1 /************************************************************************** 2 * 3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. 4 * All Rights Reserved. 5 * Copyright 2009 VMware, Inc. All Rights Reserved. 6 * Copyright 2010-2011 Intel Corporation 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the 17 * next paragraph) shall be included in all copies or substantial portions 18 * of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 27 * 28 **************************************************************************/ 29 30 extern "C" { 31 #include "glheader.h" 32 #include "imports.h" 33 #include "mtypes.h" 34 #include "main/uniforms.h" 35 #include "main/macros.h" 36 #include "main/samplerobj.h" 37 #include "program/program.h" 38 #include "program/prog_parameter.h" 39 #include "program/prog_cache.h" 40 #include "program/prog_instruction.h" 41 #include "program/prog_print.h" 42 #include "program/prog_statevars.h" 43 #include "program/programopt.h" 44 #include "texenvprogram.h" 45 } 46 #include "main/uniforms.h" 47 #include "../glsl/glsl_types.h" 48 #include "../glsl/ir.h" 49 #include "../glsl/ir_builder.h" 50 #include "../glsl/glsl_symbol_table.h" 51 #include "../glsl/glsl_parser_extras.h" 52 #include "../glsl/ir_optimization.h" 53 #include "../glsl/ir_print_visitor.h" 54 #include "../program/ir_to_mesa.h" 55 56 using namespace ir_builder; 57 58 /* 59 * Note on texture units: 60 * 61 * The number of texture units supported by fixed-function fragment 62 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS. 63 * That's because there's a one-to-one correspondence between texture 64 * coordinates and samplers in fixed-function processing. 65 * 66 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS 67 * sets of texcoords, so is fixed-function fragment processing. 68 * 69 * We can safely use ctx->Const.MaxTextureUnits for loop bounds. 70 */ 71 72 73 struct texenvprog_cache_item 74 { 75 GLuint hash; 76 void *key; 77 struct gl_shader_program *data; 78 struct texenvprog_cache_item *next; 79 }; 80 81 static GLboolean 82 texenv_doing_secondary_color(struct gl_context *ctx) 83 { 84 if (ctx->Light.Enabled && 85 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) 86 return GL_TRUE; 87 88 if (ctx->Fog.ColorSumEnabled) 89 return GL_TRUE; 90 91 return GL_FALSE; 92 } 93 94 struct mode_opt { 95 #ifdef __GNUC__ 96 __extension__ GLubyte Source:4; /**< SRC_x */ 97 __extension__ GLubyte Operand:3; /**< OPR_x */ 98 #else 99 GLubyte Source; /**< SRC_x */ 100 GLubyte Operand; /**< OPR_x */ 101 #endif 102 }; 103 104 struct state_key { 105 GLuint nr_enabled_units:8; 106 GLuint enabled_units:8; 107 GLuint separate_specular:1; 108 GLuint fog_enabled:1; 109 GLuint fog_mode:2; /**< FOG_x */ 110 GLuint inputs_available:12; 111 GLuint num_draw_buffers:4; 112 113 /* NOTE: This array of structs must be last! (see "keySize" below) */ 114 struct { 115 GLuint enabled:1; 116 GLuint source_index:4; /**< TEXTURE_x_INDEX */ 117 GLuint shadow:1; 118 GLuint ScaleShiftRGB:2; 119 GLuint ScaleShiftA:2; 120 121 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */ 122 GLuint ModeRGB:5; /**< MODE_x */ 123 124 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */ 125 GLuint ModeA:5; /**< MODE_x */ 126 127 struct mode_opt OptRGB[MAX_COMBINER_TERMS]; 128 struct mode_opt OptA[MAX_COMBINER_TERMS]; 129 } unit[MAX_TEXTURE_UNITS]; 130 }; 131 132 #define FOG_LINEAR 0 133 #define FOG_EXP 1 134 #define FOG_EXP2 2 135 #define FOG_UNKNOWN 3 136 137 static GLuint translate_fog_mode( GLenum mode ) 138 { 139 switch (mode) { 140 case GL_LINEAR: return FOG_LINEAR; 141 case GL_EXP: return FOG_EXP; 142 case GL_EXP2: return FOG_EXP2; 143 default: return FOG_UNKNOWN; 144 } 145 } 146 147 #define OPR_SRC_COLOR 0 148 #define OPR_ONE_MINUS_SRC_COLOR 1 149 #define OPR_SRC_ALPHA 2 150 #define OPR_ONE_MINUS_SRC_ALPHA 3 151 #define OPR_ZERO 4 152 #define OPR_ONE 5 153 #define OPR_UNKNOWN 7 154 155 static GLuint translate_operand( GLenum operand ) 156 { 157 switch (operand) { 158 case GL_SRC_COLOR: return OPR_SRC_COLOR; 159 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR; 160 case GL_SRC_ALPHA: return OPR_SRC_ALPHA; 161 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA; 162 case GL_ZERO: return OPR_ZERO; 163 case GL_ONE: return OPR_ONE; 164 default: 165 assert(0); 166 return OPR_UNKNOWN; 167 } 168 } 169 170 #define SRC_TEXTURE 0 171 #define SRC_TEXTURE0 1 172 #define SRC_TEXTURE1 2 173 #define SRC_TEXTURE2 3 174 #define SRC_TEXTURE3 4 175 #define SRC_TEXTURE4 5 176 #define SRC_TEXTURE5 6 177 #define SRC_TEXTURE6 7 178 #define SRC_TEXTURE7 8 179 #define SRC_CONSTANT 9 180 #define SRC_PRIMARY_COLOR 10 181 #define SRC_PREVIOUS 11 182 #define SRC_ZERO 12 183 #define SRC_UNKNOWN 15 184 185 static GLuint translate_source( GLenum src ) 186 { 187 switch (src) { 188 case GL_TEXTURE: return SRC_TEXTURE; 189 case GL_TEXTURE0: 190 case GL_TEXTURE1: 191 case GL_TEXTURE2: 192 case GL_TEXTURE3: 193 case GL_TEXTURE4: 194 case GL_TEXTURE5: 195 case GL_TEXTURE6: 196 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0); 197 case GL_CONSTANT: return SRC_CONSTANT; 198 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR; 199 case GL_PREVIOUS: return SRC_PREVIOUS; 200 case GL_ZERO: 201 return