Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for add, fadd, sub, and fsub.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/GetElementPtrTypeIterator.h"
     19 #include "llvm/IR/PatternMatch.h"
     20 
     21 using namespace llvm;
     22 using namespace PatternMatch;
     23 
     24 #define DEBUG_TYPE "instcombine"
     25 
     26 namespace {
     27 
     28   /// Class representing coefficient of floating-point addend.
     29   /// This class needs to be highly efficient, which is especially true for
     30   /// the constructor. As of I write this comment, the cost of the default
     31   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
     32   /// perform write-merging).
     33   ///
     34   class FAddendCoef {
     35   public:
     36     // The constructor has to initialize a APFloat, which is unnecessary for
     37     // most addends which have coefficient either 1 or -1. So, the constructor
     38     // is expensive. In order to avoid the cost of the constructor, we should
     39     // reuse some instances whenever possible. The pre-created instances
     40     // FAddCombine::Add[0-5] embodies this idea.
     41     //
     42     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
     43     ~FAddendCoef();
     44 
     45     void set(short C) {
     46       assert(!insaneIntVal(C) && "Insane coefficient");
     47       IsFp = false; IntVal = C;
     48     }
     49 
     50     void set(const APFloat& C);
     51 
     52     void negate();
     53 
     54     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
     55     Value *getValue(Type *) const;
     56 
     57     // If possible, don't define operator+/operator- etc because these
     58     // operators inevitably call FAddendCoef's constructor which is not cheap.
     59     void operator=(const FAddendCoef &A);
     60     void operator+=(const FAddendCoef &A);
     61     void operator-=(const FAddendCoef &A);
     62     void operator*=(const FAddendCoef &S);
     63 
     64     bool isOne() const { return isInt() && IntVal == 1; }
     65     bool isTwo() const { return isInt() && IntVal == 2; }
     66     bool isMinusOne() const { return isInt() && IntVal == -1; }
     67     bool isMinusTwo() const { return isInt() && IntVal == -2; }
     68 
     69   private:
     70     bool insaneIntVal(int V) { return V > 4 || V < -4; }
     71     APFloat *getFpValPtr()
     72       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
     73     const APFloat *getFpValPtr() const
     74       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
     75 
     76     const APFloat &getFpVal() const {
     77       assert(IsFp && BufHasFpVal && "Incorret state");
     78       return *getFpValPtr();
     79     }
     80 
     81     APFloat &getFpVal() {
     82       assert(IsFp && BufHasFpVal && "Incorret state");
     83       return *getFpValPtr();
     84     }
     85 
     86     bool isInt() const { return !IsFp; }
     87 
     88     // If the coefficient is represented by an integer, promote it to a
     89     // floating point.
     90     void convertToFpType(const fltSemantics &Sem);
     91 
     92     // Construct an APFloat from a signed integer.
     93     // TODO: We should get rid of this function when APFloat can be constructed
     94     //       from an *SIGNED* integer.
     95     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
     96 
     97   private:
     98     bool IsFp;
     99 
    100     // True iff FpValBuf contains an instance of APFloat.
    101     bool BufHasFpVal;
    102 
    103     // The integer coefficient of an individual addend is either 1 or -1,
    104     // and we try to simplify at most 4 addends from neighboring at most
    105     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
    106     // is overkill of this end.
    107     short IntVal;
    108 
    109     AlignedCharArrayUnion<APFloat> FpValBuf;
    110   };
    111 
    112   /// FAddend is used to represent floating-point addend. An addend is
    113   /// represented as <C, V>, where the V is a symbolic value, and C is a
    114   /// constant coefficient. A constant addend is represented as <C, 0>.
    115   ///
    116   class FAddend {
    117   public:
    118     FAddend() : Val(nullptr) {}
    119 
    120     Value *getSymVal() const { return Val; }
    121     const FAddendCoef &getCoef() const { return Coeff; }
    122 
    123     bool isConstant() const { return Val == nullptr; }
    124     bool isZero() const { return Coeff.isZero(); }
    125 
    126     void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
    127     void set(const APFloat& Coefficient, Value *V)
    128       { Coeff.set(Coefficient); Val = V; }
    129     void set(const ConstantFP* Coefficient, Value *V)
    130       { Coeff.set(Coefficient->getValueAPF()); Val = V; }
    131 
    132     void negate() { Coeff.negate(); }
    133 
    134     /// Drill down the U-D chain one step to find the definition of V, and
    135     /// try to break the definition into one or two addends.
    136     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
    137 
    138     /// Similar to FAddend::drillDownOneStep() except that the value being
    139     /// splitted is the addend itself.
    140     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
    141 
    142     void operator+=(const FAddend &T) {
    143       assert((Val == T.Val) && "Symbolic-values disagree");
    144       Coeff += T.Coeff;
    145     }
    146 
    147   private:
    148     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
    149 
    150     // This addend has the value of "Coeff * Val".
    151     Value *Val;
    152     FAddendCoef Coeff;
    153   };
    154 
    155   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
    156   /// with its neighboring at most two instructions.
    157   ///
    158   class FAddCombine {
    159   public:
    160     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
    161     Value *simplify(Instruction *FAdd);
    162 
    163   private:
    164     typedef SmallVector<const FAddend*, 4> AddendVect;
    165 
    166     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
    167 
    168     Value *performFactorization(Instruction *I);
    169 
    170     /// Convert given addend to a Value
    171     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
    172 
    173     /// Return the number of instructions needed to emit the N-ary addition.
    174     unsigned calcInstrNumber(const AddendVect& Vect);
    175     Value *createFSub(Value *Opnd0, Value *Opnd1);
    176     Value *createFAdd(Value *Opnd0, Value *Opnd1);
    177     Value *createFMul(Value *Opnd0, Value *Opnd1);
    178     Value *createFDiv(Value *Opnd0, Value *Opnd1);
    179     Value *createFNeg(Value *V);
    180     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
    181     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
    182 
    183     InstCombiner::BuilderTy *Builder;
    184     Instruction *Instr;
    185 
    186      // Debugging stuff are clustered here.
    187     #ifndef NDEBUG
    188       unsigned CreateInstrNum;
    189       void initCreateInstNum() { CreateInstrNum = 0; }
    190       void incCreateInstNum() { CreateInstrNum++; }
    191     #else
    192       void initCreateInstNum() {}
    193       void incCreateInstNum() {}
    194     #endif
    195   };
    196 
    197 } // anonymous namespace
    198 
    199 //===----------------------------------------------------------------------===//
    200 //
    201 // Implementation of
    202 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
    203 //
    204 //===----------------------------------------------------------------------===//
    205 FAddendCoef::~FAddendCoef() {
    206   if (BufHasFpVal)
    207     getFpValPtr()->~APFloat();
    208 }
    209 
    210 void FAddendCoef::set(const APFloat& C) {
    211   APFloat *P = getFpValPtr();
    212 
    213   if (isInt()) {
    214     // As the buffer is meanless byte stream, we cannot call
    215     // APFloat::operator=().
