1 //===--- HexagonSplitDouble.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "hsdr" 11 12 #include "HexagonRegisterInfo.h" 13 #include "HexagonTargetMachine.h" 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineInstrBuilder.h" 18 #include "llvm/CodeGen/MachineLoopInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/Pass.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 26 #include <map> 27 #include <set> 28 #include <vector> 29 30 using namespace llvm; 31 32 namespace llvm { 33 FunctionPass *createHexagonSplitDoubleRegs(); 34 void initializeHexagonSplitDoubleRegsPass(PassRegistry&); 35 } 36 37 namespace { 38 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1), 39 cl::desc("Maximum number of split partitions")); 40 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true), 41 cl::desc("Do not split loads or stores")); 42 43 class HexagonSplitDoubleRegs : public MachineFunctionPass { 44 public: 45 static char ID; 46 HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr), 47 TII(nullptr) { 48 initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry()); 49 } 50 const char *getPassName() const override { 51 return "Hexagon Split Double Registers"; 52 } 53 void getAnalysisUsage(AnalysisUsage &AU) const override { 54 AU.addRequired<MachineLoopInfo>(); 55 AU.addPreserved<MachineLoopInfo>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 bool runOnMachineFunction(MachineFunction &MF) override; 59 60 private: 61 static const TargetRegisterClass *const DoubleRC; 62 63 const HexagonRegisterInfo *TRI; 64 const HexagonInstrInfo *TII; 65 const MachineLoopInfo *MLI; 66 MachineRegisterInfo *MRI; 67 68 typedef std::set<unsigned> USet; 69 typedef std::map<unsigned,USet> UUSetMap; 70 typedef std::pair<unsigned,unsigned> UUPair; 71 typedef std::map<unsigned,UUPair> UUPairMap; 72 typedef std::map<const MachineLoop*,USet> LoopRegMap; 73 74 bool isInduction(unsigned Reg, LoopRegMap &IRM) const; 75 bool isVolatileInstr(const MachineInstr *MI) const; 76 bool isFixedInstr(const MachineInstr *MI) const; 77 void partitionRegisters(UUSetMap &P2Rs); 78 int32_t profit(const MachineInstr *MI) const; 79 bool isProfitable(const USet &Part, LoopRegMap &IRM) const; 80 81 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs); 82 void collectIndRegs(LoopRegMap &IRM); 83 84 void createHalfInstr(unsigned Opc, MachineInstr *MI, 85 const UUPairMap &PairMap, unsigned SubR); 86 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap); 87 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap); 88 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap); 89 void splitExt(MachineInstr *MI, const UUPairMap &PairMap); 90 void splitShift(MachineInstr *MI, const UUPairMap &PairMap); 91 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap); 92 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap); 93 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap); 94 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap); 95 bool splitPartition(const USet &Part); 96 97 static int Counter; 98 static void dump_partition(raw_ostream&, const USet&, 99 const TargetRegisterInfo&); 100 }; 101 char HexagonSplitDoubleRegs::ID; 102 int HexagonSplitDoubleRegs::Counter = 0; 103 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC 104 = &Hexagon::DoubleRegsRegClass; 105 } 106 107 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double", 108 "Hexagon Split Double Registers", false, false) 109 110 111 void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os, 112 const USet &Part, const TargetRegisterInfo &TRI) { 113 dbgs() << '{'; 114 for (auto I : Part) 115 dbgs() << ' ' << PrintReg(I, &TRI); 116 dbgs() << " }"; 117 } 118 119 120 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const { 121 for (auto I : IRM) { 122 const USet &Rs = I.second; 123 if (Rs.find(Reg) != Rs.end()) 124 return true; 125 } 126 return false; 127 } 128 129 130 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const { 131 for (auto &I : MI->memoperands()) 132 if (I->isVolatile()) 133 return true; 134 return false; 135 } 136 137 138 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const { 139 if (MI->mayLoad() || MI->mayStore()) 140 if (MemRefsFixed || isVolatileInstr(MI)) 141 return true; 142 if (MI->isDebugValue()) 143 return false; 144 145 unsigned Opc = MI->getOpcode(); 146 switch (Opc) { 147 default: 148 return true; 149 150 case TargetOpcode::PHI: 151 case TargetOpcode::COPY: 152 break; 153 154 case Hexagon::L2_loadrd_io: 155 // Not handling stack stores (only reg-based addresses). 