Home | History | Annotate | Download | only in ARM
      1 //===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "ARMTargetTransformInfo.h"
     11 #include "llvm/Support/Debug.h"
     12 #include "llvm/Target/CostTable.h"
     13 #include "llvm/Target/TargetLowering.h"
     14 using namespace llvm;
     15 
     16 #define DEBUG_TYPE "armtti"
     17 
     18 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
     19   assert(Ty->isIntegerTy());
     20 
     21  unsigned Bits = Ty->getPrimitiveSizeInBits();
     22  if (Bits == 0 || Imm.getActiveBits() >= 64)
     23    return 4;
     24 
     25   int64_t SImmVal = Imm.getSExtValue();
     26   uint64_t ZImmVal = Imm.getZExtValue();
     27   if (!ST->isThumb()) {
     28     if ((SImmVal >= 0 && SImmVal < 65536) ||
     29         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
     30         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
     31       return 1;
     32     return ST->hasV6T2Ops() ? 2 : 3;
     33   }
     34   if (ST->isThumb2()) {
     35     if ((SImmVal >= 0 && SImmVal < 65536) ||
     36         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
     37         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
     38       return 1;
     39     return ST->hasV6T2Ops() ? 2 : 3;
     40   }
     41   // Thumb1.
     42   if (SImmVal >= 0 && SImmVal < 256)
     43     return 1;
     44   if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
     45     return 2;
     46   // Load from constantpool.
     47   return 3;
     48 }
     49 
     50 
     51 // Constants smaller than 256 fit in the immediate field of
     52 // Thumb1 instructions so we return a zero cost and 1 otherwise.
     53 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
     54                                       const APInt &Imm, Type *Ty) {
     55   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
     56     return 0;
     57 
     58   return 1;
     59 }
     60 
     61 int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
     62                               Type *Ty) {
     63   // Division by a constant can be turned into multiplication, but only if we
     64   // know it's constant. So it's not so much that the immediate is cheap (it's
     65   // not), but that the alternative is worse.
     66   // FIXME: this is probably unneeded with GlobalISel.
     67   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
     68        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
     69       Idx == 1)
     70     return 0;
     71 
     72   return getIntImmCost(Imm, Ty);
     73 }
     74 
     75 
     76 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
     77   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     78   assert(ISD && "Invalid opcode");
     79 
     80   // Single to/from double precision conversions.
     81   static const CostTblEntry NEONFltDblTbl[] = {
     82     // Vector fptrunc/fpext conversions.
     83     { ISD::FP_ROUND,   MVT::v2f64, 2 },
     84     { ISD::FP_EXTEND,  MVT::v2f32, 2 },
     85     { ISD::FP_EXTEND,  MVT::v4f32, 4 }
     86   };
     87 
     88   if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
     89                                           ISD == ISD::FP_EXTEND)) {
     90     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
     91     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
     92       return LT.first * Entry->Cost;
     93   }
     94 
     95   EVT SrcTy = TLI->getValueType(DL, Src);
     96   EVT DstTy = TLI->getValueType(DL, Dst);
     97 
     98   if (!SrcTy.isSimple() || !DstTy.isSimple())
     99     return BaseT::getCastInstrCost(Opcode, Dst, Src);
    100 
    101   // Some arithmetic, load and store operations have specific instructions
    102   // to cast up/down their types automatically at no extra cost.
    103   // TODO: Get these tables to know at least what the related operations are.
    104   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
    105     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
    106     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
    107     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    108     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
    109     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
    110     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
    111 
    112     // The number of vmovl instructions for the extension.
    113     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    114     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
    115     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    116     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
    117     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    118     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
    119     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    120     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
    121     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    122     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    123 
    124     // Operations that we legalize using splitting.
    125     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
    126     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
    127 
    128     // Vector float <-> i32 conversions.
    129     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    130     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    131 
    132     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    133     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
    134     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    135     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
    136     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    137     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
    138     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    139     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
    140     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    141     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
    142     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    143     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    144     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    145     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
    146     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    147     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
    148     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    149     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
    150     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    151     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
    152 
    153     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
    154     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
    155     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
    156     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
    157     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
    158     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
    159 
    160     // Vector double <-> i32 conversions.
    161     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    162     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    163 
    164     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    165     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
    166     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    167     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
    168     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    169     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
    170 
    171     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
    172     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
    173     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
    174     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
    175     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
    176     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
    177   };
    178 
    179   if (SrcTy.isVector() && ST->hasNEON()) {
    180     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
    181                                                    DstTy.getSimpleVT(),
    182                                                    SrcTy.getSimpleVT()))
    183       return Entry->Cost;
    184   }
    185 
    186   // Scalar float to integer conversions.