    216     new(P) APFloat(C);
    217   } else
    218     *P = C;
    219 
    220   IsFp = BufHasFpVal = true;
    221 }
    222 
    223 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
    224   if (!isInt())
    225     return;
    226 
    227   APFloat *P = getFpValPtr();
    228   if (IntVal > 0)
    229     new(P) APFloat(Sem, IntVal);
    230   else {
    231     new(P) APFloat(Sem, 0 - IntVal);
    232     P->changeSign();
    233   }
    234   IsFp = BufHasFpVal = true;
    235 }
    236 
    237 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
    238   if (Val >= 0)
    239     return APFloat(Sem, Val);
    240 
    241   APFloat T(Sem, 0 - Val);
    242   T.changeSign();
    243 
    244   return T;
    245 }
    246 
    247 void FAddendCoef::operator=(const FAddendCoef &That) {
    248   if (That.isInt())
    249     set(That.IntVal);
    250   else
    251     set(That.getFpVal());
    252 }
    253 
    254 void FAddendCoef::operator+=(const FAddendCoef &That) {
    255   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
    256   if (isInt() == That.isInt()) {
    257     if (isInt())
    258       IntVal += That.IntVal;
    259     else
    260       getFpVal().add(That.getFpVal(), RndMode);
    261     return;
    262   }
    263 
    264   if (isInt()) {
    265     const APFloat &T = That.getFpVal();
    266     convertToFpType(T.getSemantics());
    267     getFpVal().add(T, RndMode);
    268     return;
    269   }
    270 
    271   APFloat &T = getFpVal();
    272   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
    273 }
    274 
    275 void FAddendCoef::operator-=(const FAddendCoef &That) {
    276   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
    277   if (isInt() == That.isInt()) {
    278     if (isInt())
    279       IntVal -= That.IntVal;
    280     else
    281       getFpVal().subtract(That.getFpVal(), RndMode);
    282     return;
    283   }
    284 
    285   if (isInt()) {
    286     const APFloat &T = That.getFpVal();
    287     convertToFpType(T.getSemantics());
    288     getFpVal().subtract(T, RndMode);
    289     return;
    290   }
    291 
    292   APFloat &T = getFpVal();
    293   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
    294 }
    295 
    296 void FAddendCoef::operator*=(const FAddendCoef &That) {
    297   if (That.isOne())
    298     return;
    299 
    300   if (That.isMinusOne()) {
    301     negate();
    302     return;
    303   }
    304 
    305   if (isInt() && That.isInt()) {
    306     int Res = IntVal * (int)That.IntVal;
    307     assert(!insaneIntVal(Res) && "Insane int value");
    308     IntVal = Res;
    309     return;
    310   }
    311 
    312   const fltSemantics &Semantic =
    313     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
    314 
    315   if (isInt())
    316     convertToFpType(Semantic);
    317   APFloat &F0 = getFpVal();
    318 
    319   if (That.isInt())
    320     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
    321                 APFloat::rmNearestTiesToEven);
    322   else
    323     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
    324 
    325   return;
    326 }
    327 
    328 void FAddendCoef::negate() {
    329   if (isInt())
    330     IntVal = 0 - IntVal;
    331   else
    332     getFpVal().changeSign();
    333 }
    334 
    335 Value *FAddendCoef::getValue(Type *Ty) const {
    336   return isInt() ?
    337     ConstantFP::get(Ty, float(IntVal)) :
    338     ConstantFP::get(Ty->getContext(), getFpVal());
    339 }
    340 
    341 // The definition of <Val>     Addends
    342 // =========================================
    343 //  A + B                     <1, A>, <1,B>
    344 //  A - B                     <1, A>, <1,B>
    345 //  0 - B                     <-1, B>
    346 //  C * A,                    <C, A>
    347 //  A + C                     <1, A> <C, NULL>
    348 //  0 +/- 0                   <0, NULL> (corner case)
    349 //
    350 // Legend: A and B are not constant, C is constant
    351 //
    352 unsigned FAddend::drillValueDownOneStep
    353   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
    354   Instruction *I = nullptr;
    355   if (!Val || !(I = dyn_cast<Instruction>(Val)))
    356     return 0;
    357 
    358   unsigned Opcode = I->getOpcode();
    359 
    360   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
    361     ConstantFP *C0, *C1;
    362     Value *Opnd0 = I->getOperand(0);
    363     Value *Opnd1 = I->getOperand(1);
    364     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
    365       Opnd0 = nullptr;
    366 
    367     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
    368       Opnd1 = nullptr;
    369 
    370     if (Opnd0) {
    371       if (!C0)
    372         Addend0.set(1, Opnd0);
    373       else
    374         Addend0.set(C0, nullptr);
    375     }
    376 
    377     if (Opnd1) {
    378       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
    379       if (!C1)
    380         Addend.set(1, Opnd1);
    381       else
    382         Addend.set(C1, nullptr);
    383       if (Opcode == Instruction::FSub)
    384         Addend.negate();
    385     }
    386 
    387     if (Opnd0 || Opnd1)
    388       return Opnd0 && Opnd1 ? 2 : 1;
    389 
    390     // Both operands are zero. Weird!
    391     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
    392     return 1;
    393   }
    394 
    395   if (I->getOpcode() == Instruction::FMul) {
    396     Value *V0 = I->getOperand(0);
    397     Value *V1 = I->getOperand(1);
    398     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
    399       Addend0.set(C, V1);
    400       return 1;
    401     }
    402 
    403     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
    404       Addend0.set(C, V0);
    405       return 1;
    406     }
    407   }
    408 
    409   return 0;
    410 }
    411 
    412 // Try to break *this* addend into two addends. e.g. Suppose this addend is
    413 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
    414 // i.e. <2.3, X> and <2.3, Y>.
    415 //
    416 unsigned FAddend::drillAddendDownOneStep
    417   (FAddend &Addend0, FAddend &Addend1) const {
    418   if (isConstant())
    419     return 0;
    420 
    421   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
    422   if (!BreakNum || Coeff.isOne())
    423     return BreakNum;
    424 
    425   Addend0.Scale(Coeff);
    426 
    427   if (BreakNum == 2)
    428     Addend1.Scale(Coeff);
    429 
    430   return BreakNum;
    431 }
    432 
    433 // Try to perform following optimization on the input instruction I. Return the
    434 // simplified expression if was successful; otherwise, return 0.
