Home | History | Annotate | Download | only in Analysis
      1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements routines for folding instructions into simpler forms
     11 // that do not require creating new instructions.  This does constant folding
     12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
     13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
     14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
     15 // simplified: This is usually true and assuming it simplifies the logic (if
     16 // they have not been simplified then results are correct but maybe suboptimal).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/ConstantFolding.h"
     25 #include "llvm/Analysis/MemoryBuiltins.h"
     26 #include "llvm/Analysis/ValueTracking.h"
     27 #include "llvm/Analysis/VectorUtils.h"
     28 #include "llvm/IR/ConstantRange.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/GetElementPtrTypeIterator.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/Operator.h"
     34 #include "llvm/IR/PatternMatch.h"
     35 #include "llvm/IR/ValueHandle.h"
     36 #include <algorithm>
     37 using namespace llvm;
     38 using namespace llvm::PatternMatch;
     39 
     40 #define DEBUG_TYPE "instsimplify"
     41 
     42 enum { RecursionLimit = 3 };
     43 
     44 STATISTIC(NumExpand,  "Number of expansions");
     45 STATISTIC(NumReassoc, "Number of reassociations");
     46 
     47 namespace {
     48 struct Query {
     49   const DataLayout &DL;
     50   const TargetLibraryInfo *TLI;
     51   const DominatorTree *DT;
     52   AssumptionCache *AC;
     53   const Instruction *CxtI;
     54 
     55   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
     56         const DominatorTree *dt, AssumptionCache *ac = nullptr,
     57         const Instruction *cxti = nullptr)
     58       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
     59 };
     60 } // end anonymous namespace
     61 
     62 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
     63 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
     64                             unsigned);
     65 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
     66                               const Query &, unsigned);
     67 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
     68                               unsigned);
     69 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
     70 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
     71 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
     72 
     73 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
     74 /// a vector with every element false, as appropriate for the type.
     75 static Constant *getFalse(Type *Ty) {
     76   assert(Ty->getScalarType()->isIntegerTy(1) &&
     77          "Expected i1 type or a vector of i1!");
     78   return Constant::getNullValue(Ty);
     79 }
     80 
     81 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
     82 /// a vector with every element true, as appropriate for the type.
     83 static Constant *getTrue(Type *Ty) {
     84   assert(Ty->getScalarType()->isIntegerTy(1) &&
     85          "Expected i1 type or a vector of i1!");
     86   return Constant::getAllOnesValue(Ty);
     87 }
     88 
     89 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
     90 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
     91                           Value *RHS) {
     92   CmpInst *Cmp = dyn_cast<CmpInst>(V);
     93   if (!Cmp)
     94     return false;
     95   CmpInst::Predicate CPred = Cmp->getPredicate();
     96   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
     97   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
     98     return true;
     99   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
    100     CRHS == LHS;
    101 }
    102 
    103 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
    104 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
    105   Instruction *I = dyn_cast<Instruction>(V);
    106   if (!I)
    107     // Arguments and constants dominate all instructions.
    108     return true;
    109 
    110   // If we are processing instructions (and/or basic blocks) that have not been
    111   // fully added to a function, the parent nodes may still be null. Simply
    112   // return the conservative answer in these cases.
    113   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
    114     return false;
    115 
    116   // If we have a DominatorTree then do a precise test.
    117   if (DT) {
    118     if (!DT->isReachableFromEntry(P->getParent()))
    119       return true;
    120     if (!DT->isReachableFromEntry(I->getParent()))
    121       return false;
    122     return DT->dominates(I, P);
    123   }
    124 
    125   // Otherwise, if the instruction is in the entry block and is not an invoke,
    126   // then it obviously dominates all phi nodes.
    127   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
    128       !isa<InvokeInst>(I))
    129     return true;
    130 
    131   return false;
    132 }
    133 
    134 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
    135 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
    136 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
    137 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
    138 /// Returns the simplified value, or null if no simplification was performed.
    139 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    140                           unsigned OpcToExpand, const Query &Q,
    141                           unsigned MaxRecurse) {
    142   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
    143   // Recursion is always used, so bail out at once if we already hit the limit.
    144   if (!MaxRecurse--)
    145     return nullptr;
    146 
    147   // Check whether the expression has the form "(A op' B) op C".
    148   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    149     if (Op0->getOpcode() == OpcodeToExpand) {
    150       // It does!  Try turning it into "(A op C) op' (B op C)".
    151       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    152       // Do "A op C" and "B op C" both simplify?
    153       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
    154         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    155           // They do! Return "L op' R" if it simplifies or is already available.
    156           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    157           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
    158                                      && L == B && R == A)) {
    159             ++NumExpand;
    160             return LHS;
    161           }
    162           // Otherwise return "L op' R" if it simplifies.
    163           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    164             ++NumExpand;
    165             return V;
    166           }
    167         }
    168     }
    169 
    170   // Check whether the expression has the form "A op (B op' C)".
    171   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    172     if (Op1->getOpcode() == OpcodeToExpand) {
    173       // It does!  Try turning it into "(A op B) op' (A op C)".
    174       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    175       // Do "A op B" and "A op C" both simplify?
    176       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
    177         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
    178           // They do! Return "L op' R" if it simplifies or is already available.
    179           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    180           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
    181                                      && L == C && R == B)) {
    182             ++NumExpand;
    183             return RHS;
    184           }
    185           // Otherwise return "L op' R" if it simplifies.
    186           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    187             ++NumExpand;
    188             return V;
    189           }
    190         }
    191     }
    192 
    193   return nullptr;
    194 }
    195 
    196 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
    197 /// operations.  Returns the simpler value, or null if none was found.
    198 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
    199                                        const Query &Q, unsigned MaxRecurse) {
    200   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
    201   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
    202 
    203   // Recursion is always used, so bail out at once if we already hit the limit.
    204   if (!MaxRecurse--)
    205     return nullptr;
    206 
    207   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    208   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    209 
    210   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
    211   if (Op0 && Op0->getOpcode() == Opcode) {
    212     Value *A = Op0->getOperand(0);
    213     Value *B = Op0->getOperand(1);
    214     Value *C = RHS;
    215 
    216     // Does "B op C" simplify?
    217     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    218       // It does!  Return "A op V" if it simplifies or is already available.
    219       // If V equals B then "A op V" is just the LHS.
    220       if (V == B) return LHS;
    221       // Otherwise return "A op V" if it simplifies.
    222       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
    223         ++NumReassoc;
    224         return W;
    225       }
    226     }
    227   }
    228 
    229   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
    230   if (Op1 && Op1->getOpcode() == Opcode) {
    231     Value *A = LHS;
    232     Value *B = Op1->getOperand(0);
    233     Value *C = Op1->getOperand(1);
    234 
    235     // Does "A op B" simplify?
    236     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
    237       // It does!  Return "V op C" if it simplifies or is already available.
    238       // If V equals B then "V op C" is just the RHS.
    239       if (V == B) return RHS;
    240       // Otherwise return "V op C" if it simplifies.
    241       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
    242         ++NumReassoc;
    243         return W;
    244       }
    245     }
    246   }
    247 
    248   // The remaining transforms require commutativity as well as associativity.
    249   if (!Instruction::isCommutative(Opcode))
    250     return nullptr;
    251 
    252   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
    253   if (Op0 && Op0->getOpcode() == Opcode) {
    254     Value *A = Op0->getOperand(0);
    255     Value *B = Op0->getOperand(1);
    256     Value *C = RHS;
    257 
    258     // Does "C op A" simplify?
    259     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    260       // It does!  Return "V op B" if it simplifies or is already available.
    261       // If V equals A then "V op B" is just the LHS.
    262       if (V == A) return LHS;
    263       // Otherwise return "V op B" if it simplifies.
    264       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
    265         ++NumReassoc;
    266         return W;
    267       }
    268     }
    269   }
    270 
    271   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
    272   if (Op1 && Op1->getOpcode() == Opcode) {
    273     Value *A = LHS;
    274     Value *B = Op1->getOperand(0);
    275     Value *C = Op1->getOperand(1);
    276 
    277     // Does "C op A" simplify?
    278     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    279       // It does!  Return "B op V" if it simplifies or is already available.
    280       // If V equals C then "B op V" is just the RHS.
    281       if (V == C) return RHS;
    282       // Otherwise return "B op V" if it simplifies.
    283       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
    284         ++NumReassoc;
    285         return W;
    286       }
    287     }
    288   }
    289 
    290   return nullptr;
    291 }
    292 
    293 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
    294 /// instruction as an operand, try to simplify the binop by seeing whether
    295 /// evaluating it on both branches of the select results in the same value.
    296 /// Returns the common value if so, otherwise returns null.
    297 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
    298                                     const Query &Q, unsigned MaxRecurse) {
    299   // Recursion is always used, so bail out at once if we already hit the limit.
    300   if (!MaxRecurse--)
    301     return nullptr;
    302 
    303   SelectInst *SI;
    304   if (isa<SelectInst>(LHS)) {
    305     SI = cast<SelectInst>(LHS);
    306   } else {
    307     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    308     SI = cast<SelectInst>(RHS);
    309   }
    310 
    311   // Evaluate the BinOp on the true and false branches of the select.
    312   Value *TV;
    313   Value *FV;
    314   if (SI == LHS) {
    315     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
    316     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
    317   } else {
    318     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
    319     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
    320   }
    321 
    322   // If they simplified to the same value, then return the common value.
    323   // If they both failed to simplify then return null.
    324   if (TV == FV)
    325     return TV;
    326 
    327   // If one branch simplified to undef, return the other one.
    328   if (TV && isa<UndefValue>(TV))
    329     return FV;
    330   if (FV && isa<UndefValue>(FV))
    331     return TV;
    332 
    333   // If applying the operation did not change the true and false select values,
    334   // then the result of the binop is the select itself.
    335   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    336     return SI;
    337 
    338   // If one branch simplified and the other did not, and the simplified
    339   // value is equal to the unsimplified one, return the simplified value.
    340   // For example, select (cond, X, X & Z) & Z -> X & Z.
    341   if ((FV && !TV) || (TV && !FV)) {
    342     // Check that the simplified value has the form "X op Y" where "op" is the
    343     // same as the original operation.
    344     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    345     if (Simplified && Simplified->getOpcode() == Opcode) {
    346       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
    347       // We already know that "op" is the same as for the simplified value.  See
    348       // if the operands match too.  If so, return the simplified value.
    349       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
    350       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
    351       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
    352       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
    353           Simplified->getOperand(1) == UnsimplifiedRHS)
    354         return Simplified;
    355       if (Simplified->isCommutative() &&
    356           Simplified->getOperand(1) == UnsimplifiedLHS &&
    357           Simplified->getOperand(0) == UnsimplifiedRHS)
    358         return Simplified;
    359     }
    360   }
    361 
    362   return nullptr;
    363 }
    364 
    365 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
    366 /// try to simplify the comparison by seeing whether both branches of the select
    367 /// result in the same value.  Returns the common value if so, otherwise returns
    368 /// null.
    369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
    370                                   Value *RHS, const Query &Q,
    371                                   unsigned MaxRecurse) {
    372   // Recursion is always used, so bail out at once if we already hit the limit.
    373   if (!MaxRecurse--)
    374     return nullptr;
    375 
    376   // Make sure the select is on the LHS.
    377   if (!isa<SelectInst>(LHS)) {
    378     std::swap(LHS, RHS);
    379     Pred = CmpInst::getSwappedPredicate(Pred);
    380   }
    381   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
    382   SelectInst *SI = cast<SelectInst>(LHS);
    383   Value *Cond = SI->getCondition();
    384   Value *TV = SI->getTrueValue();
    385   Value *FV = SI->getFalseValue();
    386 
    387   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
    388   // Does "cmp TV, RHS" simplify?
    389   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
    390   if (TCmp == Cond) {
    391     // It not only simplified, it simplified to the select condition.  Replace
    392     // it with 'true'.
    393     TCmp = getTrue(Cond->getType());
    394   } else if (!TCmp) {
    395     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
    396     // condition then we can replace it with 'true'.  Otherwise give up.
    397     if (!isSameCompare(Cond, Pred, TV, RHS))
    398       return nullptr;
    399     TCmp = getTrue(Cond->getType());
    400   }
    401 
    402   // Does "cmp FV, RHS" simplify?
    403   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
    404   if (FCmp == Cond) {
    405     // It not only simplified, it simplified to the select condition.  Replace
    406     // it with 'false'.
    407     FCmp = getFalse(Cond->getType());
    408   } else if (!FCmp) {
    409     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
    410     // condition then we can replace it with 'false'.  Otherwise give up.
    411     if (!isSameCompare(Cond, Pred, FV, RHS))
    412       return nullptr;
    413     FCmp = getFalse(Cond->getType());
    414   }
    415 
    416   // If both sides simplified to the same value, then use it as the result of
    417   // the original comparison.
    418   if (TCmp == FCmp)
    419     return TCmp;
    420 
    421   // The remaining cases only make sense if the select condition has the same
    422   // type as the result of the comparison, so bail out if this is not so.
    423   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
    424     return nullptr;
    425   // If the false value simplified to false, then the result of the compare
    426   // is equal to "Cond && TCmp".  This also catches the case when the false
    427   // value simplified to false and the true value to true, returning "Cond".
    428   if (match(FCmp, m_Zero()))
    429     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
    430       return V;
    431   // If the true value simplified to true, then the result of the compare
    432   // is equal to "Cond || FCmp".
    433   if (match(TCmp, m_One()))
    434     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
    435       return V;
    436   // Finally, if the false value simplified to true and the true value to
    437   // false, then the result of the compare is equal to "!Cond".
    438   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
    439     if (Value *V =
    440         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
    441                         Q, MaxRecurse))
    442       return V;
    443 
    444   return nullptr;
    445 }
    446 
    447 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
    448 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
    449 /// it on the incoming phi values yields the same result for every value.  If so
    450 /// returns the common value, otherwise returns null.
    451 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
    452                                  const Query &Q, unsigned MaxRecurse) {
    453   // Recursion is always used, so bail out at once if we already hit the limit.
    454   if (!MaxRecurse--)
    455     return nullptr;
    456 
    457   PHINode *PI;
    458   if (isa<PHINode>(LHS)) {
    459     PI = cast<PHINode>(LHS);
    460     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    461     if (!ValueDominatesPHI(RHS, PI, Q.DT))
    462       return nullptr;
    463   } else {
    464     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    465     PI = cast<PHINode>(RHS);
    466     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    467     if (!ValueDominatesPHI(LHS, PI, Q.DT))
    468       return nullptr;
    469   }
    470 
    471   // Evaluate the BinOp on the incoming phi values.
    472   Value *CommonValue = nullptr;
    473   for (Value *Incoming : PI->incoming_values()) {
    474     // If the incoming value is the phi node itself, it can safely be skipped.
    475     if (Incoming == PI) continue;
    476     Value *V = PI == LHS ?
    477       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
    478       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
    479     // If the operation failed to simplify, or simplified to a different value
    480     // to previously, then give up.
    481     if (!V || (CommonValue && V != CommonValue))
    482       return nullptr;
    483     CommonValue = V;
    484   }
    485 
    486   return CommonValue;
    487 }
    488 
    489 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
    490 /// try to simplify the comparison by seeing whether comparing with all of the
    491 /// incoming phi values yields the same result every time.  If so returns the
    492 /// common result, otherwise returns null.
    493 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
    494                                const Query &Q, unsigned MaxRecurse) {
    495   // Recursion is always used, so bail out at once if we already hit the limit.
    496   if (!MaxRecurse--)
    497     return nullptr;
    498 
    499   // Make sure the phi is on the LHS.
    500   if (!isa<PHINode>(LHS)) {
    501     std::swap(LHS, RHS);
    502     Pred = CmpInst::getSwappedPredicate(Pred);
    503   }
    504   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
    505   PHINode *PI = cast<PHINode>(LHS);
    506 
    507   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    508   if (!ValueDominatesPHI(RHS, PI, Q.DT))
    509     return nullptr;
    510 
    511   // Evaluate the BinOp on the incoming phi values.
    512   Value *CommonValue = nullptr;
    513   for (Value *Incoming : PI->incoming_values()) {
    514     // If the incoming value is the phi node itself, it can safely be skipped.
    515     if (Incoming == PI) continue;
    516     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
    517     // If the operation failed to simplify, or simplified to a different value
    518     // to previously, then give up.
    519     if (!V || (CommonValue && V != CommonValue))
    520       return nullptr;
    521     CommonValue = V;
    522   }
    523 
    524   return CommonValue;
    525 }
    526 
    527 /// SimplifyAddInst - Given operands for an Add, see if we can
    528 /// fold the result.  If not, this returns null.
    529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    530                               const Query &Q, unsigned MaxRecurse) {
    531   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    532     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    533       Constant *Ops[] = { CLHS, CRHS };
    534       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
    535                                       Q.DL, Q.TLI);
    536     }
    537 
    538     // Canonicalize the constant to the RHS.
    539     std::swap(Op0, Op1);
    540   }
    541 
    542   // X + undef -> undef
    543   if (match(Op1, m_Undef()))
    544     return Op1;
    545 
    546   // X + 0 -> X
    547   if (match(Op1, m_Zero()))
    548     return Op0;
    549 
    550   // X + (Y - X) -> Y
    551   // (Y - X) + X -> Y
    552   // Eg: X + -X -> 0
    553   Value *Y = nullptr;
    554   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
    555       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    556     return Y;
    557 
    558   // X + ~X -> -1   since   ~X = -X-1
    559   if (match(Op0, m_Not(m_Specific(Op1))) ||
    560       match(Op1, m_Not(m_Specific(Op0))))
    561     return Constant::getAllOnesValue(Op0->getType());
    562 
    563   /// i1 add -> xor.