    187   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
    188     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
    189     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
    190     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
    191     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
    192     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
    193     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
    194     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
    195     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
    196     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
    197     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
    198     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
    199     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
    200     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
    201     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
    202     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
    203     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
    204     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
    205     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
    206     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
    207     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
    208   };
    209   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
    210     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
    211                                                    DstTy.getSimpleVT(),
    212                                                    SrcTy.getSimpleVT()))
    213       return Entry->Cost;
    214   }
    215 
    216   // Scalar integer to float conversions.
    217   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
    218     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    219     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
    220     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    221     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
    222     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    223     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
    224     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    225     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
    226     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    227     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
    228     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    229     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
    230     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    231     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
    232     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    233     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
    234     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    235     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
    236     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
    237     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
    238   };
    239 
    240   if (SrcTy.isInteger() && ST->hasNEON()) {
    241     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
    242                                                    ISD, DstTy.getSimpleVT(),
    243                                                    SrcTy.getSimpleVT()))
    244       return Entry->Cost;
    245   }
    246 
    247   // Scalar integer conversion costs.
    248   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
    249     // i16 -> i64 requires two dependent operations.
    250     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
    251 
    252     // Truncates on i64 are assumed to be free.
    253     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
    254     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
    255     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
    256     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
    257   };
    258 
    259   if (SrcTy.isInteger()) {
    260     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
    261                                                    DstTy.getSimpleVT(),
    262                                                    SrcTy.getSimpleVT()))
    263       return Entry->Cost;
    264   }
    265 
    266   return BaseT::getCastInstrCost(Opcode, Dst, Src);
    267 }
    268 
    269 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
    270                                    unsigned Index) {
    271   // Penalize inserting into an D-subregister. We end up with a three times
    272   // lower estimated throughput on swift.
    273   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
    274       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
    275     return 3;
    276 
    277   if ((Opcode == Instruction::InsertElement ||
    278        Opcode == Instruction::ExtractElement)) {
    279     // Cross-class copies are expensive on many microarchitectures,
    280     // so assume they are expensive by default.
    281     if (ValTy->getVectorElementType()->isIntegerTy())
    282       return 3;
    283 
    284     // Even if it's not a cross class copy, this likely leads to mixing
    285     // of NEON and VFP code and should be therefore penalized.
    286     if (ValTy->isVectorTy() &&
    287         ValTy->getScalarSizeInBits() <= 32)
    288       return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
    289   }
    290 
    291   return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
    292 }
    293 
    294 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
    295 
    296   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    297   // On NEON a a vector select gets lowered to vbsl.
    298   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
    299     // Lowering of some vector selects is currently far from perfect.
    300     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
    301       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
    302       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
    303       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
    304     };
    305 
    306     EVT SelCondTy = TLI->getValueType(DL, CondTy);
    307     EVT SelValTy = TLI->getValueType(DL, ValTy);
    308     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
    309       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
    310                                                      SelCondTy.getSimpleVT(),
    311                                                      SelValTy.getSimpleVT()))
    312         return Entry->Cost;
    313     }
    314 
    315     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    316     return LT.first;
    317   }
    318 
    319   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    320 }
    321 
    322 int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
    323   // Address computations in vectorized code with non-consecutive addresses will
    324   // likely result in more instructions compared to scalar code where the
    325   // computation can more often be merged into the index mode. The resulting
    326   // extra micro-ops can significantly decrease throughput.
    327   unsigned NumVectorInstToHideOverhead = 10;
    328 
    329   if (Ty->isVectorTy() && IsComplex)
    330     return NumVectorInstToHideOverhead;
    331 
    332   // In many cases the address computation is not merged into the instruction
    333   // addressing mode.
    334   return 1;
    335 }
    336 
    337 int ARMTTIImpl::getFPOpCost(Type *Ty) {
    338   // Use similar logic that's in ARMISelLowering:
    339   // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
    340   // to VFP.
    341 
    342   if (ST->hasVFP2() && !ST->isThumb1Only()) {
    343     if (Ty->isFloatTy()) {
    344       return TargetTransformInfo::TCC_Basic;
    345     }
    346 
    347     if (Ty->isDoubleTy()) {
    348       return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
    349         TargetTransformInfo::TCC_Basic;
    350     }
    351   }
    352 
    353   return TargetTransformInfo::TCC_Expensive;
    354 }
    355 
    356 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
    357                                Type *SubTp) {
    358   // We only handle costs of reverse and alternate shuffles for now.
