Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCalls.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitCall and visitInvoke functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/MemoryBuiltins.h"
     18 #include "llvm/IR/CallSite.h"
     19 #include "llvm/IR/Dominators.h"
     20 #include "llvm/IR/PatternMatch.h"
     21 #include "llvm/IR/Statepoint.h"
     22 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     23 #include "llvm/Transforms/Utils/Local.h"
     24 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     25 using namespace llvm;
     26 using namespace PatternMatch;
     27 
     28 #define DEBUG_TYPE "instcombine"
     29 
     30 STATISTIC(NumSimplified, "Number of library calls simplified");
     31 
     32 /// getPromotedType - Return the specified type promoted as it would be to pass
     33 /// though a va_arg area.
     34 static Type *getPromotedType(Type *Ty) {
     35   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
     36     if (ITy->getBitWidth() < 32)
     37       return Type::getInt32Ty(Ty->getContext());
     38   }
     39   return Ty;
     40 }
     41 
     42 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
     43 /// single scalar element, like {{{type}}} or [1 x type], return type.
     44 static Type *reduceToSingleValueType(Type *T) {
     45   while (!T->isSingleValueType()) {
     46     if (StructType *STy = dyn_cast<StructType>(T)) {
     47       if (STy->getNumElements() == 1)
     48         T = STy->getElementType(0);
     49       else
     50         break;
     51     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
     52       if (ATy->getNumElements() == 1)
     53         T = ATy->getElementType();
     54       else
     55         break;
     56     } else
     57       break;
     58   }
     59 
     60   return T;
     61 }
     62 
     63 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
     64   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
     65   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
     66   unsigned MinAlign = std::min(DstAlign, SrcAlign);
     67   unsigned CopyAlign = MI->getAlignment();
     68 
     69   if (CopyAlign < MinAlign) {
     70     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), MinAlign, false));
     71     return MI;
     72   }
     73 
     74   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
     75   // load/store.
     76   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
     77   if (!MemOpLength) return nullptr;
     78 
     79   // Source and destination pointer types are always "i8*" for intrinsic.  See
     80   // if the size is something we can handle with a single primitive load/store.
     81   // A single load+store correctly handles overlapping memory in the memmove
     82   // case.
     83   uint64_t Size = MemOpLength->getLimitedValue();
     84   assert(Size && "0-sized memory transferring should be removed already.");
     85 
     86   if (Size > 8 || (Size&(Size-1)))
     87     return nullptr;  // If not 1/2/4/8 bytes, exit.
     88 
     89   // Use an integer load+store unless we can find something better.
     90   unsigned SrcAddrSp =
     91     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
     92   unsigned DstAddrSp =
     93     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
     94 
     95   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
     96   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
     97   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
     98 
     99   // Memcpy forces the use of i8* for the source and destination.  That means
    100   // that if you're using memcpy to move one double around, you'll get a cast
    101   // from double* to i8*.  We'd much rather use a double load+store rather than
    102   // an i64 load+store, here because this improves the odds that the source or
    103   // dest address will be promotable.  See if we can find a better type than the
    104   // integer datatype.
    105   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
    106   MDNode *CopyMD = nullptr;
    107   if (StrippedDest != MI->getArgOperand(0)) {
    108     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
    109                                     ->getElementType();
    110     if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
    111       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
    112       // down through these levels if so.
    113       SrcETy = reduceToSingleValueType(SrcETy);
    114 
    115       if (SrcETy->isSingleValueType()) {
    116         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
    117         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
    118 
    119         // If the memcpy has metadata describing the members, see if we can
    120         // get the TBAA tag describing our copy.
    121         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
    122           if (M->getNumOperands() == 3 && M->getOperand(0) &&
    123               mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
    124               mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
    125               M->getOperand(1) &&
    126               mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
    127               mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
    128                   Size &&
    129               M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
    130             CopyMD = cast<MDNode>(M->getOperand(2));
    131         }
    132       }
    133     }
    134   }
    135 
    136   // If the memcpy/memmove provides better alignment info than we can
    137   // infer, use it.
    138   SrcAlign = std::max(SrcAlign, CopyAlign);
    139   DstAlign = std::max(DstAlign, CopyAlign);
    140 
    141   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
    142   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
    143   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
    144   L->setAlignment(SrcAlign);
    145   if (CopyMD)
    146     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
    147   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
    148   S->setAlignment(DstAlign);
    149   if (CopyMD)
    150     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
    151 
    152   // Set the size of the copy to 0, it will be deleted on the next iteration.
    153   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
    154   return MI;
    155 }
    156 
    157 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
    158   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
    159   if (MI->getAlignment() < Alignment) {
    160     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
    161                                              Alignment, false));
    162     return MI;
    163   }
    164 
    165   // Extract the length and alignment and fill if they are constant.
    166   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
    167   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
    168   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
    169     return nullptr;
    170   uint64_t Len = LenC->getLimitedValue();
    171   Alignment = MI->getAlignment();
    172   assert(Len && "0-sized memory setting should be removed already.");
    173 
    174   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
    175   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
    176     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
    177 
    178     Value *Dest = MI->getDest();
    179     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
    180     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
    181     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
    182 
    183     // Alignment 0 is identity for alignment 1 for memset, but not store.
    184     if (Alignment == 0) Alignment = 1;
    185 
    186     // Extract the fill value and store.
    187     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
    188     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
    189                                         MI->isVolatile());
    190     S->setAlignment(Alignment);
    191 
    192     // Set the size of the copy to 0, it will be deleted on the next iteration.
    193     MI->setLength(Constant::getNullValue(LenC->getType()));
    194     return MI;
    195   }
    196 
    197   return nullptr;
    198 }
    199 
    200 static Value *SimplifyX86immshift(const IntrinsicInst &II,
    201                                   InstCombiner::BuilderTy &Builder) {
    202   bool LogicalShift = false;
    203   bool ShiftLeft = false;
    204 
    205   switch (II.getIntrinsicID()) {
    206   default:
    207     return nullptr;
    208   case Intrinsic::x86_sse2_psra_d:
    209   case Intrinsic::x86_sse2_psra_w:
    210   case Intrinsic::x86_sse2_psrai_d:
    211   case Intrinsic::x86_sse2_psrai_w:
    212   case Intrinsic::x86_avx2_psra_d:
    213   case Intrinsic::x86_avx2_psra_w:
    214   case Intrinsic::x86_avx2_psrai_d:
    215   case Intrinsic::x86_avx2_psrai_w:
    216     LogicalShift = false; ShiftLeft = false;
    217     break;
    218   case Intrinsic::x86_sse2_psrl_d:
    219   case Intrinsic::x86_sse2_psrl_q:
    220   case Intrinsic::x86_sse2_psrl_w:
    221   case Intrinsic::x86_sse2_psrli_d:
    222   case Intrinsic::x86_sse2_psrli_q:
    223   case Intrinsic::x86_sse2_psrli_w:
    224   case Intrinsic::x86_avx2_psrl_d:
    225   case Intrinsic::x86_avx2_psrl_q:
    226   case Intrinsic::x86_avx2_psrl_w:
    227   case Intrinsic::x86_avx2_psrli_d:
    228   case Intrinsic::x86_avx2_psrli_q:
    229   case Intrinsic::x86_avx2_psrli_w:
    230     LogicalShift = true; ShiftLeft = false;
    231     break;
    232   case Intrinsic::x86_sse2_psll_d:
    233   case Intrinsic::x86_sse2_psll_q:
    234   case Intrinsic::x86_sse2_psll_w:
    235   case Intrinsic::x86_sse2_pslli_d:
    236   case Intrinsic::x86_sse2_pslli_q:
    237   case Intrinsic::x86_sse2_pslli_w:
    238   case Intrinsic::x86_avx2_psll_d:
    239   case Intrinsic::x86_avx2_psll_q:
    240   case Intrinsic::x86_avx2_psll_w:
    241   case Intrinsic::x86_avx2_pslli_d:
    242   case Intrinsic::x86_avx2_pslli_q:
    243   case Intrinsic::x86_avx2_pslli_w:
    244     LogicalShift = true; ShiftLeft = true;
    245     break;
    246   }
    247   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
    248 
    249   // Simplify if count is constant.
    250   auto Arg1 = II.getArgOperand(1);
    251   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
    252   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
    253   auto CInt = dyn_cast<ConstantInt>(Arg1);
    254   if (!CAZ && !CDV && !CInt)
    255     return nullptr;
    256 
    257   APInt Count(64, 0);
    258   if (CDV) {
    259     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
    260     // operand to compute the shift amount.
    261     auto VT = cast<VectorType>(CDV->getType());
    262     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
    263     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
    264     unsigned NumSubElts = 64 / BitWidth;
    265 
    266     // Concatenate the sub-elements to create the 64-bit value.
    267     for (unsigned i = 0; i != NumSubElts; ++i) {
    268       unsigned SubEltIdx = (NumSubElts - 1) - i;
    269       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
    270       Count = Count.shl(BitWidth);
    271       Count |= SubElt->getValue().zextOrTrunc(64);
    272     }
    273   }
    274   else if (CInt)
    275     Count = CInt->getValue();
    276 
    277   auto Vec = II.getArgOperand(0);
    278   auto VT = cast<VectorType>(Vec->getType());
    279   auto SVT = VT->getElementType();
    280   unsigned VWidth = VT->getNumElements();
    281   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
    282 
    283   // If shift-by-zero then just return the original value.
    284   if (Count == 0)
    285     return Vec;
    286 
    287   // Handle cases when Shift >= BitWidth.
    288   if (Count.uge(BitWidth)) {
    289     // If LogicalShift - just return zero.
    290     if (LogicalShift)
    291       return ConstantAggregateZero::get(VT);
    292 
    293     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
    294     Count = APInt(64, BitWidth - 1);
    295   }
    296 
    297   // Get a constant vector of the same type as the first operand.
    298   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
    299   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
    300 
    301   if (ShiftLeft)
    302     return Builder.CreateShl(Vec, ShiftVec);
    303 
    304   if (LogicalShift)
    305     return Builder.CreateLShr(Vec, ShiftVec);
    306 
    307   return Builder.CreateAShr(Vec, ShiftVec);
    308 }
    309 
    310 static Value *SimplifyX86extend(const IntrinsicInst &II,
    311                                 InstCombiner::BuilderTy &Builder,
    312                                 bool SignExtend) {
    313   VectorType *SrcTy = cast<VectorType>(II.getArgOperand(0)->getType());
    314   VectorType *DstTy = cast<VectorType>(II.getType());
    315   unsigned NumDstElts = DstTy->getNumElements();
    316 
    317   // Extract a subvector of the first NumDstElts lanes and sign/zero extend.
    318   SmallVector<int, 8> ShuffleMask;
    319   for (int i = 0; i != (int)NumDstElts; ++i)
    320     ShuffleMask.push_back(i);
    321 
    322   Value *SV = Builder.CreateShuffleVector(II.getArgOperand(0),
    323                                           UndefValue::get(SrcTy), ShuffleMask);
    324   return SignExtend ? Builder.CreateSExt(SV, DstTy)
    325                     : Builder.CreateZExt(SV, DstTy);
    326 }
    327 
    328 static Value *SimplifyX86insertps(const IntrinsicInst &II,
    329                                   InstCombiner::BuilderTy &Builder) {
    330   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
    331     VectorType *VecTy = cast<VectorType>(II.getType());
    332     assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
    333 
    334     // The immediate permute control byte looks like this:
    335     //    [3:0] - zero mask for each 32-bit lane
    336     //    [5:4] - select one 32-bit destination lane
    337     //    [7:6] - select one 32-bit source lane
    338 
    339     uint8_t Imm = CInt->getZExtValue();
    340     uint8_t ZMask = Imm & 0xf;
    341     uint8_t DestLane = (Imm >> 4) & 0x3;
    342     uint8_t SourceLane = (Imm >> 6) & 0x3;
    343 
    344     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
    345 
    346     // If all zero mask bits are set, this was just a weird way to
    347     // generate a zero vector.