    435 //
    436 //   Instruction "I" is                Simplified into
    437 // -------------------------------------------------------
    438 //   (x * y) +/- (x * z)               x * (y +/- z)
    439 //   (y / x) +/- (z / x)               (y +/- z) / x
    440 //
    441 Value *FAddCombine::performFactorization(Instruction *I) {
    442   assert((I->getOpcode() == Instruction::FAdd ||
    443           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
    444 
    445   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
    446   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
    447 
    448   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
    449     return nullptr;
    450 
    451   bool isMpy = false;
    452   if (I0->getOpcode() == Instruction::FMul)
    453     isMpy = true;
    454   else if (I0->getOpcode() != Instruction::FDiv)
    455     return nullptr;
    456 
    457   Value *Opnd0_0 = I0->getOperand(0);
    458   Value *Opnd0_1 = I0->getOperand(1);
    459   Value *Opnd1_0 = I1->getOperand(0);
    460   Value *Opnd1_1 = I1->getOperand(1);
    461 
    462   //  Input Instr I       Factor   AddSub0  AddSub1
    463   //  ----------------------------------------------
    464   // (x*y) +/- (x*z)        x        y         z
    465   // (y/x) +/- (z/x)        x        y         z
    466   //
    467   Value *Factor = nullptr;
    468   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
    469 
    470   if (isMpy) {
    471     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
    472       Factor = Opnd0_0;
    473     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
    474       Factor = Opnd0_1;
    475 
    476     if (Factor) {
    477       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
    478       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
    479     }
    480   } else if (Opnd0_1 == Opnd1_1) {
    481     Factor = Opnd0_1;
    482     AddSub0 = Opnd0_0;
    483     AddSub1 = Opnd1_0;
    484   }
    485 
    486   if (!Factor)
    487     return nullptr;
    488 
    489   FastMathFlags Flags;
    490   Flags.setUnsafeAlgebra();
    491   if (I0) Flags &= I->getFastMathFlags();
    492   if (I1) Flags &= I->getFastMathFlags();
    493 
    494   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
    495   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
    496                       createFAdd(AddSub0, AddSub1) :
    497                       createFSub(AddSub0, AddSub1);
    498   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
    499     const APFloat &F = CFP->getValueAPF();
    500     if (!F.isNormal())
    501       return nullptr;
    502   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
    503     II->setFastMathFlags(Flags);
    504 
    505   if (isMpy) {
    506     Value *RI = createFMul(Factor, NewAddSub);
    507     if (Instruction *II = dyn_cast<Instruction>(RI))
    508       II->setFastMathFlags(Flags);
    509     return RI;
    510   }
    511 
    512   Value *RI = createFDiv(NewAddSub, Factor);
    513   if (Instruction *II = dyn_cast<Instruction>(RI))
    514     II->setFastMathFlags(Flags);
    515   return RI;
    516 }
    517 
    518 Value *FAddCombine::simplify(Instruction *I) {
    519   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
    520 
    521   // Currently we are not able to handle vector type.
    522   if (I->getType()->isVectorTy())
    523     return nullptr;
    524 
    525   assert((I->getOpcode() == Instruction::FAdd ||
    526           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
    527 
    528   // Save the instruction before calling other member-functions.
    529   Instr = I;
    530 
    531   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
    532 
    533   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
    534 
    535   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
    536   unsigned Opnd0_ExpNum = 0;
    537   unsigned Opnd1_ExpNum = 0;
    538 
    539   if (!Opnd0.isConstant())
    540     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
    541 
    542   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
    543   if (OpndNum == 2 && !Opnd1.isConstant())
    544     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
    545 
    546   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
    547   if (Opnd0_ExpNum && Opnd1_ExpNum) {
    548     AddendVect AllOpnds;
    549     AllOpnds.push_back(&Opnd0_0);
    550     AllOpnds.push_back(&Opnd1_0);
    551     if (Opnd0_ExpNum == 2)
    552       AllOpnds.push_back(&Opnd0_1);
    553     if (Opnd1_ExpNum == 2)
    554       AllOpnds.push_back(&Opnd1_1);
    555 
    556     // Compute instruction quota. We should save at least one instruction.
    557     unsigned InstQuota = 0;
    558 
    559     Value *V0 = I->getOperand(0);
    560     Value *V1 = I->getOperand(1);
    561     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
    562                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
    563 
    564     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
    565       return R;
    566   }
    567 
    568   if (OpndNum != 2) {
    569     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
    570     // splitted into two addends, say "V = X - Y", the instruction would have
    571     // been optimized into "I = Y - X" in the previous steps.
    572     //
    573     const FAddendCoef &CE = Opnd0.getCoef();
    574     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
    575   }
    576 
    577   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
    578   if (Opnd1_ExpNum) {
    579     AddendVect AllOpnds;
    580     AllOpnds.push_back(&Opnd0);
    581     AllOpnds.push_back(&Opnd1_0);
    582     if (Opnd1_ExpNum == 2)
    583       AllOpnds.push_back(&Opnd1_1);
    584 
    585     if (Value *R = simplifyFAdd(AllOpnds, 1))
    586       return R;
    587   }
    588 
    589   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
    590   if (Opnd0_ExpNum) {
    591     AddendVect AllOpnds;
    592     AllOpnds.push_back(&Opnd1);
    593     AllOpnds.push_back(&Opnd0_0);
    594     if (Opnd0_ExpNum == 2)
    595       AllOpnds.push_back(&Opnd0_1);
    596 
    597     if (Value *R = simplifyFAdd(AllOpnds, 1))
    598       return R;
    599   }
    600 
    601   // step 6: Try factorization as the last resort,
    602   return performFactorization(I);
    603 }
    604 
    605 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
    606   unsigned AddendNum = Addends.size();
    607   assert(AddendNum <= 4 && "Too many addends");
    608 
    609   // For saving intermediate results;
    610   unsigned NextTmpIdx = 0;
    611   FAddend TmpResult[3];
    612 
    613   // Points to the constant addend of the resulting simplified expression.
    614   // If the resulting expr has constant-addend, this constant-addend is
    615   // desirable to reside at the top of the resulting expression tree. Placing
    616   // constant close to supper-expr(s) will potentially reveal some optimization
    617   // opportunities in super-expr(s).
    618   //
    619   const FAddend *ConstAdd = nullptr;
    620 
    621   // Simplified addends are placed <SimpVect>.
    622   AddendVect SimpVect;
    623 
    624   // The outer loop works on one symbolic-value at a time. Suppose the input
    625   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
    626   // The symbolic-values will be processed in this order: x, y, z.
    627   //
    628   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
    629 
    630     const FAddend *ThisAddend = Addends[SymIdx];
    631     if (!ThisAddend) {
    632       // This addend was processed before.
    633       continue;
    634     }
    635 
    636     Value *Val = ThisAddend->getSymVal();
    637     unsigned StartIdx = SimpVect.size();
    638     SimpVect.push_back(ThisAddend);
    639 
    640     // The inner loop collects addends sharing same symbolic-value, and these
    641     // addends will be later on folded into a single addend. Following above
    642     // example, if the symbolic value "y" is being processed, the inner loop
    643     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
    644     // be later on folded into "<b1+b2, y>".
    645     //
    646     for (unsigned SameSymIdx = SymIdx + 1;
    647          SameSymIdx < AddendNum; SameSymIdx++) {
    648       const FAddend *T = Addends[SameSymIdx];
    649       if (T && T->getSymVal() == Val) {
    650         // Set null such that next iteration of the outer loop will not process
    651         // this addend again.
    652         Addends[SameSymIdx] = nullptr;
    653         SimpVect.push_back(T);
    654       }
    655     }
    656 
    657     // If multiple addends share same symbolic value, fold them together.
    658     if (StartIdx + 1 != SimpVect.size()) {
    659       FAddend &R = TmpResult[NextTmpIdx ++];
    660       R = *SimpVect[StartIdx];
    661       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
    662         R += *SimpVect[Idx];
    663 
    664       // Pop all addends being folded and push the resulting folded addend.
