1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "thread.h" 18 19 #if !defined(__APPLE__) 20 #include <sched.h> 21 #endif 22 23 #include <pthread.h> 24 #include <signal.h> 25 #include <sys/resource.h> 26 #include <sys/time.h> 27 28 #include <algorithm> 29 #include <bitset> 30 #include <cerrno> 31 #include <iostream> 32 #include <list> 33 #include <sstream> 34 35 #include "android-base/stringprintf.h" 36 37 #include "arch/context-inl.h" 38 #include "arch/context.h" 39 #include "art_field-inl.h" 40 #include "art_method-inl.h" 41 #include "base/bit_utils.h" 42 #include "base/file_utils.h" 43 #include "base/memory_tool.h" 44 #include "base/mutex.h" 45 #include "base/systrace.h" 46 #include "base/timing_logger.h" 47 #include "base/to_str.h" 48 #include "base/utils.h" 49 #include "class_linker-inl.h" 50 #include "debugger.h" 51 #include "dex/descriptors_names.h" 52 #include "dex/dex_file-inl.h" 53 #include "dex/dex_file_annotations.h" 54 #include "dex/dex_file_types.h" 55 #include "entrypoints/entrypoint_utils.h" 56 #include "entrypoints/quick/quick_alloc_entrypoints.h" 57 #include "gc/accounting/card_table-inl.h" 58 #include "gc/accounting/heap_bitmap-inl.h" 59 #include "gc/allocator/rosalloc.h" 60 #include "gc/heap.h" 61 #include "gc/space/space-inl.h" 62 #include "gc_root.h" 63 #include "handle_scope-inl.h" 64 #include "indirect_reference_table-inl.h" 65 #include "interpreter/interpreter.h" 66 #include "interpreter/shadow_frame.h" 67 #include "java_frame_root_info.h" 68 #include "java_vm_ext.h" 69 #include "jni_internal.h" 70 #include "mirror/class-inl.h" 71 #include "mirror/class_loader.h" 72 #include "mirror/object_array-inl.h" 73 #include "mirror/stack_trace_element.h" 74 #include "monitor.h" 75 #include "monitor_objects_stack_visitor.h" 76 #include "native_stack_dump.h" 77 #include "nativehelper/scoped_local_ref.h" 78 #include "nativehelper/scoped_utf_chars.h" 79 #include "nth_caller_visitor.h" 80 #include "oat_quick_method_header.h" 81 #include "obj_ptr-inl.h" 82 #include "object_lock.h" 83 #include "quick/quick_method_frame_info.h" 84 #include "quick_exception_handler.h" 85 #include "read_barrier-inl.h" 86 #include "reflection.h" 87 #include "runtime.h" 88 #include "runtime_callbacks.h" 89 #include "scoped_thread_state_change-inl.h" 90 #include "stack.h" 91 #include "stack_map.h" 92 #include "thread-inl.h" 93 #include "thread_list.h" 94 #include "verifier/method_verifier.h" 95 #include "verify_object.h" 96 #include "well_known_classes.h" 97 98 #if ART_USE_FUTEXES 99 #include "linux/futex.h" 100 #include "sys/syscall.h" 101 #ifndef SYS_futex 102 #define SYS_futex __NR_futex 103 #endif 104 #endif // ART_USE_FUTEXES 105 106 namespace art { 107 108 using android::base::StringAppendV; 109 using android::base::StringPrintf; 110 111 extern "C" NO_RETURN void artDeoptimize(Thread* self); 112 113 bool Thread::is_started_ = false; 114 pthread_key_t Thread::pthread_key_self_; 115 ConditionVariable* Thread::resume_cond_ = nullptr; 116 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); 117 bool (*Thread::is_sensitive_thread_hook_)() = nullptr; 118 Thread* Thread::jit_sensitive_thread_ = nullptr; 119 120 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild; 121 122 // For implicit overflow checks we reserve an extra piece of memory at the bottom 123 // of the stack (lowest memory). The higher portion of the memory 124 // is protected against reads and the lower is available for use while 125 // throwing the StackOverflow exception. 126 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB; 127 128 static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; 129 130 void Thread::InitCardTable() { 131 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); 132 } 133 134 static void UnimplementedEntryPoint() { 135 UNIMPLEMENTED(FATAL); 136 } 137 138 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints); 139 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active); 140 141 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) { 142 CHECK(kUseReadBarrier); 143 tls32_.is_gc_marking = is_marking; 144 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking); 145 ResetQuickAllocEntryPointsForThread(is_marking); 146 } 147 148 void Thread::InitTlsEntryPoints() { 149 // Insert a placeholder so we can easily tell if we call an unimplemented entry point. 150 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints); 151 uintptr_t* end = reinterpret_cast<uintptr_t*>( 152 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints)); 153 for (uintptr_t* it = begin; it != end; ++it) { 154 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); 155 } 156 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints); 157 } 158 159 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) { 160 if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) { 161 // Allocation entrypoint switching is currently only implemented for X86_64. 162 is_marking = true; 163 } 164 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking); 165 } 166 167 class DeoptimizationContextRecord { 168 public: 169 DeoptimizationContextRecord(const JValue& ret_val, 170 bool is_reference, 171 bool from_code, 172 ObjPtr<mirror::Throwable> pending_exception, 173 DeoptimizationMethodType method_type, 174 DeoptimizationContextRecord* link) 175 : ret_val_(ret_val), 176 is_reference_(is_reference), 177 from_code_(from_code), 178 pending_exception_(pending_exception.Ptr()), 179 deopt_method_type_(method_type), 180 link_(link) {} 181 182 JValue GetReturnValue() const { return ret_val_; } 183 bool IsReference() const { return is_reference_; } 184 bool GetFromCode() const { return from_code_; } 185 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; } 186 DeoptimizationContextRecord* GetLink() const { return link_; } 187 mirror::Object** GetReturnValueAsGCRoot() { 188 DCHECK(is_reference_); 189 return ret_val_.GetGCRoot(); 190 } 191 mirror::Object** GetPendingExceptionAsGCRoot() { 192 return reinterpret_cast<mirror::Object**>(&pending_exception_); 193 } 194 DeoptimizationMethodType GetDeoptimizationMethodType() const { 195 return deopt_method_type_; 196 } 197 198 private: 199 // The value returned by the method at the top of the stack before deoptimization. 200 JValue ret_val_; 201 202 // Indicates whether the returned value is a reference. If so, the GC will visit it. 203 const bool is_reference_; 204 205 // Whether the context was created from an explicit deoptimization in the code. 206 const bool from_code_; 207 208 // The exception that was pending before deoptimization (or null if there was no pending 209 // exception). 210 mirror::Throwable* pending_exception_; 211 212 // Whether the context was created for an (idempotent) runtime method. 213 const DeoptimizationMethodType deopt_method_type_; 214 215 // A link to the previous DeoptimizationContextRecord. 216 DeoptimizationContextRecord* const link_; 217 218 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord); 219 }; 220 221 class StackedShadowFrameRecord { 222 public: 223 StackedShadowFrameRecord(ShadowFrame* shadow_frame, 224 StackedShadowFrameType type, 225 StackedShadowFrameRecord* link) 226 : shadow_frame_(shadow_frame), 227 type_(type), 228 link_(link) {} 229 230 ShadowFrame* GetShadowFrame() const { return shadow_frame_; } 231 StackedShadowFrameType GetType() const { return type_; } 232 StackedShadowFrameRecord* GetLink() const { return link_; } 233 234 private: 235 ShadowFrame* const shadow_frame_; 236 const StackedShadowFrameType type_; 237 StackedShadowFrameRecord* const link_; 238 239 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord); 240 }; 241 242 void Thread::PushDeoptimizationContext(const JValue& return_value, 243 bool is_reference, 244 ObjPtr<mirror::Throwable> exception, 245 bool from_code, 246 DeoptimizationMethodType method_type) { 247 DeoptimizationContextRecord* record = new DeoptimizationContextRecord( 248 return_value, 249 is_reference, 250 from_code, 251 exception, 252 method_type, 253 tlsPtr_.deoptimization_context_stack); 254 tlsPtr_.deoptimization_context_stack = record; 255 } 256 257 void Thread::PopDeoptimizationContext(JValue* result, 258 ObjPtr<mirror::Throwable>* exception, 259 bool* from_code, 260 DeoptimizationMethodType* method_type) { 261 AssertHasDeoptimizationContext(); 262 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; 263 tlsPtr_.deoptimization_context_stack = record->GetLink(); 264 result->SetJ(record->GetReturnValue().GetJ()); 265 *exception = record->GetPendingException(); 266 *from_code = record->GetFromCode(); 267 *method_type = record->GetDeoptimizationMethodType(); 268 delete record; 269 } 270 271 void Thread::AssertHasDeoptimizationContext() { 272 CHECK(tlsPtr_.deoptimization_context_stack != nullptr) 273 << "No deoptimization context for thread " << *this; 274 } 275 276 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) { 277 StackedShadowFrameRecord* record = new StackedShadowFrameRecord( 278 sf, type, tlsPtr_.stacked_shadow_frame_record); 279 tlsPtr_.stacked_shadow_frame_record = record; 280 } 281 282 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) { 283 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; 284 if (must_be_present) { 285 DCHECK(record != nullptr); 286 } else { 287 if (record == nullptr || record->GetType() != type) { 288 return nullptr; 289 } 290 } 291 tlsPtr_.stacked_shadow_frame_record = record->GetLink(); 292 ShadowFrame* shadow_frame = record->GetShadowFrame(); 293 delete record; 294 return shadow_frame; 295 } 296 297 class FrameIdToShadowFrame { 298 public: 299 static FrameIdToShadowFrame* Create(size_t frame_id, 300 ShadowFrame* shadow_frame, 301 FrameIdToShadowFrame* next, 302 size_t num_vregs) { 303 // Append a bool array at the end to keep track of what vregs are updated by the debugger. 