    359   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
    360     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    361 
    362   if (Kind == TTI::SK_Reverse) {
    363     static const CostTblEntry NEONShuffleTbl[] = {
    364         // Reverse shuffle cost one instruction if we are shuffling within a
    365         // double word (vrev) or two if we shuffle a quad word (vrev, vext).
    366         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
    367         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
    368         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    369         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    370 
    371         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    372         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    373         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
    374         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
    375 
    376     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    377 
    378     if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
    379                                             LT.second))
    380       return LT.first * Entry->Cost;
    381 
    382     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    383   }
    384   if (Kind == TTI::SK_Alternate) {
    385     static const CostTblEntry NEONAltShuffleTbl[] = {
    386         // Alt shuffle cost table for ARM. Cost is the number of instructions
    387         // required to create the shuffled vector.
    388 
    389         {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
    390         {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    391         {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    392         {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
    393 
    394         {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    395         {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    396         {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
    397 
    398         {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
    399 
    400         {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
    401 
    402     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    403     if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
    404                                             ISD::VECTOR_SHUFFLE, LT.second))
    405       return LT.first * Entry->Cost;
    406     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    407   }
    408   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    409 }
    410 
    411 int ARMTTIImpl::getArithmeticInstrCost(
    412     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
    413     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
    414     TTI::OperandValueProperties Opd2PropInfo) {
    415 
    416   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
    417   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
    418 
    419   const unsigned FunctionCallDivCost = 20;
    420   const unsigned ReciprocalDivCost = 10;
    421   static const CostTblEntry CostTbl[] = {
    422     // Division.
    423     // These costs are somewhat random. Choose a cost of 20 to indicate that
    424     // vectorizing devision (added function call) is going to be very expensive.
    425     // Double registers types.
    426     { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
    427     { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
    428     { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
    429     { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
    430     { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
    431     { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
    432     { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
    433     { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
    434     { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
    435     { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
    436     { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
    437     { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
    438     { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
    439     { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
    440     { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
    441     { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
    442     // Quad register types.
    443     { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
    444     { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
    445     { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
    446     { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
    447     { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
    448     { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
    449     { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
    450     { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
    451     { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
    452     { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
    453     { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
    454     { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
    455     { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
    456     { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
    457     { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
    458     { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
    459     // Multiplication.
    460   };
    461 
    462   if (ST->hasNEON())
    463     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
    464       return LT.first * Entry->Cost;
    465 
    466   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
    467                                            Opd1PropInfo, Opd2PropInfo);
    468 
    469   // This is somewhat of a hack. The problem that we are facing is that SROA
    470   // creates a sequence of shift, and, or instructions to construct values.
    471   // These sequences are recognized by the ISel and have zero-cost. Not so for
    472   // the vectorized code. Because we have support for v2i64 but not i64 those
    473   // sequences look particularly beneficial to vectorize.
    474   // To work around this we increase the cost of v2i64 operations to make them
    475   // seem less beneficial.
    476   if (LT.second == MVT::v2i64 &&
    477       Op2Info == TargetTransformInfo::OK_UniformConstantValue)
    478     Cost += 4;
    479 
    480   return Cost;
    481 }
    482 
    483 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    484                                 unsigned AddressSpace) {
    485   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    486 
    487   if (Src->isVectorTy() && Alignment != 16 &&
    488       Src->getVectorElementType()->isDoubleTy()) {
    489     // Unaligned loads/stores are extremely inefficient.
    490     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
    491     return LT.first * 4;
    492   }
    493   return LT.first;
    494 }
    495 
    496 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    497                                            unsigned Factor,
    498                                            ArrayRef<unsigned> Indices,
    499                                            unsigned Alignment,
    500                                            unsigned AddressSpace) {
    501   assert(Factor >= 2 && "Invalid interleave factor");
    502   assert(isa<VectorType>(VecTy) && "Expect a vector type");
    503 
    504   // vldN/vstN doesn't support vector types of i64/f64 element.
    505   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
    506 
    507   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
    508     unsigned NumElts = VecTy->getVectorNumElements();
    509     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
    510     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
    511 
    512     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
    513     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
    514       return Factor;
    515   }
    516 
    517   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
    518                                            Alignment, AddressSpace);
    519 }
    520