Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
     16 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
     17 
     18 #include "llvm/CodeGen/CallingConvLower.h"
     19 #include "llvm/CodeGen/SelectionDAG.h"
     20 #include "llvm/Target/TargetLowering.h"
     21 #include "llvm/Target/TargetOptions.h"
     22 
     23 namespace llvm {
     24   class X86Subtarget;
     25   class X86TargetMachine;
     26 
     27   namespace X86ISD {
     28     // X86 Specific DAG Nodes
     29     enum NodeType : unsigned {
     30       // Start the numbering where the builtin ops leave off.
     31       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     32 
     33       /// Bit scan forward.
     34       BSF,
     35       /// Bit scan reverse.
     36       BSR,
     37 
     38       /// Double shift instructions. These correspond to
     39       /// X86::SHLDxx and X86::SHRDxx instructions.
     40       SHLD,
     41       SHRD,
     42 
     43       /// Bitwise logical AND of floating point values. This corresponds
     44       /// to X86::ANDPS or X86::ANDPD.
     45       FAND,
     46 
     47       /// Bitwise logical OR of floating point values. This corresponds
     48       /// to X86::ORPS or X86::ORPD.
     49       FOR,
     50 
     51       /// Bitwise logical XOR of floating point values. This corresponds
     52       /// to X86::XORPS or X86::XORPD.
     53       FXOR,
     54 
     55       ///  Bitwise logical ANDNOT of floating point values. This
     56       /// corresponds to X86::ANDNPS or X86::ANDNPD.
     57       FANDN,
     58 
     59       /// These operations represent an abstract X86 call
     60       /// instruction, which includes a bunch of information.  In particular the
     61       /// operands of these node are:
     62       ///
     63       ///     #0 - The incoming token chain
     64       ///     #1 - The callee
     65       ///     #2 - The number of arg bytes the caller pushes on the stack.
     66       ///     #3 - The number of arg bytes the callee pops off the stack.
     67       ///     #4 - The value to pass in AL/AX/EAX (optional)
     68       ///     #5 - The value to pass in DL/DX/EDX (optional)
     69       ///
     70       /// The result values of these nodes are:
     71       ///
     72       ///     #0 - The outgoing token chain
     73       ///     #1 - The first register result value (optional)
     74       ///     #2 - The second register result value (optional)
     75       ///
     76       CALL,
     77 
     78       /// This operation implements the lowering for readcyclecounter
     79       RDTSC_DAG,
     80 
     81       /// X86 Read Time-Stamp Counter and Processor ID.
     82       RDTSCP_DAG,
     83 
     84       /// X86 Read Performance Monitoring Counters.
     85       RDPMC_DAG,
     86 
     87       /// X86 compare and logical compare instructions.
     88       CMP, COMI, UCOMI,
     89 
     90       /// X86 bit-test instructions.
     91       BT,
     92 
     93       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
     94       /// operand, usually produced by a CMP instruction.
     95       SETCC,
     96 
     97       /// X86 Select
     98       SELECT,
     99 
    100       // Same as SETCC except it's materialized with a sbb and the value is all
    101       // one's or all zero's.
    102       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
    103 
    104       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
    105       /// Operands are two FP values to compare; result is a mask of
    106       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
    107       FSETCC,
    108 
    109       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
    110       /// result in an integer GPR.  Needs masking for scalar result.
    111       FGETSIGNx86,
    112 
    113       /// X86 conditional moves. Operand 0 and operand 1 are the two values
    114       /// to select from. Operand 2 is the condition code, and operand 3 is the
    115       /// flag operand produced by a CMP or TEST instruction. It also writes a
    116       /// flag result.
    117       CMOV,
    118 
    119       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
    120       /// is the block to branch if condition is true, operand 2 is the
    121       /// condition code, and operand 3 is the flag operand produced by a CMP
    122       /// or TEST instruction.
    123       BRCOND,
    124 
    125       /// Return with a flag operand. Operand 0 is the chain operand, operand
    126       /// 1 is the number of bytes of stack to pop.
    127       RET_FLAG,
    128 
    129       /// Return from interrupt. Operand 0 is the number of bytes to pop.
    130       IRET,
    131 
    132       /// Repeat fill, corresponds to X86::REP_STOSx.
    133       REP_STOS,
    134 
    135       /// Repeat move, corresponds to X86::REP_MOVSx.
    136       REP_MOVS,
    137 
    138       /// On Darwin, this node represents the result of the popl
    139       /// at function entry, used for PIC code.
    140       GlobalBaseReg,
    141 
    142       /// A wrapper node for TargetConstantPool,
    143       /// TargetExternalSymbol, and TargetGlobalAddress.
    144       Wrapper,
    145 
    146       /// Special wrapper used under X86-64 PIC mode for RIP
    147       /// relative displacements.
    148       WrapperRIP,
    149 
    150       /// Copies a 64-bit value from the low word of an XMM vector
    151       /// to an MMX vector.  If you think this is too close to the previous
    152       /// mnemonic, so do I; blame Intel.