156 if (MI->getOperand(1).isReg()) 157 break; 158 return true; 159 case Hexagon::S2_storerd_io: 160 // Not handling stack stores (only reg-based addresses). 161 if (MI->getOperand(0).isReg()) 162 break; 163 return true; 164 case Hexagon::L2_loadrd_pi: 165 case Hexagon::S2_storerd_pi: 166 167 case Hexagon::A2_tfrpi: 168 case Hexagon::A2_combineii: 169 case Hexagon::A4_combineir: 170 case Hexagon::A4_combineii: 171 case Hexagon::A4_combineri: 172 case Hexagon::A2_combinew: 173 case Hexagon::CONST64_Int_Real: 174 175 case Hexagon::A2_sxtw: 176 177 case Hexagon::A2_andp: 178 case Hexagon::A2_orp: 179 case Hexagon::A2_xorp: 180 case Hexagon::S2_asl_i_p_or: 181 case Hexagon::S2_asl_i_p: 182 case Hexagon::S2_asr_i_p: 183 case Hexagon::S2_lsr_i_p: 184 break; 185 } 186 187 for (auto &Op : MI->operands()) { 188 if (!Op.isReg()) 189 continue; 190 unsigned R = Op.getReg(); 191 if (!TargetRegisterInfo::isVirtualRegister(R)) 192 return true; 193 } 194 return false; 195 } 196 197 198 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) { 199 typedef std::map<unsigned,unsigned> UUMap; 200 typedef std::vector<unsigned> UVect; 201 202 unsigned NumRegs = MRI->getNumVirtRegs(); 203 BitVector DoubleRegs(NumRegs); 204 for (unsigned i = 0; i < NumRegs; ++i) { 205 unsigned R = TargetRegisterInfo::index2VirtReg(i); 206 if (MRI->getRegClass(R) == DoubleRC) 207 DoubleRegs.set(i); 208 } 209 210 BitVector FixedRegs(NumRegs); 211 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 212 unsigned R = TargetRegisterInfo::index2VirtReg(x); 213 MachineInstr *DefI = MRI->getVRegDef(R); 214 // In some cases a register may exist, but never be defined or used. 215 // It should never appear anywhere, but mark it as "fixed", just to be 216 // safe. 217 if (!DefI || isFixedInstr(DefI)) 218 FixedRegs.set(x); 219 } 220 221 UUSetMap AssocMap; 222 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 223 if (FixedRegs[x]) 224 continue; 225 unsigned R = TargetRegisterInfo::index2VirtReg(x); 226 DEBUG(dbgs() << PrintReg(R, TRI) << " ~~"); 227 USet &Asc = AssocMap[R]; 228 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end(); 229 U != Z; ++U) { 230 MachineOperand &Op = *U; 231 MachineInstr *UseI = Op.getParent(); 232 if (isFixedInstr(UseI)) 233 continue; 234 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) { 235 MachineOperand &MO = UseI->getOperand(i); 236 // Skip non-registers or registers with subregisters. 237 if (&MO == &Op || !MO.isReg() || MO.getSubReg()) 238 continue; 239 unsigned T = MO.getReg(); 240 if (!TargetRegisterInfo::isVirtualRegister(T)) { 241 FixedRegs.set(x); 242 continue; 243 } 244 if (MRI->getRegClass(T) != DoubleRC) 245 continue; 246 unsigned u = TargetRegisterInfo::virtReg2Index(T); 247 if (FixedRegs[u]) 248 continue; 249 DEBUG(dbgs() << ' ' << PrintReg(T, TRI)); 250 Asc.insert(T); 251 // Make it symmetric. 252 AssocMap[T].insert(R); 253 } 254 } 255 DEBUG(dbgs() << '\n'); 256 } 257 258 UUMap R2P; 259 unsigned NextP = 1; 260 USet Visited; 261 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 262 unsigned R = TargetRegisterInfo::index2VirtReg(x); 263 if (Visited.count(R)) 264 continue; 265 // Create a new partition for R. 266 unsigned ThisP = FixedRegs[x] ? 0 : NextP++; 267 UVect WorkQ; 268 WorkQ.push_back(R); 269 for (unsigned i = 0; i < WorkQ.size(); ++i) { 270 unsigned T = WorkQ[i]; 271 if (Visited.count(T)) 272 continue; 273 R2P[T] = ThisP; 274 Visited.insert(T); 275 // Add all registers associated with T. 276 USet &Asc = AssocMap[T]; 277 for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J) 278 WorkQ.push_back(*J); 279 } 280 } 281 282 for (auto I : R2P) 283 P2Rs[I.second].insert(I.first); 284 } 285 286 287 static inline int32_t profitImm(unsigned Lo, unsigned Hi) { 288 int32_t P = 0; 289 bool LoZ1 = false, HiZ1 = false; 290 if (Lo == 0 || Lo == 0xFFFFFFFF) 291 P += 10, LoZ1 = true; 292 if (Hi == 0 || Hi == 0xFFFFFFFF) 293 P += 10, HiZ1 = true; 294 if (!LoZ1 && !HiZ1 && Lo == Hi) 295 P += 3; 296 return P; 297 } 298 299 300 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const { 301 unsigned ImmX = 0; 302 unsigned Opc = MI->getOpcode(); 303 switch (Opc) { 304 case TargetOpcode::PHI: 305 for (const auto &Op : MI->operands()) 306 if (!Op.getSubReg()) 307 return 0; 308 return 10; 309 case TargetOpcode::COPY: 310 if (MI->getOperand(1).getSubReg() != 0) 311 return 10; 312 return 0; 313 314 case Hexagon::L2_loadrd_io: 315 case Hexagon::S2_storerd_io: 316 return -1; 317 case Hexagon::L2_loadrd_pi: 318 case Hexagon::S2_storerd_pi: 319 return 2; 320 321 case Hexagon::A2_tfrpi: 322 case Hexagon::CONST64_Int_Real: { 323 uint64_t D = MI->getOperand(1).getImm(); 324 unsigned Lo = D & 0xFFFFFFFFULL; 325 unsigned Hi = D >> 32; 326 return profitImm(Lo, Hi); 327 } 328 case Hexagon::A2_combineii: 329 case Hexagon::A4_combineii: 330 return profitImm(MI->getOperand(1).getImm(), 331 MI->getOperand(2).getImm()); 332 case Hexagon::A4_combineri: 333 ImmX++; 334 case Hexagon::A4_combineir: { 335 ImmX++; 336 int64_t V = MI->getOperand(ImmX).getImm(); 337 if (V == 0 || V == -1) 338 return 10; 339 // Fall through into A2_combinew. 