    665       SimpVect.resize(StartIdx);
    666       if (Val) {
    667         if (!R.isZero()) {
    668           SimpVect.push_back(&R);
    669         }
    670       } else {
    671         // Don't push constant addend at this time. It will be the last element
    672         // of <SimpVect>.
    673         ConstAdd = &R;
    674       }
    675     }
    676   }
    677 
    678   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
    679          "out-of-bound access");
    680 
    681   if (ConstAdd)
    682     SimpVect.push_back(ConstAdd);
    683 
    684   Value *Result;
    685   if (!SimpVect.empty())
    686     Result = createNaryFAdd(SimpVect, InstrQuota);
    687   else {
    688     // The addition is folded to 0.0.
    689     Result = ConstantFP::get(Instr->getType(), 0.0);
    690   }
    691 
    692   return Result;
    693 }
    694 
    695 Value *FAddCombine::createNaryFAdd
    696   (const AddendVect &Opnds, unsigned InstrQuota) {
    697   assert(!Opnds.empty() && "Expect at least one addend");
    698 
    699   // Step 1: Check if the # of instructions needed exceeds the quota.
    700   //
    701   unsigned InstrNeeded = calcInstrNumber(Opnds);
    702   if (InstrNeeded > InstrQuota)
    703     return nullptr;
    704 
    705   initCreateInstNum();
    706 
    707   // step 2: Emit the N-ary addition.
    708   // Note that at most three instructions are involved in Fadd-InstCombine: the
    709   // addition in question, and at most two neighboring instructions.
    710   // The resulting optimized addition should have at least one less instruction
    711   // than the original addition expression tree. This implies that the resulting
    712   // N-ary addition has at most two instructions, and we don't need to worry
    713   // about tree-height when constructing the N-ary addition.
    714 
    715   Value *LastVal = nullptr;
    716   bool LastValNeedNeg = false;
    717 
    718   // Iterate the addends, creating fadd/fsub using adjacent two addends.
    719   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
    720        I != E; I++) {
    721     bool NeedNeg;
    722     Value *V = createAddendVal(**I, NeedNeg);
    723     if (!LastVal) {
    724       LastVal = V;
    725       LastValNeedNeg = NeedNeg;
    726       continue;
    727     }
    728 
    729     if (LastValNeedNeg == NeedNeg) {
    730       LastVal = createFAdd(LastVal, V);
    731       continue;
    732     }
    733 
    734     if (LastValNeedNeg)
    735       LastVal = createFSub(V, LastVal);
    736     else
    737       LastVal = createFSub(LastVal, V);
    738 
    739     LastValNeedNeg = false;
    740   }
    741 
    742   if (LastValNeedNeg) {
    743     LastVal = createFNeg(LastVal);
    744   }
    745 
    746   #ifndef NDEBUG
    747     assert(CreateInstrNum == InstrNeeded &&
    748            "Inconsistent in instruction numbers");
    749   #endif
    750 
    751   return LastVal;
    752 }
    753 
    754 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
    755   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
    756   if (Instruction *I = dyn_cast<Instruction>(V))
    757     createInstPostProc(I);
    758   return V;
    759 }
    760 
    761 Value *FAddCombine::createFNeg(Value *V) {
    762   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
    763   Value *NewV = createFSub(Zero, V);
    764   if (Instruction *I = dyn_cast<Instruction>(NewV))
    765     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
    766   return NewV;
    767 }
    768 
    769 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
    770   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
    771   if (Instruction *I = dyn_cast<Instruction>(V))
    772     createInstPostProc(I);
    773   return V;
    774 }
    775 
    776 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
    777   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
    778   if (Instruction *I = dyn_cast<Instruction>(V))
    779     createInstPostProc(I);
    780   return V;
    781 }
    782 
    783 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
    784   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
    785   if (Instruction *I = dyn_cast<Instruction>(V))
    786     createInstPostProc(I);
    787   return V;
    788 }
    789 
    790 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
    791   NewInstr->setDebugLoc(Instr->getDebugLoc());
    792 
    793   // Keep track of the number of instruction created.
    794   if (!NoNumber)
    795     incCreateInstNum();
    796 
    797   // Propagate fast-math flags
    798   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
    799 }
    800 
    801 // Return the number of instruction needed to emit the N-ary addition.
    802 // NOTE: Keep this function in sync with createAddendVal().
    803 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
    804   unsigned OpndNum = Opnds.size();
    805   unsigned InstrNeeded = OpndNum - 1;
    806 
    807   // The number of addends in the form of "(-1)*x".
    808   unsigned NegOpndNum = 0;
    809 
    810   // Adjust the number of instructions needed to emit the N-ary add.
    811   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
    812        I != E; I++) {
    813     const FAddend *Opnd = *I;
    814     if (Opnd->isConstant())
    815       continue;
    816 
    817     const FAddendCoef &CE = Opnd->getCoef();
    818     if (CE.isMinusOne() || CE.isMinusTwo())
    819       NegOpndNum++;
    820 
    821     // Let the addend be "c * x". If "c == +/-1", the value of the addend
    822     // is immediately available; otherwise, it needs exactly one instruction
    823     // to evaluate the value.
    824     if (!CE.isMinusOne() && !CE.isOne())
    825       InstrNeeded++;
    826   }
    827   if (NegOpndNum == OpndNum)
    828     InstrNeeded++;
    829   return InstrNeeded;
    830 }
    831 
    832 // Input Addend        Value           NeedNeg(output)
    833 // ================================================================
    834 // Constant C          C               false
    835 // <+/-1, V>           V               coefficient is -1
    836 // <2/-2, V>          "fadd V, V"      coefficient is -2
    837 // <C, V>             "fmul V, C"      false
    838 //
    839 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
    840 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
    841   const FAddendCoef &Coeff = Opnd.getCoef();
    842 
    843   if (Opnd.isConstant()) {
    844     NeedNeg = false;
    845     return Coeff.getValue(Instr->getType());
    846   }
    847 
    848   Value *OpndVal = Opnd.getSymVal();
    849 
    850   if (Coeff.isMinusOne() || Coeff.isOne()) {
    851     NeedNeg = Coeff.isMinusOne();
    852     return OpndVal;
    853   }
    854 
    855   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
    856     NeedNeg = Coeff.isMinusTwo();
    857     return createFAdd(OpndVal, OpndVal);
    858   }
    859 
    860   NeedNeg = false;
    861   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
    862 }
    863 
    864 // If one of the operands only has one non-zero bit, and if the other
    865 // operand has a known-zero bit in a more significant place than it (not
    866 // including the sign bit) the ripple may go up to and fill the zero, but
    867 // won't change the sign. For example, (X & ~4) + 1.
    868 static bool checkRippleForAdd(const APInt &Op0KnownZero,
    869                               const APInt &Op1KnownZero) {
    870   APInt Op1MaybeOne = ~Op1KnownZero;
    871   // Make sure that one of the operand has at most one bit set to 1.
    872   if (Op1MaybeOne.countPopulation() != 1)
    873     return false;
    874 
    875   // Find the most significant known 0 other than the sign bit.
