Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     16 #include "llvm/ADT/PostOrderIterator.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineModuleInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/WinEHFuncInfo.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DebugInfo.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetFrameLowering.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetLowering.h"
     39 #include "llvm/Target/TargetOptions.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "function-lowering-info"
     46 
     47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     48 /// PHI nodes or outside of the basic block that defines it, or used by a
     49 /// switch or atomic instruction, which may expand to multiple basic blocks.
     50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     51   if (I->use_empty()) return false;
     52   if (isa<PHINode>(I)) return true;
     53   const BasicBlock *BB = I->getParent();
     54   for (const User *U : I->users())
     55     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     56       return true;
     57 
     58   return false;
     59 }
     60 
     61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
     62   // For the users of the source value being used for compare instruction, if
     63   // the number of signed predicate is greater than unsigned predicate, we
     64   // prefer to use SIGN_EXTEND.
     65   //
     66   // With this optimization, we would be able to reduce some redundant sign or
     67   // zero extension instruction, and eventually more machine CSE opportunities
     68   // can be exposed.
     69   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
     70   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
     71   for (const User *U : V->users()) {
     72     if (const auto *CI = dyn_cast<CmpInst>(U)) {
     73       NumOfSigned += CI->isSigned();
     74       NumOfUnsigned += CI->isUnsigned();
     75     }
     76   }
     77   if (NumOfSigned > NumOfUnsigned)
     78     ExtendKind = ISD::SIGN_EXTEND;
     79 
     80   return ExtendKind;
     81 }
     82 
     83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
     84                                SelectionDAG *DAG) {
     85   Fn = &fn;
     86   MF = &mf;
     87   TLI = MF->getSubtarget().getTargetLowering();
     88   RegInfo = &MF->getRegInfo();
     89   MachineModuleInfo &MMI = MF->getMMI();
     90   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
     91   unsigned StackAlign = TFI->getStackAlignment();
     92 
     93   // Check whether the function can return without sret-demotion.
     94   SmallVector<ISD::OutputArg, 4> Outs;
     95   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
     96                 mf.getDataLayout());
     97   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
     98                                        Fn->isVarArg(), Outs, Fn->getContext());
     99 
    100   // If this personality uses funclets, we need to do a bit more work.
    101   DenseMap<const AllocaInst *, int *> CatchObjects;
    102   EHPersonality Personality = classifyEHPersonality(
    103       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
    104   if (isFuncletEHPersonality(Personality)) {
    105     // Calculate state numbers if we haven't already.
    106     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
    107     if (Personality == EHPersonality::MSVC_CXX)
    108       calculateWinCXXEHStateNumbers(&fn, EHInfo);
    109     else if (isAsynchronousEHPersonality(Personality))
    110       calculateSEHStateNumbers(&fn, EHInfo);
    111     else if (Personality == EHPersonality::CoreCLR)
    112       calculateClrEHStateNumbers(&fn, EHInfo);
    113 
    114     // Map all BB references in the WinEH data to MBBs.
    115     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
    116       for (WinEHHandlerType &H : TBME.HandlerArray) {
    117         if (const AllocaInst *AI = H.CatchObj.Alloca)
    118           CatchObjects.insert({AI, &H.CatchObj.FrameIndex});
    119         else
    120           H.CatchObj.FrameIndex = INT_MAX;
    121       }
    122     }
    123   }
    124 
    125   // Initialize the mapping of values to registers.  This is only set up for
    126   // instruction values that are used outside of the block that defines
    127   // them.
    128   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
    129   for (; BB != EB; ++BB)
    130     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    131          I != E; ++I) {
    132       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
    133         Type *Ty = AI->getAllocatedType();
    134         unsigned Align =
    135           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
    136                    AI->getAlignment());
    137 
    138         // Static allocas can be folded into the initial stack frame
    139         // adjustment. For targets that don't realign the stack, don't
    140         // do this if there is an extra alignment requirement.
