Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "HexagonInstrInfo.h"
     15 #include "Hexagon.h"
     16 #include "HexagonRegisterInfo.h"
     17 #include "HexagonSubtarget.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/CodeGen/DFAPacketizer.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineMemOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/PseudoSourceValue.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <cctype>
     32 
     33 using namespace llvm;
     34 
     35 #define DEBUG_TYPE "hexagon-instrinfo"
     36 
     37 #define GET_INSTRINFO_CTOR_DTOR
     38 #define GET_INSTRMAP_INFO
     39 #include "HexagonGenInstrInfo.inc"
     40 #include "HexagonGenDFAPacketizer.inc"
     41 
     42 using namespace llvm;
     43 
     44 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
     45   cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
     46                             "packetization boundary."));
     47 
     48 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
     49   cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
     50 
     51 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
     52   cl::Hidden, cl::ZeroOrMore, cl::init(false),
     53   cl::desc("Disable schedule adjustment for new value stores."));
     54 
     55 static cl::opt<bool> EnableTimingClassLatency(
     56   "enable-timing-class-latency", cl::Hidden, cl::init(false),
     57   cl::desc("Enable timing class latency"));
     58 
     59 static cl::opt<bool> EnableALUForwarding(
     60   "enable-alu-forwarding", cl::Hidden, cl::init(true),
     61   cl::desc("Enable vec alu forwarding"));
     62 
     63 static cl::opt<bool> EnableACCForwarding(
     64   "enable-acc-forwarding", cl::Hidden, cl::init(true),
     65   cl::desc("Enable vec acc forwarding"));
     66 
     67 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
     68   cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
     69 
     70 ///
     71 /// Constants for Hexagon instructions.
     72 ///
     73 const int Hexagon_MEMV_OFFSET_MAX_128B = 896;   // #s4: -8*128...7*128
     74 const int Hexagon_MEMV_OFFSET_MIN_128B = -1024; // #s4
     75 const int Hexagon_MEMV_OFFSET_MAX = 448;  // #s4: -8*64...7*64
     76 const int Hexagon_MEMV_OFFSET_MIN = -512; // #s4
     77 const int Hexagon_MEMW_OFFSET_MAX = 4095;
     78 const int Hexagon_MEMW_OFFSET_MIN = -4096;
     79 const int Hexagon_MEMD_OFFSET_MAX = 8191;
     80 const int Hexagon_MEMD_OFFSET_MIN = -8192;
     81 const int Hexagon_MEMH_OFFSET_MAX = 2047;
     82 const int Hexagon_MEMH_OFFSET_MIN = -2048;
     83 const int Hexagon_MEMB_OFFSET_MAX = 1023;
     84 const int Hexagon_MEMB_OFFSET_MIN = -1024;
     85 const int Hexagon_ADDI_OFFSET_MAX = 32767;
     86 const int Hexagon_ADDI_OFFSET_MIN = -32768;
     87 const int Hexagon_MEMD_AUTOINC_MAX = 56;
     88 const int Hexagon_MEMD_AUTOINC_MIN = -64;
     89 const int Hexagon_MEMW_AUTOINC_MAX = 28;
     90 const int Hexagon_MEMW_AUTOINC_MIN = -32;
     91 const int Hexagon_MEMH_AUTOINC_MAX = 14;
     92 const int Hexagon_MEMH_AUTOINC_MIN = -16;
     93 const int Hexagon_MEMB_AUTOINC_MAX = 7;
     94 const int Hexagon_MEMB_AUTOINC_MIN = -8;
     95 const int Hexagon_MEMV_AUTOINC_MAX = 192;   // #s3
     96 const int Hexagon_MEMV_AUTOINC_MIN = -256;  // #s3
     97 const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;  // #s3
     98 const int Hexagon_MEMV_AUTOINC_MIN_128B = -512; // #s3
     99 
    100 // Pin the vtable to this file.
    101 void HexagonInstrInfo::anchor() {}
    102 
    103 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
    104     : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
    105       RI() {}
    106 
    107 
    108 static bool isIntRegForSubInst(unsigned Reg) {
    109   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
    110          (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
    111 }
    112 
    113 
    114 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
    115   return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
    116          isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
    117 }
    118 
    119 
    120 /// Calculate number of instructions excluding the debug instructions.
    121 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
    122                               MachineBasicBlock::const_instr_iterator MIE) {
    123   unsigned Count = 0;
    124   for (; MIB != MIE; ++MIB) {
    125     if (!MIB->isDebugValue())
    126       ++Count;
    127   }
    128   return Count;
    129 }
    130 
    131 
    132 /// Find the hardware loop instruction used to set-up the specified loop.
    133 /// On Hexagon, we have two instructions used to set-up the hardware loop
    134 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
    135 /// to indicate the end of a loop.
    136 static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
    137       SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
    138   int LOOPi;
    139   int LOOPr;
    140   if (EndLoopOp == Hexagon::ENDLOOP0) {
    141     LOOPi = Hexagon::J2_loop0i;
    142     LOOPr = Hexagon::J2_loop0r;
    143   } else { // EndLoopOp == Hexagon::EndLOOP1
    144     LOOPi = Hexagon::J2_loop1i;
    145     LOOPr = Hexagon::J2_loop1r;
    146   }
    147 
    148   // The loop set-up instruction will be in a predecessor block
    149   for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
    150          PE = BB->pred_end(); PB != PE; ++PB) {
    151     // If this has been visited, already skip it.
    152     if (!Visited.insert(*PB).second)
    153       continue;
    154     if (*PB == BB)
    155       continue;
    156     for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
    157            E = (*PB)->instr_rend(); I != E; ++I) {
    158       int Opc = I->getOpcode();
    159       if (Opc == LOOPi || Opc == LOOPr)
    160         return &*I;
    161       // We've reached a different loop, which means the loop0 has been removed.
    162       if (Opc == EndLoopOp)
    163         return 0;
    164     }
    165     // Check the predecessors for the LOOP instruction.
    166     MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
    167     if (loop)
    168       return loop;
    169   }
    170   return 0;
    171 }
    172 
    173 
    174 /// Gather register def/uses from MI.
    175 /// This treats possible (predicated) defs as actually happening ones
    176 /// (conservatively).
    177 static inline void parseOperands(const MachineInstr *MI,
    178       SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
    179   Defs.clear();
    180   Uses.clear();
    181 
    182   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    183     const MachineOperand &MO = MI->getOperand(i);
    184 
    185     if (!MO.isReg())
    186       continue;
    187 
    188     unsigned Reg = MO.getReg();
    189     if (!Reg)
    190       continue;
    191 
    192     if (MO.isUse())
    193       Uses.push_back(MO.getReg());
    194 
    195     if (MO.isDef())
    196       Defs.push_back(MO.getReg());
    197   }
    198 }
    199 
    200 
    201 // Position dependent, so check twice for swap.
    202 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
    203   switch (Ga) {
    204   case HexagonII::HSIG_None:
    205   default:
    206     return false;
    207   case HexagonII::HSIG_L1:
    208     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
    209   case HexagonII::HSIG_L2:
    210     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
    211             Gb == HexagonII::HSIG_A);
    212   case HexagonII::HSIG_S1:
    213     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
    214             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
    215   case HexagonII::HSIG_S2:
    216     return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
    217             Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
    218             Gb == HexagonII::HSIG_A);
    219   case HexagonII::HSIG_A:
    220     return (Gb == HexagonII::HSIG_A);
    221   case HexagonII::HSIG_Compound:
    222     return (Gb == HexagonII::HSIG_Compound);
    223   }
    224   return false;
    225 }
    226 
    227 
    228 
    229 /// isLoadFromStackSlot - If the specified machine instruction is a direct
    230 /// load from a stack slot, return the virtual or physical register number of
    231 /// the destination along with the FrameIndex of the loaded stack slot.  If
    232 /// not, return 0.  This predicate must return 0 if the instruction has
    233 /// any side effects other than loading from the stack slot.
    234 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
    235                                                int &FrameIndex) const {
    236   switch (MI.getOpcode()) {
    237   default:
    238     break;
    239   case Hexagon::L2_loadrb_io:
    240   case Hexagon::L2_loadrub_io:
    241   case Hexagon::L2_loadrh_io:
    242   case Hexagon::L2_loadruh_io:
    243   case Hexagon::L2_loadri_io:
    244   case Hexagon::L2_loadrd_io:
    245   case Hexagon::V6_vL32b_ai:
    246   case Hexagon::V6_vL32b_ai_128B:
    247   case Hexagon::V6_vL32Ub_ai:
    248   case Hexagon::V6_vL32Ub_ai_128B:
    249   case Hexagon::LDriw_pred:
    250   case Hexagon::LDriw_mod:
    251   case Hexagon::LDriq_pred_V6:
    252   case Hexagon::LDriq_pred_vec_V6:
    253   case Hexagon::LDriv_pseudo_V6:
    254   case Hexagon::LDrivv_pseudo_V6:
    255   case Hexagon::LDriq_pred_V6_128B:
    256   case Hexagon::LDriq_pred_vec_V6_128B:
    257   case Hexagon::LDriv_pseudo_V6_128B:
    258   case Hexagon::LDrivv_pseudo_V6_128B: {
    259     const MachineOperand OpFI = MI.getOperand(1);
    260     if (!OpFI.isFI())
    261       return 0;
    262     const MachineOperand OpOff = MI.getOperand(2);
    263     if (!OpOff.isImm() || OpOff.getImm() != 0)
    264       return 0;
    265     FrameIndex = OpFI.getIndex();
    266     return MI.getOperand(0).getReg();
    267   }
    268 
    269   case Hexagon::L2_ploadrbt_io:
    270   case Hexagon::L2_ploadrbf_io:
    271   case Hexagon::L2_ploadrubt_io:
    272   case Hexagon::L2_ploadrubf_io:
    273   case Hexagon::L2_ploadrht_io:
    274   case Hexagon::L2_ploadrhf_io:
    275   case Hexagon::L2_ploadruht_io:
    276   case Hexagon::L2_ploadruhf_io:
    277   case Hexagon::L2_ploadrit_io:
    278   case Hexagon::L2_ploadrif_io:
    279   case Hexagon::L2_ploadrdt_io:
    280   case Hexagon::L2_ploadrdf_io: {
    281     const MachineOperand OpFI = MI.getOperand(2);
    282     if (!OpFI.isFI())
    283       return 0;
    284     const MachineOperand OpOff = MI.getOperand(3);
    285     if (!OpOff.isImm() || OpOff.getImm() != 0)
    286       return 0;
    287     FrameIndex = OpFI.getIndex();
    288     return MI.getOperand(0).getReg();
    289   }
    290   }
    291 
    292   return 0;
    293 }
    294 
    295 
    296 /// isStoreToStackSlot - If the specified machine instruction is a direct
    297 /// store to a stack slot, return the virtual or physical register number of
    298 /// the source reg along with the FrameIndex of the loaded stack slot.  If
    299 /// not, return 0.  This predicate must return 0 if the instruction has
    300 /// any side effects other than storing to the stack slot.
    301 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
    302                                               int &FrameIndex) const {
    303   switch (MI.getOpcode()) {
    304   default:
    305     break;
    306   case Hexagon::S2_storerb_io:
    307   case Hexagon::S2_storerh_io:
    308   case Hexagon::S2_storeri_io:
    309   case Hexagon::S2_storerd_io:
    310   case Hexagon::V6_vS32b_ai:
    311   case Hexagon::V6_vS32b_ai_128B:
    312   case Hexagon::V6_vS32Ub_ai:
    313   case Hexagon::V6_vS32Ub_ai_128B:
    314   case Hexagon::STriw_pred:
    315   case Hexagon::STriw_mod:
    316   case Hexagon::STriq_pred_V6:
    317   case Hexagon::STriq_pred_vec_V6:
    318   case Hexagon::STriv_pseudo_V6:
    319   case Hexagon::STrivv_pseudo_V6:
    320   case Hexagon::STriq_pred_V6_128B:
    321   case Hexagon::STriq_pred_vec_V6_128B:
    322   case Hexagon::STriv_pseudo_V6_128B:
    323   case Hexagon::STrivv_pseudo_V6_128B: {
    324     const MachineOperand &OpFI = MI.getOperand(0);
    325     if (!OpFI.isFI())
    326       return 0;
    327     const MachineOperand &OpOff = MI.getOperand(1);
    328     if (!OpOff.isImm() || OpOff.getImm() != 0)
    329       return 0;
    330     FrameIndex = OpFI.getIndex();
    331     return MI.getOperand(2).getReg();
    332   }
    333 
    334   case Hexagon::S2_pstorerbt_io:
    335   case Hexagon::S2_pstorerbf_io:
    336   case Hexagon::S2_pstorerht_io:
    337   case Hexagon::S2_pstorerhf_io:
    338   case Hexagon::S2_pstorerit_io:
    339   case Hexagon::S2_pstorerif_io:
    340   case Hexagon::S2_pstorerdt_io:
    341   case Hexagon::S2_pstorerdf_io: {
    342     const MachineOperand &OpFI = MI.getOperand(1);
    343     if (!OpFI.isFI())
    344       return 0;
    345     const MachineOperand &OpOff = MI.getOperand(2);
    346     if (!OpOff.isImm() || OpOff.getImm() != 0)
    347       return 0;
    348     FrameIndex = OpFI.getIndex();
    349     return MI.getOperand(3).getReg();
    350   }
    351   }
    352 
    353   return 0;
    354 }
    355 
    356 
    357 /// This function can analyze one/two way branching only and should (mostly) be
    358 /// called by target independent side.
    359 /// First entry is always the opcode of the branching instruction, except when
    360 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
    361 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
    362 /// e.g. Jump_c p will have
    363 /// Cond[0] = Jump_c
    364 /// Cond[1] = p
    365 /// HW-loop ENDLOOP:
    366 /// Cond[0] = ENDLOOP
    367 /// Cond[1] = MBB
    368 /// New value jump:
    369 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
    370 /// Cond[1] = R
    371 /// Cond[2] = Imm
    372 ///
    373 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
    374                                      MachineBasicBlock *&TBB,
    375                                      MachineBasicBlock *&FBB,
    376                                      SmallVectorImpl<MachineOperand> &Cond,
    377                                      bool AllowModify) const {
    378   TBB = nullptr;
    379   FBB = nullptr;
    380   Cond.clear();
    381 
    382   // If the block has no terminators, it just falls into the block after it.
    383   MachineBasicBlock::instr_iterator I = MBB.instr_end();
    384   if (I == MBB.instr_begin())
    385     return false;
    386 
    387   // A basic block may looks like this:
    388   //
    389   //  [   insn
    390   //     EH_LABEL
    391   //      insn
    392   //      insn
    393   //      insn
    394   //     EH_LABEL
    395   //      insn     ]
    396   //
    397   // It has two succs but does not have a terminator
    398   // Don't know how to handle it.
    399   do {
    400     --I;
    401     if (I->isEHLabel())
    402       // Don't analyze EH branches.
    403       return true;
    404   } while (I != MBB.instr_begin());
    405 
    406   I = MBB.instr_end();
    407   --I;
    408 
    409   while (I->isDebugValue()) {
    410     if (I == MBB.instr_begin())
    411       return false;
    412     --I;
    413   }
    414 
    415   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
    416                      I->getOperand(0).isMBB();
    417   // Delete the J2_jump if it's equivalent to a fall-through.
    418   if (AllowModify && JumpToBlock &&
    419       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
    420     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
    421     I->eraseFromParent();
    422     I = MBB.instr_end();
    423     if (I == MBB.instr_begin())
    424       return false;
    425     --I;
    426   }
    427   if (!isUnpredicatedTerminator(*I))
    428     return false;
    429 
    430   // Get the last instruction in the block.
    431   MachineInstr *LastInst = &*I;
    432   MachineInstr *SecondLastInst = nullptr;
    433   // Find one more terminator if present.
    434   for (;;) {
    435     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
    436       if (!SecondLastInst)
    437         SecondLastInst = &*I;
    438       else
    439         // This is a third branch.
    440         return true;
    441     }
    442     if (I == MBB.instr_begin())
    443       break;
    444     --I;
    445   }
    446 
    447   int LastOpcode = LastInst->getOpcode();
    448   int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
    449   // If the branch target is not a basic block, it could be a tail call.
    450   // (It is, if the target is a function.)
    451   if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
    452     return true;
    453   if (SecLastOpcode == Hexagon::J2_jump &&
    454       !SecondLastInst->getOperand(0).isMBB())
    455     return true;
    456 
    457   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
    458   bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
    459 
    460   if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
    461     return true;
    462 
    463   // If there is only one terminator instruction, process it.
    464   if (LastInst && !SecondLastInst) {
    465     if (LastOpcode == Hexagon::J2_jump) {
    466       TBB = LastInst->getOperand(0).getMBB();
    467       return false;
    468     }
    469     if (isEndLoopN(LastOpcode)) {
    470       TBB = LastInst->getOperand(0).getMBB();
    471       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
    472       Cond.push_back(LastInst->getOperand(0));
    473       return false;
    474     }
    475     if (LastOpcodeHasJMP_c) {
    476       TBB = LastInst->getOperand(1).getMBB();
    477       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
    478       Cond.push_back(LastInst->getOperand(0));
    479       return false;
    480     }
    481     // Only supporting rr/ri versions of new-value jumps.
    482     if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
    483       TBB = LastInst->getOperand(2).getMBB();
    484       Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
    485       Cond.push_back(LastInst->getOperand(0));
    486       Cond.push_back(LastInst->getOperand(1));
    487       return false;
    488     }
    489     DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
    490                  << " with one jump\n";);
    491     // Otherwise, don't know what this is.
    492     return true;
    493   }
    494 
    495   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
    496   bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
    497   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
    498     if (!SecondLastInst->getOperand(1).isMBB())
    499       return true;
    500     TBB =  SecondLastInst->getOperand(1).getMBB();
    501     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
    502     Cond.push_back(SecondLastInst->getOperand(0));
    503     FBB = LastInst->getOperand(0).getMBB();
    504     return false;
    505   }
    506 
    507   // Only supporting rr/ri versions of new-value jumps.
    508   if (SecLastOpcodeHasNVJump &&
    509       (SecondLastInst->getNumExplicitOperands() == 3) &&
    510       (LastOpcode == Hexagon::J2_jump)) {
    511     TBB = SecondLastInst->getOperand(2).getMBB();
    512     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
    513     Cond.push_back(SecondLastInst->getOperand(0));
    514     Cond.push_back(SecondLastInst->getOperand(1));
    515     FBB = LastInst->getOperand(0).getMBB();
    516     return false;
    517   }
    518 
    519   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
    520   // executed, so remove it.
    521   if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
    522     TBB = SecondLastInst->getOperand(0).getMBB();
    523     I = LastInst->getIterator();
    524     if (AllowModify)
    525       I->eraseFromParent();
    526     return false;
    527   }
    528 
    529   // If the block ends with an ENDLOOP, and J2_jump, handle it.
    530   if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
    531     TBB = SecondLastInst->getOperand(0).getMBB();
    532     Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
    533     Cond.push_back(SecondLastInst->getOperand(0));
    534     FBB = LastInst->getOperand(0).getMBB();
    535     return false;
    536   }
    537   DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
    538                << " with two jumps";);
    539   // Otherwise, can't handle this.
    540   return true;
    541 }
    542 
    543 
    544 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    545   DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
    546   MachineBasicBlock::iterator I = MBB.end();
    547   unsigned Count = 0;
    548   while (I != MBB.begin()) {
    549     --I;
    550     if (I->isDebugValue())
    551       continue;
    552     // Only removing branches from end of MBB.
    553     if (!I->isBranch())
    554       return Count;
    555     if (Count && (I->getOpcode() == Hexagon::J2_jump))
    556       llvm_unreachable("Malformed basic block: unconditional branch not last");
    557     MBB.erase(&MBB.back());
    558     I = MBB.end();
    559     ++Count;
    560   }
    561   return Count;
    562 }
    563 
    564 unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
    565                                         MachineBasicBlock *TBB,
    566                                         MachineBasicBlock *FBB,
    567                                         ArrayRef<MachineOperand> Cond,
    568                                         const DebugLoc &DL) const {
    569   unsigned BOpc   = Hexagon::J2_jump;
    570   unsigned BccOpc = Hexagon::J2_jumpt;
    571   assert(validateBranchCond(Cond) && "Invalid branching condition");
    572   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    573 
    574   // Check if ReverseBranchCondition has asked to reverse this branch
    575   // If we want to reverse the branch an odd number of times, we want
    576   // J2_jumpf.