304 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs]; 305 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next); 306 } 307 308 static void Delete(FrameIdToShadowFrame* f) { 309 uint8_t* memory = reinterpret_cast<uint8_t*>(f); 310 delete[] memory; 311 } 312 313 size_t GetFrameId() const { return frame_id_; } 314 ShadowFrame* GetShadowFrame() const { return shadow_frame_; } 315 FrameIdToShadowFrame* GetNext() const { return next_; } 316 void SetNext(FrameIdToShadowFrame* next) { next_ = next; } 317 bool* GetUpdatedVRegFlags() { 318 return updated_vreg_flags_; 319 } 320 321 private: 322 FrameIdToShadowFrame(size_t frame_id, 323 ShadowFrame* shadow_frame, 324 FrameIdToShadowFrame* next) 325 : frame_id_(frame_id), 326 shadow_frame_(shadow_frame), 327 next_(next) {} 328 329 const size_t frame_id_; 330 ShadowFrame* const shadow_frame_; 331 FrameIdToShadowFrame* next_; 332 bool updated_vreg_flags_[0]; 333 334 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame); 335 }; 336 337 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head, 338 size_t frame_id) { 339 FrameIdToShadowFrame* found = nullptr; 340 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) { 341 if (record->GetFrameId() == frame_id) { 342 if (kIsDebugBuild) { 343 // Sanity check we have at most one record for this frame. 344 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id; 345 found = record; 346 } else { 347 return record; 348 } 349 } 350 } 351 return found; 352 } 353 354 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) { 355 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( 356 tlsPtr_.frame_id_to_shadow_frame, frame_id); 357 if (record != nullptr) { 358 return record->GetShadowFrame(); 359 } 360 return nullptr; 361 } 362 363 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr. 364 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) { 365 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( 366 tlsPtr_.frame_id_to_shadow_frame, frame_id); 367 CHECK(record != nullptr); 368 return record->GetUpdatedVRegFlags(); 369 } 370 371 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id, 372 uint32_t num_vregs, 373 ArtMethod* method, 374 uint32_t dex_pc) { 375 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id); 376 if (shadow_frame != nullptr) { 377 return shadow_frame; 378 } 379 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method); 380 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc); 381 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id, 382 shadow_frame, 383 tlsPtr_.frame_id_to_shadow_frame, 384 num_vregs); 385 for (uint32_t i = 0; i < num_vregs; i++) { 386 // Do this to clear all references for root visitors. 387 shadow_frame->SetVRegReference(i, nullptr); 388 // This flag will be changed to true if the debugger modifies the value. 389 record->GetUpdatedVRegFlags()[i] = false; 390 } 391 tlsPtr_.frame_id_to_shadow_frame = record; 392 return shadow_frame; 393 } 394 395 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) { 396 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame; 397 if (head->GetFrameId() == frame_id) { 398 tlsPtr_.frame_id_to_shadow_frame = head->GetNext(); 399 FrameIdToShadowFrame::Delete(head); 400 return; 401 } 402 FrameIdToShadowFrame* prev = head; 403 for (FrameIdToShadowFrame* record = head->GetNext(); 404 record != nullptr; 405 prev = record, record = record->GetNext()) { 406 if (record->GetFrameId() == frame_id) { 407 prev->SetNext(record->GetNext()); 408 FrameIdToShadowFrame::Delete(record); 409 return; 410 } 411 } 412 LOG(FATAL) << "No shadow frame for frame " << frame_id; 413 UNREACHABLE(); 414 } 415 416 void Thread::InitTid() { 417 tls32_.tid = ::art::GetTid(); 418 } 419 420 void Thread::InitAfterFork() { 421 // One thread (us) survived the fork, but we have a new tid so we need to 422 // update the value stashed in this Thread*. 423 InitTid(); 424 } 425 426 void* Thread::CreateCallback(void* arg) { 427 Thread* self = reinterpret_cast<Thread*>(arg); 428 Runtime* runtime = Runtime::Current(); 429 if (runtime == nullptr) { 430 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; 431 return nullptr; 432 } 433 { 434 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true 435 // after self->Init(). 436 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 437 // Check that if we got here we cannot be shutting down (as shutdown should never have started 438 // while threads are being born). 439 CHECK(!runtime->IsShuttingDownLocked()); 440 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is 441 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort 442 // the runtime in such a case. In case this ever changes, we need to make sure here to 443 // delete the tmp_jni_env, as we own it at this point. 444 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env)); 445 self->tlsPtr_.tmp_jni_env = nullptr; 446 Runtime::Current()->EndThreadBirth(); 447 } 448 { 449 ScopedObjectAccess soa(self); 450 self->InitStringEntryPoints(); 451 452 // Copy peer into self, deleting global reference when done. 453 CHECK(self->tlsPtr_.jpeer != nullptr); 454 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr(); 455 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer); 456 self->tlsPtr_.jpeer = nullptr; 457 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str()); 458 459 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority); 460 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer)); 461 462 runtime->GetRuntimeCallbacks()->ThreadStart(self); 463 464 // Invoke the 'run' method of our java.lang.Thread. 465 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer; 466 jmethodID mid = WellKnownClasses::java_lang_Thread_run; 467 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver)); 468 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr); 469 } 470 // Detach and delete self. 471 Runtime::Current()->GetThreadList()->Unregister(self); 472 473 return nullptr; 474 } 475 476 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 477 ObjPtr<mirror::Object> thread_peer) { 478 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer); 479 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer))); 480 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ 481 // to stop it from going away. 482 if (kIsDebugBuild) { 483 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); 484 if (result != nullptr && !result->IsSuspended()) { 485 Locks::thread_list_lock_->AssertHeld(soa.Self()); 486 } 487 } 488 return result; 489 } 490 491 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 492 jobject java_thread) { 493 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr()); 494 } 495 496 static size_t FixStackSize(size_t stack_size) { 497 // A stack size of zero means "use the default". 498 if (stack_size == 0) { 499 stack_size = Runtime::Current()->GetDefaultStackSize(); 500 } 501 502 // Dalvik used the bionic pthread default stack size for native threads, 503 // so include that here to support apps that expect large native stacks. 504 stack_size += 1 * MB; 505 506 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. 507 if (stack_size < PTHREAD_STACK_MIN) { 508 stack_size = PTHREAD_STACK_MIN; 509 } 510 511 if (Runtime::Current()->ExplicitStackOverflowChecks()) { 512 // It's likely that callers are trying to ensure they have at least a certain amount of 513 // stack space, so we should add our reserved space on top of what they requested, rather 514 // than implicitly take it away from them. 515 stack_size += GetStackOverflowReservedBytes(kRuntimeISA); 516 } else { 517 // If we are going to use implicit stack checks, allocate space for the protected 518 // region at the bottom of the stack. 519 stack_size += Thread::kStackOverflowImplicitCheckSize + 520 GetStackOverflowReservedBytes(kRuntimeISA); 521 } 522 523 // Some systems require the stack size to be a multiple of the system page size, so round up. 524 stack_size = RoundUp(stack_size, kPageSize); 525 526 return stack_size; 527 } 528 529 // Return the nearest page-aligned address below the current stack top. 530 NO_INLINE 531 static uint8_t* FindStackTop() { 532 return reinterpret_cast<uint8_t*>( 533 AlignDown(__builtin_frame_address(0), kPageSize)); 534 } 535 536 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack 537 // overflow is detected. It is located right below the stack_begin_. 538 ATTRIBUTE_NO_SANITIZE_ADDRESS 539 void Thread::InstallImplicitProtection() { 540 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 541 // Page containing current top of stack. 542 uint8_t* stack_top = FindStackTop(); 543 544 // Try to directly protect the stack. 545 VLOG(threads) << "installing stack protected region at " << std::hex << 546 static_cast<void*>(pregion) << " to " << 547 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); 548 if (ProtectStack(/* fatal_on_error */ false)) { 549 // Tell the kernel that we won't be needing these pages any more. 550 // NB. madvise will probably write zeroes into the memory (on linux it does). 551 uint32_t unwanted_size = stack_top - pregion - kPageSize; 552 madvise(pregion, unwanted_size, MADV_DONTNEED); 553 return; 554 } 555 556 // There is a little complexity here that deserves a special mention. On some 557 // architectures, the stack is created using a VM_GROWSDOWN flag 558 // to prevent memory being allocated when it's not needed. This flag makes the 559 // kernel only allocate memory for the stack by growing down in memory. Because we 560 // want to put an mprotected region far away from that at the stack top, we need 561 // to make sure the pages for the stack are mapped in before we call mprotect. 