Home | History | Annotate | Download | only in x87
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_X87
      6 
      7 #include "src/crankshaft/x87/lithium-codegen-x87.h"
      8 
      9 #include "src/base/bits.h"
     10 #include "src/code-factory.h"
     11 #include "src/code-stubs.h"
     12 #include "src/codegen.h"
     13 #include "src/crankshaft/hydrogen-osr.h"
     14 #include "src/deoptimizer.h"
     15 #include "src/ic/ic.h"
     16 #include "src/ic/stub-cache.h"
     17 #include "src/x87/frames-x87.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 // When invoking builtins, we need to record the safepoint in the middle of
     23 // the invoke instruction sequence generated by the macro assembler.
     24 class SafepointGenerator final : public CallWrapper {
     25  public:
     26   SafepointGenerator(LCodeGen* codegen,
     27                      LPointerMap* pointers,
     28                      Safepoint::DeoptMode mode)
     29       : codegen_(codegen),
     30         pointers_(pointers),
     31         deopt_mode_(mode) {}
     32   virtual ~SafepointGenerator() {}
     33 
     34   void BeforeCall(int call_size) const override {}
     35 
     36   void AfterCall() const override {
     37     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     38   }
     39 
     40  private:
     41   LCodeGen* codegen_;
     42   LPointerMap* pointers_;
     43   Safepoint::DeoptMode deopt_mode_;
     44 };
     45 
     46 
     47 #define __ masm()->
     48 
     49 bool LCodeGen::GenerateCode() {
     50   LPhase phase("Z_Code generation", chunk());
     51   DCHECK(is_unused());
     52   status_ = GENERATING;
     53 
     54   // Open a frame scope to indicate that there is a frame on the stack.  The
     55   // MANUAL indicates that the scope shouldn't actually generate code to set up
     56   // the frame (that is done in GeneratePrologue).
     57   FrameScope frame_scope(masm_, StackFrame::MANUAL);
     58 
     59   return GeneratePrologue() &&
     60       GenerateBody() &&
     61       GenerateDeferredCode() &&
     62       GenerateJumpTable() &&
     63       GenerateSafepointTable();
     64 }
     65 
     66 
     67 void LCodeGen::FinishCode(Handle<Code> code) {
     68   DCHECK(is_done());
     69   code->set_stack_slots(GetTotalFrameSlotCount());
     70   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
     71   PopulateDeoptimizationData(code);
     72   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
     73     Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
     74   }
     75 }
     76 
     77 
     78 #ifdef _MSC_VER
     79 void LCodeGen::MakeSureStackPagesMapped(int offset) {
     80   const int kPageSize = 4 * KB;
     81   for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
     82     __ mov(Operand(esp, offset), eax);
     83   }
     84 }
     85 #endif
     86 
     87 
     88 bool LCodeGen::GeneratePrologue() {
     89   DCHECK(is_generating());
     90 
     91   if (info()->IsOptimizing()) {
     92     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
     93   }
     94 
     95   info()->set_prologue_offset(masm_->pc_offset());
     96   if (NeedsEagerFrame()) {
     97     DCHECK(!frame_is_built_);
     98     frame_is_built_ = true;
     99     if (info()->IsStub()) {
    100       __ StubPrologue(StackFrame::STUB);
    101     } else {
    102       __ Prologue(info()->GeneratePreagedPrologue());
    103     }
    104   }
    105 
    106   // Reserve space for the stack slots needed by the code.
    107   int slots = GetStackSlotCount();
    108   DCHECK(slots != 0 || !info()->IsOptimizing());
    109   if (slots > 0) {
    110     __ sub(Operand(esp), Immediate(slots * kPointerSize));
    111 #ifdef _MSC_VER
    112     MakeSureStackPagesMapped(slots * kPointerSize);
    113 #endif
    114     if (FLAG_debug_code) {
    115       __ push(eax);
    116       __ mov(Operand(eax), Immediate(slots));
    117       Label loop;
    118       __ bind(&loop);
    119       __ mov(MemOperand(esp, eax, times_4, 0), Immediate(kSlotsZapValue));
    120       __ dec(eax);
    121       __ j(not_zero, &loop);
    122       __ pop(eax);
    123     }
    124   }
    125 
    126   // Initailize FPU state.
    127   __ fninit();
    128 
    129   return !is_aborted();
    130 }
    131 
    132 
    133 void LCodeGen::DoPrologue(LPrologue* instr) {
    134   Comment(";;; Prologue begin");
    135 
    136   // Possibly allocate a local context.
    137   if (info_->scope()->num_heap_slots() > 0) {
    138     Comment(";;; Allocate local context");
    139     bool need_write_barrier = true;
    140     // Argument to NewContext is the function, which is still in edi.
    141     int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    142     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
    143     if (info()->scope()->is_script_scope()) {
    144       __ push(edi);
    145       __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
    146       __ CallRuntime(Runtime::kNewScriptContext);
    147       deopt_mode = Safepoint::kLazyDeopt;
    148     } else if (slots <= FastNewContextStub::kMaximumSlots) {
    149       FastNewContextStub stub(isolate(), slots);
    150       __ CallStub(&stub);
    151       // Result of FastNewContextStub is always in new space.
    152       need_write_barrier = false;
    153     } else {
    154       __ push(edi);
    155       __ CallRuntime(Runtime::kNewFunctionContext);
    156     }
    157     RecordSafepoint(deopt_mode);
    158 
    159     // Context is returned in eax.  It replaces the context passed to us.
    160     // It's saved in the stack and kept live in esi.
    161     __ mov(esi, eax);
    162     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
    163 
    164     // Copy parameters into context if necessary.
    165     int num_parameters = scope()->num_parameters();
    166     int first_parameter = scope()->has_this_declaration() ? -1 : 0;
    167     for (int i = first_parameter; i < num_parameters; i++) {
    168       Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
    169       if (var->IsContextSlot()) {
    170         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    171             (num_parameters - 1 - i) * kPointerSize;
    172         // Load parameter from stack.
    173         __ mov(eax, Operand(ebp, parameter_offset));
    174         // Store it in the context.
    175         int context_offset = Context::SlotOffset(var->index());
    176         __ mov(Operand(esi, context_offset), eax);
    177         // Update the write barrier. This clobbers eax and ebx.
    178         if (need_write_barrier) {
    179           __ RecordWriteContextSlot(esi, context_offset, eax, ebx,
    180                                     kDontSaveFPRegs);
    181         } else if (FLAG_debug_code) {
    182           Label done;
    183           __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
    184           __ Abort(kExpectedNewSpaceObject);
    185           __ bind(&done);
    186         }
    187       }
    188     }
    189     Comment(";;; End allocate local context");
    190   }
    191 
    192   Comment(";;; Prologue end");
    193 }
    194 
    195 
    196 void LCodeGen::GenerateOsrPrologue() {
    197   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    198   // are none, at the OSR entrypoint instruction.
    199   if (osr_pc_offset_ >= 0) return;
    200 
    201   osr_pc_offset_ = masm()->pc_offset();
    202 
    203   // Interpreter is the first tier compiler now. It will run the code generated
    204   // by TurboFan compiler which will always put "1" on x87 FPU stack.
    205   // This behavior will affect crankshaft's x87 FPU stack depth check under
    206   // debug mode.
    207   // Need to reset the FPU stack here for this scenario.
    208   __ fninit();
    209 
    210   // Adjust the frame size, subsuming the unoptimized frame into the
    211   // optimized frame.
    212   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    213   DCHECK(slots >= 0);
    214   __ sub(esp, Immediate(slots * kPointerSize));
    215 }
    216 
    217 
    218 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    219   if (instr->IsCall()) {
    220     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    221   }
    222   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    223     safepoints_.BumpLastLazySafepointIndex();
    224   }
    225   FlushX87StackIfNecessary(instr);
    226 }
    227 
    228 
    229 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
    230   // When return from function call, FPU should be initialized again.
    231   if (instr->IsCall() && instr->ClobbersDoubleRegisters(isolate())) {
    232     bool double_result = instr->HasDoubleRegisterResult();
    233     if (double_result) {
    234       __ lea(esp, Operand(esp, -kDoubleSize));
    235       __ fstp_d(Operand(esp, 0));
    236     }
    237     __ fninit();
    238     if (double_result) {
    239       __ fld_d(Operand(esp, 0));
    240       __ lea(esp, Operand(esp, kDoubleSize));
    241     }
    242   }
    243   if (instr->IsGoto()) {
    244     x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr), this);
    245   } else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
    246              !instr->IsGap() && !instr->IsReturn()) {
    247     if (instr->ClobbersDoubleRegisters(isolate())) {
    248       if (instr->HasDoubleRegisterResult()) {
    249         DCHECK_EQ(1, x87_stack_.depth());
    250       } else {
    251         DCHECK_EQ(0, x87_stack_.depth());
    252       }
    253     }
    254     __ VerifyX87StackDepth(x87_stack_.depth());
    255   }
    256 }
    257 
    258 
    259 bool LCodeGen::GenerateJumpTable() {
    260   if (!jump_table_.length()) return !is_aborted();
    261 
    262   Label needs_frame;
    263   Comment(";;; -------------------- Jump table --------------------");
    264 
    265   for (int i = 0; i < jump_table_.length(); i++) {
    266     Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
    267     __ bind(&table_entry->label);
    268     Address entry = table_entry->address;
    269     DeoptComment(table_entry->deopt_info);
    270     if (table_entry->needs_frame) {
    271       DCHECK(!info()->saves_caller_doubles());
    272       __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
    273       __ call(&needs_frame);
    274     } else {
    275       __ call(entry, RelocInfo::RUNTIME_ENTRY);
    276     }
    277   }
    278   if (needs_frame.is_linked()) {
    279     __ bind(&needs_frame);
    280     /* stack layout
    281        3: entry address
    282        2: return address  <-- esp
    283        1: garbage
    284        0: garbage
    285     */
    286     __ push(MemOperand(esp, 0));                 // Copy return address.
    287     __ push(MemOperand(esp, 2 * kPointerSize));  // Copy entry address.
    288 
    289     /* stack layout
    290        4: entry address
    291        3: return address
    292        1: return address
    293        0: entry address  <-- esp
    294     */
    295     __ mov(MemOperand(esp, 3 * kPointerSize), ebp);  // Save ebp.
    296     // Fill ebp with the right stack frame address.
    297     __ lea(ebp, MemOperand(esp, 3 * kPointerSize));
    298 
    299     // This variant of deopt can only be used with stubs. Since we don't
    300     // have a function pointer to install in the stack frame that we're
    301     // building, install a special marker there instead.
    302     DCHECK(info()->IsStub());
    303     __ mov(MemOperand(esp, 2 * kPointerSize),
    304            Immediate(Smi::FromInt(StackFrame::STUB)));
    305 
    306     /* stack layout
    307        3: old ebp
    308        2: stub marker
    309        1: return address
    310        0: entry address  <-- esp
    311     */
    312     __ ret(0);  // Call the continuation without clobbering registers.
    313   }
    314   return !is_aborted();
    315 }
    316 
    317 
    318 bool LCodeGen::GenerateDeferredCode() {
    319   DCHECK(is_generating());
    320   if (deferred_.length() > 0) {
    321     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
    322       LDeferredCode* code = deferred_[i];
    323       X87Stack copy(code->x87_stack());
    324       x87_stack_ = copy;
    325 
    326       HValue* value =
    327           instructions_->at(code->instruction_index())->hydrogen_value();
    328       RecordAndWritePosition(
    329           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    330 
    331       Comment(";;; <@%d,#%d> "
    332               "-------------------- Deferred %s --------------------",
    333               code->instruction_index(),
    334               code->instr()->hydrogen_value()->id(),
    335               code->instr()->Mnemonic());
    336       __ bind(code->entry());
    337       if (NeedsDeferredFrame()) {
    338         Comment(";;; Build frame");
    339         DCHECK(!frame_is_built_);
    340         DCHECK(info()->IsStub());
    341         frame_is_built_ = true;
    342         // Build the frame in such a way that esi isn't trashed.
    343         __ push(ebp);  // Caller's frame pointer.
    344         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
    345         __ lea(ebp, Operand(esp, TypedFrameConstants::kFixedFrameSizeFromFp));
    346         Comment(";;; Deferred code");
    347       }
    348       code->Generate();
    349       if (NeedsDeferredFrame()) {
    350         __ bind(code->done());
    351         Comment(";;; Destroy frame");
    352         DCHECK(frame_is_built_);
    353         frame_is_built_ = false;
    354         __ mov(esp, ebp);
    355         __ pop(ebp);
    356       }
    357       __ jmp(code->exit());
    358     }
    359   }
    360 
    361   // Deferred code is the last part of the instruction sequence. Mark
    362   // the generated code as done unless we bailed out.
    363   if (!is_aborted()) status_ = DONE;
    364   return !is_aborted();
    365 }
    366 
    367 
    368 bool LCodeGen::GenerateSafepointTable() {
    369   DCHECK(is_done());
    370   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
    371     // For lazy deoptimization we need space to patch a call after every call.
    372     // Ensure there is always space for such patching, even if the code ends
    373     // in a call.
    374     int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
    375     while (masm()->pc_offset() < target_offset) {
    376       masm()->nop();
    377     }
    378   }
    379   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
    380   return !is_aborted();
    381 }
    382 
    383 
    384 Register LCodeGen::ToRegister(int code) const {
    385   return Register::from_code(code);
    386 }
    387 
    388 
    389 X87Register LCodeGen::ToX87Register(int code) const {
    390   return X87Register::from_code(code);
    391 }
    392 
    393 
    394 void LCodeGen::X87LoadForUsage(X87Register reg) {
    395   DCHECK(x87_stack_.Contains(reg));
    396   x87_stack_.Fxch(reg);
    397   x87_stack_.pop();
    398 }
    399 
    400 
    401 void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
    402   DCHECK(x87_stack_.Contains(reg1));
    403   DCHECK(x87_stack_.Contains(reg2));
    404   if (reg1.is(reg2) && x87_stack_.depth() == 1) {
    405     __ fld(x87_stack_.st(reg1));
    406     x87_stack_.push(reg1);
    407     x87_stack_.pop();
    408     x87_stack_.pop();
    409   } else {
    410     x87_stack_.Fxch(reg1, 1);
    411     x87_stack_.Fxch(reg2);
    412     x87_stack_.pop();
    413     x87_stack_.pop();
    414   }
    415 }
    416 
    417 
    418 int LCodeGen::X87Stack::GetLayout() {
    419   int layout = stack_depth_;
    420   for (int i = 0; i < stack_depth_; i++) {
    421     layout |= (stack_[stack_depth_ - 1 - i].code() << ((i + 1) * 3));
    422   }
    423 
    424   return layout;
    425 }
    426 
    427 
    428 void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
    429   DCHECK(is_mutable_);
    430   DCHECK(Contains(reg) && stack_depth_ > other_slot);
    431   int i  = ArrayIndex(reg);
    432   int st = st2idx(i);
    433   if (st != other_slot) {
    434     int other_i = st2idx(other_slot);
    435     X87Register other = stack_[other_i];
    436     stack_[other_i]   = reg;
    437     stack_[i]         = other;
    438     if (st == 0) {
    439       __ fxch(other_slot);
    440     } else if (other_slot == 0) {
    441       __ fxch(st);
    442     } else {
    443       __ fxch(st);
    444       __ fxch(other_slot);
    445       __ fxch(st);
    446     }
    447   }
    448 }
    449 
    450 
    451 int LCodeGen::X87Stack::st2idx(int pos) {
    452   return stack_depth_ - pos - 1;
    453 }
    454 
    455 
    456 int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
    457   for (int i = 0; i < stack_depth_; i++) {
    458     if (stack_[i].is(reg)) return i;
    459   }
    460   UNREACHABLE();
    461   return -1;
    462 }
    463 
    464 
    465 bool LCodeGen::X87Stack::Contains(X87Register reg) {
    466   for (int i = 0; i < stack_depth_; i++) {
    467     if (stack_[i].is(reg)) return true;
    468   }
    469   return false;
    470 }
    471 
    472 
    473 void LCodeGen::X87Stack::Free(X87Register reg) {
    474   DCHECK(is_mutable_);
    475   DCHECK(Contains(reg));
    476   int i  = ArrayIndex(reg);
    477   int st = st2idx(i);
    478   if (st > 0) {
    479     // keep track of how fstp(i) changes the order of elements
    480     int tos_i = st2idx(0);
    481     stack_[i] = stack_[tos_i];
    482   }
    483   pop();
    484   __ fstp(st);
    485 }
    486 
    487 
    488 void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
    489   if (x87_stack_.Contains(dst)) {
    490     x87_stack_.Fxch(dst);
    491     __ fstp(0);
    492   } else {
    493     x87_stack_.push(dst);
    494   }
    495   X87Fld(src, opts);
    496 }
    497 
    498 
    499 void LCodeGen::X87Mov(X87Register dst, X87Register src, X87OperandType opts) {
    500   if (x87_stack_.Contains(dst)) {
    501     x87_stack_.Fxch(dst);
    502     __ fstp(0);
    503     x87_stack_.pop();
    504     // Push ST(i) onto the FPU register stack
    505     __ fld(x87_stack_.st(src));
    506     x87_stack_.push(dst);
    507   } else {
    508     // Push ST(i) onto the FPU register stack
    509     __ fld(x87_stack_.st(src));
    510     x87_stack_.push(dst);
    511   }
    512 }
    513 
    514 
    515 void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
    516   DCHECK(!src.is_reg_only());
    517   switch (opts) {
    518     case kX87DoubleOperand:
    519       __ fld_d(src);
    520       break;
    521     case kX87FloatOperand:
    522       __ fld_s(src);
    523       break;
    524     case kX87IntOperand:
    525       __ fild_s(src);
    526       break;
    527     default:
    528       UNREACHABLE();
    529   }
    530 }
    531 
    532 
    533 void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
    534   DCHECK(!dst.is_reg_only());
    535   x87_stack_.Fxch(src);
    536   switch (opts) {
    537     case kX87DoubleOperand:
    538       __ fst_d(dst);
    539       break;
    540     case kX87FloatOperand:
    541       __ fst_s(dst);
    542       break;
    543     case kX87IntOperand:
    544       __ fist_s(dst);
    545       break;
    546     default:
    547       UNREACHABLE();
    548   }
    549 }
    550 
    551 
    552 void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
    553   DCHECK(is_mutable_);
    554   if (Contains(reg)) {
    555     Free(reg);
    556   }
    557   // Mark this register as the next register to write to
    558   stack_[stack_depth_] = reg;
    559 }
    560 
    561 
    562 void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
    563   DCHECK(is_mutable_);
    564   // Assert the reg is prepared to write, but not on the virtual stack yet
    565   DCHECK(!Contains(reg) && stack_[stack_depth_].is(reg) &&
    566          stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
    567   stack_depth_++;
    568 }
    569 
    570 
    571 void LCodeGen::X87PrepareBinaryOp(
    572     X87Register left, X87Register right, X87Register result) {
    573   // You need to use DefineSameAsFirst for x87 instructions
    574   DCHECK(result.is(left));
    575   x87_stack_.Fxch(right, 1);
    576   x87_stack_.Fxch(left);
    577 }
    578 
    579 
    580 void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
    581   if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
    582     bool double_inputs = instr->HasDoubleRegisterInput();
    583 
    584     // Flush stack from tos down, since FreeX87() will mess with tos
    585     for (int i = stack_depth_-1; i >= 0; i--) {
    586       X87Register reg = stack_[i];
    587       // Skip registers which contain the inputs for the next instruction
    588       // when flushing the stack
    589       if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
    590         continue;
    591       }
    592       Free(reg);
    593       if (i < stack_depth_-1) i++;
    594     }
    595   }
    596   if (instr->IsReturn()) {
    597     while (stack_depth_ > 0) {
    598       __ fstp(0);
    599       stack_depth_--;
    600     }
    601     if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
    602   }
    603 }
    604 
    605 
    606 void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr,
    607                                       LCodeGen* cgen) {
    608   // For going to a joined block, an explicit LClobberDoubles is inserted before
    609   // LGoto. Because all used x87 registers are spilled to stack slots. The
    610   // ResolvePhis phase of register allocator could guarantee the two input's x87
    611   // stacks have the same layout. So don't check stack_depth_ <= 1 here.
    612   int goto_block_id = goto_instr->block_id();
    613   if (current_block_id + 1 != goto_block_id) {
    614     // If we have a value on the x87 stack on leaving a block, it must be a
    615     // phi input. If the next block we compile is not the join block, we have
    616     // to discard the stack state.
    617     // Before discarding the stack state, we need to save it if the "goto block"
    618     // has unreachable last predecessor when FLAG_unreachable_code_elimination.
    619     if (FLAG_unreachable_code_elimination) {
    620       int length = goto_instr->block()->predecessors()->length();
    621       bool has_unreachable_last_predecessor = false;
    622       for (int i = 0; i < length; i++) {
    623         HBasicBlock* block = goto_instr->block()->predecessors()->at(i);
    624         if (block->IsUnreachable() &&
    625             (block->block_id() + 1) == goto_block_id) {
    626           has_unreachable_last_predecessor = true;
    627         }
    628       }
    629       if (has_unreachable_last_predecessor) {
    630         if (cgen->x87_stack_map_.find(goto_block_id) ==
    631             cgen->x87_stack_map_.end()) {
    632           X87Stack* stack = new (cgen->zone()) X87Stack(*this);
    633           cgen->x87_stack_map_.insert(std::make_pair(goto_block_id, stack));
    634         }
    635       }
    636     }
    637 
    638     // Discard the stack state.
    639     stack_depth_ = 0;
    640   }
    641 }
    642 
    643 
    644 void LCodeGen::EmitFlushX87ForDeopt() {
    645   // The deoptimizer does not support X87 Registers. But as long as we
    646   // deopt from a stub its not a problem, since we will re-materialize the
    647   // original stub inputs, which can't be double registers.
    648   // DCHECK(info()->IsStub());
    649   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
    650     __ pushfd();
    651     __ VerifyX87StackDepth(x87_stack_.depth());
    652     __ popfd();
    653   }
    654 
    655   // Flush X87 stack in the deoptimizer entry.
    656 }
    657 
    658 
    659 Register LCodeGen::ToRegister(LOperand* op) const {
    660   DCHECK(op->IsRegister());
    661   return ToRegister(op->index());
    662 }
    663 
    664 
    665 X87Register LCodeGen::ToX87Register(LOperand* op) const {
    666   DCHECK(op->IsDoubleRegister());
    667   return ToX87Register(op->index());
    668 }
    669 
    670 
    671 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
    672   return ToRepresentation(op, Representation::Integer32());
    673 }
    674 
    675 
    676 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
    677                                    const Representation& r) const {
    678   HConstant* constant = chunk_->LookupConstant(op);
    679   if (r.IsExternal()) {
    680     return reinterpret_cast<int32_t>(
    681         constant->ExternalReferenceValue().address());
    682   }
    683   int32_t value = constant->Integer32Value();
    684   if (r.IsInteger32()) return value;
    685   DCHECK(r.IsSmiOrTagged());
    686   return reinterpret_cast<int32_t>(Smi::FromInt(value));
    687 }
    688 
    689 
    690 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
    691   HConstant* constant = chunk_->LookupConstant(op);
    692   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
    693   return constant->handle(isolate());
    694 }
    695 
    696 
    697 double LCodeGen::ToDouble(LConstantOperand* op) const {
    698   HConstant* constant = chunk_->LookupConstant(op);
    699   DCHECK(constant->HasDoubleValue());
    700   return constant->DoubleValue();
    701 }
    702 
    703 
    704 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
    705   HConstant* constant = chunk_->LookupConstant(op);
    706   DCHECK(constant->HasExternalReferenceValue());
    707   return constant->ExternalReferenceValue();
    708 }
    709 
    710 
    711 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
    712   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
    713 }
    714 
    715 
    716 bool LCodeGen::IsSmi(LConstantOperand* op) const {
    717   return chunk_->LookupLiteralRepresentation(op).IsSmi();
    718 }
    719 
    720 
    721 static int ArgumentsOffsetWithoutFrame(int index) {
    722   DCHECK(index < 0);
    723   return -(index + 1) * kPointerSize + kPCOnStackSize;
    724 }
    725 
    726 
    727 Operand LCodeGen::ToOperand(LOperand* op) const {
    728   if (op->IsRegister()) return Operand(ToRegister(op));
    729   DCHECK(!op->IsDoubleRegister());
    730   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
    731   if (NeedsEagerFrame()) {
    732     return Operand(ebp, FrameSlotToFPOffset(op->index()));
    733   } else {
    734     // Retrieve parameter without eager stack-frame relative to the
    735     // stack-pointer.
    736     return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
    737   }
    738 }
    739 
    740 
    741 Operand LCodeGen::HighOperand(LOperand* op) {
    742   DCHECK(op->IsDoubleStackSlot());
    743   if (NeedsEagerFrame()) {
    744     return Operand(ebp, FrameSlotToFPOffset(op->index()) + kPointerSize);
    745   } else {
    746     // Retrieve parameter without eager stack-frame relative to the
    747     // stack-pointer.
    748     return Operand(
    749         esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
    750   }
    751 }
    752 
    753 
    754 void LCodeGen::WriteTranslation(LEnvironment* environment,
    755                                 Translation* translation) {
    756   if (environment == NULL) return;
    757 
    758   // The translation includes one command per value in the environment.