    564   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    565     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    566       return V;
    567 
    568   // Try some generic simplifications for associative operations.
    569   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
    570                                           MaxRecurse))
    571     return V;
    572 
    573   // Threading Add over selects and phi nodes is pointless, so don't bother.
    574   // Threading over the select in "A + select(cond, B, C)" means evaluating
    575   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
    576   // only if B and C are equal.  If B and C are equal then (since we assume
    577   // that operands have already been simplified) "select(cond, B, C)" should
    578   // have been simplified to the common value of B and C already.  Analysing
    579   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
    580   // for threading over phi nodes.
    581 
    582   return nullptr;
    583 }
    584 
    585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    586                              const DataLayout &DL, const TargetLibraryInfo *TLI,
    587                              const DominatorTree *DT, AssumptionCache *AC,
    588                              const Instruction *CxtI) {
    589   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
    590                            RecursionLimit);
    591 }
    592 
    593 /// \brief Compute the base pointer and cumulative constant offsets for V.
    594 ///
    595 /// This strips all constant offsets off of V, leaving it the base pointer, and
    596 /// accumulates the total constant offset applied in the returned constant. It
    597 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    598 /// no constant offsets applied.
    599 ///
    600 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
    601 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
    602 /// folding.
    603 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
    604                                                 bool AllowNonInbounds = false) {
    605   assert(V->getType()->getScalarType()->isPointerTy());
    606 
    607   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
    608   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
    609 
    610   // Even though we don't look through PHI nodes, we could be called on an
    611   // instruction in an unreachable block, which may be on a cycle.
    612   SmallPtrSet<Value *, 4> Visited;
    613   Visited.insert(V);
    614   do {
    615     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    616       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
    617           !GEP->accumulateConstantOffset(DL, Offset))
    618         break;
    619       V = GEP->getPointerOperand();
    620     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    621       V = cast<Operator>(V)->getOperand(0);
    622     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    623       if (GA->mayBeOverridden())
    624         break;
    625       V = GA->getAliasee();
    626     } else {
    627       break;
    628     }
    629     assert(V->getType()->getScalarType()->isPointerTy() &&
    630            "Unexpected operand type!");
    631   } while (Visited.insert(V).second);
    632 
    633   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
    634   if (V->getType()->isVectorTy())
    635     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
    636                                     OffsetIntPtr);
    637   return OffsetIntPtr;
    638 }
    639 
    640 /// \brief Compute the constant difference between two pointer values.
    641 /// If the difference is not a constant, returns zero.
    642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
    643                                           Value *RHS) {
    644   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
    645   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
    646 
    647   // If LHS and RHS are not related via constant offsets to the same base
    648   // value, there is nothing we can do here.
    649   if (LHS != RHS)
    650     return nullptr;
    651 
    652   // Otherwise, the difference of LHS - RHS can be computed as:
    653   //    LHS - RHS
    654   //  = (LHSOffset + Base) - (RHSOffset + Base)
    655   //  = LHSOffset - RHSOffset
    656   return ConstantExpr::getSub(LHSOffset, RHSOffset);
    657 }
    658 
    659 /// SimplifySubInst - Given operands for a Sub, see if we can
    660 /// fold the result.  If not, this returns null.
    661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    662                               const Query &Q, unsigned MaxRecurse) {
    663   if (Constant *CLHS = dyn_cast<Constant>(Op0))
    664     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    665       Constant *Ops[] = { CLHS, CRHS };
    666       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
    667                                       Ops, Q.DL, Q.TLI);
    668     }
    669 
    670   // X - undef -> undef
    671   // undef - X -> undef
    672   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    673     return UndefValue::get(Op0->getType());
    674 
    675   // X - 0 -> X
    676   if (match(Op1, m_Zero()))
    677     return Op0;
    678 
    679   // X - X -> 0
    680   if (Op0 == Op1)
    681     return Constant::getNullValue(Op0->getType());
    682 
    683   // 0 - X -> 0 if the sub is NUW.
    684   if (isNUW && match(Op0, m_Zero()))
    685     return Op0;
    686 
    687   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
    688   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
    689   Value *X = nullptr, *Y = nullptr, *Z = Op1;
    690   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    691     // See if "V === Y - Z" simplifies.
    692     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
    693       // It does!  Now see if "X + V" simplifies.
    694       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
    695         // It does, we successfully reassociated!
    696         ++NumReassoc;
    697         return W;
    698       }
    699     // See if "V === X - Z" simplifies.
    700     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    701       // It does!  Now see if "Y + V" simplifies.
    702       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
    703         // It does, we successfully reassociated!
    704         ++NumReassoc;
    705         return W;
    706       }
    707   }
    708 
    709   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
    710   // For example, X - (X + 1) -> -1
    711   X = Op0;
    712   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    713     // See if "V === X - Y" simplifies.
    714     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    715       // It does!  Now see if "V - Z" simplifies.
    716       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
    717         // It does, we successfully reassociated!
    718         ++NumReassoc;
    719         return W;
    720       }
    721     // See if "V === X - Z" simplifies.
    722     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    723       // It does!  Now see if "V - Y" simplifies.
    724       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
    725         // It does, we successfully reassociated!
    726         ++NumReassoc;
    727         return W;
    728       }
    729   }
    730 
    731   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
    732   // For example, X - (X - Y) -> Y.
    733   Z = Op0;
    734   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    735     // See if "V === Z - X" simplifies.
    736     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
    737       // It does!  Now see if "V + Y" simplifies.
    738       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
    739         // It does, we successfully reassociated!
    740         ++NumReassoc;
    741         return W;
    742       }
    743 
    744   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
    745   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
    746       match(Op1, m_Trunc(m_Value(Y))))
    747     if (X->getType() == Y->getType())
    748       // See if "V === X - Y" simplifies.
    749       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    750         // It does!  Now see if "trunc V" simplifies.
    751         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
    752           // It does, return the simplified "trunc V".
    753           return W;
    754 
    755   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
    756   if (match(Op0, m_PtrToInt(m_Value(X))) &&
    757       match(Op1, m_PtrToInt(m_Value(Y))))
    758     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
    759       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
    760 
    761   // i1 sub -> xor.
    762   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    763     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    764       return V;
    765 
    766   // Threading Sub over selects and phi nodes is pointless, so don't bother.
    767   // Threading over the select in "A - select(cond, B, C)" means evaluating
    768   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
    769   // only if B and C are equal.  If B and C are equal then (since we assume
    770   // that operands have already been simplified) "select(cond, B, C)" should
    771   // have been simplified to the common value of B and C already.  Analysing
    772   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
    773   // for threading over phi nodes.
    774 
    775   return nullptr;
    776 }
    777 
    778 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    779                              const DataLayout &DL, const TargetLibraryInfo *TLI,
    780                              const DominatorTree *DT, AssumptionCache *AC,
    781                              const Instruction *CxtI) {
    782   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
    783                            RecursionLimit);
    784 }
    785 
    786 /// Given operands for an FAdd, see if we can fold the result.  If not, this
    787 /// returns null.
    788 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    789                               const Query &Q, unsigned MaxRecurse) {
    790   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    791     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    792       Constant *Ops[] = { CLHS, CRHS };
    793       return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
    794                                       Ops, Q.DL, Q.TLI);
    795     }
    796 
    797     // Canonicalize the constant to the RHS.
    798     std::swap(Op0, Op1);
    799   }
    800 
    801   // fadd X, -0 ==> X
    802   if (match(Op1, m_NegZero()))
    803     return Op0;
    804 
    805   // fadd X, 0 ==> X, when we know X is not -0
    806   if (match(Op1, m_Zero()) &&
    807       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
    808     return Op0;
    809 
    810   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
    811   //   where nnan and ninf have to occur at least once somewhere in this
    812   //   expression
    813   Value *SubOp = nullptr;
    814   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
    815     SubOp = Op1;
    816   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
    817     SubOp = Op0;
    818   if (SubOp) {
    819     Instruction *FSub = cast<Instruction>(SubOp);
    820     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
    821         (FMF.noInfs() || FSub->hasNoInfs()))
    822       return Constant::getNullValue(Op0->getType());
    823   }
    824 
    825   return nullptr;
    826 }
    827 
    828 /// Given operands for an FSub, see if we can fold the result.  If not, this
    829 /// returns null.
    830 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    831                               const Query &Q, unsigned MaxRecurse) {
    832   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    833     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    834       Constant *Ops[] = { CLHS, CRHS };
    835       return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
    836                                       Ops, Q.DL, Q.TLI);
    837     }
    838   }
    839 
    840   // fsub X, 0 ==> X
    841   if (match(Op1, m_Zero()))
    842     return Op0;
    843 
    844   // fsub X, -0 ==> X, when we know X is not -0
    845   if (match(Op1, m_NegZero()) &&
    846       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
    847     return Op0;
    848 
    849   // fsub 0, (fsub -0.0, X) ==> X
    850   Value *X;
    851   if (match(Op0, m_AnyZero())) {
    852     if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
    853       return X;
    854     if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
    855       return X;
    856   }
    857 
    858   // fsub nnan x, x ==> 0.0
    859   if (FMF.noNaNs() && Op0 == Op1)
    860     return Constant::getNullValue(Op0->getType());
    861 
    862   return nullptr;
    863 }
    864 
    865 /// Given the operands for an FMul, see if we can fold the result
    866 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
    867                                FastMathFlags FMF,
    868                                const Query &Q,
    869                                unsigned MaxRecurse) {
    870  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    871     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    872       Constant *Ops[] = { CLHS, CRHS };
    873       return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
    874                                       Ops, Q.DL, Q.TLI);
    875     }
    876 
    877     // Canonicalize the constant to the RHS.
    878     std::swap(Op0, Op1);
    879  }
    880 
    881  // fmul X, 1.0 ==> X
    882  if (match(Op1, m_FPOne()))
    883    return Op0;
    884 
    885  // fmul nnan nsz X, 0 ==> 0
    886  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
    887    return Op1;
    888 
    889  return nullptr;
    890 }
    891 
    892 /// SimplifyMulInst - Given operands for a Mul, see if we can
    893 /// fold the result.  If not, this returns null.
    894 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
    895                               unsigned MaxRecurse) {
    896   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    897     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    898       Constant *Ops[] = { CLHS, CRHS };
    899       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
    900                                       Ops, Q.DL, Q.TLI);
    901     }
    902 
    903     // Canonicalize the constant to the RHS.
    904     std::swap(Op0, Op1);
    905   }
    906 
    907   // X * undef -> 0
    908   if (match(Op1, m_Undef()))
    909     return Constant::getNullValue(Op0->getType());
    910 
    911   // X * 0 -> 0
    912   if (match(Op1, m_Zero()))
    913     return Op1;
    914 
    915   // X * 1 -> X
    916   if (match(Op1, m_One()))
    917     return Op0;
    918 
    919   // (X / Y) * Y -> X if the division is exact.
    920   Value *X = nullptr;
    921   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
    922       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
    923     return X;
    924 
    925   // i1 mul -> and.
    926   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    927     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
    928       return V;
    929 
    930   // Try some generic simplifications for associative operations.
    931   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
    932                                           MaxRecurse))
    933     return V;
    934 
    935   // Mul distributes over Add.  Try some generic simplifications based on this.
    936   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
    937                              Q, MaxRecurse))
    938     return V;
    939 
    940   // If the operation is with the result of a select instruction, check whether
    941   // operating on either branch of the select always yields the same value.
    942   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    943     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
    944                                          MaxRecurse))
    945       return V;
    946 
    947   // If the operation is with the result of a phi instruction, check whether
    948   // operating on all incoming values of the phi always yields the same value.
    949   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    950     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
    951                                       MaxRecurse))
    952       return V;
    953 
    954   return nullptr;
    955 }
    956 
    957 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    958                               const DataLayout &DL,
    959                               const TargetLibraryInfo *TLI,
    960                               const DominatorTree *DT, AssumptionCache *AC,
    961                               const Instruction *CxtI) {
    962   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
    963                             RecursionLimit);
    964 }
    965 
    966 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    967                               const DataLayout &DL,
    968                               const TargetLibraryInfo *TLI,
    969                               const DominatorTree *DT, AssumptionCache *AC,
    970                               const Instruction *CxtI) {
    971   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
    972                             RecursionLimit);
    973 }
    974 
    975 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    976                               const DataLayout &DL,
    977                               const TargetLibraryInfo *TLI,
    978                               const DominatorTree *DT, AssumptionCache *AC,
    979                               const Instruction *CxtI) {
    980   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
    981                             RecursionLimit);
    982 }
    983 
    984 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
    985                              const TargetLibraryInfo *TLI,
    986                              const DominatorTree *DT, AssumptionCache *AC,
    987                              const Instruction *CxtI) {
    988   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
    989                            RecursionLimit);
    990 }
    991 
    992 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
    993 /// fold the result.  If not, this returns null.
    994 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    995                           const Query &Q, unsigned MaxRecurse) {
    996   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    997     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
    998       Constant *Ops[] = { C0, C1 };
    999       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
   1000     }
   1001   }
   1002 
   1003   bool isSigned = Opcode == Instruction::SDiv;
   1004 
   1005   // X / undef -> undef
   1006   if (match(Op1, m_Undef()))
   1007     return Op1;
   1008 
   1009   // X / 0 -> undef, we don't need to preserve faults!
   1010   if (match(Op1, m_Zero()))
   1011     return UndefValue::get(Op1->getType());
   1012 
   1013   // undef / X -> 0
   1014   if (match(Op0, m_Undef()))
   1015     return Constant::getNullValue(Op0->getType());
   1016 
   1017   // 0 / X -> 0, we don't need to preserve faults!
   1018   if (match(Op0, m_Zero()))
   1019     return Op0;
   1020 
   1021   // X / 1 -> X
   1022   if (match(Op1, m_One()))
   1023     return Op0;
   1024 
   1025   if (Op0->getType()->isIntegerTy(1))
   1026     // It can't be division by zero, hence it must be division by one.
   1027     return Op0;
   1028 
   1029   // X / X -> 1
   1030   if (Op0 == Op1)
   1031     return ConstantInt::get(Op0->getType(), 1);
   1032 
   1033   // (X * Y) / Y -> X if the multiplication does not overflow.
   1034   Value *X = nullptr, *Y = nullptr;
   1035   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
   1036     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
   1037     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
   1038     // If the Mul knows it does not overflow, then we are good to go.
   1039     if ((isSigned && Mul->hasNoSignedWrap()) ||
   1040         (!isSigned && Mul->hasNoUnsignedWrap()))
   1041       return X;
   1042     // If X has the form X = A / Y then X * Y cannot overflow.
   1043     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
   1044       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
   1045         return X;
   1046   }
   1047 
   1048   // (X rem Y) / Y -> 0
   1049   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1050       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1051     return Constant::getNullValue(Op0->getType());
   1052 
   1053   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
   1054   ConstantInt *C1, *C2;
   1055   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
   1056       match(Op1, m_ConstantInt(C2))) {
   1057     bool Overflow;
   1058     C1->getValue().umul_ov(C2->getValue(), Overflow);
   1059     if (Overflow)
   1060       return Constant::getNullValue(Op0->getType());
   1061   }
   1062 
   1063   // If the operation is with the result of a select instruction, check whether
   1064   // operating on either branch of the select always yields the same value.
   1065   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1066     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1067       return V;
   1068 
   1069   // If the operation is with the result of a phi instruction, check whether
   1070   // operating on all incoming values of the phi always yields the same value.
   1071   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1072     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1073       return V;
   1074 
   1075   return nullptr;
   1076 }
   1077 
   1078 /// SimplifySDivInst - Given operands for an SDiv, see if we can
   1079 /// fold the result.  If not, this returns null.
   1080 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
   1081                                unsigned MaxRecurse) {
   1082   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
   1083     return V;
   1084 
   1085   return nullptr;
   1086 }
   1087 
   1088 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1089                               const TargetLibraryInfo *TLI,
   1090                               const DominatorTree *DT, AssumptionCache *AC,
   1091                               const Instruction *CxtI) {
   1092   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1093                             RecursionLimit);
   1094 }
   1095 
   1096 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
   1097 /// fold the result.  If not, this returns null.
   1098 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
   1099                                unsigned MaxRecurse) {
   1100   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
   1101     return V;
   1102 
   1103   return nullptr;
   1104 }
   1105 
   1106 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1107                               const TargetLibraryInfo *TLI,
   1108                               const DominatorTree *DT, AssumptionCache *AC,
   1109                               const Instruction *CxtI) {
   1110   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1111                             RecursionLimit);
   1112 }
   1113 
   1114 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1115                                const Query &Q, unsigned) {
   1116   // undef / X -> undef    (the undef could be a snan).
   1117   if (match(Op0, m_Undef()))
   1118     return Op0;
   1119 
   1120   // X / undef -> undef
   1121   if (match(Op1, m_Undef()))
   1122     return Op1;
   1123 
   1124   // 0 / X -> 0
   1125   // Requires that NaNs are off (X could be zero) and signed zeroes are
   1126   // ignored (X could be positive or negative, so the output sign is unknown).
   1127   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
   1128     return Op0;
   1129 
   1130   if (FMF.noNaNs()) {
   1131     // X / X -> 1.0 is legal when NaNs are ignored.