340 } 341 case Hexagon::A2_combinew: 342 return 2; 343 344 case Hexagon::A2_sxtw: 345 return 3; 346 347 case Hexagon::A2_andp: 348 case Hexagon::A2_orp: 349 case Hexagon::A2_xorp: 350 return 1; 351 352 case Hexagon::S2_asl_i_p_or: { 353 unsigned S = MI->getOperand(3).getImm(); 354 if (S == 0 || S == 32) 355 return 10; 356 return -1; 357 } 358 case Hexagon::S2_asl_i_p: 359 case Hexagon::S2_asr_i_p: 360 case Hexagon::S2_lsr_i_p: 361 unsigned S = MI->getOperand(2).getImm(); 362 if (S == 0 || S == 32) 363 return 10; 364 if (S == 16) 365 return 5; 366 if (S == 48) 367 return 7; 368 return -10; 369 } 370 371 return 0; 372 } 373 374 375 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM) 376 const { 377 unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0; 378 int32_t TotalP = 0; 379 380 for (unsigned DR : Part) { 381 MachineInstr *DefI = MRI->getVRegDef(DR); 382 int32_t P = profit(DefI); 383 if (P == INT_MIN) 384 return false; 385 TotalP += P; 386 // Reduce the profitability of splitting induction registers. 387 if (isInduction(DR, IRM)) 388 TotalP -= 30; 389 390 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 391 U != W; ++U) { 392 MachineInstr *UseI = U->getParent(); 393 if (isFixedInstr(UseI)) { 394 FixedNum++; 395 // Calculate the cost of generating REG_SEQUENCE instructions. 396 for (auto &Op : UseI->operands()) { 397 if (Op.isReg() && Part.count(Op.getReg())) 398 if (Op.getSubReg()) 399 TotalP -= 2; 400 } 401 continue; 402 } 403 // If a register from this partition is used in a fixed instruction, 404 // and there is also a register in this partition that is used in 405 // a loop phi node, then decrease the splitting profit as this can 406 // confuse the modulo scheduler. 407 if (UseI->isPHI()) { 408 const MachineBasicBlock *PB = UseI->getParent(); 409 const MachineLoop *L = MLI->getLoopFor(PB); 410 if (L && L->getHeader() == PB) 411 LoopPhiNum++; 412 } 413 // Splittable instruction. 414 SplitNum++; 415 int32_t P = profit(UseI); 416 if (P == INT_MIN) 417 return false; 418 TotalP += P; 419 } 420 } 421 422 if (FixedNum > 0 && LoopPhiNum > 0) 423 TotalP -= 20*LoopPhiNum; 424 425 DEBUG(dbgs() << "Partition profit: " << TotalP << '\n'); 426 return TotalP > 0; 427 } 428 429 430 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L, 431 USet &Rs) { 432 const MachineBasicBlock *HB = L->getHeader(); 433 const MachineBasicBlock *LB = L->getLoopLatch(); 434 if (!HB || !LB) 435 return; 436 437 // Examine the latch branch. Expect it to be a conditional branch to 438 // the header (either "br-cond header" or "br-cond exit; br header"). 439 MachineBasicBlock *TB = 0, *FB = 0; 440 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB); 441 SmallVector<MachineOperand,2> Cond; 442 bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false); 443 // Only analyzable conditional branches. HII::AnalyzeBranch will put 444 // the branch opcode as the first element of Cond, and the predicate 445 // operand as the second. 446 if (BadLB || Cond.size() != 2) 447 return; 448 // Only simple jump-conditional (with or without negation). 449 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm())) 450 return; 451 // Must go to the header. 452 if (TB != HB && FB != HB) 453 return; 454 assert(Cond[1].isReg() && "Unexpected Cond vector from AnalyzeBranch"); 455 // Expect a predicate register. 456 unsigned PR = Cond[1].getReg(); 457 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass); 458 459 // Get the registers on which the loop controlling compare instruction 460 // depends. 461 unsigned CmpR1 = 0, CmpR2 = 0; 462 const MachineInstr *CmpI = MRI->getVRegDef(PR); 463 while (CmpI->getOpcode() == Hexagon::C2_not) 464 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg()); 465 466 int Mask = 0, Val = 0; 467 bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val); 468 if (!OkCI) 469 return; 470 // Eliminate non-double input registers. 