    759   int translation_size = environment->translation_size();
    760 
    761   WriteTranslation(environment->outer(), translation);
    762   WriteTranslationFrame(environment, translation);
    763 
    764   int object_index = 0;
    765   int dematerialized_index = 0;
    766   for (int i = 0; i < translation_size; ++i) {
    767     LOperand* value = environment->values()->at(i);
    768     AddToTranslation(environment,
    769                      translation,
    770                      value,
    771                      environment->HasTaggedValueAt(i),
    772                      environment->HasUint32ValueAt(i),
    773                      &object_index,
    774                      &dematerialized_index);
    775   }
    776 }
    777 
    778 
    779 void LCodeGen::AddToTranslation(LEnvironment* environment,
    780                                 Translation* translation,
    781                                 LOperand* op,
    782                                 bool is_tagged,
    783                                 bool is_uint32,
    784                                 int* object_index_pointer,
    785                                 int* dematerialized_index_pointer) {
    786   if (op == LEnvironment::materialization_marker()) {
    787     int object_index = (*object_index_pointer)++;
    788     if (environment->ObjectIsDuplicateAt(object_index)) {
    789       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    790       translation->DuplicateObject(dupe_of);
    791       return;
    792     }
    793     int object_length = environment->ObjectLengthAt(object_index);
    794     if (environment->ObjectIsArgumentsAt(object_index)) {
    795       translation->BeginArgumentsObject(object_length);
    796     } else {
    797       translation->BeginCapturedObject(object_length);
    798     }
    799     int dematerialized_index = *dematerialized_index_pointer;
    800     int env_offset = environment->translation_size() + dematerialized_index;
    801     *dematerialized_index_pointer += object_length;
    802     for (int i = 0; i < object_length; ++i) {
    803       LOperand* value = environment->values()->at(env_offset + i);
    804       AddToTranslation(environment,
    805                        translation,
    806                        value,
    807                        environment->HasTaggedValueAt(env_offset + i),
    808                        environment->HasUint32ValueAt(env_offset + i),
    809                        object_index_pointer,
    810                        dematerialized_index_pointer);
    811     }
    812     return;
    813   }
    814 
    815   if (op->IsStackSlot()) {
    816     int index = op->index();
    817     if (is_tagged) {
    818       translation->StoreStackSlot(index);
    819     } else if (is_uint32) {
    820       translation->StoreUint32StackSlot(index);
    821     } else {
    822       translation->StoreInt32StackSlot(index);
    823     }
    824   } else if (op->IsDoubleStackSlot()) {
    825     int index = op->index();
    826     translation->StoreDoubleStackSlot(index);
    827   } else if (op->IsRegister()) {
    828     Register reg = ToRegister(op);
    829     if (is_tagged) {
    830       translation->StoreRegister(reg);
    831     } else if (is_uint32) {
    832       translation->StoreUint32Register(reg);
    833     } else {
    834       translation->StoreInt32Register(reg);
    835     }
    836   } else if (op->IsDoubleRegister()) {
    837     X87Register reg = ToX87Register(op);
    838     translation->StoreDoubleRegister(reg);
    839   } else if (op->IsConstantOperand()) {
    840     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    841     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    842     translation->StoreLiteral(src_index);
    843   } else {
    844     UNREACHABLE();
    845   }
    846 }
    847 
    848 
    849 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    850                                RelocInfo::Mode mode,
    851                                LInstruction* instr,
    852                                SafepointMode safepoint_mode) {
    853   DCHECK(instr != NULL);
    854   __ call(code, mode);
    855   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    856 
    857   // Signal that we don't inline smi code before these stubs in the
    858   // optimizing code generator.
    859   if (code->kind() == Code::BINARY_OP_IC ||
    860       code->kind() == Code::COMPARE_IC) {
    861     __ nop();
    862   }
    863 }
    864 
    865 
    866 void LCodeGen::CallCode(Handle<Code> code,
    867                         RelocInfo::Mode mode,
    868                         LInstruction* instr) {
    869   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
    870 }
    871 
    872 
    873 void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc,
    874                            LInstruction* instr, SaveFPRegsMode save_doubles) {
    875   DCHECK(instr != NULL);
    876   DCHECK(instr->HasPointerMap());
    877 
    878   __ CallRuntime(fun, argc, save_doubles);
    879 
    880   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    881 
    882   DCHECK(info()->is_calling());
    883 }
    884 
    885 
    886 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    887   if (context->IsRegister()) {
    888     if (!ToRegister(context).is(esi)) {
    889       __ mov(esi, ToRegister(context));
    890     }
    891   } else if (context->IsStackSlot()) {
    892     __ mov(esi, ToOperand(context));
    893   } else if (context->IsConstantOperand()) {
    894     HConstant* constant =
    895         chunk_->LookupConstant(LConstantOperand::cast(context));
    896     __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
    897   } else {
    898     UNREACHABLE();
    899   }
    900 }
    901 
    902 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    903                                        int argc,
    904                                        LInstruction* instr,
    905                                        LOperand* context) {
    906   LoadContextFromDeferred(context);
    907 
    908   __ CallRuntimeSaveDoubles(id);
    909   RecordSafepointWithRegisters(
    910       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    911 
    912   DCHECK(info()->is_calling());
    913 }
    914 
    915 
    916 void LCodeGen::RegisterEnvironmentForDeoptimization(
    917     LEnvironment* environment, Safepoint::DeoptMode mode) {
    918   environment->set_has_been_used();
    919   if (!environment->HasBeenRegistered()) {
    920     // Physical stack frame layout:
    921     // -x ............. -4  0 ..................................... y
    922     // [incoming arguments] [spill slots] [pushed outgoing arguments]
    923 
    924     // Layout of the environment:
    925     // 0 ..................................................... size-1
    926     // [parameters] [locals] [expression stack including arguments]
    927 
    928     // Layout of the translation:
    929     // 0 ........................................................ size - 1 + 4
    930     // [expression stack including arguments] [locals] [4 words] [parameters]
    931     // |>------------  translation_size ------------<|
    932 
    933     int frame_count = 0;
    934     int jsframe_count = 0;
    935     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    936       ++frame_count;
    937       if (e->frame_type() == JS_FUNCTION) {
    938         ++jsframe_count;
    939       }
    940     }
    941     Translation translation(&translations_, frame_count, jsframe_count, zone());
    942     WriteTranslation(environment, &translation);
    943     int deoptimization_index = deoptimizations_.length();
    944     int pc_offset = masm()->pc_offset();
    945     environment->Register(deoptimization_index,
    946                           translation.index(),
    947                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    948     deoptimizations_.Add(environment, zone());
    949   }
    950 }
    951 
    952 
    953 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
    954                             Deoptimizer::DeoptReason deopt_reason,
    955                             Deoptimizer::BailoutType bailout_type) {
    956   LEnvironment* environment = instr->environment();
    957   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
    958   DCHECK(environment->HasBeenRegistered());
    959   int id = environment->deoptimization_index();
    960   Address entry =
    961       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
    962   if (entry == NULL) {
    963     Abort(kBailoutWasNotPrepared);
    964     return;
    965   }
    966 
    967   if (DeoptEveryNTimes()) {
    968     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    969     Label no_deopt;
    970     __ pushfd();
    971     __ push(eax);
    972     __ mov(eax, Operand::StaticVariable(count));
    973     __ sub(eax, Immediate(1));
    974     __ j(not_zero, &no_deopt, Label::kNear);
    975     if (FLAG_trap_on_deopt) __ int3();
    976     __ mov(eax, Immediate(FLAG_deopt_every_n_times));
    977     __ mov(Operand::StaticVariable(count), eax);
    978     __ pop(eax);
    979     __ popfd();
    980     DCHECK(frame_is_built_);
    981     // Put the x87 stack layout in TOS.
    982     if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
    983     __ push(Immediate(x87_stack_.GetLayout()));
    984     __ fild_s(MemOperand(esp, 0));
    985     // Don't touch eflags.
    986     __ lea(esp, Operand(esp, kPointerSize));
    987     __ call(entry, RelocInfo::RUNTIME_ENTRY);
    988     __ bind(&no_deopt);
    989     __ mov(Operand::StaticVariable(count), eax);
    990     __ pop(eax);
    991     __ popfd();
    992   }
    993 
    994   // Put the x87 stack layout in TOS, so that we can save x87 fp registers in
    995   // the correct location.
    996   {
    997     Label done;
    998     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
    999     if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
   1000 
   1001     int x87_stack_layout = x87_stack_.GetLayout();
   1002     __ push(Immediate(x87_stack_layout));
   1003     __ fild_s(MemOperand(esp, 0));
   1004     // Don't touch eflags.
   1005     __ lea(esp, Operand(esp, kPointerSize));
   1006     __ bind(&done);
   1007   }
   1008 
   1009   if (info()->ShouldTrapOnDeopt()) {
   1010     Label done;
   1011     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
   1012     __ int3();
   1013     __ bind(&done);
   1014   }
   1015 
   1016   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
   1017 
   1018   DCHECK(info()->IsStub() || frame_is_built_);
   1019   if (cc == no_condition && frame_is_built_) {
   1020     DeoptComment(deopt_info);
   1021     __ call(entry, RelocInfo::RUNTIME_ENTRY);
   1022   } else {
   1023     Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
   1024                                             !frame_is_built_);
   1025     // We often have several deopts to the same entry, reuse the last
   1026     // jump entry if this is the case.
   1027     if (FLAG_trace_deopt || isolate()->is_profiling() ||
   1028         jump_table_.is_empty() ||
   1029         !table_entry.IsEquivalentTo(jump_table_.last())) {
   1030       jump_table_.Add(table_entry, zone());
   1031     }
   1032     if (cc == no_condition) {
   1033       __ jmp(&jump_table_.last().label);
   1034     } else {
   1035       __ j(cc, &jump_table_.last().label);
   1036     }
   1037   }
   1038 }
   1039 
   1040 
   1041 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
   1042                             Deoptimizer::DeoptReason deopt_reason) {
   1043   Deoptimizer::BailoutType bailout_type = info()->IsStub()
   1044       ? Deoptimizer::LAZY
   1045       : Deoptimizer::EAGER;
   1046   DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
   1047 }
   1048 
   1049 
   1050 void LCodeGen::RecordSafepointWithLazyDeopt(
   1051     LInstruction* instr, SafepointMode safepoint_mode) {
   1052   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
   1053     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
   1054   } else {
   1055     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   1056     RecordSafepointWithRegisters(
   1057         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
   1058   }
   1059 }
   1060 
   1061 
   1062 void LCodeGen::RecordSafepoint(
   1063     LPointerMap* pointers,
   1064     Safepoint::Kind kind,
   1065     int arguments,
   1066     Safepoint::DeoptMode deopt_mode) {
   1067   DCHECK(kind == expected_safepoint_kind_);
   1068   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
   1069   Safepoint safepoint =
   1070       safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
   1071   for (int i = 0; i < operands->length(); i++) {
   1072     LOperand* pointer = operands->at(i);
   1073     if (pointer->IsStackSlot()) {
   1074       safepoint.DefinePointerSlot(pointer->index(), zone());
   1075     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
   1076       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
   1077     }
   1078   }
   1079 }
   1080 
   1081 
   1082 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
   1083                                Safepoint::DeoptMode mode) {
   1084   RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
   1085 }
   1086 
   1087 
   1088 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
   1089   LPointerMap empty_pointers(zone());
   1090   RecordSafepoint(&empty_pointers, mode);
   1091 }
   1092 
   1093 
   1094 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
   1095                                             int arguments,
   1096                                             Safepoint::DeoptMode mode) {
   1097   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
   1098 }
   1099 
   1100 
   1101 void LCodeGen::RecordAndWritePosition(int position) {
   1102   if (position == RelocInfo::kNoPosition) return;
   1103   masm()->positions_recorder()->RecordPosition(position);
   1104 }
   1105 
   1106 
   1107 static const char* LabelType(LLabel* label) {
   1108   if (label->is_loop_header()) return " (loop header)";
   1109   if (label->is_osr_entry()) return " (OSR entry)";
   1110   return "";
   1111 }
   1112 
   1113 
   1114 void LCodeGen::DoLabel(LLabel* label) {
   1115   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
   1116           current_instruction_,
   1117           label->hydrogen_value()->id(),
   1118           label->block_id(),
   1119           LabelType(label));
   1120   __ bind(label->label());
   1121   current_block_ = label->block_id();
   1122   if (label->block()->predecessors()->length() > 1) {
   1123     // A join block's x87 stack is that of its last visited predecessor.
   1124     // If the last visited predecessor block is unreachable, the stack state
   1125     // will be wrong. In such case, use the x87 stack of reachable predecessor.
   1126     X87StackMap::const_iterator it = x87_stack_map_.find(current_block_);
   1127     // Restore x87 stack.
   1128     if (it != x87_stack_map_.end()) {
   1129       x87_stack_ = *(it->second);
   1130     }
   1131   }
   1132   DoGap(label);
   1133 }
   1134 
   1135 
   1136 void LCodeGen::DoParallelMove(LParallelMove* move) {
   1137   resolver_.Resolve(move);
   1138 }
   1139 
   1140 
   1141 void LCodeGen::DoGap(LGap* gap) {
   1142   for (int i = LGap::FIRST_INNER_POSITION;
   1143        i <= LGap::LAST_INNER_POSITION;
   1144        i++) {
   1145     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1146     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1147     if (move != NULL) DoParallelMove(move);
   1148   }
   1149 }
   1150 
   1151 
   1152 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   1153   DoGap(instr);
   1154 }
   1155 
   1156 
   1157 void LCodeGen::DoParameter(LParameter* instr) {
   1158   // Nothing to do.
   1159 }
   1160 
   1161 
   1162 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   1163   GenerateOsrPrologue();
   1164 }
   1165 
   1166 
   1167 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   1168   Register dividend = ToRegister(instr->dividend());
   1169   int32_t divisor = instr->divisor();
   1170   DCHECK(dividend.is(ToRegister(instr->result())));
   1171 
   1172   // Theoretically, a variation of the branch-free code for integer division by
   1173   // a power of 2 (calculating the remainder via an additional multiplication
   1174   // (which gets simplified to an 'and') and subtraction) should be faster, and
   1175   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   1176   // indicate that positive dividends are heavily favored, so the branching
   1177   // version performs better.
   1178   HMod* hmod = instr->hydrogen();
   1179   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1180   Label dividend_is_not_negative, done;
   1181   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   1182     __ test(dividend, dividend);
   1183     __ j(not_sign, &dividend_is_not_negative, Label::kNear);
   1184     // Note that this is correct even for kMinInt operands.
   1185     __ neg(dividend);
   1186     __ and_(dividend, mask);
   1187     __ neg(dividend);
   1188     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1189       DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1190     }
   1191     __ jmp(&done, Label::kNear);
   1192   }
   1193 
   1194   __ bind(&dividend_is_not_negative);
   1195   __ and_(dividend, mask);
   1196   __ bind(&done);
   1197 }
   1198 
   1199 
   1200 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   1201   Register dividend = ToRegister(instr->dividend());
   1202   int32_t divisor = instr->divisor();
   1203   DCHECK(ToRegister(instr->result()).is(eax));
   1204 
   1205   if (divisor == 0) {
   1206     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
   1207     return;
   1208   }
   1209 
   1210   __ TruncatingDiv(dividend, Abs(divisor));
   1211   __ imul(edx, edx, Abs(divisor));
   1212   __ mov(eax, dividend);
   1213   __ sub(eax, edx);
   1214 
   1215   // Check for negative zero.
   1216   HMod* hmod = instr->hydrogen();
   1217   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1218     Label remainder_not_zero;
   1219     __ j(not_zero, &remainder_not_zero, Label::kNear);
   1220     __ cmp(dividend, Immediate(0));
   1221     DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
   1222     __ bind(&remainder_not_zero);
   1223   }
   1224 }
   1225 
   1226 
   1227 void LCodeGen::DoModI(LModI* instr) {
   1228   HMod* hmod = instr->hydrogen();
   1229 
   1230   Register left_reg = ToRegister(instr->left());
   1231   DCHECK(left_reg.is(eax));
   1232   Register right_reg = ToRegister(instr->right());
   1233   DCHECK(!right_reg.is(eax));
   1234   DCHECK(!right_reg.is(edx));
   1235   Register result_reg = ToRegister(instr->result());
   1236   DCHECK(result_reg.is(edx));
   1237 
   1238   Label done;
   1239   // Check for x % 0, idiv would signal a divide error. We have to
   1240   // deopt in this case because we can't return a NaN.
   1241   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
   1242     __ test(right_reg, Operand(right_reg));
   1243     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
   1244   }
   1245 
   1246   // Check for kMinInt % -1, idiv would signal a divide error. We
   1247   // have to deopt if we care about -0, because we can't return that.
   1248   if (hmod->CheckFlag(HValue::kCanOverflow)) {
   1249     Label no_overflow_possible;
   1250     __ cmp(left_reg, kMinInt);
   1251     __ j(not_equal, &no_overflow_possible, Label::kNear);
   1252     __ cmp(right_reg, -1);
   1253     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1254       DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
   1255     } else {
   1256       __ j(not_equal, &no_overflow_possible, Label::kNear);
   1257       __ Move(result_reg, Immediate(0));
   1258       __ jmp(&done, Label::kNear);
   1259     }
   1260     __ bind(&no_overflow_possible);
   1261   }
   1262 
   1263   // Sign extend dividend in eax into edx:eax.
   1264   __ cdq();
   1265 
   1266   // If we care about -0, test if the dividend is <0 and the result is 0.
   1267   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1268     Label positive_left;
   1269     __ test(left_reg, Operand(left_reg));
   1270     __ j(not_sign, &positive_left, Label::kNear);
   1271     __ idiv(right_reg);
   1272     __ test(result_reg, Operand(result_reg));
   1273     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1274     __ jmp(&done, Label::kNear);
   1275     __ bind(&positive_left);
   1276   }
   1277   __ idiv(right_reg);
   1278   __ bind(&done);
   1279 }
   1280 
   1281 
   1282 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   1283   Register dividend = ToRegister(instr->dividend());
   1284   int32_t divisor = instr->divisor();
   1285   Register result = ToRegister(instr->result());
   1286   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
   1287   DCHECK(!result.is(dividend));
   1288 
   1289   // Check for (0 / -x) that will produce negative zero.
   1290   HDiv* hdiv = instr->hydrogen();
   1291   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1292     __ test(dividend, dividend);
   1293     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1294   }
   1295   // Check for (kMinInt / -1).
   1296   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   1297     __ cmp(dividend, kMinInt);
   1298     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
   1299   }
   1300   // Deoptimize if remainder will not be 0.
   1301   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   1302       divisor != 1 && divisor != -1) {
   1303     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1304     __ test(dividend, Immediate(mask));
   1305     DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
   1306   }
   1307   __ Move(result, dividend);
   1308   int32_t shift = WhichPowerOf2Abs(divisor);
   1309   if (shift > 0) {
   1310     // The arithmetic shift is always OK, the 'if' is an optimization only.
   1311     if (shift > 1) __ sar(result, 31);
   1312     __ shr(result, 32 - shift);
   1313     __ add(result, dividend);
   1314     __ sar(result, shift);
   1315   }
   1316   if (divisor < 0) __ neg(result);
   1317 }
   1318 
   1319 
   1320 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   1321   Register dividend = ToRegister(instr->dividend());
   1322   int32_t divisor = instr->divisor();
   1323   DCHECK(ToRegister(instr->result()).is(edx));
   1324 
   1325   if (divisor == 0) {
   1326     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
   1327     return;
   1328   }
   1329 
   1330   // Check for (0 / -x) that will produce negative zero.
   1331   HDiv* hdiv = instr->hydrogen();
   1332   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1333     __ test(dividend, dividend);
   1334     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1335   }
   1336 
   1337   __ TruncatingDiv(dividend, Abs(divisor));
   1338   if (divisor < 0) __ neg(edx);
   1339 
   1340   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   1341     __ mov(eax, edx);
   1342     __ imul(eax, eax, divisor);
   1343     __ sub(eax, dividend);
   1344     DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
   1345   }
   1346 }
   1347 
   1348 
   1349 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   1350 void LCodeGen::DoDivI(LDivI* instr) {
   1351   HBinaryOperation* hdiv = instr->hydrogen();
   1352   Register dividend = ToRegister(instr->dividend());
   1353   Register divisor = ToRegister(instr->divisor());
   1354   Register remainder = ToRegister(instr->temp());
   1355   DCHECK(dividend.is(eax));
   1356   DCHECK(remainder.is(edx));
   1357   DCHECK(ToRegister(instr->result()).is(eax));
   1358   DCHECK(!divisor.is(eax));
   1359   DCHECK(!divisor.is(edx));
   1360 
   1361   // Check for x / 0.
   1362   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1363     __ test(divisor, divisor);
   1364     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
   1365   }
   1366 
   1367   // Check for (0 / -x) that will produce negative zero.
   1368   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1369     Label dividend_not_zero;
   1370     __ test(dividend, dividend);
   1371     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1372     __ test(divisor, divisor);
   1373     DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1374     __ bind(&dividend_not_zero);
   1375   }
   1376 
   1377   // Check for (kMinInt / -1).
   1378   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1379     Label dividend_not_min_int;
   1380     __ cmp(dividend, kMinInt);
   1381     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1382     __ cmp(divisor, -1);
   1383     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
   1384     __ bind(&dividend_not_min_int);
   1385   }
   1386 
   1387   // Sign extend to edx (= remainder).
   1388   __ cdq();
   1389   __ idiv(divisor);
   1390 
   1391   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1392     // Deoptimize if remainder is not 0.
   1393     __ test(remainder, remainder);
   1394     DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
   1395   }
   1396 }
   1397 
   1398 
   1399 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   1400   Register dividend = ToRegister(instr->dividend());
   1401   int32_t divisor = instr->divisor();
   1402   DCHECK(dividend.is(ToRegister(instr->result())));
   1403 
   1404   // If the divisor is positive, things are easy: There can be no deopts and we
   1405   // can simply do an arithmetic right shift.
   1406   if (divisor == 1) return;
   1407   int32_t shift = WhichPowerOf2Abs(divisor);
   1408   if (divisor > 1) {
   1409     __ sar(dividend, shift);
   1410     return;
   1411   }
   1412 
   1413   // If the divisor is negative, we have to negate and handle edge cases.
   1414   __ neg(dividend);
   1415   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1416     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1417   }
   1418 
   1419   // Dividing by -1 is basically negation, unless we overflow.
   1420   if (divisor == -1) {
   1421     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1422       DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1423     }
   1424     return;
   1425   }
   1426 
   1427   // If the negation could not overflow, simply shifting is OK.
   1428   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1429     __ sar(dividend, shift);
   1430     return;
   1431   }
   1432 
   1433   Label not_kmin_int, done;
   1434   __ j(no_overflow, &not_kmin_int, Label::kNear);
   1435   __ mov(dividend, Immediate(kMinInt / divisor));
   1436   __ jmp(&done, Label::kNear);
   1437   __ bind(&not_kmin_int);
   1438   __ sar(dividend, shift);
   1439   __ bind(&done);
   1440 }
   1441 
   1442 
   1443 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   1444   Register dividend = ToRegister(instr->dividend());
   1445   int32_t divisor = instr->divisor();
   1446   DCHECK(ToRegister(instr->result()).is(edx));
   1447 
   1448   if (divisor == 0) {
   1449     DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
   1450     return;
   1451   }
   1452 
   1453   // Check for (0 / -x) that will produce negative zero.
   1454   HMathFloorOfDiv* hdiv = instr->hydrogen();
   1455   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1456     __ test(dividend, dividend);
   1457     DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
   1458   }
   1459 
   1460   // Easy case: We need no dynamic check for the dividend and the flooring
   1461   // division is the same as the truncating division.
   1462   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   1463       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   1464     __ TruncatingDiv(dividend, Abs(divisor));
   1465     if (divisor < 0) __ neg(edx);
   1466     return;
   1467   }
   1468 
   1469   // In the general case we may need to adjust before and after the truncating
   1470   // division to get a flooring division.
   1471   Register temp = ToRegister(instr->temp3());
   1472   DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
   1473   Label needs_adjustment, done;
   1474   __ cmp(dividend, Immediate(0));
   1475   __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
   1476   __ TruncatingDiv(dividend, Abs(divisor));
   1477   if (divisor < 0) __ neg(edx);
   1478   __ jmp(&done, Label::kNear);
   1479   __ bind(&needs_adjustment);
   1480   __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
   1481   __ TruncatingDiv(temp, Abs(divisor));
   1482   if (divisor < 0) __ neg(edx);
   1483   __ dec(edx);
   1484   __ bind(&done);
   1485 }
   1486 
   1487 
   1488 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   1489 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   1490   HBinaryOperation* hdiv = instr->hydrogen();
   1491   Register dividend = ToRegister(instr->dividend());
   1492   Register divisor = ToRegister(instr->divisor());
   1493   Register remainder = ToRegister(instr->temp());
   1494   Register result = ToRegister(instr->result());
   1495   DCHECK(dividend.is(eax));
   1496   DCHECK(remainder.is(edx));
   1497   DCHECK(result.is(eax));
   1498   DCHECK(!divisor.is(eax));
   1499   DCHECK(!divisor.is(edx));
   1500 
   1501   // Check for x / 0.
   1502   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1503     __ test(divisor, divisor);
   1504     DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
   1505   }
   1506 
   1507   // Check for (0 / -x) that will produce negative zero.
   1508   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1509     Label dividend_not_zero;
   1510     __ test(dividend, dividend);
   1511     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1512     __ test(divisor, divisor);
   1513     DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1514     __ bind(&dividend_not_zero);
   1515   }
   1516 
   1517   // Check for (kMinInt / -1).
   1518   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1519     Label dividend_not_min_int;
   1520     __ cmp(dividend, kMinInt);
   1521     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1522     __ cmp(divisor, -1);
   1523     DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
   1524     __ bind(&dividend_not_min_int);
   1525   }
   1526 
   1527   // Sign extend to edx (= remainder).