   1132     if (Op0 == Op1)
   1133       return ConstantFP::get(Op0->getType(), 1.0);
   1134 
   1135     // -X /  X -> -1.0 and
   1136     //  X / -X -> -1.0 are legal when NaNs are ignored.
   1137     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
   1138     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
   1139          BinaryOperator::getFNegArgument(Op0) == Op1) ||
   1140         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
   1141          BinaryOperator::getFNegArgument(Op1) == Op0))
   1142       return ConstantFP::get(Op0->getType(), -1.0);
   1143   }
   1144 
   1145   return nullptr;
   1146 }
   1147 
   1148 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1149                               const DataLayout &DL,
   1150                               const TargetLibraryInfo *TLI,
   1151                               const DominatorTree *DT, AssumptionCache *AC,
   1152                               const Instruction *CxtI) {
   1153   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
   1154                             RecursionLimit);
   1155 }
   1156 
   1157 /// SimplifyRem - Given operands for an SRem or URem, see if we can
   1158 /// fold the result.  If not, this returns null.
   1159 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   1160                           const Query &Q, unsigned MaxRecurse) {
   1161   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1162     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1163       Constant *Ops[] = { C0, C1 };
   1164       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
   1165     }
   1166   }
   1167 
   1168   // X % undef -> undef
   1169   if (match(Op1, m_Undef()))
   1170     return Op1;
   1171 
   1172   // undef % X -> 0
   1173   if (match(Op0, m_Undef()))
   1174     return Constant::getNullValue(Op0->getType());
   1175 
   1176   // 0 % X -> 0, we don't need to preserve faults!
   1177   if (match(Op0, m_Zero()))
   1178     return Op0;
   1179 
   1180   // X % 0 -> undef, we don't need to preserve faults!
   1181   if (match(Op1, m_Zero()))
   1182     return UndefValue::get(Op0->getType());
   1183 
   1184   // X % 1 -> 0
   1185   if (match(Op1, m_One()))
   1186     return Constant::getNullValue(Op0->getType());
   1187 
   1188   if (Op0->getType()->isIntegerTy(1))
   1189     // It can't be remainder by zero, hence it must be remainder by one.
   1190     return Constant::getNullValue(Op0->getType());
   1191 
   1192   // X % X -> 0
   1193   if (Op0 == Op1)
   1194     return Constant::getNullValue(Op0->getType());
   1195 
   1196   // (X % Y) % Y -> X % Y
   1197   if ((Opcode == Instruction::SRem &&
   1198        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1199       (Opcode == Instruction::URem &&
   1200        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1201     return Op0;
   1202 
   1203   // If the operation is with the result of a select instruction, check whether
   1204   // operating on either branch of the select always yields the same value.
   1205   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1206     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1207       return V;
   1208 
   1209   // If the operation is with the result of a phi instruction, check whether
   1210   // operating on all incoming values of the phi always yields the same value.
   1211   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1212     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1213       return V;
   1214 
   1215   return nullptr;
   1216 }
   1217 
   1218 /// SimplifySRemInst - Given operands for an SRem, see if we can
   1219 /// fold the result.  If not, this returns null.
   1220 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
   1221                                unsigned MaxRecurse) {
   1222   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
   1223     return V;
   1224 
   1225   return nullptr;
   1226 }
   1227 
   1228 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1229                               const TargetLibraryInfo *TLI,
   1230                               const DominatorTree *DT, AssumptionCache *AC,
   1231                               const Instruction *CxtI) {
   1232   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1233                             RecursionLimit);
   1234 }
   1235 
   1236 /// SimplifyURemInst - Given operands for a URem, see if we can
   1237 /// fold the result.  If not, this returns null.
   1238 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
   1239                                unsigned MaxRecurse) {
   1240   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
   1241     return V;
   1242 
   1243   return nullptr;
   1244 }
   1245 
   1246 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1247                               const TargetLibraryInfo *TLI,
   1248                               const DominatorTree *DT, AssumptionCache *AC,
   1249                               const Instruction *CxtI) {
   1250   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1251                             RecursionLimit);
   1252 }
   1253 
   1254 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1255                                const Query &, unsigned) {
   1256   // undef % X -> undef    (the undef could be a snan).
   1257   if (match(Op0, m_Undef()))
   1258     return Op0;
   1259 
   1260   // X % undef -> undef
   1261   if (match(Op1, m_Undef()))
   1262     return Op1;
   1263 
   1264   // 0 % X -> 0
   1265   // Requires that NaNs are off (X could be zero) and signed zeroes are
   1266   // ignored (X could be positive or negative, so the output sign is unknown).
   1267   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
   1268     return Op0;
   1269 
   1270   return nullptr;
   1271 }
   1272 
   1273 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1274                               const DataLayout &DL,
   1275                               const TargetLibraryInfo *TLI,
   1276                               const DominatorTree *DT, AssumptionCache *AC,
   1277                               const Instruction *CxtI) {
   1278   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
   1279                             RecursionLimit);
   1280 }
   1281 
   1282 /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
   1283 static bool isUndefShift(Value *Amount) {
   1284   Constant *C = dyn_cast<Constant>(Amount);
   1285   if (!C)
   1286     return false;
   1287 
   1288   // X shift by undef -> undef because it may shift by the bitwidth.
   1289   if (isa<UndefValue>(C))
   1290     return true;
   1291 
   1292   // Shifting by the bitwidth or more is undefined.
   1293   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1294     if (CI->getValue().getLimitedValue() >=
   1295         CI->getType()->getScalarSizeInBits())
   1296       return true;
   1297 
   1298   // If all lanes of a vector shift are undefined the whole shift is.
   1299   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
   1300     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
   1301       if (!isUndefShift(C->getAggregateElement(I)))
   1302         return false;
   1303     return true;
   1304   }
   1305 
   1306   return false;
   1307 }
   1308 
   1309 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
   1310 /// fold the result.  If not, this returns null.
   1311 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
   1312                             const Query &Q, unsigned MaxRecurse) {
   1313   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1314     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1315       Constant *Ops[] = { C0, C1 };
   1316       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
   1317     }
   1318   }
   1319 
   1320   // 0 shift by X -> 0
   1321   if (match(Op0, m_Zero()))
   1322     return Op0;
   1323 
   1324   // X shift by 0 -> X
   1325   if (match(Op1, m_Zero()))
   1326     return Op0;
   1327 
   1328   // Fold undefined shifts.
   1329   if (isUndefShift(Op1))
   1330     return UndefValue::get(Op0->getType());
   1331 
   1332   // If the operation is with the result of a select instruction, check whether
   1333   // operating on either branch of the select always yields the same value.
   1334   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1335     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1336       return V;
   1337 
   1338   // If the operation is with the result of a phi instruction, check whether
   1339   // operating on all incoming values of the phi always yields the same value.
   1340   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1341     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1342       return V;
   1343 
   1344   return nullptr;
   1345 }
   1346 
   1347 /// \brief Given operands for an Shl, LShr or AShr, see if we can
   1348 /// fold the result.  If not, this returns null.
   1349 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
   1350                                  bool isExact, const Query &Q,
   1351                                  unsigned MaxRecurse) {
   1352   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
   1353     return V;
   1354 
   1355   // X >> X -> 0
   1356   if (Op0 == Op1)
   1357     return Constant::getNullValue(Op0->getType());
   1358 
   1359   // undef >> X -> 0
   1360   // undef >> X -> undef (if it's exact)
   1361   if (match(Op0, m_Undef()))
   1362     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
   1363 
   1364   // The low bit cannot be shifted out of an exact shift if it is set.
   1365   if (isExact) {
   1366     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
   1367     APInt Op0KnownZero(BitWidth, 0);
   1368     APInt Op0KnownOne(BitWidth, 0);
   1369     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
   1370                      Q.CxtI, Q.DT);
   1371     if (Op0KnownOne[0])
   1372       return Op0;
   1373   }
   1374 
   1375   return nullptr;
   1376 }
   1377 
   1378 /// SimplifyShlInst - Given operands for an Shl, see if we can
   1379 /// fold the result.  If not, this returns null.
   1380 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1381                               const Query &Q, unsigned MaxRecurse) {
   1382   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
   1383     return V;
   1384 
   1385   // undef << X -> 0
   1386   // undef << X -> undef if (if it's NSW/NUW)
   1387   if (match(Op0, m_Undef()))
   1388     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
   1389 
   1390   // (X >> A) << A -> X
   1391   Value *X;
   1392   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
   1393     return X;
   1394   return nullptr;
   1395 }
   1396 
   1397 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1398                              const DataLayout &DL, const TargetLibraryInfo *TLI,
   1399                              const DominatorTree *DT, AssumptionCache *AC,
   1400                              const Instruction *CxtI) {
   1401   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
   1402                            RecursionLimit);
   1403 }
   1404 
   1405 /// SimplifyLShrInst - Given operands for an LShr, see if we can
   1406 /// fold the result.  If not, this returns null.
   1407 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1408                                const Query &Q, unsigned MaxRecurse) {
   1409   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
   1410                                     MaxRecurse))
   1411       return V;
   1412 
   1413   // (X << A) >> A -> X
   1414   Value *X;
   1415   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
   1416     return X;
   1417 
   1418   return nullptr;
   1419 }
   1420 
   1421 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1422                               const DataLayout &DL,
   1423                               const TargetLibraryInfo *TLI,
   1424                               const DominatorTree *DT, AssumptionCache *AC,
   1425                               const Instruction *CxtI) {
   1426   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
   1427                             RecursionLimit);
   1428 }
   1429 
   1430 /// SimplifyAShrInst - Given operands for an AShr, see if we can
   1431 /// fold the result.  If not, this returns null.
   1432 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1433                                const Query &Q, unsigned MaxRecurse) {
   1434   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
   1435                                     MaxRecurse))
   1436     return V;
   1437 
   1438   // all ones >>a X -> all ones
   1439   if (match(Op0, m_AllOnes()))
   1440     return Op0;
   1441 
   1442   // (X << A) >> A -> X
   1443   Value *X;
   1444   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
   1445     return X;
   1446 
   1447   // Arithmetic shifting an all-sign-bit value is a no-op.
   1448   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1449   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
   1450     return Op0;
   1451 
   1452   return nullptr;
   1453 }
   1454 
   1455 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1456                               const DataLayout &DL,
   1457                               const TargetLibraryInfo *TLI,
   1458                               const DominatorTree *DT, AssumptionCache *AC,
   1459                               const Instruction *CxtI) {
   1460   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
   1461                             RecursionLimit);
   1462 }
   1463 
   1464 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
   1465                                          ICmpInst *UnsignedICmp, bool IsAnd) {
   1466   Value *X, *Y;
   1467 
   1468   ICmpInst::Predicate EqPred;
   1469   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
   1470       !ICmpInst::isEquality(EqPred))
   1471     return nullptr;
   1472 
   1473   ICmpInst::Predicate UnsignedPred;
   1474   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
   1475       ICmpInst::isUnsigned(UnsignedPred))
   1476     ;
   1477   else if (match(UnsignedICmp,
   1478                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
   1479            ICmpInst::isUnsigned(UnsignedPred))
   1480     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
   1481   else
   1482     return nullptr;
   1483 
   1484   // X < Y && Y != 0  -->  X < Y
   1485   // X < Y || Y != 0  -->  Y != 0
   1486   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
   1487     return IsAnd ? UnsignedICmp : ZeroICmp;
   1488 
   1489   // X >= Y || Y != 0  -->  true
   1490   // X >= Y || Y == 0  -->  X >= Y
   1491   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
   1492     if (EqPred == ICmpInst::ICMP_NE)
   1493       return getTrue(UnsignedICmp->getType());
   1494     return UnsignedICmp;
   1495   }
   1496 
   1497   // X < Y && Y == 0  -->  false
   1498   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
   1499       IsAnd)
   1500     return getFalse(UnsignedICmp->getType());
   1501 
   1502   return nullptr;
   1503 }
   1504 
   1505 // Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
   1506 // of possible values cannot be satisfied.
   1507 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
   1508   ICmpInst::Predicate Pred0, Pred1;
   1509   ConstantInt *CI1, *CI2;
   1510   Value *V;
   1511 
   1512   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
   1513     return X;
   1514 
   1515   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
   1516                          m_ConstantInt(CI2))))
   1517    return nullptr;
   1518 
   1519   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
   1520     return nullptr;
   1521 
   1522   Type *ITy = Op0->getType();
   1523 
   1524   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
   1525   bool isNSW = AddInst->hasNoSignedWrap();
   1526   bool isNUW = AddInst->hasNoUnsignedWrap();
   1527 
   1528   const APInt &CI1V = CI1->getValue();
   1529   const APInt &CI2V = CI2->getValue();
   1530   const APInt Delta = CI2V - CI1V;
   1531   if (CI1V.isStrictlyPositive()) {
   1532     if (Delta == 2) {
   1533       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
   1534         return getFalse(ITy);
   1535       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
   1536         return getFalse(ITy);
   1537     }
   1538     if (Delta == 1) {
   1539       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
   1540         return getFalse(ITy);
   1541       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
   1542         return getFalse(ITy);
   1543     }
   1544   }
   1545   if (CI1V.getBoolValue() && isNUW) {
   1546     if (Delta == 2)
   1547       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
   1548         return getFalse(ITy);
   1549     if (Delta == 1)
   1550       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
   1551         return getFalse(ITy);
   1552   }
   1553 
   1554   return nullptr;
   1555 }
   1556 
   1557 /// SimplifyAndInst - Given operands for an And, see if we can
   1558 /// fold the result.  If not, this returns null.
   1559 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
   1560                               unsigned MaxRecurse) {
   1561   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1562     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1563       Constant *Ops[] = { CLHS, CRHS };
   1564       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
   1565                                       Ops, Q.DL, Q.TLI);
   1566     }
   1567 
   1568     // Canonicalize the constant to the RHS.
   1569     std::swap(Op0, Op1);
   1570   }
   1571 
   1572   // X & undef -> 0
   1573   if (match(Op1, m_Undef()))
   1574     return Constant::getNullValue(Op0->getType());
   1575 
   1576   // X & X = X
   1577   if (Op0 == Op1)
   1578     return Op0;
   1579 
   1580   // X & 0 = 0
   1581   if (match(Op1, m_Zero()))
   1582     return Op1;
   1583 
   1584   // X & -1 = X
   1585   if (match(Op1, m_AllOnes()))
   1586     return Op0;
   1587 
   1588   // A & ~A  =  ~A & A  =  0
   1589   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1590       match(Op1, m_Not(m_Specific(Op0))))
   1591     return Constant::getNullValue(Op0->getType());
   1592 
   1593   // (A | ?) & A = A
   1594   Value *A = nullptr, *B = nullptr;
   1595   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1596       (A == Op1 || B == Op1))
   1597     return Op1;
   1598 
   1599   // A & (A | ?) = A
   1600   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1601       (A == Op0 || B == Op0))
   1602     return Op0;
   1603 
   1604   // A & (-A) = A if A is a power of two or zero.
   1605   if (match(Op0, m_Neg(m_Specific(Op1))) ||
   1606       match(Op1, m_Neg(m_Specific(Op0)))) {
   1607     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
   1608                                Q.DT))
   1609       return Op0;
   1610     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
   1611                                Q.DT))
   1612       return Op1;
   1613   }
   1614 
   1615   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
   1616     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
   1617       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
   1618         return V;
   1619       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
   1620         return V;
   1621     }
   1622   }
   1623 
   1624   // Try some generic simplifications for associative operations.
   1625   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
   1626                                           MaxRecurse))
   1627     return V;
   1628 
   1629   // And distributes over Or.  Try some generic simplifications based on this.
   1630   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1631                              Q, MaxRecurse))
   1632     return V;
   1633 
   1634   // And distributes over Xor.  Try some generic simplifications based on this.
   1635   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
   1636                              Q, MaxRecurse))
   1637     return V;
   1638 
   1639   // If the operation is with the result of a select instruction, check whether
   1640   // operating on either branch of the select always yields the same value.
   1641   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1642     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
   1643                                          MaxRecurse))
   1644       return V;
   1645 
   1646   // If the operation is with the result of a phi instruction, check whether
   1647   // operating on all incoming values of the phi always yields the same value.
   1648   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1649     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
   1650                                       MaxRecurse))
   1651       return V;
   1652 
   1653   return nullptr;
   1654 }
   1655 
   1656 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1657                              const TargetLibraryInfo *TLI,
   1658                              const DominatorTree *DT, AssumptionCache *AC,
   1659                              const Instruction *CxtI) {
   1660   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1661                            RecursionLimit);
   1662 }
   1663 
   1664 // Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
   1665 // contains all possible values.
   1666 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
   1667   ICmpInst::Predicate Pred0, Pred1;
   1668   ConstantInt *CI1, *CI2;
   1669   Value *V;
   1670 
   1671   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
   1672     return X;
   1673 
   1674   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
   1675                          m_ConstantInt(CI2))))
   1676    return nullptr;
   1677 
   1678   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
   1679     return nullptr;
   1680 
   1681   Type *ITy = Op0->getType();
   1682 
   1683   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
   1684   bool isNSW = AddInst->hasNoSignedWrap();
   1685   bool isNUW = AddInst->hasNoUnsignedWrap();
   1686 
   1687   const APInt &CI1V = CI1->getValue();
   1688   const APInt &CI2V = CI2->getValue();
   1689   const APInt Delta = CI2V - CI1V;
   1690   if (CI1V.isStrictlyPositive()) {
   1691     if (Delta == 2) {
   1692       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
   1693         return getTrue(ITy);
   1694       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
   1695         return getTrue(ITy);
   1696     }
   1697     if (Delta == 1) {
   1698       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
   1699         return getTrue(ITy);
   1700       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
   1701         return getTrue(ITy);
   1702     }
   1703   }
   1704   if (CI1V.getBoolValue() && isNUW) {
   1705     if (Delta == 2)
   1706       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
   1707         return getTrue(ITy);
   1708     if (Delta == 1)
   1709       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
   1710         return getTrue(ITy);
   1711   }
   1712 
   1713   return nullptr;
   1714 }
   1715 
   1716 /// SimplifyOrInst - Given operands for an Or, see if we can
   1717 /// fold the result.  If not, this returns null.
