPC64();
    234     void PeepholePPC64ZExt();
    235     void PeepholeCROps();
    236 
    237     SDValue combineToCMPB(SDNode *N);
    238     void foldBoolExts(SDValue &Res, SDNode *&N);
    239 
    240     bool AllUsersSelectZero(SDNode *N);
    241     void SwapAllSelectUsers(SDNode *N);
    242 
    243     SDNode *transferMemOperands(SDNode *N, SDNode *Result);
    244   };
    245 }
    246 
    247 /// InsertVRSaveCode - Once the entire function has been instruction selected,
    248 /// all virtual registers are created and all machine instructions are built,
    249 /// check to see if we need to save/restore VRSAVE.  If so, do it.
    250 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
    251   // Check to see if this function uses vector registers, which means we have to
    252   // save and restore the VRSAVE register and update it with the regs we use.
    253   //
    254   // In this case, there will be virtual registers of vector type created
    255   // by the scheduler.  Detect them now.
    256   bool HasVectorVReg = false;
    257   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
    258     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    259     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
    260       HasVectorVReg = true;
    261       break;
    262     }
    263   }
    264   if (!HasVectorVReg) return;  // nothing to do.
    265 
    266   // If we have a vector register, we want to emit code into the entry and exit
    267   // blocks to save and restore the VRSAVE register.  We do this here (instead
    268   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
    269   //
    270   // 1. This (trivially) reduces the load on the register allocator, by not
    271   //    having to represent the live range of the VRSAVE register.
    272   // 2. This (more significantly) allows us to create a temporary virtual
    273   //    register to hold the saved VRSAVE value, allowing this temporary to be
    274   //    register allocated, instead of forcing it to be spilled to the stack.
    275 
    276   // Create two vregs - one to hold the VRSAVE register that is live-in to the
    277   // function and one for the value after having bits or'd into it.
    278   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    279   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    280 
    281   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    282   MachineBasicBlock &EntryBB = *Fn.begin();
    283   DebugLoc dl;
    284   // Emit the following code into the entry block:
    285   // InVRSAVE = MFVRSAVE
    286   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
    287   // MTVRSAVE UpdatedVRSAVE
    288   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
    289   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
    290   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
    291           UpdatedVRSAVE).addReg(InVRSAVE);
    292   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
    293 
    294   // Find all return blocks, outputting a restore in each epilog.
    295   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    296     if (BB->isReturnBlock()) {
    297       IP = BB->end(); --IP;
    298 
    299       // Skip over all terminator instructions, which are part of the return
    300       // sequence.
    301       MachineBasicBlock::iterator I2 = IP;
    302       while (I2 != BB->begin() && (--I2)->isTerminator())
    303         IP = I2;
    304 
    305       // Emit: MTVRSAVE InVRSave
    306       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    307     }
    308   }
    309 }
    310 
    311 
    312 /// getGlobalBaseReg - Output the instructions required to put the
    313 /// base address to use for accessing globals into a register.
    314 ///
    315 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
    316   if (!GlobalBaseReg) {
    317     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    318     // Insert the set of GlobalBaseReg into the first MBB of the function
    319     MachineBasicBlock &FirstMBB = MF->front();
    320     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    321     const Module *M = MF->getFunction()->getParent();
    322     DebugLoc dl;
    323 
    324     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
    325       if (PPCSubTarget->isTargetELF()) {
    326         GlobalBaseReg = PPC::R30;
    327         if (M->getPICLevel() == PICLevel::Small) {
    328           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
    329           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    330           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
    331         } else {
    332           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    333           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    334           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    335           BuildMI(FirstMBB, MBBI, dl,
    336                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
    337                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
    338           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
    339         }
    340       } else {
    341         GlobalBaseReg =
    342           RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
    343         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    344         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    345       }
    346     } else {
    347       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
    348       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
    349       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
    350     }
    351   }
    352   return CurDAG->getRegister(GlobalBaseReg,
    353                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
    354       .getNode();
    355 }
    356 
    357 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    358 /// or 64-bit immediate, and if the value can be accurately represented as a
    359 /// sign extension from a 16-bit value.  If so, this returns true and the
    360 /// immediate.
    361 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    362   if (N->getOpcode() != ISD::Constant)
    363     return false;
    364 
    365   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    366   if (N->getValueType(0) == MVT::i32)
    367     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    368   else
    369     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    370 }
    371 
    372 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    373   return isIntS16Immediate(Op.getNode(), Imm);
    374 }
    375 
    376 
    377 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    378 /// operand. If so Imm will receive the 32-bit value.
    379 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    380   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    381     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    382     return true;
    383   }
    384   return false;
    385 }
    386 
    387 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
    388 /// operand.  If so Imm will receive the 64-bit value.
    389 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
    390   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    391     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    392     return true;
    393   }
    394   return false;
    395 }
    396 
    397 // isInt32Immediate - This method tests to see if a constant operand.
    398 // If so Imm will receive the 32 bit value.
    399 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    400   return isInt32Immediate(N.getNode(), Imm);
    401 }
    402 
    403 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
    404                               const SDValue &DestMBB) {
    405   assert(isa<BasicBlockSDNode>(DestMBB));
    406 
    407   if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
    408 
    409   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
    410   const TerminatorInst *BBTerm = BB->getTerminator();
    411 
    412   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
    413 
    414   const BasicBlock *TBB = BBTerm->getSuccessor(0);
    415   const BasicBlock *FBB = BBTerm->getSuccessor(1);
    416 
    417   uint32_t TWeight = FuncInfo->BPI->getEdgeWeight(BB, TBB);
    418   uint32_t FWeight = FuncInfo->BPI->getEdgeWeight(BB, FBB);
    419 
    420   // We only want to handle cases which are easy to predict at static time, e.g.
    421   // C++ throw statement, that is very likely not taken, or calling never
    422   // returned function, e.g. stdlib exit(). So we set Threshold to filter
    423   // unwanted cases.
    424   //
    425   // Below is LLVM branch weight table, we only want to handle case 1, 2
    426   //
    427   // Case                  Taken:Nontaken  Example
    428   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
    429   // 2. Invoke-terminating 1:1048575
    430   // 3. Coldblock          4:64            __builtin_expect
    431   // 4. Loop Branch        124:4           For loop
    432   // 5. PH/ZH/FPH          20:12
    433   const uint32_t Threshold = 10000;
    434 
    435   // Minimal weight should be at least 1
    436   if (std::max(TWeight, FWeight) /
    437       std::max(1u, std::min(TWeight, FWeight)) < Threshold)
    438     return PPC::BR_NO_HINT;
    439 
    440   DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
    441                << BB->getName() << "'\n"
    442                << " -> " << TBB->getName() << ": " << TWeight << "\n"
    443                << " -> " << FBB->getName() << ": " << FWeight << "\n");
    444 
    445   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
    446 
    447   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch weight,
    448   // because we want 'TWeight' stands for 'branch weight' to Dest BasicBlock
    449   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
    450     std::swap(TWeight, FWeight);
    451 
    452   return (TWeight > FWeight) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
    453 }
    454 
    455 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    456 // opcode and that it has a immediate integer right operand.
    457 // If so Imm will receive the 32 bit value.
    458 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    459   return N->getOpcode() == Opc
    460          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
    461 }
    462 
    463 SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
    464   SDLoc dl(SN);
    465   int FI = cast<FrameIndexSDNode>(N)->getIndex();
    466   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
    467   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
    468   if (SN->hasOneUse())
    469     return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
    470                                 getSmallIPtrImm(Offset, dl));
    471   return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
    472                                 getSmallIPtrImm(Offset, dl));
    473 }
    474 
    475 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
    476                                       bool isShiftMask, unsigned &SH,
    477                                       unsigned &MB, unsigned &ME) {
    478   // Don't even go down this path for i64, since different logic will be
    479   // necessary for rldicl/rldicr/rldimi.
    480   if (N->getValueType(0) != MVT::i32)
    481     return false;
    482 
    483   unsigned Shift  = 32;
    484   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
    485   unsigned Opcode = N->getOpcode();
    486   if (N->getNumOperands() != 2 ||
    487       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
    488     return false;
    489 
    490   if (Opcode == ISD::SHL) {
    491     // apply shift left to mask if it comes first
    492     if (isShiftMask) Mask = Mask << Shift;
    493     // determine which bits are made indeterminant by shift
    494     Indeterminant = ~(0xFFFFFFFFu << Shift);
    495   } else if (Opcode == ISD::SRL) {
    496     // apply shift right to mask if it comes first
    497     if (isShiftMask) Mask = Mask >> Shift;
    498     // determine which bits are made indeterminant by shift
    499     Indeterminant = ~(0xFFFFFFFFu >> Shift);
    500     // adjust for the left rotate
    501     Shift = 32 - Shift;
    502   } else if (Opcode == ISD::ROTL) {
    503     Indeterminant = 0;
    504   } else {
    505     return false;
    506   }
    507 
    508   // if the mask doesn't intersect any Indeterminant bits
    509   if (Mask && !(Mask & Indeterminant)) {
    510     SH = Shift & 31;
    511     // make sure the mask is still a mask (wrap arounds may not be)
    512     return isRunOfOnes(Mask, MB, ME);
    513   }
    514   return false;
    515 }
    516 
    517 /// SelectBitfieldInsert - turn an or of two masked values into
    518 /// the rotate left word immediate then mask insert (rlwimi) instruction.
    519 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
    520   SDValue Op0 = N->getOperand(0);
    521   SDValue Op1 = N->getOperand(1);
    522   SDLoc dl(N);
    523 
    524   APInt LKZ, LKO, RKZ, RKO;
    525   CurDAG->computeKnownBits(Op0, LKZ, LKO);
    526   CurDAG->computeKnownBits(Op1, RKZ, RKO);
    527 
    528   unsigned TargetMask = LKZ.getZExtValue();
    529   unsigned InsertMask = RKZ.getZExtValue();
    530 
    531   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    532     unsigned Op0Opc = Op0.getOpcode();
    533     unsigned Op1Opc = Op1.getOpcode();
    534     unsigned Value, SH = 0;
    535     TargetMask = ~TargetMask;
    536     InsertMask = ~InsertMask;
    537 
    538     // If the LHS has a foldable shift and the RHS does not, then swap it to the
    539     // RHS so that we can fold the shift into the insert.
    540     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
    541       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
    542           Op0.getOperand(0).getOpcode() == ISD::SRL) {
    543         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
    544             Op1.getOperand(0).getOpcode() != ISD::SRL) {
    545           std::swap(Op0, Op1);
    546           std::swap(Op0Opc, Op1Opc);
    547           std::swap(TargetMask, InsertMask);
    548         }
    549       }
    550     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
    551       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
    552           Op1.getOperand(0).getOpcode() != ISD::SRL) {
    553         std::swap(Op0, Op1);
    554         std::swap(Op0Opc, Op1Opc);
    555         std::swap(TargetMask, InsertMask);
    556       }
    557     }
    558 
    559     unsigned MB, ME;
    560     if (isRunOfOnes(InsertMask, MB, ME)) {
    561       SDValue Tmp1, Tmp2;
    562 
    563       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
    564           isInt32Immediate(Op1.getOperand(1), Value)) {
    565         Op1 = Op1.getOperand(0);
    566         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
    567       }
    568       if (Op1Opc == ISD::AND) {
    569        // The AND mask might not be a constant, and we need to make sure that
    570        // if we're going to fold the masking with the insert, all bits not
    571        // know to be zero in the mask are known to be one.
    572         APInt MKZ, MKO;
    573         CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
    574         bool CanFoldMask = InsertMask == MKO.getZExtValue();
    575 
    576         unsigned SHOpc = Op1.getOperand(0).getOpcode();
    577         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
    578             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
    579           // Note that Value must be in range here (less than 32) because
    580           // otherwise there would not be any bits set in InsertMask.
    581           Op1 = Op1.getOperand(0).getOperand(0);
    582           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
    583         }
    584       }
    585 
    586       SH &= 31;
    587       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
    588                           getI32Imm(ME, dl) };
    589       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
    590     }
    591   }
    592   return nullptr;
    593 }
    594 
    595 // Predict the number of instructions that would be generated by calling
    596 // SelectInt64(N).
    597 static unsigned SelectInt64CountDirect(int64_t Imm) {
    598   // Assume no remaining bits.
    599   unsigned Remainder = 0;
    600   // Assume no shift required.
    601   unsigned Shift = 0;
    602 
    603   // If it can't be represented as a 32 bit value.
    604   if (!isInt<32>(Imm)) {
    605     Shift = countTrailingZeros<uint64_t>(Imm);
    606     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    607 
    608     // If the shifted value fits 32 bits.
    609     if (isInt<32>(ImmSh)) {
    610       // Go with the shifted value.
    611       Imm = ImmSh;
    612     } else {
    613       // Still stuck with a 64 bit value.
    614       Remainder = Imm;
    615       Shift = 32;
    616       Imm >>= 32;
    617     }
    618   }
    619 
    620   // Intermediate operand.
    621   unsigned Result = 0;
    622 
    623   // Handle first 32 bits.
    624   unsigned Lo = Imm & 0xFFFF;
    625 
    626   // Simple value.
    627   if (isInt<16>(Imm)) {
    628     // Just the Lo bits.
    629     ++Result;
    630   } else if (Lo) {
    631     // Handle the Hi bits and Lo bits.
    632     Result += 2;
    633   } else {
    634     // Just the Hi bits.
    635     ++Result;
    636   }
    637 
    638   // If no shift, we're done.
    639   if (!Shift) return Result;
    640 
    641   // Shift for next step if the upper 32-bits were not zero.
    642   if (Imm)
    643     ++Result;
    644 
    645   // Add in the last bits as required.
    646   if ((Remainder >> 16) & 0xFFFF)
    647     ++Result;
    648   if (Remainder & 0xFFFF)
    649     ++Result;
    650 
    651   return Result;
    652 }
    653 
    654 static uint64_t Rot64(uint64_t Imm, unsigned R) {
    655   return (Imm << R) | (Imm >> (64 - R));
    656 }
    657 
    658 static unsigned SelectInt64Count(int64_t Imm) {
    659   unsigned Count = SelectInt64CountDirect(Imm);
    660   if (Count == 1)
    661     return Count;
    662 
    663   for (unsigned r = 1; r < 63; ++r) {
    664     uint64_t RImm = Rot64(Imm, r);
    665     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
    666     Count = std::min(Count, RCount);
    667 
    668     // See comments in SelectInt64 for an explanation of the logic below.
    669     unsigned LS = findLastSet(RImm);
    670     if (LS != r-1)
    671       continue;
    672 
    673     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    674     uint64_t RImmWithOnes = RImm | OnesMask;
    675 
    676     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
    677     Count = std::min(Count, RCount);
    678   }
    679 
    680   return Count;
    681 }
    682 
    683 // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
    684 // (above) needs to be kept in sync with this function.
    685 static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
    686   // Assume no remaining bits.
    687   unsigned Remainder = 0;
    688   // Assume no shift required.
    689   unsigned Shift = 0;
    690 
    691   // If it can't be represented as a 32 bit value.
    692   if (!isInt<32>(Imm)) {
    693     Shift = countTrailingZeros<uint64_t>(Imm);
    694     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    695 
    696     // If the shifted value fits 32 bits.
    697     if (isInt<32>(ImmSh)) {
    698       // Go with the shifted value.
    699       Imm = ImmSh;
    700     } else {
    701       // Still stuck with a 64 bit value.
    702       Remainder = Imm;
    703       Shift = 32;
    704       Imm >>= 32;
    705     }
    706   }
    707 
    708   // Intermediate operand.
    709   SDNode *Result;
    710 
    711   // Handle first 32 bits.
    712   unsigned Lo = Imm & 0xFFFF;
    713   unsigned Hi = (Imm >> 16) & 0xFFFF;
    714 
    715   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
    716       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
    717   };
    718 
    719   // Simple value.
    720   if (isInt<16>(Imm)) {
    721     // Just the Lo bits.
    722     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
    723   } else if (Lo) {
    724     // Handle the Hi bits.
    725     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
    726     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
    727     // And Lo bits.
    728     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    729                                     SDValue(Result, 0), getI32Imm(Lo));
    730   } else {
    731     // Just the Hi bits.
    732     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
    733   }
    734 
    735   // If no shift, we're done.
    736   if (!Shift) return Result;
    737 
    738   // Shift for next step if the upper 32-bits were not zero.
    739   if (Imm) {
    740     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
    741                                     SDValue(Result, 0),
    742                                     getI32Imm(Shift),
    743                                     getI32Imm(63 - Shift));
    744   }
    745 
    746   // Add in the last bits as required.
    747   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
    748     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
    749                                     SDValue(Result, 0), getI32Imm(Hi));
    750   }
    751   if ((Lo = Remainder & 0xFFFF)) {
    752     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    753                                     SDValue(Result, 0), getI32Imm(Lo));
    754   }
    755 
    756   return Result;
    757 }
    758 
    759 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
    760   unsigned Count = SelectInt64CountDirect(Imm);
    761   if (Count == 1)
    762     return SelectInt64Direct(CurDAG, dl, Imm);
    763 
    764   unsigned RMin = 0;
    765 
    766   int64_t MatImm;
    767   unsigned MaskEnd;
    768 
    769   for (unsigned r = 1; r < 63; ++r) {
    770     uint64_t RImm = Rot64(Imm, r);
    771     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
    772     if (RCount < Count) {
    773       Count = RCount;
    774       RMin = r;
    775       MatImm = RImm;
    776       MaskEnd = 63;
    777     }
    778 
    779     // If the immediate to generate has many trailing zeros, it might be
    780     // worthwhile to generate a rotated value with too many leading ones
    781     // (because that's free with li/lis's sign-extension semantics), and then
    782     // mask them off after rotation.
    783 
    784     unsigned LS = findLastSet(RImm);
    785     // We're adding (63-LS) higher-order ones, and we expect to mask them off
    786     // after performing the inverse rotation by (64-r). So we need that:
    787     //   63-LS == 64-r => LS == r-1
    788     if (LS != r-1)
    789       continue;
    790 
    791     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    792     uint64_t RImmWithOnes = RImm | OnesMask;
    793 
    794     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
    795     if (RCount < Count) {
    796       Count = RCount;
    797       RMin = r;
    798       MatImm = RImmWithOnes;
    799       MaskEnd = LS;
    800     }
    801   }
    802 
    803   if (!RMin)
    804     return SelectInt64Direct(CurDAG, dl, Imm);
    805 
    806   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
    807       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
    808   };
    809 
    810   SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
    811   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
    812                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
    813 }
    814 
    815 // Select a 64-bit constant.