   1528   __ cdq();
   1529   __ idiv(divisor);
   1530 
   1531   Label done;
   1532   __ test(remainder, remainder);
   1533   __ j(zero, &done, Label::kNear);
   1534   __ xor_(remainder, divisor);
   1535   __ sar(remainder, 31);
   1536   __ add(result, remainder);
   1537   __ bind(&done);
   1538 }
   1539 
   1540 
   1541 void LCodeGen::DoMulI(LMulI* instr) {
   1542   Register left = ToRegister(instr->left());
   1543   LOperand* right = instr->right();
   1544 
   1545   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1546     __ mov(ToRegister(instr->temp()), left);
   1547   }
   1548 
   1549   if (right->IsConstantOperand()) {
   1550     // Try strength reductions on the multiplication.
   1551     // All replacement instructions are at most as long as the imul
   1552     // and have better latency.
   1553     int constant = ToInteger32(LConstantOperand::cast(right));
   1554     if (constant == -1) {
   1555       __ neg(left);
   1556     } else if (constant == 0) {
   1557       __ xor_(left, Operand(left));
   1558     } else if (constant == 2) {
   1559       __ add(left, Operand(left));
   1560     } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1561       // If we know that the multiplication can't overflow, it's safe to
   1562       // use instructions that don't set the overflow flag for the
   1563       // multiplication.
   1564       switch (constant) {
   1565         case 1:
   1566           // Do nothing.
   1567           break;
   1568         case 3:
   1569           __ lea(left, Operand(left, left, times_2, 0));
   1570           break;
   1571         case 4:
   1572           __ shl(left, 2);
   1573           break;
   1574         case 5:
   1575           __ lea(left, Operand(left, left, times_4, 0));
   1576           break;
   1577         case 8:
   1578           __ shl(left, 3);
   1579           break;
   1580         case 9:
   1581           __ lea(left, Operand(left, left, times_8, 0));
   1582           break;
   1583         case 16:
   1584           __ shl(left, 4);
   1585           break;
   1586         default:
   1587           __ imul(left, left, constant);
   1588           break;
   1589       }
   1590     } else {
   1591       __ imul(left, left, constant);
   1592     }
   1593   } else {
   1594     if (instr->hydrogen()->representation().IsSmi()) {
   1595       __ SmiUntag(left);
   1596     }
   1597     __ imul(left, ToOperand(right));
   1598   }
   1599 
   1600   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1601     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1602   }
   1603 
   1604   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1605     // Bail out if the result is supposed to be negative zero.
   1606     Label done;
   1607     __ test(left, Operand(left));
   1608     __ j(not_zero, &done);
   1609     if (right->IsConstantOperand()) {
   1610       if (ToInteger32(LConstantOperand::cast(right)) < 0) {
   1611         DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
   1612       } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
   1613         __ cmp(ToRegister(instr->temp()), Immediate(0));
   1614         DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
   1615       }
   1616     } else {
   1617       // Test the non-zero operand for negative sign.
   1618       __ or_(ToRegister(instr->temp()), ToOperand(right));
   1619       DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
   1620     }
   1621     __ bind(&done);
   1622   }
   1623 }
   1624 
   1625 
   1626 void LCodeGen::DoBitI(LBitI* instr) {
   1627   LOperand* left = instr->left();
   1628   LOperand* right = instr->right();
   1629   DCHECK(left->Equals(instr->result()));
   1630   DCHECK(left->IsRegister());
   1631 
   1632   if (right->IsConstantOperand()) {
   1633     int32_t right_operand =
   1634         ToRepresentation(LConstantOperand::cast(right),
   1635                          instr->hydrogen()->representation());
   1636     switch (instr->op()) {
   1637       case Token::BIT_AND:
   1638         __ and_(ToRegister(left), right_operand);
   1639         break;
   1640       case Token::BIT_OR:
   1641         __ or_(ToRegister(left), right_operand);
   1642         break;
   1643       case Token::BIT_XOR:
   1644         if (right_operand == int32_t(~0)) {
   1645           __ not_(ToRegister(left));
   1646         } else {
   1647           __ xor_(ToRegister(left), right_operand);
   1648         }
   1649         break;
   1650       default:
   1651         UNREACHABLE();
   1652         break;
   1653     }
   1654   } else {
   1655     switch (instr->op()) {
   1656       case Token::BIT_AND:
   1657         __ and_(ToRegister(left), ToOperand(right));
   1658         break;
   1659       case Token::BIT_OR:
   1660         __ or_(ToRegister(left), ToOperand(right));
   1661         break;
   1662       case Token::BIT_XOR:
   1663         __ xor_(ToRegister(left), ToOperand(right));
   1664         break;
   1665       default:
   1666         UNREACHABLE();
   1667         break;
   1668     }
   1669   }
   1670 }
   1671 
   1672 
   1673 void LCodeGen::DoShiftI(LShiftI* instr) {
   1674   LOperand* left = instr->left();
   1675   LOperand* right = instr->right();
   1676   DCHECK(left->Equals(instr->result()));
   1677   DCHECK(left->IsRegister());
   1678   if (right->IsRegister()) {
   1679     DCHECK(ToRegister(right).is(ecx));
   1680 
   1681     switch (instr->op()) {
   1682       case Token::ROR:
   1683         __ ror_cl(ToRegister(left));
   1684         break;
   1685       case Token::SAR:
   1686         __ sar_cl(ToRegister(left));
   1687         break;
   1688       case Token::SHR:
   1689         __ shr_cl(ToRegister(left));
   1690         if (instr->can_deopt()) {
   1691           __ test(ToRegister(left), ToRegister(left));
   1692           DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue);
   1693         }
   1694         break;
   1695       case Token::SHL:
   1696         __ shl_cl(ToRegister(left));
   1697         break;
   1698       default:
   1699         UNREACHABLE();
   1700         break;
   1701     }
   1702   } else {
   1703     int value = ToInteger32(LConstantOperand::cast(right));
   1704     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
   1705     switch (instr->op()) {
   1706       case Token::ROR:
   1707         if (shift_count == 0 && instr->can_deopt()) {
   1708           __ test(ToRegister(left), ToRegister(left));
   1709           DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue);
   1710         } else {
   1711           __ ror(ToRegister(left), shift_count);
   1712         }
   1713         break;
   1714       case Token::SAR:
   1715         if (shift_count != 0) {
   1716           __ sar(ToRegister(left), shift_count);
   1717         }
   1718         break;
   1719       case Token::SHR:
   1720         if (shift_count != 0) {
   1721           __ shr(ToRegister(left), shift_count);
   1722         } else if (instr->can_deopt()) {
   1723           __ test(ToRegister(left), ToRegister(left));
   1724           DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue);
   1725         }
   1726         break;
   1727       case Token::SHL:
   1728         if (shift_count != 0) {
   1729           if (instr->hydrogen_value()->representation().IsSmi() &&
   1730               instr->can_deopt()) {
   1731             if (shift_count != 1) {
   1732               __ shl(ToRegister(left), shift_count - 1);
   1733             }
   1734             __ SmiTag(ToRegister(left));
   1735             DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1736           } else {
   1737             __ shl(ToRegister(left), shift_count);
   1738           }
   1739         }
   1740         break;
   1741       default:
   1742         UNREACHABLE();
   1743         break;
   1744     }
   1745   }
   1746 }
   1747 
   1748 
   1749 void LCodeGen::DoSubI(LSubI* instr) {
   1750   LOperand* left = instr->left();
   1751   LOperand* right = instr->right();
   1752   DCHECK(left->Equals(instr->result()));
   1753 
   1754   if (right->IsConstantOperand()) {
   1755     __ sub(ToOperand(left),
   1756            ToImmediate(right, instr->hydrogen()->representation()));
   1757   } else {
   1758     __ sub(ToRegister(left), ToOperand(right));
   1759   }
   1760   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1761     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1762   }
   1763 }
   1764 
   1765 
   1766 void LCodeGen::DoConstantI(LConstantI* instr) {
   1767   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
   1768 }
   1769 
   1770 
   1771 void LCodeGen::DoConstantS(LConstantS* instr) {
   1772   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
   1773 }
   1774 
   1775 
   1776 void LCodeGen::DoConstantD(LConstantD* instr) {
   1777   uint64_t const bits = instr->bits();
   1778   uint32_t const lower = static_cast<uint32_t>(bits);
   1779   uint32_t const upper = static_cast<uint32_t>(bits >> 32);
   1780   DCHECK(instr->result()->IsDoubleRegister());
   1781 
   1782   __ push(Immediate(upper));
   1783   __ push(Immediate(lower));
   1784   X87Register reg = ToX87Register(instr->result());
   1785   X87Mov(reg, Operand(esp, 0));
   1786   __ add(Operand(esp), Immediate(kDoubleSize));
   1787 }
   1788 
   1789 
   1790 void LCodeGen::DoConstantE(LConstantE* instr) {
   1791   __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
   1792 }
   1793 
   1794 
   1795 void LCodeGen::DoConstantT(LConstantT* instr) {
   1796   Register reg = ToRegister(instr->result());
   1797   Handle<Object> object = instr->value(isolate());
   1798   AllowDeferredHandleDereference smi_check;
   1799   __ LoadObject(reg, object);
   1800 }
   1801 
   1802 
   1803 Operand LCodeGen::BuildSeqStringOperand(Register string,
   1804                                         LOperand* index,
   1805                                         String::Encoding encoding) {
   1806   if (index->IsConstantOperand()) {
   1807     int offset = ToRepresentation(LConstantOperand::cast(index),
   1808                                   Representation::Integer32());
   1809     if (encoding == String::TWO_BYTE_ENCODING) {
   1810       offset *= kUC16Size;
   1811     }
   1812     STATIC_ASSERT(kCharSize == 1);
   1813     return FieldOperand(string, SeqString::kHeaderSize + offset);
   1814   }
   1815   return FieldOperand(
   1816       string, ToRegister(index),
   1817       encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
   1818       SeqString::kHeaderSize);
   1819 }
   1820 
   1821 
   1822 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   1823   String::Encoding encoding = instr->hydrogen()->encoding();
   1824   Register result = ToRegister(instr->result());
   1825   Register string = ToRegister(instr->string());
   1826 
   1827   if (FLAG_debug_code) {
   1828     __ push(string);
   1829     __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
   1830     __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
   1831 
   1832     __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
   1833     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1834     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1835     __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
   1836                              ? one_byte_seq_type : two_byte_seq_type));
   1837     __ Check(equal, kUnexpectedStringType);
   1838     __ pop(string);
   1839   }
   1840 
   1841   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1842   if (encoding == String::ONE_BYTE_ENCODING) {
   1843     __ movzx_b(result, operand);
   1844   } else {
   1845     __ movzx_w(result, operand);
   1846   }
   1847 }
   1848 
   1849 
   1850 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   1851   String::Encoding encoding = instr->hydrogen()->encoding();
   1852   Register string = ToRegister(instr->string());
   1853 
   1854   if (FLAG_debug_code) {
   1855     Register value = ToRegister(instr->value());
   1856     Register index = ToRegister(instr->index());
   1857     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1858     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1859     int encoding_mask =
   1860         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   1861         ? one_byte_seq_type : two_byte_seq_type;
   1862     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
   1863   }
   1864 
   1865   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1866   if (instr->value()->IsConstantOperand()) {
   1867     int value = ToRepresentation(LConstantOperand::cast(instr->value()),
   1868                                  Representation::Integer32());
   1869     DCHECK_LE(0, value);
   1870     if (encoding == String::ONE_BYTE_ENCODING) {
   1871       DCHECK_LE(value, String::kMaxOneByteCharCode);
   1872       __ mov_b(operand, static_cast<int8_t>(value));
   1873     } else {
   1874       DCHECK_LE(value, String::kMaxUtf16CodeUnit);
   1875       __ mov_w(operand, static_cast<int16_t>(value));
   1876     }
   1877   } else {
   1878     Register value = ToRegister(instr->value());
   1879     if (encoding == String::ONE_BYTE_ENCODING) {
   1880       __ mov_b(operand, value);
   1881     } else {
   1882       __ mov_w(operand, value);
   1883     }
   1884   }
   1885 }
   1886 
   1887 
   1888 void LCodeGen::DoAddI(LAddI* instr) {
   1889   LOperand* left = instr->left();
   1890   LOperand* right = instr->right();
   1891 
   1892   if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
   1893     if (right->IsConstantOperand()) {
   1894       int32_t offset = ToRepresentation(LConstantOperand::cast(right),
   1895                                         instr->hydrogen()->representation());
   1896       __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
   1897     } else {
   1898       Operand address(ToRegister(left), ToRegister(right), times_1, 0);
   1899       __ lea(ToRegister(instr->result()), address);
   1900     }
   1901   } else {
   1902     if (right->IsConstantOperand()) {
   1903       __ add(ToOperand(left),
   1904              ToImmediate(right, instr->hydrogen()->representation()));
   1905     } else {
   1906       __ add(ToRegister(left), ToOperand(right));
   1907     }
   1908     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1909       DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   1910     }
   1911   }
   1912 }
   1913 
   1914 
   1915 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   1916   LOperand* left = instr->left();
   1917   LOperand* right = instr->right();
   1918   DCHECK(left->Equals(instr->result()));
   1919   HMathMinMax::Operation operation = instr->hydrogen()->operation();
   1920   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
   1921     Label return_left;
   1922     Condition condition = (operation == HMathMinMax::kMathMin)
   1923         ? less_equal
   1924         : greater_equal;
   1925     if (right->IsConstantOperand()) {
   1926       Operand left_op = ToOperand(left);
   1927       Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
   1928                                         instr->hydrogen()->representation());
   1929       __ cmp(left_op, immediate);
   1930       __ j(condition, &return_left, Label::kNear);
   1931       __ mov(left_op, immediate);
   1932     } else {
   1933       Register left_reg = ToRegister(left);
   1934       Operand right_op = ToOperand(right);
   1935       __ cmp(left_reg, right_op);
   1936       __ j(condition, &return_left, Label::kNear);
   1937       __ mov(left_reg, right_op);
   1938     }
   1939     __ bind(&return_left);
   1940   } else {
   1941     DCHECK(instr->hydrogen()->representation().IsDouble());
   1942     Label check_nan_left, check_zero, return_left, return_right;
   1943     Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
   1944     X87Register left_reg = ToX87Register(left);
   1945     X87Register right_reg = ToX87Register(right);
   1946 
   1947     X87PrepareBinaryOp(left_reg, right_reg, ToX87Register(instr->result()));
   1948     __ fld(1);
   1949     __ fld(1);
   1950     __ FCmp();
   1951     __ j(parity_even, &check_nan_left, Label::kNear);  // At least one NaN.
   1952     __ j(equal, &check_zero, Label::kNear);            // left == right.
   1953     __ j(condition, &return_left, Label::kNear);
   1954     __ jmp(&return_right, Label::kNear);
   1955 
   1956     __ bind(&check_zero);
   1957     __ fld(0);
   1958     __ fldz();
   1959     __ FCmp();
   1960     __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
   1961     // At this point, both left and right are either 0 or -0.
   1962     if (operation == HMathMinMax::kMathMin) {
   1963       // Push st0 and st1 to stack, then pop them to temp registers and OR them,
   1964       // load it to left.
   1965       Register scratch_reg = ToRegister(instr->temp());
   1966       __ fld(1);
   1967       __ fld(1);
   1968       __ sub(esp, Immediate(2 * kPointerSize));
   1969       __ fstp_s(MemOperand(esp, 0));
   1970       __ fstp_s(MemOperand(esp, kPointerSize));
   1971       __ pop(scratch_reg);
   1972       __ or_(MemOperand(esp, 0), scratch_reg);
   1973       X87Mov(left_reg, MemOperand(esp, 0), kX87FloatOperand);
   1974       __ pop(scratch_reg);  // restore esp
   1975     } else {
   1976       // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
   1977       X87Fxch(left_reg);
   1978       __ fadd(1);
   1979     }
   1980     __ jmp(&return_left, Label::kNear);
   1981 
   1982     __ bind(&check_nan_left);
   1983     __ fld(0);
   1984     __ fld(0);
   1985     __ FCmp();                                      // NaN check.
   1986     __ j(parity_even, &return_left, Label::kNear);  // left == NaN.
   1987 
   1988     __ bind(&return_right);
   1989     X87Fxch(left_reg);
   1990     X87Mov(left_reg, right_reg);
   1991 
   1992     __ bind(&return_left);
   1993   }
   1994 }
   1995 
   1996 
   1997 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1998   X87Register left = ToX87Register(instr->left());
   1999   X87Register right = ToX87Register(instr->right());
   2000   X87Register result = ToX87Register(instr->result());
   2001   if (instr->op() != Token::MOD) {
   2002     X87PrepareBinaryOp(left, right, result);
   2003   }
   2004   // Set the precision control to double-precision.
   2005   __ X87SetFPUCW(0x027F);
   2006   switch (instr->op()) {
   2007     case Token::ADD:
   2008       __ fadd_i(1);
   2009       break;
   2010     case Token::SUB:
   2011       __ fsub_i(1);
   2012       break;
   2013     case Token::MUL:
   2014       __ fmul_i(1);
   2015       break;
   2016     case Token::DIV:
   2017       __ fdiv_i(1);
   2018       break;
   2019     case Token::MOD: {
   2020       // Pass two doubles as arguments on the stack.
   2021       __ PrepareCallCFunction(4, eax);
   2022       X87Mov(Operand(esp, 1 * kDoubleSize), right);
   2023       X87Mov(Operand(esp, 0), left);
   2024       X87Free(right);
   2025       DCHECK(left.is(result));
   2026       X87PrepareToWrite(result);
   2027       __ CallCFunction(
   2028           ExternalReference::mod_two_doubles_operation(isolate()),
   2029           4);
   2030 
   2031       // Return value is in st(0) on ia32.
   2032       X87CommitWrite(result);
   2033       break;
   2034     }
   2035     default:
   2036       UNREACHABLE();
   2037       break;
   2038   }
   2039 
   2040   // Restore the default value of control word.
   2041   __ X87SetFPUCW(0x037F);
   2042 }
   2043 
   2044 
   2045 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   2046   DCHECK(ToRegister(instr->context()).is(esi));
   2047   DCHECK(ToRegister(instr->left()).is(edx));
   2048   DCHECK(ToRegister(instr->right()).is(eax));
   2049   DCHECK(ToRegister(instr->result()).is(eax));
   2050 
   2051   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
   2052   CallCode(code, RelocInfo::CODE_TARGET, instr);
   2053 }
   2054 
   2055 
   2056 template<class InstrType>
   2057 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
   2058   int left_block = instr->TrueDestination(chunk_);
   2059   int right_block = instr->FalseDestination(chunk_);
   2060 
   2061   int next_block = GetNextEmittedBlock();
   2062 
   2063   if (right_block == left_block || cc == no_condition) {
   2064     EmitGoto(left_block);
   2065   } else if (left_block == next_block) {
   2066     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
   2067   } else if (right_block == next_block) {
   2068     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   2069   } else {
   2070     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   2071     __ jmp(chunk_->GetAssemblyLabel(right_block));
   2072   }
   2073 }
   2074 
   2075 
   2076 template <class InstrType>
   2077 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
   2078   int true_block = instr->TrueDestination(chunk_);
   2079   if (cc == no_condition) {
   2080     __ jmp(chunk_->GetAssemblyLabel(true_block));
   2081   } else {
   2082     __ j(cc, chunk_->GetAssemblyLabel(true_block));
   2083   }
   2084 }
   2085 
   2086 
   2087 template<class InstrType>
   2088 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
   2089   int false_block = instr->FalseDestination(chunk_);
   2090   if (cc == no_condition) {
   2091     __ jmp(chunk_->GetAssemblyLabel(false_block));
   2092   } else {
   2093     __ j(cc, chunk_->GetAssemblyLabel(false_block));
   2094   }
   2095 }
   2096 
   2097 
   2098 void LCodeGen::DoBranch(LBranch* instr) {
   2099   Representation r = instr->hydrogen()->value()->representation();
   2100   if (r.IsSmiOrInteger32()) {
   2101     Register reg = ToRegister(instr->value());
   2102     __ test(reg, Operand(reg));
   2103     EmitBranch(instr, not_zero);
   2104   } else if (r.IsDouble()) {
   2105     X87Register reg = ToX87Register(instr->value());
   2106     X87LoadForUsage(reg);
   2107     __ fldz();
   2108     __ FCmp();
   2109     EmitBranch(instr, not_zero);
   2110   } else {
   2111     DCHECK(r.IsTagged());
   2112     Register reg = ToRegister(instr->value());
   2113     HType type = instr->hydrogen()->value()->type();
   2114     if (type.IsBoolean()) {
   2115       DCHECK(!info()->IsStub());
   2116       __ cmp(reg, factory()->true_value());
   2117       EmitBranch(instr, equal);
   2118     } else if (type.IsSmi()) {
   2119       DCHECK(!info()->IsStub());
   2120       __ test(reg, Operand(reg));
   2121       EmitBranch(instr, not_equal);
   2122     } else if (type.IsJSArray()) {
   2123       DCHECK(!info()->IsStub());
   2124       EmitBranch(instr, no_condition);
   2125     } else if (type.IsHeapNumber()) {
   2126       UNREACHABLE();
   2127     } else if (type.IsString()) {
   2128       DCHECK(!info()->IsStub());
   2129       __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2130       EmitBranch(instr, not_equal);
   2131     } else {
   2132       ToBooleanICStub::Types expected =
   2133           instr->hydrogen()->expected_input_types();
   2134       if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
   2135 
   2136       if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
   2137         // undefined -> false.
   2138         __ cmp(reg, factory()->undefined_value());
   2139         __ j(equal, instr->FalseLabel(chunk_));
   2140       }
   2141       if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
   2142         // true -> true.
   2143         __ cmp(reg, factory()->true_value());
   2144         __ j(equal, instr->TrueLabel(chunk_));
   2145         // false -> false.
   2146         __ cmp(reg, factory()->false_value());
   2147         __ j(equal, instr->FalseLabel(chunk_));
   2148       }
   2149       if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
   2150         // 'null' -> false.
   2151         __ cmp(reg, factory()->null_value());
   2152         __ j(equal, instr->FalseLabel(chunk_));
   2153       }
   2154 
   2155       if (expected.Contains(ToBooleanICStub::SMI)) {
   2156         // Smis: 0 -> false, all other -> true.
   2157         __ test(reg, Operand(reg));
   2158         __ j(equal, instr->FalseLabel(chunk_));
   2159         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
   2160       } else if (expected.NeedsMap()) {
   2161         // If we need a map later and have a Smi -> deopt.
   2162         __ test(reg, Immediate(kSmiTagMask));
   2163         DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
   2164       }
   2165 
   2166       Register map = no_reg;  // Keep the compiler happy.
   2167       if (expected.NeedsMap()) {
   2168         map = ToRegister(instr->temp());
   2169         DCHECK(!map.is(reg));
   2170         __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
   2171 
   2172         if (expected.CanBeUndetectable()) {
   2173           // Undetectable -> false.
   2174           __ test_b(FieldOperand(map, Map::kBitFieldOffset),
   2175                     Immediate(1 << Map::kIsUndetectable));
   2176           __ j(not_zero, instr->FalseLabel(chunk_));
   2177         }
   2178       }
   2179 
   2180       if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
   2181         // spec object -> true.
   2182         __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
   2183         __ j(above_equal, instr->TrueLabel(chunk_));
   2184       }
   2185 
   2186       if (expected.Contains(ToBooleanICStub::STRING)) {
   2187         // String value -> false iff empty.
   2188         Label not_string;
   2189         __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
   2190         __ j(above_equal, &not_string, Label::kNear);
   2191         __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2192         __ j(not_zero, instr->TrueLabel(chunk_));
   2193         __ jmp(instr->FalseLabel(chunk_));
   2194         __ bind(&not_string);
   2195       }
   2196 
   2197       if (expected.Contains(ToBooleanICStub::SYMBOL)) {
   2198         // Symbol value -> true.
   2199         __ CmpInstanceType(map, SYMBOL_TYPE);
   2200         __ j(equal, instr->TrueLabel(chunk_));
   2201       }
   2202 
   2203       if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
   2204         // SIMD value -> true.
   2205         __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
   2206         __ j(equal, instr->TrueLabel(chunk_));
   2207       }
   2208 
   2209       if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
   2210         // heap number -> false iff +0, -0, or NaN.
   2211         Label not_heap_number;
   2212         __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
   2213                factory()->heap_number_map());
   2214         __ j(not_equal, &not_heap_number, Label::kNear);
   2215         __ fldz();
   2216         __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
   2217         __ FCmp();
   2218         __ j(zero, instr->FalseLabel(chunk_));
   2219         __ jmp(instr->TrueLabel(chunk_));
   2220         __ bind(&not_heap_number);
   2221       }
   2222 
   2223       if (!expected.IsGeneric()) {
   2224         // We've seen something for the first time -> deopt.
   2225         // This can only happen if we are not generic already.