    348     if (ZMask == 0xf)
    349       return ZeroVector;
    350 
    351     // Initialize by passing all of the first source bits through.
    352     int ShuffleMask[4] = { 0, 1, 2, 3 };
    353 
    354     // We may replace the second operand with the zero vector.
    355     Value *V1 = II.getArgOperand(1);
    356 
    357     if (ZMask) {
    358       // If the zero mask is being used with a single input or the zero mask
    359       // overrides the destination lane, this is a shuffle with the zero vector.
    360       if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
    361           (ZMask & (1 << DestLane))) {
    362         V1 = ZeroVector;
    363         // We may still move 32-bits of the first source vector from one lane
    364         // to another.
    365         ShuffleMask[DestLane] = SourceLane;
    366         // The zero mask may override the previous insert operation.
    367         for (unsigned i = 0; i < 4; ++i)
    368           if ((ZMask >> i) & 0x1)
    369             ShuffleMask[i] = i + 4;
    370       } else {
    371         // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
    372         return nullptr;
    373       }
    374     } else {
    375       // Replace the selected destination lane with the selected source lane.
    376       ShuffleMask[DestLane] = SourceLane + 4;
    377     }
    378 
    379     return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
    380   }
    381   return nullptr;
    382 }
    383 
    384 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
    385 /// or conversion to a shuffle vector.
    386 static Value *SimplifyX86extrq(IntrinsicInst &II, Value *Op0,
    387                                ConstantInt *CILength, ConstantInt *CIIndex,
    388                                InstCombiner::BuilderTy &Builder) {
    389   auto LowConstantHighUndef = [&](uint64_t Val) {
    390     Type *IntTy64 = Type::getInt64Ty(II.getContext());
    391     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
    392                         UndefValue::get(IntTy64)};
    393     return ConstantVector::get(Args);
    394   };
    395 
    396   // See if we're dealing with constant values.
    397   Constant *C0 = dyn_cast<Constant>(Op0);
    398   ConstantInt *CI0 =
    399       C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
    400          : nullptr;
    401 
    402   // Attempt to constant fold.
    403   if (CILength && CIIndex) {
    404     // From AMD documentation: "The bit index and field length are each six
    405     // bits in length other bits of the field are ignored."
    406     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
    407     APInt APLength = CILength->getValue().zextOrTrunc(6);
    408 
    409     unsigned Index = APIndex.getZExtValue();
    410 
    411     // From AMD documentation: "a value of zero in the field length is
    412     // defined as length of 64".
    413     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
    414 
    415     // From AMD documentation: "If the sum of the bit index + length field
    416     // is greater than 64, the results are undefined".
    417     unsigned End = Index + Length;
    418 
    419     // Note that both field index and field length are 8-bit quantities.
    420     // Since variables 'Index' and 'Length' are unsigned values
    421     // obtained from zero-extending field index and field length
    422     // respectively, their sum should never wrap around.
    423     if (End > 64)
    424       return UndefValue::get(II.getType());
    425 
    426     // If we are inserting whole bytes, we can convert this to a shuffle.
    427     // Lowering can recognize EXTRQI shuffle masks.
    428     if ((Length % 8) == 0 && (Index % 8) == 0) {
    429       // Convert bit indices to byte indices.
    430       Length /= 8;
    431       Index /= 8;
    432 
    433       Type *IntTy8 = Type::getInt8Ty(II.getContext());
    434       Type *IntTy32 = Type::getInt32Ty(II.getContext());
    435       VectorType *ShufTy = VectorType::get(IntTy8, 16);
    436 
    437       SmallVector<Constant *, 16> ShuffleMask;
    438       for (int i = 0; i != (int)Length; ++i)
    439         ShuffleMask.push_back(
    440             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
    441       for (int i = Length; i != 8; ++i)
    442         ShuffleMask.push_back(
    443             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
    444       for (int i = 8; i != 16; ++i)
    445         ShuffleMask.push_back(UndefValue::get(IntTy32));
    446 
    447       Value *SV = Builder.CreateShuffleVector(
    448           Builder.CreateBitCast(Op0, ShufTy),
    449           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
    450       return Builder.CreateBitCast(SV, II.getType());
    451     }
    452 
    453     // Constant Fold - shift Index'th bit to lowest position and mask off
    454     // Length bits.
    455     if (CI0) {
    456       APInt Elt = CI0->getValue();
    457       Elt = Elt.lshr(Index).zextOrTrunc(Length);
    458       return LowConstantHighUndef(Elt.getZExtValue());
    459     }
    460 
    461     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
    462     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
    463       Value *Args[] = {Op0, CILength, CIIndex};
    464       Module *M = II.getModule();
    465       Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
    466       return Builder.CreateCall(F, Args);
    467     }
    468   }
    469 
    470   // Constant Fold - extraction from zero is always {zero, undef}.
    471   if (CI0 && CI0->equalsInt(0))
    472     return LowConstantHighUndef(0);
    473 
    474   return nullptr;
    475 }
    476 
    477 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
    478 /// folding or conversion to a shuffle vector.
    479 static Value *SimplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
    480                                  APInt APLength, APInt APIndex,
    481                                  InstCombiner::BuilderTy &Builder) {
    482 
    483   // From AMD documentation: "The bit index and field length are each six bits
    484   // in length other bits of the field are ignored."
    485   APIndex = APIndex.zextOrTrunc(6);
    486   APLength = APLength.zextOrTrunc(6);
    487 
    488   // Attempt to constant fold.
    489   unsigned Index = APIndex.getZExtValue();
    490 
    491   // From AMD documentation: "a value of zero in the field length is
    492   // defined as length of 64".
    493   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
    494 
    495   // From AMD documentation: "If the sum of the bit index + length field
    496   // is greater than 64, the results are undefined".
    497   unsigned End = Index + Length;
    498 
    499   // Note that both field index and field length are 8-bit quantities.
    500   // Since variables 'Index' and 'Length' are unsigned values
    501   // obtained from zero-extending field index and field length
    502   // respectively, their sum should never wrap around.
    503   if (End > 64)
    504     return UndefValue::get(II.getType());
    505 
    506   // If we are inserting whole bytes, we can convert this to a shuffle.
    507   // Lowering can recognize INSERTQI shuffle masks.
    508   if ((Length % 8) == 0 && (Index % 8) == 0) {
    509     // Convert bit indices to byte indices.
    510     Length /= 8;
    511     Index /= 8;
    512 
    513     Type *IntTy8 = Type::getInt8Ty(II.getContext());
    514     Type *IntTy32 = Type::getInt32Ty(II.getContext());
    515     VectorType *ShufTy = VectorType::get(IntTy8, 16);
    516 
    517     SmallVector<Constant *, 16> ShuffleMask;
    518     for (int i = 0; i != (int)Index; ++i)
    519       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
    520     for (int i = 0; i != (int)Length; ++i)
    521       ShuffleMask.push_back(
    522           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
    523     for (int i = Index + Length; i != 8; ++i)
    524       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
    525     for (int i = 8; i != 16; ++i)
    526       ShuffleMask.push_back(UndefValue::get(IntTy32));
    527 
    528     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
    529                                             Builder.CreateBitCast(Op1, ShufTy),
    530                                             ConstantVector::get(ShuffleMask));
    531     return Builder.CreateBitCast(SV, II.getType());
    532   }
    533 
    534   // See if we're dealing with constant values.
    535   Constant *C0 = dyn_cast<Constant>(Op0);
    536   Constant *C1 = dyn_cast<Constant>(Op1);
    537   ConstantInt *CI00 =
    538       C0 ? dyn_cast<ConstantInt>(C0->getAggregateElement((unsigned)0))
    539          : nullptr;
    540   ConstantInt *CI10 =
    541       C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
    542          : nullptr;
    543 
    544   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
    545   if (CI00 && CI10) {
    546     APInt V00 = CI00->getValue();
    547     APInt V10 = CI10->getValue();
    548     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
    549     V00 = V00 & ~Mask;
    550     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
    551     APInt Val = V00 | V10;
    552     Type *IntTy64 = Type::getInt64Ty(II.getContext());
    553     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
    554                         UndefValue::get(IntTy64)};
    555     return ConstantVector::get(Args);
    556   }
    557 
    558   // If we were an INSERTQ call, we'll save demanded elements if we convert to
    559   // INSERTQI.
    560   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
    561     Type *IntTy8 = Type::getInt8Ty(II.getContext());
    562     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
    563     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
    564 
    565     Value *Args[] = {Op0, Op1, CILength, CIIndex};
    566     Module *M = II.getModule();
    567     Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
    568     return Builder.CreateCall(F, Args);
    569   }
    570 
    571   return nullptr;
    572 }
    573 
    574 /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
    575 /// source vectors, unless a zero bit is set. If a zero bit is set,
    576 /// then ignore that half of the mask and clear that half of the vector.
    577 static Value *SimplifyX86vperm2(const IntrinsicInst &II,
    578                                 InstCombiner::BuilderTy &Builder) {
    579   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
    580     VectorType *VecTy = cast<VectorType>(II.getType());
    581     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
    582 
    583     // The immediate permute control byte looks like this:
    584     //    [1:0] - select 128 bits from sources for low half of destination
    585     //    [2]   - ignore
    586     //    [3]   - zero low half of destination
    587     //    [5:4] - select 128 bits from sources for high half of destination
    588     //    [6]   - ignore
    589     //    [7]   - zero high half of destination
    590 
    591     uint8_t Imm = CInt->getZExtValue();
    592 
    593     bool LowHalfZero = Imm & 0x08;
    594     bool HighHalfZero = Imm & 0x80;
    595 
    596     // If both zero mask bits are set, this was just a weird way to
    597     // generate a zero vector.
    598     if (LowHalfZero && HighHalfZero)
    599       return ZeroVector;
    600 
    601     // If 0 or 1 zero mask bits are set, this is a simple shuffle.
    602     unsigned NumElts = VecTy->getNumElements();
    603     unsigned HalfSize = NumElts / 2;
    604     SmallVector<int, 8> ShuffleMask(NumElts);
    605 
    606     // The high bit of the selection field chooses the 1st or 2nd operand.
    607     bool LowInputSelect = Imm & 0x02;
    608     bool HighInputSelect = Imm & 0x20;
    609 
    610     // The low bit of the selection field chooses the low or high half
    611     // of the selected operand.
    612     bool LowHalfSelect = Imm & 0x01;
    613     bool HighHalfSelect = Imm & 0x10;
    614 
    615     // Determine which operand(s) are actually in use for this instruction.
    616     Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
    617     Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
    618 
    619     // If needed, replace operands based on zero mask.
    620     V0 = LowHalfZero ? ZeroVector : V0;
    621     V1 = HighHalfZero ? ZeroVector : V1;
    622 
    623     // Permute low half of result.
    624     unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
    625     for (unsigned i = 0; i < HalfSize; ++i)
    626       ShuffleMask[i] = StartIndex + i;
    627 
    628     // Permute high half of result.
    629     StartIndex = HighHalfSelect ? HalfSize : 0;
    630     StartIndex += NumElts;
    631     for (unsigned i = 0; i < HalfSize; ++i)
    632       ShuffleMask[i + HalfSize] = StartIndex + i;
    633 
    634     return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
    635   }
    636   return nullptr;
    637 }
    638 
    639 /// Decode XOP integer vector comparison intrinsics.