    816 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
    817   SDLoc dl(N);
    818 
    819   // Get 64 bit value.
    820   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
    821   return SelectInt64(CurDAG, dl, Imm);
    822 }
    823 
    824 namespace {
    825 class BitPermutationSelector {
    826   struct ValueBit {
    827     SDValue V;
    828 
    829     // The bit number in the value, using a convention where bit 0 is the
    830     // lowest-order bit.
    831     unsigned Idx;
    832 
    833     enum Kind {
    834       ConstZero,
    835       Variable
    836     } K;
    837 
    838     ValueBit(SDValue V, unsigned I, Kind K = Variable)
    839       : V(V), Idx(I), K(K) {}
    840     ValueBit(Kind K = Variable)
    841       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
    842 
    843     bool isZero() const {
    844       return K == ConstZero;
    845     }
    846 
    847     bool hasValue() const {
    848       return K == Variable;
    849     }
    850 
    851     SDValue getValue() const {
    852       assert(hasValue() && "Cannot get the value of a constant bit");
    853       return V;
    854     }
    855 
    856     unsigned getValueBitIndex() const {
    857       assert(hasValue() && "Cannot get the value bit index of a constant bit");
    858       return Idx;
    859     }
    860   };
    861 
    862   // A bit group has the same underlying value and the same rotate factor.
    863   struct BitGroup {
    864     SDValue V;
    865     unsigned RLAmt;
    866     unsigned StartIdx, EndIdx;
    867 
    868     // This rotation amount assumes that the lower 32 bits of the quantity are
    869     // replicated in the high 32 bits by the rotation operator (which is done
    870     // by rlwinm and friends in 64-bit mode).
    871     bool Repl32;
    872     // Did converting to Repl32 == true change the rotation factor? If it did,
    873     // it decreased it by 32.
    874     bool Repl32CR;
    875     // Was this group coalesced after setting Repl32 to true?
    876     bool Repl32Coalesced;
    877 
    878     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
    879       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
    880         Repl32Coalesced(false) {
    881       DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
    882                       " [" << S << ", " << E << "]\n");
    883     }
    884   };
    885 
    886   // Information on each (Value, RLAmt) pair (like the number of groups
    887   // associated with each) used to choose the lowering method.
    888   struct ValueRotInfo {
    889     SDValue V;
    890     unsigned RLAmt;
    891     unsigned NumGroups;
    892     unsigned FirstGroupStartIdx;
    893     bool Repl32;
    894 
    895     ValueRotInfo()
    896       : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
    897         Repl32(false) {}
    898 
    899     // For sorting (in reverse order) by NumGroups, and then by
    900     // FirstGroupStartIdx.
    901     bool operator < (const ValueRotInfo &Other) const {
    902       // We need to sort so that the non-Repl32 come first because, when we're
    903       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
    904       // masking operation.
    905       if (Repl32 < Other.Repl32)
    906         return true;
    907       else if (Repl32 > Other.Repl32)
    908         return false;
    909       else if (NumGroups > Other.NumGroups)
    910         return true;
    911       else if (NumGroups < Other.NumGroups)
    912         return false;
    913       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
    914         return true;
    915       return false;
    916     }
    917   };
    918 
    919   // Return true if something interesting was deduced, return false if we're
    920   // providing only a generic representation of V (or something else likewise
    921   // uninteresting for instruction selection).
    922   bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
    923     switch (V.getOpcode()) {
    924     default: break;
    925     case ISD::ROTL:
    926       if (isa<ConstantSDNode>(V.getOperand(1))) {
    927         unsigned RotAmt = V.getConstantOperandVal(1);
    928 
    929         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    930         getValueBits(V.getOperand(0), LHSBits);
    931 
    932         for (unsigned i = 0; i < Bits.size(); ++i)
    933           Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
    934 
    935         return true;
    936       }
    937       break;
    938     case ISD::SHL:
    939       if (isa<ConstantSDNode>(V.getOperand(1))) {
    940         unsigned ShiftAmt = V.getConstantOperandVal(1);
    941 
    942         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    943         getValueBits(V.getOperand(0), LHSBits);
    944 
    945         for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
    946           Bits[i] = LHSBits[i - ShiftAmt];
    947 
    948         for (unsigned i = 0; i < ShiftAmt; ++i)
    949           Bits[i] = ValueBit(ValueBit::ConstZero);
    950 
    951         return true;
    952       }
    953       break;
    954     case ISD::SRL:
    955       if (isa<ConstantSDNode>(V.getOperand(1))) {
    956         unsigned ShiftAmt = V.getConstantOperandVal(1);
    957 
    958         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    959         getValueBits(V.getOperand(0), LHSBits);
    960 
    961         for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
    962           Bits[i] = LHSBits[i + ShiftAmt];
    963 
    964         for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
    965           Bits[i] = ValueBit(ValueBit::ConstZero);
    966 
    967         return true;
    968       }
    969       break;
    970     case ISD::AND:
    971       if (isa<ConstantSDNode>(V.getOperand(1))) {
    972         uint64_t Mask = V.getConstantOperandVal(1);
    973 
    974         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    975         bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
    976 
    977         for (unsigned i = 0; i < Bits.size(); ++i)
    978           if (((Mask >> i) & 1) == 1)
    979             Bits[i] = LHSBits[i];
    980           else
    981             Bits[i] = ValueBit(ValueBit::ConstZero);
    982 
    983         // Mark this as interesting, only if the LHS was also interesting. This
    984         // prevents the overall procedure from matching a single immediate 'and'
    985         // (which is non-optimal because such an and might be folded with other
    986         // things if we don't select it here).
    987         return LHSTrivial;
    988       }
    989       break;
    990     case ISD::OR: {
    991       SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
    992       getValueBits(V.getOperand(0), LHSBits);
    993       getValueBits(V.getOperand(1), RHSBits);
    994 
    995       bool AllDisjoint = true;
    996       for (unsigned i = 0; i < Bits.size(); ++i)
    997         if (LHSBits[i].isZero())
    998           Bits[i] = RHSBits[i];
    999         else if (RHSBits[i].isZero())
   1000           Bits[i] = LHSBits[i];
   1001         else {
   1002           AllDisjoint = false;
   1003           break;
   1004         }
   1005 
   1006       if (!AllDisjoint)
   1007         break;
   1008 
   1009       return true;
   1010     }
   1011     }
   1012 
   1013     for (unsigned i = 0; i < Bits.size(); ++i)
   1014       Bits[i] = ValueBit(V, i);
   1015 
   1016     return false;
   1017   }
   1018 
   1019   // For each value (except the constant ones), compute the left-rotate amount
   1020   // to get it from its original to final position.
   1021   void computeRotationAmounts() {
   1022     HasZeros = false;
   1023     RLAmt.resize(Bits.size());
   1024     for (unsigned i = 0; i < Bits.size(); ++i)
   1025       if (Bits[i].hasValue()) {
   1026         unsigned VBI = Bits[i].getValueBitIndex();
   1027         if (i >= VBI)
   1028           RLAmt[i] = i - VBI;
   1029         else
   1030           RLAmt[i] = Bits.size() - (VBI - i);
   1031       } else if (Bits[i].isZero()) {
   1032         HasZeros = true;
   1033         RLAmt[i] = UINT32_MAX;
   1034       } else {
   1035         llvm_unreachable("Unknown value bit type");
   1036       }
   1037   }
   1038 
   1039   // Collect groups of consecutive bits with the same underlying value and
   1040   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
   1041   // they break up groups.
   1042   void collectBitGroups(bool LateMask) {
   1043     BitGroups.clear();
   1044 
   1045     unsigned LastRLAmt = RLAmt[0];
   1046     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
   1047     unsigned LastGroupStartIdx = 0;
   1048     for (unsigned i = 1; i < Bits.size(); ++i) {
   1049       unsigned ThisRLAmt = RLAmt[i];
   1050       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
   1051       if (LateMask && !ThisValue) {
   1052         ThisValue = LastValue;
   1053         ThisRLAmt = LastRLAmt;
   1054         // If we're doing late masking, then the first bit group always starts
   1055         // at zero (even if the first bits were zero).
   1056         if (BitGroups.empty())
   1057           LastGroupStartIdx = 0;
   1058       }
   1059 
   1060       // If this bit has the same underlying value and the same rotate factor as
   1061       // the last one, then they're part of the same group.
   1062       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
   1063         continue;
   1064 
   1065       if (LastValue.getNode())
   1066         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
   1067                                      i-1));
   1068       LastRLAmt = ThisRLAmt;
   1069       LastValue = ThisValue;
   1070       LastGroupStartIdx = i;
   1071     }
   1072     if (LastValue.getNode())
   1073       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
   1074                                    Bits.size()-1));
   1075 
   1076     if (BitGroups.empty())
   1077       return;
   1078 
   1079     // We might be able to combine the first and last groups.
   1080     if (BitGroups.size() > 1) {
   1081       // If the first and last groups are the same, then remove the first group
   1082       // in favor of the last group, making the ending index of the last group
   1083       // equal to the ending index of the to-be-removed first group.
   1084       if (BitGroups[0].StartIdx == 0 &&
   1085           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
   1086           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
   1087           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
   1088         DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
   1089         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
   1090         BitGroups.erase(BitGroups.begin());
   1091       }
   1092     }
   1093   }
   1094 
   1095   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
   1096   // associated with each. If there is a degeneracy, pick the one that occurs
   1097   // first (in the final value).
   1098   void collectValueRotInfo() {
   1099     ValueRots.clear();
   1100 
   1101     for (auto &BG : BitGroups) {
   1102       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
   1103       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
   1104       VRI.V = BG.V;
   1105       VRI.RLAmt = BG.RLAmt;
   1106       VRI.Repl32 = BG.Repl32;
   1107       VRI.NumGroups += 1;
   1108       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
   1109     }
   1110 
   1111     // Now that we've collected the various ValueRotInfo instances, we need to
   1112     // sort them.
   1113     ValueRotsVec.clear();
   1114     for (auto &I : ValueRots) {
   1115       ValueRotsVec.push_back(I.second);
   1116     }
   1117     std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
   1118   }
   1119 
   1120   // In 64-bit mode, rlwinm and friends have a rotation operator that
   1121   // replicates the low-order 32 bits into the high-order 32-bits. The mask
   1122   // indices of these instructions can only be in the lower 32 bits, so they
   1123   // can only represent some 64-bit bit groups. However, when they can be used,
   1124   // the 32-bit replication can be used to represent, as a single bit group,
   1125   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
   1126   // groups when possible. Returns true if any of the bit groups were
   1127   // converted.
   1128   void assignRepl32BitGroups() {
   1129     // If we have bits like this:
   1130     //
   1131     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
   1132     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
   1133     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
   1134     //
   1135     // But, making use of a 32-bit operation that replicates the low-order 32
   1136     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
   1137     // of 8.
   1138 
   1139     auto IsAllLow32 = [this](BitGroup & BG) {
   1140       if (BG.StartIdx <= BG.EndIdx) {
   1141         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
   1142           if (!Bits[i].hasValue())
   1143             continue;
   1144           if (Bits[i].getValueBitIndex() >= 32)
   1145             return false;
   1146         }
   1147       } else {
   1148         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
   1149           if (!Bits[i].hasValue())
   1150             continue;
   1151           if (Bits[i].getValueBitIndex() >= 32)
   1152             return false;
   1153         }
   1154         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
   1155           if (!Bits[i].hasValue())
   1156             continue;
   1157           if (Bits[i].getValueBitIndex() >= 32)
   1158             return false;
   1159         }
   1160       }
   1161 
   1162       return true;
   1163     };
   1164 
   1165     for (auto &BG : BitGroups) {
   1166       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
   1167         if (IsAllLow32(BG)) {
   1168           if (BG.RLAmt >= 32) {
   1169             BG.RLAmt -= 32;
   1170             BG.Repl32CR = true;
   1171           }
   1172 
   1173           BG.Repl32 = true;
   1174 
   1175           DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
   1176                           BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
   1177                           " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
   1178         }
   1179       }
   1180     }
   1181 
   1182     // Now walk through the bit groups, consolidating where possible.
   1183     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1184       // We might want to remove this bit group by merging it with the previous
   1185       // group (which might be the ending group).
   1186       auto IP = (I == BitGroups.begin()) ?
   1187                 std::prev(BitGroups.end()) : std::prev(I);
   1188       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
   1189           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
   1190 
   1191         DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
   1192                         I->V.getNode() << " RLAmt = " << I->RLAmt <<
   1193                         " [" << I->StartIdx << ", " << I->EndIdx <<
   1194                         "] with group with range [" <<
   1195                         IP->StartIdx << ", " << IP->EndIdx << "]\n");
   1196 
   1197         IP->EndIdx = I->EndIdx;
   1198         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
   1199         IP->Repl32Coalesced = true;
   1200         I = BitGroups.erase(I);
   1201         continue;
   1202       } else {
   1203         // There is a special case worth handling: If there is a single group
   1204         // covering the entire upper 32 bits, and it can be merged with both
   1205         // the next and previous groups (which might be the same group), then
   1206         // do so. If it is the same group (so there will be only one group in
   1207         // total), then we need to reverse the order of the range so that it
   1208         // covers the entire 64 bits.
   1209         if (I->StartIdx == 32 && I->EndIdx == 63) {
   1210           assert(std::next(I) == BitGroups.end() &&
   1211                  "bit group ends at index 63 but there is another?");
   1212           auto IN = BitGroups.begin();
   1213 
   1214           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
   1215               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
   1216               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
   1217               IsAllLow32(*I)) {
   1218 
   1219             DEBUG(dbgs() << "\tcombining bit group for " <<
   1220                             I->V.getNode() << " RLAmt = " << I->RLAmt <<
   1221                             " [" << I->StartIdx << ", " << I->EndIdx <<
   1222                             "] with 32-bit replicated groups with ranges [" <<
   1223                             IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
   1224                             IN->StartIdx << ", " << IN->EndIdx << "]\n");
   1225 
   1226             if (IP == IN) {
   1227               // There is only one other group; change it to cover the whole
   1228               // range (backward, so that it can still be Repl32 but cover the
   1229               // whole 64-bit range).
   1230               IP->StartIdx = 31;
   1231               IP->EndIdx = 30;
   1232               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
   1233               IP->Repl32Coalesced = true;
   1234               I = BitGroups.erase(I);
   1235             } else {
   1236               // There are two separate groups, one before this group and one
   1237               // after us (at the beginning). We're going to remove this group,
   1238               // but also the group at the very beginning.
   1239               IP->EndIdx = IN->EndIdx;
   1240               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
   1241               IP->Repl32Coalesced = true;
   1242               I = BitGroups.erase(I);
   1243               BitGroups.erase(BitGroups.begin());
   1244             }
   1245 
   1246             // This must be the last group in the vector (and we might have
   1247             // just invalidated the iterator above), so break here.
   1248             break;
   1249           }
   1250         }
   1251       }
   1252 
   1253       ++I;
   1254     }
   1255   }
   1256 
   1257   SDValue getI32Imm(unsigned Imm, SDLoc dl) {
   1258     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
   1259   }
   1260 
   1261   uint64_t getZerosMask() {
   1262     uint64_t Mask = 0;
   1263     for (unsigned i = 0; i < Bits.size(); ++i) {
   1264       if (Bits[i].hasValue())
   1265         continue;
   1266       Mask |= (UINT64_C(1) << i);
   1267     }
   1268 
   1269     return ~Mask;
   1270   }
   1271 
   1272   // Depending on the number of groups for a particular value, it might be
   1273   // better to rotate, mask explicitly (using andi/andis), and then or the
   1274   // result. Select this part of the result first.
   1275   void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
   1276     if (BPermRewriterNoMasking)
   1277       return;
   1278 
   1279     for (ValueRotInfo &VRI : ValueRotsVec) {
   1280       unsigned Mask = 0;
   1281       for (unsigned i = 0; i < Bits.size(); ++i) {
   1282         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
   1283           continue;
   1284         if (RLAmt[i] != VRI.RLAmt)
   1285           continue;
   1286         Mask |= (1u << i);
   1287       }
   1288 
   1289       // Compute the masks for andi/andis that would be necessary.
   1290       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
   1291       assert((ANDIMask != 0 || ANDISMask != 0) &&
   1292              "No set bits in mask for value bit groups");
   1293       bool NeedsRotate = VRI.RLAmt != 0;
   1294 
   1295       // We're trying to minimize the number of instructions. If we have one
   1296       // group, using one of andi/andis can break even.  If we have three
   1297       // groups, we can use both andi and andis and break even (to use both
   1298       // andi and andis we also need to or the results together). We need four
   1299       // groups if we also need to rotate. To use andi/andis we need to do more
   1300       // than break even because rotate-and-mask instructions tend to be easier
   1301       // to schedule.
   1302 
   1303       // FIXME: We've biased here against using andi/andis, which is right for
   1304       // POWER cores, but not optimal everywhere. For example, on the A2,
   1305       // andi/andis have single-cycle latency whereas the rotate-and-mask
   1306       // instructions take two cycles, and it would be better to bias toward
   1307       // andi/andis in break-even cases.