   2226         DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
   2227       }
   2228     }
   2229   }
   2230 }
   2231 
   2232 
   2233 void LCodeGen::EmitGoto(int block) {
   2234   if (!IsNextEmittedBlock(block)) {
   2235     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2236   }
   2237 }
   2238 
   2239 
   2240 void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
   2241 }
   2242 
   2243 
   2244 void LCodeGen::DoGoto(LGoto* instr) {
   2245   EmitGoto(instr->block_id());
   2246 }
   2247 
   2248 
   2249 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   2250   Condition cond = no_condition;
   2251   switch (op) {
   2252     case Token::EQ:
   2253     case Token::EQ_STRICT:
   2254       cond = equal;
   2255       break;
   2256     case Token::NE:
   2257     case Token::NE_STRICT:
   2258       cond = not_equal;
   2259       break;
   2260     case Token::LT:
   2261       cond = is_unsigned ? below : less;
   2262       break;
   2263     case Token::GT:
   2264       cond = is_unsigned ? above : greater;
   2265       break;
   2266     case Token::LTE:
   2267       cond = is_unsigned ? below_equal : less_equal;
   2268       break;
   2269     case Token::GTE:
   2270       cond = is_unsigned ? above_equal : greater_equal;
   2271       break;
   2272     case Token::IN:
   2273     case Token::INSTANCEOF:
   2274     default:
   2275       UNREACHABLE();
   2276   }
   2277   return cond;
   2278 }
   2279 
   2280 
   2281 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2282   LOperand* left = instr->left();
   2283   LOperand* right = instr->right();
   2284   bool is_unsigned =
   2285       instr->is_double() ||
   2286       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2287       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2288   Condition cc = TokenToCondition(instr->op(), is_unsigned);
   2289 
   2290   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2291     // We can statically evaluate the comparison.
   2292     double left_val = ToDouble(LConstantOperand::cast(left));
   2293     double right_val = ToDouble(LConstantOperand::cast(right));
   2294     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
   2295                          ? instr->TrueDestination(chunk_)
   2296                          : instr->FalseDestination(chunk_);
   2297     EmitGoto(next_block);
   2298   } else {
   2299     if (instr->is_double()) {
   2300       X87LoadForUsage(ToX87Register(right), ToX87Register(left));
   2301       __ FCmp();
   2302       // Don't base result on EFLAGS when a NaN is involved. Instead
   2303       // jump to the false block.
   2304       __ j(parity_even, instr->FalseLabel(chunk_));
   2305     } else {
   2306       if (right->IsConstantOperand()) {
   2307         __ cmp(ToOperand(left),
   2308                ToImmediate(right, instr->hydrogen()->representation()));
   2309       } else if (left->IsConstantOperand()) {
   2310         __ cmp(ToOperand(right),
   2311                ToImmediate(left, instr->hydrogen()->representation()));
   2312         // We commuted the operands, so commute the condition.
   2313         cc = CommuteCondition(cc);
   2314       } else {
   2315         __ cmp(ToRegister(left), ToOperand(right));
   2316       }
   2317     }
   2318     EmitBranch(instr, cc);
   2319   }
   2320 }
   2321 
   2322 
   2323 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2324   Register left = ToRegister(instr->left());
   2325 
   2326   if (instr->right()->IsConstantOperand()) {
   2327     Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
   2328     __ CmpObject(left, right);
   2329   } else {
   2330     Operand right = ToOperand(instr->right());
   2331     __ cmp(left, right);
   2332   }
   2333   EmitBranch(instr, equal);
   2334 }
   2335 
   2336 
   2337 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
   2338   if (instr->hydrogen()->representation().IsTagged()) {
   2339     Register input_reg = ToRegister(instr->object());
   2340     __ cmp(input_reg, factory()->the_hole_value());
   2341     EmitBranch(instr, equal);
   2342     return;
   2343   }
   2344 
   2345   // Put the value to the top of stack
   2346   X87Register src = ToX87Register(instr->object());
   2347   X87LoadForUsage(src);
   2348   __ fld(0);
   2349   __ fld(0);
   2350   __ FCmp();
   2351   Label ok;
   2352   __ j(parity_even, &ok, Label::kNear);
   2353   __ fstp(0);
   2354   EmitFalseBranch(instr, no_condition);
   2355   __ bind(&ok);
   2356 
   2357 
   2358   __ sub(esp, Immediate(kDoubleSize));
   2359   __ fstp_d(MemOperand(esp, 0));
   2360 
   2361   __ add(esp, Immediate(kDoubleSize));
   2362   int offset = sizeof(kHoleNanUpper32);
   2363   __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
   2364   EmitBranch(instr, equal);
   2365 }
   2366 
   2367 
   2368 Condition LCodeGen::EmitIsString(Register input,
   2369                                  Register temp1,
   2370                                  Label* is_not_string,
   2371                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   2372   if (check_needed == INLINE_SMI_CHECK) {
   2373     __ JumpIfSmi(input, is_not_string);
   2374   }
   2375 
   2376   Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
   2377 
   2378   return cond;
   2379 }
   2380 
   2381 
   2382 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   2383   Register reg = ToRegister(instr->value());
   2384   Register temp = ToRegister(instr->temp());
   2385 
   2386   SmiCheck check_needed =
   2387       instr->hydrogen()->value()->type().IsHeapObject()
   2388           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2389 
   2390   Condition true_cond = EmitIsString(
   2391       reg, temp, instr->FalseLabel(chunk_), check_needed);
   2392 
   2393   EmitBranch(instr, true_cond);
   2394 }
   2395 
   2396 
   2397 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   2398   Operand input = ToOperand(instr->value());
   2399 
   2400   __ test(input, Immediate(kSmiTagMask));
   2401   EmitBranch(instr, zero);
   2402 }
   2403 
   2404 
   2405 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   2406   Register input = ToRegister(instr->value());
   2407   Register temp = ToRegister(instr->temp());
   2408 
   2409   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2410     STATIC_ASSERT(kSmiTag == 0);
   2411     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2412   }
   2413   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   2414   __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
   2415             Immediate(1 << Map::kIsUndetectable));
   2416   EmitBranch(instr, not_zero);
   2417 }
   2418 
   2419 
   2420 static Condition ComputeCompareCondition(Token::Value op) {
   2421   switch (op) {
   2422     case Token::EQ_STRICT:
   2423     case Token::EQ:
   2424       return equal;
   2425     case Token::LT:
   2426       return less;
   2427     case Token::GT:
   2428       return greater;
   2429     case Token::LTE:
   2430       return less_equal;
   2431     case Token::GTE:
   2432       return greater_equal;
   2433     default:
   2434       UNREACHABLE();
   2435       return no_condition;
   2436   }
   2437 }
   2438 
   2439 
   2440 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   2441   DCHECK(ToRegister(instr->context()).is(esi));
   2442   DCHECK(ToRegister(instr->left()).is(edx));
   2443   DCHECK(ToRegister(instr->right()).is(eax));
   2444 
   2445   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
   2446   CallCode(code, RelocInfo::CODE_TARGET, instr);
   2447   __ CompareRoot(eax, Heap::kTrueValueRootIndex);
   2448   EmitBranch(instr, equal);
   2449 }
   2450 
   2451 
   2452 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2453   InstanceType from = instr->from();
   2454   InstanceType to = instr->to();
   2455   if (from == FIRST_TYPE) return to;
   2456   DCHECK(from == to || to == LAST_TYPE);
   2457   return from;
   2458 }
   2459 
   2460 
   2461 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2462   InstanceType from = instr->from();
   2463   InstanceType to = instr->to();
   2464   if (from == to) return equal;
   2465   if (to == LAST_TYPE) return above_equal;
   2466   if (from == FIRST_TYPE) return below_equal;
   2467   UNREACHABLE();
   2468   return equal;
   2469 }
   2470 
   2471 
   2472 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   2473   Register input = ToRegister(instr->value());
   2474   Register temp = ToRegister(instr->temp());
   2475 
   2476   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2477     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2478   }
   2479 
   2480   __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
   2481   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   2482 }
   2483 
   2484 
   2485 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2486   Register input = ToRegister(instr->value());
   2487   Register result = ToRegister(instr->result());
   2488 
   2489   __ AssertString(input);
   2490 
   2491   __ mov(result, FieldOperand(input, String::kHashFieldOffset));
   2492   __ IndexFromHash(result, result);
   2493 }
   2494 
   2495 
   2496 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2497     LHasCachedArrayIndexAndBranch* instr) {
   2498   Register input = ToRegister(instr->value());
   2499 
   2500   __ test(FieldOperand(input, String::kHashFieldOffset),
   2501           Immediate(String::kContainsCachedArrayIndexMask));
   2502   EmitBranch(instr, equal);
   2503 }
   2504 
   2505 
   2506 // Branches to a label or falls through with the answer in the z flag.  Trashes
   2507 // the temp registers, but not the input.
   2508 void LCodeGen::EmitClassOfTest(Label* is_true,
   2509                                Label* is_false,
   2510                                Handle<String>class_name,
   2511                                Register input,
   2512                                Register temp,
   2513                                Register temp2) {
   2514   DCHECK(!input.is(temp));
   2515   DCHECK(!input.is(temp2));
   2516   DCHECK(!temp.is(temp2));
   2517   __ JumpIfSmi(input, is_false);
   2518 
   2519   __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
   2520   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
   2521   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
   2522     __ j(above_equal, is_true);
   2523   } else {
   2524     __ j(above_equal, is_false);
   2525   }
   2526 
   2527   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
   2528   // Check if the constructor in the map is a function.
   2529   __ GetMapConstructor(temp, temp, temp2);
   2530   // Objects with a non-function constructor have class 'Object'.
   2531   __ CmpInstanceType(temp2, JS_FUNCTION_TYPE);
   2532   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
   2533     __ j(not_equal, is_true);
   2534   } else {
   2535     __ j(not_equal, is_false);
   2536   }
   2537 
   2538   // temp now contains the constructor function. Grab the
   2539   // instance class name from there.
   2540   __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
   2541   __ mov(temp, FieldOperand(temp,
   2542                             SharedFunctionInfo::kInstanceClassNameOffset));
   2543   // The class name we are testing against is internalized since it's a literal.
   2544   // The name in the constructor is internalized because of the way the context
   2545   // is booted.  This routine isn't expected to work for random API-created
   2546   // classes and it doesn't have to because you can't access it with natives
   2547   // syntax.  Since both sides are internalized it is sufficient to use an
   2548   // identity comparison.
   2549   __ cmp(temp, class_name);
   2550   // End with the answer in the z flag.
   2551 }
   2552 
   2553 
   2554 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2555   Register input = ToRegister(instr->value());
   2556   Register temp = ToRegister(instr->temp());
   2557   Register temp2 = ToRegister(instr->temp2());
   2558 
   2559   Handle<String> class_name = instr->hydrogen()->class_name();
   2560 
   2561   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
   2562       class_name, input, temp, temp2);
   2563 
   2564   EmitBranch(instr, equal);
   2565 }
   2566 
   2567 
   2568 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2569   Register reg = ToRegister(instr->value());
   2570   __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
   2571   EmitBranch(instr, equal);
   2572 }
   2573 
   2574 
   2575 void LCodeGen::DoHasInPrototypeChainAndBranch(
   2576     LHasInPrototypeChainAndBranch* instr) {
   2577   Register const object = ToRegister(instr->object());
   2578   Register const object_map = ToRegister(instr->scratch());
   2579   Register const object_prototype = object_map;
   2580   Register const prototype = ToRegister(instr->prototype());
   2581 
   2582   // The {object} must be a spec object.  It's sufficient to know that {object}
   2583   // is not a smi, since all other non-spec objects have {null} prototypes and
   2584   // will be ruled out below.
   2585   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
   2586     __ test(object, Immediate(kSmiTagMask));
   2587     EmitFalseBranch(instr, zero);
   2588   }
   2589 
   2590   // Loop through the {object}s prototype chain looking for the {prototype}.
   2591   __ mov(object_map, FieldOperand(object, HeapObject::kMapOffset));
   2592   Label loop;
   2593   __ bind(&loop);
   2594 
   2595   // Deoptimize if the object needs to be access checked.
   2596   __ test_b(FieldOperand(object_map, Map::kBitFieldOffset),
   2597             Immediate(1 << Map::kIsAccessCheckNeeded));
   2598   DeoptimizeIf(not_zero, instr, Deoptimizer::kAccessCheck);
   2599   // Deoptimize for proxies.
   2600   __ CmpInstanceType(object_map, JS_PROXY_TYPE);
   2601   DeoptimizeIf(equal, instr, Deoptimizer::kProxy);
   2602 
   2603   __ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
   2604   __ cmp(object_prototype, factory()->null_value());
   2605   EmitFalseBranch(instr, equal);
   2606   __ cmp(object_prototype, prototype);
   2607   EmitTrueBranch(instr, equal);
   2608   __ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
   2609   __ jmp(&loop);
   2610 }
   2611 
   2612 
   2613 void LCodeGen::DoCmpT(LCmpT* instr) {
   2614   Token::Value op = instr->op();
   2615 
   2616   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2617   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2618 
   2619   Condition condition = ComputeCompareCondition(op);
   2620   Label true_value, done;
   2621   __ test(eax, Operand(eax));
   2622   __ j(condition, &true_value, Label::kNear);
   2623   __ mov(ToRegister(instr->result()), factory()->false_value());
   2624   __ jmp(&done, Label::kNear);
   2625   __ bind(&true_value);
   2626   __ mov(ToRegister(instr->result()), factory()->true_value());
   2627   __ bind(&done);
   2628 }
   2629 
   2630 void LCodeGen::EmitReturn(LReturn* instr) {
   2631   int extra_value_count = 1;
   2632 
   2633   if (instr->has_constant_parameter_count()) {
   2634     int parameter_count = ToInteger32(instr->constant_parameter_count());
   2635     __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
   2636   } else {
   2637     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
   2638     Register reg = ToRegister(instr->parameter_count());
   2639     // The argument count parameter is a smi
   2640     __ SmiUntag(reg);
   2641     Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
   2642 
   2643     // emit code to restore stack based on instr->parameter_count()
   2644     __ pop(return_addr_reg);  // save return address
   2645     __ shl(reg, kPointerSizeLog2);
   2646     __ add(esp, reg);
   2647     __ jmp(return_addr_reg);
   2648   }
   2649 }
   2650 
   2651 
   2652 void LCodeGen::DoReturn(LReturn* instr) {
   2653   if (FLAG_trace && info()->IsOptimizing()) {
   2654     // Preserve the return value on the stack and rely on the runtime call
   2655     // to return the value in the same register.  We're leaving the code
   2656     // managed by the register allocator and tearing down the frame, it's
   2657     // safe to write to the context register.
   2658     __ push(eax);
   2659     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   2660     __ CallRuntime(Runtime::kTraceExit);
   2661   }
   2662   if (NeedsEagerFrame()) {
   2663     __ mov(esp, ebp);
   2664     __ pop(ebp);
   2665   }
   2666 
   2667   EmitReturn(instr);
   2668 }
   2669 
   2670 
   2671 template <class T>
   2672 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
   2673   Register vector_register = ToRegister(instr->temp_vector());
   2674   Register slot_register = LoadWithVectorDescriptor::SlotRegister();
   2675   DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
   2676   DCHECK(slot_register.is(eax));
   2677 
   2678   AllowDeferredHandleDereference vector_structure_check;
   2679   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
   2680   __ mov(vector_register, vector);
   2681   // No need to allocate this register.
   2682   FeedbackVectorSlot slot = instr->hydrogen()->slot();
   2683   int index = vector->GetIndex(slot);
   2684   __ mov(slot_register, Immediate(Smi::FromInt(index)));
   2685 }
   2686 
   2687 
   2688 template <class T>
   2689 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
   2690   Register vector_register = ToRegister(instr->temp_vector());
   2691   Register slot_register = ToRegister(instr->temp_slot());
   2692 
   2693   AllowDeferredHandleDereference vector_structure_check;
   2694   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
   2695   __ mov(vector_register, vector);
   2696   FeedbackVectorSlot slot = instr->hydrogen()->slot();
   2697   int index = vector->GetIndex(slot);
   2698   __ mov(slot_register, Immediate(Smi::FromInt(index)));
   2699 }
   2700 
   2701 
   2702 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   2703   DCHECK(ToRegister(instr->context()).is(esi));
   2704   DCHECK(ToRegister(instr->result()).is(eax));
   2705 
   2706   EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
   2707   Handle<Code> ic =
   2708       CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
   2709           .code();
   2710   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2711 }
   2712 
   2713 
   2714 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   2715   Register context = ToRegister(instr->context());
   2716   Register result = ToRegister(instr->result());
   2717   __ mov(result, ContextOperand(context, instr->slot_index()));
   2718 
   2719   if (instr->hydrogen()->RequiresHoleCheck()) {
   2720     __ cmp(result, factory()->the_hole_value());
   2721     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2722       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2723     } else {
   2724       Label is_not_hole;
   2725       __ j(not_equal, &is_not_hole, Label::kNear);
   2726       __ mov(result, factory()->undefined_value());
   2727       __ bind(&is_not_hole);
   2728     }
   2729   }
   2730 }
   2731 
   2732 
   2733 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   2734   Register context = ToRegister(instr->context());
   2735   Register value = ToRegister(instr->value());
   2736 
   2737   Label skip_assignment;
   2738 
   2739   Operand target = ContextOperand(context, instr->slot_index());
   2740   if (instr->hydrogen()->RequiresHoleCheck()) {
   2741     __ cmp(target, factory()->the_hole_value());
   2742     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2743       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2744     } else {
   2745       __ j(not_equal, &skip_assignment, Label::kNear);
   2746     }
   2747   }
   2748 
   2749   __ mov(target, value);
   2750   if (instr->hydrogen()->NeedsWriteBarrier()) {
   2751     SmiCheck check_needed =
   2752         instr->hydrogen()->value()->type().IsHeapObject()
   2753             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2754     Register temp = ToRegister(instr->temp());
   2755     int offset = Context::SlotOffset(instr->slot_index());
   2756     __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs,
   2757                               EMIT_REMEMBERED_SET, check_needed);
   2758   }
   2759 
   2760   __ bind(&skip_assignment);
   2761 }
   2762 
   2763 
   2764 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   2765   HObjectAccess access = instr->hydrogen()->access();
   2766   int offset = access.offset();
   2767 
   2768   if (access.IsExternalMemory()) {
   2769     Register result = ToRegister(instr->result());
   2770     MemOperand operand = instr->object()->IsConstantOperand()
   2771         ? MemOperand::StaticVariable(ToExternalReference(
   2772                 LConstantOperand::cast(instr->object())))
   2773         : MemOperand(ToRegister(instr->object()), offset);
   2774     __ Load(result, operand, access.representation());
   2775     return;
   2776   }
   2777 
   2778   Register object = ToRegister(instr->object());
   2779   if (instr->hydrogen()->representation().IsDouble()) {
   2780     X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
   2781     return;
   2782   }
   2783 
   2784   Register result = ToRegister(instr->result());
   2785   if (!access.IsInobject()) {
   2786     __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
   2787     object = result;
   2788   }
   2789   __ Load(result, FieldOperand(object, offset), access.representation());
   2790 }
   2791 
   2792 
   2793 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
   2794   DCHECK(!operand->IsDoubleRegister());
   2795   if (operand->IsConstantOperand()) {
   2796     Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
   2797     AllowDeferredHandleDereference smi_check;
   2798     if (object->IsSmi()) {
   2799       __ Push(Handle<Smi>::cast(object));
   2800     } else {
   2801       __ PushHeapObject(Handle<HeapObject>::cast(object));
   2802     }
   2803   } else if (operand->IsRegister()) {
   2804     __ push(ToRegister(operand));
   2805   } else {
   2806     __ push(ToOperand(operand));
   2807   }
   2808 }
   2809 
   2810 
   2811 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   2812   DCHECK(ToRegister(instr->context()).is(esi));
   2813   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   2814   DCHECK(ToRegister(instr->result()).is(eax));
   2815 
   2816   __ mov(LoadDescriptor::NameRegister(), instr->name());
   2817   EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
   2818   Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
   2819   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2820 }
   2821 
   2822 
   2823 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   2824   Register function = ToRegister(instr->function());
   2825   Register temp = ToRegister(instr->temp());
   2826   Register result = ToRegister(instr->result());
   2827 
   2828   // Get the prototype or initial map from the function.
   2829   __ mov(result,
   2830          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   2831 
   2832   // Check that the function has a prototype or an initial map.
   2833   __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
   2834   DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2835 
   2836   // If the function does not have an initial map, we're done.
   2837   Label done;
   2838   __ CmpObjectType(result, MAP_TYPE, temp);
   2839   __ j(not_equal, &done, Label::kNear);
   2840 
   2841   // Get the prototype from the initial map.
   2842   __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
   2843 
   2844   // All done.
   2845   __ bind(&done);
   2846 }
   2847 
   2848 
   2849 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   2850   Register result = ToRegister(instr->result());
   2851   __ LoadRoot(result, instr->index());
   2852 }
   2853 
   2854 
   2855 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   2856   Register arguments = ToRegister(instr->arguments());
   2857   Register result = ToRegister(instr->result());
   2858   if (instr->length()->IsConstantOperand() &&
   2859       instr->index()->IsConstantOperand()) {
   2860     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   2861     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
   2862     int index = (const_length - const_index) + 1;
   2863     __ mov(result, Operand(arguments, index * kPointerSize));
   2864   } else {
   2865     Register length = ToRegister(instr->length());
   2866     Operand index = ToOperand(instr->index());
   2867     // There are two words between the frame pointer and the last argument.
   2868     // Subtracting from length accounts for one of them add one more.
   2869     __ sub(length, index);
   2870     __ mov(result, Operand(arguments, length, times_4, kPointerSize));
   2871   }
   2872 }
   2873 
   2874 
   2875 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
   2876   ElementsKind elements_kind = instr->elements_kind();
   2877   LOperand* key = instr->key();
   2878   if (!key->IsConstantOperand() &&
   2879       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
   2880                                   elements_kind)) {
   2881     __ SmiUntag(ToRegister(key));
   2882   }
   2883   Operand operand(BuildFastArrayOperand(
   2884       instr->elements(),
   2885       key,
   2886       instr->hydrogen()->key()->representation(),
   2887       elements_kind,
   2888       instr->base_offset()));
   2889   if (elements_kind == FLOAT32_ELEMENTS) {
   2890     X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
   2891   } else if (elements_kind == FLOAT64_ELEMENTS) {
   2892     X87Mov(ToX87Register(instr->result()), operand);
   2893   } else {
   2894     Register result(ToRegister(instr->result()));
   2895     switch (elements_kind) {
   2896       case INT8_ELEMENTS:
   2897         __ movsx_b(result, operand);
   2898         break;
   2899       case UINT8_ELEMENTS:
   2900       case UINT8_CLAMPED_ELEMENTS:
   2901         __ movzx_b(result, operand);
   2902         break;
   2903       case INT16_ELEMENTS:
   2904         __ movsx_w(result, operand);
   2905         break;
   2906       case UINT16_ELEMENTS:
   2907         __ movzx_w(result, operand);
   2908         break;
   2909       case INT32_ELEMENTS:
   2910         __ mov(result, operand);
   2911         break;
   2912       case UINT32_ELEMENTS:
   2913         __ mov(result, operand);
   2914         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   2915           __ test(result, Operand(result));
   2916           DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
   2917         }
   2918         break;
   2919       case FLOAT32_ELEMENTS:
   2920       case FLOAT64_ELEMENTS:
   2921       case FAST_SMI_ELEMENTS:
   2922       case FAST_ELEMENTS:
   2923       case FAST_DOUBLE_ELEMENTS:
   2924       case FAST_HOLEY_SMI_ELEMENTS:
   2925       case FAST_HOLEY_ELEMENTS:
   2926       case FAST_HOLEY_DOUBLE_ELEMENTS:
   2927       case DICTIONARY_ELEMENTS:
   2928       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   2929       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   2930       case FAST_STRING_WRAPPER_ELEMENTS:
   2931       case SLOW_STRING_WRAPPER_ELEMENTS:
   2932       case NO_ELEMENTS:
   2933         UNREACHABLE();
   2934         break;
   2935     }
   2936   }
   2937 }
   2938 
   2939 
   2940 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
   2941   if (instr->hydrogen()->RequiresHoleCheck()) {
   2942     Operand hole_check_operand = BuildFastArrayOperand(
   2943         instr->elements(), instr->key(),
   2944         instr->hydrogen()->key()->representation(),
   2945         FAST_DOUBLE_ELEMENTS,
   2946         instr->base_offset() + sizeof(kHoleNanLower32));
   2947     __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
   2948     DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2949   }
   2950 
   2951   Operand double_load_operand = BuildFastArrayOperand(
   2952       instr->elements(),
   2953       instr->key(),
   2954       instr->hydrogen()->key()->representation(),
   2955       FAST_DOUBLE_ELEMENTS,
   2956       instr->base_offset());
   2957   X87Mov(ToX87Register(instr->result()), double_load_operand);
   2958 }
   2959 
   2960 
   2961 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
   2962   Register result = ToRegister(instr->result());
   2963 
   2964   // Load the result.
   2965   __ mov(result,
   2966          BuildFastArrayOperand(instr->elements(), instr->key(),
   2967                                instr->hydrogen()->key()->representation(),
   2968                                FAST_ELEMENTS, instr->base_offset()));
   2969 
   2970   // Check for the hole value.
   2971   if (instr->hydrogen()->RequiresHoleCheck()) {
   2972     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   2973       __ test(result, Immediate(kSmiTagMask));
   2974       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotASmi);
   2975     } else {
   2976       __ cmp(result, factory()->the_hole_value());
   2977       DeoptimizeIf(equal, instr, Deoptimizer::kHole);
   2978     }
   2979   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
   2980     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
   2981     Label done;
   2982     __ cmp(result, factory()->the_hole_value());
   2983     __ j(not_equal, &done);
   2984     if (info()->IsStub()) {
   2985       // A stub can safely convert the hole to undefined only if the array
   2986       // protector cell contains (Smi) Isolate::kArrayProtectorValid.
   2987       // Otherwise it needs to bail out.