   1718 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
   1719                              unsigned MaxRecurse) {
   1720   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1721     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1722       Constant *Ops[] = { CLHS, CRHS };
   1723       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
   1724                                       Ops, Q.DL, Q.TLI);
   1725     }
   1726 
   1727     // Canonicalize the constant to the RHS.
   1728     std::swap(Op0, Op1);
   1729   }
   1730 
   1731   // X | undef -> -1
   1732   if (match(Op1, m_Undef()))
   1733     return Constant::getAllOnesValue(Op0->getType());
   1734 
   1735   // X | X = X
   1736   if (Op0 == Op1)
   1737     return Op0;
   1738 
   1739   // X | 0 = X
   1740   if (match(Op1, m_Zero()))
   1741     return Op0;
   1742 
   1743   // X | -1 = -1
   1744   if (match(Op1, m_AllOnes()))
   1745     return Op1;
   1746 
   1747   // A | ~A  =  ~A | A  =  -1
   1748   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1749       match(Op1, m_Not(m_Specific(Op0))))
   1750     return Constant::getAllOnesValue(Op0->getType());
   1751 
   1752   // (A & ?) | A = A
   1753   Value *A = nullptr, *B = nullptr;
   1754   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1755       (A == Op1 || B == Op1))
   1756     return Op1;
   1757 
   1758   // A | (A & ?) = A
   1759   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
   1760       (A == Op0 || B == Op0))
   1761     return Op0;
   1762 
   1763   // ~(A & ?) | A = -1
   1764   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1765       (A == Op1 || B == Op1))
   1766     return Constant::getAllOnesValue(Op1->getType());
   1767 
   1768   // A | ~(A & ?) = -1
   1769   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1770       (A == Op0 || B == Op0))
   1771     return Constant::getAllOnesValue(Op0->getType());
   1772 
   1773   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
   1774     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
   1775       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
   1776         return V;
   1777       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
   1778         return V;
   1779     }
   1780   }
   1781 
   1782   // Try some generic simplifications for associative operations.
   1783   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
   1784                                           MaxRecurse))
   1785     return V;
   1786 
   1787   // Or distributes over And.  Try some generic simplifications based on this.
   1788   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
   1789                              MaxRecurse))
   1790     return V;
   1791 
   1792   // If the operation is with the result of a select instruction, check whether
   1793   // operating on either branch of the select always yields the same value.
   1794   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1795     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
   1796                                          MaxRecurse))
   1797       return V;
   1798 
   1799   // (A & C)|(B & D)
   1800   Value *C = nullptr, *D = nullptr;
   1801   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1802       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1803     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
   1804     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
   1805     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
   1806       // (A & C1)|(B & C2)
   1807       // If we have: ((V + N) & C1) | (V & C2)
   1808       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1809       // replace with V+N.
   1810       Value *V1, *V2;
   1811       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
   1812           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1813         // Add commutes, try both ways.
   1814         if (V1 == B &&
   1815             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1816           return A;
   1817         if (V2 == B &&
   1818             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1819           return A;
   1820       }
   1821       // Or commutes, try both ways.
   1822       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
   1823           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1824         // Add commutes, try both ways.
   1825         if (V1 == A &&
   1826             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1827           return B;
   1828         if (V2 == A &&
   1829             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1830           return B;
   1831       }
   1832     }
   1833   }
   1834 
   1835   // If the operation is with the result of a phi instruction, check whether
   1836   // operating on all incoming values of the phi always yields the same value.
   1837   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1838     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
   1839       return V;
   1840 
   1841   return nullptr;
   1842 }
   1843 
   1844 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1845                             const TargetLibraryInfo *TLI,
   1846                             const DominatorTree *DT, AssumptionCache *AC,
   1847                             const Instruction *CxtI) {
   1848   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1849                           RecursionLimit);
   1850 }
   1851 
   1852 /// SimplifyXorInst - Given operands for a Xor, see if we can
   1853 /// fold the result.  If not, this returns null.
   1854 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
   1855                               unsigned MaxRecurse) {
   1856   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1857     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1858       Constant *Ops[] = { CLHS, CRHS };
   1859       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
   1860                                       Ops, Q.DL, Q.TLI);
   1861     }
   1862 
   1863     // Canonicalize the constant to the RHS.
   1864     std::swap(Op0, Op1);
   1865   }
   1866 
   1867   // A ^ undef -> undef
   1868   if (match(Op1, m_Undef()))
   1869     return Op1;
   1870 
   1871   // A ^ 0 = A
   1872   if (match(Op1, m_Zero()))
   1873     return Op0;
   1874 
   1875   // A ^ A = 0
   1876   if (Op0 == Op1)
   1877     return Constant::getNullValue(Op0->getType());
   1878 
   1879   // A ^ ~A  =  ~A ^ A  =  -1
   1880   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1881       match(Op1, m_Not(m_Specific(Op0))))
   1882     return Constant::getAllOnesValue(Op0->getType());
   1883 
   1884   // Try some generic simplifications for associative operations.
   1885   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
   1886                                           MaxRecurse))
   1887     return V;
   1888 
   1889   // Threading Xor over selects and phi nodes is pointless, so don't bother.
   1890   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
   1891   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
   1892   // only if B and C are equal.  If B and C are equal then (since we assume
   1893   // that operands have already been simplified) "select(cond, B, C)" should
   1894   // have been simplified to the common value of B and C already.  Analysing
   1895   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
   1896   // for threading over phi nodes.
   1897 
   1898   return nullptr;
   1899 }
   1900 
   1901 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1902                              const TargetLibraryInfo *TLI,
   1903                              const DominatorTree *DT, AssumptionCache *AC,
   1904                              const Instruction *CxtI) {
   1905   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1906                            RecursionLimit);
   1907 }
   1908 
   1909 static Type *GetCompareTy(Value *Op) {
   1910   return CmpInst::makeCmpResultType(Op->getType());
   1911 }
   1912 
   1913 /// ExtractEquivalentCondition - Rummage around inside V looking for something
   1914 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
   1915 /// otherwise return null.  Helper function for analyzing max/min idioms.
   1916 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
   1917                                          Value *LHS, Value *RHS) {
   1918   SelectInst *SI = dyn_cast<SelectInst>(V);
   1919   if (!SI)
   1920     return nullptr;
   1921   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1922   if (!Cmp)
   1923     return nullptr;
   1924   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
   1925   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
   1926     return Cmp;
   1927   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
   1928       LHS == CmpRHS && RHS == CmpLHS)
   1929     return Cmp;
   1930   return nullptr;
   1931 }
   1932 
   1933 // A significant optimization not implemented here is assuming that alloca
   1934 // addresses are not equal to incoming argument values. They don't *alias*,
   1935 // as we say, but that doesn't mean they aren't equal, so we take a
   1936 // conservative approach.
   1937 //
   1938 // This is inspired in part by C++11 5.10p1:
   1939 //   "Two pointers of the same type compare equal if and only if they are both
   1940 //    null, both point to the same function, or both represent the same
   1941 //    address."
   1942 //
   1943 // This is pretty permissive.
   1944 //
   1945 // It's also partly due to C11 6.5.9p6:
   1946 //   "Two pointers compare equal if and only if both are null pointers, both are
   1947 //    pointers to the same object (including a pointer to an object and a
   1948 //    subobject at its beginning) or function, both are pointers to one past the
   1949 //    last element of the same array object, or one is a pointer to one past the
   1950 //    end of one array object and the other is a pointer to the start of a
   1951 //    different array object that happens to immediately follow the first array
   1952 //    object in the address space.)
   1953 //
   1954 // C11's version is more restrictive, however there's no reason why an argument
   1955 // couldn't be a one-past-the-end value for a stack object in the caller and be
   1956 // equal to the beginning of a stack object in the callee.
   1957 //
   1958 // If the C and C++ standards are ever made sufficiently restrictive in this
   1959 // area, it may be possible to update LLVM's semantics accordingly and reinstate
   1960 // this optimization.
   1961 static Constant *computePointerICmp(const DataLayout &DL,
   1962                                     const TargetLibraryInfo *TLI,
   1963                                     CmpInst::Predicate Pred, Value *LHS,
   1964                                     Value *RHS) {
   1965   // First, skip past any trivial no-ops.
   1966   LHS = LHS->stripPointerCasts();
   1967   RHS = RHS->stripPointerCasts();
   1968 
   1969   // A non-null pointer is not equal to a null pointer.
   1970   if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
   1971       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
   1972     return ConstantInt::get(GetCompareTy(LHS),
   1973                             !CmpInst::isTrueWhenEqual(Pred));
   1974 
   1975   // We can only fold certain predicates on pointer comparisons.
   1976   switch (Pred) {
   1977   default:
   1978     return nullptr;
   1979 
   1980     // Equality comaprisons are easy to fold.
   1981   case CmpInst::ICMP_EQ:
   1982   case CmpInst::ICMP_NE:
   1983     break;
   1984 
   1985     // We can only handle unsigned relational comparisons because 'inbounds' on
   1986     // a GEP only protects against unsigned wrapping.
   1987   case CmpInst::ICMP_UGT:
   1988   case CmpInst::ICMP_UGE:
   1989   case CmpInst::ICMP_ULT:
   1990   case CmpInst::ICMP_ULE:
   1991     // However, we have to switch them to their signed variants to handle
   1992     // negative indices from the base pointer.
   1993     Pred = ICmpInst::getSignedPredicate(Pred);
   1994     break;
   1995   }
   1996 
   1997   // Strip off any constant offsets so that we can reason about them.
   1998   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
   1999   // here and compare base addresses like AliasAnalysis does, however there are
   2000   // numerous hazards. AliasAnalysis and its utilities rely on special rules
   2001   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
   2002   // doesn't need to guarantee pointer inequality when it says NoAlias.
   2003   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
   2004   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
   2005 
   2006   // If LHS and RHS are related via constant offsets to the same base
   2007   // value, we can replace it with an icmp which just compares the offsets.
   2008   if (LHS == RHS)
   2009     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
   2010 
   2011   // Various optimizations for (in)equality comparisons.
   2012   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
   2013     // Different non-empty allocations that exist at the same time have
   2014     // different addresses (if the program can tell). Global variables always
   2015     // exist, so they always exist during the lifetime of each other and all
   2016     // allocas. Two different allocas usually have different addresses...
   2017     //
   2018     // However, if there's an @llvm.stackrestore dynamically in between two
   2019     // allocas, they may have the same address. It's tempting to reduce the
   2020     // scope of the problem by only looking at *static* allocas here. That would
   2021     // cover the majority of allocas while significantly reducing the likelihood
   2022     // of having an @llvm.stackrestore pop up in the middle. However, it's not
   2023     // actually impossible for an @llvm.stackrestore to pop up in the middle of
   2024     // an entry block. Also, if we have a block that's not attached to a
   2025     // function, we can't tell if it's "static" under the current definition.
   2026     // Theoretically, this problem could be fixed by creating a new kind of
   2027     // instruction kind specifically for static allocas. Such a new instruction
   2028     // could be required to be at the top of the entry block, thus preventing it
   2029     // from being subject to a @llvm.stackrestore. Instcombine could even
   2030     // convert regular allocas into these special allocas. It'd be nifty.
   2031     // However, until then, this problem remains open.
   2032     //
   2033     // So, we'll assume that two non-empty allocas have different addresses
   2034     // for now.
   2035     //
   2036     // With all that, if the offsets are within the bounds of their allocations
   2037     // (and not one-past-the-end! so we can't use inbounds!), and their
   2038     // allocations aren't the same, the pointers are not equal.
   2039     //
   2040     // Note that it's not necessary to check for LHS being a global variable
   2041     // address, due to canonicalization and constant folding.
   2042     if (isa<AllocaInst>(LHS) &&
   2043         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
   2044       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
   2045       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
   2046       uint64_t LHSSize, RHSSize;
   2047       if (LHSOffsetCI && RHSOffsetCI &&
   2048           getObjectSize(LHS, LHSSize, DL, TLI) &&
   2049           getObjectSize(RHS, RHSSize, DL, TLI)) {
   2050         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
   2051         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
   2052         if (!LHSOffsetValue.isNegative() &&
   2053             !RHSOffsetValue.isNegative() &&
   2054             LHSOffsetValue.ult(LHSSize) &&
   2055             RHSOffsetValue.ult(RHSSize)) {
   2056           return ConstantInt::get(GetCompareTy(LHS),
   2057                                   !CmpInst::isTrueWhenEqual(Pred));
   2058         }
   2059       }
   2060 
   2061       // Repeat the above check but this time without depending on DataLayout
   2062       // or being able to compute a precise size.
   2063       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
   2064           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
   2065           LHSOffset->isNullValue() &&
   2066           RHSOffset->isNullValue())
   2067         return ConstantInt::get(GetCompareTy(LHS),
   2068                                 !CmpInst::isTrueWhenEqual(Pred));
   2069     }
   2070 
   2071     // Even if an non-inbounds GEP occurs along the path we can still optimize
   2072     // equality comparisons concerning the result. We avoid walking the whole
   2073     // chain again by starting where the last calls to
   2074     // stripAndComputeConstantOffsets left off and accumulate the offsets.
   2075     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
   2076     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
   2077     if (LHS == RHS)
   2078       return ConstantExpr::getICmp(Pred,
   2079                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
   2080                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
   2081 
   2082     // If one side of the equality comparison must come from a noalias call
   2083     // (meaning a system memory allocation function), and the other side must
   2084     // come from a pointer that cannot overlap with dynamically-allocated
   2085     // memory within the lifetime of the current function (allocas, byval
   2086     // arguments, globals), then determine the comparison result here.
   2087     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
   2088     GetUnderlyingObjects(LHS, LHSUObjs, DL);
   2089     GetUnderlyingObjects(RHS, RHSUObjs, DL);
   2090 
   2091     // Is the set of underlying objects all noalias calls?
   2092     auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
   2093       return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall);
   2094     };
   2095 
   2096     // Is the set of underlying objects all things which must be disjoint from
   2097     // noalias calls. For allocas, we consider only static ones (dynamic
   2098     // allocas might be transformed into calls to malloc not simultaneously
   2099     // live with the compared-to allocation). For globals, we exclude symbols
   2100     // that might be resolve lazily to symbols in another dynamically-loaded
   2101     // library (and, thus, could be malloc'ed by the implementation).
   2102     auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
   2103       return std::all_of(Objects.begin(), Objects.end(),
   2104                          [](Value *V){
   2105                            if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
   2106                              return AI->getParent() && AI->getParent()->getParent() &&
   2107                                     AI->isStaticAlloca();
   2108                            if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
   2109                              return (GV->hasLocalLinkage() ||
   2110                                      GV->hasHiddenVisibility() ||
   2111                                      GV->hasProtectedVisibility() ||
   2112                                      GV->hasUnnamedAddr()) &&
   2113                                     !GV->isThreadLocal();
   2114                            if (const Argument *A = dyn_cast<Argument>(V))
   2115                              return A->hasByValAttr();
   2116                            return false;
   2117                          });
   2118     };
   2119 
   2120     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
   2121         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
   2122         return ConstantInt::get(GetCompareTy(LHS),
   2123                                 !CmpInst::isTrueWhenEqual(Pred));
   2124   }
   2125 
   2126   // Otherwise, fail.
   2127   return nullptr;
   2128 }
   2129 
   2130 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
   2131 /// fold the result.  If not, this returns null.
   2132 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2133                                const Query &Q, unsigned MaxRecurse) {
   2134   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   2135   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
   2136 
   2137   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   2138     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   2139       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   2140 
   2141     // If we have a constant, make sure it is on the RHS.
   2142     std::swap(LHS, RHS);
   2143     Pred = CmpInst::getSwappedPredicate(Pred);
   2144   }
   2145 
   2146   Type *ITy = GetCompareTy(LHS); // The return type.
   2147   Type *OpTy = LHS->getType();   // The operand type.
   2148 
   2149   // icmp X, X -> true/false
   2150   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
   2151   // because X could be 0.
   2152   if (LHS == RHS || isa<UndefValue>(RHS))
   2153     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   2154 
   2155   // Special case logic when the operands have i1 type.