    640 static Value *SimplifyX86vpcom(const IntrinsicInst &II,
    641                                InstCombiner::BuilderTy &Builder, bool IsSigned) {
    642   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
    643     uint64_t Imm = CInt->getZExtValue() & 0x7;
    644     VectorType *VecTy = cast<VectorType>(II.getType());
    645     CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
    646 
    647     switch (Imm) {
    648     case 0x0:
    649       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
    650       break;
    651     case 0x1:
    652       Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
    653       break;
    654     case 0x2:
    655       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
    656       break;
    657     case 0x3:
    658       Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
    659       break;
    660     case 0x4:
    661       Pred = ICmpInst::ICMP_EQ; break;
    662     case 0x5:
    663       Pred = ICmpInst::ICMP_NE; break;
    664     case 0x6:
    665       return ConstantInt::getSigned(VecTy, 0); // FALSE
    666     case 0x7:
    667       return ConstantInt::getSigned(VecTy, -1); // TRUE
    668     }
    669 
    670     if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0), II.getArgOperand(1)))
    671       return Builder.CreateSExtOrTrunc(Cmp, VecTy);
    672   }
    673   return nullptr;
    674 }
    675 
    676 /// visitCallInst - CallInst simplification.  This mostly only handles folding
    677 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
    678 /// the heavy lifting.
    679 ///
    680 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
    681   auto Args = CI.arg_operands();
    682   if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
    683                               TLI, DT, AC))
    684     return ReplaceInstUsesWith(CI, V);
    685 
    686   if (isFreeCall(&CI, TLI))
    687     return visitFree(CI);
    688 
    689   // If the caller function is nounwind, mark the call as nounwind, even if the
    690   // callee isn't.
    691   if (CI.getParent()->getParent()->doesNotThrow() &&
    692       !CI.doesNotThrow()) {
    693     CI.setDoesNotThrow();
    694     return &CI;
    695   }
    696 
    697   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
    698   if (!II) return visitCallSite(&CI);
    699 
    700   // Intrinsics cannot occur in an invoke, so handle them here instead of in
    701   // visitCallSite.
    702   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
    703     bool Changed = false;
    704 
    705     // memmove/cpy/set of zero bytes is a noop.
    706     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
    707       if (NumBytes->isNullValue())
    708         return EraseInstFromFunction(CI);
    709 
    710       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
    711         if (CI->getZExtValue() == 1) {
    712           // Replace the instruction with just byte operations.  We would
    713           // transform other cases to loads/stores, but we don't know if
    714           // alignment is sufficient.
    715         }
    716     }
    717 
    718     // No other transformations apply to volatile transfers.
    719     if (MI->isVolatile())
    720       return nullptr;
    721 
    722     // If we have a memmove and the source operation is a constant global,
    723     // then the source and dest pointers can't alias, so we can change this
    724     // into a call to memcpy.
    725     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
    726       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
    727         if (GVSrc->isConstant()) {
    728           Module *M = CI.getModule();
    729           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
    730           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
    731                            CI.getArgOperand(1)->getType(),
    732                            CI.getArgOperand(2)->getType() };
    733           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
    734           Changed = true;
    735         }
    736     }
    737 
    738     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
    739       // memmove(x,x,size) -> noop.
    740       if (MTI->getSource() == MTI->getDest())
    741         return EraseInstFromFunction(CI);
    742     }
    743 
    744     // If we can determine a pointer alignment that is bigger than currently
    745     // set, update the alignment.
    746     if (isa<MemTransferInst>(MI)) {
    747       if (Instruction *I = SimplifyMemTransfer(MI))
    748         return I;
    749     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
    750       if (Instruction *I = SimplifyMemSet(MSI))
    751         return I;
    752     }
    753 
    754     if (Changed) return II;
    755   }
    756 
    757   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, unsigned DemandedWidth)
    758   {
    759     APInt UndefElts(Width, 0);
    760     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
    761     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
    762   };
    763 
    764   switch (II->getIntrinsicID()) {
    765   default: break;
    766   case Intrinsic::objectsize: {
    767     uint64_t Size;
    768     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
    769       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
    770     return nullptr;
    771   }
    772   case Intrinsic::bswap: {
    773     Value *IIOperand = II->getArgOperand(0);
    774     Value *X = nullptr;
    775 
    776     // bswap(bswap(x)) -> x
    777     if (match(IIOperand, m_BSwap(m_Value(X))))
    778         return ReplaceInstUsesWith(CI, X);
    779 
    780     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
    781     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
    782       unsigned C = X->getType()->getPrimitiveSizeInBits() -
    783         IIOperand->getType()->getPrimitiveSizeInBits();
    784       Value *CV = ConstantInt::get(X->getType(), C);
    785       Value *V = Builder->CreateLShr(X, CV);
    786       return new TruncInst(V, IIOperand->getType());
    787     }
    788     break;
    789   }
    790 
    791   case Intrinsic::bitreverse: {
    792     Value *IIOperand = II->getArgOperand(0);
    793     Value *X = nullptr;
    794 
    795     // bitreverse(bitreverse(x)) -> x
    796     if (match(IIOperand, m_Intrinsic<Intrinsic::bitreverse>(m_Value(X))))
    797       return ReplaceInstUsesWith(CI, X);
    798     break;
    799   }
    800 
    801   case Intrinsic::powi:
    802     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    803       // powi(x, 0) -> 1.0
    804       if (Power->isZero())
    805         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
    806       // powi(x, 1) -> x
    807       if (Power->isOne())
    808         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
    809       // powi(x, -1) -> 1/x
    810       if (Power->isAllOnesValue())
    811         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
    812                                           II->getArgOperand(0));
    813     }
    814     break;
    815   case Intrinsic::cttz: {
    816     // If all bits below the first known one are known zero,
    817     // this value is constant.
    818     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    819     // FIXME: Try to simplify vectors of integers.
    820     if (!IT) break;
    821     uint32_t BitWidth = IT->getBitWidth();
    822     APInt KnownZero(BitWidth, 0);
    823     APInt KnownOne(BitWidth, 0);
    824     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
    825     unsigned TrailingZeros = KnownOne.countTrailingZeros();
    826     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
    827     if ((Mask & KnownZero) == Mask)
    828       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    829                                  APInt(BitWidth, TrailingZeros)));
    830 
    831     }
    832     break;
    833   case Intrinsic::ctlz: {
    834     // If all bits above the first known one are known zero,
    835     // this value is constant.
    836     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    837     // FIXME: Try to simplify vectors of integers.
    838     if (!IT) break;
    839     uint32_t BitWidth = IT->getBitWidth();
    840     APInt KnownZero(BitWidth, 0);
    841     APInt KnownOne(BitWidth, 0);
    842     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
    843     unsigned LeadingZeros = KnownOne.countLeadingZeros();
    844     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
    845     if ((Mask & KnownZero) == Mask)
    846       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    847                                  APInt(BitWidth, LeadingZeros)));
    848 
    849     }
    850     break;
    851 
    852   case Intrinsic::uadd_with_overflow:
    853   case Intrinsic::sadd_with_overflow:
    854   case Intrinsic::umul_with_overflow:
    855   case Intrinsic::smul_with_overflow:
    856     if (isa<Constant>(II->getArgOperand(0)) &&
    857         !isa<Constant>(II->getArgOperand(1))) {
    858       // Canonicalize constants into the RHS.
    859       Value *LHS = II->getArgOperand(0);
    860       II->setArgOperand(0, II->getArgOperand(1));
    861       II->setArgOperand(1, LHS);
    862       return II;
    863     }
    864     // fall through
    865 
    866   case Intrinsic::usub_with_overflow:
    867   case Intrinsic::ssub_with_overflow: {
    868     OverflowCheckFlavor OCF =
    869         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
    870     assert(OCF != OCF_INVALID && "unexpected!");
    871 
    872     Value *OperationResult = nullptr;
    873     Constant *OverflowResult = nullptr;
    874     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
    875                               *II, OperationResult, OverflowResult))
    876       return CreateOverflowTuple(II, OperationResult, OverflowResult);
    877 
    878     break;
    879   }
    880 
    881   case Intrinsic::minnum:
    882   case Intrinsic::maxnum: {
    883     Value *Arg0 = II->getArgOperand(0);
    884     Value *Arg1 = II->getArgOperand(1);
    885 
    886     // fmin(x, x) -> x
    887     if (Arg0 == Arg1)
    888       return ReplaceInstUsesWith(CI, Arg0);
    889 
    890     const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
    891     const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
    892 
    893     // Canonicalize constants into the RHS.
    894     if (C0 && !C1) {
    895       II->setArgOperand(0, Arg1);
    896       II->setArgOperand(1, Arg0);
    897       return II;
    898     }
    899 
    900     // fmin(x, nan) -> x
    901     if (C1 && C1->isNaN())
    902       return ReplaceInstUsesWith(CI, Arg0);
    903 
    904     // This is the value because if undef were NaN, we would return the other
    905     // value and cannot return a NaN unless both operands are.
    906     //
    907     // fmin(undef, x) -> x
    908     if (isa<UndefValue>(Arg0))
    909       return ReplaceInstUsesWith(CI, Arg1);
    910 
    911     // fmin(x, undef) -> x
    912     if (isa<UndefValue>(Arg1))
    913       return ReplaceInstUsesWith(CI, Arg0);
    914 
    915     Value *X = nullptr;
    916     Value *Y = nullptr;
    917     if (II->getIntrinsicID() == Intrinsic::minnum) {
    918       // fmin(x, fmin(x, y)) -> fmin(x, y)
    919       // fmin(y, fmin(x, y)) -> fmin(x, y)
    920       if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
    921         if (Arg0 == X || Arg0 == Y)
    922           return ReplaceInstUsesWith(CI, Arg1);
    923       }
    924 
    925       // fmin(fmin(x, y), x) -> fmin(x, y)
    926       // fmin(fmin(x, y), y) -> fmin(x, y)
    927       if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
    928         if (Arg1 == X || Arg1 == Y)
    929           return ReplaceInstUsesWith(CI, Arg0);
    930       }
    931 
    932       // TODO: fmin(nnan x, inf) -> x
    933       // TODO: fmin(nnan ninf x, flt_max) -> x
    934       if (C1 && C1->isInfinity()) {
    935         // fmin(x, -inf) -> -inf
    936         if (C1->isNegative())
    937           return ReplaceInstUsesWith(CI, Arg1);
    938       }
    939     } else {
    940       assert(II->getIntrinsicID() == Intrinsic::maxnum);
    941       // fmax(x, fmax(x, y)) -> fmax(x, y)
    942       // fmax(y, fmax(x, y)) -> fmax(x, y)
    943       if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
    944         if (Arg0 == X || Arg0 == Y)
    945           return ReplaceInstUsesWith(CI, Arg1);
    946       }
    947 
    948       // fmax(fmax(x, y), x) -> fmax(x, y)
    949       // fmax(fmax(x, y), y) -> fmax(x, y)
    950       if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
    951         if (Arg1 == X || Arg1 == Y)
    952           return ReplaceInstUsesWith(CI, Arg0);
    953       }
    954 
    955       // TODO: fmax(nnan x, -inf) -> x
    956       // TODO: fmax(nnan ninf x, -flt_max) -> x
    957       if (C1 && C1->isInfinity()) {
    958         // fmax(x, inf) -> inf
    959         if (!C1->isNegative())
    960           return ReplaceInstUsesWith(CI, Arg1);
    961       }
    962     }
    963     break;
    964   }
    965   case Intrinsic::ppc_altivec_lvx:
    966   case Intrinsic::ppc_altivec_lvxl:
    967     // Turn PPC lvx -> load if the pointer is known aligned.
    968     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
    969         16) {
    970       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
    971                                          PointerType::getUnqual(II->getType()));
    972       return new LoadInst(Ptr);
    973     }
    974     break;
    975   case Intrinsic::ppc_vsx_lxvw4x:
    976   case Intrinsic::ppc_vsx_lxvd2x: {
    977     // Turn PPC VSX loads into normal loads.
    978     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
    979                                         PointerType::getUnqual(II->getType()));
    980     return new LoadInst(Ptr, Twine(""), false, 1);
    981   }
    982   case Intrinsic::ppc_altivec_stvx:
    983   case Intrinsic::ppc_altivec_stvxl:
    984     // Turn stvx -> store if the pointer is known aligned.