   2988       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
   2989       __ cmp(FieldOperand(result, PropertyCell::kValueOffset),
   2990              Immediate(Smi::FromInt(Isolate::kArrayProtectorValid)));
   2991       DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
   2992     }
   2993     __ mov(result, isolate()->factory()->undefined_value());
   2994     __ bind(&done);
   2995   }
   2996 }
   2997 
   2998 
   2999 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
   3000   if (instr->is_fixed_typed_array()) {
   3001     DoLoadKeyedExternalArray(instr);
   3002   } else if (instr->hydrogen()->representation().IsDouble()) {
   3003     DoLoadKeyedFixedDoubleArray(instr);
   3004   } else {
   3005     DoLoadKeyedFixedArray(instr);
   3006   }
   3007 }
   3008 
   3009 
   3010 Operand LCodeGen::BuildFastArrayOperand(
   3011     LOperand* elements_pointer,
   3012     LOperand* key,
   3013     Representation key_representation,
   3014     ElementsKind elements_kind,
   3015     uint32_t base_offset) {
   3016   Register elements_pointer_reg = ToRegister(elements_pointer);
   3017   int element_shift_size = ElementsKindToShiftSize(elements_kind);
   3018   int shift_size = element_shift_size;
   3019   if (key->IsConstantOperand()) {
   3020     int constant_value = ToInteger32(LConstantOperand::cast(key));
   3021     if (constant_value & 0xF0000000) {
   3022       Abort(kArrayIndexConstantValueTooBig);
   3023     }
   3024     return Operand(elements_pointer_reg,
   3025                    ((constant_value) << shift_size)
   3026                        + base_offset);
   3027   } else {
   3028     // Take the tag bit into account while computing the shift size.
   3029     if (key_representation.IsSmi() && (shift_size >= 1)) {
   3030       shift_size -= kSmiTagSize;
   3031     }
   3032     ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
   3033     return Operand(elements_pointer_reg,
   3034                    ToRegister(key),
   3035                    scale_factor,
   3036                    base_offset);
   3037   }
   3038 }
   3039 
   3040 
   3041 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3042   DCHECK(ToRegister(instr->context()).is(esi));
   3043   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3044   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
   3045 
   3046   EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
   3047 
   3048   Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
   3049   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3050 }
   3051 
   3052 
   3053 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   3054   Register result = ToRegister(instr->result());
   3055 
   3056   if (instr->hydrogen()->from_inlined()) {
   3057     __ lea(result, Operand(esp, -2 * kPointerSize));
   3058   } else if (instr->hydrogen()->arguments_adaptor()) {
   3059     // Check for arguments adapter frame.
   3060     Label done, adapted;
   3061     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3062     __ mov(result,
   3063            Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset));
   3064     __ cmp(Operand(result),
   3065            Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3066     __ j(equal, &adapted, Label::kNear);
   3067 
   3068     // No arguments adaptor frame.
   3069     __ mov(result, Operand(ebp));
   3070     __ jmp(&done, Label::kNear);
   3071 
   3072     // Arguments adaptor frame present.
   3073     __ bind(&adapted);
   3074     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3075 
   3076     // Result is the frame pointer for the frame if not adapted and for the real
   3077     // frame below the adaptor frame if adapted.
   3078     __ bind(&done);
   3079   } else {
   3080     __ mov(result, Operand(ebp));
   3081   }
   3082 }
   3083 
   3084 
   3085 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   3086   Operand elem = ToOperand(instr->elements());
   3087   Register result = ToRegister(instr->result());
   3088 
   3089   Label done;
   3090 
   3091   // If no arguments adaptor frame the number of arguments is fixed.
   3092   __ cmp(ebp, elem);
   3093   __ mov(result, Immediate(scope()->num_parameters()));
   3094   __ j(equal, &done, Label::kNear);
   3095 
   3096   // Arguments adaptor frame present. Get argument length from there.
   3097   __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3098   __ mov(result, Operand(result,
   3099                          ArgumentsAdaptorFrameConstants::kLengthOffset));
   3100   __ SmiUntag(result);
   3101 
   3102   // Argument length is in result register.
   3103   __ bind(&done);
   3104 }
   3105 
   3106 
   3107 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   3108   Register receiver = ToRegister(instr->receiver());
   3109   Register function = ToRegister(instr->function());
   3110 
   3111   // If the receiver is null or undefined, we have to pass the global
   3112   // object as a receiver to normal functions. Values have to be
   3113   // passed unchanged to builtins and strict-mode functions.
   3114   Label receiver_ok, global_object;
   3115   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   3116   Register scratch = ToRegister(instr->temp());
   3117 
   3118   if (!instr->hydrogen()->known_function()) {
   3119     // Do not transform the receiver to object for strict mode
   3120     // functions.
   3121     __ mov(scratch,
   3122            FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
   3123     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
   3124               Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
   3125     __ j(not_equal, &receiver_ok, dist);
   3126 
   3127     // Do not transform the receiver to object for builtins.
   3128     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
   3129               Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
   3130     __ j(not_equal, &receiver_ok, dist);
   3131   }
   3132 
   3133   // Normal function. Replace undefined or null with global receiver.
   3134   __ cmp(receiver, factory()->null_value());
   3135   __ j(equal, &global_object, Label::kNear);
   3136   __ cmp(receiver, factory()->undefined_value());
   3137   __ j(equal, &global_object, Label::kNear);
   3138 
   3139   // The receiver should be a JS object.
   3140   __ test(receiver, Immediate(kSmiTagMask));
   3141   DeoptimizeIf(equal, instr, Deoptimizer::kSmi);
   3142   __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, scratch);
   3143   DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
   3144 
   3145   __ jmp(&receiver_ok, Label::kNear);
   3146   __ bind(&global_object);
   3147   __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
   3148   __ mov(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
   3149   __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
   3150   __ bind(&receiver_ok);
   3151 }
   3152 
   3153 
   3154 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   3155   Register receiver = ToRegister(instr->receiver());
   3156   Register function = ToRegister(instr->function());
   3157   Register length = ToRegister(instr->length());
   3158   Register elements = ToRegister(instr->elements());
   3159   DCHECK(receiver.is(eax));  // Used for parameter count.
   3160   DCHECK(function.is(edi));  // Required by InvokeFunction.
   3161   DCHECK(ToRegister(instr->result()).is(eax));
   3162 
   3163   // Copy the arguments to this function possibly from the
   3164   // adaptor frame below it.
   3165   const uint32_t kArgumentsLimit = 1 * KB;
   3166   __ cmp(length, kArgumentsLimit);
   3167   DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
   3168 
   3169   __ push(receiver);
   3170   __ mov(receiver, length);
   3171 
   3172   // Loop through the arguments pushing them onto the execution
   3173   // stack.
   3174   Label invoke, loop;
   3175   // length is a small non-negative integer, due to the test above.
   3176   __ test(length, Operand(length));
   3177   __ j(zero, &invoke, Label::kNear);
   3178   __ bind(&loop);
   3179   __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
   3180   __ dec(length);
   3181   __ j(not_zero, &loop);
   3182 
   3183   // Invoke the function.
   3184   __ bind(&invoke);
   3185 
   3186   InvokeFlag flag = CALL_FUNCTION;
   3187   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
   3188     DCHECK(!info()->saves_caller_doubles());
   3189     // TODO(ishell): drop current frame before pushing arguments to the stack.
   3190     flag = JUMP_FUNCTION;
   3191     ParameterCount actual(eax);
   3192     // It is safe to use ebx, ecx and edx as scratch registers here given that
   3193     // 1) we are not going to return to caller function anyway,
   3194     // 2) ebx (expected arguments count) and edx (new.target) will be
   3195     //    initialized below.
   3196     PrepareForTailCall(actual, ebx, ecx, edx);
   3197   }
   3198 
   3199   DCHECK(instr->HasPointerMap());
   3200   LPointerMap* pointers = instr->pointer_map();
   3201   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
   3202   ParameterCount actual(eax);
   3203   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
   3204 }
   3205 
   3206 
   3207 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   3208   __ int3();
   3209 }
   3210 
   3211 
   3212 void LCodeGen::DoPushArgument(LPushArgument* instr) {
   3213   LOperand* argument = instr->value();
   3214   EmitPushTaggedOperand(argument);
   3215 }
   3216 
   3217 
   3218 void LCodeGen::DoDrop(LDrop* instr) {
   3219   __ Drop(instr->count());
   3220 }
   3221 
   3222 
   3223 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   3224   Register result = ToRegister(instr->result());
   3225   __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   3226 }
   3227 
   3228 
   3229 void LCodeGen::DoContext(LContext* instr) {
   3230   Register result = ToRegister(instr->result());
   3231   if (info()->IsOptimizing()) {
   3232     __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
   3233   } else {
   3234     // If there is no frame, the context must be in esi.
   3235     DCHECK(result.is(esi));
   3236   }
   3237 }
   3238 
   3239 
   3240 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   3241   DCHECK(ToRegister(instr->context()).is(esi));
   3242   __ push(Immediate(instr->hydrogen()->pairs()));
   3243   __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
   3244   CallRuntime(Runtime::kDeclareGlobals, instr);
   3245 }
   3246 
   3247 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   3248                                  int formal_parameter_count, int arity,
   3249                                  bool is_tail_call, LInstruction* instr) {
   3250   bool dont_adapt_arguments =
   3251       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3252   bool can_invoke_directly =
   3253       dont_adapt_arguments || formal_parameter_count == arity;
   3254 
   3255   Register function_reg = edi;
   3256 
   3257   if (can_invoke_directly) {
   3258     // Change context.
   3259     __ mov(esi, FieldOperand(function_reg, JSFunction::kContextOffset));
   3260 
   3261     // Always initialize new target and number of actual arguments.
   3262     __ mov(edx, factory()->undefined_value());
   3263     __ mov(eax, arity);
   3264 
   3265     bool is_self_call = function.is_identical_to(info()->closure());
   3266 
   3267     // Invoke function directly.
   3268     if (is_self_call) {
   3269       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
   3270       if (is_tail_call) {
   3271         __ Jump(self, RelocInfo::CODE_TARGET);
   3272       } else {
   3273         __ Call(self, RelocInfo::CODE_TARGET);
   3274       }
   3275     } else {
   3276       Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
   3277       if (is_tail_call) {
   3278         __ jmp(target);
   3279       } else {
   3280         __ call(target);
   3281       }
   3282     }
   3283 
   3284     if (!is_tail_call) {
   3285       // Set up deoptimization.
   3286       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   3287     }
   3288   } else {
   3289     // We need to adapt arguments.
   3290     LPointerMap* pointers = instr->pointer_map();
   3291     SafepointGenerator generator(
   3292         this, pointers, Safepoint::kLazyDeopt);
   3293     ParameterCount actual(arity);
   3294     ParameterCount expected(formal_parameter_count);
   3295     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
   3296     __ InvokeFunction(function_reg, expected, actual, flag, generator);
   3297   }
   3298 }
   3299 
   3300 
   3301 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   3302   DCHECK(ToRegister(instr->result()).is(eax));
   3303 
   3304   if (instr->hydrogen()->IsTailCall()) {
   3305     if (NeedsEagerFrame()) __ leave();
   3306 
   3307     if (instr->target()->IsConstantOperand()) {
   3308       LConstantOperand* target = LConstantOperand::cast(instr->target());
   3309       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3310       __ jmp(code, RelocInfo::CODE_TARGET);
   3311     } else {
   3312       DCHECK(instr->target()->IsRegister());
   3313       Register target = ToRegister(instr->target());
   3314       __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
   3315       __ jmp(target);
   3316     }
   3317   } else {
   3318     LPointerMap* pointers = instr->pointer_map();
   3319     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3320 
   3321     if (instr->target()->IsConstantOperand()) {
   3322       LConstantOperand* target = LConstantOperand::cast(instr->target());
   3323       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3324       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   3325       __ call(code, RelocInfo::CODE_TARGET);
   3326     } else {
   3327       DCHECK(instr->target()->IsRegister());
   3328       Register target = ToRegister(instr->target());
   3329       generator.BeforeCall(__ CallSize(Operand(target)));
   3330       __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
   3331       __ call(target);
   3332     }
   3333     generator.AfterCall();
   3334   }
   3335 }
   3336 
   3337 
   3338 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
   3339   Register input_reg = ToRegister(instr->value());
   3340   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   3341          factory()->heap_number_map());
   3342   DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   3343 
   3344   Label slow, allocated, done;
   3345   uint32_t available_regs = eax.bit() | ecx.bit() | edx.bit() | ebx.bit();
   3346   available_regs &= ~input_reg.bit();
   3347   if (instr->context()->IsRegister()) {
   3348     // Make sure that the context isn't overwritten in the AllocateHeapNumber
   3349     // macro below.
   3350     available_regs &= ~ToRegister(instr->context()).bit();
   3351   }
   3352 
   3353   Register tmp =
   3354       Register::from_code(base::bits::CountTrailingZeros32(available_regs));
   3355   available_regs &= ~tmp.bit();
   3356   Register tmp2 =
   3357       Register::from_code(base::bits::CountTrailingZeros32(available_regs));
   3358 
   3359   // Preserve the value of all registers.
   3360   PushSafepointRegistersScope scope(this);
   3361 
   3362   __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3363   // Check the sign of the argument. If the argument is positive, just
   3364   // return it. We do not need to patch the stack since |input| and
   3365   // |result| are the same register and |input| will be restored
   3366   // unchanged by popping safepoint registers.
   3367   __ test(tmp, Immediate(HeapNumber::kSignMask));
   3368   __ j(zero, &done, Label::kNear);
   3369 
   3370   __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
   3371   __ jmp(&allocated, Label::kNear);
   3372 
   3373   // Slow case: Call the runtime system to do the number allocation.
   3374   __ bind(&slow);
   3375   CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
   3376                           instr, instr->context());
   3377   // Set the pointer to the new heap number in tmp.
   3378   if (!tmp.is(eax)) __ mov(tmp, eax);
   3379   // Restore input_reg after call to runtime.
   3380   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
   3381 
   3382   __ bind(&allocated);
   3383   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3384   __ and_(tmp2, ~HeapNumber::kSignMask);
   3385   __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
   3386   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   3387   __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
   3388   __ StoreToSafepointRegisterSlot(input_reg, tmp);
   3389 
   3390   __ bind(&done);
   3391 }
   3392 
   3393 
   3394 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
   3395   Register input_reg = ToRegister(instr->value());
   3396   __ test(input_reg, Operand(input_reg));
   3397   Label is_positive;
   3398   __ j(not_sign, &is_positive, Label::kNear);
   3399   __ neg(input_reg);  // Sets flags.
   3400   DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
   3401   __ bind(&is_positive);
   3402 }
   3403 
   3404 
   3405 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3406   // Class for deferred case.
   3407   class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
   3408    public:
   3409     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
   3410                                     LMathAbs* instr,
   3411                                     const X87Stack& x87_stack)
   3412         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   3413     void Generate() override {
   3414       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
   3415     }
   3416     LInstruction* instr() override { return instr_; }
   3417 
   3418    private:
   3419     LMathAbs* instr_;
   3420   };
   3421 
   3422   DCHECK(instr->value()->Equals(instr->result()));
   3423   Representation r = instr->hydrogen()->value()->representation();
   3424 
   3425   if (r.IsDouble()) {
   3426     X87Register value = ToX87Register(instr->value());
   3427     X87Fxch(value);
   3428     __ fabs();
   3429   } else if (r.IsSmiOrInteger32()) {
   3430     EmitIntegerMathAbs(instr);
   3431   } else {  // Tagged case.
   3432     DeferredMathAbsTaggedHeapNumber* deferred =
   3433         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
   3434     Register input_reg = ToRegister(instr->value());
   3435     // Smi check.
   3436     __ JumpIfNotSmi(input_reg, deferred->entry());
   3437     EmitIntegerMathAbs(instr);
   3438     __ bind(deferred->exit());
   3439   }
   3440 }
   3441 
   3442 
   3443 void LCodeGen::DoMathFloor(LMathFloor* instr) {
   3444   Register output_reg = ToRegister(instr->result());
   3445   X87Register input_reg = ToX87Register(instr->value());
   3446   X87Fxch(input_reg);
   3447 
   3448   Label not_minus_zero, done;
   3449   // Deoptimize on unordered.
   3450   __ fldz();
   3451   __ fld(1);
   3452   __ FCmp();
   3453   DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
   3454   __ j(below, &not_minus_zero, Label::kNear);
   3455 
   3456   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3457     // Check for negative zero.
   3458     __ j(not_equal, &not_minus_zero, Label::kNear);
   3459     // +- 0.0.
   3460     __ fld(0);
   3461     __ FXamSign();
   3462     DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   3463     __ Move(output_reg, Immediate(0));
   3464     __ jmp(&done, Label::kFar);
   3465   }
   3466 
   3467   // Positive input.
   3468   // rc=01B, round down.
   3469   __ bind(&not_minus_zero);
   3470   __ fnclex();
   3471   __ X87SetRC(0x0400);
   3472   __ sub(esp, Immediate(kPointerSize));
   3473   __ fist_s(Operand(esp, 0));
   3474   __ pop(output_reg);
   3475   __ X87SetRC(0x0000);
   3476   __ X87CheckIA();
   3477   DeoptimizeIf(equal, instr, Deoptimizer::kOverflow);
   3478   __ fnclex();
   3479   __ X87SetRC(0x0000);
   3480   __ bind(&done);
   3481 }
   3482 
   3483 
   3484 void LCodeGen::DoMathRound(LMathRound* instr) {
   3485   X87Register input_reg = ToX87Register(instr->value());
   3486   Register result = ToRegister(instr->result());
   3487   X87Fxch(input_reg);
   3488   Label below_one_half, below_minus_one_half, done;
   3489 
   3490   ExternalReference one_half = ExternalReference::address_of_one_half();
   3491   ExternalReference minus_one_half =
   3492       ExternalReference::address_of_minus_one_half();
   3493 
   3494   __ fld_d(Operand::StaticVariable(one_half));
   3495   __ fld(1);
   3496   __ FCmp();
   3497   __ j(carry, &below_one_half);
   3498 
   3499   // Use rounds towards zero, since 0.5 <= x, we use floor(0.5 + x)
   3500   __ fld(0);
   3501   __ fadd_d(Operand::StaticVariable(one_half));
   3502   // rc=11B, round toward zero.
   3503   __ X87SetRC(0x0c00);
   3504   __ sub(esp, Immediate(kPointerSize));
   3505   // Clear exception bits.
   3506   __ fnclex();
   3507   __ fistp_s(MemOperand(esp, 0));
   3508   // Restore round mode.
   3509   __ X87SetRC(0x0000);
   3510   // Check overflow.
   3511   __ X87CheckIA();
   3512   __ pop(result);
   3513   DeoptimizeIf(equal, instr, Deoptimizer::kConversionOverflow);
   3514   __ fnclex();
   3515   // Restore round mode.
   3516   __ X87SetRC(0x0000);
   3517   __ jmp(&done);
   3518 
   3519   __ bind(&below_one_half);
   3520   __ fld_d(Operand::StaticVariable(minus_one_half));
   3521   __ fld(1);
   3522   __ FCmp();
   3523   __ j(carry, &below_minus_one_half);
   3524   // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
   3525   // we can ignore the difference between a result of -0 and +0.
   3526   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3527     // If the sign is positive, we return +0.
   3528     __ fld(0);
   3529     __ FXamSign();
   3530     DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   3531   }
   3532   __ Move(result, Immediate(0));
   3533   __ jmp(&done);
   3534 
   3535   __ bind(&below_minus_one_half);
   3536   __ fld(0);
   3537   __ fadd_d(Operand::StaticVariable(one_half));
   3538   // rc=01B, round down.
   3539   __ X87SetRC(0x0400);
   3540   __ sub(esp, Immediate(kPointerSize));
   3541   // Clear exception bits.
   3542   __ fnclex();
   3543   __ fistp_s(MemOperand(esp, 0));
   3544   // Restore round mode.
   3545   __ X87SetRC(0x0000);
   3546   // Check overflow.
   3547   __ X87CheckIA();
   3548   __ pop(result);
   3549   DeoptimizeIf(equal, instr, Deoptimizer::kConversionOverflow);
   3550   __ fnclex();
   3551   // Restore round mode.
   3552   __ X87SetRC(0x0000);
   3553 
   3554   __ bind(&done);
   3555 }
   3556 
   3557 
   3558 void LCodeGen::DoMathFround(LMathFround* instr) {
   3559   X87Register input_reg = ToX87Register(instr->value());
   3560   X87Fxch(input_reg);
   3561   __ sub(esp, Immediate(kPointerSize));
   3562   __ fstp_s(MemOperand(esp, 0));
   3563   X87Fld(MemOperand(esp, 0), kX87FloatOperand);
   3564   __ add(esp, Immediate(kPointerSize));
   3565 }
   3566 
   3567 
   3568 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   3569   X87Register input_reg = ToX87Register(instr->value());
   3570   __ X87SetFPUCW(0x027F);
   3571   X87Fxch(input_reg);
   3572   __ fsqrt();
   3573   __ X87SetFPUCW(0x037F);
   3574 }
   3575 
   3576 
   3577 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   3578   X87Register input_reg = ToX87Register(instr->value());
   3579   DCHECK(ToX87Register(instr->result()).is(input_reg));
   3580   X87Fxch(input_reg);
   3581   // Note that according to ECMA-262 15.8.2.13:
   3582   // Math.pow(-Infinity, 0.5) == Infinity
   3583   // Math.sqrt(-Infinity) == NaN
   3584   Label done, sqrt;
   3585   // Check base for -Infinity. C3 == 0, C2 == 1, C1 == 1 and C0 == 1
   3586   __ fxam();
   3587   __ push(eax);
   3588   __ fnstsw_ax();
   3589   __ and_(eax, Immediate(0x4700));
   3590   __ cmp(eax, Immediate(0x0700));
   3591   __ j(not_equal, &sqrt, Label::kNear);
   3592   // If input is -Infinity, return Infinity.
   3593   __ fchs();
   3594   __ jmp(&done, Label::kNear);
   3595 
   3596   // Square root.
   3597   __ bind(&sqrt);
   3598   __ fldz();
   3599   __ faddp();  // Convert -0 to +0.
   3600   __ fsqrt();
   3601   __ bind(&done);
   3602   __ pop(eax);
   3603 }
   3604 
   3605 
   3606 void LCodeGen::DoPower(LPower* instr) {
   3607   Representation exponent_type = instr->hydrogen()->right()->representation();
   3608   X87Register result = ToX87Register(instr->result());
   3609   // Having marked this as a call, we can use any registers.
   3610   X87Register base = ToX87Register(instr->left());
   3611   ExternalReference one_half = ExternalReference::address_of_one_half();
   3612 
   3613   if (exponent_type.IsSmi()) {
   3614     Register exponent = ToRegister(instr->right());
   3615     X87LoadForUsage(base);
   3616     __ SmiUntag(exponent);
   3617     __ push(exponent);
   3618     __ fild_s(MemOperand(esp, 0));
   3619     __ pop(exponent);
   3620   } else if (exponent_type.IsTagged()) {
   3621     Register exponent = ToRegister(instr->right());
   3622     Register temp = exponent.is(ecx) ? eax : ecx;
   3623     Label no_deopt, done;
   3624     X87LoadForUsage(base);
   3625     __ JumpIfSmi(exponent, &no_deopt);
   3626     __ CmpObjectType(exponent, HEAP_NUMBER_TYPE, temp);
   3627     DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   3628     // Heap number(double)
   3629     __ fld_d(FieldOperand(exponent, HeapNumber::kValueOffset));
   3630     __ jmp(&done);
   3631     // SMI
   3632     __ bind(&no_deopt);
   3633     __ SmiUntag(exponent);
   3634     __ push(exponent);
   3635     __ fild_s(MemOperand(esp, 0));
   3636     __ pop(exponent);
   3637     __ bind(&done);
   3638   } else if (exponent_type.IsInteger32()) {
   3639     Register exponent = ToRegister(instr->right());
   3640     X87LoadForUsage(base);
   3641     __ push(exponent);
   3642     __ fild_s(MemOperand(esp, 0));
   3643     __ pop(exponent);
   3644   } else {
   3645     DCHECK(exponent_type.IsDouble());
   3646     X87Register exponent_double = ToX87Register(instr->right());
   3647     X87LoadForUsage(base, exponent_double);
   3648   }
   3649 
   3650   // FP data stack {base, exponent(TOS)}.
   3651   // Handle (exponent==+-0.5 && base == -0).
   3652   Label not_plus_0;
   3653   __ fld(0);
   3654   __ fabs();
   3655   X87Fld(Operand::StaticVariable(one_half), kX87DoubleOperand);
   3656   __ FCmp();
   3657   __ j(parity_even, &not_plus_0, Label::kNear);  // NaN.
   3658   __ j(not_equal, &not_plus_0, Label::kNear);
   3659   __ fldz();
   3660   // FP data stack {base, exponent(TOS), zero}.
   3661   __ faddp(2);
   3662   __ bind(&not_plus_0);
   3663 
   3664   {
   3665     __ PrepareCallCFunction(4, eax);
   3666     __ fstp_d(MemOperand(esp, kDoubleSize));  // Exponent value.
   3667     __ fstp_d(MemOperand(esp, 0));            // Base value.
   3668     X87PrepareToWrite(result);
   3669     __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
   3670                      4);
   3671     // Return value is in st(0) on ia32.
   3672     X87CommitWrite(result);
   3673   }
   3674 }
   3675 
   3676 
   3677 void LCodeGen::DoMathLog(LMathLog* instr) {
   3678   DCHECK(instr->value()->Equals(instr->result()));
   3679   X87Register result = ToX87Register(instr->result());
   3680   X87Register input_reg = ToX87Register(instr->value());
   3681   X87Fxch(input_reg);
   3682 
   3683   // Pass one double as argument on the stack.