   2156   if (OpTy->getScalarType()->isIntegerTy(1)) {
   2157     switch (Pred) {
   2158     default: break;
   2159     case ICmpInst::ICMP_EQ:
   2160       // X == 1 -> X
   2161       if (match(RHS, m_One()))
   2162         return LHS;
   2163       break;
   2164     case ICmpInst::ICMP_NE:
   2165       // X != 0 -> X
   2166       if (match(RHS, m_Zero()))
   2167         return LHS;
   2168       break;
   2169     case ICmpInst::ICMP_UGT:
   2170       // X >u 0 -> X
   2171       if (match(RHS, m_Zero()))
   2172         return LHS;
   2173       break;
   2174     case ICmpInst::ICMP_UGE:
   2175       // X >=u 1 -> X
   2176       if (match(RHS, m_One()))
   2177         return LHS;
   2178       if (isImpliedCondition(RHS, LHS, Q.DL))
   2179         return getTrue(ITy);
   2180       break;
   2181     case ICmpInst::ICMP_SGE:
   2182       /// For signed comparison, the values for an i1 are 0 and -1
   2183       /// respectively. This maps into a truth table of:
   2184       /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
   2185       ///  0  |  0  |  1 (0 >= 0)   |  1
   2186       ///  0  |  1  |  1 (0 >= -1)  |  1
   2187       ///  1  |  0  |  0 (-1 >= 0)  |  0
   2188       ///  1  |  1  |  1 (-1 >= -1) |  1
   2189       if (isImpliedCondition(LHS, RHS, Q.DL))
   2190         return getTrue(ITy);
   2191       break;
   2192     case ICmpInst::ICMP_SLT:
   2193       // X <s 0 -> X
   2194       if (match(RHS, m_Zero()))
   2195         return LHS;
   2196       break;
   2197     case ICmpInst::ICMP_SLE:
   2198       // X <=s -1 -> X
   2199       if (match(RHS, m_One()))
   2200         return LHS;
   2201       break;
   2202     case ICmpInst::ICMP_ULE:
   2203       if (isImpliedCondition(LHS, RHS, Q.DL))
   2204         return getTrue(ITy);
   2205       break;
   2206     }
   2207   }
   2208 
   2209   // If we are comparing with zero then try hard since this is a common case.
   2210   if (match(RHS, m_Zero())) {
   2211     bool LHSKnownNonNegative, LHSKnownNegative;
   2212     switch (Pred) {
   2213     default: llvm_unreachable("Unknown ICmp predicate!");
   2214     case ICmpInst::ICMP_ULT:
   2215       return getFalse(ITy);
   2216     case ICmpInst::ICMP_UGE:
   2217       return getTrue(ITy);
   2218     case ICmpInst::ICMP_EQ:
   2219     case ICmpInst::ICMP_ULE:
   2220       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2221         return getFalse(ITy);
   2222       break;
   2223     case ICmpInst::ICMP_NE:
   2224     case ICmpInst::ICMP_UGT:
   2225       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2226         return getTrue(ITy);
   2227       break;
   2228     case ICmpInst::ICMP_SLT:
   2229       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2230                      Q.CxtI, Q.DT);
   2231       if (LHSKnownNegative)
   2232         return getTrue(ITy);
   2233       if (LHSKnownNonNegative)
   2234         return getFalse(ITy);
   2235       break;
   2236     case ICmpInst::ICMP_SLE:
   2237       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2238                      Q.CxtI, Q.DT);
   2239       if (LHSKnownNegative)
   2240         return getTrue(ITy);
   2241       if (LHSKnownNonNegative &&
   2242           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2243         return getFalse(ITy);
   2244       break;
   2245     case ICmpInst::ICMP_SGE:
   2246       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2247                      Q.CxtI, Q.DT);
   2248       if (LHSKnownNegative)
   2249         return getFalse(ITy);
   2250       if (LHSKnownNonNegative)
   2251         return getTrue(ITy);
   2252       break;
   2253     case ICmpInst::ICMP_SGT:
   2254       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2255                      Q.CxtI, Q.DT);
   2256       if (LHSKnownNegative)
   2257         return getFalse(ITy);
   2258       if (LHSKnownNonNegative &&
   2259           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2260         return getTrue(ITy);
   2261       break;
   2262     }
   2263   }
   2264 
   2265   // See if we are doing a comparison with a constant integer.
   2266   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2267     // Rule out tautological comparisons (eg., ult 0 or uge 0).
   2268     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
   2269     if (RHS_CR.isEmptySet())
   2270       return ConstantInt::getFalse(CI->getContext());
   2271     if (RHS_CR.isFullSet())
   2272       return ConstantInt::getTrue(CI->getContext());
   2273 
   2274     // Many binary operators with constant RHS have easy to compute constant
   2275     // range.  Use them to check whether the comparison is a tautology.
   2276     unsigned Width = CI->getBitWidth();
   2277     APInt Lower = APInt(Width, 0);
   2278     APInt Upper = APInt(Width, 0);
   2279     ConstantInt *CI2;
   2280     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
   2281       // 'urem x, CI2' produces [0, CI2).
   2282       Upper = CI2->getValue();
   2283     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
   2284       // 'srem x, CI2' produces (-|CI2|, |CI2|).
   2285       Upper = CI2->getValue().abs();
   2286       Lower = (-Upper) + 1;
   2287     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
   2288       // 'udiv CI2, x' produces [0, CI2].
   2289       Upper = CI2->getValue() + 1;
   2290     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
   2291       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
   2292       APInt NegOne = APInt::getAllOnesValue(Width);
   2293       if (!CI2->isZero())
   2294         Upper = NegOne.udiv(CI2->getValue()) + 1;
   2295     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
   2296       if (CI2->isMinSignedValue()) {
   2297         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
   2298         Lower = CI2->getValue();
   2299         Upper = Lower.lshr(1) + 1;
   2300       } else {
   2301         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
   2302         Upper = CI2->getValue().abs() + 1;
   2303         Lower = (-Upper) + 1;
   2304       }
   2305     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
   2306       APInt IntMin = APInt::getSignedMinValue(Width);
   2307       APInt IntMax = APInt::getSignedMaxValue(Width);
   2308       APInt Val = CI2->getValue();
   2309       if (Val.isAllOnesValue()) {
   2310         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
   2311         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
   2312         Lower = IntMin + 1;
   2313         Upper = IntMax + 1;
   2314       } else if (Val.countLeadingZeros() < Width - 1) {
   2315         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
   2316         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
   2317         Lower = IntMin.sdiv(Val);
   2318         Upper = IntMax.sdiv(Val);
   2319         if (Lower.sgt(Upper))
   2320           std::swap(Lower, Upper);
   2321         Upper = Upper + 1;
   2322         assert(Upper != Lower && "Upper part of range has wrapped!");
   2323       }
   2324     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
   2325       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
   2326       Lower = CI2->getValue();
   2327       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
   2328     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
   2329       if (CI2->isNegative()) {
   2330         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
   2331         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
   2332         Lower = CI2->getValue().shl(ShiftAmount);
   2333         Upper = CI2->getValue() + 1;
   2334       } else {
   2335         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
   2336         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
   2337         Lower = CI2->getValue();
   2338         Upper = CI2->getValue().shl(ShiftAmount) + 1;
   2339       }
   2340     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
   2341       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
   2342       APInt NegOne = APInt::getAllOnesValue(Width);
   2343       if (CI2->getValue().ult(Width))
   2344         Upper = NegOne.lshr(CI2->getValue()) + 1;
   2345     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
   2346       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
   2347       unsigned ShiftAmount = Width - 1;
   2348       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
   2349         ShiftAmount = CI2->getValue().countTrailingZeros();
   2350       Lower = CI2->getValue().lshr(ShiftAmount);
   2351       Upper = CI2->getValue() + 1;
   2352     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
   2353       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
   2354       APInt IntMin = APInt::getSignedMinValue(Width);
   2355       APInt IntMax = APInt::getSignedMaxValue(Width);
   2356       if (CI2->getValue().ult(Width)) {
   2357         Lower = IntMin.ashr(CI2->getValue());
   2358         Upper = IntMax.ashr(CI2->getValue()) + 1;
   2359       }
   2360     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
   2361       unsigned ShiftAmount = Width - 1;
   2362       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
   2363         ShiftAmount = CI2->getValue().countTrailingZeros();
   2364       if (CI2->isNegative()) {
   2365         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
   2366         Lower = CI2->getValue();
   2367         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
   2368       } else {
   2369         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
   2370         Lower = CI2->getValue().ashr(ShiftAmount);
   2371         Upper = CI2->getValue() + 1;
   2372       }
   2373     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
   2374       // 'or x, CI2' produces [CI2, UINT_MAX].
   2375       Lower = CI2->getValue();
   2376     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
   2377       // 'and x, CI2' produces [0, CI2].
   2378       Upper = CI2->getValue() + 1;
   2379     } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) {
   2380       // 'add nuw x, CI2' produces [CI2, UINT_MAX].
   2381       Lower = CI2->getValue();
   2382     }
   2383 
   2384     ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper)
   2385                                           : ConstantRange(Width, true);
   2386 
   2387     if (auto *I = dyn_cast<Instruction>(LHS))
   2388       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
   2389         LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
   2390 
   2391     if (!LHS_CR.isFullSet()) {
   2392       if (RHS_CR.contains(LHS_CR))
   2393         return ConstantInt::getTrue(RHS->getContext());
   2394       if (RHS_CR.inverse().contains(LHS_CR))
   2395         return ConstantInt::getFalse(RHS->getContext());
   2396     }
   2397   }
   2398 
   2399   // If both operands have range metadata, use the metadata
   2400   // to simplify the comparison.
   2401   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
   2402     auto RHS_Instr = dyn_cast<Instruction>(RHS);
   2403     auto LHS_Instr = dyn_cast<Instruction>(LHS);
   2404 
   2405     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
   2406         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
   2407       auto RHS_CR = getConstantRangeFromMetadata(
   2408           *RHS_Instr->getMetadata(LLVMContext::MD_range));
   2409       auto LHS_CR = getConstantRangeFromMetadata(
   2410           *LHS_Instr->getMetadata(LLVMContext::MD_range));
   2411 
   2412       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
   2413       if (Satisfied_CR.contains(LHS_CR))
   2414         return ConstantInt::getTrue(RHS->getContext());
   2415 
   2416       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
   2417                 CmpInst::getInversePredicate(Pred), RHS_CR);
   2418       if (InversedSatisfied_CR.contains(LHS_CR))
   2419         return ConstantInt::getFalse(RHS->getContext());
   2420     }
   2421   }
   2422 
   2423   // Compare of cast, for example (zext X) != 0 -> X != 0
   2424   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
   2425     Instruction *LI = cast<CastInst>(LHS);
   2426     Value *SrcOp = LI->getOperand(0);
   2427     Type *SrcTy = SrcOp->getType();
   2428     Type *DstTy = LI->getType();
   2429 
   2430     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
   2431     // if the integer type is the same size as the pointer type.
   2432     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
   2433         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
   2434       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   2435         // Transfer the cast to the constant.
   2436         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
   2437                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
   2438                                         Q, MaxRecurse-1))
   2439           return V;
   2440       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
   2441         if (RI->getOperand(0)->getType() == SrcTy)
   2442           // Compare without the cast.
   2443           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   2444                                           Q, MaxRecurse-1))
   2445             return V;
   2446       }
   2447     }
   2448 
   2449     if (isa<ZExtInst>(LHS)) {
   2450       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
   2451       // same type.
   2452       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
   2453         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   2454           // Compare X and Y.  Note that signed predicates become unsigned.
   2455           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   2456                                           SrcOp, RI->getOperand(0), Q,
   2457                                           MaxRecurse-1))
   2458             return V;
   2459       }
   2460       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
   2461       // too.  If not, then try to deduce the result of the comparison.
   2462       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2463         // Compute the constant that would happen if we truncated to SrcTy then
   2464         // reextended to DstTy.
   2465         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   2466         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
   2467 
   2468         // If the re-extended constant didn't change then this is effectively
   2469         // also a case of comparing two zero-extended values.
   2470         if (RExt == CI && MaxRecurse)
   2471           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   2472                                         SrcOp, Trunc, Q, MaxRecurse-1))
   2473             return V;
   2474 
   2475         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
   2476         // there.  Use this to work out the result of the comparison.
   2477         if (RExt != CI) {
   2478           switch (Pred) {
   2479           default: llvm_unreachable("Unknown ICmp predicate!");
   2480           // LHS <u RHS.
   2481           case ICmpInst::ICMP_EQ:
   2482           case ICmpInst::ICMP_UGT:
   2483           case ICmpInst::ICMP_UGE:
   2484             return ConstantInt::getFalse(CI->getContext());
   2485 
   2486           case ICmpInst::ICMP_NE:
   2487           case ICmpInst::ICMP_ULT:
   2488           case ICmpInst::ICMP_ULE:
   2489             return ConstantInt::getTrue(CI->getContext());
   2490 
   2491           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
   2492           // is non-negative then LHS <s RHS.
   2493           case ICmpInst::ICMP_SGT:
   2494           case ICmpInst::ICMP_SGE:
   2495             return CI->getValue().isNegative() ?
   2496               ConstantInt::getTrue(CI->getContext()) :
   2497               ConstantInt::getFalse(CI->getContext());
   2498 
   2499           case ICmpInst::ICMP_SLT:
   2500           case ICmpInst::ICMP_SLE:
   2501             return CI->getValue().isNegative() ?
   2502               ConstantInt::getFalse(CI->getContext()) :
   2503               ConstantInt::getTrue(CI->getContext());
   2504           }
   2505         }
   2506       }
   2507     }
   2508 
   2509     if (isa<SExtInst>(LHS)) {
   2510       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
   2511       // same type.
   2512       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
   2513         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   2514           // Compare X and Y.  Note that the predicate does not change.
   2515           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   2516                                           Q, MaxRecurse-1))
   2517             return V;
   2518       }
   2519       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
   2520       // too.  If not, then try to deduce the result of the comparison.
   2521       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2522         // Compute the constant that would happen if we truncated to SrcTy then
   2523         // reextended to DstTy.
   2524         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   2525         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
   2526 
   2527         // If the re-extended constant didn't change then this is effectively
   2528         // also a case of comparing two sign-extended values.
   2529         if (RExt == CI && MaxRecurse)
   2530           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
   2531             return V;
   2532 
   2533         // Otherwise the upper bits of LHS are all equal, while RHS has varying
   2534         // bits there.  Use this to work out the result of the comparison.
   2535         if (RExt != CI) {
   2536           switch (Pred) {
   2537           default: llvm_unreachable("Unknown ICmp predicate!");
   2538           case ICmpInst::ICMP_EQ:
   2539             return ConstantInt::getFalse(CI->getContext());
   2540           case ICmpInst::ICMP_NE:
   2541             return ConstantInt::getTrue(CI->getContext());
   2542 
   2543           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
   2544           // LHS >s RHS.
   2545           case ICmpInst::ICMP_SGT:
   2546           case ICmpInst::ICMP_SGE:
   2547             return CI->getValue().isNegative() ?
   2548               ConstantInt::getTrue(CI->getContext()) :
   2549               ConstantInt::getFalse(CI->getContext());
   2550           case ICmpInst::ICMP_SLT:
   2551           case ICmpInst::ICMP_SLE:
   2552             return CI->getValue().isNegative() ?
   2553               ConstantInt::getFalse(CI->getContext()) :
   2554               ConstantInt::getTrue(CI->getContext());
   2555 
   2556           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
   2557           // LHS >u RHS.
   2558           case ICmpInst::ICMP_UGT:
   2559           case ICmpInst::ICMP_UGE:
   2560             // Comparison is true iff the LHS <s 0.
   2561             if (MaxRecurse)
   2562               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
   2563                                               Constant::getNullValue(SrcTy),
   2564                                               Q, MaxRecurse-1))
   2565                 return V;
   2566             break;
   2567           case ICmpInst::ICMP_ULT:
   2568           case ICmpInst::ICMP_ULE:
   2569             // Comparison is true iff the LHS >=s 0.
   2570             if (MaxRecurse)
   2571               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
   2572                                               Constant::getNullValue(SrcTy),
   2573                                               Q, MaxRecurse-1))
   2574                 return V;
   2575             break;
   2576           }
   2577         }
   2578       }
   2579     }
   2580   }
   2581 
   2582   // icmp eq|ne X, Y -> false|true if X != Y
   2583   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
   2584       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
   2585     LLVMContext &Ctx = LHS->getType()->getContext();
   2586     return Pred == ICmpInst::ICMP_NE ?
   2587       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
   2588   }
   2589 
   2590   // Special logic for binary operators.
   2591   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   2592   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
   2593   if (MaxRecurse && (LBO || RBO)) {
   2594     // Analyze the case when either LHS or RHS is an add instruction.