    577   if (!Cond.empty() && Cond[0].isImm())
    578     BccOpc = Cond[0].getImm();
    579 
    580   if (!FBB) {
    581     if (Cond.empty()) {
    582       // Due to a bug in TailMerging/CFG Optimization, we need to add a
    583       // special case handling of a predicated jump followed by an
    584       // unconditional jump. If not, Tail Merging and CFG Optimization go
    585       // into an infinite loop.
    586       MachineBasicBlock *NewTBB, *NewFBB;
    587       SmallVector<MachineOperand, 4> Cond;
    588       auto Term = MBB.getFirstTerminator();
    589       if (Term != MBB.end() && isPredicated(*Term) &&
    590           !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
    591         MachineBasicBlock *NextBB = &*++MBB.getIterator();
    592         if (NewTBB == NextBB) {
    593           ReverseBranchCondition(Cond);
    594           RemoveBranch(MBB);
    595           return InsertBranch(MBB, TBB, nullptr, Cond, DL);
    596         }
    597       }
    598       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    599     } else if (isEndLoopN(Cond[0].getImm())) {
    600       int EndLoopOp = Cond[0].getImm();
    601       assert(Cond[1].isMBB());
    602       // Since we're adding an ENDLOOP, there better be a LOOP instruction.
    603       // Check for it, and change the BB target if needed.
    604       SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
    605       MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
    606       assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
    607       Loop->getOperand(0).setMBB(TBB);
    608       // Add the ENDLOOP after the finding the LOOP0.
    609       BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
    610     } else if (isNewValueJump(Cond[0].getImm())) {
    611       assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
    612       // New value jump
    613       // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
    614       // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
    615       unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
    616       DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
    617       if (Cond[2].isReg()) {
    618         unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
    619         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
    620           addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
    621       } else if(Cond[2].isImm()) {
    622         BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
    623           addImm(Cond[2].getImm()).addMBB(TBB);
    624       } else
    625         llvm_unreachable("Invalid condition for branching");
    626     } else {
    627       assert((Cond.size() == 2) && "Malformed cond vector");
    628       const MachineOperand &RO = Cond[1];
    629       unsigned Flags = getUndefRegState(RO.isUndef());
    630       BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
    631     }
    632     return 1;
    633   }
    634   assert((!Cond.empty()) &&
    635          "Cond. cannot be empty when multiple branchings are required");
    636   assert((!isNewValueJump(Cond[0].getImm())) &&
    637          "NV-jump cannot be inserted with another branch");
    638   // Special case for hardware loops.  The condition is a basic block.
    639   if (isEndLoopN(Cond[0].getImm())) {
    640     int EndLoopOp = Cond[0].getImm();
    641     assert(Cond[1].isMBB());
    642     // Since we're adding an ENDLOOP, there better be a LOOP instruction.
    643     // Check for it, and change the BB target if needed.
    644     SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
    645     MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
    646     assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
    647     Loop->getOperand(0).setMBB(TBB);
    648     // Add the ENDLOOP after the finding the LOOP0.
    649     BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
    650   } else {
    651     const MachineOperand &RO = Cond[1];
    652     unsigned Flags = getUndefRegState(RO.isUndef());
    653     BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
    654   }
    655   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    656 
    657   return 2;
    658 }
    659 
    660 /// Analyze the loop code to find the loop induction variable and compare used
    661 /// to compute the number of iterations. Currently, we analyze loop that are
    662 /// controlled using hardware loops.  In this case, the induction variable
    663 /// instruction is null.  For all other cases, this function returns true, which
    664 /// means we're unable to analyze it.
    665 bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
    666                                    MachineInstr *&IndVarInst,
    667                                    MachineInstr *&CmpInst) const {
    668 
    669   MachineBasicBlock *LoopEnd = L.getBottomBlock();
    670   MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
    671   // We really "analyze" only hardware loops right now.
    672   if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
    673     IndVarInst = nullptr;
    674     CmpInst = &*I;
    675     return false;
    676   }
    677   return true;
    678 }
    679 
    680 /// Generate code to reduce the loop iteration by one and check if the loop is
    681 /// finished. Return the value/register of the new loop count. this function
    682 /// assumes the nth iteration is peeled first.
    683 unsigned HexagonInstrInfo::reduceLoopCount(MachineBasicBlock &MBB,
    684       MachineInstr *IndVar, MachineInstr *Cmp,
    685       SmallVectorImpl<MachineOperand> &Cond,
    686       SmallVectorImpl<MachineInstr *> &PrevInsts,
    687       unsigned Iter, unsigned MaxIter) const {
    688   // We expect a hardware loop currently. This means that IndVar is set
    689   // to null, and the compare is the ENDLOOP instruction.
    690   assert((!IndVar) && isEndLoopN(Cmp->getOpcode())
    691                    && "Expecting a hardware loop");
    692   MachineFunction *MF = MBB.getParent();
    693   DebugLoc DL = Cmp->getDebugLoc();
    694   SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
    695   MachineInstr *Loop = findLoopInstr(&MBB, Cmp->getOpcode(), VisitedBBs);
    696   if (!Loop)
    697     return 0;
    698   // If the loop trip count is a compile-time value, then just change the
    699   // value.
    700   if (Loop->getOpcode() == Hexagon::J2_loop0i ||
    701       Loop->getOpcode() == Hexagon::J2_loop1i) {
    702     int64_t Offset = Loop->getOperand(1).getImm();
    703     if (Offset <= 1)
    704       Loop->eraseFromParent();
    705     else
    706       Loop->getOperand(1).setImm(Offset - 1);
    707     return Offset - 1;
    708   }
    709   // The loop trip count is a run-time value. We generate code to subtract
    710   // one from the trip count, and update the loop instruction.
    711   assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
    712   unsigned LoopCount = Loop->getOperand(1).getReg();
    713   // Check if we're done with the loop.
    714   unsigned LoopEnd = createVR(MF, MVT::i1);
    715   MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
    716     addReg(LoopCount).addImm(1);
    717   unsigned NewLoopCount = createVR(MF, MVT::i32);
    718   MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
    719     addReg(LoopCount).addImm(-1);
    720   // Update the previously generated instructions with the new loop counter.
    721   for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
    722          E = PrevInsts.end(); I != E; ++I)
    723     (*I)->substituteRegister(LoopCount, NewLoopCount, 0, getRegisterInfo());
    724   PrevInsts.clear();
    725   PrevInsts.push_back(NewCmp);
    726   PrevInsts.push_back(NewAdd);
    727   // Insert the new loop instruction if this is the last time the loop is
    728   // decremented.
    729   if (Iter == MaxIter)
    730     BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
    731       addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
    732   // Delete the old loop instruction.
    733   if (Iter == 0)
    734     Loop->eraseFromParent();
    735   Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
    736   Cond.push_back(NewCmp->getOperand(0));
    737   return NewLoopCount;
    738 }
    739 
    740 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
    741       unsigned NumCycles, unsigned ExtraPredCycles,
    742       BranchProbability Probability) const {
    743   return nonDbgBBSize(&MBB) <= 3;
    744 }
    745 
    746 
    747 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
    748       unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
    749       unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
    750       const {
    751   return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
    752 }
    753 
    754 
    755 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
    756       unsigned NumInstrs, BranchProbability Probability) const {
    757   return NumInstrs <= 4;
    758 }
    759 
    760 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    761                                    MachineBasicBlock::iterator I,
    762                                    const DebugLoc &DL, unsigned DestReg,
    763                                    unsigned SrcReg, bool KillSrc) const {
    764   auto &HRI = getRegisterInfo();
    765   unsigned KillFlag = getKillRegState(KillSrc);
    766 
    767   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
    768     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
    769       .addReg(SrcReg, KillFlag);
    770     return;
    771   }
    772   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
    773     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
    774       .addReg(SrcReg, KillFlag);
    775     return;
    776   }
    777   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
    778     // Map Pd = Ps to Pd = or(Ps, Ps).
    779     BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
    780       .addReg(SrcReg).addReg(SrcReg, KillFlag);
    781     return;
    782   }
    783   if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
    784       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    785     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
    786       .addReg(SrcReg, KillFlag);
    787     return;
    788   }
    789   if (Hexagon::IntRegsRegClass.contains(DestReg) &&
    790       Hexagon::CtrRegsRegClass.contains(SrcReg)) {
    791     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
    792       .addReg(SrcReg, KillFlag);
    793     return;
    794   }
    795   if (Hexagon::ModRegsRegClass.contains(DestReg) &&
    796       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    797     BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
    798       .addReg(SrcReg, KillFlag);
    799     return;
    800   }
    801   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
    802       Hexagon::IntRegsRegClass.contains(DestReg)) {
    803     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
    804       .addReg(SrcReg, KillFlag);
    805     return;
    806   }
    807   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
    808       Hexagon::PredRegsRegClass.contains(DestReg)) {
    809     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
    810       .addReg(SrcReg, KillFlag);
    811     return;
    812   }
    813   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
    814       Hexagon::IntRegsRegClass.contains(DestReg)) {
    815     BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
    816       .addReg(SrcReg, KillFlag);
    817     return;
    818   }
    819   if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
    820     BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
    821       addReg(SrcReg, KillFlag);
    822     return;
    823   }
    824   if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
    825     BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
    826       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg), KillFlag)
    827       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg), KillFlag);
    828     return;
    829   }
    830   if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
    831     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
    832       .addReg(SrcReg)
    833       .addReg(SrcReg, KillFlag);
    834     return;
    835   }
    836   if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
    837       Hexagon::VectorRegsRegClass.contains(DestReg)) {
    838     llvm_unreachable("Unimplemented pred to vec");
    839     return;
    840   }
    841   if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
    842       Hexagon::VectorRegsRegClass.contains(SrcReg)) {
    843     llvm_unreachable("Unimplemented vec to pred");
    844     return;
    845   }
    846   if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
    847     unsigned DstHi = HRI.getSubReg(DestReg, Hexagon::subreg_hireg);
    848     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DstHi)
    849       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg), KillFlag);
    850     unsigned DstLo = HRI.getSubReg(DestReg, Hexagon::subreg_loreg);
    851     BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DstLo)
    852       .addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg), KillFlag);
    853     return;
    854   }
    855 
    856 #ifndef NDEBUG
    857   // Show the invalid registers to ease debugging.
    858   dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
    859          << ": " << PrintReg(DestReg, &HRI)
    860          << " = " << PrintReg(SrcReg, &HRI) << '\n';
    861 #endif
    862   llvm_unreachable("Unimplemented");
    863 }
    864 
    865 
    866 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
    867       MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
    868       const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
    869   DebugLoc DL = MBB.findDebugLoc(I);
    870   MachineFunction &MF = *MBB.getParent();
    871   MachineFrameInfo &MFI = *MF.getFrameInfo();
    872   unsigned Align = MFI.getObjectAlignment(FI);
    873   unsigned KillFlag = getKillRegState(isKill);
    874 
    875   MachineMemOperand *MMO = MF.getMachineMemOperand(
    876       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
    877       MFI.getObjectSize(FI), Align);
    878 
    879   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    880     BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
    881       .addFrameIndex(FI).addImm(0)
    882       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    883   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    884     BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
    885       .addFrameIndex(FI).addImm(0)
    886       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    887   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    888     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
    889       .addFrameIndex(FI).addImm(0)
    890       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    891   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
    892     BuildMI(MBB, I, DL, get(Hexagon::STriw_mod))
    893       .addFrameIndex(FI).addImm(0)
    894       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    895   } else if (Hexagon::VecPredRegs128BRegClass.hasSubClassEq(RC)) {
    896     BuildMI(MBB, I, DL, get(Hexagon::STriq_pred_V6_128B))
    897       .addFrameIndex(FI).addImm(0)
    898       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    899   } else if (Hexagon::VecPredRegsRegClass.hasSubClassEq(RC)) {
    900     BuildMI(MBB, I, DL, get(Hexagon::STriq_pred_V6))
    901       .addFrameIndex(FI).addImm(0)
    902       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    903   } else if (Hexagon::VectorRegs128BRegClass.hasSubClassEq(RC)) {
    904     DEBUG(dbgs() << "++Generating 128B vector spill");
    905     BuildMI(MBB, I, DL, get(Hexagon::STriv_pseudo_V6_128B))
    906       .addFrameIndex(FI).addImm(0)
    907       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    908   } else if (Hexagon::VectorRegsRegClass.hasSubClassEq(RC)) {
    909     DEBUG(dbgs() << "++Generating vector spill");
    910     BuildMI(MBB, I, DL, get(Hexagon::STriv_pseudo_V6))
    911       .addFrameIndex(FI).addImm(0)
    912       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    913   } else if (Hexagon::VecDblRegsRegClass.hasSubClassEq(RC)) {
    914     DEBUG(dbgs() << "++Generating double vector spill");
    915     BuildMI(MBB, I, DL, get(Hexagon::STrivv_pseudo_V6))
    916       .addFrameIndex(FI).addImm(0)
    917       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    918   } else if (Hexagon::VecDblRegs128BRegClass.hasSubClassEq(RC)) {
    919     DEBUG(dbgs() << "++Generating 128B double vector spill");
    920     BuildMI(MBB, I, DL, get(Hexagon::STrivv_pseudo_V6_128B))
    921       .addFrameIndex(FI).addImm(0)
    922       .addReg(SrcReg, KillFlag).addMemOperand(MMO);
    923   } else {
    924     llvm_unreachable("Unimplemented");
    925   }
    926 }
    927 
    928 void HexagonInstrInfo::loadRegFromStackSlot(
    929     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
    930     int FI, const TargetRegisterClass *RC,
    931     const TargetRegisterInfo *TRI) const {
    932   DebugLoc DL = MBB.findDebugLoc(I);
    933   MachineFunction &MF = *MBB.getParent();
    934   MachineFrameInfo &MFI = *MF.getFrameInfo();
    935   unsigned Align = MFI.getObjectAlignment(FI);
    936 
    937   MachineMemOperand *MMO = MF.getMachineMemOperand(
    938       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
    939       MFI.getObjectSize(FI), Align);
    940 
    941   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    942     BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
    943       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    944   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    945     BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
    946       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    947   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    948     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
    949       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    950   } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
    951     BuildMI(MBB, I, DL, get(Hexagon::LDriw_mod), DestReg)
    952       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    953   } else if (Hexagon::VecPredRegs128BRegClass.hasSubClassEq(RC)) {
    954     BuildMI(MBB, I, DL, get(Hexagon::LDriq_pred_V6_128B), DestReg)
    955       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    956   } else if (Hexagon::VecPredRegsRegClass.hasSubClassEq(RC)) {
    957     BuildMI(MBB, I, DL, get(Hexagon::LDriq_pred_V6), DestReg)
    958       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    959   } else if (Hexagon::VecDblRegs128BRegClass.hasSubClassEq(RC)) {
    960     DEBUG(dbgs() << "++Generating 128B double vector restore");
    961     BuildMI(MBB, I, DL, get(Hexagon::LDrivv_pseudo_V6_128B), DestReg)
    962       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    963   } else if (Hexagon::VectorRegs128BRegClass.hasSubClassEq(RC)) {
    964     DEBUG(dbgs() << "++Generating 128B vector restore");
    965     BuildMI(MBB, I, DL, get(Hexagon::LDriv_pseudo_V6_128B), DestReg)
    966       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    967   } else if (Hexagon::VectorRegsRegClass.hasSubClassEq(RC)) {
    968     DEBUG(dbgs() << "++Generating vector restore");
    969     BuildMI(MBB, I, DL, get(Hexagon::LDriv_pseudo_V6), DestReg)
    970       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    971   } else if (Hexagon::VecDblRegsRegClass.hasSubClassEq(RC)) {
    972     DEBUG(dbgs() << "++Generating double vector restore");
    973     BuildMI(MBB, I, DL, get(Hexagon::LDrivv_pseudo_V6), DestReg)
    974       .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    975   } else {
    976     llvm_unreachable("Can't store this register to stack slot");
    977   }
    978 }
    979 
    980 
    981 /// expandPostRAPseudo - This function is called for all pseudo instructions
    982 /// that remain after register allocation. Many pseudo instructions are
    983 /// created to help register allocation. This is the place to convert them
    984 /// into real instructions. The target can edit MI in place, or it can insert
    985 /// new instructions and erase MI. The function should return true if
    986 /// anything was changed.
    987 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
    988   const HexagonRegisterInfo &HRI = getRegisterInfo();
    989   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
    990   MachineBasicBlock &MBB = *MI.getParent();
    991   DebugLoc DL = MI.getDebugLoc();
    992   unsigned Opc = MI.getOpcode();
    993   const unsigned VecOffset = 1;
    994   bool Is128B = false;
    995 
    996   switch (Opc) {
    997     case TargetOpcode::COPY: {
    998       MachineOperand &MD = MI.getOperand(0);
    999       MachineOperand &MS = MI.getOperand(1);
   1000       MachineBasicBlock::iterator MBBI = MI.getIterator();
   1001       if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
   1002         copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
   1003         std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
   1004       }
   1005       MBB.erase(MBBI);
   1006       return true;
   1007     }
   1008     case Hexagon::ALIGNA:
   1009       BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
   1010           .addReg(HRI.getFrameRegister())
   1011           .addImm(-MI.getOperand(1).getImm());
   1012       MBB.erase(MI);
   1013       return true;
   1014     case Hexagon::HEXAGON_V6_vassignp_128B:
   1015     case Hexagon::HEXAGON_V6_vassignp: {
   1016       unsigned SrcReg = MI.getOperand(1).getReg();
   1017       unsigned DstReg = MI.getOperand(0).getReg();
   1018       if (SrcReg != DstReg)
   1019         copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI.getOperand(1).isKill());
   1020       MBB.erase(MI);
   1021       return true;
   1022     }
   1023     case Hexagon::HEXAGON_V6_lo_128B:
   1024     case Hexagon::HEXAGON_V6_lo: {
   1025       unsigned SrcReg = MI.getOperand(1).getReg();
   1026       unsigned DstReg = MI.getOperand(0).getReg();
   1027       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
   1028       copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
   1029       MBB.erase(MI);
   1030       MRI.clearKillFlags(SrcSubLo);
   1031       return true;
   1032     }
   1033     case Hexagon::HEXAGON_V6_hi_128B:
   1034     case Hexagon::HEXAGON_V6_hi: {
   1035       unsigned SrcReg = MI.getOperand(1).getReg();
   1036       unsigned DstReg = MI.getOperand(0).getReg();
   1037       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
   1038       copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
   1039       MBB.erase(MI);
   1040       MRI.clearKillFlags(SrcSubHi);
   1041       return true;
   1042     }
   1043     case Hexagon::STrivv_indexed_128B:
   1044       Is128B = true;
   1045     case Hexagon::STrivv_indexed: {
   1046       unsigned SrcReg = MI.getOperand(2).getReg();
   1047       unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
   1048       unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
   1049       unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
   1050                                 : Hexagon::V6_vS32b_ai;
   1051       unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
   1052       MachineInstr *MI1New =
   1053           BuildMI(MBB, MI, DL, get(NewOpcd))
   1054               .addOperand(MI.getOperand(0))
   1055               .addImm(MI.getOperand(1).getImm())
   1056               .addReg(SrcSubLo)
   1057               .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   1058       MI1New->getOperand(0).setIsKill(false);
   1059       BuildMI(MBB, MI, DL, get(NewOpcd))
   1060           .addOperand(MI.getOperand(0))
   1061           // The Vectors are indexed in multiples of vector size.
   1062           .addImm(MI.getOperand(1).getImm() + Offset)
   1063           .addReg(SrcSubHi)
   1064           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   1065       MBB.erase(MI);
   1066       return true;
   1067     }
   1068     case Hexagon::LDrivv_pseudo_V6_128B:
   1069     case Hexagon::LDrivv_indexed_128B:
   1070       Is128B = true;
   1071     case Hexagon::LDrivv_pseudo_V6:
   1072     case Hexagon::LDrivv_indexed: {
   1073       unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
   1074                                 : Hexagon::V6_vL32b_ai;
   1075       unsigned DstReg = MI.getOperand(0).getReg();
   1076       unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
   1077       MachineInstr *MI1New =
   1078           BuildMI(MBB, MI, DL, get(NewOpcd),
   1079                   HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
   1080               .addOperand(MI.getOperand(1))
   1081               .addImm(MI.getOperand(2).getImm());
   1082       MI1New->getOperand(1).setIsKill(false);
   1083       BuildMI(MBB, MI, DL, get(NewOpcd),
   1084               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
   1085           .addOperand(MI.getOperand(1))
   1086           // The Vectors are indexed in multiples of vector size.