    985     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
    986         16) {
    987       Type *OpPtrTy =
    988         PointerType::getUnqual(II->getArgOperand(0)->getType());
    989       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
    990       return new StoreInst(II->getArgOperand(0), Ptr);
    991     }
    992     break;
    993   case Intrinsic::ppc_vsx_stxvw4x:
    994   case Intrinsic::ppc_vsx_stxvd2x: {
    995     // Turn PPC VSX stores into normal stores.
    996     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
    997     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
    998     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
    999   }
   1000   case Intrinsic::ppc_qpx_qvlfs:
   1001     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
   1002     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
   1003         16) {
   1004       Type *VTy = VectorType::get(Builder->getFloatTy(),
   1005                                   II->getType()->getVectorNumElements());
   1006       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
   1007                                          PointerType::getUnqual(VTy));
   1008       Value *Load = Builder->CreateLoad(Ptr);
   1009       return new FPExtInst(Load, II->getType());
   1010     }
   1011     break;
   1012   case Intrinsic::ppc_qpx_qvlfd:
   1013     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
   1014     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
   1015         32) {
   1016       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
   1017                                          PointerType::getUnqual(II->getType()));
   1018       return new LoadInst(Ptr);
   1019     }
   1020     break;
   1021   case Intrinsic::ppc_qpx_qvstfs:
   1022     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
   1023     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
   1024         16) {
   1025       Type *VTy = VectorType::get(Builder->getFloatTy(),
   1026           II->getArgOperand(0)->getType()->getVectorNumElements());
   1027       Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
   1028       Type *OpPtrTy = PointerType::getUnqual(VTy);
   1029       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
   1030       return new StoreInst(TOp, Ptr);
   1031     }
   1032     break;
   1033   case Intrinsic::ppc_qpx_qvstfd:
   1034     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
   1035     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
   1036         32) {
   1037       Type *OpPtrTy =
   1038         PointerType::getUnqual(II->getArgOperand(0)->getType());
   1039       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
   1040       return new StoreInst(II->getArgOperand(0), Ptr);
   1041     }
   1042     break;
   1043 
   1044   case Intrinsic::x86_sse_storeu_ps:
   1045   case Intrinsic::x86_sse2_storeu_pd:
   1046   case Intrinsic::x86_sse2_storeu_dq:
   1047     // Turn X86 storeu -> store if the pointer is known aligned.
   1048     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
   1049         16) {
   1050       Type *OpPtrTy =
   1051         PointerType::getUnqual(II->getArgOperand(1)->getType());
   1052       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
   1053       return new StoreInst(II->getArgOperand(1), Ptr);
   1054     }
   1055     break;
   1056 
   1057   case Intrinsic::x86_vcvtph2ps_128:
   1058   case Intrinsic::x86_vcvtph2ps_256: {
   1059     auto Arg = II->getArgOperand(0);
   1060     auto ArgType = cast<VectorType>(Arg->getType());
   1061     auto RetType = cast<VectorType>(II->getType());
   1062     unsigned ArgWidth = ArgType->getNumElements();
   1063     unsigned RetWidth = RetType->getNumElements();
   1064     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
   1065     assert(ArgType->isIntOrIntVectorTy() &&
   1066            ArgType->getScalarSizeInBits() == 16 &&
   1067            "CVTPH2PS input type should be 16-bit integer vector");
   1068     assert(RetType->getScalarType()->isFloatTy() &&
   1069            "CVTPH2PS output type should be 32-bit float vector");
   1070 
   1071     // Constant folding: Convert to generic half to single conversion.
   1072     if (isa<ConstantAggregateZero>(Arg))
   1073       return ReplaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
   1074 
   1075     if (isa<ConstantDataVector>(Arg)) {
   1076       auto VectorHalfAsShorts = Arg;
   1077       if (RetWidth < ArgWidth) {
   1078         SmallVector<int, 8> SubVecMask;
   1079         for (unsigned i = 0; i != RetWidth; ++i)
   1080           SubVecMask.push_back((int)i);
   1081         VectorHalfAsShorts = Builder->CreateShuffleVector(
   1082             Arg, UndefValue::get(ArgType), SubVecMask);
   1083       }
   1084 
   1085       auto VectorHalfType =
   1086           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
   1087       auto VectorHalfs =
   1088           Builder->CreateBitCast(VectorHalfAsShorts, VectorHalfType);
   1089       auto VectorFloats = Builder->CreateFPExt(VectorHalfs, RetType);
   1090       return ReplaceInstUsesWith(*II, VectorFloats);
   1091     }
   1092 
   1093     // We only use the lowest lanes of the argument.
   1094     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
   1095       II->setArgOperand(0, V);
   1096       return II;
   1097     }
   1098     break;
   1099   }
   1100 
   1101   case Intrinsic::x86_sse_cvtss2si:
   1102   case Intrinsic::x86_sse_cvtss2si64:
   1103   case Intrinsic::x86_sse_cvttss2si:
   1104   case Intrinsic::x86_sse_cvttss2si64:
   1105   case Intrinsic::x86_sse2_cvtsd2si:
   1106   case Intrinsic::x86_sse2_cvtsd2si64:
   1107   case Intrinsic::x86_sse2_cvttsd2si:
   1108   case Intrinsic::x86_sse2_cvttsd2si64: {
   1109     // These intrinsics only demand the 0th element of their input vectors. If
   1110     // we can simplify the input based on that, do so now.
   1111     Value *Arg = II->getArgOperand(0);
   1112     unsigned VWidth = Arg->getType()->getVectorNumElements();
   1113     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
   1114       II->setArgOperand(0, V);
   1115       return II;
   1116     }
   1117     break;
   1118   }
   1119 
   1120   // Constant fold ashr( <A x Bi>, Ci ).
   1121   // Constant fold lshr( <A x Bi>, Ci ).
   1122   // Constant fold shl( <A x Bi>, Ci ).
   1123   case Intrinsic::x86_sse2_psrai_d:
   1124   case Intrinsic::x86_sse2_psrai_w:
   1125   case Intrinsic::x86_avx2_psrai_d:
   1126   case Intrinsic::x86_avx2_psrai_w:
   1127   case Intrinsic::x86_sse2_psrli_d:
   1128   case Intrinsic::x86_sse2_psrli_q:
   1129   case Intrinsic::x86_sse2_psrli_w:
   1130   case Intrinsic::x86_avx2_psrli_d:
   1131   case Intrinsic::x86_avx2_psrli_q:
   1132   case Intrinsic::x86_avx2_psrli_w:
   1133   case Intrinsic::x86_sse2_pslli_d:
   1134   case Intrinsic::x86_sse2_pslli_q:
   1135   case Intrinsic::x86_sse2_pslli_w:
   1136   case Intrinsic::x86_avx2_pslli_d:
   1137   case Intrinsic::x86_avx2_pslli_q:
   1138   case Intrinsic::x86_avx2_pslli_w:
   1139     if (Value *V = SimplifyX86immshift(*II, *Builder))
   1140       return ReplaceInstUsesWith(*II, V);
   1141     break;
   1142 
   1143   case Intrinsic::x86_sse2_psra_d:
   1144   case Intrinsic::x86_sse2_psra_w:
   1145   case Intrinsic::x86_avx2_psra_d:
   1146   case Intrinsic::x86_avx2_psra_w:
   1147   case Intrinsic::x86_sse2_psrl_d:
   1148   case Intrinsic::x86_sse2_psrl_q:
   1149   case Intrinsic::x86_sse2_psrl_w:
   1150   case Intrinsic::x86_avx2_psrl_d:
   1151   case Intrinsic::x86_avx2_psrl_q:
   1152   case Intrinsic::x86_avx2_psrl_w:
   1153   case Intrinsic::x86_sse2_psll_d:
   1154   case Intrinsic::x86_sse2_psll_q:
   1155   case Intrinsic::x86_sse2_psll_w:
   1156   case Intrinsic::x86_avx2_psll_d:
   1157   case Intrinsic::x86_avx2_psll_q:
   1158   case Intrinsic::x86_avx2_psll_w: {
   1159     if (Value *V = SimplifyX86immshift(*II, *Builder))
   1160       return ReplaceInstUsesWith(*II, V);
   1161 
   1162     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
   1163     // operand to compute the shift amount.
   1164     Value *Arg1 = II->getArgOperand(1);
   1165     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
   1166            "Unexpected packed shift size");
   1167     unsigned VWidth = Arg1->getType()->getVectorNumElements();
   1168 
   1169     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
   1170       II->setArgOperand(1, V);
   1171       return II;
   1172     }
   1173     break;
   1174   }
   1175 
   1176   case Intrinsic::x86_avx2_pmovsxbd:
   1177   case Intrinsic::x86_avx2_pmovsxbq:
   1178   case Intrinsic::x86_avx2_pmovsxbw:
   1179   case Intrinsic::x86_avx2_pmovsxdq:
   1180   case Intrinsic::x86_avx2_pmovsxwd:
   1181   case Intrinsic::x86_avx2_pmovsxwq:
   1182     if (Value *V = SimplifyX86extend(*II, *Builder, true))
   1183       return ReplaceInstUsesWith(*II, V);
   1184     break;
   1185 
   1186   case Intrinsic::x86_sse41_pmovzxbd:
   1187   case Intrinsic::x86_sse41_pmovzxbq:
   1188   case Intrinsic::x86_sse41_pmovzxbw:
   1189   case Intrinsic::x86_sse41_pmovzxdq:
   1190   case Intrinsic::x86_sse41_pmovzxwd:
   1191   case Intrinsic::x86_sse41_pmovzxwq:
   1192   case Intrinsic::x86_avx2_pmovzxbd:
   1193   case Intrinsic::x86_avx2_pmovzxbq:
   1194   case Intrinsic::x86_avx2_pmovzxbw:
   1195   case Intrinsic::x86_avx2_pmovzxdq:
   1196   case Intrinsic::x86_avx2_pmovzxwd:
   1197   case Intrinsic::x86_avx2_pmovzxwq:
   1198     if (Value *V = SimplifyX86extend(*II, *Builder, false))
   1199       return ReplaceInstUsesWith(*II, V);
   1200     break;
   1201 
   1202   case Intrinsic::x86_sse41_insertps:
   1203     if (Value *V = SimplifyX86insertps(*II, *Builder))
   1204       return ReplaceInstUsesWith(*II, V);
   1205     break;
   1206 
   1207   case Intrinsic::x86_sse4a_extrq: {
   1208     Value *Op0 = II->getArgOperand(0);
   1209     Value *Op1 = II->getArgOperand(1);
   1210     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
   1211     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
   1212     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
   1213            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
   1214            VWidth1 == 16 && "Unexpected operand sizes");
   1215 
   1216     // See if we're dealing with constant values.
   1217     Constant *C1 = dyn_cast<Constant>(Op1);
   1218     ConstantInt *CILength =
   1219         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)0))
   1220            : nullptr;
   1221     ConstantInt *CIIndex =
   1222         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
   1223            : nullptr;
   1224 
   1225     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
   1226     if (Value *V = SimplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
   1227       return ReplaceInstUsesWith(*II, V);
   1228 
   1229     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
   1230     // operands and the lowest 16-bits of the second.
   1231     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
   1232       II->setArgOperand(0, V);
   1233       return II;
   1234     }
   1235     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
   1236       II->setArgOperand(1, V);
   1237       return II;
   1238     }
   1239     break;
   1240   }
   1241 
   1242   case Intrinsic::x86_sse4a_extrqi: {
   1243     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
   1244     // bits of the lower 64-bits. The upper 64-bits are undefined.
   1245     Value *Op0 = II->getArgOperand(0);
   1246     unsigned VWidth = Op0->getType()->getVectorNumElements();
   1247     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
   1248            "Unexpected operand size");
   1249 
   1250     // See if we're dealing with constant values.
   1251     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
   1252     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
   1253 
   1254     // Attempt to simplify to a constant or shuffle vector.