471 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC) 472 CmpR1 = 0; 473 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC) 474 CmpR2 = 0; 475 if (!CmpR1 && !CmpR2) 476 return; 477 478 // Now examine the top of the loop: the phi nodes that could poten- 479 // tially define loop induction registers. The registers defined by 480 // such a phi node would be used in a 64-bit add, which then would 481 // be used in the loop compare instruction. 482 483 // Get the set of all double registers defined by phi nodes in the 484 // loop header. 485 typedef std::vector<unsigned> UVect; 486 UVect DP; 487 for (auto &MI : *HB) { 488 if (!MI.isPHI()) 489 break; 490 const MachineOperand &MD = MI.getOperand(0); 491 unsigned R = MD.getReg(); 492 if (MRI->getRegClass(R) == DoubleRC) 493 DP.push_back(R); 494 } 495 if (DP.empty()) 496 return; 497 498 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool { 499 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end(); 500 I != E; ++I) { 501 const MachineInstr *UseI = I->getParent(); 502 if (UseI->getOpcode() != Hexagon::A2_addp) 503 continue; 504 // Get the output from the add. If it is one of the inputs to the 505 // loop-controlling compare instruction, then R is likely an induc- 506 // tion register. 507 unsigned T = UseI->getOperand(0).getReg(); 508 if (T == CmpR1 || T == CmpR2) 509 return false; 510 } 511 return true; 512 }; 513 UVect::iterator End = std::remove_if(DP.begin(), DP.end(), NoIndOp); 514 Rs.insert(DP.begin(), End); 515 Rs.insert(CmpR1); 516 Rs.insert(CmpR2); 517 518 DEBUG({ 519 dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: "; 520 dump_partition(dbgs(), Rs, *TRI); 521 dbgs() << '\n'; 522 }); 523 } 524 525 526 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) { 527 typedef std::vector<MachineLoop*> LoopVector; 528 LoopVector WorkQ; 529 530 for (auto I : *MLI) 531 WorkQ.push_back(I); 532 for (unsigned i = 0; i < WorkQ.size(); ++i) { 533 for (auto I : *WorkQ[i]) 534 WorkQ.push_back(I); 535 } 536 537 USet Rs; 538 for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) { 539 MachineLoop *L = WorkQ[i]; 540 Rs.clear(); 541 collectIndRegsForLoop(L, Rs); 542 if (!Rs.empty()) 543 IRM.insert(std::make_pair(L, Rs)); 544 } 545 } 546 547 548 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI, 549 const UUPairMap &PairMap, unsigned SubR) { 550 MachineBasicBlock &B = *MI->getParent(); 551 DebugLoc DL = MI->getDebugLoc(); 552 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc)); 553 554 for (auto &Op : MI->operands()) { 555 if (!Op.isReg()) { 556 NewI->addOperand(Op); 557 continue; 558 } 559 // For register operands, set the subregister. 560 unsigned R = Op.getReg(); 561 unsigned SR = Op.getSubReg(); 562 bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R); 563 bool isKill = Op.isKill(); 564 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) { 565 isKill = false; 566 UUPairMap::const_iterator F = PairMap.find(R); 567 if (F == PairMap.end()) { 568 SR = SubR; 569 } else { 570 const UUPair &P = F->second; 571 R = (SubR == Hexagon::subreg_loreg) ? P.first : P.second; 572 SR = 0; 573 } 574 } 575 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill, 576 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(), 577 Op.isInternalRead()); 578 NewI->addOperand(CO); 579 } 580 } 581 582 583 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI, 584 const UUPairMap &PairMap) { 585 bool Load = MI->mayLoad(); 586 unsigned OrigOpc = MI->getOpcode(); 587 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi || 588 OrigOpc == Hexagon::S2_storerd_pi); 589 MachineInstr *LowI, *HighI; 590 MachineBasicBlock &B = *MI->getParent(); 591 DebugLoc DL = MI->getDebugLoc(); 592 593 // Index of the base-address-register operand. 594 unsigned AdrX = PostInc ? (Load ? 2 : 1) 595 : (Load ? 1 : 0); 596 MachineOperand &AdrOp = MI->getOperand(AdrX); 597 unsigned RSA = getRegState(AdrOp); 598 MachineOperand &ValOp = Load ? MI->getOperand(0) 599 : (PostInc ? MI->getOperand(3) 600 : MI->getOperand(2)); 601 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg()); 602 assert(F != PairMap.end()); 603 604 if (Load) { 605 const UUPair &P = F->second; 606 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm(); 607 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first) 608 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 609 .addImm(Off); 610 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second) 611 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 612 .addImm(Off+4); 613 } else { 614 const UUPair &P = F->second; 615 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm(); 616 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) 617 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 618 .addImm(Off) 619 .addReg(P.first); 620 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) 621 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 622 .addImm(Off+4) 623 .addReg(P.second); 624 } 625 626 if (PostInc) { 627 // Create the increment of the address register. 