1 //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMTargetTransformInfo.h" 11 #include "llvm/Support/Debug.h" 12 #include "llvm/Target/CostTable.h" 13 #include "llvm/Target/TargetLowering.h" 14 using namespace llvm; 15 16 #define DEBUG_TYPE "armtti" 17 18 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 19 assert(Ty->isIntegerTy()); 20 21 unsigned Bits = Ty->getPrimitiveSizeInBits(); 22 if (Bits == 0 || Imm.getActiveBits() >= 64) 23 return 4; 24 25 int64_t SImmVal = Imm.getSExtValue(); 26 uint64_t ZImmVal = Imm.getZExtValue(); 27 if (!ST->isThumb()) { 28 if ((SImmVal >= 0 && SImmVal < 65536) || 29 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 30 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 31 return 1; 32 return ST->hasV6T2Ops() ? 2 : 3; 33 } 34 if (ST->isThumb2()) { 35 if ((SImmVal >= 0 && SImmVal < 65536) || 36 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 37 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 38 return 1; 39 return ST->hasV6T2Ops() ? 2 : 3; 40 } 41 // Thumb1. 42 if (SImmVal >= 0 && SImmVal < 256) 43 return 1; 44 if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 45 return 2; 46 // Load from constantpool. 47 return 3; 48 } 49 50 51 // Constants smaller than 256 fit in the immediate field of 52 // Thumb1 instructions so we return a zero cost and 1 otherwise. 53 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 54 const APInt &Imm, Type *Ty) { 55 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 56 return 0; 57 58 return 1; 59 } 60 61 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 62 Type *Ty) { 63 // Division by a constant can be turned into multiplication, but only if we 64 // know it's constant. So it's not so much that the immediate is cheap (it's 65 // not), but that the alternative is worse. 66 // FIXME: this is probably unneeded with GlobalISel. 67 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 68 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 69 Idx == 1) 70 return 0; 71 72 return getIntImmCost(Imm, Ty); 73 } 74 75 76 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 77 int ISD = TLI->InstructionOpcodeToISD(Opcode); 78 assert(ISD && "Invalid opcode"); 79 80 // Single to/from double precision conversions. 81 static const CostTblEntry NEONFltDblTbl[] = { 82 // Vector fptrunc/fpext conversions. 83 { ISD::FP_ROUND, MVT::v2f64, 2 }, 84 { ISD::FP_EXTEND, MVT::v2f32, 2 }, 85 { ISD::FP_EXTEND, MVT::v4f32, 4 } 86 }; 87 88 if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || 89 ISD == ISD::FP_EXTEND)) { 90 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 91 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 92 return LT.first * Entry->Cost; 93 } 94 95 EVT SrcTy = TLI->getValueType(DL, Src); 96 EVT DstTy = TLI->getValueType(DL, Dst); 97 98 if (!SrcTy.isSimple() || !DstTy.isSimple()) 99 return BaseT::getCastInstrCost(Opcode, Dst, Src); 100 101 // Some arithmetic, load and store operations have specific instructions 102 // to cast up/down their types automatically at no extra cost. 103 // TODO: Get these tables to know at least what the related operations are. 104 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 105 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, 106 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, 107 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 108 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 109 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 110 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 111 112 // The number of vmovl instructions for the extension. 113 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 114 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 115 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 116 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 117 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 118 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 119 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 120 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 121 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 122 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 123 124 // Operations that we legalize using splitting. 125 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 126 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 127 128 // Vector float <-> i32 conversions. 129 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 130 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 131 132 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 133 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 134 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 135 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 136 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 137 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 138 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 139 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 140 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 141 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 142 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 143 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 144 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 145 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 146 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 147 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 148 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 149 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 150 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 151 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 152 153 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 154 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 155 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 156 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 157 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 158 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 159 160 // Vector double <-> i32 conversions. 161 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 162 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 163 164 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 165 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 166 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 167 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 168 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 169 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 170 171 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 172 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 173 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 174 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 175 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 176 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 177 }; 178 179 if (SrcTy.isVector() && ST->hasNEON()) { 180 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 181 DstTy.getSimpleVT(), 182 SrcTy.getSimpleVT())) 183 return Entry->Cost; 184 } 185 186 // Scalar float to integer conversions. 