   1255     if (Value *V = SimplifyX86extrq(*II, Op0, CILength, CIIndex, *Builder))
   1256       return ReplaceInstUsesWith(*II, V);
   1257 
   1258     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
   1259     // operand.
   1260     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
   1261       II->setArgOperand(0, V);
   1262       return II;
   1263     }
   1264     break;
   1265   }
   1266 
   1267   case Intrinsic::x86_sse4a_insertq: {
   1268     Value *Op0 = II->getArgOperand(0);
   1269     Value *Op1 = II->getArgOperand(1);
   1270     unsigned VWidth = Op0->getType()->getVectorNumElements();
   1271     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
   1272            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
   1273            Op1->getType()->getVectorNumElements() == 2 &&
   1274            "Unexpected operand size");
   1275 
   1276     // See if we're dealing with constant values.
   1277     Constant *C1 = dyn_cast<Constant>(Op1);
   1278     ConstantInt *CI11 =
   1279         C1 ? dyn_cast<ConstantInt>(C1->getAggregateElement((unsigned)1))
   1280            : nullptr;
   1281 
   1282     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
   1283     if (CI11) {
   1284       APInt V11 = CI11->getValue();
   1285       APInt Len = V11.zextOrTrunc(6);
   1286       APInt Idx = V11.lshr(8).zextOrTrunc(6);
   1287       if (Value *V = SimplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
   1288         return ReplaceInstUsesWith(*II, V);
   1289     }
   1290 
   1291     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
   1292     // operand.
   1293     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
   1294       II->setArgOperand(0, V);
   1295       return II;
   1296     }
   1297     break;
   1298   }
   1299 
   1300   case Intrinsic::x86_sse4a_insertqi: {
   1301     // INSERTQI: Extract lowest Length bits from lower half of second source and
   1302     // insert over first source starting at Index bit. The upper 64-bits are
   1303     // undefined.
   1304     Value *Op0 = II->getArgOperand(0);
   1305     Value *Op1 = II->getArgOperand(1);
   1306     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
   1307     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
   1308     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
   1309            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
   1310            VWidth1 == 2 && "Unexpected operand sizes");
   1311 
   1312     // See if we're dealing with constant values.
   1313     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
   1314     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
   1315 
   1316     // Attempt to simplify to a constant or shuffle vector.
   1317     if (CILength && CIIndex) {
   1318       APInt Len = CILength->getValue().zextOrTrunc(6);
   1319       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
   1320       if (Value *V = SimplifyX86insertq(*II, Op0, Op1, Len, Idx, *Builder))
   1321         return ReplaceInstUsesWith(*II, V);
   1322     }
   1323 
   1324     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
   1325     // operands.
   1326     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
   1327       II->setArgOperand(0, V);
   1328       return II;
   1329     }
   1330 
   1331     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
   1332       II->setArgOperand(1, V);
   1333       return II;
   1334     }
   1335     break;
   1336   }
   1337 
   1338   case Intrinsic::x86_sse41_pblendvb:
   1339   case Intrinsic::x86_sse41_blendvps:
   1340   case Intrinsic::x86_sse41_blendvpd:
   1341   case Intrinsic::x86_avx_blendv_ps_256:
   1342   case Intrinsic::x86_avx_blendv_pd_256:
   1343   case Intrinsic::x86_avx2_pblendvb: {
   1344     // Convert blendv* to vector selects if the mask is constant.
   1345     // This optimization is convoluted because the intrinsic is defined as
   1346     // getting a vector of floats or doubles for the ps and pd versions.
   1347     // FIXME: That should be changed.
   1348 
   1349     Value *Op0 = II->getArgOperand(0);
   1350     Value *Op1 = II->getArgOperand(1);
   1351     Value *Mask = II->getArgOperand(2);
   1352 
   1353     // fold (blend A, A, Mask) -> A
   1354     if (Op0 == Op1)
   1355       return ReplaceInstUsesWith(CI, Op0);
   1356 
   1357     // Zero Mask - select 1st argument.
   1358     if (isa<ConstantAggregateZero>(Mask))
   1359       return ReplaceInstUsesWith(CI, Op0);
   1360 
   1361     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
   1362     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
   1363       auto Tyi1 = Builder->getInt1Ty();
   1364       auto SelectorType = cast<VectorType>(Mask->getType());
   1365       auto EltTy = SelectorType->getElementType();
   1366       unsigned Size = SelectorType->getNumElements();
   1367       unsigned BitWidth =
   1368           EltTy->isFloatTy()
   1369               ? 32
   1370               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
   1371       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
   1372              "Wrong arguments for variable blend intrinsic");
   1373       SmallVector<Constant *, 32> Selectors;
   1374       for (unsigned I = 0; I < Size; ++I) {
   1375         // The intrinsics only read the top bit
   1376         uint64_t Selector;
   1377         if (BitWidth == 8)
   1378           Selector = C->getElementAsInteger(I);
   1379         else
   1380           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
   1381         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
   1382       }
   1383       auto NewSelector = ConstantVector::get(Selectors);
   1384       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
   1385     }
   1386     break;
   1387   }
   1388 
   1389   case Intrinsic::x86_ssse3_pshuf_b_128:
   1390   case Intrinsic::x86_avx2_pshuf_b: {
   1391     // Turn pshufb(V1,mask) -> shuffle(V1,Zero,mask) if mask is a constant.
   1392     auto *V = II->getArgOperand(1);
   1393     auto *VTy = cast<VectorType>(V->getType());
   1394     unsigned NumElts = VTy->getNumElements();
   1395     assert((NumElts == 16 || NumElts == 32) &&
   1396            "Unexpected number of elements in shuffle mask!");
   1397     // Initialize the resulting shuffle mask to all zeroes.
   1398     uint32_t Indexes[32] = {0};
   1399 
   1400     if (auto *Mask = dyn_cast<ConstantDataVector>(V)) {
   1401       // Each byte in the shuffle control mask forms an index to permute the
   1402       // corresponding byte in the destination operand.
   1403       for (unsigned I = 0; I < NumElts; ++I) {
   1404         int8_t Index = Mask->getElementAsInteger(I);
   1405         // If the most significant bit (bit[7]) of each byte of the shuffle
   1406         // control mask is set, then zero is written in the result byte.
   1407         // The zero vector is in the right-hand side of the resulting
   1408         // shufflevector.
   1409 
   1410         // The value of each index is the least significant 4 bits of the
   1411         // shuffle control byte.
   1412         Indexes[I] = (Index < 0) ? NumElts : Index & 0xF;
   1413       }
   1414     } else if (!isa<ConstantAggregateZero>(V))
   1415       break;
   1416 
   1417     // The value of each index for the high 128-bit lane is the least
   1418     // significant 4 bits of the respective shuffle control byte.
   1419     for (unsigned I = 16; I < NumElts; ++I)
   1420       Indexes[I] += I & 0xF0;
   1421 
   1422     auto NewC = ConstantDataVector::get(V->getContext(),
   1423                                         makeArrayRef(Indexes, NumElts));
   1424     auto V1 = II->getArgOperand(0);
   1425     auto V2 = Constant::getNullValue(II->getType());
   1426     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
   1427     return ReplaceInstUsesWith(CI, Shuffle);
   1428   }
   1429 
   1430   case Intrinsic::x86_avx_vpermilvar_ps:
   1431   case Intrinsic::x86_avx_vpermilvar_ps_256:
   1432   case Intrinsic::x86_avx_vpermilvar_pd:
   1433   case Intrinsic::x86_avx_vpermilvar_pd_256: {
   1434     // Convert vpermil* to shufflevector if the mask is constant.
   1435     Value *V = II->getArgOperand(1);
   1436     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
   1437     assert(Size == 8 || Size == 4 || Size == 2);
   1438     uint32_t Indexes[8];
   1439     if (auto C = dyn_cast<ConstantDataVector>(V)) {
   1440       // The intrinsics only read one or two bits, clear the rest.
   1441       for (unsigned I = 0; I < Size; ++I) {
   1442         uint32_t Index = C->getElementAsInteger(I) & 0x3;
   1443         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
   1444             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
   1445           Index >>= 1;
   1446         Indexes[I] = Index;
   1447       }
   1448     } else if (isa<ConstantAggregateZero>(V)) {
   1449       for (unsigned I = 0; I < Size; ++I)
   1450         Indexes[I] = 0;
   1451     } else {
   1452       break;
   1453     }
   1454     // The _256 variants are a bit trickier since the mask bits always index
   1455     // into the corresponding 128 half. In order to convert to a generic
   1456     // shuffle, we have to make that explicit.
   1457     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
   1458         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
   1459       for (unsigned I = Size / 2; I < Size; ++I)
   1460         Indexes[I] += Size / 2;
   1461     }
   1462     auto NewC =
   1463         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
   1464     auto V1 = II->getArgOperand(0);
   1465     auto V2 = UndefValue::get(V1->getType());
   1466     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
   1467     return ReplaceInstUsesWith(CI, Shuffle);
   1468   }
   1469 
   1470   case Intrinsic::x86_avx_vperm2f128_pd_256:
   1471   case Intrinsic::x86_avx_vperm2f128_ps_256:
   1472   case Intrinsic::x86_avx_vperm2f128_si_256:
   1473   case Intrinsic::x86_avx2_vperm2i128:
   1474     if (Value *V = SimplifyX86vperm2(*II, *Builder))
   1475       return ReplaceInstUsesWith(*II, V);
   1476     break;
   1477 
   1478   case Intrinsic::x86_xop_vpcomb:
   1479   case Intrinsic::x86_xop_vpcomd:
   1480   case Intrinsic::x86_xop_vpcomq:
   1481   case Intrinsic::x86_xop_vpcomw:
   1482     if (Value *V = SimplifyX86vpcom(*II, *Builder, true))
   1483       return ReplaceInstUsesWith(*II, V);
   1484     break;
   1485 
   1486   case Intrinsic::x86_xop_vpcomub:
   1487   case Intrinsic::x86_xop_vpcomud:
   1488   case Intrinsic::x86_xop_vpcomuq:
   1489   case Intrinsic::x86_xop_vpcomuw:
   1490     if (Value *V = SimplifyX86vpcom(*II, *Builder, false))
   1491       return ReplaceInstUsesWith(*II, V);
   1492     break;
   1493 
   1494   case Intrinsic::ppc_altivec_vperm:
   1495     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
   1496     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
   1497     // a vectorshuffle for little endian, we must undo the transformation
   1498     // performed on vec_perm in altivec.h.  That is, we must complement
   1499     // the permutation mask with respect to 31 and reverse the order of
   1500     // V1 and V2.
   1501     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
   1502       assert(Mask->getType()->getVectorNumElements() == 16 &&
   1503              "Bad type for intrinsic!");
   1504 
   1505       // Check that all of the elements are integer constants or undefs.
   1506       bool AllEltsOk = true;
   1507       for (unsigned i = 0; i != 16; ++i) {
   1508         Constant *Elt = Mask->getAggregateElement(i);
   1509         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
   1510           AllEltsOk = false;
   1511           break;
   1512         }
   1513       }
   1514 
   1515       if (AllEltsOk) {
   1516         // Cast the input vectors to byte vectors.
   1517         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
   1518                                             Mask->getType());
   1519         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
   1520                                             Mask->getType());
   1521         Value *Result = UndefValue::get(Op0->getType());
   1522 
   1523         // Only extract each element once.
   1524         Value *ExtractedElts[32];
   1525         memset(ExtractedElts, 0, sizeof(ExtractedElts));
   1526 
   1527         for (unsigned i = 0; i != 16; ++i) {
   1528           if (isa<UndefValue>(Mask->getAggregateElement(i)))
   1529             continue;
   1530           unsigned Idx =
   1531             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
   1532           Idx &= 31;  // Match the hardware behavior.
   1533           if (DL.isLittleEndian())
   1534             Idx = 31 - Idx;
   1535 
   1536           if (!ExtractedElts[Idx]) {
   1537             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
   1538             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
   1539             ExtractedElts[Idx] =
   1540               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
   1541                                             Builder->getInt32(Idx&15));
   1542           }
   1543 
   1544           // Insert this value into the result vector.