    153       MOVDQ2Q,
    154 
    155       /// Copies a 32-bit value from the low word of a MMX
    156       /// vector to a GPR.
    157       MMX_MOVD2W,
    158 
    159       /// Copies a GPR into the low 32-bit word of a MMX vector
    160       /// and zero out the high word.
    161       MMX_MOVW2D,
    162 
    163       /// Extract an 8-bit value from a vector and zero extend it to
    164       /// i32, corresponds to X86::PEXTRB.
    165       PEXTRB,
    166 
    167       /// Extract a 16-bit value from a vector and zero extend it to
    168       /// i32, corresponds to X86::PEXTRW.
    169       PEXTRW,
    170 
    171       /// Insert any element of a 4 x float vector into any element
    172       /// of a destination 4 x floatvector.
    173       INSERTPS,
    174 
    175       /// Insert the lower 8-bits of a 32-bit value to a vector,
    176       /// corresponds to X86::PINSRB.
    177       PINSRB,
    178 
    179       /// Insert the lower 16-bits of a 32-bit value to a vector,
    180       /// corresponds to X86::PINSRW.
    181       PINSRW, MMX_PINSRW,
    182 
    183       /// Shuffle 16 8-bit values within a vector.
    184       PSHUFB,
    185 
    186       /// Compute Sum of Absolute Differences.
    187       PSADBW,
    188       /// Compute Double Block Packed Sum-Absolute-Differences
    189       DBPSADBW,
    190 
    191       /// Bitwise Logical AND NOT of Packed FP values.
    192       ANDNP,
    193 
    194       /// Copy integer sign.
    195       PSIGN,
    196 
    197       /// Blend where the selector is an immediate.
    198       BLENDI,
    199 
    200       /// Blend where the condition has been shrunk.
    201       /// This is used to emphasize that the condition mask is
    202       /// no more valid for generic VSELECT optimizations.
    203       SHRUNKBLEND,
    204 
    205       /// Combined add and sub on an FP vector.
    206       ADDSUB,
    207 
    208       //  FP vector ops with rounding mode.
    209       FADD_RND,
    210       FSUB_RND,
    211       FMUL_RND,
    212       FDIV_RND,
    213       FMAX_RND,
    214       FMIN_RND,
    215       FSQRT_RND,
    216 
    217       // FP vector get exponent
    218       FGETEXP_RND,
    219       // Extract Normalized Mantissas
    220       VGETMANT,
    221       // FP Scale
    222       SCALEF,
    223       // Integer add/sub with unsigned saturation.
    224       ADDUS,
    225       SUBUS,
    226       // Integer add/sub with signed saturation.
    227       ADDS,
    228       SUBS,
    229       // Unsigned Integer average
    230       AVG,
    231       /// Integer horizontal add.
    232       HADD,
    233 
    234       /// Integer horizontal sub.
    235       HSUB,
    236 
    237       /// Floating point horizontal add.
    238       FHADD,
    239 
    240       /// Floating point horizontal sub.
    241       FHSUB,
    242 
    243       // Integer absolute value
    244       ABS,
    245 
    246       // Detect Conflicts Within a Vector
    247       CONFLICT,
    248 
    249       /// Floating point max and min.
    250       FMAX, FMIN,
    251 
    252       /// Commutative FMIN and FMAX.
    253       FMAXC, FMINC,
    254 
    255       /// Floating point reciprocal-sqrt and reciprocal approximation.
    256       /// Note that these typically require refinement
    257       /// in order to obtain suitable precision.
    258       FRSQRT, FRCP,
    259 
    260       // Thread Local Storage.
    261       TLSADDR,
    262 
    263       // Thread Local Storage. A call to get the start address
    264       // of the TLS block for the current module.
    265       TLSBASEADDR,
    266 
    267       // Thread Local Storage.  When calling to an OS provided
    268       // thunk at the address from an earlier relocation.
    269       TLSCALL,
    270 
    271       // Exception Handling helpers.
    272       EH_RETURN,
    273 
    274       // SjLj exception handling setjmp.
    275       EH_SJLJ_SETJMP,
    276 
    277       // SjLj exception handling longjmp.
    278       EH_SJLJ_LONGJMP,
    279 
    280       /// Tail call return. See X86TargetLowering::LowerCall for
    281       /// the list of operands.
    282       TC_RETURN,
    283 
    284       // Vector move to low scalar and zero higher vector elements.
    285       VZEXT_MOVL,
    286 
    287       // Vector integer zero-extend.
    288       VZEXT,
    289 
    290       // Vector integer signed-extend.
    291       VSEXT,
    292 
    293       // Vector integer truncate.
    294       VTRUNC,
    295       // Vector integer truncate with unsigned/signed saturation.
    296       VTRUNCUS, VTRUNCS,
    297 
    298       // Vector FP extend.
    299       VFPEXT,
    300 
    301       // Vector FP round.
    302       VFPROUND,
    303 
    304       // Vector signed/unsigned integer to double.