628 int64_t Inc = Load ? MI->getOperand(3).getImm() 629 : MI->getOperand(2).getImm(); 630 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0); 631 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg()); 632 unsigned NewR = MRI->createVirtualRegister(RC); 633 assert(!UpdOp.getSubReg() && "Def operand with subreg"); 634 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR) 635 .addReg(AdrOp.getReg(), RSA) 636 .addImm(Inc); 637 MRI->replaceRegWith(UpdOp.getReg(), NewR); 638 // The original instruction will be deleted later. 639 } 640 641 // Generate a new pair of memory-operands. 642 MachineFunction &MF = *B.getParent(); 643 for (auto &MO : MI->memoperands()) { 644 const MachinePointerInfo &Ptr = MO->getPointerInfo(); 645 unsigned F = MO->getFlags(); 646 int A = MO->getAlignment(); 647 648 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A); 649 LowI->addMemOperand(MF, Tmp1); 650 auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4)); 651 HighI->addMemOperand(MF, Tmp2); 652 } 653 } 654 655 656 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI, 657 const UUPairMap &PairMap) { 658 MachineOperand &Op0 = MI->getOperand(0); 659 MachineOperand &Op1 = MI->getOperand(1); 660 assert(Op0.isReg() && Op1.isImm()); 661 uint64_t V = Op1.getImm(); 662 663 MachineBasicBlock &B = *MI->getParent(); 664 DebugLoc DL = MI->getDebugLoc(); 665 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 666 assert(F != PairMap.end()); 667 const UUPair &P = F->second; 668 669 // The operand to A2_tfrsi can only have 32 significant bits. Immediate 670 // values in MachineOperand are stored as 64-bit integers, and so the 671 // value -1 may be represented either as 64-bit -1, or 4294967295. Both 672 // will have the 32 higher bits truncated in the end, but -1 will remain 673 // as -1, while the latter may appear to be a large unsigned value 674 // requiring a constant extender. The casting to int32_t will select the 675 // former representation. (The same reasoning applies to all 32-bit 676 // values.) 677 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) 678 .addImm(int32_t(V & 0xFFFFFFFFULL)); 679 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) 680 .addImm(int32_t(V >> 32)); 681 } 682 683 684 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI, 685 const UUPairMap &PairMap) { 686 MachineOperand &Op0 = MI->getOperand(0); 687 MachineOperand &Op1 = MI->getOperand(1); 688 MachineOperand &Op2 = MI->getOperand(2); 689 assert(Op0.isReg()); 690 691 MachineBasicBlock &B = *MI->getParent(); 692 DebugLoc DL = MI->getDebugLoc(); 693 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 694 assert(F != PairMap.end()); 695 const UUPair &P = F->second; 696 697 if (Op1.isImm()) { 698 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) 699 .addImm(Op1.getImm()); 700 } else if (Op1.isReg()) { 701 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second) 702 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg()); 703 } else 704 llvm_unreachable("Unexpected operand"); 705 706 if (Op2.isImm()) { 707 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) 708 .addImm(Op2.getImm()); 709 } else if (Op2.isReg()) { 710 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) 711 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg()); 712 } else 713 llvm_unreachable("Unexpected operand"); 714 } 715 716 717 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI, 718 const UUPairMap &PairMap) { 719 MachineOperand &Op0 = MI->getOperand(0); 720 MachineOperand &Op1 = MI->getOperand(1); 721 assert(Op0.isReg() && Op1.isReg()); 722 723 MachineBasicBlock &B = *MI->getParent(); 724 DebugLoc DL = MI->getDebugLoc(); 725 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 726 assert(F != PairMap.end()); 727 const UUPair &P = F->second; 728 unsigned RS = getRegState(Op1); 729 730 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) 731 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg()); 732 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second) 733 .addReg(Op1.getReg(), RS, Op1.getSubReg()) 734 .addImm(31); 735 } 736 737 738 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI, 739 const UUPairMap &PairMap) { 740 MachineOperand &Op0 = MI->getOperand(0); 741 MachineOperand &Op1 = MI->getOperand(1); 742 MachineOperand &Op2 = MI->getOperand(2); 743 assert(Op0.isReg() && Op1.isReg() && Op2.isImm()); 