   3684   __ PrepareCallCFunction(2, eax);
   3685   __ fstp_d(MemOperand(esp, 0));
   3686   X87PrepareToWrite(result);
   3687   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 2);
   3688   // Return value is in st(0) on ia32.
   3689   X87CommitWrite(result);
   3690 }
   3691 
   3692 
   3693 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   3694   Register input = ToRegister(instr->value());
   3695   Register result = ToRegister(instr->result());
   3696 
   3697   __ Lzcnt(result, input);
   3698 }
   3699 
   3700 void LCodeGen::DoMathCos(LMathCos* instr) {
   3701   X87Register result = ToX87Register(instr->result());
   3702   X87Register input_reg = ToX87Register(instr->value());
   3703   __ fld(x87_stack_.st(input_reg));
   3704 
   3705   // Pass one double as argument on the stack.
   3706   __ PrepareCallCFunction(2, eax);
   3707   __ fstp_d(MemOperand(esp, 0));
   3708   X87PrepareToWrite(result);
   3709   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 2);
   3710   // Return value is in st(0) on ia32.
   3711   X87CommitWrite(result);
   3712 }
   3713 
   3714 void LCodeGen::DoMathSin(LMathSin* instr) {
   3715   X87Register result = ToX87Register(instr->result());
   3716   X87Register input_reg = ToX87Register(instr->value());
   3717   __ fld(x87_stack_.st(input_reg));
   3718 
   3719   // Pass one double as argument on the stack.
   3720   __ PrepareCallCFunction(2, eax);
   3721   __ fstp_d(MemOperand(esp, 0));
   3722   X87PrepareToWrite(result);
   3723   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 2);
   3724   // Return value is in st(0) on ia32.
   3725   X87CommitWrite(result);
   3726 }
   3727 
   3728 void LCodeGen::DoMathExp(LMathExp* instr) {
   3729   X87Register result = ToX87Register(instr->result());
   3730   X87Register input_reg = ToX87Register(instr->value());
   3731   __ fld(x87_stack_.st(input_reg));
   3732 
   3733   // Pass one double as argument on the stack.
   3734   __ PrepareCallCFunction(2, eax);
   3735   __ fstp_d(MemOperand(esp, 0));
   3736   X87PrepareToWrite(result);
   3737   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 2);
   3738   // Return value is in st(0) on ia32.
   3739   X87CommitWrite(result);
   3740 }
   3741 
   3742 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
   3743                                   Register scratch1, Register scratch2,
   3744                                   Register scratch3) {
   3745 #if DEBUG
   3746   if (actual.is_reg()) {
   3747     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
   3748   } else {
   3749     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
   3750   }
   3751 #endif
   3752   if (FLAG_code_comments) {
   3753     if (actual.is_reg()) {
   3754       Comment(";;; PrepareForTailCall, actual: %s {",
   3755               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
   3756                   actual.reg().code()));
   3757     } else {
   3758       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
   3759     }
   3760   }
   3761 
   3762   // Check if next frame is an arguments adaptor frame.
   3763   Register caller_args_count_reg = scratch1;
   3764   Label no_arguments_adaptor, formal_parameter_count_loaded;
   3765   __ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3766   __ cmp(Operand(scratch2, StandardFrameConstants::kContextOffset),
   3767          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3768   __ j(not_equal, &no_arguments_adaptor, Label::kNear);
   3769 
   3770   // Drop current frame and load arguments count from arguments adaptor frame.
   3771   __ mov(ebp, scratch2);
   3772   __ mov(caller_args_count_reg,
   3773          Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   3774   __ SmiUntag(caller_args_count_reg);
   3775   __ jmp(&formal_parameter_count_loaded, Label::kNear);
   3776 
   3777   __ bind(&no_arguments_adaptor);
   3778   // Load caller's formal parameter count.
   3779   __ mov(caller_args_count_reg,
   3780          Immediate(info()->literal()->parameter_count()));
   3781 
   3782   __ bind(&formal_parameter_count_loaded);
   3783   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
   3784                         ReturnAddressState::kNotOnStack, 0);
   3785   Comment(";;; }");
   3786 }
   3787 
   3788 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   3789   HInvokeFunction* hinstr = instr->hydrogen();
   3790   DCHECK(ToRegister(instr->context()).is(esi));
   3791   DCHECK(ToRegister(instr->function()).is(edi));
   3792   DCHECK(instr->HasPointerMap());
   3793 
   3794   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
   3795 
   3796   if (is_tail_call) {
   3797     DCHECK(!info()->saves_caller_doubles());
   3798     ParameterCount actual(instr->arity());
   3799     // It is safe to use ebx, ecx and edx as scratch registers here given that
   3800     // 1) we are not going to return to caller function anyway,
   3801     // 2) ebx (expected arguments count) and edx (new.target) will be
   3802     //    initialized below.
   3803     PrepareForTailCall(actual, ebx, ecx, edx);
   3804   }
   3805 
   3806   Handle<JSFunction> known_function = hinstr->known_function();
   3807   if (known_function.is_null()) {
   3808     LPointerMap* pointers = instr->pointer_map();
   3809     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3810     ParameterCount actual(instr->arity());
   3811     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
   3812     __ InvokeFunction(edi, no_reg, actual, flag, generator);
   3813   } else {
   3814     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
   3815                       instr->arity(), is_tail_call, instr);
   3816   }
   3817 }
   3818 
   3819 
   3820 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
   3821   DCHECK(ToRegister(instr->context()).is(esi));
   3822   DCHECK(ToRegister(instr->constructor()).is(edi));
   3823   DCHECK(ToRegister(instr->result()).is(eax));
   3824 
   3825   __ Move(eax, Immediate(instr->arity()));
   3826   __ mov(ebx, instr->hydrogen()->site());
   3827 
   3828   ElementsKind kind = instr->hydrogen()->elements_kind();
   3829   AllocationSiteOverrideMode override_mode =
   3830       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
   3831           ? DISABLE_ALLOCATION_SITES
   3832           : DONT_OVERRIDE;
   3833 
   3834   if (instr->arity() == 0) {
   3835     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
   3836     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3837   } else if (instr->arity() == 1) {
   3838     Label done;
   3839     if (IsFastPackedElementsKind(kind)) {
   3840       Label packed_case;
   3841       // We might need a change here
   3842       // look at the first argument
   3843       __ mov(ecx, Operand(esp, 0));
   3844       __ test(ecx, ecx);
   3845       __ j(zero, &packed_case, Label::kNear);
   3846 
   3847       ElementsKind holey_kind = GetHoleyElementsKind(kind);
   3848       ArraySingleArgumentConstructorStub stub(isolate(),
   3849                                               holey_kind,
   3850                                               override_mode);
   3851       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3852       __ jmp(&done, Label::kNear);
   3853       __ bind(&packed_case);
   3854     }
   3855 
   3856     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
   3857     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3858     __ bind(&done);
   3859   } else {
   3860     ArrayNArgumentsConstructorStub stub(isolate());
   3861     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3862   }
   3863 }
   3864 
   3865 
   3866 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   3867   DCHECK(ToRegister(instr->context()).is(esi));
   3868   CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
   3869 }
   3870 
   3871 
   3872 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   3873   Register function = ToRegister(instr->function());
   3874   Register code_object = ToRegister(instr->code_object());
   3875   __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
   3876   __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
   3877 }
   3878 
   3879 
   3880 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   3881   Register result = ToRegister(instr->result());
   3882   Register base = ToRegister(instr->base_object());
   3883   if (instr->offset()->IsConstantOperand()) {
   3884     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
   3885     __ lea(result, Operand(base, ToInteger32(offset)));
   3886   } else {
   3887     Register offset = ToRegister(instr->offset());
   3888     __ lea(result, Operand(base, offset, times_1, 0));
   3889   }
   3890 }
   3891 
   3892 
   3893 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   3894   Representation representation = instr->hydrogen()->field_representation();
   3895 
   3896   HObjectAccess access = instr->hydrogen()->access();
   3897   int offset = access.offset();
   3898 
   3899   if (access.IsExternalMemory()) {
   3900     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   3901     MemOperand operand = instr->object()->IsConstantOperand()
   3902         ? MemOperand::StaticVariable(
   3903             ToExternalReference(LConstantOperand::cast(instr->object())))
   3904         : MemOperand(ToRegister(instr->object()), offset);
   3905     if (instr->value()->IsConstantOperand()) {
   3906       LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   3907       __ mov(operand, Immediate(ToInteger32(operand_value)));
   3908     } else {
   3909       Register value = ToRegister(instr->value());
   3910       __ Store(value, operand, representation);
   3911     }
   3912     return;
   3913   }
   3914 
   3915   Register object = ToRegister(instr->object());
   3916   __ AssertNotSmi(object);
   3917   DCHECK(!representation.IsSmi() ||
   3918          !instr->value()->IsConstantOperand() ||
   3919          IsSmi(LConstantOperand::cast(instr->value())));
   3920   if (representation.IsDouble()) {
   3921     DCHECK(access.IsInobject());
   3922     DCHECK(!instr->hydrogen()->has_transition());
   3923     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   3924     X87Register value = ToX87Register(instr->value());
   3925     X87Mov(FieldOperand(object, offset), value);
   3926     return;
   3927   }
   3928 
   3929   if (instr->hydrogen()->has_transition()) {
   3930     Handle<Map> transition = instr->hydrogen()->transition_map();
   3931     AddDeprecationDependency(transition);
   3932     __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
   3933     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   3934       Register temp = ToRegister(instr->temp());
   3935       Register temp_map = ToRegister(instr->temp_map());
   3936       __ mov(temp_map, transition);
   3937       __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
   3938       // Update the write barrier for the map field.
   3939       __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
   3940     }
   3941   }
   3942 
   3943   // Do the store.
   3944   Register write_register = object;
   3945   if (!access.IsInobject()) {
   3946     write_register = ToRegister(instr->temp());
   3947     __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
   3948   }
   3949 
   3950   MemOperand operand = FieldOperand(write_register, offset);
   3951   if (instr->value()->IsConstantOperand()) {
   3952     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   3953     if (operand_value->IsRegister()) {
   3954       Register value = ToRegister(operand_value);
   3955       __ Store(value, operand, representation);
   3956     } else if (representation.IsInteger32() || representation.IsExternal()) {
   3957       Immediate immediate = ToImmediate(operand_value, representation);
   3958       DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   3959       __ mov(operand, immediate);
   3960     } else {
   3961       Handle<Object> handle_value = ToHandle(operand_value);
   3962       DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   3963       __ mov(operand, handle_value);
   3964     }
   3965   } else {
   3966     Register value = ToRegister(instr->value());
   3967     __ Store(value, operand, representation);
   3968   }
   3969 
   3970   if (instr->hydrogen()->NeedsWriteBarrier()) {
   3971     Register value = ToRegister(instr->value());
   3972     Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
   3973     // Update the write barrier for the object for in-object properties.
   3974     __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs,
   3975                         EMIT_REMEMBERED_SET,
   3976                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   3977                         instr->hydrogen()->PointersToHereCheckForValue());
   3978   }
   3979 }
   3980 
   3981 
   3982 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   3983   DCHECK(ToRegister(instr->context()).is(esi));
   3984   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   3985   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   3986 
   3987   EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
   3988 
   3989   __ mov(StoreDescriptor::NameRegister(), instr->name());
   3990   Handle<Code> ic =
   3991       CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
   3992           .code();
   3993   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3994 }
   3995 
   3996 
   3997 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
   3998   Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
   3999   if (instr->index()->IsConstantOperand()) {
   4000     __ cmp(ToOperand(instr->length()),
   4001            ToImmediate(LConstantOperand::cast(instr->index()),
   4002                        instr->hydrogen()->length()->representation()));
   4003     cc = CommuteCondition(cc);
   4004   } else if (instr->length()->IsConstantOperand()) {
   4005     __ cmp(ToOperand(instr->index()),
   4006            ToImmediate(LConstantOperand::cast(instr->length()),
   4007                        instr->hydrogen()->index()->representation()));
   4008   } else {
   4009     __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
   4010   }
   4011   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   4012     Label done;
   4013     __ j(NegateCondition(cc), &done, Label::kNear);
   4014     __ int3();
   4015     __ bind(&done);
   4016   } else {
   4017     DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
   4018   }
   4019 }
   4020 
   4021 
   4022 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
   4023   ElementsKind elements_kind = instr->elements_kind();
   4024   LOperand* key = instr->key();
   4025   if (!key->IsConstantOperand() &&
   4026       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
   4027                                   elements_kind)) {
   4028     __ SmiUntag(ToRegister(key));
   4029   }
   4030   Operand operand(BuildFastArrayOperand(
   4031       instr->elements(),
   4032       key,
   4033       instr->hydrogen()->key()->representation(),
   4034       elements_kind,
   4035       instr->base_offset()));
   4036   if (elements_kind == FLOAT32_ELEMENTS) {
   4037     X87Mov(operand, ToX87Register(instr->value()), kX87FloatOperand);
   4038   } else if (elements_kind == FLOAT64_ELEMENTS) {
   4039     uint64_t int_val = kHoleNanInt64;
   4040     int32_t lower = static_cast<int32_t>(int_val);
   4041     int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
   4042     Operand operand2 = BuildFastArrayOperand(
   4043         instr->elements(), instr->key(),
   4044         instr->hydrogen()->key()->representation(), elements_kind,
   4045         instr->base_offset() + kPointerSize);
   4046 
   4047     Label no_special_nan_handling, done;
   4048     X87Register value = ToX87Register(instr->value());
   4049     X87Fxch(value);
   4050     __ lea(esp, Operand(esp, -kDoubleSize));
   4051     __ fst_d(MemOperand(esp, 0));
   4052     __ lea(esp, Operand(esp, kDoubleSize));
   4053     int offset = sizeof(kHoleNanUpper32);
   4054     __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
   4055     __ j(not_equal, &no_special_nan_handling, Label::kNear);
   4056     __ mov(operand, Immediate(lower));
   4057     __ mov(operand2, Immediate(upper));
   4058     __ jmp(&done, Label::kNear);
   4059 
   4060     __ bind(&no_special_nan_handling);
   4061     __ fst_d(operand);
   4062     __ bind(&done);
   4063   } else {
   4064     Register value = ToRegister(instr->value());
   4065     switch (elements_kind) {
   4066       case UINT8_ELEMENTS:
   4067       case INT8_ELEMENTS:
   4068       case UINT8_CLAMPED_ELEMENTS:
   4069         __ mov_b(operand, value);
   4070         break;
   4071       case UINT16_ELEMENTS:
   4072       case INT16_ELEMENTS:
   4073         __ mov_w(operand, value);
   4074         break;
   4075       case UINT32_ELEMENTS:
   4076       case INT32_ELEMENTS:
   4077         __ mov(operand, value);
   4078         break;
   4079       case FLOAT32_ELEMENTS:
   4080       case FLOAT64_ELEMENTS:
   4081       case FAST_SMI_ELEMENTS:
   4082       case FAST_ELEMENTS:
   4083       case FAST_DOUBLE_ELEMENTS:
   4084       case FAST_HOLEY_SMI_ELEMENTS:
   4085       case FAST_HOLEY_ELEMENTS:
   4086       case FAST_HOLEY_DOUBLE_ELEMENTS:
   4087       case DICTIONARY_ELEMENTS:
   4088       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   4089       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   4090       case FAST_STRING_WRAPPER_ELEMENTS:
   4091       case SLOW_STRING_WRAPPER_ELEMENTS:
   4092       case NO_ELEMENTS:
   4093         UNREACHABLE();
   4094         break;
   4095     }
   4096   }
   4097 }
   4098 
   4099 
   4100 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
   4101   Operand double_store_operand = BuildFastArrayOperand(
   4102       instr->elements(),
   4103       instr->key(),
   4104       instr->hydrogen()->key()->representation(),
   4105       FAST_DOUBLE_ELEMENTS,
   4106       instr->base_offset());
   4107 
   4108   uint64_t int_val = kHoleNanInt64;
   4109   int32_t lower = static_cast<int32_t>(int_val);
   4110   int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
   4111   Operand double_store_operand2 = BuildFastArrayOperand(
   4112       instr->elements(), instr->key(),
   4113       instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS,
   4114       instr->base_offset() + kPointerSize);
   4115 
   4116   if (instr->hydrogen()->IsConstantHoleStore()) {
   4117     // This means we should store the (double) hole. No floating point
   4118     // registers required.
   4119     __ mov(double_store_operand, Immediate(lower));
   4120     __ mov(double_store_operand2, Immediate(upper));
   4121   } else {
   4122     Label no_special_nan_handling, done;
   4123     X87Register value = ToX87Register(instr->value());
   4124     X87Fxch(value);
   4125 
   4126     if (instr->NeedsCanonicalization()) {
   4127       __ fld(0);
   4128       __ fld(0);
   4129       __ FCmp();
   4130       __ j(parity_odd, &no_special_nan_handling, Label::kNear);
   4131       // All NaNs are Canonicalized to 0x7fffffffffffffff
   4132       __ mov(double_store_operand, Immediate(0xffffffff));
   4133       __ mov(double_store_operand2, Immediate(0x7fffffff));
   4134       __ jmp(&done, Label::kNear);
   4135     } else {
   4136       __ lea(esp, Operand(esp, -kDoubleSize));
   4137       __ fst_d(MemOperand(esp, 0));
   4138       __ lea(esp, Operand(esp, kDoubleSize));
   4139       int offset = sizeof(kHoleNanUpper32);
   4140       __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
   4141       __ j(not_equal, &no_special_nan_handling, Label::kNear);
   4142       __ mov(double_store_operand, Immediate(lower));
   4143       __ mov(double_store_operand2, Immediate(upper));
   4144       __ jmp(&done, Label::kNear);
   4145     }
   4146     __ bind(&no_special_nan_handling);
   4147     __ fst_d(double_store_operand);
   4148     __ bind(&done);
   4149   }
   4150 }
   4151 
   4152 
   4153 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
   4154   Register elements = ToRegister(instr->elements());
   4155   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
   4156 
   4157   Operand operand = BuildFastArrayOperand(
   4158       instr->elements(),
   4159       instr->key(),
   4160       instr->hydrogen()->key()->representation(),
   4161       FAST_ELEMENTS,
   4162       instr->base_offset());
   4163   if (instr->value()->IsRegister()) {
   4164     __ mov(operand, ToRegister(instr->value()));
   4165   } else {
   4166     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4167     if (IsSmi(operand_value)) {
   4168       Immediate immediate = ToImmediate(operand_value, Representation::Smi());
   4169       __ mov(operand, immediate);
   4170     } else {
   4171       DCHECK(!IsInteger32(operand_value));
   4172       Handle<Object> handle_value = ToHandle(operand_value);
   4173       __ mov(operand, handle_value);
   4174     }
   4175   }
   4176 
   4177   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4178     DCHECK(instr->value()->IsRegister());
   4179     Register value = ToRegister(instr->value());
   4180     DCHECK(!instr->key()->IsConstantOperand());
   4181     SmiCheck check_needed =
   4182         instr->hydrogen()->value()->type().IsHeapObject()
   4183           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4184     // Compute address of modified element and store it into key register.
   4185     __ lea(key, operand);
   4186     __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET,
   4187                    check_needed,
   4188                    instr->hydrogen()->PointersToHereCheckForValue());
   4189   }
   4190 }
   4191 
   4192 
   4193 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
   4194   // By cases...external, fast-double, fast
   4195   if (instr->is_fixed_typed_array()) {
   4196     DoStoreKeyedExternalArray(instr);
   4197   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
   4198     DoStoreKeyedFixedDoubleArray(instr);
   4199   } else {
   4200     DoStoreKeyedFixedArray(instr);
   4201   }
   4202 }
   4203 
   4204 
   4205 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   4206   DCHECK(ToRegister(instr->context()).is(esi));
   4207   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4208   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
   4209   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4210 
   4211   EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
   4212 
   4213   Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
   4214                         isolate(), instr->language_mode())
   4215                         .code();
   4216   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4217 }
   4218 
   4219 
   4220 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   4221   Register object = ToRegister(instr->object());
   4222   Register temp = ToRegister(instr->temp());
   4223   Label no_memento_found;
   4224   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
   4225   DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
   4226   __ bind(&no_memento_found);
   4227 }
   4228 
   4229 
   4230 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
   4231   class DeferredMaybeGrowElements final : public LDeferredCode {
   4232    public:
   4233     DeferredMaybeGrowElements(LCodeGen* codegen,
   4234                               LMaybeGrowElements* instr,
   4235                               const X87Stack& x87_stack)
   4236         : LDeferredCode(codegen, x87_stack), instr_(instr) {}
   4237     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
   4238     LInstruction* instr() override { return instr_; }
   4239 
   4240    private:
   4241     LMaybeGrowElements* instr_;
   4242   };
   4243 
   4244   Register result = eax;
   4245   DeferredMaybeGrowElements* deferred =
   4246       new (zone()) DeferredMaybeGrowElements(this, instr, x87_stack_);
   4247   LOperand* key = instr->key();
   4248   LOperand* current_capacity = instr->current_capacity();
   4249 
   4250   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
   4251   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
   4252   DCHECK(key->IsConstantOperand() || key->IsRegister());
   4253   DCHECK(current_capacity->IsConstantOperand() ||
   4254          current_capacity->IsRegister());
   4255 
   4256   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
   4257     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
   4258     int32_t constant_capacity =
   4259         ToInteger32(LConstantOperand::cast(current_capacity));
   4260     if (constant_key >= constant_capacity) {
   4261       // Deferred case.
   4262       __ jmp(deferred->entry());
   4263     }
   4264   } else if (key->IsConstantOperand()) {
   4265     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
   4266     __ cmp(ToOperand(current_capacity), Immediate(constant_key));
   4267     __ j(less_equal, deferred->entry());
   4268   } else if (current_capacity->IsConstantOperand()) {
   4269     int32_t constant_capacity =
   4270         ToInteger32(LConstantOperand::cast(current_capacity));
   4271     __ cmp(ToRegister(key), Immediate(constant_capacity));
   4272     __ j(greater_equal, deferred->entry());
   4273   } else {
   4274     __ cmp(ToRegister(key), ToRegister(current_capacity));
   4275     __ j(greater_equal, deferred->entry());
   4276   }
   4277 
   4278   __ mov(result, ToOperand(instr->elements()));
   4279   __ bind(deferred->exit());
   4280 }
   4281 
   4282 
   4283 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
   4284   // TODO(3095996): Get rid of this. For now, we need to make the
   4285   // result register contain a valid pointer because it is already
   4286   // contained in the register pointer map.
   4287   Register result = eax;
   4288   __ Move(result, Immediate(0));
   4289 
   4290   // We have to call a stub.
   4291   {
   4292     PushSafepointRegistersScope scope(this);
   4293     if (instr->object()->IsRegister()) {
   4294       __ Move(result, ToRegister(instr->object()));
   4295     } else {
   4296       __ mov(result, ToOperand(instr->object()));
   4297     }
   4298 
   4299     LOperand* key = instr->key();
   4300     if (key->IsConstantOperand()) {
   4301       LConstantOperand* constant_key = LConstantOperand::cast(key);
   4302       int32_t int_key = ToInteger32(constant_key);
   4303       if (Smi::IsValid(int_key)) {
   4304         __ mov(ebx, Immediate(Smi::FromInt(int_key)));
   4305       } else {
   4306         // We should never get here at runtime because there is a smi check on
   4307         // the key before this point.
   4308         __ int3();
   4309       }
   4310     } else {
   4311       __ Move(ebx, ToRegister(key));
   4312       __ SmiTag(ebx);
   4313     }
   4314 
   4315     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
   4316                                instr->hydrogen()->kind());
   4317     __ CallStub(&stub);
   4318     RecordSafepointWithLazyDeopt(
   4319         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   4320     __ StoreToSafepointRegisterSlot(result, result);
   4321   }
   4322 
   4323   // Deopt on smi, which means the elements array changed to dictionary mode.
   4324   __ test(result, Immediate(kSmiTagMask));
   4325   DeoptimizeIf(equal, instr, Deoptimizer::kSmi);
   4326 }
   4327 
   4328 
   4329 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   4330   Register object_reg = ToRegister(instr->object());
   4331 
   4332   Handle<Map> from_map = instr->original_map();
   4333   Handle<Map> to_map = instr->transitioned_map();
   4334   ElementsKind from_kind = instr->from_kind();
   4335   ElementsKind to_kind = instr->to_kind();
   4336 
   4337   Label not_applicable;
   4338   bool is_simple_map_transition =
   4339       IsSimpleMapChangeTransition(from_kind, to_kind);
   4340   Label::Distance branch_distance =
   4341       is_simple_map_transition ? Label::kNear : Label::kFar;
   4342   __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
   4343   __ j(not_equal, &not_applicable, branch_distance);
   4344   if (is_simple_map_transition) {
   4345     Register new_map_reg = ToRegister(instr->new_map_temp());
   4346     __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
   4347            Immediate(to_map));
   4348     // Write barrier.