   1308 
   1309       unsigned NumAndInsts = (unsigned) NeedsRotate +
   1310                              (unsigned) (ANDIMask != 0) +
   1311                              (unsigned) (ANDISMask != 0) +
   1312                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
   1313                              (unsigned) (bool) Res;
   1314 
   1315       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
   1316                       " RL: " << VRI.RLAmt << ":" <<
   1317                       "\n\t\t\tisel using masking: " << NumAndInsts <<
   1318                       " using rotates: " << VRI.NumGroups << "\n");
   1319 
   1320       if (NumAndInsts >= VRI.NumGroups)
   1321         continue;
   1322 
   1323       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
   1324 
   1325       if (InstCnt) *InstCnt += NumAndInsts;
   1326 
   1327       SDValue VRot;
   1328       if (VRI.RLAmt) {
   1329         SDValue Ops[] =
   1330           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
   1331             getI32Imm(31, dl) };
   1332         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
   1333                                               Ops), 0);
   1334       } else {
   1335         VRot = VRI.V;
   1336       }
   1337 
   1338       SDValue ANDIVal, ANDISVal;
   1339       if (ANDIMask != 0)
   1340         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
   1341                             VRot, getI32Imm(ANDIMask, dl)), 0);
   1342       if (ANDISMask != 0)
   1343         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
   1344                              VRot, getI32Imm(ANDISMask, dl)), 0);
   1345 
   1346       SDValue TotalVal;
   1347       if (!ANDIVal)
   1348         TotalVal = ANDISVal;
   1349       else if (!ANDISVal)
   1350         TotalVal = ANDIVal;
   1351       else
   1352         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1353                              ANDIVal, ANDISVal), 0);
   1354 
   1355       if (!Res)
   1356         Res = TotalVal;
   1357       else
   1358         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1359                         Res, TotalVal), 0);
   1360 
   1361       // Now, remove all groups with this underlying value and rotation
   1362       // factor.
   1363       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
   1364         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
   1365       });
   1366     }
   1367   }
   1368 
   1369   // Instruction selection for the 32-bit case.
   1370   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
   1371     SDLoc dl(N);
   1372     SDValue Res;
   1373 
   1374     if (InstCnt) *InstCnt = 0;
   1375 
   1376     // Take care of cases that should use andi/andis first.
   1377     SelectAndParts32(dl, Res, InstCnt);
   1378 
   1379     // If we've not yet selected a 'starting' instruction, and we have no zeros
   1380     // to fill in, select the (Value, RLAmt) with the highest priority (largest
   1381     // number of groups), and start with this rotated value.
   1382     if ((!HasZeros || LateMask) && !Res) {
   1383       ValueRotInfo &VRI = ValueRotsVec[0];
   1384       if (VRI.RLAmt) {
   1385         if (InstCnt) *InstCnt += 1;
   1386         SDValue Ops[] =
   1387           { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
   1388             getI32Imm(31, dl) };
   1389         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
   1390                       0);
   1391       } else {
   1392         Res = VRI.V;
   1393       }
   1394 
   1395       // Now, remove all groups with this underlying value and rotation factor.
   1396       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
   1397         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
   1398       });
   1399     }
   1400 
   1401     if (InstCnt) *InstCnt += BitGroups.size();
   1402 
   1403     // Insert the other groups (one at a time).
   1404     for (auto &BG : BitGroups) {
   1405       if (!Res) {
   1406         SDValue Ops[] =
   1407           { BG.V, getI32Imm(BG.RLAmt, dl),
   1408             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
   1409             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
   1410         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   1411       } else {
   1412         SDValue Ops[] =
   1413           { Res, BG.V, getI32Imm(BG.RLAmt, dl),
   1414               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
   1415             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
   1416         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
   1417       }
   1418     }
   1419 
   1420     if (LateMask) {
   1421       unsigned Mask = (unsigned) getZerosMask();
   1422 
   1423       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
   1424       assert((ANDIMask != 0 || ANDISMask != 0) &&
   1425              "No set bits in zeros mask?");
   1426 
   1427       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
   1428                                (unsigned) (ANDISMask != 0) +
   1429                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1430 
   1431       SDValue ANDIVal, ANDISVal;
   1432       if (ANDIMask != 0)
   1433         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
   1434                             Res, getI32Imm(ANDIMask, dl)), 0);
   1435       if (ANDISMask != 0)
   1436         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
   1437                              Res, getI32Imm(ANDISMask, dl)), 0);
   1438 
   1439       if (!ANDIVal)
   1440         Res = ANDISVal;
   1441       else if (!ANDISVal)
   1442         Res = ANDIVal;
   1443       else
   1444         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1445                         ANDIVal, ANDISVal), 0);
   1446     }
   1447 
   1448     return Res.getNode();
   1449   }
   1450 
   1451   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
   1452                                 unsigned MaskStart, unsigned MaskEnd,
   1453                                 bool IsIns) {
   1454     // In the notation used by the instructions, 'start' and 'end' are reversed
   1455     // because bits are counted from high to low order.
   1456     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1457              InstMaskEnd   = 64 - MaskStart - 1;
   1458 
   1459     if (Repl32)
   1460       return 1;
   1461 
   1462     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
   1463         InstMaskEnd == 63 - RLAmt)
   1464       return 1;
   1465 
   1466     return 2;
   1467   }
   1468 
   1469   // For 64-bit values, not all combinations of rotates and masks are
   1470   // available. Produce one if it is available.
   1471   SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
   1472                           unsigned MaskStart, unsigned MaskEnd,
   1473                           unsigned *InstCnt = nullptr) {
   1474     // In the notation used by the instructions, 'start' and 'end' are reversed
   1475     // because bits are counted from high to low order.
   1476     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1477              InstMaskEnd   = 64 - MaskStart - 1;
   1478 
   1479     if (InstCnt) *InstCnt += 1;
   1480 
   1481     if (Repl32) {
   1482       // This rotation amount assumes that the lower 32 bits of the quantity
   1483       // are replicated in the high 32 bits by the rotation operator (which is
   1484       // done by rlwinm and friends).
   1485       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
   1486       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
   1487       SDValue Ops[] =
   1488         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
   1489           getI32Imm(InstMaskEnd - 32, dl) };
   1490       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
   1491                                             Ops), 0);
   1492     }
   1493 
   1494     if (InstMaskEnd == 63) {
   1495       SDValue Ops[] =
   1496         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
   1497       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
   1498     }
   1499 
   1500     if (InstMaskStart == 0) {
   1501       SDValue Ops[] =
   1502         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
   1503       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
   1504     }
   1505 
   1506     if (InstMaskEnd == 63 - RLAmt) {
   1507       SDValue Ops[] =
   1508         { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
   1509       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
   1510     }
   1511 
   1512     // We cannot do this with a single instruction, so we'll use two. The
   1513     // problem is that we're not free to choose both a rotation amount and mask
   1514     // start and end independently. We can choose an arbitrary mask start and
   1515     // end, but then the rotation amount is fixed. Rotation, however, can be
   1516     // inverted, and so by applying an "inverse" rotation first, we can get the
   1517     // desired result.
   1518     if (InstCnt) *InstCnt += 1;
   1519 
   1520     // The rotation mask for the second instruction must be MaskStart.
   1521     unsigned RLAmt2 = MaskStart;
   1522     // The first instruction must rotate V so that the overall rotation amount
   1523     // is RLAmt.
   1524     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
   1525     if (RLAmt1)
   1526       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
   1527     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
   1528   }
   1529 
   1530   // For 64-bit values, not all combinations of rotates and masks are
   1531   // available. Produce a rotate-mask-and-insert if one is available.
   1532   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
   1533                              bool Repl32, unsigned MaskStart,
   1534                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
   1535     // In the notation used by the instructions, 'start' and 'end' are reversed
   1536     // because bits are counted from high to low order.
   1537     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1538              InstMaskEnd   = 64 - MaskStart - 1;
   1539 
   1540     if (InstCnt) *InstCnt += 1;
   1541 
   1542     if (Repl32) {
   1543       // This rotation amount assumes that the lower 32 bits of the quantity
   1544       // are replicated in the high 32 bits by the rotation operator (which is
   1545       // done by rlwinm and friends).
   1546       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
   1547       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
   1548       SDValue Ops[] =
   1549         { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
   1550           getI32Imm(InstMaskEnd - 32, dl) };
   1551       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
   1552                                             Ops), 0);
   1553     }
   1554 
   1555     if (InstMaskEnd == 63 - RLAmt) {
   1556       SDValue Ops[] =
   1557         { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
   1558       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
   1559     }
   1560 
   1561     // We cannot do this with a single instruction, so we'll use two. The
   1562     // problem is that we're not free to choose both a rotation amount and mask
   1563     // start and end independently. We can choose an arbitrary mask start and
   1564     // end, but then the rotation amount is fixed. Rotation, however, can be
   1565     // inverted, and so by applying an "inverse" rotation first, we can get the
   1566     // desired result.
   1567     if (InstCnt) *InstCnt += 1;
   1568 
   1569     // The rotation mask for the second instruction must be MaskStart.
   1570     unsigned RLAmt2 = MaskStart;
   1571     // The first instruction must rotate V so that the overall rotation amount
   1572     // is RLAmt.
   1573     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
   1574     if (RLAmt1)
   1575       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
   1576     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
   1577   }
   1578 
   1579   void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
   1580     if (BPermRewriterNoMasking)
   1581       return;
   1582 
   1583     // The idea here is the same as in the 32-bit version, but with additional
   1584     // complications from the fact that Repl32 might be true. Because we
   1585     // aggressively convert bit groups to Repl32 form (which, for small
   1586     // rotation factors, involves no other change), and then coalesce, it might
   1587     // be the case that a single 64-bit masking operation could handle both
   1588     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
   1589     // form allowed coalescing, then we must use a 32-bit rotaton in order to
   1590     // completely capture the new combined bit group.
   1591 
   1592     for (ValueRotInfo &VRI : ValueRotsVec) {
   1593       uint64_t Mask = 0;
   1594 
   1595       // We need to add to the mask all bits from the associated bit groups.
   1596       // If Repl32 is false, we need to add bits from bit groups that have
   1597       // Repl32 true, but are trivially convertable to Repl32 false. Such a
   1598       // group is trivially convertable if it overlaps only with the lower 32
   1599       // bits, and the group has not been coalesced.
   1600       auto MatchingBG = [VRI](const BitGroup &BG) {
   1601         if (VRI.V != BG.V)
   1602           return false;
   1603 
   1604         unsigned EffRLAmt = BG.RLAmt;
   1605         if (!VRI.Repl32 && BG.Repl32) {
   1606           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
   1607               !BG.Repl32Coalesced) {
   1608             if (BG.Repl32CR)
   1609               EffRLAmt += 32;
   1610           } else {
   1611             return false;
   1612           }
   1613         } else if (VRI.Repl32 != BG.Repl32) {
   1614           return false;
   1615         }
   1616 
   1617         if (VRI.RLAmt != EffRLAmt)
   1618           return false;
   1619 
   1620         return true;
   1621       };
   1622 
   1623       for (auto &BG : BitGroups) {
   1624         if (!MatchingBG(BG))
   1625           continue;
   1626 
   1627         if (BG.StartIdx <= BG.EndIdx) {
   1628           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
   1629             Mask |= (UINT64_C(1) << i);
   1630         } else {
   1631           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
   1632             Mask |= (UINT64_C(1) << i);
   1633           for (unsigned i = 0; i <= BG.EndIdx; ++i)
   1634             Mask |= (UINT64_C(1) << i);
   1635         }
   1636       }
   1637 
   1638       // We can use the 32-bit andi/andis technique if the mask does not
   1639       // require any higher-order bits. This can save an instruction compared
   1640       // to always using the general 64-bit technique.
   1641       bool Use32BitInsts = isUInt<32>(Mask);
   1642       // Compute the masks for andi/andis that would be necessary.
   1643       unsigned ANDIMask = (Mask & UINT16_MAX),
   1644                ANDISMask = (Mask >> 16) & UINT16_MAX;
   1645 
   1646       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
   1647 
   1648       unsigned NumAndInsts = (unsigned) NeedsRotate +
   1649                              (unsigned) (bool) Res;
   1650       if (Use32BitInsts)
   1651         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
   1652                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1653       else
   1654         NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
   1655 
   1656       unsigned NumRLInsts = 0;
   1657       bool FirstBG = true;
   1658       for (auto &BG : BitGroups) {
   1659         if (!MatchingBG(BG))
   1660           continue;
   1661         NumRLInsts +=
   1662           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
   1663                                !FirstBG);
   1664         FirstBG = false;
   1665       }
   1666 
   1667       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
   1668                       " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
   1669                       "\n\t\t\tisel using masking: " << NumAndInsts <<
   1670                       " using rotates: " << NumRLInsts << "\n");
   1671 
   1672       // When we'd use andi/andis, we bias toward using the rotates (andi only
   1673       // has a record form, and is cracked on POWER cores). However, when using
   1674       // general 64-bit constant formation, bias toward the constant form,
   1675       // because that exposes more opportunities for CSE.
   1676       if (NumAndInsts > NumRLInsts)
   1677         continue;
   1678       if (Use32BitInsts && NumAndInsts == NumRLInsts)
   1679         continue;
   1680 
   1681       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
   1682 
   1683       if (InstCnt) *InstCnt += NumAndInsts;
   1684 
   1685       SDValue VRot;
   1686       // We actually need to generate a rotation if we have a non-zero rotation
   1687       // factor or, in the Repl32 case, if we care about any of the
   1688       // higher-order replicated bits. In the latter case, we generate a mask
   1689       // backward so that it actually includes the entire 64 bits.
   1690       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
   1691         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
   1692                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
   1693       else
   1694         VRot = VRI.V;
   1695 
   1696       SDValue TotalVal;
   1697       if (Use32BitInsts) {
   1698         assert((ANDIMask != 0 || ANDISMask != 0) &&
   1699                "No set bits in mask when using 32-bit ands for 64-bit value");
   1700 
   1701         SDValue ANDIVal, ANDISVal;
   1702         if (ANDIMask != 0)
   1703           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
   1704                               VRot, getI32Imm(ANDIMask, dl)), 0);
   1705         if (ANDISMask != 0)
   1706           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
   1707                                VRot, getI32Imm(ANDISMask, dl)), 0);
   1708 
   1709         if (!ANDIVal)
   1710           TotalVal = ANDISVal;
   1711         else if (!ANDISVal)
   1712           TotalVal = ANDIVal;
   1713         else
   1714           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   1715                                ANDIVal, ANDISVal), 0);
   1716       } else {
   1717         TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
   1718         TotalVal =
   1719           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
   1720                                          VRot, TotalVal), 0);
   1721      }
   1722 
   1723       if (!Res)
   1724         Res = TotalVal;
   1725       else
   1726         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   1727                                              Res, TotalVal), 0);
   1728 
   1729       // Now, remove all groups with this underlying value and rotation
   1730       // factor.
   1731       eraseMatchingBitGroups(MatchingBG);
   1732     }
   1733   }
   1734 
   1735   // Instruction selection for the 64-bit case.
   1736   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
   1737     SDLoc dl(N);
   1738     SDValue Res;
   1739 
   1740     if (InstCnt) *InstCnt = 0;
   1741 
   1742     // Take care of cases that should use andi/andis first.
   1743     SelectAndParts64(dl, Res, InstCnt);
   1744 
   1745     // If we've not yet selected a 'starting' instruction, and we have no zeros
   1746     // to fill in, select the (Value, RLAmt) with the highest priority (largest
   1747     // number of groups), and start with this rotated value.
   1748     if ((!HasZeros || LateMask) && !Res) {
   1749       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
   1750       // groups will come first, and so the VRI representing the largest number
   1751       // of groups might not be first (it might be the first Repl32 groups).
   1752       unsigned MaxGroupsIdx = 0;
   1753       if (!ValueRotsVec[0].Repl32) {
   1754         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
   1755           if (ValueRotsVec[i].Repl32) {
   1756             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
   1757               MaxGroupsIdx = i;
   1758             break;
   1759           }
   1760       }
   1761 
   1762       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
   1763       bool NeedsRotate = false;
   1764       if (VRI.RLAmt) {
   1765         NeedsRotate = true;
   1766       } else if (VRI.Repl32) {
   1767         for (auto &BG : BitGroups) {
   1768           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
   1769               BG.Repl32 != VRI.Repl32)
   1770             continue;
   1771 
   1772           // We don't need a rotate if the bit group is confined to the lower
   1773           // 32 bits.
   1774           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
   1775             continue;
   1776 
   1777           NeedsRotate = true;
   1778           break;
   1779         }
   1780       }
   1781 
   1782       if (NeedsRotate)
   1783         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
   1784                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
   1785                               InstCnt);
   1786       else
   1787         Res = VRI.V;
   1788 
   1789       // Now, remove all groups with this underlying value and rotation factor.
   1790       if (Res)
   1791         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
   1792           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
   1793                  BG.Repl32 == VRI.Repl32;
   1794         });
   1795     }
   1796 
   1797     // Because 64-bit rotates are more flexible than inserts, we might have a
   1798     // preference regarding which one we do first (to save one instruction).
   1799     if (!Res)
   1800       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
   1801         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
   1802                                 false) <
   1803             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
   1804                                 true)) {
   1805           if (I != BitGroups.begin()) {
   1806             BitGroup BG = *I;
   1807             BitGroups.erase(I);
   1808             BitGroups.insert(BitGroups.begin(), BG);
   1809           }
   1810 
   1811           break;
   1812         }
   1813       }
   1814 
   1815     // Insert the other groups (one at a time).
   1816     for (auto &BG : BitGroups) {
   1817       if (!Res)
   1818         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
   1819                               BG.EndIdx, InstCnt);
   1820       else
   1821         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
   1822                                  BG.StartIdx, BG.EndIdx, InstCnt);
   1823     }
   1824 
   1825     if (LateMask) {
   1826       uint64_t Mask = getZerosMask();
   1827 
   1828       // We can use the 32-bit andi/andis technique if the mask does not
   1829       // require any higher-order bits. This can save an instruction compared
   1830       // to always using the general 64-bit technique.
   1831       bool Use32BitInsts = isUInt<32>(Mask);
   1832       // Compute the masks for andi/andis that would be necessary.
   1833       unsigned ANDIMask = (Mask & UINT16_MAX),
   1834                ANDISMask = (Mask >> 16) & UINT16_MAX;
   1835 
   1836       if (Use32BitInsts) {
   1837         assert((ANDIMask != 0 || ANDISMask != 0) &&
   1838                "No set bits in mask when using 32-bit ands for 64-bit value");
   1839 
   1840         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
   1841                                  (unsigned) (ANDISMask != 0) +
   1842                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1843 
   1844         SDValue ANDIVal, ANDISVal;
   1845         if (ANDIMask != 0)
   1846           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
   1847                               Res, getI32Imm(ANDIMask, dl)), 0);
   1848         if (ANDISMask != 0)
   1849           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
   1850                                Res, getI32Imm(ANDISMask, dl)), 0);
   1851 
   1852         if (!ANDIVal)
   1853           Res = ANDISVal;
   1854         else if (!ANDISVal)
   1855           Res = ANDIVal;
   1856         else
   1857           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   1858                           ANDIVal, ANDISVal), 0);
   1859       } else {
   1860         if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
   1861 
   1862         SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
   1863         Res =
   1864           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
   1865                                          Res, MaskVal), 0);
   1866       }
   1867     }
   1868 
   1869     return Res.getNode();
   1870   }
   1871 
   1872   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
   1873     // Fill in BitGroups.