744 int64_t Sh64 = Op2.getImm(); 745 assert(Sh64 >= 0 && Sh64 < 64); 746 unsigned S = Sh64; 747 748 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 749 assert(F != PairMap.end()); 750 const UUPair &P = F->second; 751 unsigned LoR = P.first; 752 unsigned HiR = P.second; 753 using namespace Hexagon; 754 755 unsigned Opc = MI->getOpcode(); 756 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p); 757 bool Left = !Right; 758 bool Signed = (Opc == S2_asr_i_p); 759 760 MachineBasicBlock &B = *MI->getParent(); 761 DebugLoc DL = MI->getDebugLoc(); 762 unsigned RS = getRegState(Op1); 763 unsigned ShiftOpc = Left ? S2_asl_i_r 764 : (Signed ? S2_asr_i_r : S2_lsr_i_r); 765 unsigned LoSR = subreg_loreg; 766 unsigned HiSR = subreg_hireg; 767 768 if (S == 0) { 769 // No shift, subregister copy. 770 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 771 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 772 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR) 773 .addReg(Op1.getReg(), RS, HiSR); 774 } else if (S < 32) { 775 const TargetRegisterClass *IntRC = &IntRegsRegClass; 776 unsigned TmpR = MRI->createVirtualRegister(IntRC); 777 // Expansion: 778 // Shift left: DR = shl R, #s 779 // LoR = shl R.lo, #s 780 // TmpR = extractu R.lo, #s, #32-s 781 // HiR = or (TmpR, asl(R.hi, #s)) 782 // Shift right: DR = shr R, #s 783 // HiR = shr R.hi, #s 784 // TmpR = shr R.lo, #s 785 // LoR = insert TmpR, R.hi, #s, #32-s 786 787 // Shift left: 788 // LoR = shl R.lo, #s 789 // Shift right: 790 // TmpR = shr R.lo, #s 791 792 // Make a special case for A2_aslh and A2_asrh (they are predicable as 793 // opposed to S2_asl_i_r/S2_asr_i_r). 794 if (S == 16 && Left) 795 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR) 796 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 797 else if (S == 16 && Signed) 798 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR) 799 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 800 else 801 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR)) 802 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) 803 .addImm(S); 804 805 if (Left) { 806 // TmpR = extractu R.lo, #s, #32-s 807 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR) 808 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) 809 .addImm(S) 810 .addImm(32-S); 811 // HiR = or (TmpR, asl(R.hi, #s)) 812 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 813 .addReg(TmpR) 814 .addReg(Op1.getReg(), RS, HiSR) 815 .addImm(S); 816 } else { 817 // HiR = shr R.hi, #s 818 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR) 819 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR) 820 .addImm(S); 821 // LoR = insert TmpR, R.hi, #s, #32-s 822 BuildMI(B, MI, DL, TII->get(S2_insert), LoR) 823 .addReg(TmpR) 824 .addReg(Op1.getReg(), RS, HiSR) 825 .addImm(S) 826 .addImm(32-S); 827 } 828 } else if (S == 32) { 829 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR)) 830 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)); 831 if (!Signed) 832 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) 833 .addImm(0); 834 else // Must be right shift. 835 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) 836 .addReg(Op1.getReg(), RS, HiSR) 837 .addImm(31); 838 } else if (S < 64) { 839 S -= 32; 840 if (S == 16 && Left) 841 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR) 842 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 843 else if (S == 16 && Signed) 844 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR) 845 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR); 846 else 847 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR)) 848 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)) 849 .addImm(S); 850 851 if (Signed) 852 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) 853 .addReg(Op1.getReg(), RS, HiSR) 854 .addImm(31); 855 else 856 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) 857 .addImm(0); 858 } 859 } 860 861 862 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI, 863 const UUPairMap &PairMap) { 864 MachineOperand &Op0 = MI->getOperand(0); 865 MachineOperand &Op1 = MI->getOperand(1); 866 MachineOperand &Op2 = MI->getOperand(2); 867 MachineOperand &Op3 = MI->getOperand(3); 868 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm()); 869 int64_t Sh64 = Op3.getImm(); 870 assert(Sh64 >= 0 && Sh64 < 64); 871 unsigned S = Sh64; 872 873 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 874 assert(F != PairMap.end()); 875 const UUPair &P = F->second; 876 unsigned LoR = P.first; 877 unsigned HiR = P.second; 878 using namespace Hexagon; 879 880 