562 // 563 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN 564 // with a non-mapped stack (usually only the main thread). 565 // 566 // We map in the stack by reading every page from the stack bottom (highest address) 567 // to the stack top. (We then madvise this away.) This must be done by reading from the 568 // current stack pointer downwards. 569 // 570 // Accesses too far below the current machine register corresponding to the stack pointer (e.g., 571 // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We 572 // thus have to move the stack pointer. We do this portably by using a recursive function with a 573 // large stack frame size. 574 575 // (Defensively) first remove the protection on the protected region as we'll want to read 576 // and write it. Ignore errors. 577 UnprotectStack(); 578 579 VLOG(threads) << "Need to map in stack for thread at " << std::hex << 580 static_cast<void*>(pregion); 581 582 struct RecurseDownStack { 583 // This function has an intentionally large stack size. 584 #pragma GCC diagnostic push 585 #pragma GCC diagnostic ignored "-Wframe-larger-than=" 586 NO_INLINE 587 static void Touch(uintptr_t target) { 588 volatile size_t zero = 0; 589 // Use a large local volatile array to ensure a large frame size. Do not use anything close 590 // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but 591 // there is no pragma support for this. 592 // Note: for ASAN we need to shrink the array a bit, as there's other overhead. 593 constexpr size_t kAsanMultiplier = 594 #ifdef ADDRESS_SANITIZER 595 2u; 596 #else 597 1u; 598 #endif 599 volatile char space[kPageSize - (kAsanMultiplier * 256)]; 600 char sink ATTRIBUTE_UNUSED = space[zero]; 601 if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) { 602 Touch(target); 603 } 604 zero *= 2; // Try to avoid tail recursion. 605 } 606 #pragma GCC diagnostic pop 607 }; 608 RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion)); 609 610 VLOG(threads) << "(again) installing stack protected region at " << std::hex << 611 static_cast<void*>(pregion) << " to " << 612 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); 613 614 // Protect the bottom of the stack to prevent read/write to it. 615 ProtectStack(/* fatal_on_error */ true); 616 617 // Tell the kernel that we won't be needing these pages any more. 618 // NB. madvise will probably write zeroes into the memory (on linux it does). 619 uint32_t unwanted_size = stack_top - pregion - kPageSize; 620 madvise(pregion, unwanted_size, MADV_DONTNEED); 621 } 622 623 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { 624 CHECK(java_peer != nullptr); 625 Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf(); 626 627 if (VLOG_IS_ON(threads)) { 628 ScopedObjectAccess soa(env); 629 630 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name); 631 ObjPtr<mirror::String> java_name = 632 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString(); 633 std::string thread_name; 634 if (java_name != nullptr) { 635 thread_name = java_name->ToModifiedUtf8(); 636 } else { 637 thread_name = "(Unnamed)"; 638 } 639 640 VLOG(threads) << "Creating native thread for " << thread_name; 641 self->Dump(LOG_STREAM(INFO)); 642 } 643 644 Runtime* runtime = Runtime::Current(); 645 646 // Atomically start the birth of the thread ensuring the runtime isn't shutting down. 647 bool thread_start_during_shutdown = false; 648 { 649 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 650 if (runtime->IsShuttingDownLocked()) { 651 thread_start_during_shutdown = true; 652 } else { 653 runtime->StartThreadBirth(); 654 } 655 } 656 if (thread_start_during_shutdown) { 657 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); 658 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); 659 return; 660 } 661 662 Thread* child_thread = new Thread(is_daemon); 663 // Use global JNI ref to hold peer live while child thread starts. 664 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); 665 stack_size = FixStackSize(stack_size); 666 667 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing 668 // to assign it. 669 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 670 reinterpret_cast<jlong>(child_thread)); 671 672 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and 673 // do not have a good way to report this on the child's side. 674 std::string error_msg; 675 std::unique_ptr<JNIEnvExt> child_jni_env_ext( 676 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg)); 677 678 int pthread_create_result = 0; 679 if (child_jni_env_ext.get() != nullptr) { 680 pthread_t new_pthread; 681 pthread_attr_t attr; 682 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get(); 683 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); 684 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), 685 "PTHREAD_CREATE_DETACHED"); 686 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); 687 pthread_create_result = pthread_create(&new_pthread, 688 &attr, 689 Thread::CreateCallback, 690 child_thread); 691 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); 692 693 if (pthread_create_result == 0) { 694 // pthread_create started the new thread. The child is now responsible for managing the 695 // JNIEnvExt we created. 696 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization 697 // between the threads. 698 child_jni_env_ext.release(); 699 return; 700 } 701 } 702 703 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up. 704 { 705 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 706 runtime->EndThreadBirth(); 707 } 708 // Manually delete the global reference since Thread::Init will not have been run. 709 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer); 710 child_thread->tlsPtr_.jpeer = nullptr; 711 delete child_thread; 712 child_thread = nullptr; 713 // TODO: remove from thread group? 714 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); 715 { 716 std::string msg(child_jni_env_ext.get() == nullptr ? 717 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) : 718 StringPrintf("pthread_create (%s stack) failed: %s", 719 PrettySize(stack_size).c_str(), strerror(pthread_create_result))); 720 ScopedObjectAccess soa(env); 721 soa.Self()->ThrowOutOfMemoryError(msg.c_str()); 722 } 723 } 724 725 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) { 726 // This function does all the initialization that must be run by the native thread it applies to. 727 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so 728 // we can handshake with the corresponding native thread when it's ready.) Check this native 729 // thread hasn't been through here already... 730 CHECK(Thread::Current() == nullptr); 731 732 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this 733 // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). 734 tlsPtr_.pthread_self = pthread_self(); 735 CHECK(is_started_); 736 737 SetUpAlternateSignalStack(); 738 if (!InitStackHwm()) { 739 return false; 740 } 741 InitCpu(); 742 InitTlsEntryPoints(); 743 RemoveSuspendTrigger(); 744 InitCardTable(); 745 InitTid(); 746 interpreter::InitInterpreterTls(this); 747 748 #ifdef ART_TARGET_ANDROID 749 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this; 750 #else 751 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); 752 #endif 753 DCHECK_EQ(Thread::Current(), this); 754 755 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); 756 757 if (jni_env_ext != nullptr) { 758 DCHECK_EQ(jni_env_ext->GetVm(), java_vm); 759 DCHECK_EQ(jni_env_ext->GetSelf(), this); 760 tlsPtr_.jni_env = jni_env_ext; 761 } else { 762 std::string error_msg; 763 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg); 764 if (tlsPtr_.jni_env == nullptr) { 765 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg; 766 return false; 767 } 768 } 769 770 thread_list->Register(this); 771 return true; 772 } 773 774 template <typename PeerAction> 775 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) { 776 Runtime* runtime = Runtime::Current(); 777 if (runtime == nullptr) { 778 LOG(ERROR) << "Thread attaching to non-existent runtime: " << 779 ((thread_name != nullptr) ? thread_name : "(Unnamed)"); 780 return nullptr; 781 } 782 Thread* self; 783 { 784 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 785 if (runtime->IsShuttingDownLocked()) { 786 LOG(WARNING) << "Thread attaching while runtime is shutting down: " << 787 ((thread_name != nullptr) ? thread_name : "(Unnamed)"); 788 return nullptr; 789 } else { 790 Runtime::Current()->StartThreadBirth(); 791 self = new Thread(as_daemon); 792 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 793 Runtime::Current()->EndThreadBirth(); 794 if (!init_success) { 795 delete self; 796 return nullptr; 797 } 798 } 799 } 800 801 self->InitStringEntryPoints(); 802 803 CHECK_NE(self->GetState(), kRunnable); 804 self->SetState(kNative); 805 806 // Run the action that is acting on the peer. 807 if (!peer_action(self)) { 808 runtime->GetThreadList()->Unregister(self); 809 // Unregister deletes self, no need to do this here. 810 return nullptr; 811 } 812 813 if (VLOG_IS_ON(threads)) { 814 if (thread_name != nullptr) { 815 VLOG(threads) << "Attaching thread " << thread_name; 816 } else { 817 VLOG(threads) << "Attaching unnamed thread."; 818 } 819 ScopedObjectAccess soa(self); 820 self->Dump(LOG_STREAM(INFO)); 821 } 822 823 { 824 ScopedObjectAccess soa(self); 825 runtime->GetRuntimeCallbacks()->ThreadStart(self); 826 } 827 828 return self; 829 } 830 831 Thread* Thread::Attach(const char* thread_name, 832 bool as_daemon, 833 jobject thread_group, 834 bool create_peer) { 835 auto create_peer_action = [&](Thread* self) { 836 // If we're the main thread, ClassLinker won't be created until after we're attached, 837 // so that thread needs a two-stage attach. Regular threads don't need this hack. 838 // In the compiler, all threads need this hack, because no-one's going to be getting 839 // a native peer! 840 if (create_peer) { 841 self->CreatePeer(thread_name, as_daemon, thread_group); 842 if (self->IsExceptionPending()) { 843 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log 844 // it. 845 { 846 ScopedObjectAccess soa(self); 847 LOG(ERROR) << "Exception creating thread peer:"; 848 LOG(ERROR) << self->GetException()->Dump(); 849 self->ClearException(); 850 } 851 return false; 852 } 853 } else { 854 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. 