    876   int BitWidth = Op0KnownZero.getBitWidth();
    877   APInt Op0KnownZeroTemp(Op0KnownZero);
    878   Op0KnownZeroTemp.clearBit(BitWidth - 1);
    879   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
    880 
    881   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
    882   assert(Op1OnePosition >= 0);
    883 
    884   // This also covers the case of no known zero, since in that case
    885   // Op0ZeroPosition is -1.
    886   return Op0ZeroPosition >= Op1OnePosition;
    887 }
    888 
    889 /// Return true if we can prove that:
    890 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
    891 /// This basically requires proving that the add in the original type would not
    892 /// overflow to change the sign bit or have a carry out.
    893 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
    894                                             Instruction &CxtI) {
    895   // There are different heuristics we can use for this.  Here are some simple
    896   // ones.
    897 
    898   // If LHS and RHS each have at least two sign bits, the addition will look
    899   // like
    900   //
    901   // XX..... +
    902   // YY.....
    903   //
    904   // If the carry into the most significant position is 0, X and Y can't both
    905   // be 1 and therefore the carry out of the addition is also 0.
    906   //
    907   // If the carry into the most significant position is 1, X and Y can't both
    908   // be 0 and therefore the carry out of the addition is also 1.
    909   //
    910   // Since the carry into the most significant position is always equal to
    911   // the carry out of the addition, there is no signed overflow.
    912   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
    913       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
    914     return true;
    915 
    916   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
    917   APInt LHSKnownZero(BitWidth, 0);
    918   APInt LHSKnownOne(BitWidth, 0);
    919   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
    920 
    921   APInt RHSKnownZero(BitWidth, 0);
    922   APInt RHSKnownOne(BitWidth, 0);
    923   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
    924 
    925   // Addition of two 2's compliment numbers having opposite signs will never
    926   // overflow.
    927   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
    928       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
    929     return true;
    930 
    931   // Check if carry bit of addition will not cause overflow.
    932   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
    933     return true;
    934   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
    935     return true;
    936 
    937   return false;
    938 }
    939 
    940 /// \brief Return true if we can prove that:
    941 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
    942 /// This basically requires proving that the add in the original type would not
    943 /// overflow to change the sign bit or have a carry out.
    944 /// TODO: Handle this for Vectors.
    945 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
    946                                             Instruction &CxtI) {
    947   // If LHS and RHS each have at least two sign bits, the subtraction
    948   // cannot overflow.
    949   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
    950       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
    951     return true;
    952 
    953   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
    954   APInt LHSKnownZero(BitWidth, 0);
    955   APInt LHSKnownOne(BitWidth, 0);
    956   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
    957 
    958   APInt RHSKnownZero(BitWidth, 0);
    959   APInt RHSKnownOne(BitWidth, 0);
    960   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
    961 
    962   // Subtraction of two 2's compliment numbers having identical signs will
    963   // never overflow.
    964   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
    965       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
    966     return true;
    967 
    968   // TODO: implement logic similar to checkRippleForAdd
    969   return false;
    970 }
    971 
    972 /// \brief Return true if we can prove that:
    973 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
    974 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
    975                                               Instruction &CxtI) {
    976   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
    977   bool LHSKnownNonNegative, LHSKnownNegative;
    978   bool RHSKnownNonNegative, RHSKnownNegative;
    979   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
    980                  &CxtI);
    981   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
    982                  &CxtI);
    983   if (LHSKnownNegative && RHSKnownNonNegative)
    984     return true;
    985 
    986   return false;
    987 }
    988 
    989 // Checks if any operand is negative and we can convert add to sub.
    990 // This function checks for following negative patterns
    991 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
    992 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
    993 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
    994 static Value *checkForNegativeOperand(BinaryOperator &I,
    995                                       InstCombiner::BuilderTy *Builder) {
    996   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    997 
    998   // This function creates 2 instructions to replace ADD, we need at least one
    999   // of LHS or RHS to have one use to ensure benefit in transform.
   1000   if (!LHS->hasOneUse() && !RHS->hasOneUse())
   1001     return nullptr;
   1002 
   1003   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   1004   const APInt *C1 = nullptr, *C2 = nullptr;
   1005 
   1006   // if ONE is on other side, swap
   1007   if (match(RHS, m_Add(m_Value(X), m_One())))
   1008     std::swap(LHS, RHS);
   1009 
   1010   if (match(LHS, m_Add(m_Value(X), m_One()))) {
   1011     // if XOR on other side, swap
   1012     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1013       std::swap(X, RHS);
   1014 
   1015     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
   1016       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
   1017       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
   1018       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
   1019         Value *NewAnd = Builder->CreateAnd(Z, *C1);
   1020         return Builder->CreateSub(RHS, NewAnd, "sub");
   1021       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
   1022         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
   1023         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
   1024         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
   1025         return Builder->CreateSub(RHS, NewOr, "sub");
   1026       }
   1027     }
   1028   }
   1029 
   1030   // Restore LHS and RHS
   1031   LHS = I.getOperand(0);
   1032   RHS = I.getOperand(1);
   1033 
   1034   // if XOR is on other side, swap
   1035   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1036     std::swap(LHS, RHS);
   1037 
   1038   // C2 is ODD
   1039   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
   1040   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
   1041   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1042     if (C1->countTrailingZeros() == 0)
   1043       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
   1044         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
   1045         return Builder->CreateSub(RHS, NewOr, "sub");
   1046       }
   1047   return nullptr;
   1048 }
   1049 
   1050 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
   1051   bool Changed = SimplifyAssociativeOrCommutative(I);
   1052   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
   1053 
   1054   if (Value *V = SimplifyVectorOp(I))
   1055     return ReplaceInstUsesWith(I, V);
   1056 
   1057   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
   1058                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
   1059     return ReplaceInstUsesWith(I, V);
   1060 
   1061    // (A*B)+(A*C) -> A*(B+C) etc
   1062   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1063     return ReplaceInstUsesWith(I, V);
   1064 
   1065   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1066     // X + (signbit) --> X ^ signbit
   1067     const APInt &Val = CI->getValue();
   1068     if (Val.isSignBit())
   1069       return BinaryOperator::CreateXor(LHS, RHS);
   1070 
   1071     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
   1072     // (X & 254)+1 -> (X&254)|1
   1073     if (SimplifyDemandedInstructionBits(I))
   1074       return &I;
   1075 
   1076     // zext(bool) + C -> bool ? C + 1 : C
   1077     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
   1078       if (ZI->getSrcTy()->isIntegerTy(1))
   1079         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
   1080 
   1081     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
   1082     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
   1083       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
   1084       const APInt &RHSVal = CI->getValue();
   1085       unsigned ExtendAmt = 0;
   1086       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
   1087       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
   1088       if (XorRHS->getValue() == -RHSVal) {
   1089         if (RHSVal.isPowerOf2())
   1090           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
   1091         else if (XorRHS->getValue().isPowerOf2())
   1092           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
   1093       }
   1094 
   1095       if (ExtendAmt) {
   1096         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
   1097         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
   1098           ExtendAmt = 0;
   1099       }
   1100 
   1101       if (ExtendAmt) {
   1102         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
   1103         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
   1104         return BinaryOperator::CreateAShr(NewShl, ShAmt);
   1105       }
   1106 
   1107       // If this is a xor that was canonicalized from a sub, turn it back into
   1108       // a sub and fuse this add with it.