SRC_ZERO; 202 default: 203 assert(0); 204 return SRC_UNKNOWN; 205 } 206 } 207 208 #define MODE_REPLACE 0 /* r = a0 */ 209 #define MODE_MODULATE 1 /* r = a0 * a1 */ 210 #define MODE_ADD 2 /* r = a0 + a1 */ 211 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */ 212 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */ 213 #define MODE_SUBTRACT 5 /* r = a0 - a1 */ 214 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */ 215 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */ 216 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */ 217 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */ 218 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */ 219 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */ 220 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */ 221 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */ 222 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */ 223 #define MODE_BUMP_ENVMAP_ATI 15 /* special */ 224 #define MODE_UNKNOWN 16 225 226 /** 227 * Translate GL combiner state into a MODE_x value 228 */ 229 static GLuint translate_mode( GLenum envMode, GLenum mode ) 230 { 231 switch (mode) { 232 case GL_REPLACE: return MODE_REPLACE; 233 case GL_MODULATE: return MODE_MODULATE; 234 case GL_ADD: 235 if (envMode == GL_COMBINE4_NV) 236 return MODE_ADD_PRODUCTS; 237 else 238 return MODE_ADD; 239 case GL_ADD_SIGNED: 240 if (envMode == GL_COMBINE4_NV) 241 return MODE_ADD_PRODUCTS_SIGNED; 242 else 243 return MODE_ADD_SIGNED; 244 case GL_INTERPOLATE: return MODE_INTERPOLATE; 245 case GL_SUBTRACT: return MODE_SUBTRACT; 246 case GL_DOT3_RGB: return MODE_DOT3_RGB; 247 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT; 248 case GL_DOT3_RGBA: return MODE_DOT3_RGBA; 249 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT; 250 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI; 251 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI; 252 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI; 253 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI; 254 default: 255 assert(0); 256 return MODE_UNKNOWN; 257 } 258 } 259 260 261 /** 262 * Do we need to clamp the results of the given texture env/combine mode? 263 * If the inputs to the mode are in [0,1] we don't always have to clamp 264 * the results. 265 */ 266 static GLboolean 267 need_saturate( GLuint mode ) 268 { 269 switch (mode) { 270 case MODE_REPLACE: 271 case MODE_MODULATE: 272 case MODE_INTERPOLATE: 273 return GL_FALSE; 274 case MODE_ADD: 275 case MODE_ADD_SIGNED: 276 case MODE_SUBTRACT: 277 case MODE_DOT3_RGB: 278 case MODE_DOT3_RGB_EXT: 279 case MODE_DOT3_RGBA: 280 case MODE_DOT3_RGBA_EXT: 281 case MODE_MODULATE_ADD_ATI: 282 case MODE_MODULATE_SIGNED_ADD_ATI: 283 case MODE_MODULATE_SUBTRACT_ATI: 284 case MODE_ADD_PRODUCTS: 285 case MODE_ADD_PRODUCTS_SIGNED: 286 case MODE_BUMP_ENVMAP_ATI: 287 return GL_TRUE; 288 default: 289 assert(0); 290 return GL_FALSE; 291 } 292 } 293 294 295 296 /** 297 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX. 298 */ 299 static GLuint translate_tex_src_bit( GLbitfield bit ) 300 { 301 ASSERT(bit); 302 return ffs(bit) - 1; 303 } 304 305 306 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0) 307 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0) 308 309 /** 310 * Identify all possible varying inputs. The fragment program will 311 * never reference non-varying inputs, but will track them via state 312 * constants instead. 313 * 314 * This function figures out all the inputs that the fragment program 315 * has access to. The bitmask is later reduced to just those which 316 * are actually referenced. 317 */ 318 static GLbitfield get_fp_input_mask( struct gl_context *ctx ) 319 { 320 /* _NEW_PROGRAM */ 321 const GLboolean vertexShader = 322 (ctx->Shader.CurrentVertexProgram && 323 ctx->Shader.CurrentVertexProgram->LinkStatus && 324 ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]); 325 const GLboolean vertexProgram = ctx->VertexProgram._Enabled; 326 GLbitfield fp_inputs = 0x0; 327 328 if (ctx->VertexProgram._Overriden) { 329 /* Somebody's messing with the vertex program and we don't have 330 * a clue what's happening. Assume that it could be producing 331 * all possible outputs. 332 */ 333 fp_inputs = ~0; 334 } 335 else if (ctx->RenderMode == GL_FEEDBACK) { 336 /* _NEW_RENDERMODE */ 337 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0); 338 } 339 else if (!(vertexProgram || vertexShader)) { 340 /* Fixed function vertex logic */ 341 /* _NEW_VARYING_VP_INPUTS */ 342 GLbitfield64 varying_inputs = ctx->varying_vp_inputs; 343 344 /* These get generated in the setup routine regardless of the 345 * vertex program: 346 */ 347 /* _NEW_POINT */ 348 if (ctx->Point.PointSprite) 349 varying_inputs |= FRAG_BITS_TEX_ANY; 350 351 /* First look at what values may be computed by the generated 352 * vertex program: 353 */ 354 /* _NEW_LIGHT */ 355 if (ctx->Light.Enabled) { 356 fp_inputs |= FRAG_BIT_COL0; 357 358 if (texenv_doing_secondary_color(ctx)) 359 fp_inputs |= FRAG_BIT_COL1; 360 } 361 362 /* _NEW_TEXTURE */ 363 fp_inputs |= (ctx->Texture._TexGenEnabled | 364 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0; 365 366 /* Then look at what might be varying as a result of enabled 367 * arrays, etc: 368 */ 369 if (varying_inputs & VERT_BIT_COLOR0) 370 fp_inputs |= FRAG_BIT_COL0; 371 if (varying_inputs & VERT_BIT_COLOR1) 372 fp_inputs |= FRAG_BIT_COL1; 373 374 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0) 375 << FRAG_ATTRIB_TEX0); 376 377 } 378 else { 379 /* calculate from vp->outputs */ 380 struct gl_program *vprog; 381 GLbitfield64 vp_outputs; 382 383 /* Choose GLSL vertex shader over ARB vertex program. Need this 384 * since vertex shader state validation comes after fragment state 385 * validation (see additional comments in state.c). 