   1545           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
   1546                                                 Builder->getInt32(i));
   1547         }
   1548         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
   1549       }
   1550     }
   1551     break;
   1552 
   1553   case Intrinsic::arm_neon_vld1:
   1554   case Intrinsic::arm_neon_vld2:
   1555   case Intrinsic::arm_neon_vld3:
   1556   case Intrinsic::arm_neon_vld4:
   1557   case Intrinsic::arm_neon_vld2lane:
   1558   case Intrinsic::arm_neon_vld3lane:
   1559   case Intrinsic::arm_neon_vld4lane:
   1560   case Intrinsic::arm_neon_vst1:
   1561   case Intrinsic::arm_neon_vst2:
   1562   case Intrinsic::arm_neon_vst3:
   1563   case Intrinsic::arm_neon_vst4:
   1564   case Intrinsic::arm_neon_vst2lane:
   1565   case Intrinsic::arm_neon_vst3lane:
   1566   case Intrinsic::arm_neon_vst4lane: {
   1567     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
   1568     unsigned AlignArg = II->getNumArgOperands() - 1;
   1569     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
   1570     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
   1571       II->setArgOperand(AlignArg,
   1572                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
   1573                                          MemAlign, false));
   1574       return II;
   1575     }
   1576     break;
   1577   }
   1578 
   1579   case Intrinsic::arm_neon_vmulls:
   1580   case Intrinsic::arm_neon_vmullu:
   1581   case Intrinsic::aarch64_neon_smull:
   1582   case Intrinsic::aarch64_neon_umull: {
   1583     Value *Arg0 = II->getArgOperand(0);
   1584     Value *Arg1 = II->getArgOperand(1);
   1585 
   1586     // Handle mul by zero first:
   1587     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
   1588       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
   1589     }
   1590 
   1591     // Check for constant LHS & RHS - in this case we just simplify.
   1592     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
   1593                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
   1594     VectorType *NewVT = cast<VectorType>(II->getType());
   1595     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
   1596       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
   1597         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
   1598         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
   1599 
   1600         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
   1601       }
   1602 
   1603       // Couldn't simplify - canonicalize constant to the RHS.
   1604       std::swap(Arg0, Arg1);
   1605     }
   1606 
   1607     // Handle mul by one:
   1608     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
   1609       if (ConstantInt *Splat =
   1610               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
   1611         if (Splat->isOne())
   1612           return CastInst::CreateIntegerCast(Arg0, II->getType(),
   1613                                              /*isSigned=*/!Zext);
   1614 
   1615     break;
   1616   }
   1617 
   1618   case Intrinsic::AMDGPU_rcp: {
   1619     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
   1620       const APFloat &ArgVal = C->getValueAPF();
   1621       APFloat Val(ArgVal.getSemantics(), 1.0);
   1622       APFloat::opStatus Status = Val.divide(ArgVal,
   1623                                             APFloat::rmNearestTiesToEven);
   1624       // Only do this if it was exact and therefore not dependent on the
   1625       // rounding mode.
   1626       if (Status == APFloat::opOK)
   1627         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
   1628     }
   1629 
   1630     break;
   1631   }
   1632   case Intrinsic::stackrestore: {
   1633     // If the save is right next to the restore, remove the restore.  This can
   1634     // happen when variable allocas are DCE'd.
   1635     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
   1636       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
   1637         if (&*++SS->getIterator() == II)
   1638           return EraseInstFromFunction(CI);
   1639       }
   1640     }
   1641 
   1642     // Scan down this block to see if there is another stack restore in the
   1643     // same block without an intervening call/alloca.
   1644     BasicBlock::iterator BI(II);
   1645     TerminatorInst *TI = II->getParent()->getTerminator();
   1646     bool CannotRemove = false;
   1647     for (++BI; &*BI != TI; ++BI) {
   1648       if (isa<AllocaInst>(BI)) {
   1649         CannotRemove = true;
   1650         break;
   1651       }
   1652       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
   1653         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
   1654           // If there is a stackrestore below this one, remove this one.
   1655           if (II->getIntrinsicID() == Intrinsic::stackrestore)
   1656             return EraseInstFromFunction(CI);
   1657           // Otherwise, ignore the intrinsic.
   1658         } else {
   1659           // If we found a non-intrinsic call, we can't remove the stack
   1660           // restore.
   1661           CannotRemove = true;
   1662           break;
   1663         }
   1664       }
   1665     }
   1666 
   1667     // If the stack restore is in a return, resume, or unwind block and if there
   1668     // are no allocas or calls between the restore and the return, nuke the
   1669     // restore.
   1670     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
   1671       return EraseInstFromFunction(CI);
   1672     break;
   1673   }
   1674   case Intrinsic::lifetime_start: {
   1675     // Remove trivially empty lifetime_start/end ranges, i.e. a start
   1676     // immediately followed by an end (ignoring debuginfo or other
   1677     // lifetime markers in between).
   1678     BasicBlock::iterator BI = II->getIterator(), BE = II->getParent()->end();
   1679     for (++BI; BI != BE; ++BI) {
   1680       if (IntrinsicInst *LTE = dyn_cast<IntrinsicInst>(BI)) {
   1681         if (isa<DbgInfoIntrinsic>(LTE) ||
   1682             LTE->getIntrinsicID() == Intrinsic::lifetime_start)
   1683           continue;
   1684         if (LTE->getIntrinsicID() == Intrinsic::lifetime_end) {
   1685           if (II->getOperand(0) == LTE->getOperand(0) &&
   1686               II->getOperand(1) == LTE->getOperand(1)) {
   1687             EraseInstFromFunction(*LTE);
   1688             return EraseInstFromFunction(*II);
   1689           }
   1690           continue;
   1691         }
   1692       }
   1693       break;
   1694     }
   1695     break;
   1696   }
   1697   case Intrinsic::assume: {
   1698     // Canonicalize assume(a && b) -> assume(a); assume(b);
   1699     // Note: New assumption intrinsics created here are registered by
   1700     // the InstCombineIRInserter object.
   1701     Value *IIOperand = II->getArgOperand(0), *A, *B,
   1702           *AssumeIntrinsic = II->getCalledValue();
   1703     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
   1704       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
   1705       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
   1706       return EraseInstFromFunction(*II);
   1707     }
   1708     // assume(!(a || b)) -> assume(!a); assume(!b);
   1709     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
   1710       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
   1711                           II->getName());
   1712       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
   1713                           II->getName());
   1714       return EraseInstFromFunction(*II);
   1715     }
   1716 
   1717     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
   1718     // (if assume is valid at the load)
   1719     if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
   1720       Value *LHS = ICmp->getOperand(0);
   1721       Value *RHS = ICmp->getOperand(1);
   1722       if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
   1723           isa<LoadInst>(LHS) &&
   1724           isa<Constant>(RHS) &&
   1725           RHS->getType()->isPointerTy() &&
   1726           cast<Constant>(RHS)->isNullValue()) {
   1727         LoadInst* LI = cast<LoadInst>(LHS);
   1728         if (isValidAssumeForContext(II, LI, DT)) {
   1729           MDNode *MD = MDNode::get(II->getContext(), None);
   1730           LI->setMetadata(LLVMContext::MD_nonnull, MD);
   1731           return EraseInstFromFunction(*II);
   1732         }
   1733       }
   1734       // TODO: apply nonnull return attributes to calls and invokes
   1735       // TODO: apply range metadata for range check patterns?
   1736     }
   1737     // If there is a dominating assume with the same condition as this one,
   1738     // then this one is redundant, and should be removed.
   1739     APInt KnownZero(1, 0), KnownOne(1, 0);
   1740     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
   1741     if (KnownOne.isAllOnesValue())
   1742       return EraseInstFromFunction(*II);
   1743 
   1744     break;
   1745   }
   1746   case Intrinsic::experimental_gc_relocate: {
   1747     // Translate facts known about a pointer before relocating into
   1748     // facts about the relocate value, while being careful to
   1749     // preserve relocation semantics.
   1750     GCRelocateOperands Operands(II);
   1751     Value *DerivedPtr = Operands.getDerivedPtr();
   1752     auto *GCRelocateType = cast<PointerType>(II->getType());
   1753 
   1754     // Remove the relocation if unused, note that this check is required
   1755     // to prevent the cases below from looping forever.
   1756     if (II->use_empty())
   1757       return EraseInstFromFunction(*II);
   1758 
   1759     // Undef is undef, even after relocation.
   1760     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
   1761     // most practical collectors, but there was discussion in the review thread
   1762     // about whether it was legal for all possible collectors.
   1763     if (isa<UndefValue>(DerivedPtr)) {
   1764       // gc_relocate is uncasted. Use undef of gc_relocate's type to replace it.
   1765       return ReplaceInstUsesWith(*II, UndefValue::get(GCRelocateType));
   1766     }
   1767 
   1768     // The relocation of null will be null for most any collector.
   1769     // TODO: provide a hook for this in GCStrategy.  There might be some weird
   1770     // collector this property does not hold for.
   1771     if (isa<ConstantPointerNull>(DerivedPtr)) {
   1772       // gc_relocate is uncasted. Use null-pointer of gc_relocate's type to replace it.
   1773       return ReplaceInstUsesWith(*II, ConstantPointerNull::get(GCRelocateType));
   1774     }
   1775 
   1776     // isKnownNonNull -> nonnull attribute
   1777     if (isKnownNonNullAt(DerivedPtr, II, DT, TLI))
   1778       II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
   1779 
   1780     // isDereferenceablePointer -> deref attribute
   1781     if (isDereferenceablePointer(DerivedPtr, DL)) {
   1782       if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
   1783         uint64_t Bytes = A->getDereferenceableBytes();
   1784         II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
   1785       }
   1786     }
   1787 
   1788     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
   1789     // Canonicalize on the type from the uses to the defs
   1790 
   1791     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
   1792   }
   1793   }
   1794 
   1795   return visitCallSite(II);
   1796 }
   1797 
   1798 // InvokeInst simplification
   1799 //
   1800 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
   1801   return visitCallSite(&II);
   1802 }
   1803 
   1804 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
   1805 /// passed through the varargs area, we can eliminate the use of the cast.
   1806 static bool isSafeToEliminateVarargsCast(const CallSite CS,
   1807                                          const DataLayout &DL,
   1808                                          const CastInst *const CI,
   1809                                          const int ix) {
   1810   if (!CI->isLosslessCast())
   1811     return false;
   1812 
   1813   // If this is a GC intrinsic, avoid munging types.  We need types for
   1814   // statepoint reconstruction in SelectionDAG.
   1815   // TODO: This is probably something which should be expanded to all
   1816   // intrinsics since the entire point of intrinsics is that
   1817   // they are understandable by the optimizer.
   1818   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
   1819     return false;
   1820 
   1821   // The size of ByVal or InAlloca arguments is derived from the type, so we
   1822   // can't change to a type with a different size.  If the size were
   1823   // passed explicitly we could avoid this check.
   1824   if (!CS.isByValOrInAllocaArgument(ix))
   1825     return true;
   1826 
   1827   Type* SrcTy =
   1828             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
   1829   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
   1830   if (!SrcTy->isSized() || !DstTy->isSized())
   1831     return false;
   1832   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
   1833     return false;
   1834   return true;
   1835 }
   1836 
   1837 // Try to fold some different type of calls here.
   1838 // Currently we're only working with the checking functions, memcpy_chk,
   1839 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
   1840 // strcat_chk and strncat_chk.