187 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 188 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 189 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 190 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 191 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 192 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 193 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 194 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 195 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 196 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 197 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 198 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 199 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 200 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 201 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 202 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 203 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 204 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 205 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 206 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 207 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 208 }; 209 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 210 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 211 DstTy.getSimpleVT(), 212 SrcTy.getSimpleVT())) 213 return Entry->Cost; 214 } 215 216 // Scalar integer to float conversions. 217 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 218 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 219 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 220 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 221 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 222 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 223 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 224 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 225 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 226 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 227 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 228 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 229 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 230 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 231 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 232 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 233 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 234 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 235 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 236 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 237 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 238 }; 239 240 if (SrcTy.isInteger() && ST->hasNEON()) { 241 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 242 ISD, DstTy.getSimpleVT(), 243 SrcTy.getSimpleVT())) 244 return Entry->Cost; 245 } 246 247 // Scalar integer conversion costs. 248 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 249 // i16 -> i64 requires two dependent operations. 250 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 251 252 // Truncates on i64 are assumed to be free. 253 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 254 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 255 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 256 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 257 }; 258 259 if (SrcTy.isInteger()) { 260 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 261 DstTy.getSimpleVT(), 262 SrcTy.getSimpleVT())) 263 return Entry->Cost; 264 } 265 266 return BaseT::getCastInstrCost(Opcode, Dst, Src); 267 } 268 269 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 270 unsigned Index) { 271 // Penalize inserting into an D-subregister. We end up with a three times 272 // lower estimated throughput on swift. 273 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 274 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 275 return 3; 276 277 if ((Opcode == Instruction::InsertElement || 278 Opcode == Instruction::ExtractElement)) { 279 // Cross-class copies are expensive on many microarchitectures, 280 // so assume they are expensive by default. 281 if (ValTy->getVectorElementType()->isIntegerTy()) 282 return 3; 283 284 // Even if it's not a cross class copy, this likely leads to mixing 285 // of NEON and VFP code and should be therefore penalized. 286 if (ValTy->isVectorTy() && 287 ValTy->getScalarSizeInBits() <= 32) 288 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 289 } 290 291 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 292 } 293 294 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { 295 296 int ISD = TLI->InstructionOpcodeToISD(Opcode); 297 // On NEON a a vector select gets lowered to vbsl. 298 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { 299 // Lowering of some vector selects is currently far from perfect. 300 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 301 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 302 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 303 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 304 }; 305 306 EVT SelCondTy = TLI->getValueType(DL, CondTy); 307 EVT SelValTy = TLI->getValueType(DL, ValTy); 308 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 309 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 310 SelCondTy.getSimpleVT(), 311 SelValTy.getSimpleVT())) 312 return Entry->Cost; 313 } 314 315 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 316 return LT.first; 317 } 318 319 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 320 } 321 322 int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { 323 // Address computations in vectorized code with non-consecutive addresses will 324 // likely result in more instructions compared to scalar code where the 325 // computation can more often be merged into the index mode. The resulting 326 // extra micro-ops can significantly decrease throughput. 