   1109       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
   1110         IntegerType *IT = cast<IntegerType>(I.getType());
   1111         APInt LHSKnownOne(IT->getBitWidth(), 0);
   1112         APInt LHSKnownZero(IT->getBitWidth(), 0);
   1113         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
   1114         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
   1115           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
   1116                                            XorLHS);
   1117       }
   1118       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
   1119       // transform them into (X + (signbit ^ C))
   1120       if (XorRHS->getValue().isSignBit())
   1121         return BinaryOperator::CreateAdd(XorLHS,
   1122                                          ConstantExpr::getXor(XorRHS, CI));
   1123     }
   1124   }
   1125 
   1126   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
   1127     if (Instruction *NV = FoldOpIntoPhi(I))
   1128       return NV;
   1129 
   1130   if (I.getType()->getScalarType()->isIntegerTy(1))
   1131     return BinaryOperator::CreateXor(LHS, RHS);
   1132 
   1133   // X + X --> X << 1
   1134   if (LHS == RHS) {
   1135     BinaryOperator *New =
   1136       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
   1137     New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1138     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1139     return New;
   1140   }
   1141 
   1142   // -A + B  -->  B - A
   1143   // -A + -B  -->  -(A + B)
   1144   if (Value *LHSV = dyn_castNegVal(LHS)) {
   1145     if (!isa<Constant>(RHS))
   1146       if (Value *RHSV = dyn_castNegVal(RHS)) {
   1147         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
   1148         return BinaryOperator::CreateNeg(NewAdd);
   1149       }
   1150 
   1151     return BinaryOperator::CreateSub(RHS, LHSV);
   1152   }
   1153 
   1154   // A + -B  -->  A - B
   1155   if (!isa<Constant>(RHS))
   1156     if (Value *V = dyn_castNegVal(RHS))
   1157       return BinaryOperator::CreateSub(LHS, V);
   1158 
   1159   if (Value *V = checkForNegativeOperand(I, Builder))
   1160     return ReplaceInstUsesWith(I, V);
   1161 
   1162   // A+B --> A|B iff A and B have no bits set in common.
   1163   if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
   1164     return BinaryOperator::CreateOr(LHS, RHS);
   1165 
   1166   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   1167     Value *X;
   1168     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
   1169       return BinaryOperator::CreateSub(SubOne(CRHS), X);
   1170   }
   1171 
   1172   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
   1173     // (X & FF00) + xx00  -> (X+xx00) & FF00
   1174     Value *X;
   1175     ConstantInt *C2;
   1176     if (LHS->hasOneUse() &&
   1177         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
   1178         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
   1179       // See if all bits from the first bit set in the Add RHS up are included
   1180       // in the mask.  First, get the rightmost bit.
   1181       const APInt &AddRHSV = CRHS->getValue();
   1182 
   1183       // Form a mask of all bits from the lowest bit added through the top.
   1184       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
   1185 
   1186       // See if the and mask includes all of these bits.
   1187       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
   1188 
   1189       if (AddRHSHighBits == AddRHSHighBitsAnd) {
   1190         // Okay, the xform is safe.  Insert the new add pronto.
   1191         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
   1192         return BinaryOperator::CreateAnd(NewAdd, C2);
   1193       }
   1194     }
   1195 
   1196     // Try to fold constant add into select arguments.
   1197     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
   1198       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1199         return R;
   1200   }
   1201 
   1202   // add (select X 0 (sub n A)) A  -->  select X A n
   1203   {
   1204     SelectInst *SI = dyn_cast<SelectInst>(LHS);
   1205     Value *A = RHS;
   1206     if (!SI) {
   1207       SI = dyn_cast<SelectInst>(RHS);
   1208       A = LHS;
   1209     }
   1210     if (SI && SI->hasOneUse()) {
   1211       Value *TV = SI->getTrueValue();
   1212       Value *FV = SI->getFalseValue();
   1213       Value *N;
   1214 
   1215       // Can we fold the add into the argument of the select?
   1216       // We check both true and false select arguments for a matching subtract.
   1217       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
   1218         // Fold the add into the true select value.
   1219         return SelectInst::Create(SI->getCondition(), N, A);
   1220 
   1221       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
   1222         // Fold the add into the false select value.
   1223         return SelectInst::Create(SI->getCondition(), A, N);
   1224     }
   1225   }
   1226 
   1227   // Check for (add (sext x), y), see if we can merge this into an
   1228   // integer add followed by a sext.
   1229   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
   1230     // (add (sext x), cst) --> (sext (add x, cst'))
   1231     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   1232       Constant *CI =
   1233         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
   1234       if (LHSConv->hasOneUse() &&
   1235           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
   1236           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
   1237         // Insert the new, smaller add.
   1238         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1239                                               CI, "addconv");
   1240         return new SExtInst(NewAdd, I.getType());
   1241       }
   1242     }
   1243 
   1244     // (add (sext x), (sext y)) --> (sext (add int x, y))
   1245     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
   1246       // Only do this if x/y have the same type, if at last one of them has a
   1247       // single use (so we don't increase the number of sexts), and if the
   1248       // integer add will not overflow.
   1249       if (LHSConv->getOperand(0)->getType() ==
   1250               RHSConv->getOperand(0)->getType() &&
   1251           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
   1252           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
   1253                                    RHSConv->getOperand(0), I)) {
   1254         // Insert the new integer add.
   1255         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1256                                              RHSConv->getOperand(0), "addconv");
   1257         return new SExtInst(NewAdd, I.getType());
   1258       }
   1259     }
   1260   }
   1261 
   1262   // (add (xor A, B) (and A, B)) --> (or A, B)
   1263   {
   1264     Value *A = nullptr, *B = nullptr;
   1265     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
   1266         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
   1267          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
   1268       return BinaryOperator::CreateOr(A, B);
   1269 
   1270     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
   1271         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
   1272          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
   1273       return BinaryOperator::CreateOr(A, B);
   1274   }
   1275 
   1276   // (add (or A, B) (and A, B)) --> (add A, B)
   1277   {
   1278     Value *A = nullptr, *B = nullptr;
   1279     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
   1280         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
   1281          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
   1282       auto *New = BinaryOperator::CreateAdd(A, B);
   1283       New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1284       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1285       return New;
   1286     }
   1287 
   1288     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
   1289         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
   1290          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
   1291       auto *New = BinaryOperator::CreateAdd(A, B);
   1292       New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1293       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1294       return New;
   1295     }
   1296   }
   1297 
   1298   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
   1299   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
   1300   // computeKnownBits.