    305       CVTDQ2PD, CVTUDQ2PD,
    306 
    307       // 128-bit vector logical left / right shift
    308       VSHLDQ, VSRLDQ,
    309 
    310       // Vector shift elements
    311       VSHL, VSRL, VSRA,
    312 
    313       // Vector shift elements by immediate
    314       VSHLI, VSRLI, VSRAI,
    315 
    316       // Vector packed double/float comparison.
    317       CMPP,
    318 
    319       // Vector integer comparisons.
    320       PCMPEQ, PCMPGT,
    321       // Vector integer comparisons, the result is in a mask vector.
    322       PCMPEQM, PCMPGTM,
    323 
    324       /// Vector comparison generating mask bits for fp and
    325       /// integer signed and unsigned data types.
    326       CMPM,
    327       CMPMU,
    328       // Vector comparison with rounding mode for FP values
    329       CMPM_RND,
    330 
    331       // Arithmetic operations with FLAGS results.
    332       ADD, SUB, ADC, SBB, SMUL,
    333       INC, DEC, OR, XOR, AND,
    334 
    335       BEXTR,  // Bit field extract
    336 
    337       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
    338 
    339       // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS
    340       SMUL8, UMUL8,
    341 
    342       // 8-bit divrem that zero-extend the high result (AH).
    343       UDIVREM8_ZEXT_HREG,
    344       SDIVREM8_SEXT_HREG,
    345 
    346       // X86-specific multiply by immediate.
    347       MUL_IMM,
    348 
    349       // Vector bitwise comparisons.
    350       PTEST,
    351 
    352       // Vector packed fp sign bitwise comparisons.
    353       TESTP,
    354 
    355       // Vector "test" in AVX-512, the result is in a mask vector.
    356       TESTM,
    357       TESTNM,
    358 
    359       // OR/AND test for masks
    360       KORTEST,
    361       KTEST,
    362 
    363       // Several flavors of instructions with vector shuffle behaviors.
    364       PACKSS,
    365       PACKUS,
    366       // Intra-lane alignr
    367       PALIGNR,
    368       // AVX512 inter-lane alignr
    369       VALIGN,
    370       PSHUFD,
    371       PSHUFHW,
    372       PSHUFLW,
    373       SHUFP,
    374       //Shuffle Packed Values at 128-bit granularity
    375       SHUF128,
    376       MOVDDUP,
    377       MOVSHDUP,
    378       MOVSLDUP,
    379       MOVLHPS,
    380       MOVLHPD,
    381       MOVHLPS,
    382       MOVLPS,
    383       MOVLPD,
    384       MOVSD,
    385       MOVSS,
    386       UNPCKL,
    387       UNPCKH,
    388       VPERMILPV,
    389       VPERMILPI,
    390       VPERMV,
    391       VPERMV3,
    392       VPERMIV3,
    393       VPERMI,
    394       VPERM2X128,
    395       // Bitwise ternary logic
    396       VPTERNLOG,
    397       // Fix Up Special Packed Float32/64 values
    398       VFIXUPIMM,
    399       // Range Restriction Calculation For Packed Pairs of Float32/64 values
    400       VRANGE,
    401       // Reduce - Perform Reduction Transformation on scalar\packed FP
    402       VREDUCE,
    403       // RndScale - Round FP Values To Include A Given Number Of Fraction Bits
    404       VRNDSCALE,
    405       // VFPCLASS - Tests Types Of a FP Values for packed types.
    406       VFPCLASS,
    407       // VFPCLASSS - Tests Types Of a FP Values for scalar types.
    408       VFPCLASSS,
    409       // Broadcast scalar to vector
    410       VBROADCAST,
    411       // Broadcast mask to vector
    412       VBROADCASTM,
    413       // Broadcast subvector to vector
    414       SUBV_BROADCAST,
    415       // Insert/Extract vector element
    416       VINSERT,
    417       VEXTRACT,
    418 
    419       /// SSE4A Extraction and Insertion.
    420       EXTRQI, INSERTQI,
    421 
    422       // XOP variable/immediate rotations
    423       VPROT, VPROTI,
    424       // XOP arithmetic/logical shifts
    425       VPSHA, VPSHL,
    426       // XOP signed/unsigned integer comparisons
    427       VPCOM, VPCOMU,
    428 
    429       // Vector multiply packed unsigned doubleword integers
    430       PMULUDQ,
    431       // Vector multiply packed signed doubleword integers
    432       PMULDQ,
    433       // Vector Multiply Packed UnsignedIntegers with Round and Scale
    434       MULHRS,
    435       // Multiply and Add Packed Integers
    436       VPMADDUBSW, VPMADDWD,
    437       // FMA nodes
    438       FMADD,
    439       FNMADD,
    440       FMSUB,
    441       FNMSUB,
    442       FMADDSUB,
    443       FMSUBADD,
    444       // FMA with rounding mode
    445       FMADD_RND,
    446       FNMADD_RND,
    447       FMSUB_RND,
    448       FNMSUB_RND,
    449       FMADDSUB_RND,
    450       FMSUBADD_RND,
    451 
    452       // Compress and expand
    453       COMPRESS,
    454       EXPAND,
    455 
    456       //Convert Unsigned/Integer to Scalar Floating-Point Value
    457       //with rounding mode
    458       SINT_TO_FP_RND,
    459       UINT_TO_FP_RND,
    460 
    461       // Vector float/double to signed/unsigned integer.