855 if (thread_name != nullptr) { 856 self->tlsPtr_.name->assign(thread_name); 857 ::art::SetThreadName(thread_name); 858 } else if (self->GetJniEnv()->IsCheckJniEnabled()) { 859 LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; 860 } 861 } 862 return true; 863 }; 864 return Attach(thread_name, as_daemon, create_peer_action); 865 } 866 867 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) { 868 auto set_peer_action = [&](Thread* self) { 869 // Install the given peer. 870 { 871 DCHECK(self == Thread::Current()); 872 ScopedObjectAccess soa(self); 873 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr(); 874 } 875 self->GetJniEnv()->SetLongField(thread_peer, 876 WellKnownClasses::java_lang_Thread_nativePeer, 877 reinterpret_cast<jlong>(self)); 878 return true; 879 }; 880 return Attach(thread_name, as_daemon, set_peer_action); 881 } 882 883 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { 884 Runtime* runtime = Runtime::Current(); 885 CHECK(runtime->IsStarted()); 886 JNIEnv* env = tlsPtr_.jni_env; 887 888 if (thread_group == nullptr) { 889 thread_group = runtime->GetMainThreadGroup(); 890 } 891 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); 892 // Add missing null check in case of OOM b/18297817 893 if (name != nullptr && thread_name.get() == nullptr) { 894 CHECK(IsExceptionPending()); 895 return; 896 } 897 jint thread_priority = GetNativePriority(); 898 jboolean thread_is_daemon = as_daemon; 899 900 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); 901 if (peer.get() == nullptr) { 902 CHECK(IsExceptionPending()); 903 return; 904 } 905 { 906 ScopedObjectAccess soa(this); 907 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr(); 908 } 909 env->CallNonvirtualVoidMethod(peer.get(), 910 WellKnownClasses::java_lang_Thread, 911 WellKnownClasses::java_lang_Thread_init, 912 thread_group, thread_name.get(), thread_priority, thread_is_daemon); 913 if (IsExceptionPending()) { 914 return; 915 } 916 917 Thread* self = this; 918 DCHECK_EQ(self, Thread::Current()); 919 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, 920 reinterpret_cast<jlong>(self)); 921 922 ScopedObjectAccess soa(self); 923 StackHandleScope<1> hs(self); 924 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName())); 925 if (peer_thread_name == nullptr) { 926 // The Thread constructor should have set the Thread.name to a 927 // non-null value. However, because we can run without code 928 // available (in the compiler, in tests), we manually assign the 929 // fields the constructor should have set. 930 if (runtime->IsActiveTransaction()) { 931 InitPeer<true>(soa, 932 tlsPtr_.opeer, 933 thread_is_daemon, 934 thread_group, 935 thread_name.get(), 936 thread_priority); 937 } else { 938 InitPeer<false>(soa, 939 tlsPtr_.opeer, 940 thread_is_daemon, 941 thread_group, 942 thread_name.get(), 943 thread_priority); 944 } 945 peer_thread_name.Assign(GetThreadName()); 946 } 947 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. 948 if (peer_thread_name != nullptr) { 949 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); 950 } 951 } 952 953 jobject Thread::CreateCompileTimePeer(JNIEnv* env, 954 const char* name, 955 bool as_daemon, 956 jobject thread_group) { 957 Runtime* runtime = Runtime::Current(); 958 CHECK(!runtime->IsStarted()); 959 960 if (thread_group == nullptr) { 961 thread_group = runtime->GetMainThreadGroup(); 962 } 963 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); 964 // Add missing null check in case of OOM b/18297817 965 if (name != nullptr && thread_name.get() == nullptr) { 966 CHECK(Thread::Current()->IsExceptionPending()); 967 return nullptr; 968 } 969 jint thread_priority = GetNativePriority(); 970 jboolean thread_is_daemon = as_daemon; 971 972 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); 973 if (peer.get() == nullptr) { 974 CHECK(Thread::Current()->IsExceptionPending()); 975 return nullptr; 976 } 977 978 // We cannot call Thread.init, as it will recursively ask for currentThread. 979 980 // The Thread constructor should have set the Thread.name to a 981 // non-null value. However, because we can run without code 982 // available (in the compiler, in tests), we manually assign the 983 // fields the constructor should have set. 984 ScopedObjectAccessUnchecked soa(Thread::Current()); 985 if (runtime->IsActiveTransaction()) { 986 InitPeer<true>(soa, 987 soa.Decode<mirror::Object>(peer.get()), 988 thread_is_daemon, 989 thread_group, 990 thread_name.get(), 991 thread_priority); 992 } else { 993 InitPeer<false>(soa, 994 soa.Decode<mirror::Object>(peer.get()), 995 thread_is_daemon, 996 thread_group, 997 thread_name.get(), 998 thread_priority); 999 } 1000 1001 return peer.release(); 1002 } 1003 1004 template<bool kTransactionActive> 1005 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa, 1006 ObjPtr<mirror::Object> peer, 1007 jboolean thread_is_daemon, 1008 jobject thread_group, 1009 jobject thread_name, 1010 jint thread_priority) { 1011 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)-> 1012 SetBoolean<kTransactionActive>(peer, thread_is_daemon); 1013 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)-> 1014 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group)); 1015 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)-> 1016 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name)); 1017 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)-> 1018 SetInt<kTransactionActive>(peer, thread_priority); 1019 } 1020 1021 void Thread::SetThreadName(const char* name) { 1022 tlsPtr_.name->assign(name); 1023 ::art::SetThreadName(name); 1024 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); 1025 } 1026 1027 static void GetThreadStack(pthread_t thread, 1028 void** stack_base, 1029 size_t* stack_size, 1030 size_t* guard_size) { 1031 #if defined(__APPLE__) 1032 *stack_size = pthread_get_stacksize_np(thread); 1033 void* stack_addr = pthread_get_stackaddr_np(thread); 1034 1035 // Check whether stack_addr is the base or end of the stack. 1036 // (On Mac OS 10.7, it's the end.) 1037 int stack_variable; 1038 if (stack_addr > &stack_variable) { 1039 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size; 1040 } else { 1041 *stack_base = stack_addr; 1042 } 1043 1044 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac. 1045 pthread_attr_t attributes; 1046 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__); 1047 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); 1048 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); 1049 #else 1050 pthread_attr_t attributes; 1051 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__); 1052 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__); 1053 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__); 1054 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__); 1055 1056 #if defined(__GLIBC__) 1057 // If we're the main thread, check whether we were run with an unlimited stack. In that case, 1058 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection 1059 // will be broken because we'll die long before we get close to 2GB. 1060 bool is_main_thread = (::art::GetTid() == getpid()); 1061 if (is_main_thread) { 1062 rlimit stack_limit; 1063 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { 1064 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; 1065 } 1066 if (stack_limit.rlim_cur == RLIM_INFINITY) { 1067 size_t old_stack_size = *stack_size; 1068 1069 // Use the kernel default limit as our size, and adjust the base to match. 1070 *stack_size = 8 * MB; 1071 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size); 1072 1073 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" 1074 << " to " << PrettySize(*stack_size) 1075 << " with base " << *stack_base; 1076 } 1077 } 1078 #endif 1079 1080 #endif 1081 } 1082 1083 bool Thread::InitStackHwm() { 1084 void* read_stack_base; 1085 size_t read_stack_size; 1086 size_t read_guard_size; 1087 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); 1088 1089 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base); 1090 tlsPtr_.stack_size = read_stack_size; 1091 1092 // The minimum stack size we can cope with is the overflow reserved bytes (typically 1093 // 8K) + the protected region size (4K) + another page (4K). Typically this will 1094 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes 1095 // between 8K and 12K. 1096 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize 1097 + 4 * KB; 1098 if (read_stack_size <= min_stack) { 1099 // Note, as we know the stack is small, avoid operations that could use a lot of stack. 1100 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__, 1101 __LINE__, 1102 ::android::base::ERROR, 1103 "Attempt to attach a thread with a too-small stack"); 1104 return false; 1105 } 1106 1107 // This is included in the SIGQUIT output, but it's useful here for thread debugging. 1108 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", 1109 read_stack_base, 1110 PrettySize(read_stack_size).c_str(), 1111 PrettySize(read_guard_size).c_str()); 1112 1113 // Set stack_end_ to the bottom of the stack saving space of stack overflows 1114 1115 Runtime* runtime = Runtime::Current(); 1116 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler(); 1117 1118 // Valgrind on arm doesn't give the right values here. Do not install the guard page, and 1119 // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting 1120 // stack_begin to 0. 