   4349     DCHECK_NOT_NULL(instr->temp());
   4350     __ RecordWriteForMap(object_reg, to_map, new_map_reg,
   4351                          ToRegister(instr->temp()), kDontSaveFPRegs);
   4352   } else {
   4353     DCHECK(ToRegister(instr->context()).is(esi));
   4354     DCHECK(object_reg.is(eax));
   4355     PushSafepointRegistersScope scope(this);
   4356     __ mov(ebx, to_map);
   4357     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
   4358     __ CallStub(&stub);
   4359     RecordSafepointWithLazyDeopt(instr,
   4360         RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   4361   }
   4362   __ bind(&not_applicable);
   4363 }
   4364 
   4365 
   4366 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   4367   class DeferredStringCharCodeAt final : public LDeferredCode {
   4368    public:
   4369     DeferredStringCharCodeAt(LCodeGen* codegen,
   4370                              LStringCharCodeAt* instr,
   4371                              const X87Stack& x87_stack)
   4372         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4373     void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
   4374     LInstruction* instr() override { return instr_; }
   4375 
   4376    private:
   4377     LStringCharCodeAt* instr_;
   4378   };
   4379 
   4380   DeferredStringCharCodeAt* deferred =
   4381       new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
   4382 
   4383   StringCharLoadGenerator::Generate(masm(),
   4384                                     factory(),
   4385                                     ToRegister(instr->string()),
   4386                                     ToRegister(instr->index()),
   4387                                     ToRegister(instr->result()),
   4388                                     deferred->entry());
   4389   __ bind(deferred->exit());
   4390 }
   4391 
   4392 
   4393 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   4394   Register string = ToRegister(instr->string());
   4395   Register result = ToRegister(instr->result());
   4396 
   4397   // TODO(3095996): Get rid of this. For now, we need to make the
   4398   // result register contain a valid pointer because it is already
   4399   // contained in the register pointer map.
   4400   __ Move(result, Immediate(0));
   4401 
   4402   PushSafepointRegistersScope scope(this);
   4403   __ push(string);
   4404   // Push the index as a smi. This is safe because of the checks in
   4405   // DoStringCharCodeAt above.
   4406   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
   4407   if (instr->index()->IsConstantOperand()) {
   4408     Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
   4409                                       Representation::Smi());
   4410     __ push(immediate);
   4411   } else {
   4412     Register index = ToRegister(instr->index());
   4413     __ SmiTag(index);
   4414     __ push(index);
   4415   }
   4416   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2,
   4417                           instr, instr->context());
   4418   __ AssertSmi(eax);
   4419   __ SmiUntag(eax);
   4420   __ StoreToSafepointRegisterSlot(result, eax);
   4421 }
   4422 
   4423 
   4424 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   4425   class DeferredStringCharFromCode final : public LDeferredCode {
   4426    public:
   4427     DeferredStringCharFromCode(LCodeGen* codegen,
   4428                                LStringCharFromCode* instr,
   4429                                const X87Stack& x87_stack)
   4430         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4431     void Generate() override {
   4432       codegen()->DoDeferredStringCharFromCode(instr_);
   4433     }
   4434     LInstruction* instr() override { return instr_; }
   4435 
   4436    private:
   4437     LStringCharFromCode* instr_;
   4438   };
   4439 
   4440   DeferredStringCharFromCode* deferred =
   4441       new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
   4442 
   4443   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
   4444   Register char_code = ToRegister(instr->char_code());
   4445   Register result = ToRegister(instr->result());
   4446   DCHECK(!char_code.is(result));
   4447 
   4448   __ cmp(char_code, String::kMaxOneByteCharCode);
   4449   __ j(above, deferred->entry());
   4450   __ Move(result, Immediate(factory()->single_character_string_cache()));
   4451   __ mov(result, FieldOperand(result,
   4452                               char_code, times_pointer_size,
   4453                               FixedArray::kHeaderSize));
   4454   __ cmp(result, factory()->undefined_value());
   4455   __ j(equal, deferred->entry());
   4456   __ bind(deferred->exit());
   4457 }
   4458 
   4459 
   4460 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   4461   Register char_code = ToRegister(instr->char_code());
   4462   Register result = ToRegister(instr->result());
   4463 
   4464   // TODO(3095996): Get rid of this. For now, we need to make the
   4465   // result register contain a valid pointer because it is already
   4466   // contained in the register pointer map.
   4467   __ Move(result, Immediate(0));
   4468 
   4469   PushSafepointRegistersScope scope(this);
   4470   __ SmiTag(char_code);
   4471   __ push(char_code);
   4472   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
   4473                           instr->context());
   4474   __ StoreToSafepointRegisterSlot(result, eax);
   4475 }
   4476 
   4477 
   4478 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   4479   DCHECK(ToRegister(instr->context()).is(esi));
   4480   DCHECK(ToRegister(instr->left()).is(edx));
   4481   DCHECK(ToRegister(instr->right()).is(eax));
   4482   StringAddStub stub(isolate(),
   4483                      instr->hydrogen()->flags(),
   4484                      instr->hydrogen()->pretenure_flag());
   4485   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4486 }
   4487 
   4488 
   4489 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   4490   LOperand* input = instr->value();
   4491   LOperand* output = instr->result();
   4492   DCHECK(input->IsRegister() || input->IsStackSlot());
   4493   DCHECK(output->IsDoubleRegister());
   4494   if (input->IsRegister()) {
   4495     Register input_reg = ToRegister(input);
   4496     __ push(input_reg);
   4497     X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
   4498     __ pop(input_reg);
   4499   } else {
   4500     X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
   4501   }
   4502 }
   4503 
   4504 
   4505 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   4506   LOperand* input = instr->value();
   4507   LOperand* output = instr->result();
   4508   X87Register res = ToX87Register(output);
   4509   X87PrepareToWrite(res);
   4510   __ LoadUint32NoSSE2(ToRegister(input));
   4511   X87CommitWrite(res);
   4512 }
   4513 
   4514 
   4515 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
   4516   class DeferredNumberTagI final : public LDeferredCode {
   4517    public:
   4518     DeferredNumberTagI(LCodeGen* codegen,
   4519                        LNumberTagI* instr,
   4520                        const X87Stack& x87_stack)
   4521         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4522     void Generate() override {
   4523       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
   4524                                        SIGNED_INT32);
   4525     }
   4526     LInstruction* instr() override { return instr_; }
   4527 
   4528    private:
   4529     LNumberTagI* instr_;
   4530   };
   4531 
   4532   LOperand* input = instr->value();
   4533   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4534   Register reg = ToRegister(input);
   4535 
   4536   DeferredNumberTagI* deferred =
   4537       new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
   4538   __ SmiTag(reg);
   4539   __ j(overflow, deferred->entry());
   4540   __ bind(deferred->exit());
   4541 }
   4542 
   4543 
   4544 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4545   class DeferredNumberTagU final : public LDeferredCode {
   4546    public:
   4547     DeferredNumberTagU(LCodeGen* codegen,
   4548                        LNumberTagU* instr,
   4549                        const X87Stack& x87_stack)
   4550         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4551     void Generate() override {
   4552       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
   4553                                        UNSIGNED_INT32);
   4554     }
   4555     LInstruction* instr() override { return instr_; }
   4556 
   4557    private:
   4558     LNumberTagU* instr_;
   4559   };
   4560 
   4561   LOperand* input = instr->value();
   4562   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4563   Register reg = ToRegister(input);
   4564 
   4565   DeferredNumberTagU* deferred =
   4566       new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
   4567   __ cmp(reg, Immediate(Smi::kMaxValue));
   4568   __ j(above, deferred->entry());
   4569   __ SmiTag(reg);
   4570   __ bind(deferred->exit());
   4571 }
   4572 
   4573 
   4574 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
   4575                                      LOperand* value,
   4576                                      LOperand* temp,
   4577                                      IntegerSignedness signedness) {
   4578   Label done, slow;
   4579   Register reg = ToRegister(value);
   4580   Register tmp = ToRegister(temp);
   4581 
   4582   if (signedness == SIGNED_INT32) {
   4583     // There was overflow, so bits 30 and 31 of the original integer
   4584     // disagree. Try to allocate a heap number in new space and store
   4585     // the value in there. If that fails, call the runtime system.
   4586     __ SmiUntag(reg);
   4587     __ xor_(reg, 0x80000000);
   4588     __ push(reg);
   4589     __ fild_s(Operand(esp, 0));
   4590     __ pop(reg);
   4591   } else {
   4592     // There's no fild variant for unsigned values, so zero-extend to a 64-bit
   4593     // int manually.
   4594     __ push(Immediate(0));
   4595     __ push(reg);
   4596     __ fild_d(Operand(esp, 0));
   4597     __ pop(reg);
   4598     __ pop(reg);
   4599   }
   4600 
   4601   if (FLAG_inline_new) {
   4602     __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
   4603     __ jmp(&done, Label::kNear);
   4604   }
   4605 
   4606   // Slow case: Call the runtime system to do the number allocation.
   4607   __ bind(&slow);
   4608   {
   4609     // TODO(3095996): Put a valid pointer value in the stack slot where the
   4610     // result register is stored, as this register is in the pointer map, but
   4611     // contains an integer value.
   4612     __ Move(reg, Immediate(0));
   4613 
   4614     // Preserve the value of all registers.
   4615     PushSafepointRegistersScope scope(this);
   4616 
   4617     // NumberTagI and NumberTagD use the context from the frame, rather than
   4618     // the environment's HContext or HInlinedContext value.
   4619     // They only call Runtime::kAllocateHeapNumber.
   4620     // The corresponding HChange instructions are added in a phase that does
   4621     // not have easy access to the local context.
   4622     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4623     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4624     RecordSafepointWithRegisters(
   4625         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4626     __ StoreToSafepointRegisterSlot(reg, eax);
   4627   }
   4628 
   4629   __ bind(&done);
   4630   __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
   4631 }
   4632 
   4633 
   4634 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4635   class DeferredNumberTagD final : public LDeferredCode {
   4636    public:
   4637     DeferredNumberTagD(LCodeGen* codegen,
   4638                        LNumberTagD* instr,
   4639                        const X87Stack& x87_stack)
   4640         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4641     void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
   4642     LInstruction* instr() override { return instr_; }
   4643 
   4644    private:
   4645     LNumberTagD* instr_;
   4646   };
   4647 
   4648   Register reg = ToRegister(instr->result());
   4649 
   4650   // Put the value to the top of stack
   4651   X87Register src = ToX87Register(instr->value());
   4652   // Don't use X87LoadForUsage here, which is only used by Instruction which
   4653   // clobbers fp registers.
   4654   x87_stack_.Fxch(src);
   4655 
   4656   DeferredNumberTagD* deferred =
   4657       new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
   4658   if (FLAG_inline_new) {
   4659     Register tmp = ToRegister(instr->temp());
   4660     __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
   4661   } else {
   4662     __ jmp(deferred->entry());
   4663   }
   4664   __ bind(deferred->exit());
   4665   __ fst_d(FieldOperand(reg, HeapNumber::kValueOffset));
   4666 }
   4667 
   4668 
   4669 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4670   // TODO(3095996): Get rid of this. For now, we need to make the
   4671   // result register contain a valid pointer because it is already
   4672   // contained in the register pointer map.
   4673   Register reg = ToRegister(instr->result());
   4674   __ Move(reg, Immediate(0));
   4675 
   4676   PushSafepointRegistersScope scope(this);
   4677   // NumberTagI and NumberTagD use the context from the frame, rather than
   4678   // the environment's HContext or HInlinedContext value.
   4679   // They only call Runtime::kAllocateHeapNumber.
   4680   // The corresponding HChange instructions are added in a phase that does
   4681   // not have easy access to the local context.
   4682   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4683   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4684   RecordSafepointWithRegisters(
   4685       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4686   __ StoreToSafepointRegisterSlot(reg, eax);
   4687 }
   4688 
   4689 
   4690 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4691   HChange* hchange = instr->hydrogen();
   4692   Register input = ToRegister(instr->value());
   4693   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4694       hchange->value()->CheckFlag(HValue::kUint32)) {
   4695     __ test(input, Immediate(0xc0000000));
   4696     DeoptimizeIf(not_zero, instr, Deoptimizer::kOverflow);
   4697   }
   4698   __ SmiTag(input);
   4699   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4700       !hchange->value()->CheckFlag(HValue::kUint32)) {
   4701     DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   4702   }
   4703 }
   4704 
   4705 
   4706 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4707   LOperand* input = instr->value();
   4708   Register result = ToRegister(input);
   4709   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4710   if (instr->needs_check()) {
   4711     __ test(result, Immediate(kSmiTagMask));
   4712     DeoptimizeIf(not_zero, instr, Deoptimizer::kNotASmi);
   4713   } else {
   4714     __ AssertSmi(result);
   4715   }
   4716   __ SmiUntag(result);
   4717 }
   4718 
   4719 
   4720 void LCodeGen::EmitNumberUntagDNoSSE2(LNumberUntagD* instr, Register input_reg,
   4721                                       Register temp_reg, X87Register res_reg,
   4722                                       NumberUntagDMode mode) {
   4723   bool can_convert_undefined_to_nan =
   4724       instr->hydrogen()->can_convert_undefined_to_nan();
   4725   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
   4726 
   4727   Label load_smi, done;
   4728 
   4729   X87PrepareToWrite(res_reg);
   4730   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4731     // Smi check.
   4732     __ JumpIfSmi(input_reg, &load_smi);
   4733 
   4734     // Heap number map check.
   4735     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   4736            factory()->heap_number_map());
   4737     if (!can_convert_undefined_to_nan) {
   4738       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   4739     } else {
   4740       Label heap_number, convert;
   4741       __ j(equal, &heap_number);
   4742 
   4743       // Convert undefined (or hole) to NaN.
   4744       __ cmp(input_reg, factory()->undefined_value());
   4745       DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
   4746 
   4747       __ bind(&convert);
   4748       __ push(Immediate(0xffffffff));
   4749       __ push(Immediate(0x7fffffff));
   4750       __ fld_d(MemOperand(esp, 0));
   4751       __ lea(esp, Operand(esp, kDoubleSize));
   4752       __ jmp(&done, Label::kNear);
   4753 
   4754       __ bind(&heap_number);
   4755     }
   4756     // Heap number to x87 conversion.
   4757     __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
   4758     if (deoptimize_on_minus_zero) {
   4759       __ fldz();
   4760       __ FCmp();
   4761       __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
   4762       __ j(not_zero, &done, Label::kNear);
   4763 
   4764       // Use general purpose registers to check if we have -0.0
   4765       __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   4766       __ test(temp_reg, Immediate(HeapNumber::kSignMask));
   4767       __ j(zero, &done, Label::kNear);
   4768 
   4769       // Pop FPU stack before deoptimizing.
   4770       __ fstp(0);
   4771       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   4772     }
   4773     __ jmp(&done, Label::kNear);
   4774   } else {
   4775     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
   4776   }
   4777 
   4778   __ bind(&load_smi);
   4779   // Clobbering a temp is faster than re-tagging the
   4780   // input register since we avoid dependencies.
   4781   __ mov(temp_reg, input_reg);
   4782   __ SmiUntag(temp_reg);  // Untag smi before converting to float.
   4783   __ push(temp_reg);
   4784   __ fild_s(Operand(esp, 0));
   4785   __ add(esp, Immediate(kPointerSize));
   4786   __ bind(&done);
   4787   X87CommitWrite(res_reg);
   4788 }
   4789 
   4790 
   4791 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
   4792   Register input_reg = ToRegister(instr->value());
   4793 
   4794   // The input was optimistically untagged; revert it.
   4795   STATIC_ASSERT(kSmiTagSize == 1);
   4796   __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
   4797 
   4798   if (instr->truncating()) {
   4799     Label no_heap_number, check_bools, check_false;
   4800 
   4801     // Heap number map check.
   4802     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   4803            factory()->heap_number_map());
   4804     __ j(not_equal, &no_heap_number, Label::kNear);
   4805     __ TruncateHeapNumberToI(input_reg, input_reg);
   4806     __ jmp(done);
   4807 
   4808     __ bind(&no_heap_number);
   4809     // Check for Oddballs. Undefined/False is converted to zero and True to one
   4810     // for truncating conversions.
   4811     __ cmp(input_reg, factory()->undefined_value());
   4812     __ j(not_equal, &check_bools, Label::kNear);
   4813     __ Move(input_reg, Immediate(0));
   4814     __ jmp(done);
   4815 
   4816     __ bind(&check_bools);
   4817     __ cmp(input_reg, factory()->true_value());
   4818     __ j(not_equal, &check_false, Label::kNear);
   4819     __ Move(input_reg, Immediate(1));
   4820     __ jmp(done);
   4821 
   4822     __ bind(&check_false);
   4823     __ cmp(input_reg, factory()->false_value());
   4824     DeoptimizeIf(not_equal, instr,
   4825                  Deoptimizer::kNotAHeapNumberUndefinedBoolean);
   4826     __ Move(input_reg, Immediate(0));
   4827   } else {
   4828     // TODO(olivf) Converting a number on the fpu is actually quite slow. We
   4829     // should first try a fast conversion and then bailout to this slow case.
   4830     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   4831            isolate()->factory()->heap_number_map());
   4832     DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
   4833 
   4834     __ sub(esp, Immediate(kPointerSize));
   4835     __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
   4836 
   4837     if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
   4838       Label no_precision_lost, not_nan, zero_check;
   4839       __ fld(0);
   4840 
   4841       __ fist_s(MemOperand(esp, 0));
   4842       __ fild_s(MemOperand(esp, 0));
   4843       __ FCmp();
   4844       __ pop(input_reg);
   4845 
   4846       __ j(equal, &no_precision_lost, Label::kNear);
   4847       __ fstp(0);
   4848       DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
   4849       __ bind(&no_precision_lost);
   4850 
   4851       __ j(parity_odd, &not_nan);
   4852       __ fstp(0);
   4853       DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
   4854       __ bind(&not_nan);
   4855 
   4856       __ test(input_reg, Operand(input_reg));
   4857       __ j(zero, &zero_check, Label::kNear);
   4858       __ fstp(0);
   4859       __ jmp(done);
   4860 
   4861       __ bind(&zero_check);
   4862       // To check for minus zero, we load the value again as float, and check
   4863       // if that is still 0.
   4864       __ sub(esp, Immediate(kPointerSize));
   4865       __ fstp_s(Operand(esp, 0));
   4866       __ pop(input_reg);
   4867       __ test(input_reg, Operand(input_reg));
   4868       DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
   4869     } else {
   4870       __ fist_s(MemOperand(esp, 0));
   4871       __ fild_s(MemOperand(esp, 0));
   4872       __ FCmp();
   4873       __ pop(input_reg);
   4874       DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
   4875       DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
   4876     }
   4877   }
   4878 }
   4879 
   4880 
   4881 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   4882   class DeferredTaggedToI final : public LDeferredCode {
   4883    public:
   4884     DeferredTaggedToI(LCodeGen* codegen,
   4885                       LTaggedToI* instr,
   4886                       const X87Stack& x87_stack)
   4887         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4888     void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
   4889     LInstruction* instr() override { return instr_; }
   4890 
   4891    private:
   4892     LTaggedToI* instr_;
   4893   };
   4894 
   4895   LOperand* input = instr->value();
   4896   DCHECK(input->IsRegister());
   4897   Register input_reg = ToRegister(input);
   4898   DCHECK(input_reg.is(ToRegister(instr->result())));
   4899 
   4900   if (instr->hydrogen()->value()->representation().IsSmi()) {
   4901     __ SmiUntag(input_reg);
   4902   } else {
   4903     DeferredTaggedToI* deferred =
   4904         new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
   4905     // Optimistically untag the input.
   4906     // If the input is a HeapObject, SmiUntag will set the carry flag.
   4907     STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   4908     __ SmiUntag(input_reg);
   4909     // Branch to deferred code if the input was tagged.
   4910     // The deferred code will take care of restoring the tag.
   4911     __ j(carry, deferred->entry());
   4912     __ bind(deferred->exit());
   4913   }
   4914 }
   4915 
   4916 
   4917 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   4918   LOperand* input = instr->value();
   4919   DCHECK(input->IsRegister());
   4920   LOperand* temp = instr->temp();
   4921   DCHECK(temp->IsRegister());
   4922   LOperand* result = instr->result();
   4923   DCHECK(result->IsDoubleRegister());
   4924 
   4925   Register input_reg = ToRegister(input);
   4926   Register temp_reg = ToRegister(temp);
   4927 
   4928   HValue* value = instr->hydrogen()->value();
   4929   NumberUntagDMode mode = value->representation().IsSmi()
   4930       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   4931 
   4932   EmitNumberUntagDNoSSE2(instr, input_reg, temp_reg, ToX87Register(result),
   4933                          mode);
   4934 }
   4935 
   4936 
   4937 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
   4938   LOperand* input = instr->value();
   4939   DCHECK(input->IsDoubleRegister());
   4940   LOperand* result = instr->result();
   4941   DCHECK(result->IsRegister());
   4942   Register result_reg = ToRegister(result);
   4943 
   4944   if (instr->truncating()) {
   4945     X87Register input_reg = ToX87Register(input);
   4946     X87Fxch(input_reg);
   4947     __ TruncateX87TOSToI(result_reg);
   4948   } else {
   4949     Label lost_precision, is_nan, minus_zero, done;
   4950     X87Register input_reg = ToX87Register(input);
   4951     X87Fxch(input_reg);
   4952     __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
   4953                  &lost_precision, &is_nan, &minus_zero);
   4954     __ jmp(&done);
   4955     __ bind(&lost_precision);
   4956     DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
   4957     __ bind(&is_nan);
   4958     DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
   4959     __ bind(&minus_zero);
   4960     DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
   4961     __ bind(&done);
   4962   }
   4963 }
   4964 
   4965 
   4966 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
   4967   LOperand* input = instr->value();
   4968   DCHECK(input->IsDoubleRegister());
   4969   LOperand* result = instr->result();
   4970   DCHECK(result->IsRegister());
   4971   Register result_reg = ToRegister(result);
   4972 
   4973   Label lost_precision, is_nan, minus_zero, done;
   4974   X87Register input_reg = ToX87Register(input);
   4975   X87Fxch(input_reg);
   4976   __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
   4977                &lost_precision, &is_nan, &minus_zero);
   4978   __ jmp(&done);
   4979   __ bind(&lost_precision);
   4980   DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
   4981   __ bind(&is_nan);
   4982   DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
   4983   __ bind(&minus_zero);
   4984   DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
   4985   __ bind(&done);
   4986   __ SmiTag(result_reg);
   4987   DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
   4988 }
   4989 
   4990 
   4991 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   4992   LOperand* input = instr->value();
   4993   __ test(ToOperand(input), Immediate(kSmiTagMask));
   4994   DeoptimizeIf(not_zero, instr, Deoptimizer::kNotASmi);
   4995 }
   4996 
   4997 
   4998 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   4999   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   5000     LOperand* input = instr->value();
   5001     __ test(ToOperand(input), Immediate(kSmiTagMask));
   5002     DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
   5003   }
   5004 }
   5005 
   5006 
   5007 void LCodeGen::DoCheckArrayBufferNotNeutered(
   5008     LCheckArrayBufferNotNeutered* instr) {
   5009   Register view = ToRegister(instr->view());
   5010   Register scratch = ToRegister(instr->scratch());
   5011 
   5012   __ mov(scratch, FieldOperand(view, JSArrayBufferView::kBufferOffset));
   5013   __ test_b(FieldOperand(scratch, JSArrayBuffer::kBitFieldOffset),
   5014             Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
   5015   DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
   5016 }
   5017 
   5018 
   5019 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   5020   Register input = ToRegister(instr->value());
   5021   Register temp = ToRegister(instr->temp());
   5022 
   5023   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   5024 
   5025   if (instr->hydrogen()->is_interval_check()) {
   5026     InstanceType first;
   5027     InstanceType last;
   5028     instr->hydrogen()->GetCheckInterval(&first, &last);
   5029 
   5030     __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(first));
   5031 
   5032     // If there is only one type in the interval check for equality.
   5033     if (first == last) {
   5034       DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
   5035     } else {
   5036       DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
   5037       // Omit check for the last type.