   1874     collectBitGroups(LateMask);
   1875     if (BitGroups.empty())
   1876       return nullptr;
   1877 
   1878     // For 64-bit values, figure out when we can use 32-bit instructions.
   1879     if (Bits.size() == 64)
   1880       assignRepl32BitGroups();
   1881 
   1882     // Fill in ValueRotsVec.
   1883     collectValueRotInfo();
   1884 
   1885     if (Bits.size() == 32) {
   1886       return Select32(N, LateMask, InstCnt);
   1887     } else {
   1888       assert(Bits.size() == 64 && "Not 64 bits here?");
   1889       return Select64(N, LateMask, InstCnt);
   1890     }
   1891 
   1892     return nullptr;
   1893   }
   1894 
   1895   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
   1896     BitGroups.erase(std::remove_if(BitGroups.begin(), BitGroups.end(), F),
   1897                     BitGroups.end());
   1898   }
   1899 
   1900   SmallVector<ValueBit, 64> Bits;
   1901 
   1902   bool HasZeros;
   1903   SmallVector<unsigned, 64> RLAmt;
   1904 
   1905   SmallVector<BitGroup, 16> BitGroups;
   1906 
   1907   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
   1908   SmallVector<ValueRotInfo, 16> ValueRotsVec;
   1909 
   1910   SelectionDAG *CurDAG;
   1911 
   1912 public:
   1913   BitPermutationSelector(SelectionDAG *DAG)
   1914     : CurDAG(DAG) {}
   1915 
   1916   // Here we try to match complex bit permutations into a set of
   1917   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
   1918   // known to produce optimial code for common cases (like i32 byte swapping).
   1919   SDNode *Select(SDNode *N) {
   1920     Bits.resize(N->getValueType(0).getSizeInBits());
   1921     if (!getValueBits(SDValue(N, 0), Bits))
   1922       return nullptr;
   1923 
   1924     DEBUG(dbgs() << "Considering bit-permutation-based instruction"
   1925                     " selection for:    ");
   1926     DEBUG(N->dump(CurDAG));
   1927 
   1928     // Fill it RLAmt and set HasZeros.
   1929     computeRotationAmounts();
   1930 
   1931     if (!HasZeros)
   1932       return Select(N, false);
   1933 
   1934     // We currently have two techniques for handling results with zeros: early
   1935     // masking (the default) and late masking. Late masking is sometimes more
   1936     // efficient, but because the structure of the bit groups is different, it
   1937     // is hard to tell without generating both and comparing the results. With
   1938     // late masking, we ignore zeros in the resulting value when inserting each
   1939     // set of bit groups, and then mask in the zeros at the end. With early
   1940     // masking, we only insert the non-zero parts of the result at every step.
   1941 
   1942     unsigned InstCnt, InstCntLateMask;
   1943     DEBUG(dbgs() << "\tEarly masking:\n");
   1944     SDNode *RN = Select(N, false, &InstCnt);
   1945     DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
   1946 
   1947     DEBUG(dbgs() << "\tLate masking:\n");
   1948     SDNode *RNLM = Select(N, true, &InstCntLateMask);
   1949     DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
   1950                     " instructions\n");
   1951 
   1952     if (InstCnt <= InstCntLateMask) {
   1953       DEBUG(dbgs() << "\tUsing early-masking for isel\n");
   1954       return RN;
   1955     }
   1956 
   1957     DEBUG(dbgs() << "\tUsing late-masking for isel\n");
   1958     return RNLM;
   1959   }
   1960 };
   1961 } // anonymous namespace
   1962 
   1963 SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
   1964   if (N->getValueType(0) != MVT::i32 &&
   1965       N->getValueType(0) != MVT::i64)
   1966     return nullptr;
   1967 
   1968   if (!UseBitPermRewriter)
   1969     return nullptr;
   1970 
   1971   switch (N->getOpcode()) {
   1972   default: break;
   1973   case ISD::ROTL:
   1974   case ISD::SHL:
   1975   case ISD::SRL:
   1976   case ISD::AND:
   1977   case ISD::OR: {
   1978     BitPermutationSelector BPS(CurDAG);
   1979     return BPS.Select(N);
   1980   }
   1981   }
   1982 
   1983   return nullptr;
   1984 }
   1985 
   1986 /// SelectCC - Select a comparison of the specified values with the specified
   1987 /// condition code, returning the CR# of the expression.
   1988 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
   1989                                     ISD::CondCode CC, SDLoc dl) {
   1990   // Always select the LHS.
   1991   unsigned Opc;
   1992 
   1993   if (LHS.getValueType() == MVT::i32) {
   1994     unsigned Imm;
   1995     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   1996       if (isInt32Immediate(RHS, Imm)) {
   1997         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
   1998         if (isUInt<16>(Imm))
   1999           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
   2000                                                 getI32Imm(Imm & 0xFFFF, dl)),
   2001                          0);
   2002         // If this is a 16-bit signed immediate, fold it.
   2003         if (isInt<16>((int)Imm))
   2004           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
   2005                                                 getI32Imm(Imm & 0xFFFF, dl)),
   2006                          0);
   2007 
   2008         // For non-equality comparisons, the default code would materialize the
   2009         // constant, then compare against it, like this:
   2010         //   lis r2, 4660
   2011         //   ori r2, r2, 22136
   2012         //   cmpw cr0, r3, r2
   2013         // Since we are just comparing for equality, we can emit this instead:
   2014         //   xoris r0,r3,0x1234
   2015         //   cmplwi cr0,r0,0x5678
   2016         //   beq cr0,L6
   2017         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
   2018                                            getI32Imm(Imm >> 16, dl)), 0);
   2019         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
   2020                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
   2021       }
   2022       Opc = PPC::CMPLW;
   2023     } else if (ISD::isUnsignedIntSetCC(CC)) {
   2024       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
   2025         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
   2026                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
   2027       Opc = PPC::CMPLW;
   2028     } else {
   2029       short SImm;
   2030       if (isIntS16Immediate(RHS, SImm))
   2031         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
   2032                                               getI32Imm((int)SImm & 0xFFFF,
   2033                                                         dl)),
   2034                          0);
   2035       Opc = PPC::CMPW;
   2036     }
   2037   } else if (LHS.getValueType() == MVT::i64) {
   2038     uint64_t Imm;
   2039     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   2040       if (isInt64Immediate(RHS.getNode(), Imm)) {
   2041         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
   2042         if (isUInt<16>(Imm))
   2043           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
   2044                                                 getI32Imm(Imm & 0xFFFF, dl)),
   2045                          0);
   2046         // If this is a 16-bit signed immediate, fold it.
   2047         if (isInt<16>(Imm))
   2048           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
   2049                                                 getI32Imm(Imm & 0xFFFF, dl)),
   2050                          0);
   2051 
   2052         // For non-equality comparisons, the default code would materialize the
   2053         // constant, then compare against it, like this:
   2054         //   lis r2, 4660
   2055         //   ori r2, r2, 22136
   2056         //   cmpd cr0, r3, r2
   2057         // Since we are just comparing for equality, we can emit this instead:
   2058         //   xoris r0,r3,0x1234
   2059         //   cmpldi cr0,r0,0x5678
   2060         //   beq cr0,L6
   2061         if (isUInt<32>(Imm)) {
   2062           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
   2063                                              getI64Imm(Imm >> 16, dl)), 0);
   2064           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
   2065                                                 getI64Imm(Imm & 0xFFFF, dl)),
   2066                          0);
   2067         }
   2068       }
   2069       Opc = PPC::CMPLD;
   2070     } else if (ISD::isUnsignedIntSetCC(CC)) {
   2071       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
   2072         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
   2073                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
   2074       Opc = PPC::CMPLD;
   2075     } else {
   2076       short SImm;
   2077       if (isIntS16Immediate(RHS, SImm))
   2078         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
   2079                                               getI64Imm(SImm & 0xFFFF, dl)),
   2080                          0);
   2081       Opc = PPC::CMPD;
   2082     }
   2083   } else if (LHS.getValueType() == MVT::f32) {
   2084     Opc = PPC::FCMPUS;
   2085   } else {
   2086     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
   2087     Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
   2088   }
   2089   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
   2090 }
   2091 
   2092 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
   2093   switch (CC) {
   2094   case ISD::SETUEQ:
   2095   case ISD::SETONE:
   2096   case ISD::SETOLE:
   2097   case ISD::SETOGE:
   2098     llvm_unreachable("Should be lowered by legalize!");
   2099   default: llvm_unreachable("Unknown condition!");
   2100   case ISD::SETOEQ:
   2101   case ISD::SETEQ:  return PPC::PRED_EQ;
   2102   case ISD::SETUNE:
   2103   case ISD::SETNE:  return PPC::PRED_NE;
   2104   case ISD::SETOLT:
   2105   case ISD::SETLT:  return PPC::PRED_LT;
   2106   case ISD::SETULE:
   2107   case ISD::SETLE:  return PPC::PRED_LE;
   2108   case ISD::SETOGT:
   2109   case ISD::SETGT:  return PPC::PRED_GT;
   2110   case ISD::SETUGE:
   2111   case ISD::SETGE:  return PPC::PRED_GE;
   2112   case ISD::SETO:   return PPC::PRED_NU;
   2113   case ISD::SETUO:  return PPC::PRED_UN;
   2114     // These two are invalid for floating point.  Assume we have int.
   2115   case ISD::SETULT: return PPC::PRED_LT;
   2116   case ISD::SETUGT: return PPC::PRED_GT;
   2117   }
   2118 }
   2119 
   2120 /// getCRIdxForSetCC - Return the index of the condition register field
   2121 /// associated with the SetCC condition, and whether or not the field is
   2122 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
   2123 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
   2124   Invert = false;
   2125   switch (CC) {
   2126   default: llvm_unreachable("Unknown condition!");
   2127   case ISD::SETOLT:
   2128   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
   2129   case ISD::SETOGT:
   2130   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
   2131   case ISD::SETOEQ:
   2132   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
   2133   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
   2134   case ISD::SETUGE:
   2135   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
   2136   case ISD::SETULE:
   2137   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
   2138   case ISD::SETUNE:
   2139   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
   2140   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
   2141   case ISD::SETUEQ:
   2142   case ISD::SETOGE:
   2143   case ISD::SETOLE:
   2144   case ISD::SETONE:
   2145     llvm_unreachable("Invalid branch code: should be expanded by legalize");
   2146   // These are invalid for floating point.  Assume integer.
   2147   case ISD::SETULT: return 0;
   2148   case ISD::SETUGT: return 1;
   2149   }
   2150 }
   2151 
   2152 // getVCmpInst: return the vector compare instruction for the specified
   2153 // vector type and condition code. Since this is for altivec specific code,
   2154 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
   2155 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
   2156                                 bool HasVSX, bool &Swap, bool &Negate) {
   2157   Swap = false;
   2158   Negate = false;
   2159 
   2160   if (VecVT.isFloatingPoint()) {
   2161     /* Handle some cases by swapping input operands.  */
   2162     switch (CC) {
   2163       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
   2164       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
   2165       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
   2166       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
   2167       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
   2168       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
   2169       default: break;
   2170     }
   2171     /* Handle some cases by negating the result.  */
   2172     switch (CC) {
   2173       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
   2174       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
   2175       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
   2176       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
   2177       default: break;
   2178     }
   2179     /* We have instructions implementing the remaining cases.  */
   2180     switch (CC) {
   2181       case ISD::SETEQ:
   2182       case ISD::SETOEQ:
   2183         if (VecVT == MVT::v4f32)
   2184           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
   2185         else if (VecVT == MVT::v2f64)
   2186           return PPC::XVCMPEQDP;
   2187         break;
   2188       case ISD::SETGT:
   2189       case ISD::SETOGT:
   2190         if (VecVT == MVT::v4f32)
   2191           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
   2192         else if (VecVT == MVT::v2f64)
   2193           return PPC::XVCMPGTDP;
   2194         break;
   2195       case ISD::SETGE:
   2196       case ISD::SETOGE:
   2197         if (VecVT == MVT::v4f32)
   2198           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
   2199         else if (VecVT == MVT::v2f64)
   2200           return PPC::XVCMPGEDP;
   2201         break;
   2202       default:
   2203         break;
   2204     }
   2205     llvm_unreachable("Invalid floating-point vector compare condition");
   2206   } else {
   2207     /* Handle some cases by swapping input operands.  */
   2208     switch (CC) {
   2209       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
   2210       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
   2211       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
   2212       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
   2213       default: break;
   2214     }
   2215     /* Handle some cases by negating the result.  */
   2216     switch (CC) {
   2217       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
   2218       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
   2219       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
   2220       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
   2221       default: break;
   2222     }
   2223     /* We have instructions implementing the remaining cases.  */
   2224     switch (CC) {
   2225       case ISD::SETEQ:
   2226       case ISD::SETUEQ:
   2227         if (VecVT == MVT::v16i8)
   2228           return PPC::VCMPEQUB;
   2229         else if (VecVT == MVT::v8i16)
   2230           return PPC::VCMPEQUH;
   2231         else if (VecVT == MVT::v4i32)
   2232           return PPC::VCMPEQUW;
   2233         else if (VecVT == MVT::v2i64)
   2234           return PPC::VCMPEQUD;
   2235         break;
   2236       case ISD::SETGT:
   2237         if (VecVT == MVT::v16i8)
   2238           return PPC::VCMPGTSB;
   2239         else if (VecVT == MVT::v8i16)
   2240           return PPC::VCMPGTSH;
   2241         else if (VecVT == MVT::v4i32)
   2242           return PPC::VCMPGTSW;
   2243         else if (VecVT == MVT::v2i64)
   2244           return PPC::VCMPGTSD;
   2245         break;
   2246       case ISD::SETUGT:
   2247         if (VecVT == MVT::v16i8)
   2248           return PPC::VCMPGTUB;
   2249         else if (VecVT == MVT::v8i16)
   2250           return PPC::VCMPGTUH;
   2251         else if (VecVT == MVT::v4i32)
   2252           return PPC::VCMPGTUW;
   2253         else if (VecVT == MVT::v2i64)
   2254           return PPC::VCMPGTUD;
   2255         break;
   2256       default:
   2257         break;
   2258     }
   2259     llvm_unreachable("Invalid integer vector compare condition");
   2260   }
   2261 }
   2262 
   2263 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
   2264   SDLoc dl(N);
   2265   unsigned Imm;
   2266   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   2267   EVT PtrVT =
   2268       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
   2269   bool isPPC64 = (PtrVT == MVT::i64);
   2270 
   2271   if (!PPCSubTarget->useCRBits() &&
   2272       isInt32Immediate(N->getOperand(1), Imm)) {
   2273     // We can codegen setcc op, imm very efficiently compared to a brcond.
   2274     // Check for those cases here.
   2275     // setcc op, 0
   2276     if (Imm == 0) {
   2277       SDValue Op = N->getOperand(0);
   2278       switch (CC) {
   2279       default: break;
   2280       case ISD::SETEQ: {
   2281         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
   2282         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
   2283                           getI32Imm(31, dl) };
   2284         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2285       }
   2286       case ISD::SETNE: {
   2287         if (isPPC64) break;
   2288         SDValue AD =
   2289           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2290                                          Op, getI32Imm(~0U, dl)), 0);
   2291         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
   2292                                     AD.getValue(1));
   2293       }
   2294       case ISD::SETLT: {
   2295         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
   2296                           getI32Imm(31, dl) };
   2297         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2298       }
   2299       case ISD::SETGT: {
   2300         SDValue T =
   2301           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
   2302         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
   2303         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
   2304                           getI32Imm(31, dl) };
   2305         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2306       }
   2307       }
   2308     } else if (Imm == ~0U) {        // setcc op, -1
   2309       SDValue Op = N->getOperand(0);
   2310       switch (CC) {
   2311       default: break;
   2312       case ISD::SETEQ:
   2313         if (isPPC64) break;
   2314         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2315                                             Op, getI32Imm(1, dl)), 0);
   2316         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
   2317                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
   2318                                                              MVT::i32,
   2319                                                              getI32Imm(0, dl)),
   2320                                       0), Op.getValue(1));
   2321       case ISD::SETNE: {
   2322         if (isPPC64) break;
   2323         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
   2324         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2325                                             Op, getI32Imm(~0U, dl));
   2326         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
   2327                                     Op, SDValue(AD, 1));
   2328       }
   2329       case ISD::SETLT: {
   2330         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
   2331                                                     getI32Imm(1, dl)), 0);
   2332         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
   2333                                                     Op), 0);
   2334         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
   2335                           getI32Imm(31, dl) };
   2336         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2337       }
   2338       case ISD::SETGT: {
   2339         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
   2340                           getI32Imm(31, dl) };
   2341         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   2342         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
   2343                                     getI32Imm(1, dl));
   2344       }
   2345       }
   2346     }
   2347   }
   2348 
   2349   SDValue LHS = N->getOperand(0);
   2350   SDValue RHS = N->getOperand(1);
   2351 
   2352   // Altivec Vector compare instructions do not set any CR register by default and
   2353   // vector compare operations return the same type as the operands.
   2354   if (LHS.getValueType().isVector()) {
   2355     if (PPCSubTarget->hasQPX())
   2356       return nullptr;
   2357 
   2358     EVT VecVT = LHS.getValueType();
   2359     bool Swap, Negate;
   2360     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
   2361                                         PPCSubTarget->hasVSX(), Swap, Negate);
   2362     if (Swap)
   2363       std::swap(LHS, RHS);
   2364 
   2365     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
   2366     if (Negate) {
   2367       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
   2368       return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
   2369                                                               PPC::VNOR,
   2370                                   ResVT, VCmp, VCmp);
   2371     }
   2372 
   2373     return CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
   2374   }
   2375 
   2376   if (PPCSubTarget->useCRBits())
   2377     return nullptr;
   2378 
   2379   bool Inv;
   2380   unsigned Idx = getCRIdxForSetCC(CC, Inv);
   2381   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
   2382   SDValue IntCR;
   2383 
   2384   // Force the ccreg into CR7.