    462       FP_TO_SINT_RND, FP_TO_UINT_RND,
    463       // Save xmm argument registers to the stack, according to %al. An operator
    464       // is needed so that this can be expanded with control flow.
    465       VASTART_SAVE_XMM_REGS,
    466 
    467       // Windows's _chkstk call to do stack probing.
    468       WIN_ALLOCA,
    469 
    470       // For allocating variable amounts of stack space when using
    471       // segmented stacks. Check if the current stacklet has enough space, and
    472       // falls back to heap allocation if not.
    473       SEG_ALLOCA,
    474 
    475       // Memory barrier
    476       MEMBARRIER,
    477       MFENCE,
    478       SFENCE,
    479       LFENCE,
    480 
    481       // Store FP status word into i16 register.
    482       FNSTSW16r,
    483 
    484       // Store contents of %ah into %eflags.
    485       SAHF,
    486 
    487       // Get a random integer and indicate whether it is valid in CF.
    488       RDRAND,
    489 
    490       // Get a NIST SP800-90B & C compliant random integer and
    491       // indicate whether it is valid in CF.
    492       RDSEED,
    493 
    494       PCMPISTRI,
    495       PCMPESTRI,
    496 
    497       // Test if in transactional execution.
    498       XTEST,
    499 
    500       // ERI instructions
    501       RSQRT28, RCP28, EXP2,
    502 
    503       // Compare and swap.
    504       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
    505       LCMPXCHG8_DAG,
    506       LCMPXCHG16_DAG,
    507 
    508       // Load, scalar_to_vector, and zero extend.
    509       VZEXT_LOAD,
    510 
    511       // Store FP control world into i16 memory.
    512       FNSTCW16m,
    513 
    514       /// This instruction implements FP_TO_SINT with the
    515       /// integer destination in memory and a FP reg source.  This corresponds
    516       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
    517       /// has two inputs (token chain and address) and two outputs (int value
    518       /// and token chain).
    519       FP_TO_INT16_IN_MEM,
    520       FP_TO_INT32_IN_MEM,
    521       FP_TO_INT64_IN_MEM,
    522 
    523       /// This instruction implements SINT_TO_FP with the
    524       /// integer source in memory and FP reg result.  This corresponds to the
    525       /// X86::FILD*m instructions. It has three inputs (token chain, address,
    526       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
    527       /// also produces a flag).
    528       FILD,
    529       FILD_FLAG,
    530 
    531       /// This instruction implements an extending load to FP stack slots.
    532       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
    533       /// operand, ptr to load from, and a ValueType node indicating the type
    534       /// to load to.
    535       FLD,
    536 
    537       /// This instruction implements a truncating store to FP stack
    538       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
    539       /// chain operand, value to store, address, and a ValueType to store it
    540       /// as.
    541       FST,
    542 
    543       /// This instruction grabs the address of the next argument
    544       /// from a va_list. (reads and modifies the va_list in memory)
    545       VAARG_64
    546 
    547       // WARNING: Do not add anything in the end unless you want the node to
    548       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
    549       // thought as target memory ops!
    550     };
    551   }
    552 
    553   /// Define some predicates that are used for node matching.
    554   namespace X86 {
    555     /// Return true if the specified
    556     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    557     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
    558     bool isVEXTRACT128Index(SDNode *N);
    559 
    560     /// Return true if the specified
    561     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    562     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
    563     bool isVINSERT128Index(SDNode *N);
    564 
    565     /// Return true if the specified
    566     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    567     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
    568     bool isVEXTRACT256Index(SDNode *N);
    569 
    570     /// Return true if the specified
    571     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    572     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
    573     bool isVINSERT256Index(SDNode *N);
    574 
    575     /// Return the appropriate
    576     /// immediate to extract the specified EXTRACT_SUBVECTOR index
    577     /// with VEXTRACTF128, VEXTRACTI128 instructions.
    578     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
    579 
    580     /// Return the appropriate
    581     /// immediate to insert at the specified INSERT_SUBVECTOR index
    582     /// with VINSERTF128, VINSERT128 instructions.
    583     unsigned getInsertVINSERT128Immediate(SDNode *N);
    584 
    585     /// Return the appropriate
    586     /// immediate to extract the specified EXTRACT_SUBVECTOR index
    587     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
    588     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
    589 
    590     /// Return the appropriate
    591     /// immediate to insert at the specified INSERT_SUBVECTOR index
    592     /// with VINSERTF64x4, VINSERTI64x4 instructions.
    593     unsigned getInsertVINSERT256Immediate(SDNode *N);
    594 
    595     /// Returns true if Elt is a constant zero or floating point constant +0.0.
    596     bool isZeroNode(SDValue Elt);
    597 
    598     /// Returns true of the given offset can be
    599     /// fit into displacement field of the instruction.