    141         if (AI->isStaticAlloca() &&
    142             (TFI->isStackRealignable() || (Align <= StackAlign))) {
    143           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
    144           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
    145 
    146           TySize *= CUI->getZExtValue();   // Get total allocated size.
    147           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
    148           int FrameIndex = INT_MAX;
    149           auto Iter = CatchObjects.find(AI);
    150           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
    151             FrameIndex = MF->getFrameInfo()->CreateFixedObject(
    152                 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
    153             MF->getFrameInfo()->setObjectAlignment(FrameIndex, Align);
    154           } else {
    155             FrameIndex =
    156                 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
    157           }
    158 
    159           StaticAllocaMap[AI] = FrameIndex;
    160           // Update the catch handler information.
    161           if (Iter != CatchObjects.end())
    162             *Iter->second = FrameIndex;
    163         } else {
    164           // FIXME: Overaligned static allocas should be grouped into
    165           // a single dynamic allocation instead of using a separate
    166           // stack allocation for each one.
    167           if (Align <= StackAlign)
    168             Align = 0;
    169           // Inform the Frame Information that we have variable-sized objects.
    170           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
    171         }
    172       }
    173 
    174       // Look for inline asm that clobbers the SP register.
    175       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    176         ImmutableCallSite CS(&*I);
    177         if (isa<InlineAsm>(CS.getCalledValue())) {
    178           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
    179           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    180           std::vector<TargetLowering::AsmOperandInfo> Ops =
    181               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
    182           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
    183             TargetLowering::AsmOperandInfo &Op = Ops[I];
    184             if (Op.Type == InlineAsm::isClobber) {
    185               // Clobbers don't have SDValue operands, hence SDValue().
    186               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
    187               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
    188                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
    189                                                     Op.ConstraintVT);
    190               if (PhysReg.first == SP)
    191                 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
    192             }
    193           }
    194         }
    195       }
    196 
    197       // Look for calls to the @llvm.va_start intrinsic. We can omit some
    198       // prologue boilerplate for variadic functions that don't examine their
    199       // arguments.
    200       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
    201         if (II->getIntrinsicID() == Intrinsic::vastart)
    202           MF->getFrameInfo()->setHasVAStart(true);
    203       }
    204 
    205       // If we have a musttail call in a variadic function, we need to ensure we
    206       // forward implicit register parameters.
    207       if (const auto *CI = dyn_cast<CallInst>(I)) {
    208         if (CI->isMustTailCall() && Fn->isVarArg())
    209           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
    210       }
    211 
    212       // Mark values used outside their block as exported, by allocating
    213       // a virtual register for them.
    214       if (isUsedOutsideOfDefiningBlock(&*I))
    215         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
    216           InitializeRegForValue(&*I);
    217 
    218       // Collect llvm.dbg.declare information. This is done now instead of
    219       // during the initial isel pass through the IR so that it is done
    220       // in a predictable order.
    221       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    222         assert(DI->getVariable() && "Missing variable");
    223         assert(DI->getDebugLoc() && "Missing location");
    224         if (MMI.hasDebugInfo()) {
    225           // Don't handle byval struct arguments or VLAs, for example.
    226           // Non-byval arguments are handled here (they refer to the stack
    227           // temporary alloca at this point).
    228           const Value *Address = DI->getAddress();
    229           if (Address) {
    230             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    231               Address = BCI->getOperand(0);
    232             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    233               DenseMap<const AllocaInst *, int>::iterator SI =
    234                 StaticAllocaMap.find(AI);
    235               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    236                 int FI = SI->second;
    237                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
    238                                        FI, DI->getDebugLoc());
    239               }
    240             }
    241           }
    242         }
    243       }
    244 
    245       // Decide the preferred extend type for a value.
    246       PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
    247     }
    248 
    249   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    250   // also creates the initial PHI MachineInstrs, though none of the input
    251   // operands are populated.