1121 const bool valgrind_on_arm = 1122 (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kArm64) && 1123 kMemoryToolIsValgrind && 1124 RUNNING_ON_MEMORY_TOOL != 0; 1125 if (valgrind_on_arm) { 1126 tlsPtr_.stack_begin = nullptr; 1127 } 1128 1129 ResetDefaultStackEnd(); 1130 1131 // Install the protected region if we are doing implicit overflow checks. 1132 if (implicit_stack_check && !valgrind_on_arm) { 1133 // The thread might have protected region at the bottom. We need 1134 // to install our own region so we need to move the limits 1135 // of the stack to make room for it. 1136 1137 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize; 1138 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize; 1139 tlsPtr_.stack_size -= read_guard_size; 1140 1141 InstallImplicitProtection(); 1142 } 1143 1144 // Sanity check. 1145 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end)); 1146 1147 return true; 1148 } 1149 1150 void Thread::ShortDump(std::ostream& os) const { 1151 os << "Thread["; 1152 if (GetThreadId() != 0) { 1153 // If we're in kStarting, we won't have a thin lock id or tid yet. 1154 os << GetThreadId() 1155 << ",tid=" << GetTid() << ','; 1156 } 1157 os << GetState() 1158 << ",Thread*=" << this 1159 << ",peer=" << tlsPtr_.opeer 1160 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\"" 1161 << "]"; 1162 } 1163 1164 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map, 1165 bool force_dump_stack) const { 1166 DumpState(os); 1167 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack); 1168 } 1169 1170 mirror::String* Thread::GetThreadName() const { 1171 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name); 1172 if (tlsPtr_.opeer == nullptr) { 1173 return nullptr; 1174 } 1175 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer); 1176 return name == nullptr ? nullptr : name->AsString(); 1177 } 1178 1179 void Thread::GetThreadName(std::string& name) const { 1180 name.assign(*tlsPtr_.name); 1181 } 1182 1183 uint64_t Thread::GetCpuMicroTime() const { 1184 #if defined(__linux__) 1185 clockid_t cpu_clock_id; 1186 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); 1187 timespec now; 1188 clock_gettime(cpu_clock_id, &now); 1189 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); 1190 #else // __APPLE__ 1191 UNIMPLEMENTED(WARNING); 1192 return -1; 1193 #endif 1194 } 1195 1196 // Attempt to rectify locks so that we dump thread list with required locks before exiting. 1197 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 1198 LOG(ERROR) << *thread << " suspend count already zero."; 1199 Locks::thread_suspend_count_lock_->Unlock(self); 1200 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 1201 Locks::mutator_lock_->SharedTryLock(self); 1202 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 1203 LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; 1204 } 1205 } 1206 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 1207 Locks::thread_list_lock_->TryLock(self); 1208 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 1209 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; 1210 } 1211 } 1212 std::ostringstream ss; 1213 Runtime::Current()->GetThreadList()->Dump(ss); 1214 LOG(FATAL) << ss.str(); 1215 } 1216 1217 bool Thread::ModifySuspendCountInternal(Thread* self, 1218 int delta, 1219 AtomicInteger* suspend_barrier, 1220 SuspendReason reason) { 1221 if (kIsDebugBuild) { 1222 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count) 1223 << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this; 1224 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this; 1225 Locks::thread_suspend_count_lock_->AssertHeld(self); 1226 if (this != self && !IsSuspended()) { 1227 Locks::thread_list_lock_->AssertHeld(self); 1228 } 1229 } 1230 // User code suspensions need to be checked more closely since they originate from code outside of 1231 // the runtime's control. 1232 if (UNLIKELY(reason == SuspendReason::kForUserCode)) { 1233 Locks::user_code_suspension_lock_->AssertHeld(self); 1234 if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) { 1235 LOG(ERROR) << "attempting to modify suspend count in an illegal way."; 1236 return false; 1237 } 1238 } 1239 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { 1240 UnsafeLogFatalForSuspendCount(self, this); 1241 return false; 1242 } 1243 1244 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) { 1245 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a 1246 // deadlock. b/31683379. 1247 return false; 1248 } 1249 1250 uint16_t flags = kSuspendRequest; 1251 if (delta > 0 && suspend_barrier != nullptr) { 1252 uint32_t available_barrier = kMaxSuspendBarriers; 1253 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1254 if (tlsPtr_.active_suspend_barriers[i] == nullptr) { 1255 available_barrier = i; 1256 break; 1257 } 1258 } 1259 if (available_barrier == kMaxSuspendBarriers) { 1260 // No barrier spaces available, we can't add another. 1261 return false; 1262 } 1263 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier; 1264 flags |= kActiveSuspendBarrier; 1265 } 1266 1267 tls32_.suspend_count += delta; 1268 switch (reason) { 1269 case SuspendReason::kForDebugger: 1270 tls32_.debug_suspend_count += delta; 1271 break; 1272 case SuspendReason::kForUserCode: 1273 tls32_.user_code_suspend_count += delta; 1274 break; 1275 case SuspendReason::kInternal: 1276 break; 1277 } 1278 1279 if (tls32_.suspend_count == 0) { 1280 AtomicClearFlag(kSuspendRequest); 1281 } else { 1282 // Two bits might be set simultaneously. 1283 tls32_.state_and_flags.as_atomic_int.FetchAndBitwiseOrSequentiallyConsistent(flags); 1284 TriggerSuspend(); 1285 } 1286 return true; 1287 } 1288 1289 bool Thread::PassActiveSuspendBarriers(Thread* self) { 1290 // Grab the suspend_count lock and copy the current set of 1291 // barriers. Then clear the list and the flag. The ModifySuspendCount 1292 // function requires the lock so we prevent a race between setting 1293 // the kActiveSuspendBarrier flag and clearing it. 1294 AtomicInteger* pass_barriers[kMaxSuspendBarriers]; 1295 { 1296 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 1297 if (!ReadFlag(kActiveSuspendBarrier)) { 1298 // quick exit test: the barriers have already been claimed - this is 1299 // possible as there may be a race to claim and it doesn't matter 1300 // who wins. 1301 // All of the callers of this function (except the SuspendAllInternal) 1302 // will first test the kActiveSuspendBarrier flag without lock. Here 1303 // double-check whether the barrier has been passed with the 1304 // suspend_count lock. 1305 return false; 1306 } 1307 1308 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1309 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i]; 1310 tlsPtr_.active_suspend_barriers[i] = nullptr; 1311 } 1312 AtomicClearFlag(kActiveSuspendBarrier); 1313 } 1314 1315 uint32_t barrier_count = 0; 1316 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) { 1317 AtomicInteger* pending_threads = pass_barriers[i]; 1318 if (pending_threads != nullptr) { 1319 bool done = false; 1320 do { 1321 int32_t cur_val = pending_threads->LoadRelaxed(); 1322 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val; 1323 // Reduce value by 1. 1324 done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1); 1325 #if ART_USE_FUTEXES 1326 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously. 1327 futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0); 1328 } 1329 #endif 1330 } while (!done); 1331 ++barrier_count; 1332 } 1333 } 1334 CHECK_GT(barrier_count, 0U); 1335 return true; 1336 } 1337 1338 void Thread::ClearSuspendBarrier(AtomicInteger* target) { 1339 CHECK(ReadFlag(kActiveSuspendBarrier)); 1340 bool clear_flag = true; 1341 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1342 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i]; 1343 if (ptr == target) { 1344 tlsPtr_.active_suspend_barriers[i] = nullptr; 1345 } else if (ptr != nullptr) { 1346 clear_flag = false; 1347 } 1348 } 1349 if (LIKELY(clear_flag)) { 1350 AtomicClearFlag(kActiveSuspendBarrier); 1351 } 1352 } 1353 1354 void Thread::RunCheckpointFunction() { 1355 // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If 1356 // there are no more checkpoints we will also clear the kCheckpointRequest flag. 1357 Closure* checkpoint; 1358 { 1359 MutexLock mu(this, *Locks::thread_suspend_count_lock_); 1360 checkpoint = tlsPtr_.checkpoint_function; 1361 if (!checkpoint_overflow_.empty()) { 1362 // Overflow list not empty, copy the first one out and continue. 1363 tlsPtr_.checkpoint_function = checkpoint_overflow_.front(); 1364 checkpoint_overflow_.pop_front(); 1365 } else { 1366 // No overflow checkpoints. Clear the kCheckpointRequest flag 1367 tlsPtr_.checkpoint_function = nullptr; 1368 AtomicClearFlag(kCheckpointRequest); 1369 } 1370 } 1371 // Outside the lock, run the checkpoint function. 1372 ScopedTrace trace("Run checkpoint function"); 1373 CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint"; 1374 checkpoint->Run(this); 1375 } 1376 1377 void Thread::RunEmptyCheckpoint() { 1378 DCHECK_EQ(Thread::Current(), this); 1379 AtomicClearFlag(kEmptyCheckpointRequest); 1380 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this); 1381 } 1382 1383 bool Thread::RequestCheckpoint(Closure* function) { 1384 union StateAndFlags old_state_and_flags; 1385 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 1386 if (old_state_and_flags.as_struct.state != kRunnable) { 1387 return false; // Fail, thread is suspended and so can't run a checkpoint. 