   1087           .addImm(MI.getOperand(2).getImm() + Offset)
   1088           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   1089       MBB.erase(MI);
   1090       return true;
   1091     }
   1092     case Hexagon::LDriv_pseudo_V6_128B:
   1093       Is128B = true;
   1094     case Hexagon::LDriv_pseudo_V6: {
   1095       unsigned DstReg = MI.getOperand(0).getReg();
   1096       unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
   1097                                : Hexagon::V6_vL32b_ai;
   1098       int32_t Off = MI.getOperand(2).getImm();
   1099       BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
   1100           .addOperand(MI.getOperand(1))
   1101           .addImm(Off)
   1102           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   1103       MBB.erase(MI);
   1104       return true;
   1105     }
   1106     case Hexagon::STriv_pseudo_V6_128B:
   1107       Is128B = true;
   1108     case Hexagon::STriv_pseudo_V6: {
   1109       unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
   1110                                : Hexagon::V6_vS32b_ai;
   1111       int32_t Off = MI.getOperand(1).getImm();
   1112       BuildMI(MBB, MI, DL, get(NewOpc))
   1113           .addOperand(MI.getOperand(0))
   1114           .addImm(Off)
   1115           .addOperand(MI.getOperand(2))
   1116           .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
   1117       MBB.erase(MI);
   1118       return true;
   1119     }
   1120     case Hexagon::TFR_PdTrue: {
   1121       unsigned Reg = MI.getOperand(0).getReg();
   1122       BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
   1123         .addReg(Reg, RegState::Undef)
   1124         .addReg(Reg, RegState::Undef);
   1125       MBB.erase(MI);
   1126       return true;
   1127     }
   1128     case Hexagon::TFR_PdFalse: {
   1129       unsigned Reg = MI.getOperand(0).getReg();
   1130       BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
   1131         .addReg(Reg, RegState::Undef)
   1132         .addReg(Reg, RegState::Undef);
   1133       MBB.erase(MI);
   1134       return true;
   1135     }
   1136     case Hexagon::VMULW: {
   1137       // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
   1138       unsigned DstReg = MI.getOperand(0).getReg();
   1139       unsigned Src1Reg = MI.getOperand(1).getReg();
   1140       unsigned Src2Reg = MI.getOperand(2).getReg();
   1141       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
   1142       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
   1143       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
   1144       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
   1145       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
   1146               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
   1147           .addReg(Src1SubHi)
   1148           .addReg(Src2SubHi);
   1149       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
   1150               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
   1151           .addReg(Src1SubLo)
   1152           .addReg(Src2SubLo);
   1153       MBB.erase(MI);
   1154       MRI.clearKillFlags(Src1SubHi);
   1155       MRI.clearKillFlags(Src1SubLo);
   1156       MRI.clearKillFlags(Src2SubHi);
   1157       MRI.clearKillFlags(Src2SubLo);
   1158       return true;
   1159     }
   1160     case Hexagon::VMULW_ACC: {
   1161       // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
   1162       unsigned DstReg = MI.getOperand(0).getReg();
   1163       unsigned Src1Reg = MI.getOperand(1).getReg();
   1164       unsigned Src2Reg = MI.getOperand(2).getReg();
   1165       unsigned Src3Reg = MI.getOperand(3).getReg();
   1166       unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
   1167       unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
   1168       unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
   1169       unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
   1170       unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
   1171       unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
   1172       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
   1173               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
   1174           .addReg(Src1SubHi)
   1175           .addReg(Src2SubHi)
   1176           .addReg(Src3SubHi);
   1177       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
   1178               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
   1179           .addReg(Src1SubLo)
   1180           .addReg(Src2SubLo)
   1181           .addReg(Src3SubLo);
   1182       MBB.erase(MI);
   1183       MRI.clearKillFlags(Src1SubHi);
   1184       MRI.clearKillFlags(Src1SubLo);
   1185       MRI.clearKillFlags(Src2SubHi);
   1186       MRI.clearKillFlags(Src2SubLo);
   1187       MRI.clearKillFlags(Src3SubHi);
   1188       MRI.clearKillFlags(Src3SubLo);
   1189       return true;
   1190     }
   1191     case Hexagon::Insert4: {
   1192       unsigned DstReg = MI.getOperand(0).getReg();
   1193       unsigned Src1Reg = MI.getOperand(1).getReg();
   1194       unsigned Src2Reg = MI.getOperand(2).getReg();
   1195       unsigned Src3Reg = MI.getOperand(3).getReg();
   1196       unsigned Src4Reg = MI.getOperand(4).getReg();
   1197       unsigned Src1RegIsKill = getKillRegState(MI.getOperand(1).isKill());
   1198       unsigned Src2RegIsKill = getKillRegState(MI.getOperand(2).isKill());
   1199       unsigned Src3RegIsKill = getKillRegState(MI.getOperand(3).isKill());
   1200       unsigned Src4RegIsKill = getKillRegState(MI.getOperand(4).isKill());
   1201       unsigned DstSubHi = HRI.getSubReg(DstReg, Hexagon::subreg_hireg);
   1202       unsigned DstSubLo = HRI.getSubReg(DstReg, Hexagon::subreg_loreg);
   1203       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
   1204               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
   1205           .addReg(DstSubLo)
   1206           .addReg(Src1Reg, Src1RegIsKill)
   1207           .addImm(16)
   1208           .addImm(0);
   1209       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
   1210               HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
   1211           .addReg(DstSubLo)
   1212           .addReg(Src2Reg, Src2RegIsKill)
   1213           .addImm(16)
   1214           .addImm(16);
   1215       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
   1216               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
   1217           .addReg(DstSubHi)
   1218           .addReg(Src3Reg, Src3RegIsKill)
   1219           .addImm(16)
   1220           .addImm(0);
   1221       BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::S2_insert),
   1222               HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
   1223           .addReg(DstSubHi)
   1224           .addReg(Src4Reg, Src4RegIsKill)
   1225           .addImm(16)
   1226           .addImm(16);
   1227       MBB.erase(MI);
   1228       MRI.clearKillFlags(DstReg);
   1229       MRI.clearKillFlags(DstSubHi);
   1230       MRI.clearKillFlags(DstSubLo);
   1231       return true;
   1232     }
   1233     case Hexagon::MUX64_rr: {
   1234       const MachineOperand &Op0 = MI.getOperand(0);
   1235       const MachineOperand &Op1 = MI.getOperand(1);
   1236       const MachineOperand &Op2 = MI.getOperand(2);
   1237       const MachineOperand &Op3 = MI.getOperand(3);
   1238       unsigned Rd = Op0.getReg();
   1239       unsigned Pu = Op1.getReg();
   1240       unsigned Rs = Op2.getReg();
   1241       unsigned Rt = Op3.getReg();
   1242       DebugLoc DL = MI.getDebugLoc();
   1243       unsigned K1 = getKillRegState(Op1.isKill());
   1244       unsigned K2 = getKillRegState(Op2.isKill());
   1245       unsigned K3 = getKillRegState(Op3.isKill());
   1246       if (Rd != Rs)
   1247         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
   1248           .addReg(Pu, (Rd == Rt) ? K1 : 0)
   1249           .addReg(Rs, K2);
   1250       if (Rd != Rt)
   1251         BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
   1252           .addReg(Pu, K1)
   1253           .addReg(Rt, K3);
   1254       MBB.erase(MI);
   1255       return true;
   1256     }
   1257     case Hexagon::VSelectPseudo_V6: {
   1258       const MachineOperand &Op0 = MI.getOperand(0);
   1259       const MachineOperand &Op1 = MI.getOperand(1);
   1260       const MachineOperand &Op2 = MI.getOperand(2);
   1261       const MachineOperand &Op3 = MI.getOperand(3);
   1262       BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
   1263         .addOperand(Op0)
   1264         .addOperand(Op1)
   1265         .addOperand(Op2);
   1266       BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
   1267         .addOperand(Op0)
   1268         .addOperand(Op1)
   1269         .addOperand(Op3);
   1270       MBB.erase(MI);
   1271       return true;
   1272     }
   1273     case Hexagon::VSelectDblPseudo_V6: {
   1274       MachineOperand &Op0 = MI.getOperand(0);
   1275       MachineOperand &Op1 = MI.getOperand(1);
   1276       MachineOperand &Op2 = MI.getOperand(2);
   1277       MachineOperand &Op3 = MI.getOperand(3);
   1278       unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::subreg_loreg);
   1279       unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::subreg_hireg);
   1280       BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
   1281         .addOperand(Op0)
   1282         .addOperand(Op1)
   1283         .addReg(SrcHi)
   1284         .addReg(SrcLo);
   1285       SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::subreg_loreg);
   1286       SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::subreg_hireg);
   1287       BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
   1288         .addOperand(Op0)
   1289         .addOperand(Op1)
   1290         .addReg(SrcHi)
   1291         .addReg(SrcLo);
   1292       MBB.erase(MI);
   1293       return true;
   1294     }
   1295     case Hexagon::TCRETURNi:
   1296       MI.setDesc(get(Hexagon::J2_jump));
   1297       return true;
   1298     case Hexagon::TCRETURNr:
   1299       MI.setDesc(get(Hexagon::J2_jumpr));
   1300       return true;
   1301     case Hexagon::TFRI_f:
   1302     case Hexagon::TFRI_cPt_f:
   1303     case Hexagon::TFRI_cNotPt_f: {
   1304       unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
   1305       APFloat FVal = MI.getOperand(Opx).getFPImm()->getValueAPF();
   1306       APInt IVal = FVal.bitcastToAPInt();
   1307       MI.RemoveOperand(Opx);
   1308       unsigned NewOpc = (Opc == Hexagon::TFRI_f)     ? Hexagon::A2_tfrsi   :
   1309                         (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
   1310                                                        Hexagon::C2_cmoveif;
   1311       MI.setDesc(get(NewOpc));
   1312       MI.addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
   1313       return true;
   1314     }
   1315   }
   1316 
   1317   return false;
   1318 }
   1319 
   1320 
   1321 // We indicate that we want to reverse the branch by
   1322 // inserting the reversed branching opcode.
   1323 bool HexagonInstrInfo::ReverseBranchCondition(
   1324       SmallVectorImpl<MachineOperand> &Cond) const {
   1325   if (Cond.empty())
   1326     return true;
   1327   assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
   1328   unsigned opcode = Cond[0].getImm();
   1329   //unsigned temp;
   1330   assert(get(opcode).isBranch() && "Should be a branching condition.");
   1331   if (isEndLoopN(opcode))
   1332     return true;
   1333   unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
   1334   Cond[0].setImm(NewOpcode);
   1335   return false;
   1336 }
   1337 
   1338 
   1339 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
   1340       MachineBasicBlock::iterator MI) const {
   1341   DebugLoc DL;
   1342   BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
   1343 }
   1344 
   1345 
   1346 // Returns true if an instruction is predicated irrespective of the predicate
   1347 // sense. For example, all of the following will return true.
   1348 // if (p0) R1 = add(R2, R3)
   1349 // if (!p0) R1 = add(R2, R3)
   1350 // if (p0.new) R1 = add(R2, R3)
   1351 // if (!p0.new) R1 = add(R2, R3)
   1352 // Note: New-value stores are not included here as in the current
   1353 // implementation, we don't need to check their predicate sense.
   1354 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
   1355   const uint64_t F = MI.getDesc().TSFlags;
   1356   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
   1357 }
   1358 
   1359 
   1360 bool HexagonInstrInfo::PredicateInstruction(
   1361     MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
   1362   if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
   1363       isEndLoopN(Cond[0].getImm())) {
   1364     DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
   1365     return false;
   1366   }
   1367   int Opc = MI.getOpcode();
   1368   assert (isPredicable(MI) && "Expected predicable instruction");
   1369   bool invertJump = predOpcodeHasNot(Cond);
   1370 
   1371   // We have to predicate MI "in place", i.e. after this function returns,
   1372   // MI will need to be transformed into a predicated form. To avoid com-
   1373   // plicated manipulations with the operands (handling tied operands,
   1374   // etc.), build a new temporary instruction, then overwrite MI with it.
   1375 
   1376   MachineBasicBlock &B = *MI.getParent();
   1377   DebugLoc DL = MI.getDebugLoc();
   1378   unsigned PredOpc = getCondOpcode(Opc, invertJump);
   1379   MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
   1380   unsigned NOp = 0, NumOps = MI.getNumOperands();
   1381   while (NOp < NumOps) {
   1382     MachineOperand &Op = MI.getOperand(NOp);
   1383     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
   1384       break;
   1385     T.addOperand(Op);
   1386     NOp++;
   1387   }
   1388 
   1389   unsigned PredReg, PredRegPos, PredRegFlags;
   1390   bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
   1391   (void)GotPredReg;
   1392   assert(GotPredReg);
   1393   T.addReg(PredReg, PredRegFlags);
   1394   while (NOp < NumOps)
   1395     T.addOperand(MI.getOperand(NOp++));
   1396 
   1397   MI.setDesc(get(PredOpc));
   1398   while (unsigned n = MI.getNumOperands())
   1399     MI.RemoveOperand(n-1);
   1400   for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
   1401     MI.addOperand(T->getOperand(i));
   1402 
   1403   MachineBasicBlock::instr_iterator TI = T->getIterator();
   1404   B.erase(TI);
   1405 
   1406   MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
   1407   MRI.clearKillFlags(PredReg);
   1408   return true;
   1409 }
   1410 
   1411 
   1412 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
   1413       ArrayRef<MachineOperand> Pred2) const {
   1414   // TODO: Fix this
   1415   return false;
   1416 }
   1417 
   1418 
   1419 bool HexagonInstrInfo::DefinesPredicate(
   1420     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
   1421   auto &HRI = getRegisterInfo();
   1422   for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
   1423     MachineOperand MO = MI.getOperand(oper);
   1424     if (MO.isReg() && MO.isDef()) {
   1425       const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
   1426       if (RC == &Hexagon::PredRegsRegClass) {
   1427         Pred.push_back(MO);
   1428         return true;
   1429       }
   1430     }
   1431   }
   1432   return false;
   1433 }
   1434 
   1435 
   1436 bool HexagonInstrInfo::isPredicable(MachineInstr &MI) const {
   1437   return MI.getDesc().isPredicable();
   1438 }
   1439 
   1440 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
   1441                                             const MachineBasicBlock *MBB,
   1442                                             const MachineFunction &MF) const {
   1443   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1444   // due to the special treatment of IT instructions below, otherwise a
   1445   // dbg_value followed by an IT will result in the IT instruction being
   1446   // considered a scheduling hazard, which is wrong. It should be the actual
   1447   // instruction preceding the dbg_value instruction(s), just like it is
   1448   // when debug info is not present.
   1449   if (MI.isDebugValue())
   1450     return false;
   1451 
   1452   // Throwing call is a boundary.
   1453   if (MI.isCall()) {
   1454     // If any of the block's successors is a landing pad, this could be a
   1455     // throwing call.
   1456     for (auto I : MBB->successors())
   1457       if (I->isEHPad())
   1458         return true;
   1459   }
   1460 
   1461   // Don't mess around with no return calls.
   1462   if (MI.getOpcode() == Hexagon::CALLv3nr)
   1463     return true;
   1464 
   1465   // Terminators and labels can't be scheduled around.
   1466   if (MI.getDesc().isTerminator() || MI.isPosition())
   1467     return true;
   1468 
   1469   if (MI.isInlineAsm() && !ScheduleInlineAsm)
   1470     return true;
   1471 
   1472   return false;
   1473 }
   1474 
   1475 
   1476 /// Measure the specified inline asm to determine an approximation of its
   1477 /// length.
   1478 /// Comments (which run till the next SeparatorString or newline) do not
   1479 /// count as an instruction.
   1480 /// Any other non-whitespace text is considered an instruction, with
   1481 /// multiple instructions separated by SeparatorString or newlines.
   1482 /// Variable-length instructions are not handled here; this function
   1483 /// may be overloaded in the target code to do that.
   1484 /// Hexagon counts the number of ##'s and adjust for that many
   1485 /// constant exenders.
   1486 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
   1487       const MCAsmInfo &MAI) const {
   1488   StringRef AStr(Str);
   1489   // Count the number of instructions in the asm.
   1490   bool atInsnStart = true;
   1491   unsigned Length = 0;
   1492   for (; *Str; ++Str) {
   1493     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
   1494                                 strlen(MAI.getSeparatorString())) == 0)
   1495       atInsnStart = true;
   1496     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
   1497       Length += MAI.getMaxInstLength();
   1498       atInsnStart = false;
   1499     }
   1500     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
   1501                                strlen(MAI.getCommentString())) == 0)
   1502       atInsnStart = false;
   1503   }
   1504 
   1505   // Add to size number of constant extenders seen * 4.
   1506   StringRef Occ("##");
   1507   Length += AStr.count(Occ)*4;
   1508   return Length;
   1509 }
   1510 
   1511 
   1512 ScheduleHazardRecognizer*
   1513 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
   1514       const InstrItineraryData *II, const ScheduleDAG *DAG) const {
   1515   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
   1516 }
   1517 
   1518 
   1519 /// \brief For a comparison instruction, return the source registers in
   1520 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
   1521 /// compares against in CmpValue. Return true if the comparison instruction
   1522 /// can be analyzed.
   1523 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
   1524                                       unsigned &SrcReg2, int &Mask,
   1525                                       int &Value) const {
   1526   unsigned Opc = MI.getOpcode();
   1527 
   1528   // Set mask and the first source register.
   1529   switch (Opc) {
   1530     case Hexagon::C2_cmpeq:
   1531     case Hexagon::C2_cmpeqp:
   1532     case Hexagon::C2_cmpgt:
   1533     case Hexagon::C2_cmpgtp:
   1534     case Hexagon::C2_cmpgtu:
   1535     case Hexagon::C2_cmpgtup:
   1536     case Hexagon::C4_cmpneq:
   1537     case Hexagon::C4_cmplte:
   1538     case Hexagon::C4_cmplteu:
   1539     case Hexagon::C2_cmpeqi:
   1540     case Hexagon::C2_cmpgti:
   1541     case Hexagon::C2_cmpgtui:
   1542     case Hexagon::C4_cmpneqi:
   1543     case Hexagon::C4_cmplteui:
   1544     case Hexagon::C4_cmpltei:
   1545       SrcReg = MI.getOperand(1).getReg();
   1546       Mask = ~0;
   1547       break;
   1548     case Hexagon::A4_cmpbeq:
   1549     case Hexagon::A4_cmpbgt:
   1550     case Hexagon::A4_cmpbgtu:
   1551     case Hexagon::A4_cmpbeqi:
   1552     case Hexagon::A4_cmpbgti:
   1553     case Hexagon::A4_cmpbgtui:
   1554       SrcReg = MI.getOperand(1).getReg();
   1555       Mask = 0xFF;
   1556       break;
   1557     case Hexagon::A4_cmpheq:
   1558     case Hexagon::A4_cmphgt:
   1559     case Hexagon::A4_cmphgtu:
   1560     case Hexagon::A4_cmpheqi:
   1561     case Hexagon::A4_cmphgti:
   1562     case Hexagon::A4_cmphgtui:
   1563       SrcReg = MI.getOperand(1).getReg();
   1564       Mask = 0xFFFF;
   1565       break;
   1566   }
   1567 
   1568   // Set the value/second source register.