   1301   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
   1302     Changed = true;
   1303     I.setHasNoSignedWrap(true);
   1304   }
   1305   if (!I.hasNoUnsignedWrap() &&
   1306       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
   1307           OverflowResult::NeverOverflows) {
   1308     Changed = true;
   1309     I.setHasNoUnsignedWrap(true);
   1310   }
   1311 
   1312   return Changed ? &I : nullptr;
   1313 }
   1314 
   1315 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
   1316   bool Changed = SimplifyAssociativeOrCommutative(I);
   1317   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
   1318 
   1319   if (Value *V = SimplifyVectorOp(I))
   1320     return ReplaceInstUsesWith(I, V);
   1321 
   1322   if (Value *V =
   1323           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
   1324     return ReplaceInstUsesWith(I, V);
   1325 
   1326   if (isa<Constant>(RHS)) {
   1327     if (isa<PHINode>(LHS))
   1328       if (Instruction *NV = FoldOpIntoPhi(I))
   1329         return NV;
   1330 
   1331     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
   1332       if (Instruction *NV = FoldOpIntoSelect(I, SI))
   1333         return NV;
   1334   }
   1335 
   1336   // -A + B  -->  B - A
   1337   // -A + -B  -->  -(A + B)
   1338   if (Value *LHSV = dyn_castFNegVal(LHS)) {
   1339     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
   1340     RI->copyFastMathFlags(&I);
   1341     return RI;
   1342   }
   1343 
   1344   // A + -B  -->  A - B
   1345   if (!isa<Constant>(RHS))
   1346     if (Value *V = dyn_castFNegVal(RHS)) {
   1347       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
   1348       RI->copyFastMathFlags(&I);
   1349       return RI;
   1350     }
   1351 
   1352   // Check for (fadd double (sitofp x), y), see if we can merge this into an
   1353   // integer add followed by a promotion.
   1354   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
   1355     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
   1356     // ... if the constant fits in the integer value.  This is useful for things
   1357     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
   1358     // requires a constant pool load, and generally allows the add to be better
   1359     // instcombined.
   1360     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
   1361       Constant *CI =
   1362       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
   1363       if (LHSConv->hasOneUse() &&
   1364           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
   1365           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
   1366         // Insert the new integer add.
   1367         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1368                                               CI, "addconv");
   1369         return new SIToFPInst(NewAdd, I.getType());
   1370       }
   1371     }
   1372 
   1373     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
   1374     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
   1375       // Only do this if x/y have the same type, if at last one of them has a
   1376       // single use (so we don't increase the number of int->fp conversions),
   1377       // and if the integer add will not overflow.
   1378       if (LHSConv->getOperand(0)->getType() ==
   1379               RHSConv->getOperand(0)->getType() &&
   1380           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
   1381           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
   1382                                    RHSConv->getOperand(0), I)) {
   1383         // Insert the new integer add.
   1384         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1385                                               RHSConv->getOperand(0),"addconv");
   1386         return new SIToFPInst(NewAdd, I.getType());
   1387       }
   1388     }
   1389   }
   1390 
   1391   // select C, 0, B + select C, A, 0 -> select C, A, B
   1392   {
   1393     Value *A1, *B1, *C1, *A2, *B2, *C2;
   1394     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
   1395         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
   1396       if (C1 == C2) {
   1397         Constant *Z1=nullptr, *Z2=nullptr;
   1398         Value *A, *B, *C=C1;
   1399         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
   1400             Z1 = dyn_cast<Constant>(A1); A = A2;
   1401             Z2 = dyn_cast<Constant>(B2); B = B1;
   1402         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
   1403             Z1 = dyn_cast<Constant>(B1); B = B2;
   1404             Z2 = dyn_cast<Constant>(A2); A = A1;
   1405         }
   1406 
   1407         if (Z1 && Z2 &&
   1408             (I.hasNoSignedZeros() ||
   1409              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
   1410           return SelectInst::Create(C, A, B);
   1411         }
   1412       }
   1413     }
   1414   }
   1415 
   1416   if (I.hasUnsafeAlgebra()) {
   1417     if (Value *V = FAddCombine(Builder).simplify(&I))
   1418       return ReplaceInstUsesWith(I, V);
   1419   }
   1420 
   1421   return Changed ? &I : nullptr;
   1422 }
   1423 
   1424 /// Optimize pointer differences into the same array into a size.  Consider:
   1425 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
   1426 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
   1427 ///
   1428 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
   1429                                                Type *Ty) {
   1430   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
   1431   // this.
   1432   bool Swapped = false;
   1433   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
   1434 
   1435   // For now we require one side to be the base pointer "A" or a constant
   1436   // GEP derived from it.
   1437   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
   1438     // (gep X, ...) - X
   1439     if (LHSGEP->getOperand(0) == RHS) {
   1440       GEP1 = LHSGEP;
   1441       Swapped = false;
   1442     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
   1443       // (gep X, ...) - (gep X, ...)
   1444       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
   1445             RHSGEP->getOperand(0)->stripPointerCasts()) {
   1446         GEP2 = RHSGEP;
   1447         GEP1 = LHSGEP;
   1448         Swapped = false;
   1449       }
   1450     }
   1451   }
   1452 
   1453   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
   1454     // X - (gep X, ...)
   1455     if (RHSGEP->getOperand(0) == LHS) {
   1456       GEP1 = RHSGEP;
   1457       Swapped = true;
   1458     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
   1459       // (gep X, ...) - (gep X, ...)
   1460       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
   1461             LHSGEP->getOperand(0)->stripPointerCasts()) {
   1462         GEP2 = LHSGEP;
   1463         GEP1 = RHSGEP;
   1464         Swapped = true;
   1465       }
   1466     }
   1467   }
   1468 
   1469   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
   1470   // multiple users.
   1471   if (!GEP1 ||
   1472       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
   1473     return nullptr;
   1474 
   1475   // Emit the offset of the GEP and an intptr_t.
   1476   Value *Result = EmitGEPOffset(GEP1);
   1477 
   1478   // If we had a constant expression GEP on the other side offsetting the
   1479   // pointer, subtract it from the offset we have.
   1480   if (GEP2) {
   1481     Value *Offset = EmitGEPOffset(GEP2);
   1482     Result = Builder->CreateSub(Result, Offset);
   1483   }
   1484 
   1485   // If we have p - gep(p, ...)  then we have to negate the result.
   1486   if (Swapped)
   1487     Result = Builder->CreateNeg(Result, "diff.neg");
   1488 
   1489   return Builder->CreateIntCast(Result, Ty, true);
   1490 }
   1491 
   1492 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
   1493   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1494 
   1495   if (Value *V = SimplifyVectorOp(I))
   1496     return ReplaceInstUsesWith(I, V);
   1497 
   1498   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
   1499                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
   1500     return ReplaceInstUsesWith(I, V);
   1501 
   1502   // (A*B)-(A*C) -> A*(B-C) etc
   1503   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1504     return ReplaceInstUsesWith(I, V);
   1505 
   1506   // If this is a 'B = x-(-A)', change to B = x+A.
   1507   if (Value *V = dyn_castNegVal(Op1)) {
   1508     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
   1509 
   1510     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
   1511       assert(BO->getOpcode() == Instruction::Sub &&
   1512              "Expected a subtraction operator!");
   1513       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
   1514         Res->setHasNoSignedWrap(true);
   1515     } else {
   1516       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
   1517         Res->setHasNoSignedWrap(true);
   1518     }
   1519 
   1520     return Res;
   1521   }
   1522 
   1523   if (I.getType()->isIntegerTy(1))
   1524     return BinaryOperator::CreateXor(Op0, Op1);
   1525 
   1526   // Replace (-1 - A) with (~A).