   2385   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
   2386 
   2387   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
   2388   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
   2389                                InFlag).getValue(1);
   2390 
   2391   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
   2392                                          CCReg), 0);
   2393 
   2394   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
   2395                       getI32Imm(31, dl), getI32Imm(31, dl) };
   2396   if (!Inv)
   2397     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2398 
   2399   // Get the specified bit.
   2400   SDValue Tmp =
   2401     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   2402   return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
   2403 }
   2404 
   2405 SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
   2406   // Transfer memoperands.
   2407   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2408   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   2409   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
   2410   return Result;
   2411 }
   2412 
   2413 
   2414 // Select - Convert the specified operand from a target-independent to a
   2415 // target-specific node if it hasn't already been changed.
   2416 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
   2417   SDLoc dl(N);
   2418   if (N->isMachineOpcode()) {
   2419     N->setNodeId(-1);
   2420     return nullptr;   // Already selected.
   2421   }
   2422 
   2423   // In case any misguided DAG-level optimizations form an ADD with a
   2424   // TargetConstant operand, crash here instead of miscompiling (by selecting
   2425   // an r+r add instead of some kind of r+i add).
   2426   if (N->getOpcode() == ISD::ADD &&
   2427       N->getOperand(1).getOpcode() == ISD::TargetConstant)
   2428     llvm_unreachable("Invalid ADD with TargetConstant operand");
   2429 
   2430   // Try matching complex bit permutations before doing anything else.
   2431   if (SDNode *NN = SelectBitPermutation(N))
   2432     return NN;
   2433 
   2434   switch (N->getOpcode()) {
   2435   default: break;
   2436 
   2437   case ISD::Constant: {
   2438     if (N->getValueType(0) == MVT::i64)
   2439       return SelectInt64(CurDAG, N);
   2440     break;
   2441   }
   2442 
   2443   case ISD::SETCC: {
   2444     SDNode *SN = SelectSETCC(N);
   2445     if (SN)
   2446       return SN;
   2447     break;
   2448   }
   2449   case PPCISD::GlobalBaseReg:
   2450     return getGlobalBaseReg();
   2451 
   2452   case ISD::FrameIndex:
   2453     return getFrameIndex(N, N);
   2454 
   2455   case PPCISD::MFOCRF: {
   2456     SDValue InFlag = N->getOperand(1);
   2457     return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
   2458                                   N->getOperand(0), InFlag);
   2459   }
   2460 
   2461   case PPCISD::READ_TIME_BASE: {
   2462     return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
   2463                                   MVT::Other, N->getOperand(0));
   2464   }
   2465 
   2466   case PPCISD::SRA_ADDZE: {
   2467     SDValue N0 = N->getOperand(0);
   2468     SDValue ShiftAmt =
   2469       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
   2470                                   getConstantIntValue(), dl,
   2471                                   N->getValueType(0));
   2472     if (N->getValueType(0) == MVT::i64) {
   2473       SDNode *Op =
   2474         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
   2475                                N0, ShiftAmt);
   2476       return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
   2477                                   SDValue(Op, 0), SDValue(Op, 1));
   2478     } else {
   2479       assert(N->getValueType(0) == MVT::i32 &&
   2480              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
   2481       SDNode *Op =
   2482         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
   2483                                N0, ShiftAmt);
   2484       return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
   2485                                   SDValue(Op, 0), SDValue(Op, 1));
   2486     }
   2487   }
   2488 
   2489   case ISD::LOAD: {
   2490     // Handle preincrement loads.
   2491     LoadSDNode *LD = cast<LoadSDNode>(N);
   2492     EVT LoadedVT = LD->getMemoryVT();
   2493 
   2494     // Normal loads are handled by code generated from the .td file.
   2495     if (LD->getAddressingMode() != ISD::PRE_INC)
   2496       break;
   2497 
   2498     SDValue Offset = LD->getOffset();
   2499     if (Offset.getOpcode() == ISD::TargetConstant ||
   2500         Offset.getOpcode() == ISD::TargetGlobalAddress) {
   2501 
   2502       unsigned Opcode;
   2503       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   2504       if (LD->getValueType(0) != MVT::i64) {
   2505         // Handle PPC32 integer and normal FP loads.
   2506         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   2507         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2508           default: llvm_unreachable("Invalid PPC load type!");
   2509           case MVT::f64: Opcode = PPC::LFDU; break;
   2510           case MVT::f32: Opcode = PPC::LFSU; break;
   2511           case MVT::i32: Opcode = PPC::LWZU; break;
   2512           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
   2513           case MVT::i1:
   2514           case MVT::i8:  Opcode = PPC::LBZU; break;
   2515         }
   2516       } else {
   2517         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   2518         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   2519         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2520           default: llvm_unreachable("Invalid PPC load type!");
   2521           case MVT::i64: Opcode = PPC::LDU; break;
   2522           case MVT::i32: Opcode = PPC::LWZU8; break;
   2523           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
   2524           case MVT::i1:
   2525           case MVT::i8:  Opcode = PPC::LBZU8; break;
   2526         }
   2527       }
   2528 
   2529       SDValue Chain = LD->getChain();
   2530       SDValue Base = LD->getBasePtr();
   2531       SDValue Ops[] = { Offset, Base, Chain };
   2532       return transferMemOperands(
   2533           N, CurDAG->getMachineNode(
   2534                  Opcode, dl, LD->getValueType(0),
   2535                  PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other,
   2536                  Ops));
   2537     } else {
   2538       unsigned Opcode;
   2539       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   2540       if (LD->getValueType(0) != MVT::i64) {
   2541         // Handle PPC32 integer and normal FP loads.
   2542         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   2543         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2544           default: llvm_unreachable("Invalid PPC load type!");
   2545           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
   2546           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
   2547           case MVT::f64: Opcode = PPC::LFDUX; break;
   2548           case MVT::f32: Opcode = PPC::LFSUX; break;
   2549           case MVT::i32: Opcode = PPC::LWZUX; break;
   2550           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
   2551           case MVT::i1:
   2552           case MVT::i8:  Opcode = PPC::LBZUX; break;
   2553         }
   2554       } else {
   2555         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   2556         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
   2557                "Invalid sext update load");
   2558         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2559           default: llvm_unreachable("Invalid PPC load type!");
   2560           case MVT::i64: Opcode = PPC::LDUX; break;
   2561           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
   2562           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
   2563           case MVT::i1:
   2564           case MVT::i8:  Opcode = PPC::LBZUX8; break;
   2565         }
   2566       }
   2567 
   2568       SDValue Chain = LD->getChain();
   2569       SDValue Base = LD->getBasePtr();
   2570       SDValue Ops[] = { Base, Offset, Chain };
   2571       return transferMemOperands(
   2572           N, CurDAG->getMachineNode(
   2573                  Opcode, dl, LD->getValueType(0),
   2574                  PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other,
   2575                  Ops));
   2576     }
   2577   }
   2578 
   2579   case ISD::AND: {
   2580     unsigned Imm, Imm2, SH, MB, ME;
   2581     uint64_t Imm64;
   2582 
   2583     // If this is an and of a value rotated between 0 and 31 bits and then and'd
   2584     // with a mask, emit rlwinm
   2585     if (isInt32Immediate(N->getOperand(1), Imm) &&
   2586         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
   2587       SDValue Val = N->getOperand(0).getOperand(0);
   2588       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
   2589                         getI32Imm(ME, dl) };
   2590       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2591     }
   2592     // If this is just a masked value where the input is not handled above, and
   2593     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
   2594     if (isInt32Immediate(N->getOperand(1), Imm) &&
   2595         isRunOfOnes(Imm, MB, ME) &&
   2596         N->getOperand(0).getOpcode() != ISD::ROTL) {
   2597       SDValue Val = N->getOperand(0);
   2598       SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
   2599                         getI32Imm(ME, dl) };
   2600       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2601     }
   2602     // If this is a 64-bit zero-extension mask, emit rldicl.
   2603     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
   2604         isMask_64(Imm64)) {
   2605       SDValue Val = N->getOperand(0);
   2606       MB = 64 - countTrailingOnes(Imm64);
   2607       SH = 0;
   2608 
   2609       // If the operand is a logical right shift, we can fold it into this
   2610       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
   2611       // for n <= mb. The right shift is really a left rotate followed by a
   2612       // mask, and this mask is a more-restrictive sub-mask of the mask implied
   2613       // by the shift.
   2614       if (Val.getOpcode() == ISD::SRL &&
   2615           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
   2616         assert(Imm < 64 && "Illegal shift amount");
   2617         Val = Val.getOperand(0);
   2618         SH = 64 - Imm;
   2619       }
   2620 
   2621       SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
   2622       return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
   2623     }
   2624     // AND X, 0 -> 0, not "rlwinm 32".
   2625     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
   2626       ReplaceUses(SDValue(N, 0), N->getOperand(1));
   2627       return nullptr;
   2628     }
   2629     // ISD::OR doesn't get all the bitfield insertion fun.
   2630     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
   2631     // bitfield insert.
   2632     if (isInt32Immediate(N->getOperand(1), Imm) &&
   2633         N->getOperand(0).getOpcode() == ISD::OR &&
   2634         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
   2635       // The idea here is to check whether this is equivalent to:
   2636       //   (c1 & m) | (x & ~m)
   2637       // where m is a run-of-ones mask. The logic here is that, for each bit in
   2638       // c1 and c2:
   2639       //  - if both are 1, then the output will be 1.
   2640       //  - if both are 0, then the output will be 0.
   2641       //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
   2642       //    come from x.
   2643       //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
   2644       //    be 0.
   2645       //  If that last condition is never the case, then we can form m from the
   2646       //  bits that are the same between c1 and c2.
   2647       unsigned MB, ME;
   2648       if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
   2649         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2650                             N->getOperand(0).getOperand(1),
   2651                             getI32Imm(0, dl), getI32Imm(MB, dl),
   2652                             getI32Imm(ME, dl) };
   2653         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
   2654       }
   2655     }
   2656 
   2657     // Other cases are autogenerated.
   2658     break;
   2659   }
   2660   case ISD::OR: {
   2661     if (N->getValueType(0) == MVT::i32)
   2662       if (SDNode *I = SelectBitfieldInsert(N))
   2663         return I;
   2664 
   2665     short Imm;
   2666     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
   2667         isIntS16Immediate(N->getOperand(1), Imm)) {
   2668       APInt LHSKnownZero, LHSKnownOne;
   2669       CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
   2670 
   2671       // If this is equivalent to an add, then we can fold it with the
   2672       // FrameIndex calculation.
   2673       if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
   2674         return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
   2675     }
   2676 
   2677     // Other cases are autogenerated.
   2678     break;
   2679   }
   2680   case ISD::ADD: {
   2681     short Imm;
   2682     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
   2683         isIntS16Immediate(N->getOperand(1), Imm))
   2684       return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
   2685 
   2686     break;
   2687   }
   2688   case ISD::SHL: {
   2689     unsigned Imm, SH, MB, ME;
   2690     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   2691         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   2692       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2693                           getI32Imm(SH, dl), getI32Imm(MB, dl),
   2694                           getI32Imm(ME, dl) };
   2695       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2696     }
   2697 
   2698     // Other cases are autogenerated.
   2699     break;
   2700   }
   2701   case ISD::SRL: {
   2702     unsigned Imm, SH, MB, ME;
   2703     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   2704         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   2705       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2706                           getI32Imm(SH, dl), getI32Imm(MB, dl),
   2707                           getI32Imm(ME, dl) };
   2708       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2709     }
   2710 
   2711     // Other cases are autogenerated.
   2712     break;
   2713   }
   2714   // FIXME: Remove this once the ANDI glue bug is fixed:
   2715   case PPCISD::ANDIo_1_EQ_BIT:
   2716   case PPCISD::ANDIo_1_GT_BIT: {
   2717     if (!ANDIGlueBug)
   2718       break;
   2719 
   2720     EVT InVT = N->getOperand(0).getValueType();
   2721     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
   2722            "Invalid input type for ANDIo_1_EQ_BIT");
   2723 
   2724     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
   2725     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
   2726                                         N->getOperand(0),
   2727                                         CurDAG->getTargetConstant(1, dl, InVT)),
   2728                  0);
   2729     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
   2730     SDValue SRIdxVal =
   2731       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
   2732                                 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
   2733 
   2734     return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
   2735                                 CR0Reg, SRIdxVal,
   2736                                 SDValue(AndI.getNode(), 1) /* glue */);
   2737   }
   2738   case ISD::SELECT_CC: {
   2739     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   2740     EVT PtrVT =
   2741         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
   2742     bool isPPC64 = (PtrVT == MVT::i64);
   2743 
   2744     // If this is a select of i1 operands, we'll pattern match it.
   2745     if (PPCSubTarget->useCRBits() &&
   2746         N->getOperand(0).getValueType() == MVT::i1)
   2747       break;
   2748 
   2749     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
   2750     if (!isPPC64)
   2751       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   2752         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
   2753           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
   2754             if (N1C->isNullValue() && N3C->isNullValue() &&
   2755                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
   2756                 // FIXME: Implement this optzn for PPC64.
   2757                 N->getValueType(0) == MVT::i32) {
   2758               SDNode *Tmp =
   2759                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2760                                        N->getOperand(0), getI32Imm(~0U, dl));
   2761               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
   2762                                           SDValue(Tmp, 0), N->getOperand(0),
   2763                                           SDValue(Tmp, 1));
   2764             }
   2765 
   2766     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
   2767 
   2768     if (N->getValueType(0) == MVT::i1) {
   2769       // An i1 select is: (c & t) | (!c & f).
   2770       bool Inv;
   2771       unsigned Idx = getCRIdxForSetCC(CC, Inv);
   2772 
   2773       unsigned SRI;
   2774       switch (Idx) {
   2775       default: llvm_unreachable("Invalid CC index");
   2776       case 0: SRI = PPC::sub_lt; break;
   2777       case 1: SRI = PPC::sub_gt; break;
   2778       case 2: SRI = PPC::sub_eq; break;
   2779       case 3: SRI = PPC::sub_un; break;
   2780       }
   2781 
   2782       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
   2783 
   2784       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
   2785                                               CCBit, CCBit), 0);
   2786       SDValue C =    Inv ? NotCCBit : CCBit,
   2787               NotC = Inv ? CCBit    : NotCCBit;
   2788 
   2789       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
   2790                                            C, N->getOperand(2)), 0);
   2791       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
   2792                                               NotC, N->getOperand(3)), 0);
   2793 
   2794       return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
   2795     }
   2796 
   2797     unsigned BROpc = getPredicateForSetCC(CC);
   2798 
   2799     unsigned SelectCCOp;
   2800     if (N->getValueType(0) == MVT::i32)
   2801       SelectCCOp = PPC::SELECT_CC_I4;
   2802     else if (N->getValueType(0) == MVT::i64)
   2803       SelectCCOp = PPC::SELECT_CC_I8;
   2804     else if (N->getValueType(0) == MVT::f32)
   2805       if (PPCSubTarget->hasP8Vector())
   2806         SelectCCOp = PPC::SELECT_CC_VSSRC;
   2807       else
   2808         SelectCCOp = PPC::SELECT_CC_F4;
   2809     else if (N->getValueType(0) == MVT::f64)
   2810       if (PPCSubTarget->hasVSX())
   2811         SelectCCOp = PPC::SELECT_CC_VSFRC;
   2812       else
   2813         SelectCCOp = PPC::SELECT_CC_F8;
   2814     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
   2815       SelectCCOp = PPC::SELECT_CC_QFRC;
   2816     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
   2817       SelectCCOp = PPC::SELECT_CC_QSRC;
   2818     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
   2819       SelectCCOp = PPC::SELECT_CC_QBRC;
   2820     else if (N->getValueType(0) == MVT::v2f64 ||
   2821              N->getValueType(0) == MVT::v2i64)
   2822       SelectCCOp = PPC::SELECT_CC_VSRC;
   2823     else
   2824       SelectCCOp = PPC::SELECT_CC_VRRC;
   2825 
   2826     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
   2827                         getI32Imm(BROpc, dl) };
   2828     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
   2829   }
   2830   case ISD::VSELECT:
   2831     if (PPCSubTarget->hasVSX()) {
   2832       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
   2833       return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
   2834     }
   2835 
   2836     break;
   2837   case ISD::VECTOR_SHUFFLE:
   2838     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
   2839                                   N->getValueType(0) == MVT::v2i64)) {
   2840       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   2841 
   2842       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
   2843               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
   2844       unsigned DM[2];
   2845 
   2846       for (int i = 0; i < 2; ++i)
   2847         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
   2848           DM[i] = 0;
   2849         else
   2850           DM[i] = 1;
   2851 
   2852       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
   2853           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   2854           isa<LoadSDNode>(Op1.getOperand(0))) {
   2855         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
   2856         SDValue Base, Offset;
   2857 
   2858         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
   2859             (LD->getMemoryVT() == MVT::f64 ||
   2860              LD->getMemoryVT() == MVT::i64) &&
   2861             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
   2862           SDValue Chain = LD->getChain();
   2863           SDValue Ops[] = { Base, Offset, Chain };
   2864           return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
   2865                                       N->getValueType(0), Ops);
   2866         }
   2867       }
   2868 
   2869       // For little endian, we must swap the input operands and adjust
   2870       // the mask elements (reverse and invert them).
   2871       if (PPCSubTarget->isLittleEndian()) {
   2872         std::swap(Op1, Op2);
   2873         unsigned tmp = DM[0];
   2874         DM[0] = 1 - DM[1];
   2875         DM[1] = 1 - tmp;
   2876       }
   2877 
   2878       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
   2879                                               MVT::i32);
   2880       SDValue Ops[] = { Op1, Op2, DMV };
   2881       return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
   2882     }
   2883 
   2884     break;
   2885   case PPCISD::BDNZ:
   2886   case PPCISD::BDZ: {
   2887     bool IsPPC64 = PPCSubTarget->isPPC64();
   2888     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
   2889     return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
   2890                                    (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
   2891                                    (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
   2892                                 MVT::Other, Ops);
   2893   }
   2894   case PPCISD::COND_BRANCH: {
   2895     // Op #0 is the Chain.