   1569   switch (Opc) {
   1570     case Hexagon::C2_cmpeq:
   1571     case Hexagon::C2_cmpeqp:
   1572     case Hexagon::C2_cmpgt:
   1573     case Hexagon::C2_cmpgtp:
   1574     case Hexagon::C2_cmpgtu:
   1575     case Hexagon::C2_cmpgtup:
   1576     case Hexagon::A4_cmpbeq:
   1577     case Hexagon::A4_cmpbgt:
   1578     case Hexagon::A4_cmpbgtu:
   1579     case Hexagon::A4_cmpheq:
   1580     case Hexagon::A4_cmphgt:
   1581     case Hexagon::A4_cmphgtu:
   1582     case Hexagon::C4_cmpneq:
   1583     case Hexagon::C4_cmplte:
   1584     case Hexagon::C4_cmplteu:
   1585       SrcReg2 = MI.getOperand(2).getReg();
   1586       return true;
   1587 
   1588     case Hexagon::C2_cmpeqi:
   1589     case Hexagon::C2_cmpgtui:
   1590     case Hexagon::C2_cmpgti:
   1591     case Hexagon::C4_cmpneqi:
   1592     case Hexagon::C4_cmplteui:
   1593     case Hexagon::C4_cmpltei:
   1594     case Hexagon::A4_cmpbeqi:
   1595     case Hexagon::A4_cmpbgti:
   1596     case Hexagon::A4_cmpbgtui:
   1597     case Hexagon::A4_cmpheqi:
   1598     case Hexagon::A4_cmphgti:
   1599     case Hexagon::A4_cmphgtui:
   1600       SrcReg2 = 0;
   1601       Value = MI.getOperand(2).getImm();
   1602       return true;
   1603   }
   1604 
   1605   return false;
   1606 }
   1607 
   1608 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   1609                                            const MachineInstr &MI,
   1610                                            unsigned *PredCost) const {
   1611   return getInstrTimingClassLatency(ItinData, &MI);
   1612 }
   1613 
   1614 
   1615 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
   1616     const TargetSubtargetInfo &STI) const {
   1617   const InstrItineraryData *II = STI.getInstrItineraryData();
   1618   return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
   1619 }
   1620 
   1621 
   1622 // Inspired by this pair:
   1623 //  %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
   1624 //  S2_storeri_io %R29, 132, %R1<kill>; flags:  mem:ST4[FixedStack1]
   1625 // Currently AA considers the addresses in these instructions to be aliasing.
   1626 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
   1627     MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const {
   1628   int OffsetA = 0, OffsetB = 0;
   1629   unsigned SizeA = 0, SizeB = 0;
   1630 
   1631   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
   1632       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
   1633     return false;
   1634 
   1635   // Instructions that are pure loads, not loads and stores like memops are not
   1636   // dependent.
   1637   if (MIa.mayLoad() && !isMemOp(&MIa) && MIb.mayLoad() && !isMemOp(&MIb))
   1638     return true;
   1639 
   1640   // Get base, offset, and access size in MIa.
   1641   unsigned BaseRegA = getBaseAndOffset(&MIa, OffsetA, SizeA);
   1642   if (!BaseRegA || !SizeA)
   1643     return false;
   1644 
   1645   // Get base, offset, and access size in MIb.
   1646   unsigned BaseRegB = getBaseAndOffset(&MIb, OffsetB, SizeB);
   1647   if (!BaseRegB || !SizeB)
   1648     return false;
   1649 
   1650   if (BaseRegA != BaseRegB)
   1651     return false;
   1652 
   1653   // This is a mem access with the same base register and known offsets from it.
   1654   // Reason about it.
   1655   if (OffsetA > OffsetB) {
   1656     uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
   1657     return (SizeB <= offDiff);
   1658   } else if (OffsetA < OffsetB) {
   1659     uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
   1660     return (SizeA <= offDiff);
   1661   }
   1662 
   1663   return false;
   1664 }
   1665 
   1666 
   1667 /// If the instruction is an increment of a constant value, return the amount.
   1668 bool HexagonInstrInfo::getIncrementValue(const MachineInstr *MI,
   1669       int &Value) const {
   1670   if (isPostIncrement(MI)) {
   1671     unsigned AccessSize;
   1672     return getBaseAndOffset(MI, Value, AccessSize);
   1673   }
   1674   if (MI->getOpcode() == Hexagon::A2_addi) {
   1675     Value = MI->getOperand(2).getImm();
   1676     return true;
   1677   }
   1678 
   1679   return false;
   1680 }
   1681 
   1682 
   1683 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
   1684   MachineRegisterInfo &MRI = MF->getRegInfo();
   1685   const TargetRegisterClass *TRC;
   1686   if (VT == MVT::i1) {
   1687     TRC = &Hexagon::PredRegsRegClass;
   1688   } else if (VT == MVT::i32 || VT == MVT::f32) {
   1689     TRC = &Hexagon::IntRegsRegClass;
   1690   } else if (VT == MVT::i64 || VT == MVT::f64) {
   1691     TRC = &Hexagon::DoubleRegsRegClass;
   1692   } else {
   1693     llvm_unreachable("Cannot handle this register class");
   1694   }
   1695 
   1696   unsigned NewReg = MRI.createVirtualRegister(TRC);
   1697   return NewReg;
   1698 }
   1699 
   1700 
   1701 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
   1702   return (getAddrMode(MI) == HexagonII::AbsoluteSet);
   1703 }
   1704 
   1705 
   1706 bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
   1707   const uint64_t F = MI->getDesc().TSFlags;
   1708   return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
   1709 }
   1710 
   1711 
   1712 bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
   1713   const MachineFunction *MF = MI->getParent()->getParent();
   1714   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
   1715   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
   1716 
   1717   if (!(isTC1(MI))
   1718       && !(QII->isTC2Early(MI))
   1719       && !(MI->getDesc().mayLoad())
   1720       && !(MI->getDesc().mayStore())
   1721       && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
   1722       && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
   1723       && !(QII->isMemOp(MI))
   1724       && !(MI->isBranch())
   1725       && !(MI->isReturn())
   1726       && !MI->isCall())
   1727     return true;
   1728 
   1729   return false;
   1730 }
   1731 
   1732 
   1733 // Return true if the instruction is a compund branch instruction.
   1734 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
   1735   return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
   1736 }
   1737 
   1738 
   1739 bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
   1740   return (MI->isBranch() && isPredicated(*MI)) ||
   1741          isConditionalTransfer(MI) ||
   1742          isConditionalALU32(MI)    ||
   1743          isConditionalLoad(MI)     ||
   1744          // Predicated stores which don't have a .new on any operands.
   1745          (MI->mayStore() && isPredicated(*MI) && !isNewValueStore(MI) &&
   1746           !isPredicatedNew(*MI));
   1747 }
   1748 
   1749 
   1750 bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
   1751   switch (MI->getOpcode()) {
   1752     case Hexagon::A2_paddf:
   1753     case Hexagon::A2_paddfnew:
   1754     case Hexagon::A2_paddif:
   1755     case Hexagon::A2_paddifnew:
   1756     case Hexagon::A2_paddit:
   1757     case Hexagon::A2_padditnew:
   1758     case Hexagon::A2_paddt:
   1759     case Hexagon::A2_paddtnew:
   1760     case Hexagon::A2_pandf:
   1761     case Hexagon::A2_pandfnew:
   1762     case Hexagon::A2_pandt:
   1763     case Hexagon::A2_pandtnew:
   1764     case Hexagon::A2_porf:
   1765     case Hexagon::A2_porfnew:
   1766     case Hexagon::A2_port:
   1767     case Hexagon::A2_portnew:
   1768     case Hexagon::A2_psubf:
   1769     case Hexagon::A2_psubfnew:
   1770     case Hexagon::A2_psubt:
   1771     case Hexagon::A2_psubtnew:
   1772     case Hexagon::A2_pxorf:
   1773     case Hexagon::A2_pxorfnew:
   1774     case Hexagon::A2_pxort:
   1775     case Hexagon::A2_pxortnew:
   1776     case Hexagon::A4_paslhf:
   1777     case Hexagon::A4_paslhfnew:
   1778     case Hexagon::A4_paslht:
   1779     case Hexagon::A4_paslhtnew:
   1780     case Hexagon::A4_pasrhf:
   1781     case Hexagon::A4_pasrhfnew:
   1782     case Hexagon::A4_pasrht:
   1783     case Hexagon::A4_pasrhtnew:
   1784     case Hexagon::A4_psxtbf:
   1785     case Hexagon::A4_psxtbfnew:
   1786     case Hexagon::A4_psxtbt:
   1787     case Hexagon::A4_psxtbtnew:
   1788     case Hexagon::A4_psxthf:
   1789     case Hexagon::A4_psxthfnew:
   1790     case Hexagon::A4_psxtht:
   1791     case Hexagon::A4_psxthtnew:
   1792     case Hexagon::A4_pzxtbf:
   1793     case Hexagon::A4_pzxtbfnew:
   1794     case Hexagon::A4_pzxtbt:
   1795     case Hexagon::A4_pzxtbtnew:
   1796     case Hexagon::A4_pzxthf:
   1797     case Hexagon::A4_pzxthfnew:
   1798     case Hexagon::A4_pzxtht:
   1799     case Hexagon::A4_pzxthtnew:
   1800     case Hexagon::C2_ccombinewf:
   1801     case Hexagon::C2_ccombinewt:
   1802       return true;
   1803   }
   1804   return false;
   1805 }
   1806 
   1807 
   1808 // FIXME - Function name and it's functionality don't match.
   1809 // It should be renamed to hasPredNewOpcode()
   1810 bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
   1811   if (!MI->getDesc().mayLoad() || !isPredicated(*MI))
   1812     return false;
   1813 
   1814   int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
   1815   // Instruction with valid predicated-new opcode can be promoted to .new.
   1816   return PNewOpcode >= 0;
   1817 }
   1818 
   1819 
   1820 // Returns true if an instruction is a conditional store.
   1821 //
   1822 // Note: It doesn't include conditional new-value stores as they can't be
   1823 // converted to .new predicate.
   1824 bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
   1825   switch (MI->getOpcode()) {
   1826     default: return false;
   1827     case Hexagon::S4_storeirbt_io:
   1828     case Hexagon::S4_storeirbf_io:
   1829     case Hexagon::S4_pstorerbt_rr:
   1830     case Hexagon::S4_pstorerbf_rr:
   1831     case Hexagon::S2_pstorerbt_io:
   1832     case Hexagon::S2_pstorerbf_io:
   1833     case Hexagon::S2_pstorerbt_pi:
   1834     case Hexagon::S2_pstorerbf_pi:
   1835     case Hexagon::S2_pstorerdt_io:
   1836     case Hexagon::S2_pstorerdf_io:
   1837     case Hexagon::S4_pstorerdt_rr:
   1838     case Hexagon::S4_pstorerdf_rr:
   1839     case Hexagon::S2_pstorerdt_pi:
   1840     case Hexagon::S2_pstorerdf_pi:
   1841     case Hexagon::S2_pstorerht_io:
   1842     case Hexagon::S2_pstorerhf_io:
   1843     case Hexagon::S4_storeirht_io:
   1844     case Hexagon::S4_storeirhf_io:
   1845     case Hexagon::S4_pstorerht_rr:
   1846     case Hexagon::S4_pstorerhf_rr:
   1847     case Hexagon::S2_pstorerht_pi:
   1848     case Hexagon::S2_pstorerhf_pi:
   1849     case Hexagon::S2_pstorerit_io:
   1850     case Hexagon::S2_pstorerif_io:
   1851     case Hexagon::S4_storeirit_io:
   1852     case Hexagon::S4_storeirif_io:
   1853     case Hexagon::S4_pstorerit_rr:
   1854     case Hexagon::S4_pstorerif_rr:
   1855     case Hexagon::S2_pstorerit_pi:
   1856     case Hexagon::S2_pstorerif_pi:
   1857 
   1858     // V4 global address store before promoting to dot new.
   1859     case Hexagon::S4_pstorerdt_abs:
   1860     case Hexagon::S4_pstorerdf_abs:
   1861     case Hexagon::S4_pstorerbt_abs:
   1862     case Hexagon::S4_pstorerbf_abs:
   1863     case Hexagon::S4_pstorerht_abs:
   1864     case Hexagon::S4_pstorerhf_abs:
   1865     case Hexagon::S4_pstorerit_abs:
   1866     case Hexagon::S4_pstorerif_abs:
   1867       return true;
   1868 
   1869     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
   1870     // from the "Conditional Store" list. Because a predicated new value store
   1871     // would NOT be promoted to a double dot new store.
   1872     // This function returns yes for those stores that are predicated but not
   1873     // yet promoted to predicate dot new instructions.
   1874   }
   1875 }
   1876 
   1877 
   1878 bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
   1879   switch (MI->getOpcode()) {
   1880     case Hexagon::A2_tfrt:
   1881     case Hexagon::A2_tfrf:
   1882     case Hexagon::C2_cmoveit:
   1883     case Hexagon::C2_cmoveif:
   1884     case Hexagon::A2_tfrtnew:
   1885     case Hexagon::A2_tfrfnew:
   1886     case Hexagon::C2_cmovenewit:
   1887     case Hexagon::C2_cmovenewif:
   1888     case Hexagon::A2_tfrpt:
   1889     case Hexagon::A2_tfrpf:
   1890       return true;
   1891 
   1892     default:
   1893       return false;
   1894   }
   1895   return false;
   1896 }
   1897 
   1898 
   1899 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
   1900 // isFPImm and later getFPImm as well.
   1901 bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
   1902   const uint64_t F = MI->getDesc().TSFlags;
   1903   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
   1904   if (isExtended) // Instruction must be extended.
   1905     return true;
   1906 
   1907   unsigned isExtendable =
   1908     (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
   1909   if (!isExtendable)
   1910     return false;
   1911 
   1912   if (MI->isCall())
   1913     return false;
   1914 
   1915   short ExtOpNum = getCExtOpNum(MI);
   1916   const MachineOperand &MO = MI->getOperand(ExtOpNum);
   1917   // Use MO operand flags to determine if MO
   1918   // has the HMOTF_ConstExtended flag set.
   1919   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
   1920     return true;
   1921   // If this is a Machine BB address we are talking about, and it is
   1922   // not marked as extended, say so.
   1923   if (MO.isMBB())
   1924     return false;
   1925 
   1926   // We could be using an instruction with an extendable immediate and shoehorn
   1927   // a global address into it. If it is a global address it will be constant
   1928   // extended. We do this for COMBINE.
   1929   // We currently only handle isGlobal() because it is the only kind of
   1930   // object we are going to end up with here for now.
   1931   // In the future we probably should add isSymbol(), etc.
   1932   if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
   1933       MO.isJTI() || MO.isCPI())
   1934     return true;
   1935 
   1936   // If the extendable operand is not 'Immediate' type, the instruction should
   1937   // have 'isExtended' flag set.
   1938   assert(MO.isImm() && "Extendable operand must be Immediate type");
   1939 
   1940   int MinValue = getMinValue(MI);
   1941   int MaxValue = getMaxValue(MI);
   1942   int ImmValue = MO.getImm();
   1943 
   1944   return (ImmValue < MinValue || ImmValue > MaxValue);
   1945 }
   1946 
   1947 
   1948 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
   1949   switch (MI->getOpcode()) {
   1950   case Hexagon::L4_return :
   1951   case Hexagon::L4_return_t :
   1952   case Hexagon::L4_return_f :
   1953   case Hexagon::L4_return_tnew_pnt :
   1954   case Hexagon::L4_return_fnew_pnt :
   1955   case Hexagon::L4_return_tnew_pt :
   1956   case Hexagon::L4_return_fnew_pt :
   1957    return true;
   1958   }
   1959   return false;
   1960 }
   1961 
   1962 
   1963 // Return true when ConsMI uses a register defined by ProdMI.
   1964 bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
   1965       const MachineInstr *ConsMI) const {
   1966   const MCInstrDesc &ProdMCID = ProdMI->getDesc();
   1967   if (!ProdMCID.getNumDefs())
   1968     return false;
   1969 
   1970   auto &HRI = getRegisterInfo();
   1971 
   1972   SmallVector<unsigned, 4> DefsA;
   1973   SmallVector<unsigned, 4> DefsB;
   1974   SmallVector<unsigned, 8> UsesA;
   1975   SmallVector<unsigned, 8> UsesB;
   1976 
   1977   parseOperands(ProdMI, DefsA, UsesA);
   1978   parseOperands(ConsMI, DefsB, UsesB);
   1979 
   1980   for (auto &RegA : DefsA)
   1981     for (auto &RegB : UsesB) {
   1982       // True data dependency.
   1983       if (RegA == RegB)
   1984         return true;
   1985 
   1986       if (Hexagon::DoubleRegsRegClass.contains(RegA))
   1987         for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
   1988           if (RegB == *SubRegs)
   1989             return true;
   1990 
   1991       if (Hexagon::DoubleRegsRegClass.contains(RegB))
   1992         for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
   1993           if (RegA == *SubRegs)
   1994             return true;
   1995     }
   1996 
   1997   return false;
   1998 }
   1999 
   2000 
   2001 // Returns true if the instruction is alread a .cur.
   2002 bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
   2003   switch (MI->getOpcode()) {
   2004   case Hexagon::V6_vL32b_cur_pi:
   2005   case Hexagon::V6_vL32b_cur_ai:
   2006   case Hexagon::V6_vL32b_cur_pi_128B:
   2007   case Hexagon::V6_vL32b_cur_ai_128B:
   2008     return true;
   2009   }
   2010   return false;
   2011 }
   2012 
   2013 
   2014 // Returns true, if any one of the operands is a dot new
   2015 // insn, whether it is predicated dot new or register dot new.
   2016 bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
   2017   if (isNewValueInst(MI) || (isPredicated(*MI) && isPredicatedNew(*MI)))
   2018     return true;
   2019 
   2020   return false;
   2021 }
   2022 
   2023 
   2024 /// Symmetrical. See if these two instructions are fit for duplex pair.
   2025 bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
   2026       const MachineInstr *MIb) const {
   2027   HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
   2028   HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
   2029   return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
   2030 }
   2031 
   2032 
   2033 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr *MI) const {
   2034   if (!MI)
   2035     return false;
   2036 
   2037   if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
   2038     return true;
   2039 
   2040   // Multiply
   2041   unsigned SchedClass = MI->getDesc().getSchedClass();
   2042   if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
   2043     return true;
   2044   return false;
   2045 }
   2046 
   2047 
   2048 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
   2049   return (Opcode == Hexagon::ENDLOOP0 ||
   2050           Opcode == Hexagon::ENDLOOP1);
   2051 }
   2052 
   2053 
   2054 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
   2055   switch(OpType) {
   2056   case MachineOperand::MO_MachineBasicBlock:
   2057   case MachineOperand::MO_GlobalAddress:
   2058   case MachineOperand::MO_ExternalSymbol:
   2059   case MachineOperand::MO_JumpTableIndex:
   2060   case MachineOperand::MO_ConstantPoolIndex:
   2061   case MachineOperand::MO_BlockAddress:
   2062     return true;
   2063   default:
   2064     return false;
   2065   }
   2066 }
   2067 
   2068 
   2069 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
   2070   const MCInstrDesc &MID = MI->getDesc();
   2071   const uint64_t F = MID.TSFlags;
   2072   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
   2073     return true;
   2074 
   2075   // TODO: This is largely obsolete now. Will need to be removed
   2076   // in consecutive patches.
   2077   switch(MI->getOpcode()) {
   2078     // TFR_FI Remains a special case.
   2079     case Hexagon::TFR_FI:
   2080       return true;
   2081     default:
   2082       return false;
   2083   }
   2084   return  false;
   2085 }
   2086 
   2087 
   2088 // This returns true in two cases:
   2089 // - The OP code itself indicates that this is an extended instruction.
   2090 // - One of MOs has been marked with HMOTF_ConstExtended flag.
   2091 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
   2092   // First check if this is permanently extended op code.
   2093   const uint64_t F = MI->getDesc().TSFlags;
   2094   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
   2095     return true;
   2096   // Use MO operand flags to determine if one of MI's operands
   2097   // has HMOTF_ConstExtended flag set.
   2098   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
   2099        E = MI->operands_end(); I != E; ++I) {
   2100     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
   2101       return true;
   2102   }
   2103   return  false;
   2104 }
   2105 
   2106 
   2107 bool HexagonInstrInfo::isFloat(const MachineInstr *MI) const {
   2108   unsigned Opcode = MI->getOpcode();
   2109   const uint64_t F = get(Opcode).TSFlags;
   2110   return (F >> HexagonII::FPPos) & HexagonII::FPMask;
   2111 }
   2112 
   2113 
   2114 // No V60 HVX VMEM with A_INDIRECT.