    600     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
    601                                       bool hasSymbolicDisplacement = true);
    602 
    603 
    604     /// Determines whether the callee is required to pop its
    605     /// own arguments. Callee pop is necessary to support tail calls.
    606     bool isCalleePop(CallingConv::ID CallingConv,
    607                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
    608 
    609     /// AVX512 static rounding constants.  These need to match the values in
    610     /// avx512fintrin.h.
    611     enum STATIC_ROUNDING {
    612       TO_NEAREST_INT = 0,
    613       TO_NEG_INF = 1,
    614       TO_POS_INF = 2,
    615       TO_ZERO = 3,
    616       CUR_DIRECTION = 4
    617     };
    618   }
    619 
    620   //===--------------------------------------------------------------------===//
    621   //  X86 Implementation of the TargetLowering interface
    622   class X86TargetLowering final : public TargetLowering {
    623   public:
    624     explicit X86TargetLowering(const X86TargetMachine &TM,
    625                                const X86Subtarget &STI);
    626 
    627     unsigned getJumpTableEncoding() const override;
    628     bool useSoftFloat() const override;
    629 
    630     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
    631       return MVT::i8;
    632     }
    633 
    634     const MCExpr *
    635     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
    636                               const MachineBasicBlock *MBB, unsigned uid,
    637                               MCContext &Ctx) const override;
    638 
    639     /// Returns relocation base for the given PIC jumptable.
    640     SDValue getPICJumpTableRelocBase(SDValue Table,
    641                                      SelectionDAG &DAG) const override;
    642     const MCExpr *
    643     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    644                                  unsigned JTI, MCContext &Ctx) const override;
    645 
    646     /// Return the desired alignment for ByVal aggregate
    647     /// function arguments in the caller parameter area. For X86, aggregates
    648     /// that contains are placed at 16-byte boundaries while the rest are at
    649     /// 4-byte boundaries.
    650     unsigned getByValTypeAlignment(Type *Ty,
    651                                    const DataLayout &DL) const override;
    652 
    653     /// Returns the target specific optimal type for load
    654     /// and store operations as a result of memset, memcpy, and memmove
    655     /// lowering. If DstAlign is zero that means it's safe to destination
    656     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    657     /// means there isn't a need to check it against alignment requirement,
    658     /// probably because the source does not need to be loaded. If 'IsMemset' is
    659     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    660     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    661     /// source is constant so it does not need to be loaded.
    662     /// It returns EVT::Other if the type should be determined using generic
    663     /// target-independent logic.
    664     EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    665                             bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    666                             MachineFunction &MF) const override;
    667 
    668     /// Returns true if it's safe to use load / store of the
    669     /// specified type to expand memcpy / memset inline. This is mostly true
    670     /// for all types except for some special cases. For example, on X86
    671     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    672     /// also does type conversion. Note the specified type doesn't have to be
    673     /// legal as the hook is used before type legalization.
    674     bool isSafeMemOpType(MVT VT) const override;
    675 
    676     /// Returns true if the target allows unaligned memory accesses of the
    677     /// specified type. Returns whether it is "fast" in the last argument.
    678     bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
    679                                        bool *Fast) const override;
    680 
    681     /// Provide custom lowering hooks for some operations.
    682     ///
    683     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    684 
    685     /// Replace the results of node with an illegal result
    686     /// type with new values built out of custom code.
    687     ///
    688     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    689                             SelectionDAG &DAG) const override;
    690 
    691 
    692     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    693 
    694     /// Return true if the target has native support for
    695     /// the specified value type and it is 'desirable' to use the type for the
    696     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    697     /// instruction encodings are longer and some i16 instructions are slow.
    698     bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
    699 
    700     /// Return true if the target has native support for the
    701     /// specified value type and it is 'desirable' to use the type. e.g. On x86
    702     /// i16 is legal, but undesirable since i16 instruction encodings are longer
    703     /// and some i16 instructions are slow.
    704     bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
    705 
    706     MachineBasicBlock *
    707       EmitInstrWithCustomInserter(MachineInstr *MI,
    708                                   MachineBasicBlock *MBB) const override;
    709 
    710 
    711     /// This method returns the name of a target specific DAG node.
    712     const char *getTargetNodeName(unsigned Opcode) const override;
    713 
    714     bool isCheapToSpeculateCttz() const override;
    715 
    716     bool isCheapToSpeculateCtlz() const override;
    717 
    718     /// Return the value type to use for ISD::SETCC.
    719     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
    720                            EVT VT) const override;
    721 
    722     /// Determine which of the bits specified in Mask are known to be either
    723     /// zero or one and return them in the KnownZero/KnownOne bitsets.
    724     void computeKnownBitsForTargetNode(const SDValue Op,
    725                                        APInt &KnownZero,
    726                                        APInt &KnownOne,
    727                                        const SelectionDAG &DAG,
    728                                        unsigned Depth = 0) const override;
    729 
    730     /// Determine the number of bits in the operation that are sign bits.