   2896     // Op #1 is the PPC::PRED_* number.
   2897     // Op #2 is the CR#
   2898     // Op #3 is the Dest MBB
   2899     // Op #4 is the Flag.
   2900     // Prevent PPC::PRED_* from being selected into LI.
   2901     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   2902     if (EnableBranchHint)
   2903       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
   2904 
   2905     SDValue Pred = getI32Imm(PCC, dl);
   2906     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
   2907       N->getOperand(0), N->getOperand(4) };
   2908     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
   2909   }
   2910   case ISD::BR_CC: {
   2911     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   2912     unsigned PCC = getPredicateForSetCC(CC);
   2913 
   2914     if (N->getOperand(2).getValueType() == MVT::i1) {
   2915       unsigned Opc;
   2916       bool Swap;
   2917       switch (PCC) {
   2918       default: llvm_unreachable("Unexpected Boolean-operand predicate");
   2919       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
   2920       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
   2921       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
   2922       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
   2923       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
   2924       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
   2925       }
   2926 
   2927       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
   2928                                              N->getOperand(Swap ? 3 : 2),
   2929                                              N->getOperand(Swap ? 2 : 3)), 0);
   2930       return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
   2931                                   BitComp, N->getOperand(4), N->getOperand(0));
   2932     }
   2933 
   2934     if (EnableBranchHint)
   2935       PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
   2936 
   2937     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
   2938     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
   2939                         N->getOperand(4), N->getOperand(0) };
   2940     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
   2941   }
   2942   case ISD::BRIND: {
   2943     // FIXME: Should custom lower this.
   2944     SDValue Chain = N->getOperand(0);
   2945     SDValue Target = N->getOperand(1);
   2946     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
   2947     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
   2948     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
   2949                                            Chain), 0);
   2950     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
   2951   }
   2952   case PPCISD::TOC_ENTRY: {
   2953     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
   2954             "Only supported for 64-bit ABI and 32-bit SVR4");
   2955     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
   2956       SDValue GA = N->getOperand(0);
   2957       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
   2958                                       MVT::i32, GA, N->getOperand(1)));
   2959     }
   2960 
   2961     // For medium and large code model, we generate two instructions as
   2962     // described below.  Otherwise we allow SelectCodeCommon to handle this,
   2963     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
   2964     CodeModel::Model CModel = TM.getCodeModel();
   2965     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
   2966       break;
   2967 
   2968     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
   2969     // If it must be toc-referenced according to PPCSubTarget, we generate:
   2970     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
   2971     // Otherwise we generate:
   2972     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
   2973     SDValue GA = N->getOperand(0);
   2974     SDValue TOCbase = N->getOperand(1);
   2975     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
   2976                                          TOCbase, GA);
   2977 
   2978     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
   2979         CModel == CodeModel::Large)
   2980       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
   2981                                       MVT::i64, GA, SDValue(Tmp, 0)));
   2982 
   2983     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
   2984       const GlobalValue *GV = G->getGlobal();
   2985       unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
   2986       if (GVFlags & PPCII::MO_NLP_FLAG) {
   2987         return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
   2988                                         MVT::i64, GA, SDValue(Tmp, 0)));
   2989       }
   2990     }
   2991 
   2992     return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
   2993                                   SDValue(Tmp, 0), GA);
   2994   }
   2995   case PPCISD::PPC32_PICGOT: {
   2996     // Generate a PIC-safe GOT reference.
   2997     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
   2998       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
   2999     return CurDAG->SelectNodeTo(
   3000         N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(CurDAG->getDataLayout()),
   3001         MVT::i32);
   3002   }
   3003   case PPCISD::VADD_SPLAT: {
   3004     // This expands into one of three sequences, depending on whether
   3005     // the first operand is odd or even, positive or negative.
   3006     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
   3007            isa<ConstantSDNode>(N->getOperand(1)) &&
   3008            "Invalid operand on VADD_SPLAT!");
   3009 
   3010     int Elt     = N->getConstantOperandVal(0);
   3011     int EltSize = N->getConstantOperandVal(1);
   3012     unsigned Opc1, Opc2, Opc3;
   3013     EVT VT;
   3014 
   3015     if (EltSize == 1) {
   3016       Opc1 = PPC::VSPLTISB;
   3017       Opc2 = PPC::VADDUBM;
   3018       Opc3 = PPC::VSUBUBM;
   3019       VT = MVT::v16i8;
   3020     } else if (EltSize == 2) {
   3021       Opc1 = PPC::VSPLTISH;
   3022       Opc2 = PPC::VADDUHM;
   3023       Opc3 = PPC::VSUBUHM;
   3024       VT = MVT::v8i16;
   3025     } else {
   3026       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
   3027       Opc1 = PPC::VSPLTISW;
   3028       Opc2 = PPC::VADDUWM;
   3029       Opc3 = PPC::VSUBUWM;
   3030       VT = MVT::v4i32;
   3031     }
   3032 
   3033     if ((Elt & 1) == 0) {
   3034       // Elt is even, in the range [-32,-18] + [16,30].
   3035       //
   3036       // Convert: VADD_SPLAT elt, size
   3037       // Into:    tmp = VSPLTIS[BHW] elt
   3038       //          VADDU[BHW]M tmp, tmp
   3039       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
   3040       SDValue EltVal = getI32Imm(Elt >> 1, dl);
   3041       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   3042       SDValue TmpVal = SDValue(Tmp, 0);
   3043       return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
   3044 
   3045     } else if (Elt > 0) {
   3046       // Elt is odd and positive, in the range [17,31].
   3047       //
   3048       // Convert: VADD_SPLAT elt, size
   3049       // Into:    tmp1 = VSPLTIS[BHW] elt-16
   3050       //          tmp2 = VSPLTIS[BHW] -16
   3051       //          VSUBU[BHW]M tmp1, tmp2
   3052       SDValue EltVal = getI32Imm(Elt - 16, dl);
   3053       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   3054       EltVal = getI32Imm(-16, dl);
   3055       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   3056       return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
   3057                                     SDValue(Tmp2, 0));
   3058 
   3059     } else {
   3060       // Elt is odd and negative, in the range [-31,-17].
   3061       //
   3062       // Convert: VADD_SPLAT elt, size
   3063       // Into:    tmp1 = VSPLTIS[BHW] elt+16
   3064       //          tmp2 = VSPLTIS[BHW] -16
   3065       //          VADDU[BHW]M tmp1, tmp2
   3066       SDValue EltVal = getI32Imm(Elt + 16, dl);
   3067       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   3068       EltVal = getI32Imm(-16, dl);
   3069       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   3070       return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
   3071                                     SDValue(Tmp2, 0));
   3072     }
   3073   }
   3074   }
   3075 
   3076   return SelectCode(N);
   3077 }
   3078 
   3079 // If the target supports the cmpb instruction, do the idiom recognition here.
   3080 // We don't do this as a DAG combine because we don't want to do it as nodes
   3081 // are being combined (because we might miss part of the eventual idiom). We
   3082 // don't want to do it during instruction selection because we want to reuse
   3083 // the logic for lowering the masking operations already part of the
   3084 // instruction selector.
   3085 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
   3086   SDLoc dl(N);
   3087 
   3088   assert(N->getOpcode() == ISD::OR &&
   3089          "Only OR nodes are supported for CMPB");
   3090 
   3091   SDValue Res;
   3092   if (!PPCSubTarget->hasCMPB())
   3093     return Res;
   3094 
   3095   if (N->getValueType(0) != MVT::i32 &&
   3096       N->getValueType(0) != MVT::i64)
   3097     return Res;
   3098 
   3099   EVT VT = N->getValueType(0);
   3100 
   3101   SDValue RHS, LHS;
   3102   bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   3103   uint64_t Mask = 0, Alt = 0;
   3104 
   3105   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
   3106                                uint64_t &Mask, uint64_t &Alt,
   3107                                SDValue &LHS, SDValue &RHS) {
   3108     if (O.getOpcode() != ISD::SELECT_CC)
   3109       return false;
   3110     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
   3111 
   3112     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
   3113         !isa<ConstantSDNode>(O.getOperand(3)))
   3114       return false;
   3115 
   3116     uint64_t PM = O.getConstantOperandVal(2);
   3117     uint64_t PAlt = O.getConstantOperandVal(3);
   3118     for (b = 0; b < 8; ++b) {
   3119       uint64_t Mask = UINT64_C(0xFF) << (8*b);
   3120       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
   3121         break;
   3122     }
   3123 
   3124     if (b == 8)
   3125       return false;
   3126     Mask |= PM;
   3127     Alt  |= PAlt;
   3128 
   3129     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
   3130         O.getConstantOperandVal(1) != 0) {
   3131       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
   3132       if (Op0.getOpcode() == ISD::TRUNCATE)
   3133         Op0 = Op0.getOperand(0);
   3134       if (Op1.getOpcode() == ISD::TRUNCATE)
   3135         Op1 = Op1.getOperand(0);
   3136 
   3137       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
   3138           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
   3139           isa<ConstantSDNode>(Op0.getOperand(1))) {
   3140 
   3141         unsigned Bits = Op0.getValueType().getSizeInBits();
   3142         if (b != Bits/8-1)
   3143           return false;
   3144         if (Op0.getConstantOperandVal(1) != Bits-8)
   3145           return false;
   3146 
   3147         LHS = Op0.getOperand(0);
   3148         RHS = Op1.getOperand(0);
   3149         return true;
   3150       }
   3151 
   3152       // When we have small integers (i16 to be specific), the form present
   3153       // post-legalization uses SETULT in the SELECT_CC for the
   3154       // higher-order byte, depending on the fact that the
   3155       // even-higher-order bytes are known to all be zero, for example:
   3156       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
   3157       // (so when the second byte is the same, because all higher-order
   3158       // bits from bytes 3 and 4 are known to be zero, the result of the
   3159       // xor can be at most 255)
   3160       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
   3161           isa<ConstantSDNode>(O.getOperand(1))) {
   3162 
   3163         uint64_t ULim = O.getConstantOperandVal(1);
   3164         if (ULim != (UINT64_C(1) << b*8))
   3165           return false;
   3166 
   3167         // Now we need to make sure that the upper bytes are known to be
   3168         // zero.
   3169         unsigned Bits = Op0.getValueType().getSizeInBits();
   3170         if (!CurDAG->MaskedValueIsZero(Op0,
   3171               APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
   3172           return false;
   3173 
   3174         LHS = Op0.getOperand(0);
   3175         RHS = Op0.getOperand(1);
   3176         return true;
   3177       }
   3178 
   3179       return false;
   3180     }
   3181 
   3182     if (CC != ISD::SETEQ)
   3183       return false;
   3184 
   3185     SDValue Op = O.getOperand(0);
   3186     if (Op.getOpcode() == ISD::AND) {
   3187       if (!isa<ConstantSDNode>(Op.getOperand(1)))
   3188         return false;
   3189       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
   3190         return false;
   3191 
   3192       SDValue XOR = Op.getOperand(0);
   3193       if (XOR.getOpcode() == ISD::TRUNCATE)
   3194         XOR = XOR.getOperand(0);
   3195       if (XOR.getOpcode() != ISD::XOR)
   3196         return false;
   3197 
   3198       LHS = XOR.getOperand(0);
   3199       RHS = XOR.getOperand(1);
   3200       return true;
   3201     } else if (Op.getOpcode() == ISD::SRL) {
   3202       if (!isa<ConstantSDNode>(Op.getOperand(1)))
   3203         return false;
   3204       unsigned Bits = Op.getValueType().getSizeInBits();
   3205       if (b != Bits/8-1)
   3206         return false;
   3207       if (Op.getConstantOperandVal(1) != Bits-8)
   3208         return false;
   3209 
   3210       SDValue XOR = Op.getOperand(0);
   3211       if (XOR.getOpcode() == ISD::TRUNCATE)
   3212         XOR = XOR.getOperand(0);
   3213       if (XOR.getOpcode() != ISD::XOR)
   3214         return false;
   3215 
   3216       LHS = XOR.getOperand(0);
   3217       RHS = XOR.getOperand(1);
   3218       return true;
   3219     }
   3220 
   3221     return false;
   3222   };
   3223 
   3224   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
   3225   while (!Queue.empty()) {
   3226     SDValue V = Queue.pop_back_val();
   3227 
   3228     for (const SDValue &O : V.getNode()->ops()) {
   3229       unsigned b;
   3230       uint64_t M = 0, A = 0;
   3231       SDValue OLHS, ORHS;
   3232       if (O.getOpcode() == ISD::OR) {
   3233         Queue.push_back(O);
   3234       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
   3235         if (!LHS) {
   3236           LHS = OLHS;
   3237           RHS = ORHS;
   3238           BytesFound[b] = true;
   3239           Mask |= M;
   3240           Alt  |= A;
   3241         } else if ((LHS == ORHS && RHS == OLHS) ||
   3242                    (RHS == ORHS && LHS == OLHS)) {
   3243           BytesFound[b] = true;
   3244           Mask |= M;
   3245           Alt  |= A;
   3246         } else {
   3247           return Res;
   3248         }
   3249       } else {
   3250         return Res;
   3251       }
   3252     }
   3253   }
   3254 
   3255   unsigned LastB = 0, BCnt = 0;
   3256   for (unsigned i = 0; i < 8; ++i)
   3257     if (BytesFound[LastB]) {
   3258       ++BCnt;
   3259       LastB = i;
   3260     }
   3261 
   3262   if (!LastB || BCnt < 2)
   3263     return Res;
   3264 
   3265   // Because we'll be zero-extending the output anyway if don't have a specific
   3266   // value for each input byte (via the Mask), we can 'anyext' the inputs.
   3267   if (LHS.getValueType() != VT) {
   3268     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
   3269     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
   3270   }
   3271 
   3272   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
   3273 
   3274   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
   3275   if (NonTrivialMask && !Alt) {
   3276     // Res = Mask & CMPB
   3277     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
   3278                           CurDAG->getConstant(Mask, dl, VT));
   3279   } else if (Alt) {
   3280     // Res = (CMPB & Mask) | (~CMPB & Alt)
   3281     // Which, as suggested here:
   3282     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
   3283     // can be written as:
   3284     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
   3285     // useful because the (Alt ^ Mask) can be pre-computed.
   3286     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
   3287                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
   3288     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
   3289                           CurDAG->getConstant(Alt, dl, VT));
   3290   }
   3291 
   3292   return Res;
   3293 }
   3294 
   3295 // When CR bit registers are enabled, an extension of an i1 variable to a i32
   3296 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
   3297 // involves constant materialization of a 0 or a 1 or both. If the result of
   3298 // the extension is then operated upon by some operator that can be constant
   3299 // folded with a constant 0 or 1, and that constant can be materialized using
   3300 // only one instruction (like a zero or one), then we should fold in those
   3301 // operations with the select.
   3302 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
   3303   if (!PPCSubTarget->useCRBits())
   3304     return;
   3305 
   3306   if (N->getOpcode() != ISD::ZERO_EXTEND &&
   3307       N->getOpcode() != ISD::SIGN_EXTEND &&
   3308       N->getOpcode() != ISD::ANY_EXTEND)
   3309     return;
   3310 
   3311   if (N->getOperand(0).getValueType() != MVT::i1)
   3312     return;
   3313 
   3314   if (!N->hasOneUse())
   3315     return;
   3316 
   3317   SDLoc dl(N);
   3318   EVT VT = N->getValueType(0);
   3319   SDValue Cond = N->getOperand(0);
   3320   SDValue ConstTrue =
   3321     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
   3322   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
   3323 
   3324   do {
   3325     SDNode *User = *N->use_begin();
   3326     if (User->getNumOperands() != 2)
   3327       break;
   3328 
   3329     auto TryFold = [this, N, User, dl](SDValue Val) {
   3330       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
   3331       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
   3332       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
   3333 
   3334       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
   3335                                             User->getValueType(0),
   3336                                             O0.getNode(), O1.getNode());
   3337     };
   3338 
   3339     SDValue TrueRes = TryFold(ConstTrue);
   3340     if (!TrueRes)
   3341       break;
   3342     SDValue FalseRes = TryFold(ConstFalse);
   3343     if (!FalseRes)
   3344       break;
   3345 
   3346     // For us to materialize these using one instruction, we must be able to
   3347     // represent them as signed 16-bit integers.
   3348     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
   3349              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
   3350     if (!isInt<16>(True) || !isInt<16>(False))
   3351       break;
   3352 
   3353     // We can replace User with a new SELECT node, and try again to see if we
   3354     // can fold the select with its user.
   3355     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
   3356     N = User;
   3357     ConstTrue = TrueRes;
   3358     ConstFalse = FalseRes;
   3359   } while (N->hasOneUse());
   3360 }
   3361 
   3362 void PPCDAGToDAGISel::PreprocessISelDAG() {
   3363   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   3364   ++Position;
   3365 
   3366   bool MadeChange = false;
   3367   while (Position != CurDAG->allnodes_begin()) {
   3368     SDNode *N = &*--Position;
   3369     if (N->use_empty())
   3370       continue;
   3371 
   3372     SDValue Res;
   3373     switch (N->getOpcode()) {
   3374     default: break;
   3375     case ISD::OR:
   3376       Res = combineToCMPB(N);
   3377       break;
   3378     }
   3379 
   3380     if (!Res)
   3381       foldBoolExts(Res, N);
   3382 
   3383     if (Res) {
   3384       DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
   3385       DEBUG(N->dump(CurDAG));
   3386       DEBUG(dbgs() << "\nNew: ");
   3387       DEBUG(Res.getNode()->dump(CurDAG));
   3388       DEBUG(dbgs() << "\n");
   3389 
   3390       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
   3391       MadeChange = true;
   3392     }
   3393   }
   3394 
   3395   if (MadeChange)
   3396     CurDAG->RemoveDeadNodes();
   3397 }
   3398 
   3399 /// PostprocessISelDAG - Perform some late peephole optimizations
   3400 /// on the DAG representation.
   3401 void PPCDAGToDAGISel::PostprocessISelDAG() {
   3402 
   3403   // Skip peepholes at -O0.