   2115 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr *I,
   2116       const MachineInstr *J) const {
   2117   if (!isV60VectorInstruction(I))
   2118     return false;
   2119   if (!I->mayLoad() && !I->mayStore())
   2120     return false;
   2121   return J->isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
   2122 }
   2123 
   2124 
   2125 bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
   2126   switch (MI->getOpcode()) {
   2127   case Hexagon::J2_callr :
   2128   case Hexagon::J2_callrf :
   2129   case Hexagon::J2_callrt :
   2130     return true;
   2131   }
   2132   return false;
   2133 }
   2134 
   2135 
   2136 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
   2137   switch (MI->getOpcode()) {
   2138   case Hexagon::L4_return :
   2139   case Hexagon::L4_return_t :
   2140   case Hexagon::L4_return_f :
   2141   case Hexagon::L4_return_fnew_pnt :
   2142   case Hexagon::L4_return_fnew_pt :
   2143   case Hexagon::L4_return_tnew_pnt :
   2144   case Hexagon::L4_return_tnew_pt :
   2145     return true;
   2146   }
   2147   return false;
   2148 }
   2149 
   2150 
   2151 bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
   2152   switch (MI->getOpcode()) {
   2153   case Hexagon::J2_jumpr :
   2154   case Hexagon::J2_jumprt :
   2155   case Hexagon::J2_jumprf :
   2156   case Hexagon::J2_jumprtnewpt :
   2157   case Hexagon::J2_jumprfnewpt  :
   2158   case Hexagon::J2_jumprtnew :
   2159   case Hexagon::J2_jumprfnew :
   2160     return true;
   2161   }
   2162   return false;
   2163 }
   2164 
   2165 
   2166 // Return true if a given MI can accomodate given offset.
   2167 // Use abs estimate as oppose to the exact number.
   2168 // TODO: This will need to be changed to use MC level
   2169 // definition of instruction extendable field size.
   2170 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
   2171       unsigned offset) const {
   2172   // This selection of jump instructions matches to that what
   2173   // AnalyzeBranch can parse, plus NVJ.
   2174   if (isNewValueJump(MI)) // r9:2
   2175     return isInt<11>(offset);
   2176 
   2177   switch (MI->getOpcode()) {
   2178   // Still missing Jump to address condition on register value.
   2179   default:
   2180     return false;
   2181   case Hexagon::J2_jump: // bits<24> dst; // r22:2
   2182   case Hexagon::J2_call:
   2183   case Hexagon::CALLv3nr:
   2184     return isInt<24>(offset);
   2185   case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
   2186   case Hexagon::J2_jumpf:
   2187   case Hexagon::J2_jumptnew:
   2188   case Hexagon::J2_jumptnewpt:
   2189   case Hexagon::J2_jumpfnew:
   2190   case Hexagon::J2_jumpfnewpt:
   2191   case Hexagon::J2_callt:
   2192   case Hexagon::J2_callf:
   2193     return isInt<17>(offset);
   2194   case Hexagon::J2_loop0i:
   2195   case Hexagon::J2_loop0iext:
   2196   case Hexagon::J2_loop0r:
   2197   case Hexagon::J2_loop0rext:
   2198   case Hexagon::J2_loop1i:
   2199   case Hexagon::J2_loop1iext:
   2200   case Hexagon::J2_loop1r:
   2201   case Hexagon::J2_loop1rext:
   2202     return isInt<9>(offset);
   2203   // TODO: Add all the compound branches here. Can we do this in Relation model?
   2204   case Hexagon::J4_cmpeqi_tp0_jump_nt:
   2205   case Hexagon::J4_cmpeqi_tp1_jump_nt:
   2206     return isInt<11>(offset);
   2207   }
   2208 }
   2209 
   2210 
   2211 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
   2212       const MachineInstr *ESMI) const {
   2213   if (!LRMI || !ESMI)
   2214     return false;
   2215 
   2216   bool isLate = isLateResultInstr(LRMI);
   2217   bool isEarly = isEarlySourceInstr(ESMI);
   2218 
   2219   DEBUG(dbgs() << "V60" <<  (isLate ? "-LR  " : " --  "));
   2220   DEBUG(LRMI->dump());
   2221   DEBUG(dbgs() << "V60" <<  (isEarly ? "-ES  " : " --  "));
   2222   DEBUG(ESMI->dump());
   2223 
   2224   if (isLate && isEarly) {
   2225     DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
   2226     return true;
   2227   }
   2228 
   2229   return false;
   2230 }
   2231 
   2232 
   2233 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr *MI) const {
   2234   if (!MI)
   2235     return false;
   2236 
   2237   switch (MI->getOpcode()) {
   2238   case TargetOpcode::EXTRACT_SUBREG:
   2239   case TargetOpcode::INSERT_SUBREG:
   2240   case TargetOpcode::SUBREG_TO_REG:
   2241   case TargetOpcode::REG_SEQUENCE:
   2242   case TargetOpcode::IMPLICIT_DEF:
   2243   case TargetOpcode::COPY:
   2244   case TargetOpcode::INLINEASM:
   2245   case TargetOpcode::PHI:
   2246     return false;
   2247   default:
   2248     break;
   2249   }
   2250 
   2251   unsigned SchedClass = MI->getDesc().getSchedClass();
   2252 
   2253   switch (SchedClass) {
   2254   case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
   2255   case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
   2256   case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
   2257   case Hexagon::Sched::ALU64_tc_1_SLOT23:
   2258   case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
   2259   case Hexagon::Sched::S_2op_tc_1_SLOT23:
   2260   case Hexagon::Sched::S_3op_tc_1_SLOT23:
   2261   case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
   2262   case Hexagon::Sched::V2LDST_tc_st_SLOT0:
   2263   case Hexagon::Sched::V2LDST_tc_st_SLOT01:
   2264   case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
   2265   case Hexagon::Sched::V4LDST_tc_st_SLOT0:
   2266   case Hexagon::Sched::V4LDST_tc_st_SLOT01:
   2267     return false;
   2268   }
   2269   return true;
   2270 }
   2271 
   2272 
   2273 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
   2274   if (!MI)
   2275     return false;
   2276 
   2277   // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
   2278   // resource, but all operands can be received late like an ALU instruction.
   2279   return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
   2280 }
   2281 
   2282 
   2283 bool HexagonInstrInfo::isLoopN(const MachineInstr *MI) const {
   2284   unsigned Opcode = MI->getOpcode();
   2285   return Opcode == Hexagon::J2_loop0i    ||
   2286          Opcode == Hexagon::J2_loop0r    ||
   2287          Opcode == Hexagon::J2_loop0iext ||
   2288          Opcode == Hexagon::J2_loop0rext ||
   2289          Opcode == Hexagon::J2_loop1i    ||
   2290          Opcode == Hexagon::J2_loop1r    ||
   2291          Opcode == Hexagon::J2_loop1iext ||
   2292          Opcode == Hexagon::J2_loop1rext;
   2293 }
   2294 
   2295 
   2296 bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
   2297   switch (MI->getOpcode()) {
   2298     default: return false;
   2299     case Hexagon::L4_iadd_memopw_io :
   2300     case Hexagon::L4_isub_memopw_io :
   2301     case Hexagon::L4_add_memopw_io :
   2302     case Hexagon::L4_sub_memopw_io :
   2303     case Hexagon::L4_and_memopw_io :
   2304     case Hexagon::L4_or_memopw_io :
   2305     case Hexagon::L4_iadd_memoph_io :
   2306     case Hexagon::L4_isub_memoph_io :
   2307     case Hexagon::L4_add_memoph_io :
   2308     case Hexagon::L4_sub_memoph_io :
   2309     case Hexagon::L4_and_memoph_io :
   2310     case Hexagon::L4_or_memoph_io :
   2311     case Hexagon::L4_iadd_memopb_io :
   2312     case Hexagon::L4_isub_memopb_io :
   2313     case Hexagon::L4_add_memopb_io :
   2314     case Hexagon::L4_sub_memopb_io :
   2315     case Hexagon::L4_and_memopb_io :
   2316     case Hexagon::L4_or_memopb_io :
   2317     case Hexagon::L4_ior_memopb_io:
   2318     case Hexagon::L4_ior_memoph_io:
   2319     case Hexagon::L4_ior_memopw_io:
   2320     case Hexagon::L4_iand_memopb_io:
   2321     case Hexagon::L4_iand_memoph_io:
   2322     case Hexagon::L4_iand_memopw_io:
   2323     return true;
   2324   }
   2325   return false;
   2326 }
   2327 
   2328 
   2329 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
   2330   const uint64_t F = MI->getDesc().TSFlags;
   2331   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
   2332 }
   2333 
   2334 
   2335 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
   2336   const uint64_t F = get(Opcode).TSFlags;
   2337   return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
   2338 }
   2339 
   2340 
   2341 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
   2342   return isNewValueJump(MI) || isNewValueStore(MI);
   2343 }
   2344 
   2345 
   2346 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
   2347   return isNewValue(MI) && MI->isBranch();
   2348 }
   2349 
   2350 
   2351 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
   2352   return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
   2353 }
   2354 
   2355 
   2356 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
   2357   const uint64_t F = MI->getDesc().TSFlags;
   2358   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
   2359 }
   2360 
   2361 
   2362 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
   2363   const uint64_t F = get(Opcode).TSFlags;
   2364   return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
   2365 }
   2366 
   2367 
   2368 // Returns true if a particular operand is extendable for an instruction.
   2369 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
   2370     unsigned OperandNum) const {
   2371   const uint64_t F = MI->getDesc().TSFlags;
   2372   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
   2373           == OperandNum;
   2374 }
   2375 
   2376 
   2377 bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
   2378   return getAddrMode(MI) == HexagonII::PostInc;
   2379 }
   2380 
   2381 
   2382 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
   2383   const uint64_t F = MI.getDesc().TSFlags;
   2384   assert(isPredicated(MI));
   2385   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
   2386 }
   2387 
   2388 
   2389 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
   2390   const uint64_t F = get(Opcode).TSFlags;
   2391   assert(isPredicated(Opcode));
   2392   return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
   2393 }
   2394 
   2395 
   2396 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
   2397   const uint64_t F = MI.getDesc().TSFlags;
   2398   return !((F >> HexagonII::PredicatedFalsePos) &
   2399            HexagonII::PredicatedFalseMask);
   2400 }
   2401 
   2402 
   2403 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
   2404   const uint64_t F = get(Opcode).TSFlags;
   2405   // Make sure that the instruction is predicated.
   2406   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   2407   return !((F >> HexagonII::PredicatedFalsePos) &
   2408            HexagonII::PredicatedFalseMask);
   2409 }
   2410 
   2411 
   2412 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
   2413   const uint64_t F = get(Opcode).TSFlags;
   2414   return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
   2415 }
   2416 
   2417 
   2418 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
   2419   const uint64_t F = get(Opcode).TSFlags;
   2420   return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
   2421 }
   2422 
   2423 
   2424 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
   2425   const uint64_t F = get(Opcode).TSFlags;
   2426   assert(get(Opcode).isBranch() &&
   2427          (isPredicatedNew(Opcode) || isNewValue(Opcode)));
   2428   return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
   2429 }
   2430 
   2431 
   2432 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
   2433   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
   2434          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
   2435          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
   2436          MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
   2437 }
   2438 
   2439 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
   2440   switch (MI.getOpcode()) {
   2441   // Byte
   2442   case Hexagon::L2_loadrb_io:
   2443   case Hexagon::L4_loadrb_ur:
   2444   case Hexagon::L4_loadrb_ap:
   2445   case Hexagon::L2_loadrb_pr:
   2446   case Hexagon::L2_loadrb_pbr:
   2447   case Hexagon::L2_loadrb_pi:
   2448   case Hexagon::L2_loadrb_pci:
   2449   case Hexagon::L2_loadrb_pcr:
   2450   case Hexagon::L2_loadbsw2_io:
   2451   case Hexagon::L4_loadbsw2_ur:
   2452   case Hexagon::L4_loadbsw2_ap:
   2453   case Hexagon::L2_loadbsw2_pr:
   2454   case Hexagon::L2_loadbsw2_pbr:
   2455   case Hexagon::L2_loadbsw2_pi:
   2456   case Hexagon::L2_loadbsw2_pci:
   2457   case Hexagon::L2_loadbsw2_pcr:
   2458   case Hexagon::L2_loadbsw4_io:
   2459   case Hexagon::L4_loadbsw4_ur:
   2460   case Hexagon::L4_loadbsw4_ap:
   2461   case Hexagon::L2_loadbsw4_pr:
   2462   case Hexagon::L2_loadbsw4_pbr:
   2463   case Hexagon::L2_loadbsw4_pi:
   2464   case Hexagon::L2_loadbsw4_pci:
   2465   case Hexagon::L2_loadbsw4_pcr:
   2466   case Hexagon::L4_loadrb_rr:
   2467   case Hexagon::L2_ploadrbt_io:
   2468   case Hexagon::L2_ploadrbt_pi:
   2469   case Hexagon::L2_ploadrbf_io:
   2470   case Hexagon::L2_ploadrbf_pi:
   2471   case Hexagon::L2_ploadrbtnew_io:
   2472   case Hexagon::L2_ploadrbfnew_io:
   2473   case Hexagon::L4_ploadrbt_rr:
   2474   case Hexagon::L4_ploadrbf_rr:
   2475   case Hexagon::L4_ploadrbtnew_rr:
   2476   case Hexagon::L4_ploadrbfnew_rr:
   2477   case Hexagon::L2_ploadrbtnew_pi:
   2478   case Hexagon::L2_ploadrbfnew_pi:
   2479   case Hexagon::L4_ploadrbt_abs:
   2480   case Hexagon::L4_ploadrbf_abs:
   2481   case Hexagon::L4_ploadrbtnew_abs:
   2482   case Hexagon::L4_ploadrbfnew_abs:
   2483   case Hexagon::L2_loadrbgp:
   2484   // Half
   2485   case Hexagon::L2_loadrh_io:
   2486   case Hexagon::L4_loadrh_ur:
   2487   case Hexagon::L4_loadrh_ap:
   2488   case Hexagon::L2_loadrh_pr:
   2489   case Hexagon::L2_loadrh_pbr:
   2490   case Hexagon::L2_loadrh_pi:
   2491   case Hexagon::L2_loadrh_pci:
   2492   case Hexagon::L2_loadrh_pcr:
   2493   case Hexagon::L4_loadrh_rr:
   2494   case Hexagon::L2_ploadrht_io:
   2495   case Hexagon::L2_ploadrht_pi:
   2496   case Hexagon::L2_ploadrhf_io:
   2497   case Hexagon::L2_ploadrhf_pi:
   2498   case Hexagon::L2_ploadrhtnew_io:
   2499   case Hexagon::L2_ploadrhfnew_io:
   2500   case Hexagon::L4_ploadrht_rr:
   2501   case Hexagon::L4_ploadrhf_rr:
   2502   case Hexagon::L4_ploadrhtnew_rr:
   2503   case Hexagon::L4_ploadrhfnew_rr:
   2504   case Hexagon::L2_ploadrhtnew_pi:
   2505   case Hexagon::L2_ploadrhfnew_pi:
   2506   case Hexagon::L4_ploadrht_abs:
   2507   case Hexagon::L4_ploadrhf_abs:
   2508   case Hexagon::L4_ploadrhtnew_abs:
   2509   case Hexagon::L4_ploadrhfnew_abs:
   2510   case Hexagon::L2_loadrhgp:
   2511     return true;
   2512   default:
   2513     return false;
   2514   }
   2515 }
   2516 
   2517 
   2518 bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
   2519   const uint64_t F = MI->getDesc().TSFlags;
   2520   return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
   2521 }
   2522 
   2523 
   2524 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
   2525   switch (MI->getOpcode()) {
   2526   case Hexagon::STriw_pred :
   2527   case Hexagon::LDriw_pred :
   2528     return true;
   2529   default:
   2530     return false;
   2531   }
   2532 }
   2533 
   2534 
   2535 bool HexagonInstrInfo::isTailCall(const MachineInstr *MI) const {
   2536   if (!MI->isBranch())
   2537     return false;
   2538 
   2539   for (auto &Op : MI->operands())
   2540     if (Op.isGlobal() || Op.isSymbol())
   2541       return true;
   2542   return false;
   2543 }
   2544 
   2545 
   2546 // Returns true when SU has a timing class TC1.
   2547 bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
   2548   unsigned SchedClass = MI->getDesc().getSchedClass();
   2549   switch (SchedClass) {
   2550   case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
   2551   case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
   2552   case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
   2553   case Hexagon::Sched::ALU64_tc_1_SLOT23:
   2554   case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
   2555   //case Hexagon::Sched::M_tc_1_SLOT23:
   2556   case Hexagon::Sched::S_2op_tc_1_SLOT23:
   2557   case Hexagon::Sched::S_3op_tc_1_SLOT23:
   2558     return true;
   2559 
   2560   default:
   2561     return false;
   2562   }
   2563 }
   2564 
   2565 
   2566 bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
   2567   unsigned SchedClass = MI->getDesc().getSchedClass();
   2568   switch (SchedClass) {
   2569   case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
   2570   case Hexagon::Sched::ALU64_tc_2_SLOT23:
   2571   case Hexagon::Sched::CR_tc_2_SLOT3:
   2572   case Hexagon::Sched::M_tc_2_SLOT23:
   2573   case Hexagon::Sched::S_2op_tc_2_SLOT23:
   2574   case Hexagon::Sched::S_3op_tc_2_SLOT23:
   2575     return true;
   2576 
   2577   default:
   2578     return false;
   2579   }
   2580 }
   2581 
   2582 
   2583 bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
   2584   unsigned SchedClass = MI->getDesc().getSchedClass();
   2585   switch (SchedClass) {
   2586   case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
   2587   case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
   2588   case Hexagon::Sched::ALU64_tc_2early_SLOT23:
   2589   case Hexagon::Sched::CR_tc_2early_SLOT23:
   2590   case Hexagon::Sched::CR_tc_2early_SLOT3:
   2591   case Hexagon::Sched::J_tc_2early_SLOT0123:
   2592   case Hexagon::Sched::J_tc_2early_SLOT2:
   2593   case Hexagon::Sched::J_tc_2early_SLOT23:
   2594   case Hexagon::Sched::S_2op_tc_2early_SLOT23:
   2595   case Hexagon::Sched::S_3op_tc_2early_SLOT23:
   2596     return true;
   2597 
   2598   default:
   2599     return false;
   2600   }
   2601 }
   2602 
   2603 
   2604 bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
   2605   if (!MI)
   2606     return false;
   2607 
   2608   unsigned SchedClass = MI->getDesc().getSchedClass();
   2609   return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
   2610 }
   2611 
   2612 
   2613 bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
   2614   if (!MI)
   2615     return false;
   2616 
   2617   const uint64_t V = getType(MI);
   2618   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
   2619 }
   2620 
   2621 
   2622 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
   2623 //
   2624 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
   2625   if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
   2626       VT == MVT::v32i16 || VT == MVT::v64i8) {
   2627       return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
   2628               Offset <= Hexagon_MEMV_AUTOINC_MAX &&
   2629               (Offset & 0x3f) == 0);
   2630   }
   2631   // 128B
   2632   if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
   2633       VT == MVT::v64i16 || VT == MVT::v128i8) {
   2634       return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
   2635               Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
   2636               (Offset & 0x7f) == 0);
   2637   }
   2638   if (VT == MVT::i64) {
   2639       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
   2640               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
   2641               (Offset & 0x7) == 0);
   2642   }
   2643   if (VT == MVT::i32) {
   2644       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
   2645               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
   2646               (Offset & 0x3) == 0);
   2647   }
   2648   if (VT == MVT::i16) {
   2649       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
   2650               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
   2651               (Offset & 0x1) == 0);
   2652   }
   2653   if (VT == MVT::i8) {
   2654       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
   2655               Offset <= Hexagon_MEMB_AUTOINC_MAX);
   2656   }
   2657   llvm_unreachable("Not an auto-inc opc!");
   2658 }
   2659 
   2660 
   2661 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
   2662       bool Extend) const {
   2663   // This function is to check whether the "Offset" is in the correct range of
   2664   // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
   2665   // inserted to calculate the final address. Due to this reason, the function
   2666   // assumes that the "Offset" has correct alignment.
   2667   // We used to assert if the offset was not properly aligned, however,
   2668   // there are cases where a misaligned pointer recast can cause this
   2669   // problem, and we need to allow for it. The front end warns of such
   2670   // misaligns with respect to load size.