MachineBasicBlock &B = *MI->getParent(); 881 DebugLoc DL = MI->getDebugLoc(); 882 unsigned RS1 = getRegState(Op1); 883 unsigned RS2 = getRegState(Op2); 884 const TargetRegisterClass *IntRC = &IntRegsRegClass; 885 886 unsigned LoSR = subreg_loreg; 887 unsigned HiSR = subreg_hireg; 888 889 // Op0 = S2_asl_i_p_or Op1, Op2, Op3 890 // means: Op0 = or (Op1, asl(Op2, Op3)) 891 892 // Expansion of 893 // DR = or (R1, asl(R2, #s)) 894 // 895 // LoR = or (R1.lo, asl(R2.lo, #s)) 896 // Tmp1 = extractu R2.lo, #s, #32-s 897 // Tmp2 = or R1.hi, Tmp1 898 // HiR = or (Tmp2, asl(R2.hi, #s)) 899 900 if (S == 0) { 901 // DR = or (R1, asl(R2, #0)) 902 // -> or (R1, R2) 903 // i.e. LoR = or R1.lo, R2.lo 904 // HiR = or R1.hi, R2.hi 905 BuildMI(B, MI, DL, TII->get(A2_or), LoR) 906 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) 907 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR); 908 BuildMI(B, MI, DL, TII->get(A2_or), HiR) 909 .addReg(Op1.getReg(), RS1, HiSR) 910 .addReg(Op2.getReg(), RS2, HiSR); 911 } else if (S < 32) { 912 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR) 913 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) 914 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) 915 .addImm(S); 916 unsigned TmpR1 = MRI->createVirtualRegister(IntRC); 917 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1) 918 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) 919 .addImm(S) 920 .addImm(32-S); 921 unsigned TmpR2 = MRI->createVirtualRegister(IntRC); 922 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2) 923 .addReg(Op1.getReg(), RS1, HiSR) 924 .addReg(TmpR1); 925 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 926 .addReg(TmpR2) 927 .addReg(Op2.getReg(), RS2, HiSR) 928 .addImm(S); 929 } else if (S == 32) { 930 // DR = or (R1, asl(R2, #32)) 931 // -> or R1, R2.lo 932 // LoR = R1.lo 933 // HiR = or R1.hi, R2.lo 934 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 935 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); 936 BuildMI(B, MI, DL, TII->get(A2_or), HiR) 937 .addReg(Op1.getReg(), RS1, HiSR) 938 .addReg(Op2.getReg(), RS2, LoSR); 939 } else if (S < 64) { 940 // DR = or (R1, asl(R2, #s)) 941 // 942 // LoR = R1:lo 943 // HiR = or (R1:hi, asl(R2:lo, #s-32)) 944 S -= 32; 945 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 946 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); 947 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 948 .addReg(Op1.getReg(), RS1, HiSR) 949 .addReg(Op2.getReg(), RS2, LoSR) 950 .addImm(S); 951 } 952 } 953 954 955 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI, 956 const UUPairMap &PairMap) { 957 DEBUG(dbgs() << "Splitting: " << *MI); 958 bool Split = false; 959 unsigned Opc = MI->getOpcode(); 960 using namespace Hexagon; 961 962 switch (Opc) { 963 case TargetOpcode::PHI: 964 case TargetOpcode::COPY: { 965 unsigned DstR = MI->getOperand(0).getReg(); 966 if (MRI->getRegClass(DstR) == DoubleRC) { 967 createHalfInstr(Opc, MI, PairMap, subreg_loreg); 968 createHalfInstr(Opc, MI, PairMap, subreg_hireg); 969 Split = true; 970 } 971 break; 972 } 973 case A2_andp: 974 createHalfInstr(A2_and, MI, PairMap, subreg_loreg); 975 createHalfInstr(A2_and, MI, PairMap, subreg_hireg); 976 Split = true; 977 break; 978 case A2_orp: 979 createHalfInstr(A2_or, MI, PairMap, subreg_loreg); 980 createHalfInstr(A2_or, MI, PairMap, subreg_hireg); 981 Split = true; 982 break; 983 case A2_xorp: 984 createHalfInstr(A2_xor, MI, PairMap, subreg_loreg); 985 createHalfInstr(A2_xor, MI, PairMap, subreg_hireg); 986 Split = true; 987 break; 988 989 case L2_loadrd_io: 990 case L2_loadrd_pi: 991 case S2_storerd_io: 992 case S2_storerd_pi: 993 splitMemRef(MI, PairMap); 994 Split = true; 995 break; 996 997 case A2_tfrpi: 998 case CONST64_Int_Real: 999 splitImmediate(MI, PairMap); 1000 Split = true; 1001 break; 1002 1003 case A2_combineii: 1004 case A4_combineir: 1005 case A4_combineii: 1006 case A4_combineri: 1007 case A2_combinew: 1008 splitCombine(MI, PairMap); 1009 Split = true; 1010 break; 1011 1012 case A2_sxtw: 1013 splitExt(MI, PairMap); 1014 Split = true; 1015 break; 1016 1017 case S2_asl_i_p: 1018 case S2_asr_i_p: 1019 case S2_lsr_i_p: 1020 splitShift(MI, PairMap); 1021 Split = true; 1022 break; 1023 1024 case S2_asl_i_p_or: 1025 splitAslOr(MI, PairMap); 1026 Split = true; 1027 break; 1028 1029 default: 1030 llvm_unreachable("Instruction not splitable"); 1031 return false; 1032 } 1033 1034 return Split; 1035 } 1036 1037 1038 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI, 1039 const UUPairMap &PairMap) { 1040 for (auto &Op : MI->operands()) { 