   5038       if (last != LAST_TYPE) {
   5039         __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(last));
   5040         DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
   5041       }
   5042     }
   5043   } else {
   5044     uint8_t mask;
   5045     uint8_t tag;
   5046     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   5047 
   5048     if (base::bits::IsPowerOfTwo32(mask)) {
   5049       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
   5050       __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(mask));
   5051       DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
   5052                    Deoptimizer::kWrongInstanceType);
   5053     } else {
   5054       __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
   5055       __ and_(temp, mask);
   5056       __ cmp(temp, tag);
   5057       DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
   5058     }
   5059   }
   5060 }
   5061 
   5062 
   5063 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   5064   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   5065   if (instr->hydrogen()->object_in_new_space()) {
   5066     Register reg = ToRegister(instr->value());
   5067     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   5068     __ cmp(reg, Operand::ForCell(cell));
   5069   } else {
   5070     Operand operand = ToOperand(instr->value());
   5071     __ cmp(operand, object);
   5072   }
   5073   DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
   5074 }
   5075 
   5076 
   5077 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   5078   {
   5079     PushSafepointRegistersScope scope(this);
   5080     __ push(object);
   5081     __ xor_(esi, esi);
   5082     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   5083     RecordSafepointWithRegisters(
   5084         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   5085 
   5086     __ test(eax, Immediate(kSmiTagMask));
   5087   }
   5088   DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
   5089 }
   5090 
   5091 
   5092 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   5093   class DeferredCheckMaps final : public LDeferredCode {
   5094    public:
   5095     DeferredCheckMaps(LCodeGen* codegen,
   5096                       LCheckMaps* instr,
   5097                       Register object,
   5098                       const X87Stack& x87_stack)
   5099         : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
   5100       SetExit(check_maps());
   5101     }
   5102     void Generate() override {
   5103       codegen()->DoDeferredInstanceMigration(instr_, object_);
   5104     }
   5105     Label* check_maps() { return &check_maps_; }
   5106     LInstruction* instr() override { return instr_; }
   5107 
   5108    private:
   5109     LCheckMaps* instr_;
   5110     Label check_maps_;
   5111     Register object_;
   5112   };
   5113 
   5114   if (instr->hydrogen()->IsStabilityCheck()) {
   5115     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5116     for (int i = 0; i < maps->size(); ++i) {
   5117       AddStabilityDependency(maps->at(i).handle());
   5118     }
   5119     return;
   5120   }
   5121 
   5122   LOperand* input = instr->value();
   5123   DCHECK(input->IsRegister());
   5124   Register reg = ToRegister(input);
   5125 
   5126   DeferredCheckMaps* deferred = NULL;
   5127   if (instr->hydrogen()->HasMigrationTarget()) {
   5128     deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
   5129     __ bind(deferred->check_maps());
   5130   }
   5131 
   5132   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5133   Label success;
   5134   for (int i = 0; i < maps->size() - 1; i++) {
   5135     Handle<Map> map = maps->at(i).handle();
   5136     __ CompareMap(reg, map);
   5137     __ j(equal, &success, Label::kNear);
   5138   }
   5139 
   5140   Handle<Map> map = maps->at(maps->size() - 1).handle();
   5141   __ CompareMap(reg, map);
   5142   if (instr->hydrogen()->HasMigrationTarget()) {
   5143     __ j(not_equal, deferred->entry());
   5144   } else {
   5145     DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
   5146   }
   5147 
   5148   __ bind(&success);
   5149 }
   5150 
   5151 
   5152 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   5153   X87Register value_reg = ToX87Register(instr->unclamped());
   5154   Register result_reg = ToRegister(instr->result());
   5155   X87Fxch(value_reg);
   5156   __ ClampTOSToUint8(result_reg);
   5157 }
   5158 
   5159 
   5160 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   5161   DCHECK(instr->unclamped()->Equals(instr->result()));
   5162   Register value_reg = ToRegister(instr->result());
   5163   __ ClampUint8(value_reg);
   5164 }
   5165 
   5166 
   5167 void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
   5168   Register input_reg = ToRegister(instr->unclamped());
   5169   Register result_reg = ToRegister(instr->result());
   5170   Register scratch = ToRegister(instr->scratch());
   5171   Register scratch2 = ToRegister(instr->scratch2());
   5172   Register scratch3 = ToRegister(instr->scratch3());
   5173   Label is_smi, done, heap_number, valid_exponent,
   5174       largest_value, zero_result, maybe_nan_or_infinity;
   5175 
   5176   __ JumpIfSmi(input_reg, &is_smi);
   5177 
   5178   // Check for heap number
   5179   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5180          factory()->heap_number_map());
   5181   __ j(equal, &heap_number, Label::kNear);
   5182 
   5183   // Check for undefined. Undefined is converted to zero for clamping
   5184   // conversions.
   5185   __ cmp(input_reg, factory()->undefined_value());
   5186   DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
   5187   __ jmp(&zero_result, Label::kNear);
   5188 
   5189   // Heap number
   5190   __ bind(&heap_number);
   5191 
   5192   // Surprisingly, all of the hand-crafted bit-manipulations below are much
   5193   // faster than the x86 FPU built-in instruction, especially since "banker's
   5194   // rounding" would be additionally very expensive
   5195 
   5196   // Get exponent word.
   5197   __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   5198   __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   5199 
   5200   // Test for negative values --> clamp to zero
   5201   __ test(scratch, scratch);
   5202   __ j(negative, &zero_result, Label::kNear);
   5203 
   5204   // Get exponent alone in scratch2.
   5205   __ mov(scratch2, scratch);
   5206   __ and_(scratch2, HeapNumber::kExponentMask);
   5207   __ shr(scratch2, HeapNumber::kExponentShift);
   5208   __ j(zero, &zero_result, Label::kNear);
   5209   __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
   5210   __ j(negative, &zero_result, Label::kNear);
   5211 
   5212   const uint32_t non_int8_exponent = 7;
   5213   __ cmp(scratch2, Immediate(non_int8_exponent + 1));
   5214   // If the exponent is too big, check for special values.
   5215   __ j(greater, &maybe_nan_or_infinity, Label::kNear);
   5216 
   5217   __ bind(&valid_exponent);
   5218   // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
   5219   // < 7. The shift bias is the number of bits to shift the mantissa such that
   5220   // with an exponent of 7 such the that top-most one is in bit 30, allowing
   5221   // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
   5222   // 1).
   5223   int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
   5224   __ lea(result_reg, MemOperand(scratch2, shift_bias));
   5225   // Here result_reg (ecx) is the shift, scratch is the exponent word.  Get the
   5226   // top bits of the mantissa.
   5227   __ and_(scratch, HeapNumber::kMantissaMask);
   5228   // Put back the implicit 1 of the mantissa
   5229   __ or_(scratch, 1 << HeapNumber::kExponentShift);
   5230   // Shift up to round
   5231   __ shl_cl(scratch);
   5232   // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
   5233   // use the bit in the "ones" place and add it to the "halves" place, which has
   5234   // the effect of rounding to even.
   5235   __ mov(scratch2, scratch);
   5236   const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
   5237   const uint32_t one_bit_shift = one_half_bit_shift + 1;
   5238   __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
   5239   __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
   5240   Label no_round;
   5241   __ j(less, &no_round, Label::kNear);
   5242   Label round_up;
   5243   __ mov(scratch2, Immediate(1 << one_half_bit_shift));
   5244   __ j(greater, &round_up, Label::kNear);
   5245   __ test(scratch3, scratch3);
   5246   __ j(not_zero, &round_up, Label::kNear);
   5247   __ mov(scratch2, scratch);
   5248   __ and_(scratch2, Immediate(1 << one_bit_shift));
   5249   __ shr(scratch2, 1);
   5250   __ bind(&round_up);
   5251   __ add(scratch, scratch2);
   5252   __ j(overflow, &largest_value, Label::kNear);
   5253   __ bind(&no_round);
   5254   __ shr(scratch, 23);
   5255   __ mov(result_reg, scratch);
   5256   __ jmp(&done, Label::kNear);
   5257 
   5258   __ bind(&maybe_nan_or_infinity);
   5259   // Check for NaN/Infinity, all other values map to 255
   5260   __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
   5261   __ j(not_equal, &largest_value, Label::kNear);
   5262 
   5263   // Check for NaN, which differs from Infinity in that at least one mantissa
   5264   // bit is set.
   5265   __ and_(scratch, HeapNumber::kMantissaMask);
   5266   __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   5267   __ j(not_zero, &zero_result, Label::kNear);  // M!=0 --> NaN
   5268   // Infinity -> Fall through to map to 255.
   5269 
   5270   __ bind(&largest_value);
   5271   __ mov(result_reg, Immediate(255));
   5272   __ jmp(&done, Label::kNear);
   5273 
   5274   __ bind(&zero_result);
   5275   __ xor_(result_reg, result_reg);
   5276   __ jmp(&done, Label::kNear);
   5277 
   5278   // smi
   5279   __ bind(&is_smi);
   5280   if (!input_reg.is(result_reg)) {
   5281     __ mov(result_reg, input_reg);
   5282   }
   5283   __ SmiUntag(result_reg);
   5284   __ ClampUint8(result_reg);
   5285   __ bind(&done);
   5286 }
   5287 
   5288 
   5289 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   5290   X87Register value_reg = ToX87Register(instr->value());
   5291   Register result_reg = ToRegister(instr->result());
   5292   X87Fxch(value_reg);
   5293   __ sub(esp, Immediate(kDoubleSize));
   5294   __ fst_d(Operand(esp, 0));
   5295   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   5296     __ mov(result_reg, Operand(esp, kPointerSize));
   5297   } else {
   5298     __ mov(result_reg, Operand(esp, 0));
   5299   }
   5300   __ add(esp, Immediate(kDoubleSize));
   5301 }
   5302 
   5303 
   5304 void LCodeGen::DoAllocate(LAllocate* instr) {
   5305   class DeferredAllocate final : public LDeferredCode {
   5306    public:
   5307     DeferredAllocate(LCodeGen* codegen,
   5308                      LAllocate* instr,
   5309                      const X87Stack& x87_stack)
   5310         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   5311     void Generate() override { codegen()->DoDeferredAllocate(instr_); }
   5312     LInstruction* instr() override { return instr_; }
   5313 
   5314    private:
   5315     LAllocate* instr_;
   5316   };
   5317 
   5318   DeferredAllocate* deferred =
   5319       new(zone()) DeferredAllocate(this, instr, x87_stack_);
   5320 
   5321   Register result = ToRegister(instr->result());
   5322   Register temp = ToRegister(instr->temp());
   5323 
   5324   // Allocate memory for the object.
   5325   AllocationFlags flags = NO_ALLOCATION_FLAGS;
   5326   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5327     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5328   }
   5329   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5330     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5331     flags = static_cast<AllocationFlags>(flags | PRETENURE);
   5332   }
   5333 
   5334   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
   5335     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
   5336   }
   5337   DCHECK(!instr->hydrogen()->IsAllocationFolded());
   5338 
   5339   if (instr->size()->IsConstantOperand()) {
   5340     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5341     CHECK(size <= Page::kMaxRegularHeapObjectSize);
   5342     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5343   } else {
   5344     Register size = ToRegister(instr->size());
   5345     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5346   }
   5347 
   5348   __ bind(deferred->exit());
   5349 
   5350   if (instr->hydrogen()->MustPrefillWithFiller()) {
   5351     if (instr->size()->IsConstantOperand()) {
   5352       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5353       __ mov(temp, (size / kPointerSize) - 1);
   5354     } else {
   5355       temp = ToRegister(instr->size());
   5356       __ shr(temp, kPointerSizeLog2);
   5357       __ dec(temp);
   5358     }
   5359     Label loop;
   5360     __ bind(&loop);
   5361     __ mov(FieldOperand(result, temp, times_pointer_size, 0),
   5362         isolate()->factory()->one_pointer_filler_map());
   5363     __ dec(temp);
   5364     __ j(not_zero, &loop);
   5365   }
   5366 }
   5367 
   5368 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
   5369   DCHECK(instr->hydrogen()->IsAllocationFolded());
   5370   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
   5371   Register result = ToRegister(instr->result());
   5372   Register temp = ToRegister(instr->temp());
   5373 
   5374   AllocationFlags flags = ALLOCATION_FOLDED;
   5375   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5376     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5377   }
   5378   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5379     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5380     flags = static_cast<AllocationFlags>(flags | PRETENURE);
   5381   }
   5382   if (instr->size()->IsConstantOperand()) {
   5383     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5384     CHECK(size <= Page::kMaxRegularHeapObjectSize);
   5385     __ FastAllocate(size, result, temp, flags);
   5386   } else {
   5387     Register size = ToRegister(instr->size());
   5388     __ FastAllocate(size, result, temp, flags);
   5389   }
   5390 }
   5391 
   5392 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   5393   Register result = ToRegister(instr->result());
   5394 
   5395   // TODO(3095996): Get rid of this. For now, we need to make the
   5396   // result register contain a valid pointer because it is already
   5397   // contained in the register pointer map.
   5398   __ Move(result, Immediate(Smi::FromInt(0)));
   5399 
   5400   PushSafepointRegistersScope scope(this);
   5401   if (instr->size()->IsRegister()) {
   5402     Register size = ToRegister(instr->size());
   5403     DCHECK(!size.is(result));
   5404     __ SmiTag(ToRegister(instr->size()));
   5405     __ push(size);
   5406   } else {
   5407     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5408     if (size >= 0 && size <= Smi::kMaxValue) {
   5409       __ push(Immediate(Smi::FromInt(size)));
   5410     } else {
   5411       // We should never get here at runtime => abort
   5412       __ int3();
   5413       return;
   5414     }
   5415   }
   5416 
   5417   int flags = AllocateDoubleAlignFlag::encode(
   5418       instr->hydrogen()->MustAllocateDoubleAligned());
   5419   if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5420     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5421     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
   5422   } else {
   5423     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   5424   }
   5425   __ push(Immediate(Smi::FromInt(flags)));
   5426 
   5427   CallRuntimeFromDeferred(
   5428       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
   5429   __ StoreToSafepointRegisterSlot(result, eax);
   5430 
   5431   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
   5432     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
   5433     if (instr->hydrogen()->IsOldSpaceAllocation()) {
   5434       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5435       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
   5436     }
   5437     // If the allocation folding dominator allocate triggered a GC, allocation
   5438     // happend in the runtime. We have to reset the top pointer to virtually
   5439     // undo the allocation.
   5440     ExternalReference allocation_top =
   5441         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
   5442     __ sub(eax, Immediate(kHeapObjectTag));
   5443     __ mov(Operand::StaticVariable(allocation_top), eax);
   5444     __ add(eax, Immediate(kHeapObjectTag));
   5445   }
   5446 }
   5447 
   5448 
   5449 void LCodeGen::DoTypeof(LTypeof* instr) {
   5450   DCHECK(ToRegister(instr->context()).is(esi));
   5451   DCHECK(ToRegister(instr->value()).is(ebx));
   5452   Label end, do_call;
   5453   Register value_register = ToRegister(instr->value());
   5454   __ JumpIfNotSmi(value_register, &do_call);
   5455   __ mov(eax, Immediate(isolate()->factory()->number_string()));
   5456   __ jmp(&end);
   5457   __ bind(&do_call);
   5458   TypeofStub stub(isolate());
   5459   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5460   __ bind(&end);
   5461 }
   5462 
   5463 
   5464 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5465   Register input = ToRegister(instr->value());
   5466   Condition final_branch_condition = EmitTypeofIs(instr, input);
   5467   if (final_branch_condition != no_condition) {
   5468     EmitBranch(instr, final_branch_condition);
   5469   }
   5470 }
   5471 
   5472 
   5473 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
   5474   Label* true_label = instr->TrueLabel(chunk_);
   5475   Label* false_label = instr->FalseLabel(chunk_);
   5476   Handle<String> type_name = instr->type_literal();
   5477   int left_block = instr->TrueDestination(chunk_);
   5478   int right_block = instr->FalseDestination(chunk_);
   5479   int next_block = GetNextEmittedBlock();
   5480 
   5481   Label::Distance true_distance = left_block == next_block ? Label::kNear
   5482                                                            : Label::kFar;
   5483   Label::Distance false_distance = right_block == next_block ? Label::kNear
   5484                                                              : Label::kFar;
   5485   Condition final_branch_condition = no_condition;
   5486   if (String::Equals(type_name, factory()->number_string())) {
   5487     __ JumpIfSmi(input, true_label, true_distance);
   5488     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
   5489            factory()->heap_number_map());
   5490     final_branch_condition = equal;
   5491 
   5492   } else if (String::Equals(type_name, factory()->string_string())) {
   5493     __ JumpIfSmi(input, false_label, false_distance);
   5494     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
   5495     final_branch_condition = below;
   5496 
   5497   } else if (String::Equals(type_name, factory()->symbol_string())) {
   5498     __ JumpIfSmi(input, false_label, false_distance);
   5499     __ CmpObjectType(input, SYMBOL_TYPE, input);
   5500     final_branch_condition = equal;
   5501 
   5502   } else if (String::Equals(type_name, factory()->boolean_string())) {
   5503     __ cmp(input, factory()->true_value());
   5504     __ j(equal, true_label, true_distance);
   5505     __ cmp(input, factory()->false_value());
   5506     final_branch_condition = equal;
   5507 
   5508   } else if (String::Equals(type_name, factory()->undefined_string())) {
   5509     __ cmp(input, factory()->null_value());
   5510     __ j(equal, false_label, false_distance);
   5511     __ JumpIfSmi(input, false_label, false_distance);
   5512     // Check for undetectable objects => true.
   5513     __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
   5514     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5515               Immediate(1 << Map::kIsUndetectable));
   5516     final_branch_condition = not_zero;
   5517 
   5518   } else if (String::Equals(type_name, factory()->function_string())) {
   5519     __ JumpIfSmi(input, false_label, false_distance);
   5520     // Check for callable and not undetectable objects => true.
   5521     __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
   5522     __ movzx_b(input, FieldOperand(input, Map::kBitFieldOffset));
   5523     __ and_(input, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
   5524     __ cmp(input, 1 << Map::kIsCallable);
   5525     final_branch_condition = equal;
   5526 
   5527   } else if (String::Equals(type_name, factory()->object_string())) {
   5528     __ JumpIfSmi(input, false_label, false_distance);
   5529     __ cmp(input, factory()->null_value());
   5530     __ j(equal, true_label, true_distance);
   5531     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   5532     __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
   5533     __ j(below, false_label, false_distance);
   5534     // Check for callable or undetectable objects => false.
   5535     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5536               Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
   5537     final_branch_condition = zero;
   5538 
   5539 // clang-format off
   5540 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)         \
   5541   } else if (String::Equals(type_name, factory()->type##_string())) { \
   5542     __ JumpIfSmi(input, false_label, false_distance);                 \
   5543     __ cmp(FieldOperand(input, HeapObject::kMapOffset),               \
   5544            factory()->type##_map());                                  \
   5545     final_branch_condition = equal;
   5546   SIMD128_TYPES(SIMD128_TYPE)
   5547 #undef SIMD128_TYPE
   5548     // clang-format on
   5549 
   5550   } else {
   5551     __ jmp(false_label, false_distance);
   5552   }
   5553   return final_branch_condition;
   5554 }
   5555 
   5556 
   5557 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   5558   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
   5559     // Ensure that we have enough space after the previous lazy-bailout
   5560     // instruction for patching the code here.
   5561     int current_pc = masm()->pc_offset();
   5562     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
   5563       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   5564       __ Nop(padding_size);
   5565     }
   5566   }
   5567   last_lazy_deopt_pc_ = masm()->pc_offset();
   5568 }
   5569 
   5570 
   5571 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   5572   last_lazy_deopt_pc_ = masm()->pc_offset();
   5573   DCHECK(instr->HasEnvironment());
   5574   LEnvironment* env = instr->environment();
   5575   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5576   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5577 }
   5578 
   5579 
   5580 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   5581   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   5582   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   5583   // needed return address), even though the implementation of LAZY and EAGER is
   5584   // now identical. When LAZY is eventually completely folded into EAGER, remove
   5585   // the special case below.
   5586   if (info()->IsStub() && type == Deoptimizer::EAGER) {
   5587     type = Deoptimizer::LAZY;
   5588   }
   5589   DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
   5590 }
   5591 
   5592 
   5593 void LCodeGen::DoDummy(LDummy* instr) {
   5594   // Nothing to see here, move on!
   5595 }
   5596 
   5597 
   5598 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   5599   // Nothing to see here, move on!
   5600 }
   5601 
   5602 
   5603 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   5604   PushSafepointRegistersScope scope(this);
   5605   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   5606   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
   5607   RecordSafepointWithLazyDeopt(
   5608       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   5609   DCHECK(instr->HasEnvironment());
   5610   LEnvironment* env = instr->environment();
   5611   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5612 }
   5613 
   5614 
   5615 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   5616   class DeferredStackCheck final : public LDeferredCode {
   5617    public:
   5618     DeferredStackCheck(LCodeGen* codegen,
   5619                        LStackCheck* instr,
   5620                        const X87Stack& x87_stack)
   5621         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   5622     void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
   5623     LInstruction* instr() override { return instr_; }
   5624 
   5625    private:
   5626     LStackCheck* instr_;
   5627   };
   5628 
   5629   DCHECK(instr->HasEnvironment());
   5630   LEnvironment* env = instr->environment();
   5631   // There is no LLazyBailout instruction for stack-checks. We have to
   5632   // prepare for lazy deoptimization explicitly here.
   5633   if (instr->hydrogen()->is_function_entry()) {
   5634     // Perform stack overflow check.
   5635     Label done;
   5636     ExternalReference stack_limit =
   5637         ExternalReference::address_of_stack_limit(isolate());
   5638     __ cmp(esp, Operand::StaticVariable(stack_limit));
   5639     __ j(above_equal, &done, Label::kNear);
   5640 
   5641     DCHECK(instr->context()->IsRegister());
   5642     DCHECK(ToRegister(instr->context()).is(esi));
   5643     CallCode(isolate()->builtins()->StackCheck(),
   5644              RelocInfo::CODE_TARGET,
   5645              instr);
   5646     __ bind(&done);
   5647   } else {
   5648     DCHECK(instr->hydrogen()->is_backwards_branch());
   5649     // Perform stack overflow check if this goto needs it before jumping.
   5650     DeferredStackCheck* deferred_stack_check =
   5651         new(zone()) DeferredStackCheck(this, instr, x87_stack_);
   5652     ExternalReference stack_limit =
   5653         ExternalReference::address_of_stack_limit(isolate());
   5654     __ cmp(esp, Operand::StaticVariable(stack_limit));
   5655     __ j(below, deferred_stack_check->entry());
   5656     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   5657     __ bind(instr->done_label());
   5658     deferred_stack_check->SetExit(instr->done_label());
   5659     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5660     // Don't record a deoptimization index for the safepoint here.
   5661     // This will be done explicitly when emitting call and the safepoint in
   5662     // the deferred code.
   5663   }
   5664 }
   5665 
   5666 
   5667 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   5668   // This is a pseudo-instruction that ensures that the environment here is
   5669   // properly registered for deoptimization and records the assembler's PC
   5670   // offset.
   5671   LEnvironment* environment = instr->environment();
   5672 
   5673   // If the environment were already registered, we would have no way of
   5674   // backpatching it with the spill slot operands.
   5675   DCHECK(!environment->HasBeenRegistered());
   5676   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   5677 
   5678   GenerateOsrPrologue();
   5679 }
   5680 
   5681 
   5682 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   5683   DCHECK(ToRegister(instr->context()).is(esi));
   5684 
   5685   Label use_cache, call_runtime;
   5686   __ CheckEnumCache(&call_runtime);
   5687 
   5688   __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
   5689   __ jmp(&use_cache, Label::kNear);
   5690 
   5691   // Get the set of properties to enumerate.
   5692   __ bind(&call_runtime);
   5693   __ push(eax);
   5694   CallRuntime(Runtime::kForInEnumerate, instr);
   5695   __ bind(&use_cache);
   5696 }
   5697 
   5698 
   5699 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   5700   Register map = ToRegister(instr->map());
   5701   Register result = ToRegister(instr->result());
   5702   Label load_cache, done;
   5703   __ EnumLength(result, map);
   5704   __ cmp(result, Immediate(Smi::FromInt(0)));
   5705   __ j(not_equal, &load_cache, Label::kNear);
   5706   __ mov(result, isolate()->factory()->empty_fixed_array());
   5707   __ jmp(&done, Label::kNear);
   5708 
   5709   __ bind(&load_cache);
   5710   __ LoadInstanceDescriptors(map, result);
   5711   __ mov(result,
   5712          FieldOperand(result, DescriptorArray::kEnumCacheOffset));
   5713   __ mov(result,
   5714          FieldOperand(result, FixedArray::SizeFor(instr->idx())));
   5715   __ bind(&done);
   5716   __ test(result, result);
   5717   DeoptimizeIf(equal, instr, Deoptimizer::kNoCache);
   5718 }
   5719 
   5720 
   5721 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5722   Register object = ToRegister(instr->value());
   5723   __ cmp(ToRegister(instr->map()),
   5724          FieldOperand(object, HeapObject::kMapOffset));
   5725   DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
   5726 }
   5727 
   5728 
   5729 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5730                                            Register object,
   5731                                            Register index) {
   5732   PushSafepointRegistersScope scope(this);
   5733   __ push(object);
   5734   __ push(index);
   5735   __ xor_(esi, esi);
   5736   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5737   RecordSafepointWithRegisters(
   5738       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5739   __ StoreToSafepointRegisterSlot(object, eax);
   5740 }
   5741 
   5742 
   5743 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5744   class DeferredLoadMutableDouble final : public LDeferredCode {
   5745    public:
   5746     DeferredLoadMutableDouble(LCodeGen* codegen,
   5747                               LLoadFieldByIndex* instr,
   5748                               Register object,
   5749                               Register index,
   5750                               const X87Stack& x87_stack)
   5751         : LDeferredCode(codegen, x87_stack),
   5752           instr_(instr),
   5753           object_(object),
   5754           index_(index) {
   5755     }
   5756     void Generate() override {
   5757       codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
   5758     }
   5759     LInstruction* instr() override { return instr_; }
   5760 
   5761    private:
   5762     LLoadFieldByIndex* instr_;
   5763     Register object_;
   5764     Register index_;
   5765   };
   5766 
   5767   Register object = ToRegister(instr->object());
   5768   Register index = ToRegister(instr->index());
   5769 
   5770   DeferredLoadMutableDouble* deferred;
   5771   deferred = new(zone()) DeferredLoadMutableDouble(
   5772       this, instr, object, index, x87_stack_);
   5773 
   5774   Label out_of_object, done;
   5775   __ test(index, Immediate(Smi::FromInt(1)));
   5776   __ j(not_zero, deferred->entry());
   5777 
   5778   __ sar(index, 1);
   5779 
   5780   __ cmp(index, Immediate(0));
   5781   __ j(less, &out_of_object, Label::kNear);
   5782   __ mov(object, FieldOperand(object,
   5783                               index,
   5784                               times_half_pointer_size,
   5785                               JSObject::kHeaderSize));
   5786   __ jmp(&done, Label::kNear);
   5787 
   5788   __ bind(&out_of_object);
   5789   __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
   5790   __ neg(index);
   5791   // Index is now equal to out of object property index plus 1.
   5792   __ mov(object, FieldOperand(object,
   5793                               index,
   5794                               times_half_pointer_size,
   5795                               FixedArray::kHeaderSize - kPointerSize));
   5796   __ bind(deferred->exit());
   5797   __ bind(&done);
   5798 }
   5799 
   5800 #undef __
   5801 
   5802 }  // namespace internal
   5803 }  // namespace v8
   5804 
   5805 #endif  // V8_TARGET_ARCH_X87
   5806