    252   for (BB = Fn->begin(); BB != EB; ++BB) {
    253     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
    254     // are really data, and no instructions can live here.
    255     if (BB->isEHPad()) {
    256       const Instruction *I = BB->getFirstNonPHI();
    257       // If this is a non-landingpad EH pad, mark this function as using
    258       // funclets.
    259       // FIXME: SEH catchpads do not create funclets, so we could avoid setting
    260       // this in such cases in order to improve frame layout.
    261       if (!isa<LandingPadInst>(I)) {
    262         MMI.setHasEHFunclets(true);
    263         MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
    264       }
    265       if (isa<CatchSwitchInst>(I)) {
    266         assert(&*BB->begin() == I &&
    267                "WinEHPrepare failed to remove PHIs from imaginary BBs");
    268         continue;
    269       }
    270       if (isa<FuncletPadInst>(I))
    271         assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
    272     }
    273 
    274     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
    275     MBBMap[&*BB] = MBB;
    276     MF->push_back(MBB);
    277 
    278     // Transfer the address-taken flag. This is necessary because there could
    279     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    280     // the first one should be marked.
    281     if (BB->hasAddressTaken())
    282       MBB->setHasAddressTaken();
    283 
    284     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    285     // appropriate.
    286     for (BasicBlock::const_iterator I = BB->begin();
    287          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    288       if (PN->use_empty()) continue;
    289 
    290       // Skip empty types
    291       if (PN->getType()->isEmptyTy())
    292         continue;
    293 
    294       DebugLoc DL = PN->getDebugLoc();
    295       unsigned PHIReg = ValueMap[PN];
    296       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    297 
    298       SmallVector<EVT, 4> ValueVTs;
    299       ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
    300       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    301         EVT VT = ValueVTs[vti];
    302         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
    303         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    304         for (unsigned i = 0; i != NumRegisters; ++i)
    305           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    306         PHIReg += NumRegisters;
    307       }
    308     }
    309   }
    310 
    311   // Mark landing pad blocks.
    312   SmallVector<const LandingPadInst *, 4> LPads;
    313   for (BB = Fn->begin(); BB != EB; ++BB) {
    314     const Instruction *FNP = BB->getFirstNonPHI();
    315     if (BB->isEHPad() && MBBMap.count(&*BB))
    316       MBBMap[&*BB]->setIsEHPad();
    317     if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
    318       LPads.push_back(LPI);
    319   }
    320 
    321   if (!isFuncletEHPersonality(Personality))
    322     return;
    323 
    324   WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
    325 
    326   // Map all BB references in the WinEH data to MBBs.
    327   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
    328     for (WinEHHandlerType &H : TBME.HandlerArray) {
    329       if (H.Handler)
    330         H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
    331     }
    332   }
    333   for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
    334     if (UME.Cleanup)
    335       UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
    336   for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
    337     const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
    338     UME.Handler = MBBMap[BB];
    339   }
    340   for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
    341     const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
    342     CME.Handler = MBBMap[BB];
    343   }
    344 }
    345 
    346 /// clear - Clear out all the function-specific state. This returns this
    347 /// FunctionLoweringInfo to an empty state, ready to be used for a
    348 /// different function.
    349 void FunctionLoweringInfo::clear() {
    350   MBBMap.clear();
    351   ValueMap.clear();
    352   StaticAllocaMap.clear();
    353   LiveOutRegInfo.clear();
    354   VisitedBBs.clear();
    355   ArgDbgValues.clear();
    356   ByValArgFrameIndexMap.clear();
    357   RegFixups.clear();
    358   StatepointStackSlots.clear();
    359   StatepointSpillMaps.clear();
    360   PreferredExtendType.clear();
    361 }
    362 
    363 /// CreateReg - Allocate a single virtual register for the given type.