   3404   if (TM.getOptLevel() == CodeGenOpt::None)
   3405     return;
   3406 
   3407   PeepholePPC64();
   3408   PeepholeCROps();
   3409   PeepholePPC64ZExt();
   3410 }
   3411 
   3412 // Check if all users of this node will become isel where the second operand
   3413 // is the constant zero. If this is so, and if we can negate the condition,
   3414 // then we can flip the true and false operands. This will allow the zero to
   3415 // be folded with the isel so that we don't need to materialize a register
   3416 // containing zero.
   3417 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
   3418   // If we're not using isel, then this does not matter.
   3419   if (!PPCSubTarget->hasISEL())
   3420     return false;
   3421 
   3422   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   3423        UI != UE; ++UI) {
   3424     SDNode *User = *UI;
   3425     if (!User->isMachineOpcode())
   3426       return false;
   3427     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
   3428         User->getMachineOpcode() != PPC::SELECT_I8)
   3429       return false;
   3430 
   3431     SDNode *Op2 = User->getOperand(2).getNode();
   3432     if (!Op2->isMachineOpcode())
   3433       return false;
   3434 
   3435     if (Op2->getMachineOpcode() != PPC::LI &&
   3436         Op2->getMachineOpcode() != PPC::LI8)
   3437       return false;
   3438 
   3439     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
   3440     if (!C)
   3441       return false;
   3442 
   3443     if (!C->isNullValue())
   3444       return false;
   3445   }
   3446 
   3447   return true;
   3448 }
   3449 
   3450 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
   3451   SmallVector<SDNode *, 4> ToReplace;
   3452   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   3453        UI != UE; ++UI) {
   3454     SDNode *User = *UI;
   3455     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
   3456             User->getMachineOpcode() == PPC::SELECT_I8) &&
   3457            "Must have all select users");
   3458     ToReplace.push_back(User);
   3459   }
   3460 
   3461   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
   3462        UE = ToReplace.end(); UI != UE; ++UI) {
   3463     SDNode *User = *UI;
   3464     SDNode *ResNode =
   3465       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
   3466                              User->getValueType(0), User->getOperand(0),
   3467                              User->getOperand(2),
   3468                              User->getOperand(1));
   3469 
   3470       DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
   3471       DEBUG(User->dump(CurDAG));
   3472       DEBUG(dbgs() << "\nNew: ");
   3473       DEBUG(ResNode->dump(CurDAG));
   3474       DEBUG(dbgs() << "\n");
   3475 
   3476       ReplaceUses(User, ResNode);
   3477   }
   3478 }
   3479 
   3480 void PPCDAGToDAGISel::PeepholeCROps() {
   3481   bool IsModified;
   3482   do {
   3483     IsModified = false;
   3484     for (SDNode &Node : CurDAG->allnodes()) {
   3485       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
   3486       if (!MachineNode || MachineNode->use_empty())
   3487         continue;
   3488       SDNode *ResNode = MachineNode;
   3489 
   3490       bool Op1Set   = false, Op1Unset = false,
   3491            Op1Not   = false,
   3492            Op2Set   = false, Op2Unset = false,
   3493            Op2Not   = false;
   3494 
   3495       unsigned Opcode = MachineNode->getMachineOpcode();
   3496       switch (Opcode) {
   3497       default: break;
   3498       case PPC::CRAND:
   3499       case PPC::CRNAND:
   3500       case PPC::CROR:
   3501       case PPC::CRXOR:
   3502       case PPC::CRNOR:
   3503       case PPC::CREQV:
   3504       case PPC::CRANDC:
   3505       case PPC::CRORC: {
   3506         SDValue Op = MachineNode->getOperand(1);
   3507         if (Op.isMachineOpcode()) {
   3508           if (Op.getMachineOpcode() == PPC::CRSET)
   3509             Op2Set = true;
   3510           else if (Op.getMachineOpcode() == PPC::CRUNSET)
   3511             Op2Unset = true;
   3512           else if (Op.getMachineOpcode() == PPC::CRNOR &&
   3513                    Op.getOperand(0) == Op.getOperand(1))
   3514             Op2Not = true;
   3515         }
   3516         }  // fallthrough
   3517       case PPC::BC:
   3518       case PPC::BCn:
   3519       case PPC::SELECT_I4:
   3520       case PPC::SELECT_I8:
   3521       case PPC::SELECT_F4:
   3522       case PPC::SELECT_F8:
   3523       case PPC::SELECT_QFRC:
   3524       case PPC::SELECT_QSRC:
   3525       case PPC::SELECT_QBRC:
   3526       case PPC::SELECT_VRRC:
   3527       case PPC::SELECT_VSFRC:
   3528       case PPC::SELECT_VSSRC:
   3529       case PPC::SELECT_VSRC: {
   3530         SDValue Op = MachineNode->getOperand(0);
   3531         if (Op.isMachineOpcode()) {
   3532           if (Op.getMachineOpcode() == PPC::CRSET)
   3533             Op1Set = true;
   3534           else if (Op.getMachineOpcode() == PPC::CRUNSET)
   3535             Op1Unset = true;
   3536           else if (Op.getMachineOpcode() == PPC::CRNOR &&
   3537                    Op.getOperand(0) == Op.getOperand(1))
   3538             Op1Not = true;
   3539         }
   3540         }
   3541         break;
   3542       }
   3543 
   3544       bool SelectSwap = false;
   3545       switch (Opcode) {
   3546       default: break;
   3547       case PPC::CRAND:
   3548         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3549           // x & x = x
   3550           ResNode = MachineNode->getOperand(0).getNode();
   3551         else if (Op1Set)
   3552           // 1 & y = y
   3553           ResNode = MachineNode->getOperand(1).getNode();
   3554         else if (Op2Set)
   3555           // x & 1 = x
   3556           ResNode = MachineNode->getOperand(0).getNode();
   3557         else if (Op1Unset || Op2Unset)
   3558           // x & 0 = 0 & y = 0
   3559           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3560                                            MVT::i1);
   3561         else if (Op1Not)
   3562           // ~x & y = andc(y, x)
   3563           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3564                                            MVT::i1, MachineNode->getOperand(1),
   3565                                            MachineNode->getOperand(0).
   3566                                              getOperand(0));
   3567         else if (Op2Not)
   3568           // x & ~y = andc(x, y)
   3569           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3570                                            MVT::i1, MachineNode->getOperand(0),
   3571                                            MachineNode->getOperand(1).
   3572                                              getOperand(0));
   3573         else if (AllUsersSelectZero(MachineNode))
   3574           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
   3575                                            MVT::i1, MachineNode->getOperand(0),
   3576                                            MachineNode->getOperand(1)),
   3577           SelectSwap = true;
   3578         break;
   3579       case PPC::CRNAND:
   3580         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3581           // nand(x, x) -> nor(x, x)
   3582           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3583                                            MVT::i1, MachineNode->getOperand(0),
   3584                                            MachineNode->getOperand(0));
   3585         else if (Op1Set)
   3586           // nand(1, y) -> nor(y, y)
   3587           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3588                                            MVT::i1, MachineNode->getOperand(1),
   3589                                            MachineNode->getOperand(1));
   3590         else if (Op2Set)
   3591           // nand(x, 1) -> nor(x, x)
   3592           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3593                                            MVT::i1, MachineNode->getOperand(0),
   3594                                            MachineNode->getOperand(0));
   3595         else if (Op1Unset || Op2Unset)
   3596           // nand(x, 0) = nand(0, y) = 1
   3597           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3598                                            MVT::i1);
   3599         else if (Op1Not)
   3600           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
   3601           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3602                                            MVT::i1, MachineNode->getOperand(0).
   3603                                                       getOperand(0),
   3604                                            MachineNode->getOperand(1));
   3605         else if (Op2Not)
   3606           // nand(x, ~y) = ~x | y = orc(y, x)
   3607           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3608                                            MVT::i1, MachineNode->getOperand(1).
   3609                                                       getOperand(0),
   3610                                            MachineNode->getOperand(0));
   3611         else if (AllUsersSelectZero(MachineNode))
   3612           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
   3613                                            MVT::i1, MachineNode->getOperand(0),
   3614                                            MachineNode->getOperand(1)),
   3615           SelectSwap = true;
   3616         break;
   3617       case PPC::CROR:
   3618         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3619           // x | x = x
   3620           ResNode = MachineNode->getOperand(0).getNode();
   3621         else if (Op1Set || Op2Set)
   3622           // x | 1 = 1 | y = 1
   3623           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3624                                            MVT::i1);
   3625         else if (Op1Unset)
   3626           // 0 | y = y
   3627           ResNode = MachineNode->getOperand(1).getNode();
   3628         else if (Op2Unset)
   3629           // x | 0 = x
   3630           ResNode = MachineNode->getOperand(0).getNode();
   3631         else if (Op1Not)
   3632           // ~x | y = orc(y, x)
   3633           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3634                                            MVT::i1, MachineNode->getOperand(1),
   3635                                            MachineNode->getOperand(0).
   3636                                              getOperand(0));
   3637         else if (Op2Not)
   3638           // x | ~y = orc(x, y)
   3639           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3640                                            MVT::i1, MachineNode->getOperand(0),
   3641                                            MachineNode->getOperand(1).
   3642                                              getOperand(0));
   3643         else if (AllUsersSelectZero(MachineNode))
   3644           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3645                                            MVT::i1, MachineNode->getOperand(0),
   3646                                            MachineNode->getOperand(1)),
   3647           SelectSwap = true;
   3648         break;
   3649       case PPC::CRXOR:
   3650         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3651           // xor(x, x) = 0
   3652           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3653                                            MVT::i1);
   3654         else if (Op1Set)
   3655           // xor(1, y) -> nor(y, y)
   3656           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3657                                            MVT::i1, MachineNode->getOperand(1),
   3658                                            MachineNode->getOperand(1));
   3659         else if (Op2Set)
   3660           // xor(x, 1) -> nor(x, x)
   3661           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3662                                            MVT::i1, MachineNode->getOperand(0),
   3663                                            MachineNode->getOperand(0));
   3664         else if (Op1Unset)
   3665           // xor(0, y) = y
   3666           ResNode = MachineNode->getOperand(1).getNode();
   3667         else if (Op2Unset)
   3668           // xor(x, 0) = x
   3669           ResNode = MachineNode->getOperand(0).getNode();
   3670         else if (Op1Not)
   3671           // xor(~x, y) = eqv(x, y)
   3672           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   3673                                            MVT::i1, MachineNode->getOperand(0).
   3674                                                       getOperand(0),
   3675                                            MachineNode->getOperand(1));
   3676         else if (Op2Not)
   3677           // xor(x, ~y) = eqv(x, y)
   3678           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   3679                                            MVT::i1, MachineNode->getOperand(0),
   3680                                            MachineNode->getOperand(1).
   3681                                              getOperand(0));
   3682         else if (AllUsersSelectZero(MachineNode))
   3683           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   3684                                            MVT::i1, MachineNode->getOperand(0),
   3685                                            MachineNode->getOperand(1)),
   3686           SelectSwap = true;
   3687         break;
   3688       case PPC::CRNOR:
   3689         if (Op1Set || Op2Set)
   3690           // nor(1, y) -> 0
   3691           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3692                                            MVT::i1);
   3693         else if (Op1Unset)
   3694           // nor(0, y) = ~y -> nor(y, y)
   3695           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3696                                            MVT::i1, MachineNode->getOperand(1),
   3697                                            MachineNode->getOperand(1));
   3698         else if (Op2Unset)
   3699           // nor(x, 0) = ~x
   3700           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3701                                            MVT::i1, MachineNode->getOperand(0),
   3702                                            MachineNode->getOperand(0));
   3703         else if (Op1Not)
   3704           // nor(~x, y) = andc(x, y)
   3705           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3706                                            MVT::i1, MachineNode->getOperand(0).
   3707                                                       getOperand(0),
   3708                                            MachineNode->getOperand(1));
   3709         else if (Op2Not)
   3710           // nor(x, ~y) = andc(y, x)
   3711           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3712                                            MVT::i1, MachineNode->getOperand(1).
   3713                                                       getOperand(0),
   3714                                            MachineNode->getOperand(0));
   3715         else if (AllUsersSelectZero(MachineNode))
   3716           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
   3717                                            MVT::i1, MachineNode->getOperand(0),
   3718                                            MachineNode->getOperand(1)),
   3719           SelectSwap = true;
   3720         break;
   3721       case PPC::CREQV:
   3722         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3723           // eqv(x, x) = 1
   3724           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3725                                            MVT::i1);
   3726         else if (Op1Set)
   3727           // eqv(1, y) = y
   3728           ResNode = MachineNode->getOperand(1).getNode();
   3729         else if (Op2Set)
   3730           // eqv(x, 1) = x
   3731           ResNode = MachineNode->getOperand(0).getNode();
   3732         else if (Op1Unset)
   3733           // eqv(0, y) = ~y -> nor(y, y)
   3734           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3735                                            MVT::i1, MachineNode->getOperand(1),
   3736                                            MachineNode->getOperand(1));
   3737         else if (Op2Unset)
   3738           // eqv(x, 0) = ~x
   3739           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3740                                            MVT::i1, MachineNode->getOperand(0),
   3741                                            MachineNode->getOperand(0));
   3742         else if (Op1Not)
   3743           // eqv(~x, y) = xor(x, y)
   3744           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   3745                                            MVT::i1, MachineNode->getOperand(0).
   3746                                                       getOperand(0),
   3747                                            MachineNode->getOperand(1));
   3748         else if (Op2Not)
   3749           // eqv(x, ~y) = xor(x, y)
   3750           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   3751                                            MVT::i1, MachineNode->getOperand(0),
   3752                                            MachineNode->getOperand(1).
   3753                                              getOperand(0));
   3754         else if (AllUsersSelectZero(MachineNode))
   3755           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   3756                                            MVT::i1, MachineNode->getOperand(0),
   3757                                            MachineNode->getOperand(1)),
   3758           SelectSwap = true;
   3759         break;
   3760       case PPC::CRANDC:
   3761         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3762           // andc(x, x) = 0
   3763           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3764                                            MVT::i1);
   3765         else if (Op1Set)
   3766           // andc(1, y) = ~y
   3767           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3768                                            MVT::i1, MachineNode->getOperand(1),
   3769                                            MachineNode->getOperand(1));
   3770         else if (Op1Unset || Op2Set)
   3771           // andc(0, y) = andc(x, 1) = 0
   3772           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3773                                            MVT::i1);
   3774         else if (Op2Unset)
   3775           // andc(x, 0) = x
   3776           ResNode = MachineNode->getOperand(0).getNode();
   3777         else if (Op1Not)
   3778           // andc(~x, y) = ~(x | y) = nor(x, y)
   3779           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3780                                            MVT::i1, MachineNode->getOperand(0).
   3781                                                       getOperand(0),
   3782                                            MachineNode->getOperand(1));
   3783         else if (Op2Not)
   3784           // andc(x, ~y) = x & y
   3785           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
   3786                                            MVT::i1, MachineNode->getOperand(0),
   3787                                            MachineNode->getOperand(1).
   3788                                              getOperand(0));
   3789         else if (AllUsersSelectZero(MachineNode))
   3790           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3791                                            MVT::i1, MachineNode->getOperand(1),
   3792                                            MachineNode->getOperand(0)),
   3793           SelectSwap = true;
   3794         break;
   3795       case PPC::CRORC:
   3796         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3797           // orc(x, x) = 1
   3798           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3799                                            MVT::i1);
   3800         else if (Op1Set || Op2Unset)
   3801           // orc(1, y) = orc(x, 0) = 1
   3802           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3803                                            MVT::i1);
   3804         else if (Op2Set)
   3805           // orc(x, 1) = x
   3806           ResNode = MachineNode->getOperand(0).getNode();
   3807         else if (Op1Unset)
   3808           // orc(0, y) = ~y
   3809           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3810                                            MVT::i1, MachineNode->getOperand(1),
   3811                                            MachineNode->getOperand(1));
   3812         else if (Op1Not)
   3813           // orc(~x, y) = ~(x & y) = nand(x, y)
   3814           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
   3815                                            MVT::i1, MachineNode->getOperand(0).
   3816                                                       getOperand(0),
   3817                                            MachineNode->getOperand(1));
   3818         else if (Op2Not)
   3819           // orc(x, ~y) = x | y
   3820           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
   3821                                            MVT::i1, MachineNode->getOperand(0),
   3822                                            MachineNode->getOperand(1).
   3823                                              getOperand(0));
   3824         else if (AllUsersSelectZero(MachineNode))
   3825           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3826                                            MVT::i1, MachineNode->getOperand(1),
   3827                                            MachineNode->getOperand(0)),
   3828           SelectSwap = true;
   3829         break;
   3830       case PPC::SELECT_I4:
   3831       case PPC::SELECT_I8:
   3832       case PPC::SELECT_F4:
   3833       case PPC::SELECT_F8:
   3834       case PPC::SELECT_QFRC:
   3835       case PPC::SELECT_QSRC:
   3836       case PPC::SELECT_QBRC:
   3837       case PPC::SELECT_VRRC:
   3838       case PPC::SELECT_VSFRC:
   3839       case PPC::SELECT_VSSRC:
   3840       case PPC::SELECT_VSRC:
   3841         if (Op1Set)
   3842           ResNode = MachineNode->getOperand(1).getNode();
   3843         else if (Op1Unset)
   3844           ResNode = MachineNode->getOperand(2).getNode();
   3845         else if (Op1Not)
   3846           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
   3847                                            SDLoc(MachineNode),
   3848                                            MachineNode->getValueType(0),
   3849                                            MachineNode->getOperand(0).
   3850                                              getOperand(0),
   3851                                            MachineNode->getOperand(2),
   3852                                            MachineNode->getOperand(1));
   3853         break;
   3854       case PPC::BC:
   3855       case PPC::BCn:
   3856         if (Op1Not)
   3857           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
   3858                                                                PPC::BC,
   3859                                            SDLoc(MachineNode),
   3860                                            MVT::Other,
   3861                                            MachineNode->getOperand(0).
   3862                                              getOperand(0),
   3863                                            MachineNode->getOperand(1),
   3864                                            MachineNode->getOperand(2));
   3865         // FIXME: Handle Op1Set, Op1Unset here too.