386 */ 387 if (vertexShader) 388 vprog = ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]->Program; 389 else 390 vprog = &ctx->VertexProgram.Current->Base; 391 392 vp_outputs = vprog->OutputsWritten; 393 394 /* These get generated in the setup routine regardless of the 395 * vertex program: 396 */ 397 /* _NEW_POINT */ 398 if (ctx->Point.PointSprite) 399 vp_outputs |= FRAG_BITS_TEX_ANY; 400 401 if (vp_outputs & (1 << VERT_RESULT_COL0)) 402 fp_inputs |= FRAG_BIT_COL0; 403 if (vp_outputs & (1 << VERT_RESULT_COL1)) 404 fp_inputs |= FRAG_BIT_COL1; 405 406 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0) 407 << FRAG_ATTRIB_TEX0); 408 } 409 410 return fp_inputs; 411 } 412 413 414 /** 415 * Examine current texture environment state and generate a unique 416 * key to identify it. 417 */ 418 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key ) 419 { 420 GLuint i, j; 421 GLbitfield inputs_referenced = FRAG_BIT_COL0; 422 const GLbitfield inputs_available = get_fp_input_mask( ctx ); 423 GLuint keySize; 424 425 memset(key, 0, sizeof(*key)); 426 427 /* _NEW_TEXTURE */ 428 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) { 429 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; 430 const struct gl_texture_object *texObj = texUnit->_Current; 431 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine; 432 const struct gl_sampler_object *samp; 433 GLenum format; 434 435 if (!texUnit->_ReallyEnabled || !texUnit->Enabled) 436 continue; 437 438 samp = _mesa_get_samplerobj(ctx, i); 439 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat; 440 441 key->unit[i].enabled = 1; 442 key->enabled_units |= (1<<i); 443 key->nr_enabled_units = i + 1; 444 inputs_referenced |= FRAG_BIT_TEX(i); 445 446 key->unit[i].source_index = 447 translate_tex_src_bit(texUnit->_ReallyEnabled); 448 449 key->unit[i].shadow = 450 ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) && 451 ((format == GL_DEPTH_COMPONENT) || 452 (format == GL_DEPTH_STENCIL_EXT))); 453 454 key->unit[i].NumArgsRGB = comb->_NumArgsRGB; 455 key->unit[i].NumArgsA = comb->_NumArgsA; 456 457 key->unit[i].ModeRGB = 458 translate_mode(texUnit->EnvMode, comb->ModeRGB); 459 key->unit[i].ModeA = 460 translate_mode(texUnit->EnvMode, comb->ModeA); 461 462 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB; 463 key->unit[i].ScaleShiftA = comb->ScaleShiftA; 464 465 for (j = 0; j < MAX_COMBINER_TERMS; j++) { 466 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]); 467 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]); 468 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]); 469 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]); 470 } 471 472 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) { 473 /* requires some special translation */ 474 key->unit[i].NumArgsRGB = 2; 475 key->unit[i].ScaleShiftRGB = 0; 476 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR; 477 key->unit[i].OptRGB[0].Source = SRC_TEXTURE; 478 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR; 479 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0; 480 } 481 } 482 483 /* _NEW_LIGHT | _NEW_FOG */ 484 if (texenv_doing_secondary_color(ctx)) { 485 key->separate_specular = 1; 486 inputs_referenced |= FRAG_BIT_COL1; 487 } 488 489 /* _NEW_FOG */ 490 if (ctx->Fog.Enabled) { 491 key->fog_enabled = 1; 492 key->fog_mode = translate_fog_mode(ctx->Fog.Mode); 493 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */ 494 } 495 496 /* _NEW_BUFFERS */ 497 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers; 498 499 /* _NEW_COLOR */ 500 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) { 501 /* if alpha test is enabled we need to emit at least one color */ 502 key->num_draw_buffers = 1; 503 } 504 505 key->inputs_available = (inputs_available & inputs_referenced); 506 507 /* compute size of state key, ignoring unused texture units */ 508 keySize = sizeof(*key) - sizeof(key->unit) 509 + key->nr_enabled_units * sizeof(key->unit[0]); 510 511 return keySize; 512 } 513 514 515 /** State used to build the fragment program: 516 */ 517 class texenv_fragment_program : public ir_factory { 518 public: 519 struct gl_shader_program *shader_program; 520 struct gl_shader *shader; 521 exec_list *top_instructions; 522 struct state_key *state; 523 524 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS]; 525 /* Reg containing each texture unit's sampled texture color, 526 * else undef. 527 */ 528 529 /* Texcoord override from bumpmapping. */ 530 ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS]; 531 532 /* Reg containing texcoord for a texture unit, 533 * needed for bump mapping, else undef. 