    364 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
    365   return RegInfo->createVirtualRegister(
    366       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
    367 }
    368 
    369 /// CreateRegs - Allocate the appropriate number of virtual registers of
    370 /// the correctly promoted or expanded types.  Assign these registers
    371 /// consecutive vreg numbers and return the first assigned number.
    372 ///
    373 /// In the case that the given value has struct or array type, this function
    374 /// will assign registers for each member or element.
    375 ///
    376 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    377   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
    378 
    379   SmallVector<EVT, 4> ValueVTs;
    380   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
    381 
    382   unsigned FirstReg = 0;
    383   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    384     EVT ValueVT = ValueVTs[Value];
    385     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
    386 
    387     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    388     for (unsigned i = 0; i != NumRegs; ++i) {
    389       unsigned R = CreateReg(RegisterVT);
    390       if (!FirstReg) FirstReg = R;
    391     }
    392   }
    393   return FirstReg;
    394 }
    395 
    396 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    397 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    398 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    399 /// the larger bit width by zero extension. The bit width must be no smaller
    400 /// than the LiveOutInfo's existing bit width.
    401 const FunctionLoweringInfo::LiveOutInfo *
    402 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    403   if (!LiveOutRegInfo.inBounds(Reg))
    404     return nullptr;
    405 
    406   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    407   if (!LOI->IsValid)
    408     return nullptr;
    409 
    410   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    411     LOI->NumSignBits = 1;
    412     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    413     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    414   }
    415 
    416   return LOI;
    417 }
    418 
    419 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    420 /// register based on the LiveOutInfo of its operands.
    421 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    422   Type *Ty = PN->getType();
    423   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    424     return;
    425 
    426   SmallVector<EVT, 1> ValueVTs;
    427   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
    428   assert(ValueVTs.size() == 1 &&
    429          "PHIs with non-vector integer types should have a single VT.");
    430   EVT IntVT = ValueVTs[0];
    431 
    432   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    433     return;
    434   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
    435   unsigned BitWidth = IntVT.getSizeInBits();
    436 
    437   unsigned DestReg = ValueMap[PN];
    438   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    439     return;
    440   LiveOutRegInfo.grow(DestReg);
    441   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    442 
    443   Value *V = PN->getIncomingValue(0);
    444   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    445     DestLOI.NumSignBits = 1;
    446     APInt Zero(BitWidth, 0);
    447     DestLOI.KnownZero = Zero;
    448     DestLOI.KnownOne = Zero;
    449     return;
    450   }
    451 
    452   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    453     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    454     DestLOI.NumSignBits = Val.getNumSignBits();
    455     DestLOI.KnownZero = ~Val;
    456     DestLOI.KnownOne = Val;
    457   } else {
    458     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    459                                 "CopyToReg node was created.");
    460     unsigned SrcReg = ValueMap[V];
    461     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    462       DestLOI.IsValid = false;
    463       return;
    464     }
    465     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    466     if (!SrcLOI) {
    467       DestLOI.IsValid = false;
    468       return;
    469     }
    470     DestLOI = *SrcLOI;
    471   }
    472 
    473   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    474          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    475          "Masks should have the same bit width as the type.");
    476 
    477   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    478     Value *V = PN->getIncomingValue(i);
    479     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    480       DestLOI.NumSignBits = 1;
    481       APInt Zero(BitWidth, 0);
    482       DestLOI.KnownZero = Zero;
    483       DestLOI.KnownOne = Zero;
    484       return;
    485     }
    486 
    487     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    488       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    489       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    490       DestLOI.KnownZero &= ~Val;
    491       DestLOI.KnownOne &= Val;
    492       continue;
    493     }
    494 
    495     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    496                                 "its CopyToReg node was created.");
    497     unsigned SrcReg = ValueMap[V];
    498     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    499       DestLOI.IsValid = false;
    500       return;
    501     }
    502     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    503     if (!SrcLOI) {
    504       DestLOI.IsValid = false;
    505       return;
    506     }
    507     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    508     DestLOI.KnownZero &= SrcLOI->KnownZero;
    509     DestLOI.KnownOne &= SrcLOI->KnownOne;
    510   }
    511 }
    512 
    513 /// setArgumentFrameIndex - Record frame index for the byval
    514 /// argument. This overrides previous frame index entry for this argument,
    515 /// if any.