   2671 
   2672   switch (Opcode) {
   2673   case Hexagon::STriq_pred_V6:
   2674   case Hexagon::STriq_pred_vec_V6:
   2675   case Hexagon::STriv_pseudo_V6:
   2676   case Hexagon::STrivv_pseudo_V6:
   2677   case Hexagon::LDriq_pred_V6:
   2678   case Hexagon::LDriq_pred_vec_V6:
   2679   case Hexagon::LDriv_pseudo_V6:
   2680   case Hexagon::LDrivv_pseudo_V6:
   2681   case Hexagon::LDrivv_indexed:
   2682   case Hexagon::STrivv_indexed:
   2683   case Hexagon::V6_vL32b_ai:
   2684   case Hexagon::V6_vS32b_ai:
   2685   case Hexagon::V6_vL32Ub_ai:
   2686   case Hexagon::V6_vS32Ub_ai:
   2687     return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
   2688       (Offset <= Hexagon_MEMV_OFFSET_MAX);
   2689 
   2690   case Hexagon::STriq_pred_V6_128B:
   2691   case Hexagon::STriq_pred_vec_V6_128B:
   2692   case Hexagon::STriv_pseudo_V6_128B:
   2693   case Hexagon::STrivv_pseudo_V6_128B:
   2694   case Hexagon::LDriq_pred_V6_128B:
   2695   case Hexagon::LDriq_pred_vec_V6_128B:
   2696   case Hexagon::LDriv_pseudo_V6_128B:
   2697   case Hexagon::LDrivv_pseudo_V6_128B:
   2698   case Hexagon::LDrivv_indexed_128B:
   2699   case Hexagon::STrivv_indexed_128B:
   2700   case Hexagon::V6_vL32b_ai_128B:
   2701   case Hexagon::V6_vS32b_ai_128B:
   2702   case Hexagon::V6_vL32Ub_ai_128B:
   2703   case Hexagon::V6_vS32Ub_ai_128B:
   2704     return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
   2705       (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
   2706 
   2707   case Hexagon::J2_loop0i:
   2708   case Hexagon::J2_loop1i:
   2709     return isUInt<10>(Offset);
   2710   }
   2711 
   2712   if (Extend)
   2713     return true;
   2714 
   2715   switch (Opcode) {
   2716   case Hexagon::L2_loadri_io:
   2717   case Hexagon::S2_storeri_io:
   2718     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
   2719       (Offset <= Hexagon_MEMW_OFFSET_MAX);
   2720 
   2721   case Hexagon::L2_loadrd_io:
   2722   case Hexagon::S2_storerd_io:
   2723     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
   2724       (Offset <= Hexagon_MEMD_OFFSET_MAX);
   2725 
   2726   case Hexagon::L2_loadrh_io:
   2727   case Hexagon::L2_loadruh_io:
   2728   case Hexagon::S2_storerh_io:
   2729     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
   2730       (Offset <= Hexagon_MEMH_OFFSET_MAX);
   2731 
   2732   case Hexagon::L2_loadrb_io:
   2733   case Hexagon::L2_loadrub_io:
   2734   case Hexagon::S2_storerb_io:
   2735     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
   2736       (Offset <= Hexagon_MEMB_OFFSET_MAX);
   2737 
   2738   case Hexagon::A2_addi:
   2739     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
   2740       (Offset <= Hexagon_ADDI_OFFSET_MAX);
   2741 
   2742   case Hexagon::L4_iadd_memopw_io :
   2743   case Hexagon::L4_isub_memopw_io :
   2744   case Hexagon::L4_add_memopw_io :
   2745   case Hexagon::L4_sub_memopw_io :
   2746   case Hexagon::L4_and_memopw_io :
   2747   case Hexagon::L4_or_memopw_io :
   2748     return (0 <= Offset && Offset <= 255);
   2749 
   2750   case Hexagon::L4_iadd_memoph_io :
   2751   case Hexagon::L4_isub_memoph_io :
   2752   case Hexagon::L4_add_memoph_io :
   2753   case Hexagon::L4_sub_memoph_io :
   2754   case Hexagon::L4_and_memoph_io :
   2755   case Hexagon::L4_or_memoph_io :
   2756     return (0 <= Offset && Offset <= 127);
   2757 
   2758   case Hexagon::L4_iadd_memopb_io :
   2759   case Hexagon::L4_isub_memopb_io :
   2760   case Hexagon::L4_add_memopb_io :
   2761   case Hexagon::L4_sub_memopb_io :
   2762   case Hexagon::L4_and_memopb_io :
   2763   case Hexagon::L4_or_memopb_io :
   2764     return (0 <= Offset && Offset <= 63);
   2765 
   2766   // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
   2767   // any size. Later pass knows how to handle it.
   2768   case Hexagon::STriw_pred:
   2769   case Hexagon::LDriw_pred:
   2770   case Hexagon::STriw_mod:
   2771   case Hexagon::LDriw_mod:
   2772     return true;
   2773 
   2774   case Hexagon::TFR_FI:
   2775   case Hexagon::TFR_FIA:
   2776   case Hexagon::INLINEASM:
   2777     return true;
   2778 
   2779   case Hexagon::L2_ploadrbt_io:
   2780   case Hexagon::L2_ploadrbf_io:
   2781   case Hexagon::L2_ploadrubt_io:
   2782   case Hexagon::L2_ploadrubf_io:
   2783   case Hexagon::S2_pstorerbt_io:
   2784   case Hexagon::S2_pstorerbf_io:
   2785   case Hexagon::S4_storeirb_io:
   2786   case Hexagon::S4_storeirbt_io:
   2787   case Hexagon::S4_storeirbf_io:
   2788     return isUInt<6>(Offset);
   2789 
   2790   case Hexagon::L2_ploadrht_io:
   2791   case Hexagon::L2_ploadrhf_io:
   2792   case Hexagon::L2_ploadruht_io:
   2793   case Hexagon::L2_ploadruhf_io:
   2794   case Hexagon::S2_pstorerht_io:
   2795   case Hexagon::S2_pstorerhf_io:
   2796   case Hexagon::S4_storeirh_io:
   2797   case Hexagon::S4_storeirht_io:
   2798   case Hexagon::S4_storeirhf_io:
   2799     return isShiftedUInt<6,1>(Offset);
   2800 
   2801   case Hexagon::L2_ploadrit_io:
   2802   case Hexagon::L2_ploadrif_io:
   2803   case Hexagon::S2_pstorerit_io:
   2804   case Hexagon::S2_pstorerif_io:
   2805   case Hexagon::S4_storeiri_io:
   2806   case Hexagon::S4_storeirit_io:
   2807   case Hexagon::S4_storeirif_io:
   2808     return isShiftedUInt<6,2>(Offset);
   2809 
   2810   case Hexagon::L2_ploadrdt_io:
   2811   case Hexagon::L2_ploadrdf_io:
   2812   case Hexagon::S2_pstorerdt_io:
   2813   case Hexagon::S2_pstorerdf_io:
   2814     return isShiftedUInt<6,3>(Offset);
   2815   } // switch
   2816 
   2817   llvm_unreachable("No offset range is defined for this opcode. "
   2818                    "Please define it in the above switch statement!");
   2819 }
   2820 
   2821 
   2822 bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
   2823   return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
   2824 }
   2825 
   2826 
   2827 bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
   2828   if (!MI)
   2829     return false;
   2830   const uint64_t F = get(MI->getOpcode()).TSFlags;
   2831   const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
   2832   return
   2833     V == HexagonII::TypeCVI_VA         ||
   2834     V == HexagonII::TypeCVI_VA_DV;
   2835 }
   2836 
   2837 
   2838 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
   2839       const MachineInstr *ConsMI) const {
   2840   if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
   2841     return true;
   2842 
   2843   if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
   2844     return true;
   2845 
   2846   if (mayBeNewStore(ConsMI))
   2847     return true;
   2848 
   2849   return false;
   2850 }
   2851 
   2852 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
   2853   switch (MI.getOpcode()) {
   2854   // Byte
   2855   case Hexagon::L2_loadrub_io:
   2856   case Hexagon::L4_loadrub_ur:
   2857   case Hexagon::L4_loadrub_ap:
   2858   case Hexagon::L2_loadrub_pr:
   2859   case Hexagon::L2_loadrub_pbr:
   2860   case Hexagon::L2_loadrub_pi:
   2861   case Hexagon::L2_loadrub_pci:
   2862   case Hexagon::L2_loadrub_pcr:
   2863   case Hexagon::L2_loadbzw2_io:
   2864   case Hexagon::L4_loadbzw2_ur:
   2865   case Hexagon::L4_loadbzw2_ap:
   2866   case Hexagon::L2_loadbzw2_pr:
   2867   case Hexagon::L2_loadbzw2_pbr:
   2868   case Hexagon::L2_loadbzw2_pi:
   2869   case Hexagon::L2_loadbzw2_pci:
   2870   case Hexagon::L2_loadbzw2_pcr:
   2871   case Hexagon::L2_loadbzw4_io:
   2872   case Hexagon::L4_loadbzw4_ur:
   2873   case Hexagon::L4_loadbzw4_ap:
   2874   case Hexagon::L2_loadbzw4_pr:
   2875   case Hexagon::L2_loadbzw4_pbr:
   2876   case Hexagon::L2_loadbzw4_pi:
   2877   case Hexagon::L2_loadbzw4_pci:
   2878   case Hexagon::L2_loadbzw4_pcr:
   2879   case Hexagon::L4_loadrub_rr:
   2880   case Hexagon::L2_ploadrubt_io:
   2881   case Hexagon::L2_ploadrubt_pi:
   2882   case Hexagon::L2_ploadrubf_io:
   2883   case Hexagon::L2_ploadrubf_pi:
   2884   case Hexagon::L2_ploadrubtnew_io:
   2885   case Hexagon::L2_ploadrubfnew_io:
   2886   case Hexagon::L4_ploadrubt_rr:
   2887   case Hexagon::L4_ploadrubf_rr:
   2888   case Hexagon::L4_ploadrubtnew_rr:
   2889   case Hexagon::L4_ploadrubfnew_rr:
   2890   case Hexagon::L2_ploadrubtnew_pi:
   2891   case Hexagon::L2_ploadrubfnew_pi:
   2892   case Hexagon::L4_ploadrubt_abs:
   2893   case Hexagon::L4_ploadrubf_abs:
   2894   case Hexagon::L4_ploadrubtnew_abs:
   2895   case Hexagon::L4_ploadrubfnew_abs:
   2896   case Hexagon::L2_loadrubgp:
   2897   // Half
   2898   case Hexagon::L2_loadruh_io:
   2899   case Hexagon::L4_loadruh_ur:
   2900   case Hexagon::L4_loadruh_ap:
   2901   case Hexagon::L2_loadruh_pr:
   2902   case Hexagon::L2_loadruh_pbr:
   2903   case Hexagon::L2_loadruh_pi:
   2904   case Hexagon::L2_loadruh_pci:
   2905   case Hexagon::L2_loadruh_pcr:
   2906   case Hexagon::L4_loadruh_rr:
   2907   case Hexagon::L2_ploadruht_io:
   2908   case Hexagon::L2_ploadruht_pi:
   2909   case Hexagon::L2_ploadruhf_io:
   2910   case Hexagon::L2_ploadruhf_pi:
   2911   case Hexagon::L2_ploadruhtnew_io:
   2912   case Hexagon::L2_ploadruhfnew_io:
   2913   case Hexagon::L4_ploadruht_rr:
   2914   case Hexagon::L4_ploadruhf_rr:
   2915   case Hexagon::L4_ploadruhtnew_rr:
   2916   case Hexagon::L4_ploadruhfnew_rr:
   2917   case Hexagon::L2_ploadruhtnew_pi:
   2918   case Hexagon::L2_ploadruhfnew_pi:
   2919   case Hexagon::L4_ploadruht_abs:
   2920   case Hexagon::L4_ploadruhf_abs:
   2921   case Hexagon::L4_ploadruhtnew_abs:
   2922   case Hexagon::L4_ploadruhfnew_abs:
   2923   case Hexagon::L2_loadruhgp:
   2924     return true;
   2925   default:
   2926     return false;
   2927   }
   2928 }
   2929 
   2930 
   2931 // Add latency to instruction.
   2932 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr *MI1,
   2933       const MachineInstr *MI2) const {
   2934   if (isV60VectorInstruction(MI1) && isV60VectorInstruction(MI2))
   2935     if (!isVecUsableNextPacket(MI1, MI2))
   2936       return true;
   2937   return false;
   2938 }
   2939 
   2940 
   2941 /// \brief Get the base register and byte offset of a load/store instr.
   2942 bool HexagonInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt,
   2943       unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI)
   2944       const {
   2945   unsigned AccessSize = 0;
   2946   int OffsetVal = 0;
   2947   BaseReg = getBaseAndOffset(&LdSt, OffsetVal, AccessSize);
   2948   Offset = OffsetVal;
   2949   return BaseReg != 0;
   2950 }
   2951 
   2952 
   2953 /// \brief Can these instructions execute at the same time in a bundle.
   2954 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr *First,
   2955       const MachineInstr *Second) const {
   2956   if (DisableNVSchedule)
   2957     return false;
   2958   if (mayBeNewStore(Second)) {
   2959     // Make sure the definition of the first instruction is the value being
   2960     // stored.
   2961     const MachineOperand &Stored =
   2962       Second->getOperand(Second->getNumOperands() - 1);
   2963     if (!Stored.isReg())
   2964       return false;
   2965     for (unsigned i = 0, e = First->getNumOperands(); i < e; ++i) {
   2966       const MachineOperand &Op = First->getOperand(i);
   2967       if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
   2968         return true;
   2969     }
   2970   }
   2971   return false;
   2972 }
   2973 
   2974 
   2975 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
   2976   for (auto &I : *B)
   2977     if (I.isEHLabel())
   2978       return true;
   2979   return false;
   2980 }
   2981 
   2982 
   2983 // Returns true if an instruction can be converted into a non-extended
   2984 // equivalent instruction.
   2985 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
   2986   short NonExtOpcode;
   2987   // Check if the instruction has a register form that uses register in place
   2988   // of the extended operand, if so return that as the non-extended form.
   2989   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
   2990     return true;
   2991 
   2992   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   2993     // Check addressing mode and retrieve non-ext equivalent instruction.
   2994 
   2995     switch (getAddrMode(MI)) {
   2996     case HexagonII::Absolute :
   2997       // Load/store with absolute addressing mode can be converted into
   2998       // base+offset mode.
   2999       NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
   3000       break;
   3001     case HexagonII::BaseImmOffset :
   3002       // Load/store with base+offset addressing mode can be converted into
   3003       // base+register offset addressing mode. However left shift operand should
   3004       // be set to 0.
   3005       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
   3006       break;
   3007     case HexagonII::BaseLongOffset:
   3008       NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
   3009       break;
   3010     default:
   3011       return false;
   3012     }
   3013     if (NonExtOpcode < 0)
   3014       return false;
   3015     return true;
   3016   }
   3017   return false;
   3018 }
   3019 
   3020 
   3021 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr *MI) const {
   3022   return Hexagon::getRealHWInstr(MI->getOpcode(),
   3023                                  Hexagon::InstrType_Pseudo) >= 0;
   3024 }
   3025 
   3026 
   3027 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
   3028       const {
   3029   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
   3030   while (I != E) {
   3031     if (I->isBarrier())
   3032       return true;
   3033     ++I;
   3034   }
   3035   return false;
   3036 }
   3037 
   3038 
   3039 // Returns true, if a LD insn can be promoted to a cur load.
   3040 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
   3041   auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
   3042   const uint64_t F = MI->getDesc().TSFlags;
   3043   return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
   3044          HST.hasV60TOps();
   3045 }
   3046 
   3047 
   3048 // Returns true, if a ST insn can be promoted to a new-value store.
   3049 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
   3050   const uint64_t F = MI->getDesc().TSFlags;
   3051   return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
   3052 }
   3053 
   3054 
   3055 bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
   3056       const MachineInstr *ConsMI) const {
   3057   // There is no stall when ProdMI is not a V60 vector.
   3058   if (!isV60VectorInstruction(ProdMI))
   3059     return false;
   3060 
   3061   // There is no stall when ProdMI and ConsMI are not dependent.
   3062   if (!isDependent(ProdMI, ConsMI))
   3063     return false;
   3064 
   3065   // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
   3066   // are scheduled in consecutive packets.
   3067   if (isVecUsableNextPacket(ProdMI, ConsMI))
   3068     return false;
   3069 
   3070   return true;
   3071 }
   3072 
   3073 
   3074 bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
   3075       MachineBasicBlock::const_instr_iterator BII) const {
   3076   // There is no stall when I is not a V60 vector.
   3077   if (!isV60VectorInstruction(MI))
   3078     return false;
   3079 
   3080   MachineBasicBlock::const_instr_iterator MII = BII;
   3081   MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
   3082 
   3083   if (!(*MII).isBundle()) {
   3084     const MachineInstr *J = &*MII;
   3085     if (!isV60VectorInstruction(J))
   3086       return false;
   3087     else if (isVecUsableNextPacket(J, MI))
   3088       return false;
   3089     return true;
   3090   }
   3091 
   3092   for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
   3093     const MachineInstr *J = &*MII;
   3094     if (producesStall(J, MI))
   3095       return true;
   3096   }
   3097   return false;
   3098 }
   3099 
   3100 
   3101 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr *MI,
   3102       unsigned PredReg) const {
   3103   for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
   3104     const MachineOperand &MO = MI->getOperand(opNum);
   3105     if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
   3106       return false; // Predicate register must be explicitly defined.
   3107   }
   3108 
   3109   // Hexagon Programmer's Reference says that decbin, memw_locked, and
   3110   // memd_locked cannot be used as .new as well,
   3111   // but we don't seem to have these instructions defined.
   3112   return MI->getOpcode() != Hexagon::A4_tlbmatch;
   3113 }
   3114 
   3115 
   3116 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
   3117   return (Opcode == Hexagon::J2_jumpt)      ||
   3118          (Opcode == Hexagon::J2_jumpf)      ||
   3119          (Opcode == Hexagon::J2_jumptnew)   ||
   3120          (Opcode == Hexagon::J2_jumpfnew)   ||
   3121          (Opcode == Hexagon::J2_jumptnewpt) ||
   3122          (Opcode == Hexagon::J2_jumpfnewpt);
   3123 }
   3124 
   3125 
   3126 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
   3127   if (Cond.empty() || !isPredicated(Cond[0].getImm()))
   3128     return false;
   3129   return !isPredicatedTrue(Cond[0].getImm());
   3130 }
   3131 
   3132 
   3133 short HexagonInstrInfo::getAbsoluteForm(const MachineInstr *MI) const {
   3134   return Hexagon::getAbsoluteForm(MI->getOpcode());
   3135 }
   3136 
   3137 
   3138 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
   3139   const uint64_t F = MI->getDesc().TSFlags;
   3140   return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
   3141 }
   3142 
   3143 
   3144 // Returns the base register in a memory access (load/store). The offset is
   3145 // returned in Offset and the access size is returned in AccessSize.
   3146 unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
   3147       int &Offset, unsigned &AccessSize) const {
   3148   // Return if it is not a base+offset type instruction or a MemOp.
   3149   if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
   3150       getAddrMode(MI) != HexagonII::BaseLongOffset &&
   3151       !isMemOp(MI) && !isPostIncrement(MI))
   3152     return 0;
   3153 
   3154   // Since it is a memory access instruction, getMemAccessSize() should never
   3155   // return 0.
   3156   assert (getMemAccessSize(MI) &&
   3157           "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
   3158 
   3159   // Return Values of getMemAccessSize() are
   3160   // 0 - Checked in the assert above.
   3161   // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
   3162   // MemAccessSize is represented as 1+log2(N) where N is size in bits.
   3163   AccessSize = (1U << (getMemAccessSize(MI) - 1));
   3164 
   3165   unsigned basePos = 0, offsetPos = 0;
   3166   if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
   3167     return 0;
   3168 
   3169   // Post increment updates its EA after the mem access,
   3170   // so we need to treat its offset as zero.
   3171   if (isPostIncrement(MI))
   3172     Offset = 0;
   3173   else {
   3174     Offset = MI->getOperand(offsetPos).getImm();
   3175   }
   3176 
   3177   return MI->getOperand(basePos).getReg();
   3178 }
   3179 
   3180 
   3181 /// Return the position of the base and offset operands for this instruction.
   3182 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
   3183       unsigned &BasePos, unsigned &OffsetPos) const {
   3184   // Deal with memops first.
   3185   if (isMemOp(MI)) {
   3186     assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
   3187             "Bad Memop.");
   3188     BasePos = 0;
   3189     OffsetPos = 1;
   3190   } else if (MI->mayStore()) {
   3191     BasePos = 0;
   3192     OffsetPos = 1;
   3193   } else if (MI->mayLoad()) {
   3194     BasePos = 1;
   3195     OffsetPos = 2;
   3196   } else
   3197     return false;
   3198 
   3199   if (isPredicated(*MI)) {
   3200     BasePos++;
   3201     OffsetPos++;
   3202   }
   3203   if (isPostIncrement(MI)) {
   3204     BasePos++;
   3205     OffsetPos++;
   3206   }
   3207 
   3208   if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
   3209     return false;
   3210 
   3211   return true;
   3212 }
   3213 
   3214 
   3215 // Inserts branching instructions in reverse order of their occurence.