1388 } 1389 1390 // We must be runnable to request a checkpoint. 1391 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); 1392 union StateAndFlags new_state_and_flags; 1393 new_state_and_flags.as_int = old_state_and_flags.as_int; 1394 new_state_and_flags.as_struct.flags |= kCheckpointRequest; 1395 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent( 1396 old_state_and_flags.as_int, new_state_and_flags.as_int); 1397 if (success) { 1398 // Succeeded setting checkpoint flag, now insert the actual checkpoint. 1399 if (tlsPtr_.checkpoint_function == nullptr) { 1400 tlsPtr_.checkpoint_function = function; 1401 } else { 1402 checkpoint_overflow_.push_back(function); 1403 } 1404 CHECK_EQ(ReadFlag(kCheckpointRequest), true); 1405 TriggerSuspend(); 1406 } 1407 return success; 1408 } 1409 1410 bool Thread::RequestEmptyCheckpoint() { 1411 union StateAndFlags old_state_and_flags; 1412 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 1413 if (old_state_and_flags.as_struct.state != kRunnable) { 1414 // If it's not runnable, we don't need to do anything because it won't be in the middle of a 1415 // heap access (eg. the read barrier). 1416 return false; 1417 } 1418 1419 // We must be runnable to request a checkpoint. 1420 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); 1421 union StateAndFlags new_state_and_flags; 1422 new_state_and_flags.as_int = old_state_and_flags.as_int; 1423 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest; 1424 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent( 1425 old_state_and_flags.as_int, new_state_and_flags.as_int); 1426 if (success) { 1427 TriggerSuspend(); 1428 } 1429 return success; 1430 } 1431 1432 class BarrierClosure : public Closure { 1433 public: 1434 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {} 1435 1436 void Run(Thread* self) OVERRIDE { 1437 wrapped_->Run(self); 1438 barrier_.Pass(self); 1439 } 1440 1441 void Wait(Thread* self, ThreadState suspend_state) { 1442 if (suspend_state != ThreadState::kRunnable) { 1443 barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1); 1444 } else { 1445 barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1); 1446 } 1447 } 1448 1449 private: 1450 Closure* wrapped_; 1451 Barrier barrier_; 1452 }; 1453 1454 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution. 1455 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) { 1456 Thread* self = Thread::Current(); 1457 if (this == Thread::Current()) { 1458 Locks::thread_list_lock_->AssertExclusiveHeld(self); 1459 // Unlock the tll before running so that the state is the same regardless of thread. 1460 Locks::thread_list_lock_->ExclusiveUnlock(self); 1461 // Asked to run on this thread. Just run. 1462 function->Run(this); 1463 return true; 1464 } 1465 1466 // The current thread is not this thread. 1467 1468 if (GetState() == ThreadState::kTerminated) { 1469 Locks::thread_list_lock_->ExclusiveUnlock(self); 1470 return false; 1471 } 1472 1473 struct ScopedThreadListLockUnlock { 1474 explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_) 1475 : self_thread(self_in) { 1476 Locks::thread_list_lock_->AssertHeld(self_thread); 1477 Locks::thread_list_lock_->Unlock(self_thread); 1478 } 1479 1480 ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) { 1481 Locks::thread_list_lock_->AssertNotHeld(self_thread); 1482 Locks::thread_list_lock_->Lock(self_thread); 1483 } 1484 1485 Thread* self_thread; 1486 }; 1487 1488 for (;;) { 1489 Locks::thread_list_lock_->AssertExclusiveHeld(self); 1490 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the 1491 // suspend-count lock for too long. 1492 if (GetState() == ThreadState::kRunnable) { 1493 BarrierClosure barrier_closure(function); 1494 bool installed = false; 1495 { 1496 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 1497 installed = RequestCheckpoint(&barrier_closure); 1498 } 1499 if (installed) { 1500 // Relinquish the thread-list lock. We should not wait holding any locks. We cannot 1501 // reacquire it since we don't know if 'this' hasn't been deleted yet. 1502 Locks::thread_list_lock_->ExclusiveUnlock(self); 1503 ScopedThreadStateChange sts(self, suspend_state); 1504 barrier_closure.Wait(self, suspend_state); 1505 return true; 1506 } 1507 // Fall-through. 1508 } 1509 1510 // This thread is not runnable, make sure we stay suspended, then run the checkpoint. 1511 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in 1512 // certain situations. 1513 { 1514 MutexLock mu2(self, *Locks::thread_suspend_count_lock_); 1515 1516 if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) { 1517 // Just retry the loop. 1518 sched_yield(); 1519 continue; 1520 } 1521 } 1522 1523 { 1524 // Release for the wait. The suspension will keep us from being deleted. Reacquire after so 1525 // that we can call ModifySuspendCount without racing against ThreadList::Unregister. 1526 ScopedThreadListLockUnlock stllu(self); 1527 { 1528 ScopedThreadStateChange sts(self, suspend_state); 1529 while (GetState() == ThreadState::kRunnable) { 1530 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount 1531 // moves us to suspended. 1532 sched_yield(); 1533 } 1534 } 1535 1536 function->Run(this); 1537 } 1538 1539 { 1540 MutexLock mu2(self, *Locks::thread_suspend_count_lock_); 1541 1542 DCHECK_NE(GetState(), ThreadState::kRunnable); 1543 bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal); 1544 DCHECK(updated); 1545 } 1546 1547 { 1548 // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its 1549 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast. 1550 MutexLock mu2(self, *Locks::thread_suspend_count_lock_); 1551 Thread::resume_cond_->Broadcast(self); 1552 } 1553 1554 // Release the thread_list_lock_ to be consistent with the barrier-closure path. 1555 Locks::thread_list_lock_->ExclusiveUnlock(self); 1556 1557 return true; // We're done, break out of the loop. 1558 } 1559 } 1560 1561 Closure* Thread::GetFlipFunction() { 1562 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function); 1563 Closure* func; 1564 do { 1565 func = atomic_func->LoadRelaxed(); 1566 if (func == nullptr) { 1567 return nullptr; 1568 } 1569 } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr)); 1570 DCHECK(func != nullptr); 1571 return func; 1572 } 1573 1574 void Thread::SetFlipFunction(Closure* function) { 1575 CHECK(function != nullptr); 1576 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function); 1577 atomic_func->StoreSequentiallyConsistent(function); 1578 } 1579 1580 void Thread::FullSuspendCheck() { 1581 ScopedTrace trace(__FUNCTION__); 1582 VLOG(threads) << this << " self-suspending"; 1583 // Make thread appear suspended to other threads, release mutator_lock_. 1584 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_. 1585 ScopedThreadSuspension(this, kSuspended); 1586 VLOG(threads) << this << " self-reviving"; 1587 } 1588 1589 static std::string GetSchedulerGroupName(pid_t tid) { 1590 // /proc/<pid>/cgroup looks like this: 1591 // 2:devices:/ 1592 // 1:cpuacct,cpu:/ 1593 // We want the third field from the line whose second field contains the "cpu" token. 1594 std::string cgroup_file; 1595 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) { 1596 return ""; 1597 } 1598 std::vector<std::string> cgroup_lines; 1599 Split(cgroup_file, '\n', &cgroup_lines); 1600 for (size_t i = 0; i < cgroup_lines.size(); ++i) { 1601 std::vector<std::string> cgroup_fields; 1602 Split(cgroup_lines[i], ':', &cgroup_fields); 1603 std::vector<std::string> cgroups; 1604 Split(cgroup_fields[1], ',', &cgroups); 1605 for (size_t j = 0; j < cgroups.size(); ++j) { 1606 if (cgroups[j] == "cpu") { 1607 return cgroup_fields[2].substr(1); // Skip the leading slash. 1608 } 1609 } 1610 } 1611 return ""; 1612 } 1613 1614 1615 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { 1616 std::string group_name; 1617 int priority; 1618 bool is_daemon = false; 1619 Thread* self = Thread::Current(); 1620 1621 // If flip_function is not null, it means we have run a checkpoint 1622 // before the thread wakes up to execute the flip function and the 1623 // thread roots haven't been forwarded. So the following access to 1624 // the roots (opeer or methods in the frames) would be bad. Run it 1625 // here. TODO: clean up. 1626 if (thread != nullptr) { 1627 ScopedObjectAccessUnchecked soa(self); 1628 Thread* this_thread = const_cast<Thread*>(thread); 1629 Closure* flip_func = this_thread->GetFlipFunction(); 1630 if (flip_func != nullptr) { 1631 flip_func->Run(this_thread); 1632 } 1633 } 1634 1635 // Don't do this if we are aborting since the GC may have all the threads suspended. This will 1636 // cause ScopedObjectAccessUnchecked to deadlock. 