    731     unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    732                                              const SelectionDAG &DAG,
    733                                              unsigned Depth) const override;
    734 
    735     bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
    736                         int64_t &Offset) const override;
    737 
    738     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
    739 
    740     bool ExpandInlineAsm(CallInst *CI) const override;
    741 
    742     ConstraintType getConstraintType(StringRef Constraint) const override;
    743 
    744     /// Examine constraint string and operand type and determine a weight value.
    745     /// The operand object must already have been set up with the operand type.
    746     ConstraintWeight
    747       getSingleConstraintMatchWeight(AsmOperandInfo &info,
    748                                      const char *constraint) const override;
    749 
    750     const char *LowerXConstraint(EVT ConstraintVT) const override;
    751 
    752     /// Lower the specified operand into the Ops vector. If it is invalid, don't
    753     /// add anything to Ops. If hasMemory is true it means one of the asm
    754     /// constraint of the inline asm instruction being processed is 'm'.
    755     void LowerAsmOperandForConstraint(SDValue Op,
    756                                       std::string &Constraint,
    757                                       std::vector<SDValue> &Ops,
    758                                       SelectionDAG &DAG) const override;
    759 
    760     unsigned
    761     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
    762       if (ConstraintCode == "i")
    763         return InlineAsm::Constraint_i;
    764       else if (ConstraintCode == "o")
    765         return InlineAsm::Constraint_o;
    766       else if (ConstraintCode == "v")
    767         return InlineAsm::Constraint_v;
    768       else if (ConstraintCode == "X")
    769         return InlineAsm::Constraint_X;
    770       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    771     }
    772 
    773     /// Given a physical register constraint
    774     /// (e.g. {edx}), return the register number and the register class for the
    775     /// register.  This should only be used for C_Register constraints.  On
    776     /// error, this returns a register number of 0.
    777     std::pair<unsigned, const TargetRegisterClass *>
    778     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    779                                  StringRef Constraint, MVT VT) const override;
    780 
    781     /// Return true if the addressing mode represented
    782     /// by AM is legal for this target, for a load/store of the specified type.
    783     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
    784                                Type *Ty, unsigned AS) const override;
    785 
    786     /// Return true if the specified immediate is legal
    787     /// icmp immediate, that is the target has icmp instructions which can
    788     /// compare a register against the immediate without having to materialize
    789     /// the immediate into a register.
    790     bool isLegalICmpImmediate(int64_t Imm) const override;
    791 
    792     /// Return true if the specified immediate is legal
    793     /// add immediate, that is the target has add instructions which can
    794     /// add a register and the immediate without having to materialize
    795     /// the immediate into a register.
    796     bool isLegalAddImmediate(int64_t Imm) const override;
    797 
    798     /// \brief Return the cost of the scaling factor used in the addressing
    799     /// mode represented by AM for this target, for a load/store
    800     /// of the specified type.
    801     /// If the AM is supported, the return value must be >= 0.
    802     /// If the AM is not supported, it returns a negative value.
    803     int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
    804                              unsigned AS) const override;
    805 
    806     bool isVectorShiftByScalarCheap(Type *Ty) const override;
    807 
    808     /// Return true if it's free to truncate a value of
    809     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    810     /// register EAX to i16 by referencing its sub-register AX.
    811     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    812     bool isTruncateFree(EVT VT1, EVT VT2) const override;
    813 
    814     bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
    815 
    816     /// Return true if any actual instruction that defines a
    817     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    818     /// register. This does not necessarily include registers defined in
    819     /// unknown ways, such as incoming arguments, or copies from unknown
    820     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    821     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    822     /// all instructions that define 32-bit values implicit zero-extend the
    823     /// result out to 64 bits.
    824     bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    825     bool isZExtFree(EVT VT1, EVT VT2) const override;
    826     bool isZExtFree(SDValue Val, EVT VT2) const override;
    827 
    828     /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    829     /// extend node) is profitable.
    830     bool isVectorLoadExtDesirable(SDValue) const override;
    831 
    832     /// Return true if an FMA operation is faster than a pair of fmul and fadd
    833     /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    834     /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    835     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
    836 
    837     /// Return true if it's profitable to narrow
    838     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    839     /// from i32 to i8 but not from i32 to i16.
    840     bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
    841 
    842     /// Returns true if the target can instruction select the
    843     /// specified FP immediate natively. If false, the legalizer will
    844     /// materialize the FP immediate as a load from a constant pool.
    845     bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
    846 
    847     /// Targets can use this to indicate that they only support *some*
    848     /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    849     /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    850     /// be legal.
    851     bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
    852                             EVT VT) const override;
    853 
    854     /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    855     /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
    856     /// replace a VAND with a constant pool entry.
    857     bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
    858                                 EVT VT) const override;
    859 
    860     /// If true, then instruction selection should
    861     /// seek to shrink the FP constant of the specified type to a smaller type
    862     /// in order to save space and / or reduce runtime.
    863     bool ShouldShrinkFPConstant(EVT VT) const override {
    864       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
    865       // expensive than a straight movsd. On the other hand, it's important to
    866       // shrink long double fp constant since fldt is very slow.