534 */ 535 536 ir_rvalue *src_previous; /**< Reg containing color from previous 537 * stage. May need to be decl'd. 538 */ 539 }; 540 541 static ir_rvalue * 542 get_current_attrib(struct texenv_fragment_program *p, GLuint attrib) 543 { 544 ir_variable *current; 545 ir_rvalue *val; 546 547 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA"); 548 current->max_array_access = MAX2(current->max_array_access, attrib); 549 val = new(p->mem_ctx) ir_dereference_variable(current); 550 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib); 551 return new(p->mem_ctx) ir_dereference_array(val, index); 552 } 553 554 static ir_rvalue * 555 get_gl_Color(struct texenv_fragment_program *p) 556 { 557 if (p->state->inputs_available & FRAG_BIT_COL0) { 558 ir_variable *var = p->shader->symbols->get_variable("gl_Color"); 559 assert(var); 560 return new(p->mem_ctx) ir_dereference_variable(var); 561 } else { 562 return get_current_attrib(p, VERT_ATTRIB_COLOR0); 563 } 564 } 565 566 static ir_rvalue * 567 get_source(struct texenv_fragment_program *p, 568 GLuint src, GLuint unit) 569 { 570 ir_variable *var; 571 ir_dereference *deref; 572 573 switch (src) { 574 case SRC_TEXTURE: 575 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]); 576 577 case SRC_TEXTURE0: 578 case SRC_TEXTURE1: 579 case SRC_TEXTURE2: 580 case SRC_TEXTURE3: 581 case SRC_TEXTURE4: 582 case SRC_TEXTURE5: 583 case SRC_TEXTURE6: 584 case SRC_TEXTURE7: 585 return new(p->mem_ctx) 586 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]); 587 588 case SRC_CONSTANT: 589 var = p->shader->symbols->get_variable("gl_TextureEnvColor"); 590 assert(var); 591 deref = new(p->mem_ctx) ir_dereference_variable(var); 592 var->max_array_access = MAX2(var->max_array_access, unit); 593 return new(p->mem_ctx) ir_dereference_array(deref, 594 new(p->mem_ctx) ir_constant(unit)); 595 596 case SRC_PRIMARY_COLOR: 597 var = p->shader->symbols->get_variable("gl_Color"); 598 assert(var); 599 return new(p->mem_ctx) ir_dereference_variable(var); 600 601 case SRC_ZERO: 602 return new(p->mem_ctx) ir_constant(0.0f); 603 604 case SRC_PREVIOUS: 605 if (!p->src_previous) { 606 return get_gl_Color(p); 607 } else { 608 return p->src_previous->clone(p->mem_ctx, NULL); 609 } 610 611 default: 612 assert(0); 613 return NULL; 614 } 615 } 616 617 static ir_rvalue * 618 emit_combine_source(struct texenv_fragment_program *p, 619 GLuint unit, 620 GLuint source, 621 GLuint operand) 622 { 623 ir_rvalue *src; 624 625 src = get_source(p, source, unit); 626 627 switch (operand) { 628 case OPR_ONE_MINUS_SRC_COLOR: 629 return sub(new(p->mem_ctx) ir_constant(1.0f), src); 630 631 case OPR_SRC_ALPHA: 632 return src->type->is_scalar() ? src : swizzle_w(src); 633 634 case OPR_ONE_MINUS_SRC_ALPHA: { 635 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src); 636 637 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar); 638 } 639 640 case OPR_ZERO: 641 return new(p->mem_ctx) ir_constant(0.0f); 642 case OPR_ONE: 643 return new(p->mem_ctx) ir_constant(1.0f); 644 case OPR_SRC_COLOR: 645 return src; 646 default: 647 assert(0); 648 return src; 649 } 650 } 651 652 /** 653 * Check if the RGB and Alpha sources and operands match for the given 654 * texture unit's combinder state. When the RGB and A sources and 655 * operands match, we can emit fewer instructions. 656 */ 657 static GLboolean args_match( const struct state_key *key, GLuint unit ) 658 { 659 GLuint i, numArgs = key->unit[unit].NumArgsRGB; 660 661 for (i = 0; i < numArgs; i++) { 662 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source) 663 return GL_FALSE; 664 665 switch (key->unit[unit].OptA[i].Operand) { 666 case OPR_SRC_ALPHA: 667 switch (key->unit[unit].OptRGB[i].Operand) { 668 case OPR_SRC_COLOR: 669 case OPR_SRC_ALPHA: 670 break; 671 default: 672 return GL_FALSE; 673 } 674 break; 675 case OPR_ONE_MINUS_SRC_ALPHA: 676 switch (key->unit[unit].OptRGB[i].Operand) { 677 case OPR_ONE_MINUS_SRC_COLOR: 678 case OPR_ONE_MINUS_SRC_ALPHA: 679 break; 680 default: 681 return GL_FALSE; 682 } 683 break; 684 default: 685 return GL_FALSE; /* impossible */ 686 } 687 } 688 689 return GL_TRUE; 690 } 691 692 static ir_rvalue * 693 smear(struct texenv_fragment_program *p, ir_rvalue *val) 694 { 695 if (!val->type->is_scalar()) 696 return val; 697 698 return swizzle_xxxx(val); 699 } 700 701 static ir_rvalue * 702 emit_combine(struct texenv_fragment_program *p, 703 GLuint unit, 704 GLuint nr, 705 GLuint mode, 706 const struct mode_opt *opt) 707 { 708 ir_rvalue *src[MAX_COMBINER_TERMS]; 709 ir_rvalue *tmp0, *tmp1; 710 GLuint i; 711 712 assert(nr <= MAX_COMBINER_TERMS); 713 714 for (i = 0; i < nr; i++) 715 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand ); 716 717 switch (mode) { 718 case MODE_REPLACE: 719 return src[0]; 720 721 case MODE_MODULATE: 722 return mul(src[0], src[1]); 723 724 case MODE_ADD: 725 return add(src[0], src[1]); 726 727 case MODE_ADD_SIGNED: 728 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f)); 729 730 case MODE_INTERPOLATE: 731 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */ 732 tmp0 = mul(src[0], src[2]); 733 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f), 734 src[2]->clone(p->mem_ctx, NULL))); 735 return add(tmp0, tmp1); 736 737 case MODE_SUBTRACT: 738 return sub(src[0], src[1]); 739 740 case