   3216 // e.g. jump_t t1 (i1)
   3217 // jump t2        (i2)
   3218 // Jumpers = {i2, i1}
   3219 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
   3220       MachineBasicBlock& MBB) const {
   3221   SmallVector<MachineInstr*, 2> Jumpers;
   3222   // If the block has no terminators, it just falls into the block after it.
   3223   MachineBasicBlock::instr_iterator I = MBB.instr_end();
   3224   if (I == MBB.instr_begin())
   3225     return Jumpers;
   3226 
   3227   // A basic block may looks like this:
   3228   //
   3229   //  [   insn
   3230   //     EH_LABEL
   3231   //      insn
   3232   //      insn
   3233   //      insn
   3234   //     EH_LABEL
   3235   //      insn     ]
   3236   //
   3237   // It has two succs but does not have a terminator
   3238   // Don't know how to handle it.
   3239   do {
   3240     --I;
   3241     if (I->isEHLabel())
   3242       return Jumpers;
   3243   } while (I != MBB.instr_begin());
   3244 
   3245   I = MBB.instr_end();
   3246   --I;
   3247 
   3248   while (I->isDebugValue()) {
   3249     if (I == MBB.instr_begin())
   3250       return Jumpers;
   3251     --I;
   3252   }
   3253   if (!isUnpredicatedTerminator(*I))
   3254     return Jumpers;
   3255 
   3256   // Get the last instruction in the block.
   3257   MachineInstr *LastInst = &*I;
   3258   Jumpers.push_back(LastInst);
   3259   MachineInstr *SecondLastInst = nullptr;
   3260   // Find one more terminator if present.
   3261   do {
   3262     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
   3263       if (!SecondLastInst) {
   3264         SecondLastInst = &*I;
   3265         Jumpers.push_back(SecondLastInst);
   3266       } else // This is a third branch.
   3267         return Jumpers;
   3268     }
   3269     if (I == MBB.instr_begin())
   3270       break;
   3271     --I;
   3272   } while (true);
   3273   return Jumpers;
   3274 }
   3275 
   3276 
   3277 short HexagonInstrInfo::getBaseWithLongOffset(short Opcode) const {
   3278   if (Opcode < 0)
   3279     return -1;
   3280   return Hexagon::getBaseWithLongOffset(Opcode);
   3281 }
   3282 
   3283 
   3284 short HexagonInstrInfo::getBaseWithLongOffset(const MachineInstr *MI) const {
   3285   return Hexagon::getBaseWithLongOffset(MI->getOpcode());
   3286 }
   3287 
   3288 
   3289 short HexagonInstrInfo::getBaseWithRegOffset(const MachineInstr *MI) const {
   3290   return Hexagon::getBaseWithRegOffset(MI->getOpcode());
   3291 }
   3292 
   3293 
   3294 // Returns Operand Index for the constant extended instruction.
   3295 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
   3296   const uint64_t F = MI->getDesc().TSFlags;
   3297   return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
   3298 }
   3299 
   3300 // See if instruction could potentially be a duplex candidate.
   3301 // If so, return its group. Zero otherwise.
   3302 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
   3303       const MachineInstr *MI) const {
   3304   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
   3305 
   3306   switch (MI->getOpcode()) {
   3307   default:
   3308     return HexagonII::HCG_None;
   3309   //
   3310   // Compound pairs.
   3311   // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
   3312   // "Rd16=#U6 ; jump #r9:2"
   3313   // "Rd16=Rs16 ; jump #r9:2"
   3314   //
   3315   case Hexagon::C2_cmpeq:
   3316   case Hexagon::C2_cmpgt:
   3317   case Hexagon::C2_cmpgtu:
   3318     DstReg = MI->getOperand(0).getReg();
   3319     Src1Reg = MI->getOperand(1).getReg();
   3320     Src2Reg = MI->getOperand(2).getReg();
   3321     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
   3322         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
   3323         isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
   3324       return HexagonII::HCG_A;
   3325     break;
   3326   case Hexagon::C2_cmpeqi:
   3327   case Hexagon::C2_cmpgti:
   3328   case Hexagon::C2_cmpgtui:
   3329     // P0 = cmp.eq(Rs,#u2)
   3330     DstReg = MI->getOperand(0).getReg();
   3331     SrcReg = MI->getOperand(1).getReg();
   3332     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
   3333         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
   3334         isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
   3335         ((isUInt<5>(MI->getOperand(2).getImm())) ||
   3336          (MI->getOperand(2).getImm() == -1)))
   3337       return HexagonII::HCG_A;
   3338     break;
   3339   case Hexagon::A2_tfr:
   3340     // Rd = Rs
   3341     DstReg = MI->getOperand(0).getReg();
   3342     SrcReg = MI->getOperand(1).getReg();
   3343     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
   3344       return HexagonII::HCG_A;
   3345     break;
   3346   case Hexagon::A2_tfrsi:
   3347     // Rd = #u6
   3348     // Do not test for #u6 size since the const is getting extended
   3349     // regardless and compound could be formed.
   3350     DstReg = MI->getOperand(0).getReg();
   3351     if (isIntRegForSubInst(DstReg))
   3352       return HexagonII::HCG_A;
   3353     break;
   3354   case Hexagon::S2_tstbit_i:
   3355     DstReg = MI->getOperand(0).getReg();
   3356     Src1Reg = MI->getOperand(1).getReg();
   3357     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
   3358         (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
   3359         MI->getOperand(2).isImm() &&
   3360         isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
   3361       return HexagonII::HCG_A;
   3362     break;
   3363   // The fact that .new form is used pretty much guarantees
   3364   // that predicate register will match. Nevertheless,
   3365   // there could be some false positives without additional
   3366   // checking.
   3367   case Hexagon::J2_jumptnew:
   3368   case Hexagon::J2_jumpfnew:
   3369   case Hexagon::J2_jumptnewpt:
   3370   case Hexagon::J2_jumpfnewpt:
   3371     Src1Reg = MI->getOperand(0).getReg();
   3372     if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
   3373         (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
   3374       return HexagonII::HCG_B;
   3375     break;
   3376   // Transfer and jump:
   3377   // Rd=#U6 ; jump #r9:2
   3378   // Rd=Rs ; jump #r9:2
   3379   // Do not test for jump range here.
   3380   case Hexagon::J2_jump:
   3381   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
   3382     return HexagonII::HCG_C;
   3383     break;
   3384   }
   3385 
   3386   return HexagonII::HCG_None;
   3387 }
   3388 
   3389 
   3390 // Returns -1 when there is no opcode found.
   3391 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
   3392       const MachineInstr *GB) const {
   3393   assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
   3394   assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
   3395   if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
   3396       (GB->getOpcode() != Hexagon::J2_jumptnew))
   3397     return -1;
   3398   unsigned DestReg = GA->getOperand(0).getReg();
   3399   if (!GB->readsRegister(DestReg))
   3400     return -1;
   3401   if (DestReg == Hexagon::P0)
   3402     return Hexagon::J4_cmpeqi_tp0_jump_nt;
   3403   if (DestReg == Hexagon::P1)
   3404     return Hexagon::J4_cmpeqi_tp1_jump_nt;
   3405   return -1;
   3406 }
   3407 
   3408 
   3409 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
   3410   enum Hexagon::PredSense inPredSense;
   3411   inPredSense = invertPredicate ? Hexagon::PredSense_false :
   3412                                   Hexagon::PredSense_true;
   3413   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
   3414   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
   3415     return CondOpcode;
   3416 
   3417   // This switch case will be removed once all the instructions have been
   3418   // modified to use relation maps.
   3419   switch(Opc) {
   3420   case Hexagon::TFRI_f:
   3421     return !invertPredicate ? Hexagon::TFRI_cPt_f :
   3422                               Hexagon::TFRI_cNotPt_f;
   3423   }
   3424 
   3425   llvm_unreachable("Unexpected predicable instruction");
   3426 }
   3427 
   3428 
   3429 // Return the cur value instruction for a given store.
   3430 int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
   3431   switch (MI->getOpcode()) {
   3432   default: llvm_unreachable("Unknown .cur type");
   3433   case Hexagon::V6_vL32b_pi:
   3434     return Hexagon::V6_vL32b_cur_pi;
   3435   case Hexagon::V6_vL32b_ai:
   3436     return Hexagon::V6_vL32b_cur_ai;
   3437   //128B
   3438   case Hexagon::V6_vL32b_pi_128B:
   3439     return Hexagon::V6_vL32b_cur_pi_128B;
   3440   case Hexagon::V6_vL32b_ai_128B:
   3441     return Hexagon::V6_vL32b_cur_ai_128B;
   3442   }
   3443   return 0;
   3444 }
   3445 
   3446 
   3447 
   3448 // The diagram below shows the steps involved in the conversion of a predicated
   3449 // store instruction to its .new predicated new-value form.
   3450 //
   3451 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
   3452 //                ^           ^
   3453 //               /             \ (not OK. it will cause new-value store to be
   3454 //              /               X conditional on p0.new while R2 producer is
   3455 //             /                 \ on p0)
   3456 //            /                   \.
   3457 //     p.new store                 p.old NV store
   3458 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
   3459 //            ^                  ^
   3460 //             \                /
   3461 //              \              /
   3462 //               \            /
   3463 //                 p.old store
   3464 //             [if (p0)memw(R0+#0)=R2]
   3465 //
   3466 //
   3467 // The following set of instructions further explains the scenario where
   3468 // conditional new-value store becomes invalid when promoted to .new predicate
   3469 // form.
   3470 //
   3471 // { 1) if (p0) r0 = add(r1, r2)
   3472 //   2) p0 = cmp.eq(r3, #0) }
   3473 //
   3474 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
   3475 // the first two instructions because in instr 1, r0 is conditional on old value
   3476 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
   3477 // is not valid for new-value stores.
   3478 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
   3479 // from the "Conditional Store" list. Because a predicated new value store
   3480 // would NOT be promoted to a double dot new store. See diagram below:
   3481 // This function returns yes for those stores that are predicated but not
   3482 // yet promoted to predicate dot new instructions.
   3483 //
   3484 //                          +---------------------+
   3485 //                    /-----| if (p0) memw(..)=r0 |---------\~
   3486 //                   ||     +---------------------+         ||
   3487 //          promote  ||       /\       /\                   ||  promote
   3488 //                   ||      /||\     /||\                  ||
   3489 //                  \||/    demote     ||                  \||/
   3490 //                   \/       ||       ||                   \/
   3491 //       +-------------------------+   ||   +-------------------------+
   3492 //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
   3493 //       +-------------------------+   ||   +-------------------------+
   3494 //                        ||           ||         ||
   3495 //                        ||         demote      \||/
   3496 //                      promote        ||         \/ NOT possible
   3497 //                        ||           ||         /\~
   3498 //                       \||/          ||        /||\~
   3499 //                        \/           ||         ||
   3500 //                      +-----------------------------+
   3501 //                      | if (p0.new) memw(..)=r0.new |
   3502 //                      +-----------------------------+
   3503 //                           Double Dot New Store
   3504 //
   3505 // Returns the most basic instruction for the .new predicated instructions and
   3506 // new-value stores.
   3507 // For example, all of the following instructions will be converted back to the
   3508 // same instruction:
   3509 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
   3510 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
   3511 // 3) if (p0.new) memw(R0+#0) = R1      --->
   3512 //
   3513 // To understand the translation of instruction 1 to its original form, consider
   3514 // a packet with 3 instructions.
   3515 // { p0 = cmp.eq(R0,R1)
   3516 //   if (p0.new) R2 = add(R3, R4)
   3517 //   R5 = add (R3, R1)
   3518 // }
   3519 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
   3520 //
   3521 // This instruction can be part of the previous packet only if both p0 and R2
   3522 // are promoted to .new values. This promotion happens in steps, first
   3523 // predicate register is promoted to .new and in the next iteration R2 is
   3524 // promoted. Therefore, in case of dependence check failure (due to R5) during
   3525 // next iteration, it should be converted back to its most basic form.
   3526 
   3527 
   3528 // Return the new value instruction for a given store.
   3529 int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
   3530   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
   3531   if (NVOpcode >= 0) // Valid new-value store instruction.
   3532     return NVOpcode;
   3533 
   3534   switch (MI->getOpcode()) {
   3535   default: llvm_unreachable("Unknown .new type");
   3536   case Hexagon::S4_storerb_ur:
   3537     return Hexagon::S4_storerbnew_ur;
   3538 
   3539   case Hexagon::S2_storerb_pci:
   3540     return Hexagon::S2_storerb_pci;
   3541 
   3542   case Hexagon::S2_storeri_pci:
   3543     return Hexagon::S2_storeri_pci;
   3544 
   3545   case Hexagon::S2_storerh_pci:
   3546     return Hexagon::S2_storerh_pci;
   3547 
   3548   case Hexagon::S2_storerd_pci:
   3549     return Hexagon::S2_storerd_pci;
   3550 
   3551   case Hexagon::S2_storerf_pci:
   3552     return Hexagon::S2_storerf_pci;
   3553 
   3554   case Hexagon::V6_vS32b_ai:
   3555     return Hexagon::V6_vS32b_new_ai;
   3556 
   3557   case Hexagon::V6_vS32b_pi:
   3558     return Hexagon::V6_vS32b_new_pi;
   3559 
   3560   // 128B
   3561   case Hexagon::V6_vS32b_ai_128B:
   3562     return Hexagon::V6_vS32b_new_ai_128B;
   3563 
   3564   case Hexagon::V6_vS32b_pi_128B:
   3565     return Hexagon::V6_vS32b_new_pi_128B;
   3566   }
   3567   return 0;
   3568 }
   3569 
   3570 
   3571 // Returns the opcode to use when converting MI, which is a conditional jump,
   3572 // into a conditional instruction which uses the .new value of the predicate.
   3573 // We also use branch probabilities to add a hint to the jump.
   3574 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr *MI,
   3575       const MachineBranchProbabilityInfo *MBPI) const {
   3576   // We assume that block can have at most two successors.
   3577   bool taken = false;
   3578   const MachineBasicBlock *Src = MI->getParent();
   3579   const MachineOperand *BrTarget = &MI->getOperand(1);
   3580   const MachineBasicBlock *Dst = BrTarget->getMBB();
   3581 
   3582   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
   3583   if (Prediction >= BranchProbability(1,2))
   3584     taken = true;
   3585 
   3586   switch (MI->getOpcode()) {
   3587   case Hexagon::J2_jumpt:
   3588     return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
   3589   case Hexagon::J2_jumpf:
   3590     return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
   3591 
   3592   default:
   3593     llvm_unreachable("Unexpected jump instruction.");
   3594   }
   3595 }
   3596 
   3597 
   3598 // Return .new predicate version for an instruction.
   3599 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr *MI,
   3600       const MachineBranchProbabilityInfo *MBPI) const {
   3601   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
   3602   if (NewOpcode >= 0) // Valid predicate new instruction
   3603     return NewOpcode;
   3604 
   3605   switch (MI->getOpcode()) {
   3606   // Condtional Jumps
   3607   case Hexagon::J2_jumpt:
   3608   case Hexagon::J2_jumpf:
   3609     return getDotNewPredJumpOp(MI, MBPI);
   3610 
   3611   default:
   3612     assert(0 && "Unknown .new type");
   3613   }
   3614   return 0;
   3615 }
   3616 
   3617 
   3618 int HexagonInstrInfo::getDotOldOp(const int opc) const {
   3619   int NewOp = opc;
   3620   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
   3621     NewOp = Hexagon::getPredOldOpcode(NewOp);
   3622     assert(NewOp >= 0 &&
   3623            "Couldn't change predicate new instruction to its old form.");
   3624   }
   3625 
   3626   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
   3627     NewOp = Hexagon::getNonNVStore(NewOp);
   3628     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
   3629   }
   3630   return NewOp;
   3631 }
   3632 
   3633 
   3634 // See if instruction could potentially be a duplex candidate.
   3635 // If so, return its group. Zero otherwise.
   3636 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
   3637       const MachineInstr *MI) const {
   3638   unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
   3639   auto &HRI = getRegisterInfo();
   3640 
   3641   switch (MI->getOpcode()) {
   3642   default:
   3643     return HexagonII::HSIG_None;
   3644   //
   3645   // Group L1:
   3646   //
   3647   // Rd = memw(Rs+#u4:2)
   3648   // Rd = memub(Rs+#u4:0)
   3649   case Hexagon::L2_loadri_io:
   3650     DstReg = MI->getOperand(0).getReg();
   3651     SrcReg = MI->getOperand(1).getReg();
   3652     // Special case this one from Group L2.
   3653     // Rd = memw(r29+#u5:2)
   3654     if (isIntRegForSubInst(DstReg)) {
   3655       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
   3656           HRI.getStackRegister() == SrcReg &&
   3657           MI->getOperand(2).isImm() &&
   3658           isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
   3659         return HexagonII::HSIG_L2;
   3660       // Rd = memw(Rs+#u4:2)
   3661       if (isIntRegForSubInst(SrcReg) &&
   3662           (MI->getOperand(2).isImm() &&
   3663           isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
   3664         return HexagonII::HSIG_L1;
   3665     }
   3666     break;
   3667   case Hexagon::L2_loadrub_io:
   3668     // Rd = memub(Rs+#u4:0)
   3669     DstReg = MI->getOperand(0).getReg();
   3670     SrcReg = MI->getOperand(1).getReg();
   3671     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
   3672         MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
   3673       return HexagonII::HSIG_L1;
   3674     break;
   3675   //
   3676   // Group L2:
   3677   //
   3678   // Rd = memh/memuh(Rs+#u3:1)
   3679   // Rd = memb(Rs+#u3:0)
   3680   // Rd = memw(r29+#u5:2) - Handled above.
   3681   // Rdd = memd(r29+#u5:3)
   3682   // deallocframe
   3683   // [if ([!]p0[.new])] dealloc_return
   3684   // [if ([!]p0[.new])] jumpr r31
   3685   case Hexagon::L2_loadrh_io:
   3686   case Hexagon::L2_loadruh_io:
   3687     // Rd = memh/memuh(Rs+#u3:1)
   3688     DstReg = MI->getOperand(0).getReg();
   3689     SrcReg = MI->getOperand(1).getReg();
   3690     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
   3691         MI->getOperand(2).isImm() &&
   3692         isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
   3693       return HexagonII::HSIG_L2;
   3694     break;
   3695   case Hexagon::L2_loadrb_io:
   3696     // Rd = memb(Rs+#u3:0)
   3697     DstReg = MI->getOperand(0).getReg();
   3698     SrcReg = MI->getOperand(1).getReg();
   3699     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
   3700         MI->getOperand(2).isImm() &&
   3701         isUInt<3>(MI->getOperand(2).getImm()))
   3702       return HexagonII::HSIG_L2;
   3703     break;
   3704   case Hexagon::L2_loadrd_io:
   3705     // Rdd = memd(r29+#u5:3)
   3706     DstReg = MI->getOperand(0).getReg();
   3707     SrcReg = MI->getOperand(1).getReg();
   3708     if (isDblRegForSubInst(DstReg, HRI) &&
   3709         Hexagon::IntRegsRegClass.contains(SrcReg) &&
   3710         HRI.getStackRegister() == SrcReg &&
   3711         MI->getOperand(2).isImm() &&
   3712         isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
   3713       return HexagonII::HSIG_L2;
   3714     break;
   3715   // dealloc_return is not documented in Hexagon Manual, but marked
   3716   // with A_SUBINSN attribute in iset_v4classic.py.