   1527   if (match(Op0, m_AllOnes()))
   1528     return BinaryOperator::CreateNot(Op1);
   1529 
   1530   if (Constant *C = dyn_cast<Constant>(Op0)) {
   1531     // C - ~X == X + (1+C)
   1532     Value *X = nullptr;
   1533     if (match(Op1, m_Not(m_Value(X))))
   1534       return BinaryOperator::CreateAdd(X, AddOne(C));
   1535 
   1536     // Try to fold constant sub into select arguments.
   1537     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1538       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1539         return R;
   1540 
   1541     // C-(X+C2) --> (C-C2)-X
   1542     Constant *C2;
   1543     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
   1544       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
   1545 
   1546     if (SimplifyDemandedInstructionBits(I))
   1547       return &I;
   1548 
   1549     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
   1550     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
   1551       if (X->getType()->getScalarType()->isIntegerTy(1))
   1552         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
   1553 
   1554     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
   1555     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
   1556       if (X->getType()->getScalarType()->isIntegerTy(1))
   1557         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
   1558   }
   1559 
   1560   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
   1561     // -(X >>u 31) -> (X >>s 31)
   1562     // -(X >>s 31) -> (X >>u 31)
   1563     if (C->isZero()) {
   1564       Value *X;
   1565       ConstantInt *CI;
   1566       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
   1567           // Verify we are shifting out everything but the sign bit.
   1568           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
   1569         return BinaryOperator::CreateAShr(X, CI);
   1570 
   1571       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
   1572           // Verify we are shifting out everything but the sign bit.
   1573           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
   1574         return BinaryOperator::CreateLShr(X, CI);
   1575     }
   1576 
   1577     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
   1578     // zero.
   1579     APInt IntVal = C->getValue();
   1580     if ((IntVal + 1).isPowerOf2()) {
   1581       unsigned BitWidth = I.getType()->getScalarSizeInBits();
   1582       APInt KnownZero(BitWidth, 0);
   1583       APInt KnownOne(BitWidth, 0);
   1584       computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
   1585       if ((IntVal | KnownZero).isAllOnesValue()) {
   1586         return BinaryOperator::CreateXor(Op1, C);
   1587       }
   1588     }
   1589   }
   1590 
   1591   {
   1592     Value *Y;
   1593     // X-(X+Y) == -Y    X-(Y+X) == -Y
   1594     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
   1595         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
   1596       return BinaryOperator::CreateNeg(Y);
   1597 
   1598     // (X-Y)-X == -Y
   1599     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
   1600       return BinaryOperator::CreateNeg(Y);
   1601   }
   1602 
   1603   // (sub (or A, B) (xor A, B)) --> (and A, B)
   1604   {
   1605     Value *A = nullptr, *B = nullptr;
   1606     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   1607         (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
   1608          match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
   1609       return BinaryOperator::CreateAnd(A, B);
   1610   }
   1611 
   1612   if (Op0->hasOneUse()) {
   1613     Value *Y = nullptr;
   1614     // ((X | Y) - X) --> (~X & Y)
   1615     if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
   1616         match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
   1617       return BinaryOperator::CreateAnd(
   1618           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
   1619   }
   1620 
   1621   if (Op1->hasOneUse()) {
   1622     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   1623     Constant *C = nullptr;
   1624     Constant *CI = nullptr;
   1625 
   1626     // (X - (Y - Z))  -->  (X + (Z - Y)).
   1627     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
   1628       return BinaryOperator::CreateAdd(Op0,
   1629                                       Builder->CreateSub(Z, Y, Op1->getName()));
   1630 
   1631     // (X - (X & Y))   -->   (X & ~Y)
   1632     //
   1633     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
   1634         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
   1635       return BinaryOperator::CreateAnd(Op0,
   1636                                   Builder->CreateNot(Y, Y->getName() + ".not"));
   1637 
   1638     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
   1639     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
   1640         C->isNotMinSignedValue() && !C->isOneValue())
   1641       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
   1642 
   1643     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
   1644     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
   1645       if (Value *XNeg = dyn_castNegVal(X))
   1646         return BinaryOperator::CreateShl(XNeg, Y);
   1647 
   1648     // X - A*-B -> X + A*B
   1649     // X - -A*B -> X + A*B
   1650     Value *A, *B;
   1651     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
   1652         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
   1653       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
   1654 
   1655     // X - A*CI -> X + A*-CI
   1656     // X - CI*A -> X + A*-CI
   1657     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
   1658         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
   1659       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
   1660       return BinaryOperator::CreateAdd(Op0, NewMul);
   1661     }
   1662   }
   1663 
   1664   // Optimize pointer differences into the same array into a size.  Consider:
   1665   //  &A[10] - &A[0]: we should compile this to "10".
   1666   Value *LHSOp, *RHSOp;
   1667   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
   1668       match(Op1, m_PtrToInt(m_Value(RHSOp))))
   1669     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
   1670       return ReplaceInstUsesWith(I, Res);
   1671 
   1672   // trunc(p)-trunc(q) -> trunc(p-q)
   1673   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
   1674       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
   1675     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
   1676       return ReplaceInstUsesWith(I, Res);
   1677 
   1678   bool Changed = false;
   1679   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
   1680     Changed = true;
   1681     I.setHasNoSignedWrap(true);
   1682   }
   1683   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
   1684     Changed = true;
   1685     I.setHasNoUnsignedWrap(true);
   1686   }
   1687 
   1688   return Changed ? &I : nullptr;
   1689 }
   1690 
   1691 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
   1692   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1693 
   1694   if (Value *V = SimplifyVectorOp(I))
   1695     return ReplaceInstUsesWith(I, V);
   1696 
   1697   if (Value *V =
   1698           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
   1699     return ReplaceInstUsesWith(I, V);
   1700 
   1701   // fsub nsz 0, X ==> fsub nsz -0.0, X
   1702   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
   1703     // Subtraction from -0.0 is the canonical form of fneg.
   1704     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
   1705     NewI->copyFastMathFlags(&I);
   1706     return NewI;
   1707   }
   1708 
   1709   if (isa<Constant>(Op0))
   1710     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1711       if (Instruction *NV = FoldOpIntoSelect(I, SI))
   1712         return NV;
   1713 
   1714   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
   1715   // through FP extensions/truncations along the way.
   1716   if (Value *V = dyn_castFNegVal(Op1)) {
   1717     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
   1718     NewI->copyFastMathFlags(&I);
   1719     return NewI;
   1720   }
   1721   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
   1722     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
   1723       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
   1724       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
   1725       NewI->copyFastMathFlags(&I);
   1726       return NewI;
   1727     }
   1728   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
   1729     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
   1730       Value *NewExt = Builder->CreateFPExt(V, I.getType());
   1731       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
   1732       NewI->copyFastMathFlags(&I);
   1733       return NewI;
   1734     }
   1735   }
   1736 
   1737   if (I.hasUnsafeAlgebra()) {
   1738     if (Value *V = FAddCombine(Builder).simplify(&I))
   1739       return ReplaceInstUsesWith(I, V);
   1740   }
   1741 
   1742   return nullptr;
   1743 }
   1744