    867       return !X86ScalarSSEf64 || VT == MVT::f80;
    868     }
    869 
    870     /// Return true if we believe it is correct and profitable to reduce the
    871     /// load node to a smaller type.
    872     bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
    873                                EVT NewVT) const override;
    874 
    875     /// Return true if the specified scalar FP type is computed in an SSE
    876     /// register, not on the X87 floating point stack.
    877     bool isScalarFPTypeInSSEReg(EVT VT) const {
    878       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    879              (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    880     }
    881 
    882     /// \brief Returns true if it is beneficial to convert a load of a constant
    883     /// to just the constant itself.
    884     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
    885                                            Type *Ty) const override;
    886 
    887     /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    888     /// with this index.
    889     bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;
    890 
    891     /// Intel processors have a unified instruction and data cache
    892     const char * getClearCacheBuiltinName() const override {
    893       return nullptr; // nothing to do, move along.
    894     }
    895 
    896     unsigned getRegisterByName(const char* RegName, EVT VT,
    897                                SelectionDAG &DAG) const override;
    898 
    899     /// If a physical register, this returns the register that receives the
    900     /// exception address on entry to an EH pad.
    901     unsigned
    902     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
    903 
    904     /// If a physical register, this returns the register that receives the
    905     /// exception typeid on entry to a landing pad.
    906     unsigned
    907     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
    908 
    909     /// This method returns a target specific FastISel object,
    910     /// or null if the target does not support "fast" ISel.
    911     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
    912                              const TargetLibraryInfo *libInfo) const override;
    913 
    914     /// Return true if the target stores stack protector cookies at a fixed
    915     /// offset in some non-standard address space, and populates the address
    916     /// space and offset as appropriate.
    917     bool getStackCookieLocation(unsigned &AddressSpace,
    918                                 unsigned &Offset) const override;
    919 
    920     /// Return true if the target stores SafeStack pointer at a fixed offset in
    921     /// some non-standard address space, and populates the address space and
    922     /// offset as appropriate.
    923     Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
    924 
    925     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
    926                       SelectionDAG &DAG) const;
    927 
    928     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
    929 
    930     bool useLoadStackGuardNode() const override;
    931     /// \brief Customize the preferred legalization strategy for certain types.
    932     LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
    933 
    934     bool isIntDivCheap(EVT VT, AttributeSet Attr) const override;
    935 
    936     void markInRegArguments(SelectionDAG &DAG, TargetLowering::ArgListTy& Args)
    937       const override;
    938 
    939   protected:
    940     std::pair<const TargetRegisterClass *, uint8_t>
    941     findRepresentativeClass(const TargetRegisterInfo *TRI,
    942                             MVT VT) const override;
    943 
    944   private:
    945     /// Keep a pointer to the X86Subtarget around so that we can
    946     /// make the right decision when generating code for different targets.
    947     const X86Subtarget *Subtarget;
    948 
    949     /// Select between SSE or x87 floating point ops.
    950     /// When SSE is available, use it for f32 operations.
    951     /// When SSE2 is available, use it for f64 operations.
    952     bool X86ScalarSSEf32;
    953     bool X86ScalarSSEf64;
    954 
    955     /// A list of legal FP immediates.
    956     std::vector<APFloat> LegalFPImmediates;
    957 
    958     /// Indicate that this x86 target can instruction
    959     /// select the specified FP immediate natively.
    960     void addLegalFPImmediate(const APFloat& Imm) {
    961       LegalFPImmediates.push_back(Imm);
    962     }
    963 
    964     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    965                             CallingConv::ID CallConv, bool isVarArg,
    966                             const SmallVectorImpl<ISD::InputArg> &Ins,
    967                             SDLoc dl, SelectionDAG &DAG,
    968                             SmallVectorImpl<SDValue> &InVals) const;
    969     SDValue LowerMemArgument(SDValue Chain,
    970                              CallingConv::ID CallConv,
    971                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
    972                              SDLoc dl, SelectionDAG &DAG,
    973                              const CCValAssign &VA,  MachineFrameInfo *MFI,
    974                               unsigned i) const;
    975     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
    976                              SDLoc dl, SelectionDAG &DAG,
    977                              const CCValAssign &VA,
    978                              ISD::ArgFlagsTy Flags) const;
    979 
    980     // Call lowering helpers.
    981 
    982     /// Check whether the call is eligible for tail call optimization. Targets
    983     /// that want to do tail call optimization should implement this function.