    516 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    517                                                  int FI) {
    518   ByValArgFrameIndexMap[A] = FI;
    519 }
    520 
    521 /// getArgumentFrameIndex - Get frame index for the byval argument.
    522 /// If the argument does not have any assigned frame index then 0 is
    523 /// returned.
    524 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    525   DenseMap<const Argument *, int>::iterator I =
    526     ByValArgFrameIndexMap.find(A);
    527   if (I != ByValArgFrameIndexMap.end())
    528     return I->second;
    529   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    530   return 0;
    531 }
    532 
    533 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
    534     const Value *CPI, const TargetRegisterClass *RC) {
    535   MachineRegisterInfo &MRI = MF->getRegInfo();
    536   auto I = CatchPadExceptionPointers.insert({CPI, 0});
    537   unsigned &VReg = I.first->second;
    538   if (I.second)
    539     VReg = MRI.createVirtualRegister(RC);
    540   assert(VReg && "null vreg in exception pointer table!");
    541   return VReg;
    542 }
    543 
    544 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    545 /// being passed to this variadic function, and set the MachineModuleInfo's
    546 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    547 /// reference to _fltused on Windows, which will link in MSVCRT's
    548 /// floating-point support.
    549 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    550                                       MachineModuleInfo *MMI)
    551 {
    552   FunctionType *FT = cast<FunctionType>(
    553     I.getCalledValue()->getType()->getContainedType(0));
    554   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    555     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    556       Type* T = I.getArgOperand(i)->getType();
    557       for (auto i : post_order(T)) {
    558         if (i->isFloatingPointTy()) {
    559           MMI->setUsesVAFloatArgument(true);
    560           return;
    561         }
    562       }
    563     }
    564   }
    565 }
    566 
    567 /// AddLandingPadInfo - Extract the exception handling information from the
    568 /// landingpad instruction and add them to the specified machine module info.
    569 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    570                              MachineBasicBlock *MBB) {
    571   if (const auto *PF = dyn_cast<Function>(
    572       I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
    573     MMI.addPersonality(PF);
    574 
    575   if (I.isCleanup())
    576     MMI.addCleanup(MBB);
    577 
    578   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    579   //        but we need to do it this way because of how the DWARF EH emitter
    580   //        processes the clauses.
    581   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    582     Value *Val = I.getClause(i - 1);
    583     if (I.isCatch(i - 1)) {
    584       MMI.addCatchTypeInfo(MBB,
    585                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
    586     } else {
    587       // Add filters in a list.
    588       Constant *CVal = cast<Constant>(Val);
    589       SmallVector<const GlobalValue*, 4> FilterList;
    590       for (User::op_iterator
    591              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    592         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
    593 
    594       MMI.addFilterTypeInfo(MBB, FilterList);
    595     }
    596   }
    597 }
    598 
    599 unsigned FunctionLoweringInfo::findSwiftErrorVReg(const MachineBasicBlock *MBB,
    600                                                   const Value* Val) const {
    601   // Find the index in SwiftErrorVals.
    602   SwiftErrorValues::const_iterator I =
    603       std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
    604   assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
    605   return SwiftErrorMap.lookup(MBB)[I - SwiftErrorVals.begin()];
    606 }
    607 
    608 void FunctionLoweringInfo::setSwiftErrorVReg(const MachineBasicBlock *MBB,
    609                                              const Value* Val, unsigned VReg) {
    610   // Find the index in SwiftErrorVals.
    611   SwiftErrorValues::iterator I =
    612       std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
    613   assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
    614   SwiftErrorMap[MBB][I - SwiftErrorVals.begin()] = VReg;
    615 }
    616