MODE_DOT3_RGBA: 741 case MODE_DOT3_RGBA_EXT: 742 case MODE_DOT3_RGB_EXT: 743 case MODE_DOT3_RGB: { 744 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f)); 745 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f)); 746 747 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f)); 748 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f)); 749 750 return dot(swizzle_xyz(smear(p, tmp0)), swizzle_xyz(smear(p, tmp1))); 751 } 752 case MODE_MODULATE_ADD_ATI: 753 return add(mul(src[0], src[2]), src[1]); 754 755 case MODE_MODULATE_SIGNED_ADD_ATI: 756 return add(add(mul(src[0], src[2]), src[1]), 757 new(p->mem_ctx) ir_constant(-0.5f)); 758 759 case MODE_MODULATE_SUBTRACT_ATI: 760 return sub(mul(src[0], src[2]), src[1]); 761 762 case MODE_ADD_PRODUCTS: 763 return add(mul(src[0], src[1]), mul(src[2], src[3])); 764 765 case MODE_ADD_PRODUCTS_SIGNED: 766 return add(add(mul(src[0], src[1]), mul(src[2], src[3])), 767 new(p->mem_ctx) ir_constant(-0.5f)); 768 769 case MODE_BUMP_ENVMAP_ATI: 770 /* special - not handled here */ 771 assert(0); 772 return src[0]; 773 default: 774 assert(0); 775 return src[0]; 776 } 777 } 778 779 /** 780 * Generate instructions for one texture unit's env/combiner mode. 781 */ 782 static ir_rvalue * 783 emit_texenv(struct texenv_fragment_program *p, GLuint unit) 784 { 785 const struct state_key *key = p->state; 786 GLboolean rgb_saturate, alpha_saturate; 787 GLuint rgb_shift, alpha_shift; 788 789 if (!key->unit[unit].enabled) { 790 return get_source(p, SRC_PREVIOUS, 0); 791 } 792 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) { 793 /* this isn't really a env stage delivering a color and handled elsewhere */ 794 return get_source(p, SRC_PREVIOUS, 0); 795 } 796 797 switch (key->unit[unit].ModeRGB) { 798 case MODE_DOT3_RGB_EXT: 799 alpha_shift = key->unit[unit].ScaleShiftA; 800 rgb_shift = 0; 801 break; 802 case MODE_DOT3_RGBA_EXT: 803 alpha_shift = 0; 804 rgb_shift = 0; 805 break; 806 default: 807 rgb_shift = key->unit[unit].ScaleShiftRGB; 808 alpha_shift = key->unit[unit].ScaleShiftA; 809 break; 810 } 811 812 /* If we'll do rgb/alpha shifting don't saturate in emit_combine(). 813 * We don't want to clamp twice. 814 */ 815 if (rgb_shift) 816 rgb_saturate = GL_FALSE; /* saturate after rgb shift */ 817 else if (need_saturate(key->unit[unit].ModeRGB)) 818 rgb_saturate = GL_TRUE; 819 else 820 rgb_saturate = GL_FALSE; 821 822 if (alpha_shift) 823 alpha_saturate = GL_FALSE; /* saturate after alpha shift */ 824 else if (need_saturate(key->unit[unit].ModeA)) 825 alpha_saturate = GL_TRUE; 826 else 827 alpha_saturate = GL_FALSE; 828 829 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine"); 830 ir_dereference *deref; 831 ir_rvalue *val; 832 833 /* Emit the RGB and A combine ops 834 */ 835 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA && 836 args_match(key, unit)) { 837 val = emit_combine(p, unit, 838 key->unit[unit].NumArgsRGB, 839 key->unit[unit].ModeRGB, 840 key->unit[unit].OptRGB); 841 val = smear(p, val); 842 if (rgb_saturate) 843 val = saturate(val); 844 845 p->emit(assign(temp_var, val)); 846 } 847 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT || 848 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) { 849 ir_rvalue *val = emit_combine(p, unit, 850 key->unit[unit].NumArgsRGB, 851 key->unit[unit].ModeRGB, 852 key->unit[unit].OptRGB); 853 val = smear(p, val); 854 if (rgb_saturate) 855 val = saturate(val); 856 p->emit(assign(temp_var, val)); 857 } 858 else { 859 /* Need to do something to stop from re-emitting identical 860 * argument calculations here: 861 */ 862 val = emit_combine(p, unit, 863 key->unit[unit].NumArgsRGB, 864 key->unit[unit].ModeRGB, 865 key->unit[unit].OptRGB); 866 val = swizzle_xyz(smear(p, val)); 867 if (rgb_saturate) 868 val = saturate(val); 869 p->emit(assign(temp_var, val, WRITEMASK_XYZ)); 870 871 val = emit_combine(p, unit, 872 key->unit[unit].NumArgsA, 873 key->unit[unit].ModeA, 874 key->unit[unit].OptA); 875 val = swizzle_w(smear(p, val)); 876 if (alpha_saturate) 877 val = saturate(val); 878 p->emit(assign(temp_var, val, WRITEMASK_W)); 879 } 880 881 deref = new(p->mem_ctx) ir_dereference_variable(temp_var); 882 883 /* Deal with the final shift: 884 */ 885 if (alpha_shift || rgb_shift) { 886 ir_constant *shift; 887 888 if (rgb_shift == alpha_shift) { 889 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift)); 890 } 891 else { 892 float const_data[4] = { 893 1 << rgb_shift, 894 1 << rgb_shift, 895 1 << rgb_shift, 896 1 << alpha_shift 897 }; 898 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type, 899 (ir_constant_data *)const_data); 900 } 901 902 return saturate(mul(deref, shift)); 903 } 904 else 905 return deref; 906 } 907 908 909 /** 910 * Generate instruction for getting a texture source term. 911 */ 912 static void load_texture( struct texenv_fragment_program *p, GLuint unit ) 913 { 914 ir_dereference *deref; 915 916 if (p->src_texture[unit]) 917 return; 918 919 const GLuint texTarget = p->state->unit[unit].source_index; 920 ir_rvalue *texcoord; 921 922 if (!