1637 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { 1638 ScopedObjectAccessUnchecked soa(self); 1639 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority) 1640 ->GetInt(thread->tlsPtr_.opeer); 1641 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon) 1642 ->GetBoolean(thread->tlsPtr_.opeer); 1643 1644 ObjPtr<mirror::Object> thread_group = 1645 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group) 1646 ->GetObject(thread->tlsPtr_.opeer); 1647 1648 if (thread_group != nullptr) { 1649 ArtField* group_name_field = 1650 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name); 1651 ObjPtr<mirror::String> group_name_string = 1652 group_name_field->GetObject(thread_group)->AsString(); 1653 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>"; 1654 } 1655 } else { 1656 priority = GetNativePriority(); 1657 } 1658 1659 std::string scheduler_group_name(GetSchedulerGroupName(tid)); 1660 if (scheduler_group_name.empty()) { 1661 scheduler_group_name = "default"; 1662 } 1663 1664 if (thread != nullptr) { 1665 os << '"' << *thread->tlsPtr_.name << '"'; 1666 if (is_daemon) { 1667 os << " daemon"; 1668 } 1669 os << " prio=" << priority 1670 << " tid=" << thread->GetThreadId() 1671 << " " << thread->GetState(); 1672 if (thread->IsStillStarting()) { 1673 os << " (still starting up)"; 1674 } 1675 os << "\n"; 1676 } else { 1677 os << '"' << ::art::GetThreadName(tid) << '"' 1678 << " prio=" << priority 1679 << " (not attached)\n"; 1680 } 1681 1682 if (thread != nullptr) { 1683 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 1684 os << " | group=\"" << group_name << "\"" 1685 << " sCount=" << thread->tls32_.suspend_count 1686 << " dsCount=" << thread->tls32_.debug_suspend_count 1687 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags 1688 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) 1689 << " self=" << reinterpret_cast<const void*>(thread) << "\n"; 1690 } 1691 1692 os << " | sysTid=" << tid 1693 << " nice=" << getpriority(PRIO_PROCESS, tid) 1694 << " cgrp=" << scheduler_group_name; 1695 if (thread != nullptr) { 1696 int policy; 1697 sched_param sp; 1698 #if !defined(__APPLE__) 1699 // b/36445592 Don't use pthread_getschedparam since pthread may have exited. 1700 policy = sched_getscheduler(tid); 1701 if (policy == -1) { 1702 PLOG(WARNING) << "sched_getscheduler(" << tid << ")"; 1703 } 1704 int sched_getparam_result = sched_getparam(tid, &sp); 1705 if (sched_getparam_result == -1) { 1706 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)"; 1707 sp.sched_priority = -1; 1708 } 1709 #else 1710 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), 1711 __FUNCTION__); 1712 #endif 1713 os << " sched=" << policy << "/" << sp.sched_priority 1714 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); 1715 } 1716 os << "\n"; 1717 1718 // Grab the scheduler stats for this thread. 1719 std::string scheduler_stats; 1720 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { 1721 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. 1722 } else { 1723 scheduler_stats = "0 0 0"; 1724 } 1725 1726 char native_thread_state = '?'; 1727 int utime = 0; 1728 int stime = 0; 1729 int task_cpu = 0; 1730 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); 1731 1732 os << " | state=" << native_thread_state 1733 << " schedstat=( " << scheduler_stats << " )" 1734 << " utm=" << utime 1735 << " stm=" << stime 1736 << " core=" << task_cpu 1737 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; 1738 if (thread != nullptr) { 1739 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" 1740 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" 1741 << PrettySize(thread->tlsPtr_.stack_size) << "\n"; 1742 // Dump the held mutexes. 1743 os << " | held mutexes="; 1744 for (size_t i = 0; i < kLockLevelCount; ++i) { 1745 if (i != kMonitorLock) { 1746 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); 1747 if (mutex != nullptr) { 1748 os << " \"" << mutex->GetName() << "\""; 1749 if (mutex->IsReaderWriterMutex()) { 1750 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); 1751 if (rw_mutex->GetExclusiveOwnerTid() == tid) { 1752 os << "(exclusive held)"; 1753 } else { 1754 os << "(shared held)"; 1755 } 1756 } 1757 } 1758 } 1759 } 1760 os << "\n"; 1761 } 1762 } 1763 1764 void Thread::DumpState(std::ostream& os) const { 1765 Thread::DumpState(os, this, GetTid()); 1766 } 1767 1768 struct StackDumpVisitor : public MonitorObjectsStackVisitor { 1769 StackDumpVisitor(std::ostream& os_in, 1770 Thread* thread_in, 1771 Context* context, 1772 bool can_allocate, 1773 bool check_suspended = true, 1774 bool dump_locks = true) 1775 REQUIRES_SHARED(Locks::mutator_lock_) 1776 : MonitorObjectsStackVisitor(thread_in, 1777 context, 1778 check_suspended, 1779 can_allocate && dump_locks), 1780 os(os_in), 1781 last_method(nullptr), 1782 last_line_number(0), 1783 repetition_count(0) {} 1784 1785 virtual ~StackDumpVisitor() { 1786 if (frame_count == 0) { 1787 os << " (no managed stack frames)\n"; 1788 } 1789 } 1790 1791 static constexpr size_t kMaxRepetition = 3u; 1792 1793 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED) 1794 OVERRIDE 1795 REQUIRES_SHARED(Locks::mutator_lock_) { 1796 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize); 1797 ObjPtr<mirror::Class> c = m->GetDeclaringClass(); 1798 ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache(); 1799 int line_number = -1; 1800 if (dex_cache != nullptr) { // be tolerant of bad input 1801 const DexFile* dex_file = dex_cache->GetDexFile(); 1802 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false)); 1803 } 1804 if (line_number == last_line_number && last_method == m) { 1805 ++repetition_count; 1806 } else { 1807 if (repetition_count >= kMaxRepetition) { 1808 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; 1809 } 1810 repetition_count = 0; 1811 last_line_number = line_number; 1812 last_method = m; 1813 } 1814 1815 if (repetition_count >= kMaxRepetition) { 1816 // Skip visiting=printing anything. 1817 return VisitMethodResult::kSkipMethod; 1818 } 1819 1820 os << " at " << m->PrettyMethod(false); 1821 if (m->IsNative()) { 1822 os << "(Native method)"; 1823 } else { 1824 const char* source_file(m->GetDeclaringClassSourceFile()); 1825 os << "(" << (source_file != nullptr ? source_file : "unavailable") 1826 << ":" << line_number << ")"; 1827 } 1828 os << "\n"; 1829 // Go and visit locks. 1830 return VisitMethodResult::kContinueMethod; 1831 } 1832 1833 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE { 1834 return VisitMethodResult::kContinueMethod; 1835 } 1836 1837 void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED) 1838 OVERRIDE 1839 REQUIRES_SHARED(Locks::mutator_lock_) { 1840 PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId); 1841 } 1842 void VisitSleepingObject(mirror::Object* obj) 1843 OVERRIDE 1844 REQUIRES_SHARED(Locks::mutator_lock_) { 1845 PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId); 1846 } 1847 void VisitBlockedOnObject(mirror::Object* obj, 1848 ThreadState state, 1849 uint32_t owner_tid) 1850 OVERRIDE 1851 REQUIRES_SHARED(Locks::mutator_lock_) { 1852 const char* msg; 1853 switch (state) { 1854 case kBlocked: 1855 msg = " - waiting to lock "; 1856 break; 1857 1858 case kWaitingForLockInflation: 1859 msg = " - waiting for lock inflation of "; 1860 break; 1861 1862 default: 1863 LOG(FATAL) << "Unreachable"; 1864 UNREACHABLE(); 1865 } 1866 PrintObject(obj, msg, owner_tid); 1867 } 1868 void VisitLockedObject(mirror::Object* obj) 1869 OVERRIDE 1870 REQUIRES_SHARED(Locks::mutator_lock_) { 1871 PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId); 1872 } 1873 1874 void PrintObject(mirror::Object* obj, 1875 const char* msg, 1876 uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) { 1877 if (obj == nullptr) { 1878 os << msg << "an unknown object"; 1879 } else { 1880 if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) && 1881 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { 1882 // Getting the identity hashcode here would result in lock inflation and suspension of the 1883 // current thread, which isn't safe if this is the only runnable thread. 1884 os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", 1885 reinterpret_cast<intptr_t>(obj), 1886 obj->PrettyTypeOf().c_str()); 1887 } else { 1888 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>) 1889 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread 1890 // suspension and move pretty_object. 1891 const std::string pretty_type(obj->PrettyTypeOf()); 1892 os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str()); 1893 } 1894 } 1895 if (owner_tid != ThreadList::kInvalidThreadId) { 1896 os << " held by thread " << owner_tid; 1897 } 1898 os << "\n"; 1899 } 1900 1901 std::ostream& os; 1902 ArtMethod* last_method; 1903 int last_line_number; 1904 size_t repetition_count; 1905 }; 1906 1907 static bool ShouldShowNativeStack(const Thread* thread) 1908 REQUIRES_SHARED(Locks::mutator_lock_) { 1909 ThreadState state = thread->GetState(); 1910 1911 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. 1912 if (state > kWaiting && state < kStarting) { 1913 return true; 1914 } 1915 1916 // In an Object.wait variant or Thread.sleep? That's not interesting. 1917 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { 1918 return false; 1919 } 1920 1921 // Threads with no managed stack frames should be shown. 1922 if (!thread->HasManagedStack()) { 1923 return true; 1924 } 1925 1926 // In some other native method? That's interesting. 1927 // We don't just check kNative because native methods will be in state kSuspended if they're 1928 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the 1929 // thread-startup states if it's early enough in their life cycle (http://b/7432159). 1930 ArtMethod* current_method = thread->GetCurrentMethod(nullptr); 1931 return current_method != nullptr && current_method->IsNative(); 1932 } 1933 1934 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const { 1935 // If flip_function is not null, it means we have run a checkpoint 1936 // before the thread wakes up to execute the flip function and the 1937 // thread roots haven't been forwarded. So the following access to 1938 // the roots (locks or methods in the frames) would be bad. Run it 1939 // here. TODO: clean up. 1940 { 1941 Thread* this_thread = const_cast<Thread*>(this); 1942 Closure* flip_func = this_thread->GetFlipFunction(); 1943 if (flip_func != nullptr) { 1944 flip_func->Run(this_thread); 1945 } 1946 } 1947 1948 // Dumping the Java stack involves the verifier for locks. The verifier operates under the 1949 // assumption that there is no exception pending on entry. Thus, stash any pending exception. 1950 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended 1951 // thread. 