   2595     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   2596     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
   2597     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
   2598     if (LBO && LBO->getOpcode() == Instruction::Add) {
   2599       A = LBO->getOperand(0); B = LBO->getOperand(1);
   2600       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2601         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
   2602         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
   2603     }
   2604     if (RBO && RBO->getOpcode() == Instruction::Add) {
   2605       C = RBO->getOperand(0); D = RBO->getOperand(1);
   2606       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2607         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
   2608         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
   2609     }
   2610 
   2611     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2612     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
   2613       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
   2614                                       Constant::getNullValue(RHS->getType()),
   2615                                       Q, MaxRecurse-1))
   2616         return V;
   2617 
   2618     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2619     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
   2620       if (Value *V = SimplifyICmpInst(Pred,
   2621                                       Constant::getNullValue(LHS->getType()),
   2622                                       C == LHS ? D : C, Q, MaxRecurse-1))
   2623         return V;
   2624 
   2625     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
   2626     if (A && C && (A == C || A == D || B == C || B == D) &&
   2627         NoLHSWrapProblem && NoRHSWrapProblem) {
   2628       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2629       Value *Y, *Z;
   2630       if (A == C) {
   2631         // C + B == C + D  ->  B == D
   2632         Y = B;
   2633         Z = D;
   2634       } else if (A == D) {
   2635         // D + B == C + D  ->  B == C
   2636         Y = B;
   2637         Z = C;
   2638       } else if (B == C) {
   2639         // A + C == C + D  ->  A == D
   2640         Y = A;
   2641         Z = D;
   2642       } else {
   2643         assert(B == D);
   2644         // A + D == C + D  ->  A == C
   2645         Y = A;
   2646         Z = C;
   2647       }
   2648       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
   2649         return V;
   2650     }
   2651   }
   2652 
   2653   // icmp pred (or X, Y), X
   2654   if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
   2655                                     m_Or(m_Specific(RHS), m_Value())))) {
   2656     if (Pred == ICmpInst::ICMP_ULT)
   2657       return getFalse(ITy);
   2658     if (Pred == ICmpInst::ICMP_UGE)
   2659       return getTrue(ITy);
   2660   }
   2661   // icmp pred X, (or X, Y)
   2662   if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
   2663                                     m_Or(m_Specific(LHS), m_Value())))) {
   2664     if (Pred == ICmpInst::ICMP_ULE)
   2665       return getTrue(ITy);
   2666     if (Pred == ICmpInst::ICMP_UGT)
   2667       return getFalse(ITy);
   2668   }
   2669 
   2670   // icmp pred (and X, Y), X
   2671   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
   2672                                     m_And(m_Specific(RHS), m_Value())))) {
   2673     if (Pred == ICmpInst::ICMP_UGT)
   2674       return getFalse(ITy);
   2675     if (Pred == ICmpInst::ICMP_ULE)
   2676       return getTrue(ITy);
   2677   }
   2678   // icmp pred X, (and X, Y)
   2679   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
   2680                                     m_And(m_Specific(LHS), m_Value())))) {
   2681     if (Pred == ICmpInst::ICMP_UGE)
   2682       return getTrue(ITy);
   2683     if (Pred == ICmpInst::ICMP_ULT)
   2684       return getFalse(ITy);
   2685   }
   2686 
   2687   // 0 - (zext X) pred C
   2688   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
   2689     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   2690       if (RHSC->getValue().isStrictlyPositive()) {
   2691         if (Pred == ICmpInst::ICMP_SLT)
   2692           return ConstantInt::getTrue(RHSC->getContext());
   2693         if (Pred == ICmpInst::ICMP_SGE)
   2694           return ConstantInt::getFalse(RHSC->getContext());
   2695         if (Pred == ICmpInst::ICMP_EQ)
   2696           return ConstantInt::getFalse(RHSC->getContext());
   2697         if (Pred == ICmpInst::ICMP_NE)
   2698           return ConstantInt::getTrue(RHSC->getContext());
   2699       }
   2700       if (RHSC->getValue().isNonNegative()) {
   2701         if (Pred == ICmpInst::ICMP_SLE)
   2702           return ConstantInt::getTrue(RHSC->getContext());
   2703         if (Pred == ICmpInst::ICMP_SGT)
   2704           return ConstantInt::getFalse(RHSC->getContext());
   2705       }
   2706     }
   2707   }
   2708 
   2709   // icmp pred (urem X, Y), Y
   2710   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
   2711     bool KnownNonNegative, KnownNegative;
   2712     switch (Pred) {
   2713     default:
   2714       break;
   2715     case ICmpInst::ICMP_SGT:
   2716     case ICmpInst::ICMP_SGE:
   2717       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2718                      Q.CxtI, Q.DT);
   2719       if (!KnownNonNegative)
   2720         break;
   2721       // fall-through
   2722     case ICmpInst::ICMP_EQ:
   2723     case ICmpInst::ICMP_UGT:
   2724     case ICmpInst::ICMP_UGE:
   2725       return getFalse(ITy);
   2726     case ICmpInst::ICMP_SLT:
   2727     case ICmpInst::ICMP_SLE:
   2728       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2729                      Q.CxtI, Q.DT);
   2730       if (!KnownNonNegative)
   2731         break;
   2732       // fall-through
   2733     case ICmpInst::ICMP_NE:
   2734     case ICmpInst::ICMP_ULT:
   2735     case ICmpInst::ICMP_ULE:
   2736       return getTrue(ITy);
   2737     }
   2738   }
   2739 
   2740   // icmp pred X, (urem Y, X)
   2741   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
   2742     bool KnownNonNegative, KnownNegative;
   2743     switch (Pred) {
   2744     default:
   2745       break;
   2746     case ICmpInst::ICMP_SGT:
   2747     case ICmpInst::ICMP_SGE:
   2748       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2749                      Q.CxtI, Q.DT);
   2750       if (!KnownNonNegative)
   2751         break;
   2752       // fall-through
   2753     case ICmpInst::ICMP_NE:
   2754     case ICmpInst::ICMP_UGT:
   2755     case ICmpInst::ICMP_UGE:
   2756       return getTrue(ITy);
   2757     case ICmpInst::ICMP_SLT:
   2758     case ICmpInst::ICMP_SLE:
   2759       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2760                      Q.CxtI, Q.DT);
   2761       if (!KnownNonNegative)
   2762         break;
   2763       // fall-through
   2764     case ICmpInst::ICMP_EQ:
   2765     case ICmpInst::ICMP_ULT:
   2766     case ICmpInst::ICMP_ULE:
   2767       return getFalse(ITy);
   2768     }
   2769   }
   2770 
   2771   // x udiv y <=u x.
   2772   if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
   2773     // icmp pred (X /u Y), X
   2774     if (Pred == ICmpInst::ICMP_UGT)
   2775       return getFalse(ITy);
   2776     if (Pred == ICmpInst::ICMP_ULE)
   2777       return getTrue(ITy);
   2778   }
   2779 
   2780   // handle:
   2781   //   CI2 << X == CI
   2782   //   CI2 << X != CI
   2783   //
   2784   //   where CI2 is a power of 2 and CI isn't
   2785   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
   2786     const APInt *CI2Val, *CIVal = &CI->getValue();
   2787     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
   2788         CI2Val->isPowerOf2()) {
   2789       if (!CIVal->isPowerOf2()) {
   2790         // CI2 << X can equal zero in some circumstances,
   2791         // this simplification is unsafe if CI is zero.
   2792         //
   2793         // We know it is safe if:
   2794         // - The shift is nsw, we can't shift out the one bit.
   2795         // - The shift is nuw, we can't shift out the one bit.
   2796         // - CI2 is one
   2797         // - CI isn't zero
   2798         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
   2799             *CI2Val == 1 || !CI->isZero()) {
   2800           if (Pred == ICmpInst::ICMP_EQ)
   2801             return ConstantInt::getFalse(RHS->getContext());
   2802           if (Pred == ICmpInst::ICMP_NE)
   2803             return ConstantInt::getTrue(RHS->getContext());
   2804         }
   2805       }
   2806       if (CIVal->isSignBit() && *CI2Val == 1) {
   2807         if (Pred == ICmpInst::ICMP_UGT)
   2808           return ConstantInt::getFalse(RHS->getContext());
   2809         if (Pred == ICmpInst::ICMP_ULE)
   2810           return ConstantInt::getTrue(RHS->getContext());
   2811       }
   2812     }
   2813   }
   2814 
   2815   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
   2816       LBO->getOperand(1) == RBO->getOperand(1)) {
   2817     switch (LBO->getOpcode()) {
   2818     default: break;
   2819     case Instruction::UDiv:
   2820     case Instruction::LShr:
   2821       if (ICmpInst::isSigned(Pred))
   2822         break;
   2823       // fall-through
   2824     case Instruction::SDiv:
   2825     case Instruction::AShr:
   2826       if (!LBO->isExact() || !RBO->isExact())
   2827         break;
   2828       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2829                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2830         return V;
   2831       break;
   2832     case Instruction::Shl: {
   2833       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
   2834       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
   2835       if (!NUW && !NSW)
   2836         break;
   2837       if (!NSW && ICmpInst::isSigned(Pred))
   2838         break;
   2839       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2840                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2841         return V;
   2842       break;
   2843     }
   2844     }
   2845   }
   2846 
   2847   // Simplify comparisons involving max/min.
   2848   Value *A, *B;
   2849   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
   2850   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
   2851 
   2852   // Signed variants on "max(a,b)>=a -> true".
   2853   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2854     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
   2855     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2856     // We analyze this as smax(A, B) pred A.
   2857     P = Pred;
   2858   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
   2859              (A == LHS || B == LHS)) {
   2860     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
   2861     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2862     // We analyze this as smax(A, B) swapped-pred A.
   2863     P = CmpInst::getSwappedPredicate(Pred);
   2864   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2865              (A == RHS || B == RHS)) {
   2866     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
   2867     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2868     // We analyze this as smax(-A, -B) swapped-pred -A.
   2869     // Note that we do not need to actually form -A or -B thanks to EqP.
   2870     P = CmpInst::getSwappedPredicate(Pred);
   2871   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
   2872              (A == LHS || B == LHS)) {
   2873     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
   2874     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2875     // We analyze this as smax(-A, -B) pred -A.
   2876     // Note that we do not need to actually form -A or -B thanks to EqP.
   2877     P = Pred;
   2878   }
   2879   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2880     // Cases correspond to "max(A, B) p A".
   2881     switch (P) {
   2882     default:
   2883       break;
   2884     case CmpInst::ICMP_EQ:
   2885     case CmpInst::ICMP_SLE:
   2886       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2887       // in the max/min; if so, we can just return that.
   2888       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2889         return V;
   2890       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2891         return V;
   2892       // Otherwise, see if "A EqP B" simplifies.
   2893       if (MaxRecurse)
   2894         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2895           return V;
   2896       break;
   2897     case CmpInst::ICMP_NE:
   2898     case CmpInst::ICMP_SGT: {
   2899       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2900       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2901       // tested in the max/min; if so, we can just return that.
   2902       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2903         return V;
   2904       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2905         return V;
   2906       // Otherwise, see if "A InvEqP B" simplifies.
   2907       if (MaxRecurse)
   2908         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2909           return V;
   2910       break;
   2911     }
   2912     case CmpInst::ICMP_SGE:
   2913       // Always true.
   2914       return getTrue(ITy);
   2915     case CmpInst::ICMP_SLT:
   2916       // Always false.
   2917       return getFalse(ITy);
   2918     }
   2919   }
   2920 
   2921   // Unsigned variants on "max(a,b)>=a -> true".
   2922   P = CmpInst::BAD_ICMP_PREDICATE;
   2923   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2924     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
   2925     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2926     // We analyze this as umax(A, B) pred A.
   2927     P = Pred;
   2928   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
   2929              (A == LHS || B == LHS)) {
   2930     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
   2931     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2932     // We analyze this as umax(A, B) swapped-pred A.
   2933     P = CmpInst::getSwappedPredicate(Pred);
   2934   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2935              (A == RHS || B == RHS)) {
   2936     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
   2937     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2938     // We analyze this as umax(-A, -B) swapped-pred -A.
   2939     // Note that we do not need to actually form -A or -B thanks to EqP.
   2940     P = CmpInst::getSwappedPredicate(Pred);
   2941   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
   2942              (A == LHS || B == LHS)) {
   2943     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
   2944     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2945     // We analyze this as umax(-A, -B) pred -A.
   2946     // Note that we do not need to actually form -A or -B thanks to EqP.
   2947     P = Pred;
   2948   }
   2949   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2950     // Cases correspond to "max(A, B) p A".
   2951     switch (P) {
   2952     default:
   2953       break;
   2954     case CmpInst::ICMP_EQ:
   2955     case CmpInst::ICMP_ULE:
   2956       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2957       // in the max/min; if so, we can just return that.
   2958       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2959         return V;
   2960       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2961         return V;
   2962       // Otherwise, see if "A EqP B" simplifies.
   2963       if (MaxRecurse)
   2964         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2965           return V;
   2966       break;
   2967     case CmpInst::ICMP_NE:
   2968     case CmpInst::ICMP_UGT: {
   2969       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2970       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2971       // tested in the max/min; if so, we can just return that.
   2972       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2973         return V;
   2974       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2975         return V;
   2976       // Otherwise, see if "A InvEqP B" simplifies.
   2977       if (MaxRecurse)
   2978         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2979           return V;
   2980       break;
   2981     }
   2982     case CmpInst::ICMP_UGE:
   2983       // Always true.
   2984       return getTrue(ITy);
   2985     case CmpInst::ICMP_ULT:
   2986       // Always false.
   2987       return getFalse(ITy);
   2988     }
   2989   }
   2990 
   2991   // Variants on "max(x,y) >= min(x,z)".
   2992   Value *C, *D;
   2993   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
   2994       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
   2995       (A == C || A == D || B == C || B == D)) {
   2996     // max(x, ?) pred min(x, ?).
   2997     if (Pred == CmpInst::ICMP_SGE)
   2998       // Always true.
   2999       return getTrue(ITy);
   3000     if (Pred == CmpInst::ICMP_SLT)
   3001       // Always false.
   3002       return getFalse(ITy);
   3003   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   3004              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
   3005              (A == C || A == D || B == C || B == D)) {
   3006     // min(x, ?) pred max(x, ?).
   3007     if (Pred == CmpInst::ICMP_SLE)
   3008       // Always true.
   3009       return getTrue(ITy);
   3010     if (Pred == CmpInst::ICMP_SGT)
   3011       // Always false.
   3012       return getFalse(ITy);
   3013   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
   3014              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
   3015              (A == C || A == D || B == C || B == D)) {
   3016     // max(x, ?) pred min(x, ?).
   3017     if (Pred == CmpInst::ICMP_UGE)
   3018       // Always true.
   3019       return getTrue(ITy);
   3020     if (Pred == CmpInst::ICMP_ULT)
   3021       // Always false.
   3022       return getFalse(ITy);
   3023   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   3024              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
   3025              (A == C || A == D || B == C || B == D)) {
   3026     // min(x, ?) pred max(x, ?).
   3027     if (Pred == CmpInst::ICMP_ULE)
   3028       // Always true.
   3029       return getTrue(ITy);
   3030     if (Pred == CmpInst::ICMP_UGT)
   3031       // Always false.
   3032       return getFalse(ITy);
   3033   }
   3034 
   3035   // Simplify comparisons of related pointers using a powerful, recursive
   3036   // GEP-walk when we have target data available..
   3037   if (LHS->getType()->isPointerTy())
   3038     if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
   3039       return C;
   3040 
   3041   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
   3042     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
   3043       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
   3044           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
   3045           (ICmpInst::isEquality(Pred) ||
   3046            (GLHS->isInBounds() && GRHS->isInBounds() &&
   3047             Pred == ICmpInst::getSignedPredicate(Pred)))) {
   3048         // The bases are equal and the indices are constant.  Build a constant
   3049         // expression GEP with the same indices and a null base pointer to see
   3050         // what constant folding can make out of it.
   3051         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
   3052         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
   3053         Constant *NewLHS = ConstantExpr::getGetElementPtr(
   3054             GLHS->getSourceElementType(), Null, IndicesLHS);
   3055 
   3056         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
   3057         Constant *NewRHS = ConstantExpr::getGetElementPtr(
   3058             GLHS->getSourceElementType(), Null, IndicesRHS);
   3059         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
   3060       }
   3061     }
   3062   }
   3063 
   3064   // If a bit is known to be zero for A and known to be one for B,
   3065   // then A and B cannot be equal.
   3066   if (ICmpInst::isEquality(Pred)) {
   3067     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   3068       uint32_t BitWidth = CI->getBitWidth();
   3069       APInt LHSKnownZero(BitWidth, 0);
   3070       APInt LHSKnownOne(BitWidth, 0);
   3071       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
   3072                        Q.CxtI, Q.DT);
   3073       const APInt &RHSVal = CI->getValue();
   3074       if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
   3075         return Pred == ICmpInst::ICMP_EQ
   3076                    ? ConstantInt::getFalse(CI->getContext())
   3077                    : ConstantInt::getTrue(CI->getContext());
   3078     }
   3079   }
   3080 
   3081   // If the comparison is with the result of a select instruction, check whether
   3082   // comparing with either branch of the select always yields the same value.
   3083   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3084     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   3085       return V;
   3086 
   3087   // If the comparison is with the result of a phi instruction, check whether
   3088   // doing the compare with each incoming phi value yields a common result.
   3089   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3090     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   3091       return V;
   3092 
   3093   return nullptr;
   3094 }
   3095 
   3096 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3097                               const DataLayout &DL,
   3098                               const TargetLibraryInfo *TLI,
   3099                               const DominatorTree *DT, AssumptionCache *AC,
   3100                               Instruction *CxtI) {
   3101   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
   3102                             RecursionLimit);
   3103 }
   3104 
   3105 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
   3106 /// fold the result.  If not, this returns null.
   3107 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3108                                FastMathFlags FMF, const Query &Q,
   3109                                unsigned MaxRecurse) {
   3110   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   3111   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
   3112 
   3113   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   3114     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   3115       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   3116 
   3117     // If we have a constant, make sure it is on the RHS.
   3118     std::swap(LHS, RHS);
   3119     Pred = CmpInst::getSwappedPredicate(Pred);
   3120   }
   3121 
   3122   // Fold trivial predicates.
   3123   if (Pred == FCmpInst::FCMP_FALSE)
   3124     return ConstantInt::get(GetCompareTy(LHS), 0);
   3125   if (Pred == FCmpInst::FCMP_TRUE)
   3126     return ConstantInt::get(GetCompareTy(LHS), 1);
   3127 
   3128   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
   3129   if (FMF.noNaNs()) {
   3130     if (Pred == FCmpInst::FCMP_UNO)
   3131       return ConstantInt::get(GetCompareTy(LHS), 0);
   3132     if (Pred == FCmpInst::FCMP_ORD)
   3133       return ConstantInt::get(GetCompareTy(LHS), 1);
   3134   }
   3135 
   3136   // fcmp pred x, undef  and  fcmp pred undef, x
   3137   // fold to true if unordered, false if ordered
   3138   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
   3139     // Choosing NaN for the undef will always make unordered comparison succeed
   3140     // and ordered comparison fail.