1041 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg()) 1042 continue; 1043 unsigned R = Op.getReg(); 1044 UUPairMap::const_iterator F = PairMap.find(R); 1045 if (F == PairMap.end()) 1046 continue; 1047 const UUPair &P = F->second; 1048 switch (Op.getSubReg()) { 1049 case Hexagon::subreg_loreg: 1050 Op.setReg(P.first); 1051 break; 1052 case Hexagon::subreg_hireg: 1053 Op.setReg(P.second); 1054 break; 1055 } 1056 Op.setSubReg(0); 1057 } 1058 } 1059 1060 1061 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI, 1062 const UUPairMap &PairMap) { 1063 MachineBasicBlock &B = *MI->getParent(); 1064 DebugLoc DL = MI->getDebugLoc(); 1065 1066 for (auto &Op : MI->operands()) { 1067 if (!Op.isReg() || !Op.isUse()) 1068 continue; 1069 unsigned R = Op.getReg(); 1070 if (!TargetRegisterInfo::isVirtualRegister(R)) 1071 continue; 1072 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg()) 1073 continue; 1074 UUPairMap::const_iterator F = PairMap.find(R); 1075 if (F == PairMap.end()) 1076 continue; 1077 const UUPair &Pr = F->second; 1078 unsigned NewDR = MRI->createVirtualRegister(DoubleRC); 1079 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR) 1080 .addReg(Pr.first) 1081 .addImm(Hexagon::subreg_loreg) 1082 .addReg(Pr.second) 1083 .addImm(Hexagon::subreg_hireg); 1084 Op.setReg(NewDR); 1085 } 1086 } 1087 1088 1089 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) { 1090 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 1091 typedef std::set<MachineInstr*> MISet; 1092 bool Changed = false; 1093 1094 DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI); 1095 dbgs() << '\n'); 1096 1097 UUPairMap PairMap; 1098 1099 MISet SplitIns; 1100 for (unsigned DR : Part) { 1101 MachineInstr *DefI = MRI->getVRegDef(DR); 1102 SplitIns.insert(DefI); 1103 1104 // Collect all instructions, including fixed ones. We won't split them, 1105 // but we need to visit them again to insert the REG_SEQUENCE instructions. 1106 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 1107 U != W; ++U) 1108 SplitIns.insert(U->getParent()); 1109 1110 unsigned LoR = MRI->createVirtualRegister(IntRC); 1111 unsigned HiR = MRI->createVirtualRegister(IntRC); 1112 DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> " 1113 << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n'); 1114 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR))); 1115 } 1116 1117 MISet Erase; 1118 for (auto MI : SplitIns) { 1119 if (isFixedInstr(MI)) { 1120 collapseRegPairs(MI, PairMap); 1121 } else { 1122 bool Done = splitInstr(MI, PairMap); 1123 if (Done) 1124 Erase.insert(MI); 1125 Changed |= Done; 1126 } 1127 } 1128 1129 for (unsigned DR : Part) { 1130 // Before erasing "double" instructions, revisit all uses of the double 1131 // registers in this partition, and replace all uses of them with subre- 1132 // gisters, with the corresponding single registers. 1133 MISet Uses; 1134 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 1135 U != W; ++U) 1136 Uses.insert(U->getParent()); 1137 for (auto M : Uses) 1138 replaceSubregUses(M, PairMap); 1139 } 1140 1141 for (auto MI : Erase) { 1142 MachineBasicBlock *B = MI->getParent(); 1143 B->erase(MI); 1144 } 1145 1146 return Changed; 1147 } 1148 1149 1150 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) { 1151 DEBUG(dbgs() << "Splitting double registers in function: " 1152 << MF.getName() << '\n'); 1153 1154 if (skipFunction(*MF.getFunction())) 1155 return false; 1156 1157 auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1158 TRI = ST.getRegisterInfo(); 1159 TII = ST.getInstrInfo(); 1160 MRI = &MF.getRegInfo(); 1161 MLI = &getAnalysis<MachineLoopInfo>(); 1162 1163 UUSetMap P2Rs; 1164 LoopRegMap IRM; 1165 1166 collectIndRegs(IRM); 1167 partitionRegisters(P2Rs); 1168 1169 DEBUG({ 1170 dbgs() << "Register partitioning: (partition #0 is fixed)\n"; 1171 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { 1172 dbgs() << '#' << I->first << " -> "; 1173 dump_partition(dbgs(), I->second, *TRI); 1174 dbgs() << '\n'; 1175 } 1176 }); 1177 1178 bool Changed = false; 1179 int Limit = MaxHSDR; 1180 1181 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { 1182 if (I->first == 0) 1183 continue; 1184 if (Limit >= 0 && Counter >= Limit) 1185 break; 1186 USet &Part = I->second; 1187 DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n'); 1188 if (!isProfitable(Part, IRM)) 1189 continue; 1190 Counter++; 1191 Changed |= splitPartition(Part); 1192 } 1193 1194 return Changed; 1195 } 1196 1197 FunctionPass *llvm::createHexagonSplitDoubleRegs() { 1198 return new HexagonSplitDoubleRegs(); 1199 } 1200