327 unsigned NumVectorInstToHideOverhead = 10; 328 329 if (Ty->isVectorTy() && IsComplex) 330 return NumVectorInstToHideOverhead; 331 332 // In many cases the address computation is not merged into the instruction 333 // addressing mode. 334 return 1; 335 } 336 337 int ARMTTIImpl::getFPOpCost(Type *Ty) { 338 // Use similar logic that's in ARMISelLowering: 339 // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access 340 // to VFP. 341 342 if (ST->hasVFP2() && !ST->isThumb1Only()) { 343 if (Ty->isFloatTy()) { 344 return TargetTransformInfo::TCC_Basic; 345 } 346 347 if (Ty->isDoubleTy()) { 348 return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive : 349 TargetTransformInfo::TCC_Basic; 350 } 351 } 352 353 return TargetTransformInfo::TCC_Expensive; 354 } 355 356 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 357 Type *SubTp) { 358 // We only handle costs of reverse and alternate shuffles for now. 359 if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) 360 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 361 362 if (Kind == TTI::SK_Reverse) { 363 static const CostTblEntry NEONShuffleTbl[] = { 364 // Reverse shuffle cost one instruction if we are shuffling within a 365 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 366 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 367 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 368 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 369 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 370 371 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 372 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 373 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 374 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 375 376 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 377 378 if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, 379 LT.second)) 380 return LT.first * Entry->Cost; 381 382 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 383 } 384 if (Kind == TTI::SK_Alternate) { 385 static const CostTblEntry NEONAltShuffleTbl[] = { 386 // Alt shuffle cost table for ARM. Cost is the number of instructions 387 // required to create the shuffled vector. 388 389 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 390 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 391 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 392 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 393 394 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 395 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 396 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 397 398 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 399 400 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 401 402 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 403 if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl, 404 ISD::VECTOR_SHUFFLE, LT.second)) 405 return LT.first * Entry->Cost; 406 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 407 } 408 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 409 } 410 411 int ARMTTIImpl::getArithmeticInstrCost( 412 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 413 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 414 TTI::OperandValueProperties Opd2PropInfo) { 415 416 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 417 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 418 419 const unsigned FunctionCallDivCost = 20; 420 const unsigned ReciprocalDivCost = 10; 421 static const CostTblEntry CostTbl[] = { 422 // Division. 423 // These costs are somewhat random. Choose a cost of 20 to indicate that 424 // vectorizing devision (added function call) is going to be very expensive. 425 // Double registers types. 426 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 427 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 428 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 429 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 430 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 431 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 432 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 433 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 434 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 435 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 436 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 437 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 438 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 439 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 440 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 441 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 442 // Quad register types. 443 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 444 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 445 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 446 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 447 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 448 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 449 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 450 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 451 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 452 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 453 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 454 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 455 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 456 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 457 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 458 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 459 // Multiplication. 460 }; 461 462 if (ST->hasNEON()) 463 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 464 return LT.first * Entry->Cost; 465 466 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 467 Opd1PropInfo, Opd2PropInfo); 468 469 // This is somewhat of a hack. The problem that we are facing is that SROA 470 // creates a sequence of shift, and, or instructions to construct values. 471 // These sequences are recognized by the ISel and have zero-cost. Not so for 472 // the vectorized code. Because we have support for v2i64 but not i64 those 473 // sequences look particularly beneficial to vectorize. 474 // To work around this we increase the cost of v2i64 operations to make them 475 // seem less beneficial. 476 if (LT.second == MVT::v2i64 && 477 Op2Info == TargetTransformInfo::OK_UniformConstantValue) 478 Cost += 4; 479 480 return Cost; 481 } 482 483 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 484 unsigned AddressSpace) { 485 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 486 487 if (Src->isVectorTy() && Alignment != 16 && 488 Src->getVectorElementType()->isDoubleTy()) { 489 // Unaligned loads/stores are extremely inefficient. 490 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 491 return LT.first * 4; 492 } 493 return LT.first; 494 } 495 496 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 497 unsigned Factor, 498 ArrayRef<unsigned> Indices, 499 unsigned Alignment, 500 unsigned AddressSpace) { 501 assert(Factor >= 2 && "Invalid interleave factor"); 502 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 503 504 // vldN/vstN doesn't support vector types of i64/f64 element. 505 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 506 507 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) { 508 unsigned NumElts = VecTy->getVectorNumElements(); 509 Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 510 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); 511 512 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 513 if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128)) 514 return Factor; 515 } 516 517 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 518 Alignment, AddressSpace); 519 } 520