   3141     return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
   3142   }
   3143 
   3144   // fcmp x,x -> true/false.  Not all compares are foldable.
   3145   if (LHS == RHS) {
   3146     if (CmpInst::isTrueWhenEqual(Pred))
   3147       return ConstantInt::get(GetCompareTy(LHS), 1);
   3148     if (CmpInst::isFalseWhenEqual(Pred))
   3149       return ConstantInt::get(GetCompareTy(LHS), 0);
   3150   }
   3151 
   3152   // Handle fcmp with constant RHS
   3153   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
   3154     // If the constant is a nan, see if we can fold the comparison based on it.
   3155     if (CFP->getValueAPF().isNaN()) {
   3156       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
   3157         return ConstantInt::getFalse(CFP->getContext());
   3158       assert(FCmpInst::isUnordered(Pred) &&
   3159              "Comparison must be either ordered or unordered!");
   3160       // True if unordered.
   3161       return ConstantInt::getTrue(CFP->getContext());
   3162     }
   3163     // Check whether the constant is an infinity.
   3164     if (CFP->getValueAPF().isInfinity()) {
   3165       if (CFP->getValueAPF().isNegative()) {
   3166         switch (Pred) {
   3167         case FCmpInst::FCMP_OLT:
   3168           // No value is ordered and less than negative infinity.
   3169           return ConstantInt::getFalse(CFP->getContext());
   3170         case FCmpInst::FCMP_UGE:
   3171           // All values are unordered with or at least negative infinity.
   3172           return ConstantInt::getTrue(CFP->getContext());
   3173         default:
   3174           break;
   3175         }
   3176       } else {
   3177         switch (Pred) {
   3178         case FCmpInst::FCMP_OGT:
   3179           // No value is ordered and greater than infinity.
   3180           return ConstantInt::getFalse(CFP->getContext());
   3181         case FCmpInst::FCMP_ULE:
   3182           // All values are unordered with and at most infinity.
   3183           return ConstantInt::getTrue(CFP->getContext());
   3184         default:
   3185           break;
   3186         }
   3187       }
   3188     }
   3189     if (CFP->getValueAPF().isZero()) {
   3190       switch (Pred) {
   3191       case FCmpInst::FCMP_UGE:
   3192         if (CannotBeOrderedLessThanZero(LHS))
   3193           return ConstantInt::getTrue(CFP->getContext());
   3194         break;
   3195       case FCmpInst::FCMP_OLT:
   3196         // X < 0
   3197         if (CannotBeOrderedLessThanZero(LHS))
   3198           return ConstantInt::getFalse(CFP->getContext());
   3199         break;
   3200       default:
   3201         break;
   3202       }
   3203     }
   3204   }
   3205 
   3206   // If the comparison is with the result of a select instruction, check whether
   3207   // comparing with either branch of the select always yields the same value.
   3208   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3209     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   3210       return V;
   3211 
   3212   // If the comparison is with the result of a phi instruction, check whether
   3213   // doing the compare with each incoming phi value yields a common result.
   3214   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3215     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   3216       return V;
   3217 
   3218   return nullptr;
   3219 }
   3220 
   3221 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3222                               FastMathFlags FMF, const DataLayout &DL,
   3223                               const TargetLibraryInfo *TLI,
   3224                               const DominatorTree *DT, AssumptionCache *AC,
   3225                               const Instruction *CxtI) {
   3226   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
   3227                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3228 }
   3229 
   3230 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
   3231 /// replaced with RepOp.
   3232 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
   3233                                            const Query &Q,
   3234                                            unsigned MaxRecurse) {
   3235   // Trivial replacement.
   3236   if (V == Op)
   3237     return RepOp;
   3238 
   3239   auto *I = dyn_cast<Instruction>(V);
   3240   if (!I)
   3241     return nullptr;
   3242 
   3243   // If this is a binary operator, try to simplify it with the replaced op.
   3244   if (auto *B = dyn_cast<BinaryOperator>(I)) {
   3245     // Consider:
   3246     //   %cmp = icmp eq i32 %x, 2147483647
   3247     //   %add = add nsw i32 %x, 1
   3248     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
   3249     //
   3250     // We can't replace %sel with %add unless we strip away the flags.
   3251     if (isa<OverflowingBinaryOperator>(B))
   3252       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
   3253         return nullptr;
   3254     if (isa<PossiblyExactOperator>(B))
   3255       if (B->isExact())
   3256         return nullptr;
   3257 
   3258     if (MaxRecurse) {
   3259       if (B->getOperand(0) == Op)
   3260         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
   3261                              MaxRecurse - 1);
   3262       if (B->getOperand(1) == Op)
   3263         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
   3264                              MaxRecurse - 1);
   3265     }
   3266   }
   3267 
   3268   // Same for CmpInsts.
   3269   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
   3270     if (MaxRecurse) {
   3271       if (C->getOperand(0) == Op)
   3272         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
   3273                                MaxRecurse - 1);
   3274       if (C->getOperand(1) == Op)
   3275         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
   3276                                MaxRecurse - 1);
   3277     }
   3278   }
   3279 
   3280   // TODO: We could hand off more cases to instsimplify here.
   3281 
   3282   // If all operands are constant after substituting Op for RepOp then we can
   3283   // constant fold the instruction.
   3284   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
   3285     // Build a list of all constant operands.
   3286     SmallVector<Constant *, 8> ConstOps;
   3287     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   3288       if (I->getOperand(i) == Op)
   3289         ConstOps.push_back(CRepOp);
   3290       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
   3291         ConstOps.push_back(COp);
   3292       else
   3293         break;
   3294     }
   3295 
   3296     // All operands were constants, fold it.
   3297     if (ConstOps.size() == I->getNumOperands()) {
   3298       if (CmpInst *C = dyn_cast<CmpInst>(I))
   3299         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
   3300                                                ConstOps[1], Q.DL, Q.TLI);
   3301 
   3302       if (LoadInst *LI = dyn_cast<LoadInst>(I))
   3303         if (!LI->isVolatile())
   3304           return ConstantFoldLoadFromConstPtr(ConstOps[0], Q.DL);
   3305 
   3306       return ConstantFoldInstOperands(I->getOpcode(), I->getType(), ConstOps,
   3307                                       Q.DL, Q.TLI);
   3308     }
   3309   }
   3310 
   3311   return nullptr;
   3312 }
   3313 
   3314 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
   3315 /// the result.  If not, this returns null.
   3316 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
   3317                                  Value *FalseVal, const Query &Q,
   3318                                  unsigned MaxRecurse) {
   3319   // select true, X, Y  -> X
   3320   // select false, X, Y -> Y
   3321   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
   3322     if (CB->isAllOnesValue())
   3323       return TrueVal;
   3324     if (CB->isNullValue())
   3325       return FalseVal;
   3326   }
   3327 
   3328   // select C, X, X -> X
   3329   if (TrueVal == FalseVal)
   3330     return TrueVal;
   3331 
   3332   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
   3333     if (isa<Constant>(TrueVal))
   3334       return TrueVal;
   3335     return FalseVal;
   3336   }
   3337   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
   3338     return FalseVal;
   3339   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
   3340     return TrueVal;
   3341 
   3342   if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
   3343     unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType());
   3344     ICmpInst::Predicate Pred = ICI->getPredicate();
   3345     Value *CmpLHS = ICI->getOperand(0);
   3346     Value *CmpRHS = ICI->getOperand(1);
   3347     APInt MinSignedValue = APInt::getSignBit(BitWidth);
   3348     Value *X;
   3349     const APInt *Y;
   3350     bool TrueWhenUnset;
   3351     bool IsBitTest = false;
   3352     if (ICmpInst::isEquality(Pred) &&
   3353         match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) &&
   3354         match(CmpRHS, m_Zero())) {
   3355       IsBitTest = true;
   3356       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
   3357     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
   3358       X = CmpLHS;
   3359       Y = &MinSignedValue;
   3360       IsBitTest = true;
   3361       TrueWhenUnset = false;
   3362     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
   3363       X = CmpLHS;
   3364       Y = &MinSignedValue;
   3365       IsBitTest = true;
   3366       TrueWhenUnset = true;
   3367     }
   3368     if (IsBitTest) {
   3369       const APInt *C;
   3370       // (X & Y) == 0 ? X & ~Y : X  --> X
   3371       // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
   3372       if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
   3373           *Y == ~*C)
   3374         return TrueWhenUnset ? FalseVal : TrueVal;
   3375       // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
   3376       // (X & Y) != 0 ? X : X & ~Y  --> X
   3377       if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
   3378           *Y == ~*C)
   3379         return TrueWhenUnset ? FalseVal : TrueVal;
   3380 
   3381       if (Y->isPowerOf2()) {
   3382         // (X & Y) == 0 ? X | Y : X  --> X | Y
   3383         // (X & Y) != 0 ? X | Y : X  --> X
   3384         if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
   3385             *Y == *C)
   3386           return TrueWhenUnset ? TrueVal : FalseVal;
   3387         // (X & Y) == 0 ? X : X | Y  --> X
   3388         // (X & Y) != 0 ? X : X | Y  --> X | Y
   3389         if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
   3390             *Y == *C)
   3391           return TrueWhenUnset ? TrueVal : FalseVal;
   3392       }
   3393     }
   3394     if (ICI->hasOneUse()) {
   3395       const APInt *C;
   3396       if (match(CmpRHS, m_APInt(C))) {
   3397         // X < MIN ? T : F  -->  F
   3398         if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
   3399           return FalseVal;
   3400         // X < MIN ? T : F  -->  F
   3401         if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
   3402           return FalseVal;
   3403         // X > MAX ? T : F  -->  F
   3404         if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
   3405           return FalseVal;
   3406         // X > MAX ? T : F  -->  F
   3407         if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
   3408           return FalseVal;
   3409       }
   3410     }
   3411 
   3412     // If we have an equality comparison then we know the value in one of the
   3413     // arms of the select. See if substituting this value into the arm and
   3414     // simplifying the result yields the same value as the other arm.
   3415     if (Pred == ICmpInst::ICMP_EQ) {
   3416       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3417               TrueVal ||
   3418           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3419               TrueVal)
   3420         return FalseVal;
   3421       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3422               FalseVal ||
   3423           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3424               FalseVal)
   3425         return FalseVal;
   3426     } else if (Pred == ICmpInst::ICMP_NE) {
   3427       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3428               FalseVal ||
   3429           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3430               FalseVal)
   3431         return TrueVal;
   3432       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3433               TrueVal ||
   3434           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3435               TrueVal)
   3436         return TrueVal;
   3437     }
   3438   }
   3439 
   3440   return nullptr;
   3441 }
   3442 
   3443 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
   3444                                 const DataLayout &DL,
   3445                                 const TargetLibraryInfo *TLI,
   3446                                 const DominatorTree *DT, AssumptionCache *AC,
   3447                                 const Instruction *CxtI) {
   3448   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
   3449                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3450 }
   3451 
   3452 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
   3453 /// fold the result.  If not, this returns null.
   3454 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
   3455                               const Query &Q, unsigned) {
   3456   // The type of the GEP pointer operand.
   3457   unsigned AS =
   3458       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
   3459 
   3460   // getelementptr P -> P.
   3461   if (Ops.size() == 1)
   3462     return Ops[0];
   3463 
   3464   // Compute the (pointer) type returned by the GEP instruction.
   3465   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
   3466   Type *GEPTy = PointerType::get(LastType, AS);
   3467   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
   3468     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   3469 
   3470   if (isa<UndefValue>(Ops[0]))
   3471     return UndefValue::get(GEPTy);
   3472 
   3473   if (Ops.size() == 2) {
   3474     // getelementptr P, 0 -> P.
   3475     if (match(Ops[1], m_Zero()))
   3476       return Ops[0];
   3477 
   3478     Type *Ty = SrcTy;
   3479     if (Ty->isSized()) {
   3480       Value *P;
   3481       uint64_t C;
   3482       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
   3483       // getelementptr P, N -> P if P points to a type of zero size.
   3484       if (TyAllocSize == 0)
   3485         return Ops[0];
   3486 
   3487       // The following transforms are only safe if the ptrtoint cast
   3488       // doesn't truncate the pointers.
   3489       if (Ops[1]->getType()->getScalarSizeInBits() ==
   3490           Q.DL.getPointerSizeInBits(AS)) {
   3491         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
   3492           if (match(P, m_Zero()))
   3493             return Constant::getNullValue(GEPTy);
   3494           Value *Temp;
   3495           if (match(P, m_PtrToInt(m_Value(Temp))))
   3496             if (Temp->getType() == GEPTy)
   3497               return Temp;
   3498           return nullptr;
   3499         };
   3500 
   3501         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
   3502         if (TyAllocSize == 1 &&
   3503             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
   3504           if (Value *R = PtrToIntOrZero(P))
   3505             return R;
   3506 
   3507         // getelementptr V, (ashr (sub P, V), C) -> Q
   3508         // if P points to a type of size 1 << C.
   3509         if (match(Ops[1],
   3510                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
   3511                          m_ConstantInt(C))) &&
   3512             TyAllocSize == 1ULL << C)
   3513           if (Value *R = PtrToIntOrZero(P))
   3514             return R;
   3515 
   3516         // getelementptr V, (sdiv (sub P, V), C) -> Q
   3517         // if P points to a type of size C.
   3518         if (match(Ops[1],
   3519                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
   3520                          m_SpecificInt(TyAllocSize))))
   3521           if (Value *R = PtrToIntOrZero(P))
   3522             return R;
   3523       }
   3524     }
   3525   }
   3526 
   3527   // Check to see if this is constant foldable.
   3528   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3529     if (!isa<Constant>(Ops[i]))
   3530       return nullptr;
   3531 
   3532   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
   3533                                         Ops.slice(1));
   3534 }
   3535 
   3536 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout &DL,
   3537                              const TargetLibraryInfo *TLI,
   3538                              const DominatorTree *DT, AssumptionCache *AC,
   3539                              const Instruction *CxtI) {
   3540   return ::SimplifyGEPInst(
   3541       cast<PointerType>(Ops[0]->getType()->getScalarType())->getElementType(),
   3542       Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3543 }
   3544 
   3545 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
   3546 /// can fold the result.  If not, this returns null.
   3547 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
   3548                                       ArrayRef<unsigned> Idxs, const Query &Q,
   3549                                       unsigned) {
   3550   if (Constant *CAgg = dyn_cast<Constant>(Agg))
   3551     if (Constant *CVal = dyn_cast<Constant>(Val))
   3552       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
   3553 
   3554   // insertvalue x, undef, n -> x
   3555   if (match(Val, m_Undef()))
   3556     return Agg;
   3557 
   3558   // insertvalue x, (extractvalue y, n), n
   3559   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
   3560     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
   3561         EV->getIndices() == Idxs) {
   3562       // insertvalue undef, (extractvalue y, n), n -> y
   3563       if (match(Agg, m_Undef()))
   3564         return EV->getAggregateOperand();
   3565 
   3566       // insertvalue y, (extractvalue y, n), n -> y
   3567       if (Agg == EV->getAggregateOperand())
   3568         return Agg;
   3569     }
   3570 
   3571   return nullptr;
   3572 }
   3573 
   3574 Value *llvm::SimplifyInsertValueInst(
   3575     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
   3576     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
   3577     const Instruction *CxtI) {
   3578   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
   3579                                    RecursionLimit);
   3580 }
   3581 
   3582 /// SimplifyExtractValueInst - Given operands for an ExtractValueInst, see if we
   3583 /// can fold the result.  If not, this returns null.
   3584 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
   3585                                        const Query &, unsigned) {
   3586   if (auto *CAgg = dyn_cast<Constant>(Agg))
   3587     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
   3588 
   3589   // extractvalue x, (insertvalue y, elt, n), n -> elt
   3590   unsigned NumIdxs = Idxs.size();
   3591   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
   3592        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
   3593     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
   3594     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
   3595     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
   3596     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
   3597         Idxs.slice(0, NumCommonIdxs)) {
   3598       if (NumIdxs == NumInsertValueIdxs)
   3599         return IVI->getInsertedValueOperand();
   3600       break;
   3601     }
   3602   }
   3603 
   3604   return nullptr;
   3605 }
   3606 
   3607 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
   3608                                       const DataLayout &DL,
   3609                                       const TargetLibraryInfo *TLI,
   3610                                       const DominatorTree *DT,
   3611                                       AssumptionCache *AC,
   3612                                       const Instruction *CxtI) {
   3613   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
   3614                                     RecursionLimit);
   3615 }
   3616 
   3617 /// SimplifyExtractElementInst - Given operands for an ExtractElementInst, see if we
   3618 /// can fold the result.  If not, this returns null.
   3619 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
   3620                                          unsigned) {
   3621   if (auto *CVec = dyn_cast<Constant>(Vec)) {
   3622     if (auto *CIdx = dyn_cast<Constant>(Idx))
   3623       return ConstantFoldExtractElementInstruction(CVec, CIdx);
   3624 
   3625     // The index is not relevant if our vector is a splat.