   1841 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
   1842   if (!CI->getCalledFunction()) return nullptr;
   1843 
   1844   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
   1845     ReplaceInstUsesWith(*From, With);
   1846   };
   1847   LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
   1848   if (Value *With = Simplifier.optimizeCall(CI)) {
   1849     ++NumSimplified;
   1850     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
   1851   }
   1852 
   1853   return nullptr;
   1854 }
   1855 
   1856 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
   1857   // Strip off at most one level of pointer casts, looking for an alloca.  This
   1858   // is good enough in practice and simpler than handling any number of casts.
   1859   Value *Underlying = TrampMem->stripPointerCasts();
   1860   if (Underlying != TrampMem &&
   1861       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
   1862     return nullptr;
   1863   if (!isa<AllocaInst>(Underlying))
   1864     return nullptr;
   1865 
   1866   IntrinsicInst *InitTrampoline = nullptr;
   1867   for (User *U : TrampMem->users()) {
   1868     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
   1869     if (!II)
   1870       return nullptr;
   1871     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
   1872       if (InitTrampoline)
   1873         // More than one init_trampoline writes to this value.  Give up.
   1874         return nullptr;
   1875       InitTrampoline = II;
   1876       continue;
   1877     }
   1878     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
   1879       // Allow any number of calls to adjust.trampoline.
   1880       continue;
   1881     return nullptr;
   1882   }
   1883 
   1884   // No call to init.trampoline found.
   1885   if (!InitTrampoline)
   1886     return nullptr;
   1887 
   1888   // Check that the alloca is being used in the expected way.
   1889   if (InitTrampoline->getOperand(0) != TrampMem)
   1890     return nullptr;
   1891 
   1892   return InitTrampoline;
   1893 }
   1894 
   1895 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
   1896                                                Value *TrampMem) {
   1897   // Visit all the previous instructions in the basic block, and try to find a
   1898   // init.trampoline which has a direct path to the adjust.trampoline.
   1899   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
   1900                             E = AdjustTramp->getParent()->begin();
   1901        I != E;) {
   1902     Instruction *Inst = &*--I;
   1903     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1904       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
   1905           II->getOperand(0) == TrampMem)
   1906         return II;
   1907     if (Inst->mayWriteToMemory())
   1908       return nullptr;
   1909   }
   1910   return nullptr;
   1911 }
   1912 
   1913 // Given a call to llvm.adjust.trampoline, find and return the corresponding
   1914 // call to llvm.init.trampoline if the call to the trampoline can be optimized
   1915 // to a direct call to a function.  Otherwise return NULL.
   1916 //
   1917 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
   1918   Callee = Callee->stripPointerCasts();
   1919   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
   1920   if (!AdjustTramp ||
   1921       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
   1922     return nullptr;
   1923 
   1924   Value *TrampMem = AdjustTramp->getOperand(0);
   1925 
   1926   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
   1927     return IT;
   1928   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
   1929     return IT;
   1930   return nullptr;
   1931 }
   1932 
   1933 // visitCallSite - Improvements for call and invoke instructions.
   1934 //
   1935 Instruction *InstCombiner::visitCallSite(CallSite CS) {
   1936 
   1937   if (isAllocLikeFn(CS.getInstruction(), TLI))
   1938     return visitAllocSite(*CS.getInstruction());
   1939 
   1940   bool Changed = false;
   1941 
   1942   // Mark any parameters that are known to be non-null with the nonnull
   1943   // attribute.  This is helpful for inlining calls to functions with null
   1944   // checks on their arguments.
   1945   SmallVector<unsigned, 4> Indices;
   1946   unsigned ArgNo = 0;
   1947 
   1948   for (Value *V : CS.args()) {
   1949     if (V->getType()->isPointerTy() && !CS.paramHasAttr(ArgNo+1, Attribute::NonNull) &&
   1950         isKnownNonNullAt(V, CS.getInstruction(), DT, TLI))
   1951       Indices.push_back(ArgNo + 1);
   1952     ArgNo++;
   1953   }
   1954 
   1955   assert(ArgNo == CS.arg_size() && "sanity check");
   1956 
   1957   if (!Indices.empty()) {
   1958     AttributeSet AS = CS.getAttributes();
   1959     LLVMContext &Ctx = CS.getInstruction()->getContext();
   1960     AS = AS.addAttribute(Ctx, Indices,
   1961                          Attribute::get(Ctx, Attribute::NonNull));
   1962     CS.setAttributes(AS);
   1963     Changed = true;
   1964   }
   1965 
   1966   // If the callee is a pointer to a function, attempt to move any casts to the
   1967   // arguments of the call/invoke.
   1968   Value *Callee = CS.getCalledValue();
   1969   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
   1970     return nullptr;
   1971 
   1972   if (Function *CalleeF = dyn_cast<Function>(Callee))
   1973     // If the call and callee calling conventions don't match, this call must
   1974     // be unreachable, as the call is undefined.
   1975     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
   1976         // Only do this for calls to a function with a body.  A prototype may
   1977         // not actually end up matching the implementation's calling conv for a
   1978         // variety of reasons (e.g. it may be written in assembly).
   1979         !CalleeF->isDeclaration()) {
   1980       Instruction *OldCall = CS.getInstruction();
   1981       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
   1982                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
   1983                                   OldCall);
   1984       // If OldCall does not return void then replaceAllUsesWith undef.
   1985       // This allows ValueHandlers and custom metadata to adjust itself.
   1986       if (!OldCall->getType()->isVoidTy())
   1987         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
   1988       if (isa<CallInst>(OldCall))
   1989         return EraseInstFromFunction(*OldCall);
   1990 
   1991       // We cannot remove an invoke, because it would change the CFG, just
   1992       // change the callee to a null pointer.
   1993       cast<InvokeInst>(OldCall)->setCalledFunction(
   1994                                     Constant::getNullValue(CalleeF->getType()));
   1995       return nullptr;
   1996     }
   1997 
   1998   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
   1999     // If CS does not return void then replaceAllUsesWith undef.
   2000     // This allows ValueHandlers and custom metadata to adjust itself.
   2001     if (!CS.getInstruction()->getType()->isVoidTy())
   2002       ReplaceInstUsesWith(*CS.getInstruction(),
   2003                           UndefValue::get(CS.getInstruction()->getType()));
   2004 
   2005     if (isa<InvokeInst>(CS.getInstruction())) {
   2006       // Can't remove an invoke because we cannot change the CFG.
   2007       return nullptr;
   2008     }
   2009 
   2010     // This instruction is not reachable, just remove it.  We insert a store to
   2011     // undef so that we know that this code is not reachable, despite the fact
   2012     // that we can't modify the CFG here.
   2013     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
   2014                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
   2015                   CS.getInstruction());
   2016 
   2017     return EraseInstFromFunction(*CS.getInstruction());
   2018   }
   2019 
   2020   if (IntrinsicInst *II = FindInitTrampoline(Callee))
   2021     return transformCallThroughTrampoline(CS, II);
   2022 
   2023   PointerType *PTy = cast<PointerType>(Callee->getType());
   2024   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   2025   if (FTy->isVarArg()) {
   2026     int ix = FTy->getNumParams();
   2027     // See if we can optimize any arguments passed through the varargs area of
   2028     // the call.
   2029     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
   2030            E = CS.arg_end(); I != E; ++I, ++ix) {
   2031       CastInst *CI = dyn_cast<CastInst>(*I);
   2032       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
   2033         *I = CI->getOperand(0);
   2034         Changed = true;
   2035       }
   2036     }
   2037   }
   2038 
   2039   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
   2040     // Inline asm calls cannot throw - mark them 'nounwind'.
   2041     CS.setDoesNotThrow();
   2042     Changed = true;
   2043   }
   2044 
   2045   // Try to optimize the call if possible, we require DataLayout for most of
   2046   // this.  None of these calls are seen as possibly dead so go ahead and
   2047   // delete the instruction now.
   2048   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
   2049     Instruction *I = tryOptimizeCall(CI);
   2050     // If we changed something return the result, etc. Otherwise let
   2051     // the fallthrough check.
   2052     if (I) return EraseInstFromFunction(*I);
   2053   }
   2054 
   2055   return Changed ? CS.getInstruction() : nullptr;
   2056 }
   2057 
   2058 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
   2059 // attempt to move the cast to the arguments of the call/invoke.
   2060 //
   2061 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
   2062   Function *Callee =
   2063     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
   2064   if (!Callee)
   2065     return false;
   2066   // The prototype of thunks are a lie, don't try to directly call such
   2067   // functions.
   2068   if (Callee->hasFnAttribute("thunk"))
   2069     return false;
   2070   Instruction *Caller = CS.getInstruction();
   2071   const AttributeSet &CallerPAL = CS.getAttributes();
   2072 
   2073   // Okay, this is a cast from a function to a different type.  Unless doing so
   2074   // would cause a type conversion of one of our arguments, change this call to
   2075   // be a direct call with arguments casted to the appropriate types.
   2076   //
   2077   FunctionType *FT = Callee->getFunctionType();
   2078   Type *OldRetTy = Caller->getType();
   2079   Type *NewRetTy = FT->getReturnType();
   2080 
   2081   // Check to see if we are changing the return type...
   2082   if (OldRetTy != NewRetTy) {
   2083 
   2084     if (NewRetTy->isStructTy())
   2085       return false; // TODO: Handle multiple return values.
   2086 
   2087     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
   2088       if (Callee->isDeclaration())
   2089         return false;   // Cannot transform this return value.
   2090 
   2091       if (!Caller->use_empty() &&
   2092           // void -> non-void is handled specially
   2093           !NewRetTy->isVoidTy())
   2094         return false;   // Cannot transform this return value.
   2095     }
   2096 
   2097     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
   2098       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
   2099       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
   2100         return false;   // Attribute not compatible with transformed value.
   2101     }
   2102 
   2103     // If the callsite is an invoke instruction, and the return value is used by
   2104     // a PHI node in a successor, we cannot change the return type of the call
   2105     // because there is no place to put the cast instruction (without breaking
   2106     // the critical edge).  Bail out in this case.
   2107     if (!Caller->use_empty())
   2108       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
   2109         for (User *U : II->users())
   2110           if (PHINode *PN = dyn_cast<PHINode>(U))
   2111             if (PN->getParent() == II->getNormalDest() ||
   2112                 PN->getParent() == II->getUnwindDest())
   2113               return false;
   2114   }
   2115 
   2116   unsigned NumActualArgs = CS.arg_size();
   2117   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
   2118 
   2119   // Prevent us turning:
   2120   // declare void @takes_i32_inalloca(i32* inalloca)
   2121   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
   2122   //
   2123   // into:
   2124   //  call void @takes_i32_inalloca(i32* null)
   2125   //
   2126   //  Similarly, avoid folding away bitcasts of byval calls.
   2127   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
   2128       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
   2129     return false;
   2130 
   2131   CallSite::arg_iterator AI = CS.arg_begin();
   2132   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
   2133     Type *ParamTy = FT->getParamType(i);
   2134     Type *ActTy = (*AI)->getType();
   2135 
   2136     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
   2137       return false;   // Cannot transform this parameter value.
   2138 
   2139     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
   2140           overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
   2141       return false;   // Attribute not compatible with transformed value.
   2142 
   2143     if (CS.isInAllocaArgument(i))
   2144       return false;   // Cannot transform to and from inalloca.
   2145 
   2146     // If the parameter is passed as a byval argument, then we have to have a
   2147     // sized type and the sized type has to have the same size as the old type.
   2148     if (ParamTy != ActTy &&
   2149         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
   2150                                                          Attribute::ByVal)) {
   2151       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
   2152       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
   2153         return false;
   2154 
   2155       Type *CurElTy = ActTy->getPointerElementType();
   2156       if (DL.getTypeAllocSize(CurElTy) !=
   2157           DL.getTypeAllocSize(ParamPTy->getElementType()))
   2158         return false;
   2159     }
   2160   }
   2161 
   2162   if (Callee->isDeclaration()) {
   2163     // Do not delete arguments unless we have a function body.