(p->state->inputs_available & (FRAG_BIT_TEX0 << unit))) { 923 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit); 924 } else if (p->texcoord_tex[unit]) { 925 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]); 926 } else { 927 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord"); 928 assert(tc_array); 929 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array); 930 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit); 931 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index); 932 tc_array->max_array_access = MAX2(tc_array->max_array_access, unit); 933 } 934 935 if (!p->state->unit[unit].enabled) { 936 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type, 937 "dummy_tex"); 938 p->emit(p->src_texture[unit]); 939 940 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f))); 941 return ; 942 } 943 944 const glsl_type *sampler_type = NULL; 945 int coords = 0; 946 947 switch (texTarget) { 948 case TEXTURE_1D_INDEX: 949 if (p->state->unit[unit].shadow) 950 sampler_type = p->shader->symbols->get_type("sampler1DShadow"); 951 else 952 sampler_type = p->shader->symbols->get_type("sampler1D"); 953 coords = 1; 954 break; 955 case TEXTURE_1D_ARRAY_INDEX: 956 if (p->state->unit[unit].shadow) 957 sampler_type = p->shader->symbols->get_type("sampler1DArrayShadow"); 958 else 959 sampler_type = p->shader->symbols->get_type("sampler1DArray"); 960 coords = 2; 961 break; 962 case TEXTURE_2D_INDEX: 963 if (p->state->unit[unit].shadow) 964 sampler_type = p->shader->symbols->get_type("sampler2DShadow"); 965 else 966 sampler_type = p->shader->symbols->get_type("sampler2D"); 967 coords = 2; 968 break; 969 case TEXTURE_2D_ARRAY_INDEX: 970 if (p->state->unit[unit].shadow) 971 sampler_type = p->shader->symbols->get_type("sampler2DArrayShadow"); 972 else 973 sampler_type = p->shader->symbols->get_type("sampler2DArray"); 974 coords = 3; 975 break; 976 case TEXTURE_RECT_INDEX: 977 if (p->state->unit[unit].shadow) 978 sampler_type = p->shader->symbols->get_type("sampler2DRectShadow"); 979 else 980 sampler_type = p->shader->symbols->get_type("sampler2DRect"); 981 coords = 2; 982 break; 983 case TEXTURE_3D_INDEX: 984 assert(!p->state->unit[unit].shadow); 985 sampler_type = p->shader->symbols->get_type("sampler3D"); 986 coords = 3; 987 break; 988 case TEXTURE_CUBE_INDEX: 989 if (p->state->unit[unit].shadow) 990 sampler_type = p->shader->symbols->get_type("samplerCubeShadow"); 991 else 992 sampler_type = p->shader->symbols->get_type("samplerCube"); 993 coords = 3; 994 break; 995 case TEXTURE_EXTERNAL_INDEX: 996 assert(!p->state->unit[unit].shadow); 997 sampler_type = p->shader->symbols->get_type("samplerExternalOES"); 998 coords = 2; 999 break; 1000 } 1001 1002 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type, 1003 "tex"); 1004 1005 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex); 1006 1007 1008 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit); 1009 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type, 1010 sampler_name, 1011 ir_var_uniform); 1012 p->top_instructions->push_head(sampler); 1013 1014 /* Set the texture unit for this sampler. The linker will pick this value 1015 * up and do-the-right-thing. 1016 * 1017 * NOTE: The cast to int is important. Without it, the constant will have 1018 * type uint, and things later on may get confused. 1019 */ 1020 sampler->constant_value = new(p->mem_ctx) ir_constant(int(unit)); 1021 1022 deref = new(p->mem_ctx) ir_dereference_variable(sampler); 1023 tex->set_sampler(deref, glsl_type::vec4_type); 1024 1025 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords); 1026 1027 if (p->state->unit[unit].shadow) { 1028 texcoord = texcoord->clone(p->mem_ctx, NULL); 1029 tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord, 1030 coords, 0, 0, 0, 1031 1); 1032 coords++; 1033 } 1034 1035 texcoord = texcoord->clone(p->mem_ctx, NULL); 1036 tex->projector = swizzle_w(texcoord); 1037 1038 p->emit(assign(p->src_texture[unit], tex)); 1039 } 1040 1041 static void 1042 load_texenv_source(struct texenv_fragment_program *p, 1043 GLuint src, GLuint unit) 1044 { 1045 switch (src) { 1046 case SRC_TEXTURE: 1047 load_texture(p, unit); 1048 break; 1049 1050 case SRC_TEXTURE0: 1051 case SRC_TEXTURE1: 1052 case SRC_TEXTURE2: 1053 case SRC_TEXTURE3: 1054 case SRC_TEXTURE4: 1055 case SRC_TEXTURE5: 1056 case SRC_TEXTURE6: 1057 case SRC_TEXTURE7: 1058 load_texture(p, src - SRC_TEXTURE0); 1059 break; 1060 1061 default: 1062 /* not a texture src - do nothing */ 1063 break; 1064 } 1065 } 1066 1067 1068 /** 1069 * Generate instructions for loading all texture source terms. 1070 */ 1071 static GLboolean 1072 load_texunit_sources( struct texenv_fragment_program *p, GLuint unit ) 1073 { 1074 const struct state_key *key = p->state; 1075 GLuint i; 1076 1077 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) { 1078 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit ); 1079 } 1080 1081 for (i = 0; i < key->unit[unit].NumArgsA; i++) { 1082 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit ); 1083 } 1084 1085 return GL_TRUE; 1086 } 1087 1088 /** 1089 * Generate instructions for loading bump map textures. 