   3866         break;
   3867       }
   3868 
   3869       // If we're inverting this node because it is used only by selects that
   3870       // we'd like to swap, then swap the selects before the node replacement.
   3871       if (SelectSwap)
   3872         SwapAllSelectUsers(MachineNode);
   3873 
   3874       if (ResNode != MachineNode) {
   3875         DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
   3876         DEBUG(MachineNode->dump(CurDAG));
   3877         DEBUG(dbgs() << "\nNew: ");
   3878         DEBUG(ResNode->dump(CurDAG));
   3879         DEBUG(dbgs() << "\n");
   3880 
   3881         ReplaceUses(MachineNode, ResNode);
   3882         IsModified = true;
   3883       }
   3884     }
   3885     if (IsModified)
   3886       CurDAG->RemoveDeadNodes();
   3887   } while (IsModified);
   3888 }
   3889 
   3890 // Gather the set of 32-bit operations that are known to have their
   3891 // higher-order 32 bits zero, where ToPromote contains all such operations.
   3892 static bool PeepholePPC64ZExtGather(SDValue Op32,
   3893                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
   3894   if (!Op32.isMachineOpcode())
   3895     return false;
   3896 
   3897   // First, check for the "frontier" instructions (those that will clear the
   3898   // higher-order 32 bits.
   3899 
   3900   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
   3901   // around. If it does not, then these instructions will clear the
   3902   // higher-order bits.
   3903   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
   3904        Op32.getMachineOpcode() == PPC::RLWNM) &&
   3905       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
   3906     ToPromote.insert(Op32.getNode());
   3907     return true;
   3908   }
   3909 
   3910   // SLW and SRW always clear the higher-order bits.
   3911   if (Op32.getMachineOpcode() == PPC::SLW ||
   3912       Op32.getMachineOpcode() == PPC::SRW) {
   3913     ToPromote.insert(Op32.getNode());
   3914     return true;
   3915   }
   3916 
   3917   // For LI and LIS, we need the immediate to be positive (so that it is not
   3918   // sign extended).
   3919   if (Op32.getMachineOpcode() == PPC::LI ||
   3920       Op32.getMachineOpcode() == PPC::LIS) {
   3921     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
   3922       return false;
   3923 
   3924     ToPromote.insert(Op32.getNode());
   3925     return true;
   3926   }
   3927 
   3928   // LHBRX and LWBRX always clear the higher-order bits.
   3929   if (Op32.getMachineOpcode() == PPC::LHBRX ||
   3930       Op32.getMachineOpcode() == PPC::LWBRX) {
   3931     ToPromote.insert(Op32.getNode());
   3932     return true;
   3933   }
   3934 
   3935   // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
   3936   if (Op32.getMachineOpcode() == PPC::CNTLZW) {
   3937     ToPromote.insert(Op32.getNode());
   3938     return true;
   3939   }
   3940 
   3941   // Next, check for those instructions we can look through.
   3942 
   3943   // Assuming the mask does not wrap around, then the higher-order bits are
   3944   // taken directly from the first operand.
   3945   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
   3946       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
   3947     SmallPtrSet<SDNode *, 16> ToPromote1;
   3948     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
   3949       return false;
   3950 
   3951     ToPromote.insert(Op32.getNode());
   3952     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3953     return true;
   3954   }
   3955 
   3956   // For OR, the higher-order bits are zero if that is true for both operands.
   3957   // For SELECT_I4, the same is true (but the relevant operand numbers are
   3958   // shifted by 1).
   3959   if (Op32.getMachineOpcode() == PPC::OR ||
   3960       Op32.getMachineOpcode() == PPC::SELECT_I4) {
   3961     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
   3962     SmallPtrSet<SDNode *, 16> ToPromote1;
   3963     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
   3964       return false;
   3965     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
   3966       return false;
   3967 
   3968     ToPromote.insert(Op32.getNode());
   3969     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3970     return true;
   3971   }
   3972 
   3973   // For ORI and ORIS, we need the higher-order bits of the first operand to be
   3974   // zero, and also for the constant to be positive (so that it is not sign
   3975   // extended).
   3976   if (Op32.getMachineOpcode() == PPC::ORI ||
   3977       Op32.getMachineOpcode() == PPC::ORIS) {
   3978     SmallPtrSet<SDNode *, 16> ToPromote1;
   3979     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
   3980       return false;
   3981     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
   3982       return false;
   3983 
   3984     ToPromote.insert(Op32.getNode());
   3985     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3986     return true;
   3987   }
   3988 
   3989   // The higher-order bits of AND are zero if that is true for at least one of
   3990   // the operands.
   3991   if (Op32.getMachineOpcode() == PPC::AND) {
   3992     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
   3993     bool Op0OK =
   3994       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
   3995     bool Op1OK =
   3996       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
   3997     if (!Op0OK && !Op1OK)
   3998       return false;
   3999 
   4000     ToPromote.insert(Op32.getNode());
   4001 
   4002     if (Op0OK)
   4003       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   4004 
   4005     if (Op1OK)
   4006       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
   4007 
   4008     return true;
   4009   }
   4010 
   4011   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
   4012   // of the first operand, or if the second operand is positive (so that it is
   4013   // not sign extended).
   4014   if (Op32.getMachineOpcode() == PPC::ANDIo ||
   4015       Op32.getMachineOpcode() == PPC::ANDISo) {
   4016     SmallPtrSet<SDNode *, 16> ToPromote1;
   4017     bool Op0OK =
   4018       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
   4019     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
   4020     if (!Op0OK && !Op1OK)
   4021       return false;
   4022 
   4023     ToPromote.insert(Op32.getNode());
   4024 
   4025     if (Op0OK)
   4026       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   4027 
   4028     return true;
   4029   }
   4030 
   4031   return false;
   4032 }
   4033 
   4034 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
   4035   if (!PPCSubTarget->isPPC64())
   4036     return;
   4037 
   4038   // When we zero-extend from i32 to i64, we use a pattern like this:
   4039   // def : Pat<(i64 (zext i32:$in)),
   4040   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
   4041   //                   0, 32)>;
   4042   // There are several 32-bit shift/rotate instructions, however, that will
   4043   // clear the higher-order bits of their output, rendering the RLDICL
   4044   // unnecessary. When that happens, we remove it here, and redefine the
   4045   // relevant 32-bit operation to be a 64-bit operation.
   4046 
   4047   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   4048   ++Position;
   4049 
   4050   bool MadeChange = false;
   4051   while (Position != CurDAG->allnodes_begin()) {
   4052     SDNode *N = &*--Position;
   4053     // Skip dead nodes and any non-machine opcodes.
   4054     if (N->use_empty() || !N->isMachineOpcode())
   4055       continue;
   4056 
   4057     if (N->getMachineOpcode() != PPC::RLDICL)
   4058       continue;
   4059 
   4060     if (N->getConstantOperandVal(1) != 0 ||
   4061         N->getConstantOperandVal(2) != 32)
   4062       continue;
   4063 
   4064     SDValue ISR = N->getOperand(0);
   4065     if (!ISR.isMachineOpcode() ||
   4066         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
   4067       continue;
   4068 
   4069     if (!ISR.hasOneUse())
   4070       continue;
   4071 
   4072     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
   4073       continue;
   4074 
   4075     SDValue IDef = ISR.getOperand(0);
   4076     if (!IDef.isMachineOpcode() ||
   4077         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
   4078       continue;
   4079 
   4080     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
   4081     // can get rid of it.
   4082 
   4083     SDValue Op32 = ISR->getOperand(1);
   4084     if (!Op32.isMachineOpcode())
   4085       continue;
   4086 
   4087     // There are some 32-bit instructions that always clear the high-order 32
   4088     // bits, there are also some instructions (like AND) that we can look
   4089     // through.
   4090     SmallPtrSet<SDNode *, 16> ToPromote;
   4091     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
   4092       continue;
   4093 
   4094     // If the ToPromote set contains nodes that have uses outside of the set
   4095     // (except for the original INSERT_SUBREG), then abort the transformation.
   4096     bool OutsideUse = false;
   4097     for (SDNode *PN : ToPromote) {
   4098       for (SDNode *UN : PN->uses()) {
   4099         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
   4100           OutsideUse = true;
   4101           break;
   4102         }
   4103       }
   4104 
   4105       if (OutsideUse)
   4106         break;
   4107     }
   4108     if (OutsideUse)
   4109       continue;
   4110 
   4111     MadeChange = true;
   4112 
   4113     // We now know that this zero extension can be removed by promoting to
   4114     // nodes in ToPromote to 64-bit operations, where for operations in the
   4115     // frontier of the set, we need to insert INSERT_SUBREGs for their
   4116     // operands.
   4117     for (SDNode *PN : ToPromote) {
   4118       unsigned NewOpcode;
   4119       switch (PN->getMachineOpcode()) {
   4120       default:
   4121         llvm_unreachable("Don't know the 64-bit variant of this instruction");
   4122       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
   4123       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
   4124       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
   4125       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
   4126       case PPC::LI:        NewOpcode = PPC::LI8; break;
   4127       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
   4128       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
   4129       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
   4130       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
   4131       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
   4132       case PPC::OR:        NewOpcode = PPC::OR8; break;
   4133       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
   4134       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
   4135       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
   4136       case PPC::AND:       NewOpcode = PPC::AND8; break;
   4137       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
   4138       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
   4139       }
   4140 
   4141       // Note: During the replacement process, the nodes will be in an
   4142       // inconsistent state (some instructions will have operands with values
   4143       // of the wrong type). Once done, however, everything should be right
   4144       // again.
   4145 
   4146       SmallVector<SDValue, 4> Ops;
   4147       for (const SDValue &V : PN->ops()) {
   4148         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
   4149             !isa<ConstantSDNode>(V)) {
   4150           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
   4151           SDNode *ReplOp =
   4152             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
   4153                                    ISR.getNode()->getVTList(), ReplOpOps);
   4154           Ops.push_back(SDValue(ReplOp, 0));
   4155         } else {
   4156           Ops.push_back(V);
   4157         }
   4158       }
   4159 
   4160       // Because all to-be-promoted nodes only have users that are other
   4161       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
   4162       // the i32 result value type with i64.
   4163 
   4164       SmallVector<EVT, 2> NewVTs;
   4165       SDVTList VTs = PN->getVTList();
   4166       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
   4167         if (VTs.VTs[i] == MVT::i32)
   4168           NewVTs.push_back(MVT::i64);
   4169         else
   4170           NewVTs.push_back(VTs.VTs[i]);
   4171 
   4172       DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
   4173       DEBUG(PN->dump(CurDAG));
   4174 
   4175       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
   4176 
   4177       DEBUG(dbgs() << "\nNew: ");
   4178       DEBUG(PN->dump(CurDAG));
   4179       DEBUG(dbgs() << "\n");
   4180     }
   4181 
   4182     // Now we replace the original zero extend and its associated INSERT_SUBREG
   4183     // with the value feeding the INSERT_SUBREG (which has now been promoted to
   4184     // return an i64).
   4185 
   4186     DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
   4187     DEBUG(N->dump(CurDAG));
   4188     DEBUG(dbgs() << "\nNew: ");
   4189     DEBUG(Op32.getNode()->dump(CurDAG));
   4190     DEBUG(dbgs() << "\n");
   4191 
   4192     ReplaceUses(N, Op32.getNode());
   4193   }
   4194 
   4195   if (MadeChange)
   4196     CurDAG->RemoveDeadNodes();
   4197 }
   4198 
   4199 void PPCDAGToDAGISel::PeepholePPC64() {
   4200   // These optimizations are currently supported only for 64-bit SVR4.
   4201   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
   4202     return;
   4203 
   4204   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   4205   ++Position;
   4206 
   4207   while (Position != CurDAG->allnodes_begin()) {
   4208     SDNode *N = &*--Position;
   4209     // Skip dead nodes and any non-machine opcodes.
   4210     if (N->use_empty() || !N->isMachineOpcode())
   4211       continue;
   4212 
   4213     unsigned FirstOp;
   4214     unsigned StorageOpcode = N->getMachineOpcode();
   4215 
   4216     switch (StorageOpcode) {
   4217     default: continue;
   4218 
   4219     case PPC::LBZ:
   4220     case PPC::LBZ8:
   4221     case PPC::LD:
   4222     case PPC::LFD:
   4223     case PPC::LFS:
   4224     case PPC::LHA:
   4225     case PPC::LHA8:
   4226     case PPC::LHZ:
   4227     case PPC::LHZ8:
   4228     case PPC::LWA:
   4229     case PPC::LWZ:
   4230     case PPC::LWZ8:
   4231       FirstOp = 0;
   4232       break;
   4233 
   4234     case PPC::STB:
   4235     case PPC::STB8:
   4236     case PPC::STD:
   4237     case PPC::STFD:
   4238     case PPC::STFS:
   4239     case PPC::STH:
   4240     case PPC::STH8:
   4241     case PPC::STW:
   4242     case PPC::STW8:
   4243       FirstOp = 1;
   4244       break;
   4245     }
   4246 
   4247     // If this is a load or store with a zero offset, or within the alignment,
   4248     // we may be able to fold an add-immediate into the memory operation.
   4249     // The check against alignment is below, as it can't occur until we check
   4250     // the arguments to N
   4251     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
   4252       continue;
   4253 
   4254     SDValue Base = N->getOperand(FirstOp + 1);
   4255     if (!Base.isMachineOpcode())
   4256       continue;
   4257 
   4258     // On targets with fusion, we don't want this to fire and remove a fusion
   4259     // opportunity, unless a) it results in another fusion opportunity or
   4260     // b) optimizing for size.
   4261     if (PPCSubTarget->hasFusion() &&
   4262         (!MF->getFunction()->optForSize() && !Base.hasOneUse()))
   4263       continue;
   4264 
   4265     unsigned Flags = 0;
   4266     bool ReplaceFlags = true;
   4267 
   4268     // When the feeding operation is an add-immediate of some sort,
   4269     // determine whether we need to add relocation information to the
   4270     // target flags on the immediate operand when we fold it into the
   4271     // load instruction.
   4272     //
   4273     // For something like ADDItocL, the relocation information is
   4274     // inferred from the opcode; when we process it in the AsmPrinter,
   4275     // we add the necessary relocation there.  A load, though, can receive
   4276     // relocation from various flavors of ADDIxxx, so we need to carry
   4277     // the relocation information in the target flags.
   4278     switch (Base.getMachineOpcode()) {
   4279     default: continue;
   4280 
   4281     case PPC::ADDI8:
   4282     case PPC::ADDI:
   4283       // In some cases (such as TLS) the relocation information
   4284       // is already in place on the operand, so copying the operand
   4285       // is sufficient.
   4286       ReplaceFlags = false;
   4287       // For these cases, the immediate may not be divisible by 4, in
   4288       // which case the fold is illegal for DS-form instructions.  (The
   4289       // other cases provide aligned addresses and are always safe.)
   4290       if ((StorageOpcode == PPC::LWA ||
   4291            StorageOpcode == PPC::LD  ||
   4292            StorageOpcode == PPC::STD) &&
   4293           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
   4294            Base.getConstantOperandVal(1) % 4 != 0))
   4295         continue;
   4296       break;
   4297     case PPC::ADDIdtprelL:
   4298       Flags = PPCII::MO_DTPREL_LO;
   4299       break;
   4300     case PPC::ADDItlsldL:
   4301       Flags = PPCII::MO_TLSLD_LO;
   4302       break;
   4303     case PPC::ADDItocL:
   4304       Flags = PPCII::MO_TOC_LO;
   4305       break;
   4306     }
   4307 
   4308     SDValue ImmOpnd = Base.getOperand(1);
   4309     int MaxDisplacement = 0;
   4310     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
   4311       const GlobalValue *GV = GA->getGlobal();
   4312       MaxDisplacement = GV->getAlignment() - 1;
   4313     }
   4314 
   4315     int Offset = N->getConstantOperandVal(FirstOp);
   4316     if (Offset < 0 || Offset > MaxDisplacement)
   4317       continue;
   4318 
   4319     // We found an opportunity.  Reverse the operands from the add
   4320     // immediate and substitute them into the load or store.  If
   4321     // needed, update the target flags for the immediate operand to
   4322     // reflect the necessary relocation information.
   4323     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
   4324     DEBUG(Base->dump(CurDAG));
   4325     DEBUG(dbgs() << "\nN: ");
   4326     DEBUG(N->dump(CurDAG));
   4327     DEBUG(dbgs() << "\n");
   4328 
   4329     // If the relocation information isn't already present on the
   4330     // immediate operand, add it now.
   4331     if (ReplaceFlags) {
   4332       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
   4333         SDLoc dl(GA);
   4334         const GlobalValue *GV = GA->getGlobal();
   4335         // We can't perform this optimization for data whose alignment
   4336         // is insufficient for the instruction encoding.
   4337         if (GV->getAlignment() < 4 &&
   4338             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
   4339              StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
   4340           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
   4341           continue;
   4342         }
   4343         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
   4344       } else if (ConstantPoolSDNode *CP =
   4345                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
   4346         const Constant *C = CP->getConstVal();
   4347         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
   4348                                                 CP->getAlignment(),
   4349                                                 Offset, Flags);
   4350       }
   4351     }
   4352 
   4353     if (FirstOp == 1) // Store
   4354       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
   4355                                        Base.getOperand(0), N->getOperand(3));
   4356     else // Load
   4357       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
   4358                                        N->getOperand(2));
   4359 
   4360     // The add-immediate may now be dead, in which case remove it.
   4361     if (Base.getNode()->use_empty())
   4362       CurDAG->RemoveDeadNode(Base.getNode());
   4363   }
   4364 }
   4365 
   4366 
   4367 /// createPPCISelDag - This pass converts a legalized DAG into a
   4368 /// PowerPC-specific DAG, ready for instruction scheduling.
   4369 ///
   4370 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
   4371   return new PPCDAGToDAGISel(TM);
   4372 }
   4373 
   4374 static void initializePassOnce(PassRegistry &Registry) {
   4375   const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
   4376   PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
   4377                               nullptr, false, false);
   4378   Registry.registerPass(*PI, true);
   4379 }
   4380 
   4381 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
   4382   CALL_ONCE_INITIALIZATION(initializePassOnce);
   4383 }
   4384 
   4385