   2164     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
   2165       return false;
   2166 
   2167     // If the callee is just a declaration, don't change the varargsness of the
   2168     // call.  We don't want to introduce a varargs call where one doesn't
   2169     // already exist.
   2170     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
   2171     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
   2172       return false;
   2173 
   2174     // If both the callee and the cast type are varargs, we still have to make
   2175     // sure the number of fixed parameters are the same or we have the same
   2176     // ABI issues as if we introduce a varargs call.
   2177     if (FT->isVarArg() &&
   2178         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
   2179         FT->getNumParams() !=
   2180         cast<FunctionType>(APTy->getElementType())->getNumParams())
   2181       return false;
   2182   }
   2183 
   2184   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
   2185       !CallerPAL.isEmpty())
   2186     // In this case we have more arguments than the new function type, but we
   2187     // won't be dropping them.  Check that these extra arguments have attributes
   2188     // that are compatible with being a vararg call argument.
   2189     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
   2190       unsigned Index = CallerPAL.getSlotIndex(i - 1);
   2191       if (Index <= FT->getNumParams())
   2192         break;
   2193 
   2194       // Check if it has an attribute that's incompatible with varargs.
   2195       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
   2196       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
   2197         return false;
   2198     }
   2199 
   2200 
   2201   // Okay, we decided that this is a safe thing to do: go ahead and start
   2202   // inserting cast instructions as necessary.
   2203   std::vector<Value*> Args;
   2204   Args.reserve(NumActualArgs);
   2205   SmallVector<AttributeSet, 8> attrVec;
   2206   attrVec.reserve(NumCommonArgs);
   2207 
   2208   // Get any return attributes.
   2209   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
   2210 
   2211   // If the return value is not being used, the type may not be compatible
   2212   // with the existing attributes.  Wipe out any problematic attributes.
   2213   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
   2214 
   2215   // Add the new return attributes.
   2216   if (RAttrs.hasAttributes())
   2217     attrVec.push_back(AttributeSet::get(Caller->getContext(),
   2218                                         AttributeSet::ReturnIndex, RAttrs));
   2219 
   2220   AI = CS.arg_begin();
   2221   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
   2222     Type *ParamTy = FT->getParamType(i);
   2223 
   2224     if ((*AI)->getType() == ParamTy) {
   2225       Args.push_back(*AI);
   2226     } else {
   2227       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
   2228     }
   2229 
   2230     // Add any parameter attributes.
   2231     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
   2232     if (PAttrs.hasAttributes())
   2233       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
   2234                                           PAttrs));
   2235   }
   2236 
   2237   // If the function takes more arguments than the call was taking, add them
   2238   // now.
   2239   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
   2240     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
   2241 
   2242   // If we are removing arguments to the function, emit an obnoxious warning.
   2243   if (FT->getNumParams() < NumActualArgs) {
   2244     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
   2245     if (FT->isVarArg()) {
   2246       // Add all of the arguments in their promoted form to the arg list.
   2247       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
   2248         Type *PTy = getPromotedType((*AI)->getType());
   2249         if (PTy != (*AI)->getType()) {
   2250           // Must promote to pass through va_arg area!
   2251           Instruction::CastOps opcode =
   2252             CastInst::getCastOpcode(*AI, false, PTy, false);
   2253           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
   2254         } else {
   2255           Args.push_back(*AI);
   2256         }
   2257 
   2258         // Add any parameter attributes.
   2259         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
   2260         if (PAttrs.hasAttributes())
   2261           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
   2262                                               PAttrs));
   2263       }
   2264     }
   2265   }
   2266 
   2267   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
   2268   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
   2269     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
   2270 
   2271   if (NewRetTy->isVoidTy())
   2272     Caller->setName("");   // Void type should not have a name.
   2273 
   2274   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
   2275                                                        attrVec);
   2276 
   2277   SmallVector<OperandBundleDef, 1> OpBundles;
   2278   CS.getOperandBundlesAsDefs(OpBundles);
   2279 
   2280   Instruction *NC;
   2281   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   2282     NC = Builder->CreateInvoke(Callee, II->getNormalDest(), II->getUnwindDest(),
   2283                                Args, OpBundles);
   2284     NC->takeName(II);
   2285     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
   2286     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
   2287   } else {
   2288     CallInst *CI = cast<CallInst>(Caller);
   2289     NC = Builder->CreateCall(Callee, Args, OpBundles);
   2290     NC->takeName(CI);
   2291     if (CI->isTailCall())
   2292       cast<CallInst>(NC)->setTailCall();
   2293     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
   2294     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
   2295   }
   2296 
   2297   // Insert a cast of the return type as necessary.
   2298   Value *NV = NC;
   2299   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
   2300     if (!NV->getType()->isVoidTy()) {
   2301       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
   2302       NC->setDebugLoc(Caller->getDebugLoc());
   2303 
   2304       // If this is an invoke instruction, we should insert it after the first
   2305       // non-phi, instruction in the normal successor block.
   2306       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   2307         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
   2308         InsertNewInstBefore(NC, *I);
   2309       } else {
   2310         // Otherwise, it's a call, just insert cast right after the call.
   2311         InsertNewInstBefore(NC, *Caller);
   2312       }
   2313       Worklist.AddUsersToWorkList(*Caller);
   2314     } else {
   2315       NV = UndefValue::get(Caller->getType());
   2316     }
   2317   }
   2318 
   2319   if (!Caller->use_empty())
   2320     ReplaceInstUsesWith(*Caller, NV);
   2321   else if (Caller->hasValueHandle()) {
   2322     if (OldRetTy == NV->getType())
   2323       ValueHandleBase::ValueIsRAUWd(Caller, NV);
   2324     else
   2325       // We cannot call ValueIsRAUWd with a different type, and the
   2326       // actual tracked value will disappear.
   2327       ValueHandleBase::ValueIsDeleted(Caller);
   2328   }
   2329 
   2330   EraseInstFromFunction(*Caller);
   2331   return true;
   2332 }
   2333 
   2334 // transformCallThroughTrampoline - Turn a call to a function created by
   2335 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
   2336 // underlying function.
   2337 //
   2338 Instruction *
   2339 InstCombiner::transformCallThroughTrampoline(CallSite CS,
   2340                                              IntrinsicInst *Tramp) {
   2341   Value *Callee = CS.getCalledValue();
   2342   PointerType *PTy = cast<PointerType>(Callee->getType());
   2343   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   2344   const AttributeSet &Attrs = CS.getAttributes();
   2345 
   2346   // If the call already has the 'nest' attribute somewhere then give up -
   2347   // otherwise 'nest' would occur twice after splicing in the chain.
   2348   if (Attrs.hasAttrSomewhere(Attribute::Nest))
   2349     return nullptr;
   2350 
   2351   assert(Tramp &&
   2352          "transformCallThroughTrampoline called with incorrect CallSite.");
   2353 
   2354   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
   2355   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
   2356   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
   2357 
   2358   const AttributeSet &NestAttrs = NestF->getAttributes();
   2359   if (!NestAttrs.isEmpty()) {
   2360     unsigned NestIdx = 1;
   2361     Type *NestTy = nullptr;
   2362     AttributeSet NestAttr;
   2363 
   2364     // Look for a parameter marked with the 'nest' attribute.
   2365     for (FunctionType::param_iterator I = NestFTy->param_begin(),
   2366          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
   2367       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
   2368         // Record the parameter type and any other attributes.
   2369         NestTy = *I;
   2370         NestAttr = NestAttrs.getParamAttributes(NestIdx);
   2371         break;
   2372       }
   2373 
   2374     if (NestTy) {
   2375       Instruction *Caller = CS.getInstruction();
   2376       std::vector<Value*> NewArgs;
   2377       NewArgs.reserve(CS.arg_size() + 1);
   2378 
   2379       SmallVector<AttributeSet, 8> NewAttrs;
   2380       NewAttrs.reserve(Attrs.getNumSlots() + 1);
   2381 
   2382       // Insert the nest argument into the call argument list, which may
   2383       // mean appending it.  Likewise for attributes.
   2384 
   2385       // Add any result attributes.
   2386       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
   2387         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
   2388                                              Attrs.getRetAttributes()));
   2389 
   2390       {
   2391         unsigned Idx = 1;
   2392         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   2393         do {
   2394           if (Idx == NestIdx) {
   2395             // Add the chain argument and attributes.
   2396             Value *NestVal = Tramp->getArgOperand(2);
   2397             if (NestVal->getType() != NestTy)
   2398               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
   2399             NewArgs.push_back(NestVal);
   2400             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
   2401                                                  NestAttr));
   2402           }
   2403 
   2404           if (I == E)
   2405             break;
   2406 
   2407           // Add the original argument and attributes.
   2408           NewArgs.push_back(*I);
   2409           AttributeSet Attr = Attrs.getParamAttributes(Idx);
   2410           if (Attr.hasAttributes(Idx)) {
   2411             AttrBuilder B(Attr, Idx);
   2412             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
   2413                                                  Idx + (Idx >= NestIdx), B));
   2414           }
   2415 
   2416           ++Idx, ++I;
   2417         } while (1);
   2418       }
   2419 
   2420       // Add any function attributes.
   2421       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
   2422         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
   2423                                              Attrs.getFnAttributes()));
   2424 
   2425       // The trampoline may have been bitcast to a bogus type (FTy).
   2426       // Handle this by synthesizing a new function type, equal to FTy
   2427       // with the chain parameter inserted.
   2428 
   2429       std::vector<Type*> NewTypes;
   2430       NewTypes.reserve(FTy->getNumParams()+1);
   2431 
   2432       // Insert the chain's type into the list of parameter types, which may
   2433       // mean appending it.
   2434       {
   2435         unsigned Idx = 1;
   2436         FunctionType::param_iterator I = FTy->param_begin(),
   2437           E = FTy->param_end();
   2438 
   2439         do {
   2440           if (Idx == NestIdx)
   2441             // Add the chain's type.
   2442             NewTypes.push_back(NestTy);
   2443 
   2444           if (I == E)
   2445             break;
   2446 
   2447           // Add the original type.
   2448           NewTypes.push_back(*I);
   2449 
   2450           ++Idx, ++I;
   2451         } while (1);
   2452       }
   2453 
   2454       // Replace the trampoline call with a direct call.  Let the generic
   2455       // code sort out any function type mismatches.
   2456       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
   2457                                                 FTy->isVarArg());
   2458       Constant *NewCallee =
   2459         NestF->getType() == PointerType::getUnqual(NewFTy) ?
   2460         NestF : ConstantExpr::getBitCast(NestF,
   2461                                          PointerType::getUnqual(NewFTy));
   2462       const AttributeSet &NewPAL =
   2463           AttributeSet::get(FTy->getContext(), NewAttrs);
   2464 
   2465       Instruction *NewCaller;
   2466       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   2467         NewCaller = InvokeInst::Create(NewCallee,
   2468                                        II->getNormalDest(), II->getUnwindDest(),
   2469                                        NewArgs);
   2470         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
   2471         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
   2472       } else {
   2473         NewCaller = CallInst::Create(NewCallee, NewArgs);
   2474         if (cast<CallInst>(Caller)->isTailCall())
   2475           cast<CallInst>(NewCaller)->setTailCall();
   2476         cast<CallInst>(NewCaller)->
   2477           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
   2478         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
   2479       }
   2480 
   2481       return NewCaller;
   2482     }
   2483   }
   2484 
   2485   // Replace the trampoline call with a direct call.  Since there is no 'nest'
   2486   // parameter, there is no need to adjust the argument list.  Let the generic
   2487   // code sort out any function type mismatches.
   2488   Constant *NewCallee =
   2489     NestF->getType() == PTy ? NestF :
   2490                               ConstantExpr::getBitCast(NestF, PTy);
   2491   CS.setCalledFunction(NewCallee);
   2492   return CS.getInstruction();
   2493 }
   2494