1090 */ 1091 static void 1092 load_texunit_bumpmap( struct texenv_fragment_program *p, GLuint unit ) 1093 { 1094 const struct state_key *key = p->state; 1095 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0; 1096 ir_rvalue *bump; 1097 ir_rvalue *texcoord; 1098 ir_variable *rot_mat_0, *rot_mat_1; 1099 1100 rot_mat_0 = p->shader->symbols->get_variable("gl_BumpRotMatrix0MESA"); 1101 rot_mat_1 = p->shader->symbols->get_variable("gl_BumpRotMatrix1MESA"); 1102 1103 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord"); 1104 assert(tc_array); 1105 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array); 1106 ir_rvalue *index = new(p->mem_ctx) ir_constant(bumpedUnitNr); 1107 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index); 1108 tc_array->max_array_access = MAX2(tc_array->max_array_access, unit); 1109 1110 load_texenv_source( p, unit + SRC_TEXTURE0, unit ); 1111 1112 /* Apply rot matrix and add coords to be available in next phase. 1113 * dest = Arg1 + (Arg0.xx * rotMat0) + (Arg0.yy * rotMat1) 1114 * note only 2 coords are affected the rest are left unchanged (mul by 0) 1115 */ 1116 ir_rvalue *bump_x, *bump_y; 1117 1118 texcoord = smear(p, texcoord); 1119 1120 /* bump_texcoord = texcoord */ 1121 ir_variable *bumped = p->make_temp(texcoord->type, "bump_texcoord"); 1122 p->emit(bumped); 1123 p->emit(assign(bumped, texcoord)); 1124 1125 /* bump_texcoord.xy += arg0.x * rotmat0 + arg0.y * rotmat1 */ 1126 bump = get_source(p, key->unit[unit].OptRGB[0].Source, unit); 1127 bump_x = mul(swizzle_x(bump), rot_mat_0); 1128 bump_y = mul(swizzle_y(bump->clone(p->mem_ctx, NULL)), rot_mat_1); 1129 1130 p->emit(assign(bumped, add(swizzle_xy(bumped), add(bump_x, bump_y)), 1131 WRITEMASK_XY)); 1132 1133 p->texcoord_tex[bumpedUnitNr] = bumped; 1134 } 1135 1136 /** 1137 * Applies the fog calculations. 1138 * 1139 * This is basically like the ARB_fragment_prorgam fog options. Note 1140 * that ffvertex_prog.c produces fogcoord for us when 1141 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT. 1142 */ 1143 static ir_rvalue * 1144 emit_fog_instructions(struct texenv_fragment_program *p, 1145 ir_rvalue *fragcolor) 1146 { 1147 struct state_key *key = p->state; 1148 ir_rvalue *f, *temp; 1149 ir_variable *params, *oparams; 1150 ir_variable *fogcoord; 1151 1152 /* Temporary storage for the whole fog result. Fog calculations 1153 * only affect rgb so we're hanging on to the .a value of fragcolor 1154 * this way. 1155 */ 1156 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result"); 1157 p->emit(assign(fog_result, fragcolor)); 1158 1159 fragcolor = swizzle_xyz(fog_result); 1160 1161 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA"); 1162 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord"); 1163 params = p->shader->symbols->get_variable("gl_Fog"); 1164 f = new(p->mem_ctx) ir_dereference_variable(fogcoord); 1165 1166 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor"); 1167 1168 switch (key->fog_mode) { 1169 case FOG_LINEAR: 1170 /* f = (end - z) / (end - start) 1171 * 1172 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and 1173 * (end / (end - start)) so we can generate a single MAD. 1174 */ 1175 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams)); 1176 break; 1177 case FOG_EXP: 1178 /* f = e^(-(density * fogcoord)) 1179 * 1180 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can 1181 * use EXP2 which is generally the native instruction without 1182 * having to do any further math on the fog density uniform. 1183 */ 1184 f = mul(f, swizzle_z(oparams)); 1185 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f); 1186 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f); 1187 break; 1188 case FOG_EXP2: 1189 /* f = e^(-(density * fogcoord)^2) 1190 * 1191 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we 1192 * can do this like FOG_EXP but with a squaring after the 1193 * multiply by density. 1194 */ 1195 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp"); 1196 p->emit(assign(temp_var, mul(f, swizzle_w(oparams)))); 1197 1198 f = mul(temp_var, temp_var); 1199 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f); 1200 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f); 1201 break; 1202 } 1203 1204 p->emit(assign(f_var, saturate(f))); 1205 1206 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var); 1207 temp = new(p->mem_ctx) ir_dereference_variable(params); 1208 temp = new(p->mem_ctx) ir_dereference_record(temp, "color"); 1209 temp = mul(swizzle_xyz(temp), f); 1210 1211 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ)); 1212 1213 return new(p->mem_ctx) ir_dereference_variable(fog_result); 1214 } 1215 1216 static void 1217 emit_instructions(struct texenv_fragment_program *p) 1218 { 1219 struct state_key *key = p->state; 1220 GLuint unit; 1221 1222 if (key->enabled_units) { 1223 /* Zeroth pass - bump map textures first */ 1224 for (unit = 0; unit < key->nr_enabled_units; unit++) { 1225 if (key->unit[unit].enabled && 1226 key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) { 1227 load_texunit_bumpmap(p, unit); 1228 } 1229 } 1230 1231 /* First pass - to support texture_env_crossbar, first identify 1232 * all referenced texture sources and emit texld instructions 1233 * for each: 1234 */ 1235 for (unit = 0; unit < key->nr_enabled_units; unit++) 1236 if (key->unit[unit].enabled) { 1237 load_texunit_sources(p, unit); 1238 } 1239 1240 /* Second pass - emit combine instructions to build final color: 1241 */ 1242 for (unit = 0; unit < key->nr_enabled_units; unit++) { 1243 if (key->unit[unit].enabled) { 1244 p->src_previous = emit_texenv(p, unit); 1245 } 1246 } 1247 } 1248 1249 ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0); 1250 1251 if (key->separate_specular) { 1252 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type, 1253 "specular_add"); 1254 p->emit(assign(spec_result, cf)); 1255 1256 ir_rvalue *secondary; 1257 if (p->state->inputs_available & FRAG_BIT_COL1) { 1258 ir_variable *var = 1259 p->shader->symbols->get_variable("gl_SecondaryColor"); 1260 assert(var); 1261 secondary = swizzle_xyz(var); 1262 } else { 1263 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1)); 1264 } 1265 1266 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary), 1267 WRITEMASK_XYZ)); 1268 1269 cf = new(p->mem_ctx) ir_dereference_variable(spec_result); 1270 } 1271 1272 if (key->fog_enabled) { 1273 cf = emit_fog_instructions(p, cf); 1274 } 1275 1276 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor"); 1277 assert(frag_color); 1278 p->emit(assign(frag_color, cf)); 1279 } 1280 1281 /** 1282 * Generate a new fragment program which implements the context's 1283 * current texture env/combine mode. 1284 */ 1285 static struct gl_shader_program * 1286 create_new_program(struct gl_context *ctx, struct state_key *key) 1287 { 1288 texenv_fragment_program p; 1289 unsigned int unit; 1290 _mesa_glsl_parse_state *state; 1291 1292 p.mem_ctx = ralloc_context(NULL); 1293 p.shader = ctx->Driver.NewShader(ctx, 0, GL_FRAGMENT_SHADER); 1294 p.shader->ir = new(p.shader) exec_list; 1295 state = new(p.shader) _mesa_glsl_parse_state(ctx, GL_FRAGMENT_SHADER, 1296 p.shader); 1297 p.shader->symbols = state->symbols; 1298 p.top_instructions = p.shader->ir; 1299 p.instructions = p.shader->ir; 1300 p.state = key; 1301 p.shader_program = ctx->Driver.NewShaderProgram(ctx, 0); 1302 1303 /* Tell the linker to ignore the fact that we're building a 1304 * separate shader, in case we're in a GLES2 context that would 1305 * normally reject that. The real problem is that we're building a 1306 * fixed function program in a GLES2 context at all, but that's a 1307 * big mess to clean up. 1308 */ 1309 p.shader_program->InternalSeparateShader = GL_TRUE; 1310 1311 state->language_version = 130; 1312 if (ctx->Extensions.OES_EGL_image_external) 1313 state->OES_EGL_image_external_enable = true; 1314 _mesa_glsl_initialize_types(state); 1315 _mesa_glsl_initialize_variables(p.instructions, state); 1316 1317 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { 1318 p.src_texture[unit] = NULL; 1319 p.texcoord_tex[unit] = NULL; 1320 } 1321 1322 p.src_previous = NULL; 1323 1324 ir_function *main_f = new(p.mem_ctx) ir_function("main"); 1325 p.emit(main_f); 1326 state->symbols->add_function(main_f); 1327 1328 ir_function_signature *main_sig = 1329 new(p.mem_ctx) ir_function_signature(p.shader->symbols->get_type("void")); 1330 main_sig->is_defined = true; 1331 main_f->add_signature(main_sig); 1332 1333 p.instructions = &main_sig->body; 1334 if (key->num_draw_buffers) 1335 emit_instructions(&p); 1336 1337 validate_ir_tree(p.shader->ir); 1338 1339 while (do_common_optimization(p.shader->ir, false, false, 32)) 1340 ; 1341 reparent_ir(p.shader->ir, p.shader->ir); 1342 1343 p.shader->CompileStatus = true; 1344 p.shader->Version = state->language_version; 1345 p.shader->num_builtins_to_link = state->num_builtins_to_link; 1346 p.shader_program->Shaders = 1347 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders)); 1348 p.shader_program->Shaders[0] = p.shader; 1349 p.shader_program->NumShaders = 1; 1350 1351 _mesa_glsl_link_shader(ctx, p.shader_program); 1352 1353 /* Set the sampler uniforms, and relink to get them into the linked 1354 * program. 1355 */ 1356 struct gl_shader *const fs = 1357 p.shader_program->_LinkedShaders[MESA_SHADER_FRAGMENT]; 1358 struct gl_program *const fp = fs->Program; 1359 1360 _mesa_generate_parameters_list_for_uniforms(p.shader_program, fs, 1361 fp->Parameters); 1362 1363 _mesa_associate_uniform_storage(ctx, p.shader_program, fp->Parameters); 1364 1365 _mesa_update_shader_textures_used(p.shader_program, fp); 1366 if (ctx->Driver.SamplerUniformChange) 1367 ctx->Driver.SamplerUniformChange(ctx, fp->Target, fp); 1368 1369 if (!p.shader_program->LinkStatus) 1370 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n", 1371 p.shader_program->InfoLog); 1372 1373 ralloc_free(p.mem_ctx); 1374 return p.shader_program; 1375 } 1376 1377 extern "C" { 1378 1379 /** 1380 * Return a fragment program which implements the current 1381 * fixed-function texture, fog and color-sum operations. 1382 */ 1383 struct gl_shader_program * 1384 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx) 1385 { 1386 struct gl_shader_program *shader_program; 1387 struct state_key key; 1388 GLuint keySize; 1389 1390 keySize = make_state_key(ctx, &key); 1391 1392 shader_program = (struct gl_shader_program *) 1393 _mesa_search_program_cache(ctx->FragmentProgram.Cache, 1394 &key, keySize); 1395 1396 if (!shader_program) { 1397 shader_program = create_new_program(ctx, &key); 1398 1399 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache, 1400 &key, keySize, shader_program); 1401 } 1402 1403 return shader_program; 1404 } 1405 1406 } 1407