   3626     if (auto *Splat = CVec->getSplatValue())
   3627       return Splat;
   3628 
   3629     if (isa<UndefValue>(Vec))
   3630       return UndefValue::get(Vec->getType()->getVectorElementType());
   3631   }
   3632 
   3633   // If extracting a specified index from the vector, see if we can recursively
   3634   // find a previously computed scalar that was inserted into the vector.
   3635   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
   3636     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
   3637       return Elt;
   3638 
   3639   return nullptr;
   3640 }
   3641 
   3642 Value *llvm::SimplifyExtractElementInst(
   3643     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
   3644     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
   3645   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
   3646                                       RecursionLimit);
   3647 }
   3648 
   3649 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
   3650 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
   3651   // If all of the PHI's incoming values are the same then replace the PHI node
   3652   // with the common value.
   3653   Value *CommonValue = nullptr;
   3654   bool HasUndefInput = false;
   3655   for (Value *Incoming : PN->incoming_values()) {
   3656     // If the incoming value is the phi node itself, it can safely be skipped.
   3657     if (Incoming == PN) continue;
   3658     if (isa<UndefValue>(Incoming)) {
   3659       // Remember that we saw an undef value, but otherwise ignore them.
   3660       HasUndefInput = true;
   3661       continue;
   3662     }
   3663     if (CommonValue && Incoming != CommonValue)
   3664       return nullptr;  // Not the same, bail out.
   3665     CommonValue = Incoming;
   3666   }
   3667 
   3668   // If CommonValue is null then all of the incoming values were either undef or
   3669   // equal to the phi node itself.
   3670   if (!CommonValue)
   3671     return UndefValue::get(PN->getType());
   3672 
   3673   // If we have a PHI node like phi(X, undef, X), where X is defined by some
   3674   // instruction, we cannot return X as the result of the PHI node unless it
   3675   // dominates the PHI block.
   3676   if (HasUndefInput)
   3677     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
   3678 
   3679   return CommonValue;
   3680 }
   3681 
   3682 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
   3683   if (Constant *C = dyn_cast<Constant>(Op))
   3684     return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
   3685 
   3686   return nullptr;
   3687 }
   3688 
   3689 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL,
   3690                                const TargetLibraryInfo *TLI,
   3691                                const DominatorTree *DT, AssumptionCache *AC,
   3692                                const Instruction *CxtI) {
   3693   return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
   3694                              RecursionLimit);
   3695 }
   3696 
   3697 //=== Helper functions for higher up the class hierarchy.
   3698 
   3699 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
   3700 /// fold the result.  If not, this returns null.
   3701 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3702                             const Query &Q, unsigned MaxRecurse) {
   3703   switch (Opcode) {
   3704   case Instruction::Add:
   3705     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   3706                            Q, MaxRecurse);
   3707   case Instruction::FAdd:
   3708     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3709 
   3710   case Instruction::Sub:
   3711     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   3712                            Q, MaxRecurse);
   3713   case Instruction::FSub:
   3714     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3715 
   3716   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
   3717   case Instruction::FMul:
   3718     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3719   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
   3720   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
   3721   case Instruction::FDiv:
   3722       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3723   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
   3724   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
   3725   case Instruction::FRem:
   3726       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3727   case Instruction::Shl:
   3728     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   3729                            Q, MaxRecurse);
   3730   case Instruction::LShr:
   3731     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   3732   case Instruction::AShr:
   3733     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   3734   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
   3735   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
   3736   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
   3737   default:
   3738     if (Constant *CLHS = dyn_cast<Constant>(LHS))
   3739       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   3740         Constant *COps[] = {CLHS, CRHS};
   3741         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
   3742                                         Q.TLI);
   3743       }
   3744 
   3745     // If the operation is associative, try some generic simplifications.
   3746     if (Instruction::isAssociative(Opcode))
   3747       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
   3748         return V;
   3749 
   3750     // If the operation is with the result of a select instruction check whether
   3751     // operating on either branch of the select always yields the same value.
   3752     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3753       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
   3754         return V;
   3755 
   3756     // If the operation is with the result of a phi instruction, check whether
   3757     // operating on all incoming values of the phi always yields the same value.
   3758     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3759       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
   3760         return V;
   3761 
   3762     return nullptr;
   3763   }
   3764 }
   3765 
   3766 /// SimplifyFPBinOp - Given operands for a BinaryOperator, see if we can
   3767 /// fold the result.  If not, this returns null.
   3768 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
   3769 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
   3770 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3771                               const FastMathFlags &FMF, const Query &Q,
   3772                               unsigned MaxRecurse) {
   3773   switch (Opcode) {
   3774   case Instruction::FAdd:
   3775     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
   3776   case Instruction::FSub:
   3777     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
   3778   case Instruction::FMul:
   3779     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
   3780   default:
   3781     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
   3782   }
   3783 }
   3784 
   3785 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3786                            const DataLayout &DL, const TargetLibraryInfo *TLI,
   3787                            const DominatorTree *DT, AssumptionCache *AC,
   3788                            const Instruction *CxtI) {
   3789   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
   3790                          RecursionLimit);
   3791 }
   3792 
   3793 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3794                              const FastMathFlags &FMF, const DataLayout &DL,
   3795                              const TargetLibraryInfo *TLI,
   3796                              const DominatorTree *DT, AssumptionCache *AC,
   3797                              const Instruction *CxtI) {
   3798   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
   3799                            RecursionLimit);
   3800 }
   3801 
   3802 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
   3803 /// fold the result.
   3804 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3805                               const Query &Q, unsigned MaxRecurse) {
   3806   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
   3807     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   3808   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3809 }
   3810 
   3811 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3812                              const DataLayout &DL, const TargetLibraryInfo *TLI,
   3813                              const DominatorTree *DT, AssumptionCache *AC,
   3814                              const Instruction *CxtI) {
   3815   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
   3816                            RecursionLimit);
   3817 }
   3818 
   3819 static bool IsIdempotent(Intrinsic::ID ID) {
   3820   switch (ID) {
   3821   default: return false;
   3822 
   3823   // Unary idempotent: f(f(x)) = f(x)
   3824   case Intrinsic::fabs:
   3825   case Intrinsic::floor:
   3826   case Intrinsic::ceil:
   3827   case Intrinsic::trunc:
   3828   case Intrinsic::rint:
   3829   case Intrinsic::nearbyint:
   3830   case Intrinsic::round:
   3831     return true;
   3832   }
   3833 }
   3834 
   3835 template <typename IterTy>
   3836 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
   3837                                 const Query &Q, unsigned MaxRecurse) {
   3838   Intrinsic::ID IID = F->getIntrinsicID();
   3839   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
   3840   Type *ReturnType = F->getReturnType();
   3841 
   3842   // Binary Ops
   3843   if (NumOperands == 2) {
   3844     Value *LHS = *ArgBegin;
   3845     Value *RHS = *(ArgBegin + 1);
   3846     if (IID == Intrinsic::usub_with_overflow ||
   3847         IID == Intrinsic::ssub_with_overflow) {
   3848       // X - X -> { 0, false }
   3849       if (LHS == RHS)
   3850         return Constant::getNullValue(ReturnType);
   3851 
   3852       // X - undef -> undef
   3853       // undef - X -> undef
   3854       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
   3855         return UndefValue::get(ReturnType);
   3856     }
   3857 
   3858     if (IID == Intrinsic::uadd_with_overflow ||
   3859         IID == Intrinsic::sadd_with_overflow) {
   3860       // X + undef -> undef
   3861       if (isa<UndefValue>(RHS))
   3862         return UndefValue::get(ReturnType);
   3863     }
   3864 
   3865     if (IID == Intrinsic::umul_with_overflow ||
   3866         IID == Intrinsic::smul_with_overflow) {
   3867       // X * 0 -> { 0, false }
   3868       if (match(RHS, m_Zero()))
   3869         return Constant::getNullValue(ReturnType);
   3870 
   3871       // X * undef -> { 0, false }
   3872       if (match(RHS, m_Undef()))
   3873         return Constant::getNullValue(ReturnType);
   3874     }
   3875   }
   3876 
   3877   // Perform idempotent optimizations
   3878   if (!IsIdempotent(IID))
   3879     return nullptr;
   3880 
   3881   // Unary Ops
   3882   if (NumOperands == 1)
   3883     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
   3884       if (II->getIntrinsicID() == IID)
   3885         return II;
   3886 
   3887   return nullptr;
   3888 }
   3889 
   3890 template <typename IterTy>
   3891 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
   3892                            const Query &Q, unsigned MaxRecurse) {
   3893   Type *Ty = V->getType();
   3894   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   3895     Ty = PTy->getElementType();
   3896   FunctionType *FTy = cast<FunctionType>(Ty);
   3897 
   3898   // call undef -> undef
   3899   if (isa<UndefValue>(V))
   3900     return UndefValue::get(FTy->getReturnType());
   3901 
   3902   Function *F = dyn_cast<Function>(V);
   3903   if (!F)
   3904     return nullptr;
   3905 
   3906   if (F->isIntrinsic())
   3907     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
   3908       return Ret;
   3909 
   3910   if (!canConstantFoldCallTo(F))
   3911     return nullptr;
   3912 
   3913   SmallVector<Constant *, 4> ConstantArgs;
   3914   ConstantArgs.reserve(ArgEnd - ArgBegin);
   3915   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
   3916     Constant *C = dyn_cast<Constant>(*I);
   3917     if (!C)
   3918       return nullptr;
   3919     ConstantArgs.push_back(C);
   3920   }
   3921 
   3922   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
   3923 }
   3924 
   3925 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
   3926                           User::op_iterator ArgEnd, const DataLayout &DL,
   3927                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
   3928                           AssumptionCache *AC, const Instruction *CxtI) {
   3929   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
   3930                         RecursionLimit);
   3931 }
   3932 
   3933 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
   3934                           const DataLayout &DL, const TargetLibraryInfo *TLI,
   3935                           const DominatorTree *DT, AssumptionCache *AC,
   3936                           const Instruction *CxtI) {
   3937   return ::SimplifyCall(V, Args.begin(), Args.end(),
   3938                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3939 }
   3940 
   3941 /// SimplifyInstruction - See if we can compute a simplified version of this
   3942 /// instruction.  If not, this returns null.
   3943 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
   3944                                  const TargetLibraryInfo *TLI,
   3945                                  const DominatorTree *DT, AssumptionCache *AC) {
   3946   Value *Result;
   3947 
   3948   switch (I->getOpcode()) {
   3949   default:
   3950     Result = ConstantFoldInstruction(I, DL, TLI);
   3951     break;
   3952   case Instruction::FAdd:
   3953     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
   3954                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   3955     break;
   3956   case Instruction::Add:
   3957     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
   3958                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   3959                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
   3960                              TLI, DT, AC, I);
   3961     break;
   3962   case Instruction::FSub:
   3963     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
   3964                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   3965     break;
   3966   case Instruction::Sub:
   3967     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
   3968                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   3969                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
   3970                              TLI, DT, AC, I);
   3971     break;
   3972   case Instruction::FMul:
   3973     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
   3974                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   3975     break;
   3976   case Instruction::Mul:
   3977     Result =
   3978         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   3979     break;
   3980   case Instruction::SDiv:
   3981     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   3982                               AC, I);
   3983     break;
   3984   case Instruction::UDiv:
   3985     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   3986                               AC, I);
   3987     break;
   3988   case Instruction::FDiv:
   3989     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
   3990                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   3991     break;
   3992   case Instruction::SRem:
   3993     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   3994                               AC, I);
   3995     break;
   3996   case Instruction::URem:
   3997     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   3998                               AC, I);
   3999     break;
   4000   case Instruction::FRem:
   4001     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
   4002                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4003     break;
   4004   case Instruction::Shl:
   4005     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
   4006                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4007                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
   4008                              TLI, DT, AC, I);
   4009     break;
   4010   case Instruction::LShr:
   4011     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
   4012                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
   4013                               AC, I);
   4014     break;
   4015   case Instruction::AShr:
   4016     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
   4017                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
   4018                               AC, I);
   4019     break;
   4020   case Instruction::And:
   4021     Result =
   4022         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4023     break;
   4024   case Instruction::Or:
   4025     Result =
   4026         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4027     break;
   4028   case Instruction::Xor:
   4029     Result =
   4030         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4031     break;
   4032   case Instruction::ICmp:
   4033     Result =
   4034         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
   4035                          I->getOperand(1), DL, TLI, DT, AC, I);
   4036     break;
   4037   case Instruction::FCmp:
   4038     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
   4039                               I->getOperand(0), I->getOperand(1),
   4040                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4041     break;
   4042   case Instruction::Select:
   4043     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
   4044                                 I->getOperand(2), DL, TLI, DT, AC, I);
   4045     break;
   4046   case Instruction::GetElementPtr: {
   4047     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   4048     Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
   4049     break;
   4050   }
   4051   case Instruction::InsertValue: {
   4052     InsertValueInst *IV = cast<InsertValueInst>(I);
   4053     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
   4054                                      IV->getInsertedValueOperand(),
   4055                                      IV->getIndices(), DL, TLI, DT, AC, I);
   4056     break;
   4057   }
   4058   case Instruction::ExtractValue: {
   4059     auto *EVI = cast<ExtractValueInst>(I);
   4060     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
   4061                                       EVI->getIndices(), DL, TLI, DT, AC, I);
   4062     break;
   4063   }
   4064   case Instruction::ExtractElement: {
   4065     auto *EEI = cast<ExtractElementInst>(I);
   4066     Result = SimplifyExtractElementInst(
   4067         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
   4068     break;
   4069   }
   4070   case Instruction::PHI:
   4071     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
   4072     break;
   4073   case Instruction::Call: {
   4074     CallSite CS(cast<CallInst>(I));
   4075     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
   4076                           TLI, DT, AC, I);
   4077     break;
   4078   }
   4079   case Instruction::Trunc:
   4080     Result =
   4081         SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
   4082     break;
   4083   }
   4084 
   4085   // In general, it is possible for computeKnownBits to determine all bits in a
   4086   // value even when the operands are not all constants.
   4087   if (!Result && I->getType()->isIntegerTy()) {
   4088     unsigned BitWidth = I->getType()->getScalarSizeInBits();
   4089     APInt KnownZero(BitWidth, 0);
   4090     APInt KnownOne(BitWidth, 0);
   4091     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
   4092     if ((KnownZero | KnownOne).isAllOnesValue())
   4093       Result = ConstantInt::get(I->getContext(), KnownOne);
   4094   }
   4095 
   4096   /// If called on unreachable code, the above logic may report that the
   4097   /// instruction simplified to itself.  Make life easier for users by
   4098   /// detecting that case here, returning a safe value instead.
   4099   return Result == I ? UndefValue::get(I->getType()) : Result;
   4100 }
   4101 
   4102 /// \brief Implementation of recursive simplification through an instructions
   4103 /// uses.
   4104 ///
   4105 /// This is the common implementation of the recursive simplification routines.
   4106 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
   4107 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
   4108 /// instructions to process and attempt to simplify it using
   4109 /// InstructionSimplify.
   4110 ///
   4111 /// This routine returns 'true' only when *it* simplifies something. The passed
   4112 /// in simplified value does not count toward this.
   4113 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
   4114                                               const TargetLibraryInfo *TLI,
   4115                                               const DominatorTree *DT,
   4116                                               AssumptionCache *AC) {
   4117   bool Simplified = false;
   4118   SmallSetVector<Instruction *, 8> Worklist;
   4119   const DataLayout &DL = I->getModule()->getDataLayout();
   4120 
   4121   // If we have an explicit value to collapse to, do that round of the
   4122   // simplification loop by hand initially.
   4123   if (SimpleV) {
   4124     for (User *U : I->users())
   4125       if (U != I)
   4126         Worklist.insert(cast<Instruction>(U));
   4127 
   4128     // Replace the instruction with its simplified value.
   4129     I->replaceAllUsesWith(SimpleV);
   4130 
   4131     // Gracefully handle edge cases where the instruction is not wired into any
   4132     // parent block.
   4133     if (I->getParent())
   4134       I->eraseFromParent();
   4135   } else {
   4136     Worklist.insert(I);
   4137   }
   4138 
   4139   // Note that we must test the size on each iteration, the worklist can grow.
   4140   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
   4141     I = Worklist[Idx];
   4142 
   4143     // See if this instruction simplifies.
   4144     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
   4145     if (!SimpleV)
   4146       continue;
   4147 
   4148     Simplified = true;
   4149 
   4150     // Stash away all the uses of the old instruction so we can check them for
   4151     // recursive simplifications after a RAUW. This is cheaper than checking all
   4152     // uses of To on the recursive step in most cases.
   4153     for (User *U : I->users())
   4154       Worklist.insert(cast<Instruction>(U));
   4155 
   4156     // Replace the instruction with its simplified value.
   4157     I->replaceAllUsesWith(SimpleV);
   4158 
   4159     // Gracefully handle edge cases where the instruction is not wired into any
   4160     // parent block.
   4161     if (I->getParent())
   4162       I->eraseFromParent();
   4163   }
   4164   return Simplified;
   4165 }
   4166 
   4167 bool llvm::recursivelySimplifyInstruction(Instruction *I,
   4168                                           const TargetLibraryInfo *TLI,
   4169                                           const DominatorTree *DT,
   4170                                           AssumptionCache *AC) {
   4171   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
   4172 }
   4173 
   4174 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
   4175                                          const TargetLibraryInfo *TLI,
   4176                                          const DominatorTree *DT,
   4177                                          AssumptionCache *AC) {
   4178   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   4179   assert(SimpleV && "Must provide a simplified value.");
   4180   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
   4181 }
   4182