    984     bool IsEligibleForTailCallOptimization(SDValue Callee,
    985                                            CallingConv::ID CalleeCC,
    986                                            bool isVarArg,
    987                                            bool isCalleeStructRet,
    988                                            bool isCallerStructRet,
    989                                            Type *RetTy,
    990                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
    991                                     const SmallVectorImpl<SDValue> &OutVals,
    992                                     const SmallVectorImpl<ISD::InputArg> &Ins,
    993                                            SelectionDAG& DAG) const;
    994     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
    995                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
    996                                 int FPDiff, SDLoc dl) const;
    997 
    998     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
    999                                          SelectionDAG &DAG) const;
   1000 
   1001     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
   1002                                                bool isSigned,
   1003                                                bool isReplace) const;
   1004 
   1005     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
   1006     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
   1007     SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
   1008     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
   1009     SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
   1010     SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
   1011 
   1012     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
   1013     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
   1014     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
   1015     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
   1016                                int64_t Offset, SelectionDAG &DAG) const;
   1017     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
   1018     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
   1019     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
   1020     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
   1021     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
   1022     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
   1023     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
   1024     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
   1025     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
   1026     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
   1027     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
   1028     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
   1029                       SDLoc dl, SelectionDAG &DAG) const;
   1030     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
   1031     SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) const;
   1032     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
   1033     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
   1034     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
   1035     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
   1036     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
   1037     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
   1038     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
   1039     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
   1040     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
   1041     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
   1042     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
   1043     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
   1044     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
   1045     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
   1046     SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
   1047     SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
   1048     SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
   1049 
   1050     SDValue
   1051       LowerFormalArguments(SDValue Chain,
   1052                            CallingConv::ID CallConv, bool isVarArg,
   1053                            const SmallVectorImpl<ISD::InputArg> &Ins,
   1054                            SDLoc dl, SelectionDAG &DAG,
   1055                            SmallVectorImpl<SDValue> &InVals) const override;
   1056     SDValue LowerCall(CallLoweringInfo &CLI,
   1057                       SmallVectorImpl<SDValue> &InVals) const override;
   1058 
   1059     SDValue LowerReturn(SDValue Chain,
   1060                         CallingConv::ID CallConv, bool isVarArg,
   1061                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1062                         const SmallVectorImpl<SDValue> &OutVals,
   1063                         SDLoc dl, SelectionDAG &DAG) const override;
   1064 
   1065     bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
   1066 
   1067     bool mayBeEmittedAsTailCall(CallInst *CI) const override;
   1068 
   1069     EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1070                                  ISD::NodeType ExtendKind) const override;
   1071 
   1072     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
   1073                         bool isVarArg,
   1074                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1075                         LLVMContext &Context) const override;
   1076 
   1077     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
   1078 
   1079     TargetLoweringBase::AtomicExpansionKind
   1080     shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
   1081     bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
   1082     TargetLoweringBase::AtomicExpansionKind
   1083     shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
   1084 
   1085     LoadInst *
   1086     lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
   1087 
   1088     bool needsCmpXchgNb(Type *MemType) const;
   1089 
   1090     // Utility function to emit the low-level va_arg code for X86-64.
   1091     MachineBasicBlock *EmitVAARG64WithCustomInserter(
   1092                        MachineInstr *MI,
   1093                        MachineBasicBlock *MBB) const;
   1094 
   1095     /// Utility function to emit the xmm reg save portion of va_start.
   1096     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
   1097                                                    MachineInstr *BInstr,
   1098                                                    MachineBasicBlock *BB) const;
   1099 
   1100     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
   1101                                          MachineBasicBlock *BB) const;
   1102 
   1103     MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr *I,
   1104                                            MachineBasicBlock *BB) const;
   1105 
   1106     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
   1107                                               MachineBasicBlock *BB) const;
   1108 
   1109     MachineBasicBlock *EmitLoweredCatchRet(MachineInstr *MI,
   1110                                            MachineBasicBlock *BB) const;
   1111 
   1112     MachineBasicBlock *EmitLoweredCatchPad(MachineInstr *MI,
   1113                                            MachineBasicBlock *BB) const;
   1114 
   1115     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
   1116                                             MachineBasicBlock *BB) const;
   1117 
   1118     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
   1119                                           MachineBasicBlock *BB) const;
   1120 
   1121     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
   1122                                         MachineBasicBlock *MBB) const;
   1123 
   1124     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
   1125                                          MachineBasicBlock *MBB) const;
   1126 
   1127     MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
   1128                                      MachineBasicBlock *MBB) const;
   1129 
   1130     /// Emit nodes that will be selected as "test Op0,Op0", or something
   1131     /// equivalent, for use with the given x86 condition code.
   1132     SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
   1133                      SelectionDAG &DAG) const;
   1134 
   1135     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   1136     /// equivalent, for use with the given x86 condition code.
   1137     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
   1138                     SelectionDAG &DAG) const;
   1139 
   1140     /// Convert a comparison if required by the subtarget.
   1141     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
   1142 
   1143     /// Use rsqrt* to speed up sqrt calculations.
   1144     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
   1145                              unsigned &RefinementSteps,
   1146                              bool &UseOneConstNR) const override;
   1147 
   1148     /// Use rcp* to speed up fdiv calculations.
   1149     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
   1150                              unsigned &RefinementSteps) const override;
   1151 
   1152     /// Reassociate floating point divisions into multiply by reciprocal.
   1153     unsigned combineRepeatedFPDivisors() const override;
   1154   };
   1155 
   1156   namespace X86 {
   1157     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
   1158                              const TargetLibraryInfo *libInfo);
   1159   }
   1160 }
   1161 
   1162 #endif    // X86ISELLOWERING_H
   1163