   3717   case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
   3718   case Hexagon::L4_return:
   3719   case Hexagon::L2_deallocframe:
   3720     return HexagonII::HSIG_L2;
   3721   case Hexagon::EH_RETURN_JMPR:
   3722   case Hexagon::JMPret :
   3723     // jumpr r31
   3724     // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
   3725     DstReg = MI->getOperand(0).getReg();
   3726     if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
   3727       return HexagonII::HSIG_L2;
   3728     break;
   3729   case Hexagon::JMPrett:
   3730   case Hexagon::JMPretf:
   3731   case Hexagon::JMPrettnewpt:
   3732   case Hexagon::JMPretfnewpt :
   3733   case Hexagon::JMPrettnew :
   3734   case Hexagon::JMPretfnew :
   3735     DstReg = MI->getOperand(1).getReg();
   3736     SrcReg = MI->getOperand(0).getReg();
   3737     // [if ([!]p0[.new])] jumpr r31
   3738     if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
   3739         (Hexagon::P0 == SrcReg)) &&
   3740         (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
   3741       return HexagonII::HSIG_L2;
   3742      break;
   3743   case Hexagon::L4_return_t :
   3744   case Hexagon::L4_return_f :
   3745   case Hexagon::L4_return_tnew_pnt :
   3746   case Hexagon::L4_return_fnew_pnt :
   3747   case Hexagon::L4_return_tnew_pt :
   3748   case Hexagon::L4_return_fnew_pt :
   3749     // [if ([!]p0[.new])] dealloc_return
   3750     SrcReg = MI->getOperand(0).getReg();
   3751     if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
   3752       return HexagonII::HSIG_L2;
   3753     break;
   3754   //
   3755   // Group S1:
   3756   //
   3757   // memw(Rs+#u4:2) = Rt
   3758   // memb(Rs+#u4:0) = Rt
   3759   case Hexagon::S2_storeri_io:
   3760     // Special case this one from Group S2.
   3761     // memw(r29+#u5:2) = Rt
   3762     Src1Reg = MI->getOperand(0).getReg();
   3763     Src2Reg = MI->getOperand(2).getReg();
   3764     if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
   3765         isIntRegForSubInst(Src2Reg) &&
   3766         HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
   3767         isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
   3768       return HexagonII::HSIG_S2;
   3769     // memw(Rs+#u4:2) = Rt
   3770     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
   3771         MI->getOperand(1).isImm() &&
   3772         isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
   3773       return HexagonII::HSIG_S1;
   3774     break;
   3775   case Hexagon::S2_storerb_io:
   3776     // memb(Rs+#u4:0) = Rt
   3777     Src1Reg = MI->getOperand(0).getReg();
   3778     Src2Reg = MI->getOperand(2).getReg();
   3779     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
   3780         MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
   3781       return HexagonII::HSIG_S1;
   3782     break;
   3783   //
   3784   // Group S2:
   3785   //
   3786   // memh(Rs+#u3:1) = Rt
   3787   // memw(r29+#u5:2) = Rt
   3788   // memd(r29+#s6:3) = Rtt
   3789   // memw(Rs+#u4:2) = #U1
   3790   // memb(Rs+#u4) = #U1
   3791   // allocframe(#u5:3)
   3792   case Hexagon::S2_storerh_io:
   3793     // memh(Rs+#u3:1) = Rt
   3794     Src1Reg = MI->getOperand(0).getReg();
   3795     Src2Reg = MI->getOperand(2).getReg();
   3796     if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
   3797         MI->getOperand(1).isImm() &&
   3798         isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
   3799       return HexagonII::HSIG_S1;
   3800     break;
   3801   case Hexagon::S2_storerd_io:
   3802     // memd(r29+#s6:3) = Rtt
   3803     Src1Reg = MI->getOperand(0).getReg();
   3804     Src2Reg = MI->getOperand(2).getReg();
   3805     if (isDblRegForSubInst(Src2Reg, HRI) &&
   3806         Hexagon::IntRegsRegClass.contains(Src1Reg) &&
   3807         HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
   3808         isShiftedInt<6,3>(MI->getOperand(1).getImm()))
   3809       return HexagonII::HSIG_S2;
   3810     break;
   3811   case Hexagon::S4_storeiri_io:
   3812     // memw(Rs+#u4:2) = #U1
   3813     Src1Reg = MI->getOperand(0).getReg();
   3814     if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
   3815         isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
   3816         MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
   3817       return HexagonII::HSIG_S2;
   3818     break;
   3819   case Hexagon::S4_storeirb_io:
   3820     // memb(Rs+#u4) = #U1
   3821     Src1Reg = MI->getOperand(0).getReg();
   3822     if (isIntRegForSubInst(Src1Reg) &&
   3823         MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()) &&
   3824         MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
   3825       return HexagonII::HSIG_S2;
   3826     break;
   3827   case Hexagon::S2_allocframe:
   3828     if (MI->getOperand(0).isImm() &&
   3829         isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
   3830       return HexagonII::HSIG_S1;
   3831     break;
   3832   //
   3833   // Group A:
   3834   //
   3835   // Rx = add(Rx,#s7)
   3836   // Rd = Rs
   3837   // Rd = #u6
   3838   // Rd = #-1
   3839   // if ([!]P0[.new]) Rd = #0
   3840   // Rd = add(r29,#u6:2)
   3841   // Rx = add(Rx,Rs)
   3842   // P0 = cmp.eq(Rs,#u2)
   3843   // Rdd = combine(#0,Rs)
   3844   // Rdd = combine(Rs,#0)
   3845   // Rdd = combine(#u2,#U2)
   3846   // Rd = add(Rs,#1)
   3847   // Rd = add(Rs,#-1)
   3848   // Rd = sxth/sxtb/zxtb/zxth(Rs)
   3849   // Rd = and(Rs,#1)
   3850   case Hexagon::A2_addi:
   3851     DstReg = MI->getOperand(0).getReg();
   3852     SrcReg = MI->getOperand(1).getReg();
   3853     if (isIntRegForSubInst(DstReg)) {
   3854       // Rd = add(r29,#u6:2)
   3855       if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
   3856         HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
   3857         isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
   3858         return HexagonII::HSIG_A;
   3859       // Rx = add(Rx,#s7)
   3860       if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
   3861           isInt<7>(MI->getOperand(2).getImm()))
   3862         return HexagonII::HSIG_A;
   3863       // Rd = add(Rs,#1)
   3864       // Rd = add(Rs,#-1)
   3865       if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
   3866           ((MI->getOperand(2).getImm() == 1) ||
   3867           (MI->getOperand(2).getImm() == -1)))
   3868         return HexagonII::HSIG_A;
   3869     }
   3870     break;
   3871   case Hexagon::A2_add:
   3872     // Rx = add(Rx,Rs)
   3873     DstReg = MI->getOperand(0).getReg();
   3874     Src1Reg = MI->getOperand(1).getReg();
   3875     Src2Reg = MI->getOperand(2).getReg();
   3876     if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
   3877         isIntRegForSubInst(Src2Reg))
   3878       return HexagonII::HSIG_A;
   3879     break;
   3880   case Hexagon::A2_andir:
   3881     // Same as zxtb.
   3882     // Rd16=and(Rs16,#255)
   3883     // Rd16=and(Rs16,#1)
   3884     DstReg = MI->getOperand(0).getReg();
   3885     SrcReg = MI->getOperand(1).getReg();
   3886     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
   3887         MI->getOperand(2).isImm() &&
   3888         ((MI->getOperand(2).getImm() == 1) ||
   3889         (MI->getOperand(2).getImm() == 255)))
   3890       return HexagonII::HSIG_A;
   3891     break;
   3892   case Hexagon::A2_tfr:
   3893     // Rd = Rs
   3894     DstReg = MI->getOperand(0).getReg();
   3895     SrcReg = MI->getOperand(1).getReg();
   3896     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
   3897       return HexagonII::HSIG_A;
   3898     break;
   3899   case Hexagon::A2_tfrsi:
   3900     // Rd = #u6
   3901     // Do not test for #u6 size since the const is getting extended
   3902     // regardless and compound could be formed.
   3903     // Rd = #-1
   3904     DstReg = MI->getOperand(0).getReg();
   3905     if (isIntRegForSubInst(DstReg))
   3906       return HexagonII::HSIG_A;
   3907     break;
   3908   case Hexagon::C2_cmoveit:
   3909   case Hexagon::C2_cmovenewit:
   3910   case Hexagon::C2_cmoveif:
   3911   case Hexagon::C2_cmovenewif:
   3912     // if ([!]P0[.new]) Rd = #0
   3913     // Actual form:
   3914     // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
   3915     DstReg = MI->getOperand(0).getReg();
   3916     SrcReg = MI->getOperand(1).getReg();
   3917     if (isIntRegForSubInst(DstReg) &&
   3918         Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
   3919         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
   3920       return HexagonII::HSIG_A;
   3921     break;
   3922   case Hexagon::C2_cmpeqi:
   3923     // P0 = cmp.eq(Rs,#u2)
   3924     DstReg = MI->getOperand(0).getReg();
   3925     SrcReg = MI->getOperand(1).getReg();
   3926     if (Hexagon::PredRegsRegClass.contains(DstReg) &&
   3927         Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
   3928         MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
   3929       return HexagonII::HSIG_A;
   3930     break;
   3931   case Hexagon::A2_combineii:
   3932   case Hexagon::A4_combineii:
   3933     // Rdd = combine(#u2,#U2)
   3934     DstReg = MI->getOperand(0).getReg();
   3935     if (isDblRegForSubInst(DstReg, HRI) &&
   3936         ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
   3937         (MI->getOperand(1).isGlobal() &&
   3938         isUInt<2>(MI->getOperand(1).getOffset()))) &&
   3939         ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
   3940         (MI->getOperand(2).isGlobal() &&
   3941         isUInt<2>(MI->getOperand(2).getOffset()))))
   3942       return HexagonII::HSIG_A;
   3943     break;
   3944   case Hexagon::A4_combineri:
   3945     // Rdd = combine(Rs,#0)
   3946     DstReg = MI->getOperand(0).getReg();
   3947     SrcReg = MI->getOperand(1).getReg();
   3948     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
   3949         ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
   3950         (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
   3951       return HexagonII::HSIG_A;
   3952     break;
   3953   case Hexagon::A4_combineir:
   3954     // Rdd = combine(#0,Rs)
   3955     DstReg = MI->getOperand(0).getReg();
   3956     SrcReg = MI->getOperand(2).getReg();
   3957     if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
   3958         ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
   3959         (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
   3960       return HexagonII::HSIG_A;
   3961     break;
   3962   case Hexagon::A2_sxtb:
   3963   case Hexagon::A2_sxth:
   3964   case Hexagon::A2_zxtb:
   3965   case Hexagon::A2_zxth:
   3966     // Rd = sxth/sxtb/zxtb/zxth(Rs)
   3967     DstReg = MI->getOperand(0).getReg();
   3968     SrcReg = MI->getOperand(1).getReg();
   3969     if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
   3970       return HexagonII::HSIG_A;
   3971     break;
   3972   }
   3973 
   3974   return HexagonII::HSIG_None;
   3975 }
   3976 
   3977 
   3978 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr *MI) const {
   3979   return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
   3980 }
   3981 
   3982 
   3983 // Return first non-debug instruction in the basic block.
   3984 MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
   3985       const {
   3986   for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
   3987     MachineInstr *MI = &*MII;
   3988     if (MI->isDebugValue())
   3989       continue;
   3990     return MI;
   3991   }
   3992   return nullptr;
   3993 }
   3994 
   3995 
   3996 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
   3997       const InstrItineraryData *ItinData, const MachineInstr *MI) const {
   3998   // Default to one cycle for no itinerary. However, an "empty" itinerary may
   3999   // still have a MinLatency property, which getStageLatency checks.
   4000   if (!ItinData)
   4001     return getInstrLatency(ItinData, *MI);
   4002 
   4003   // Get the latency embedded in the itinerary. If we're not using timing class
   4004   // latencies or if we using BSB scheduling, then restrict the maximum latency
   4005   // to 1 (that is, either 0 or 1).
   4006   if (MI->isTransient())
   4007     return 0;
   4008   unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
   4009   if (!EnableTimingClassLatency ||
   4010       MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
   4011       useBSBScheduling())
   4012     if (Latency > 1)
   4013       Latency = 1;
   4014   return Latency;
   4015 }
   4016 
   4017 
   4018 // inverts the predication logic.
   4019 // p -> NotP
   4020 // NotP -> P
   4021 bool HexagonInstrInfo::getInvertedPredSense(
   4022       SmallVectorImpl<MachineOperand> &Cond) const {
   4023   if (Cond.empty())
   4024     return false;
   4025   unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
   4026   Cond[0].setImm(Opc);
   4027   return true;
   4028 }
   4029 
   4030 
   4031 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
   4032   int InvPredOpcode;
   4033   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
   4034                                         : Hexagon::getTruePredOpcode(Opc);
   4035   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
   4036     return InvPredOpcode;
   4037 
   4038   llvm_unreachable("Unexpected predicated instruction");
   4039 }
   4040 
   4041 
   4042 // Returns the max value that doesn't need to be extended.
   4043 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
   4044   const uint64_t F = MI->getDesc().TSFlags;
   4045   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   4046                     & HexagonII::ExtentSignedMask;
   4047   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   4048                     & HexagonII::ExtentBitsMask;
   4049 
   4050   if (isSigned) // if value is signed
   4051     return ~(-1U << (bits - 1));
   4052   else
   4053     return ~(-1U << bits);
   4054 }
   4055 
   4056 
   4057 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
   4058   const uint64_t F = MI->getDesc().TSFlags;
   4059   return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
   4060 }
   4061 
   4062 
   4063 // Returns the min value that doesn't need to be extended.
   4064 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
   4065   const uint64_t F = MI->getDesc().TSFlags;
   4066   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   4067                     & HexagonII::ExtentSignedMask;
   4068   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   4069                     & HexagonII::ExtentBitsMask;
   4070 
   4071   if (isSigned) // if value is signed
   4072     return -1U << (bits - 1);
   4073   else
   4074     return 0;
   4075 }
   4076 
   4077 
   4078 // Returns opcode of the non-extended equivalent instruction.
   4079 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
   4080   // Check if the instruction has a register form that uses register in place
   4081   // of the extended operand, if so return that as the non-extended form.
   4082   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
   4083     if (NonExtOpcode >= 0)
   4084       return NonExtOpcode;
   4085 
   4086   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   4087     // Check addressing mode and retrieve non-ext equivalent instruction.
   4088     switch (getAddrMode(MI)) {
   4089     case HexagonII::Absolute :
   4090       return Hexagon::getBaseWithImmOffset(MI->getOpcode());
   4091     case HexagonII::BaseImmOffset :
   4092       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
   4093     case HexagonII::BaseLongOffset:
   4094       return Hexagon::getRegShlForm(MI->getOpcode());
   4095 
   4096     default:
   4097       return -1;
   4098     }
   4099   }
   4100   return -1;
   4101 }
   4102 
   4103 
   4104 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
   4105       unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
   4106   if (Cond.empty())
   4107     return false;
   4108   assert(Cond.size() == 2);
   4109   if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
   4110      DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
   4111      return false;
   4112   }
   4113   PredReg = Cond[1].getReg();
   4114   PredRegPos = 1;
   4115   // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
   4116   PredRegFlags = 0;
   4117   if (Cond[1].isImplicit())
   4118     PredRegFlags = RegState::Implicit;
   4119   if (Cond[1].isUndef())
   4120     PredRegFlags |= RegState::Undef;
   4121   return true;
   4122 }
   4123 
   4124 
   4125 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr *MI) const {
   4126   return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
   4127 }
   4128 
   4129 
   4130 short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
   4131   return Hexagon::getRegForm(MI->getOpcode());
   4132 }
   4133 
   4134 
   4135 // Return the number of bytes required to encode the instruction.
   4136 // Hexagon instructions are fixed length, 4 bytes, unless they
   4137 // use a constant extender, which requires another 4 bytes.
   4138 // For debug instructions and prolog labels, return 0.
   4139 unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
   4140   if (MI->isDebugValue() || MI->isPosition())
   4141     return 0;
   4142 
   4143   unsigned Size = MI->getDesc().getSize();
   4144   if (!Size)
   4145     // Assume the default insn size in case it cannot be determined
   4146     // for whatever reason.
   4147     Size = HEXAGON_INSTR_SIZE;
   4148 
   4149   if (isConstExtended(MI) || isExtended(MI))
   4150     Size += HEXAGON_INSTR_SIZE;
   4151 
   4152   // Try and compute number of instructions in asm.
   4153   if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
   4154     const MachineBasicBlock &MBB = *MI->getParent();
   4155     const MachineFunction *MF = MBB.getParent();
   4156     const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
   4157 
   4158     // Count the number of register definitions to find the asm string.
   4159     unsigned NumDefs = 0;
   4160     for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
   4161          ++NumDefs)
   4162       assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
   4163 
   4164     assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
   4165     // Disassemble the AsmStr and approximate number of instructions.
   4166     const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
   4167     Size = getInlineAsmLength(AsmStr, *MAI);
   4168   }
   4169 
   4170   return Size;
   4171 }
   4172 
   4173 
   4174 uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
   4175   const uint64_t F = MI->getDesc().TSFlags;
   4176   return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
   4177 }
   4178 
   4179 
   4180 unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
   4181   const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
   4182   const InstrItineraryData &II = *ST.getInstrItineraryData();
   4183   const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
   4184 
   4185   return IS.getUnits();
   4186 }
   4187 
   4188 
   4189 unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
   4190   const uint64_t F = get(Opcode).TSFlags;
   4191   return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
   4192 }
   4193 
   4194 
   4195 // Calculate size of the basic block without debug instructions.
   4196 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
   4197   return nonDbgMICount(BB->instr_begin(), BB->instr_end());
   4198 }
   4199 
   4200 
   4201 unsigned HexagonInstrInfo::nonDbgBundleSize(
   4202       MachineBasicBlock::const_iterator BundleHead) const {
   4203   assert(BundleHead->isBundle() && "Not a bundle header");
   4204   auto MII = BundleHead.getInstrIterator();
   4205   // Skip the bundle header.
   4206   return nonDbgMICount(++MII, getBundleEnd(*BundleHead));
   4207 }
   4208 
   4209 
   4210 /// immediateExtend - Changes the instruction in place to one using an immediate
   4211 /// extender.
   4212 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
   4213   assert((isExtendable(MI)||isConstExtended(MI)) &&
   4214                                "Instruction must be extendable");
   4215   // Find which operand is extendable.
   4216   short ExtOpNum = getCExtOpNum(MI);
   4217   MachineOperand &MO = MI->getOperand(ExtOpNum);
   4218   // This needs to be something we understand.
   4219   assert((MO.isMBB() || MO.isImm()) &&
   4220          "Branch with unknown extendable field type");
   4221   // Mark given operand as extended.
   4222   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
   4223 }
   4224 
   4225 
   4226 bool HexagonInstrInfo::invertAndChangeJumpTarget(
   4227       MachineInstr* MI, MachineBasicBlock* NewTarget) const {
   4228   DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
   4229                << NewTarget->getNumber(); MI->dump(););
   4230   assert(MI->isBranch());
   4231   unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
   4232   int TargetPos = MI->getNumOperands() - 1;
   4233   // In general branch target is the last operand,
   4234   // but some implicit defs added at the end might change it.
   4235   while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
   4236     --TargetPos;
   4237   assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
   4238   MI->getOperand(TargetPos).setMBB(NewTarget);
   4239   if (EnableBranchPrediction && isPredicatedNew(*MI)) {
   4240     NewOpcode = reversePrediction(NewOpcode);
   4241   }
   4242   MI->setDesc(get(NewOpcode));
   4243   return true;
   4244 }
   4245 
   4246 
   4247 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
   4248   /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
   4249   MachineFunction::iterator A = MF.begin();
   4250   MachineBasicBlock &B = *A;
   4251   MachineBasicBlock::iterator I = B.begin();
   4252   MachineInstr *MI = &*I;
   4253   DebugLoc DL = MI->getDebugLoc();
   4254   MachineInstr *NewMI;
   4255 
   4256   for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
   4257        insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
   4258     NewMI = BuildMI(B, MI, DL, get(insn));
   4259     DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
   4260           "  Class: " << NewMI->getDesc().getSchedClass());
   4261     NewMI->eraseFromParent();
   4262   }
   4263   /* --- The code above is used to generate complete set of Hexagon Insn --- */
   4264 }
   4265 
   4266 
   4267 // inverts the predication logic.
   4268 // p -> NotP
   4269 // NotP -> P
   4270 bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
   4271   DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
   4272   MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
   4273   return true;
   4274 }
   4275 
   4276 
   4277 // Reverse the branch prediction.
   4278 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
   4279   int PredRevOpcode = -1;
   4280   if (isPredictedTaken(Opcode))
   4281     PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
   4282   else
   4283     PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
   4284   assert(PredRevOpcode > 0);
   4285   return PredRevOpcode;
   4286 }
   4287 
   4288 
   4289 // TODO: Add more rigorous validation.
   4290 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
   4291       const {
   4292   return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
   4293 }
   4294 
   4295 
   4296 short HexagonInstrInfo::xformRegToImmOffset(const MachineInstr *MI) const {
   4297   return Hexagon::xformRegToImmOffset(MI->getOpcode());
   4298 }
   4299