1952 StackHandleScope<1> scope(Thread::Current()); 1953 Handle<mirror::Throwable> exc; 1954 bool have_exception = false; 1955 if (IsExceptionPending()) { 1956 exc = scope.NewHandle(GetException()); 1957 const_cast<Thread*>(this)->ClearException(); 1958 have_exception = true; 1959 } 1960 1961 std::unique_ptr<Context> context(Context::Create()); 1962 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), 1963 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks); 1964 dumper.WalkStack(); 1965 1966 if (have_exception) { 1967 const_cast<Thread*>(this)->SetException(exc.Get()); 1968 } 1969 } 1970 1971 void Thread::DumpStack(std::ostream& os, 1972 bool dump_native_stack, 1973 BacktraceMap* backtrace_map, 1974 bool force_dump_stack) const { 1975 // TODO: we call this code when dying but may not have suspended the thread ourself. The 1976 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit 1977 // the race with the thread_suspend_count_lock_). 1978 bool dump_for_abort = (gAborting > 0); 1979 bool safe_to_dump = (this == Thread::Current() || IsSuspended()); 1980 if (!kIsDebugBuild) { 1981 // We always want to dump the stack for an abort, however, there is no point dumping another 1982 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. 1983 safe_to_dump = (safe_to_dump || dump_for_abort); 1984 } 1985 if (safe_to_dump || force_dump_stack) { 1986 // If we're currently in native code, dump that stack before dumping the managed stack. 1987 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) { 1988 DumpKernelStack(os, GetTid(), " kernel: ", false); 1989 ArtMethod* method = 1990 GetCurrentMethod(nullptr, 1991 /*check_suspended*/ !force_dump_stack, 1992 /*abort_on_error*/ !(dump_for_abort || force_dump_stack)); 1993 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method); 1994 } 1995 DumpJavaStack(os, 1996 /*check_suspended*/ !force_dump_stack, 1997 /*dump_locks*/ !force_dump_stack); 1998 } else { 1999 os << "Not able to dump stack of thread that isn't suspended"; 2000 } 2001 } 2002 2003 void Thread::ThreadExitCallback(void* arg) { 2004 Thread* self = reinterpret_cast<Thread*>(arg); 2005 if (self->tls32_.thread_exit_check_count == 0) { 2006 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " 2007 "going to use a pthread_key_create destructor?): " << *self; 2008 CHECK(is_started_); 2009 #ifdef ART_TARGET_ANDROID 2010 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self; 2011 #else 2012 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); 2013 #endif 2014 self->tls32_.thread_exit_check_count = 1; 2015 } else { 2016 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; 2017 } 2018 } 2019 2020 void Thread::Startup() { 2021 CHECK(!is_started_); 2022 is_started_ = true; 2023 { 2024 // MutexLock to keep annotalysis happy. 2025 // 2026 // Note we use null for the thread because Thread::Current can 2027 // return garbage since (is_started_ == true) and 2028 // Thread::pthread_key_self_ is not yet initialized. 2029 // This was seen on glibc. 2030 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); 2031 resume_cond_ = new ConditionVariable("Thread resumption condition variable", 2032 *Locks::thread_suspend_count_lock_); 2033 } 2034 2035 // Allocate a TLS slot. 2036 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), 2037 "self key"); 2038 2039 // Double-check the TLS slot allocation. 2040 if (pthread_getspecific(pthread_key_self_) != nullptr) { 2041 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; 2042 } 2043 } 2044 2045 void Thread::FinishStartup() { 2046 Runtime* runtime = Runtime::Current(); 2047 CHECK(runtime->IsStarted()); 2048 2049 // Finish attaching the main thread. 2050 ScopedObjectAccess soa(Thread::Current()); 2051 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); 2052 Thread::Current()->AssertNoPendingException(); 2053 2054 Runtime::Current()->GetClassLinker()->RunRootClinits(); 2055 2056 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular 2057 // threads, this is done in Thread.start() on the Java side. 2058 Thread::Current()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup()); 2059 Thread::Current()->AssertNoPendingException(); 2060 } 2061 2062 void Thread::Shutdown() { 2063 CHECK(is_started_); 2064 is_started_ = false; 2065 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); 2066 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); 2067 if (resume_cond_ != nullptr) { 2068 delete resume_cond_; 2069 resume_cond_ = nullptr; 2070 } 2071 } 2072 2073 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) { 2074 ScopedLocalRef<jobject> thread_jobject( 2075 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer())); 2076 ScopedLocalRef<jobject> thread_group_jobject_scoped( 2077 soa.Env(), nullptr); 2078 jobject thread_group_jobject = thread_group; 2079 if (thread_group == nullptr || kIsDebugBuild) { 2080 // There is always a group set. Retrieve it. 2081 thread_group_jobject_scoped.reset( 2082 soa.Env()->GetObjectField(thread_jobject.get(), 2083 WellKnownClasses::java_lang_Thread_group)); 2084 thread_group_jobject = thread_group_jobject_scoped.get(); 2085 if (kIsDebugBuild && thread_group != nullptr) { 2086 CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject)); 2087 } 2088 } 2089 soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject, 2090 WellKnownClasses::java_lang_ThreadGroup, 2091 WellKnownClasses::java_lang_ThreadGroup_add, 2092 thread_jobject.get()); 2093 } 2094 2095 Thread::Thread(bool daemon) 2096 : tls32_(daemon), 2097 wait_monitor_(nullptr), 2098 custom_tls_(nullptr), 2099 can_call_into_java_(true) { 2100 wait_mutex_ = new Mutex("a thread wait mutex"); 2101 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); 2102 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>; 2103 tlsPtr_.name = new std::string(kThreadNameDuringStartup); 2104 2105 static_assert((sizeof(Thread) % 4) == 0U, 2106 "art::Thread has a size which is not a multiple of 4."); 2107 tls32_.state_and_flags.as_struct.flags = 0; 2108 tls32_.state_and_flags.as_struct.state = kNative; 2109 tls32_.interrupted.StoreRelaxed(false); 2110 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); 2111 std::fill(tlsPtr_.rosalloc_runs, 2112 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread, 2113 gc::allocator::RosAlloc::GetDedicatedFullRun()); 2114 tlsPtr_.checkpoint_function = nullptr; 2115 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 2116 tlsPtr_.active_suspend_barriers[i] = nullptr; 2117 } 2118 tlsPtr_.flip_function = nullptr; 2119 tlsPtr_.thread_local_mark_stack = nullptr; 2120 tls32_.is_transitioning_to_runnable = false; 2121 } 2122 2123 bool Thread::IsStillStarting() const { 2124 // You might think you can check whether the state is kStarting, but for much of thread startup, 2125 // the thread is in kNative; it might also be in kVmWait. 2126 // You might think you can check whether the peer is null, but the peer is actually created and 2127 // assigned fairly early on, and needs to be. 2128 // It turns out that the last thing to change is the thread name; that's a good proxy for "has 2129 // this thread _ever_ entered kRunnable". 2130 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || 2131 (*tlsPtr_.name == kThreadNameDuringStartup); 2132 } 2133 2134 void Thread::AssertPendingException() const { 2135 CHECK(IsExceptionPending()) << "Pending exception expected."; 2136 } 2137 2138 void Thread::AssertPendingOOMException() const { 2139 AssertPendingException(); 2140 auto* e = GetException(); 2141 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass()) 2142 << e->Dump(); 2143 } 2144 2145 void Thread::AssertNoPendingException() const { 2146 if (UNLIKELY(IsExceptionPending())) { 2147 ScopedObjectAccess soa(Thread::Current()); 2148 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump(); 2149 } 2150 } 2151 2152 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { 2153 if (UNLIKELY(IsExceptionPending())) { 2154 ScopedObjectAccess soa(Thread::Current()); 2155 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " 2156 << GetException()->Dump(); 2157 } 2158 } 2159 2160 class MonitorExitVisitor : public SingleRootVisitor { 2161 public: 2162 explicit MonitorExitVisitor(Thread* self) : self_(self) { } 2163 2164 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit. 2165 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED) 2166 OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 2167 if (self_->HoldsLock(entered_monitor)) { 2168 LOG(WARNING) << "Calling MonitorExit on object " 2169 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")" 2170 << " left locked by native thread " 2171 << *Thread::Current() << " which is detaching"; 2172 entered_monitor->MonitorExit(self_); 2173 } 2174 } 2175 2176 private: 2177 Thread* const self_; 2178 }; 2179 2180 void Thread::Destroy() { 2181 Thread* self = this; 2182 DCHECK_EQ(self, Thread::Current()); 2183 2184 if (tlsPtr_.jni_env != nullptr) { 2185 { 2186 ScopedObjectAccess soa(self); 2187 MonitorExitVisitor visitor(self); 2188 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. 2189 tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal)); 2190 } 2191 // Release locally held global references which releasing may require the mutator lock. 2192 if (tlsPtr_.jpeer != nullptr) { 2193 // If pthread_create fails we don't have a jni env here. 2194 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); 2195 tlsPtr_.jpeer = nullptr; 2196 } 2197 if (tlsPtr_.class_loader_override != nullptr) { 2198 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override); 2199 tlsPtr_.class_loader_override = nullptr; 2200 } 2201 } 2202 2203 if (tlsPtr_.opeer != nullptr) { 2204 ScopedObjectAccess soa(self); 2205 // We may need to call user-supplied managed code, do this before final clean-up. 2206 HandleUncaughtExceptions(soa); 2207 RemoveFromThreadGroup(soa); 2208 Runtime* runtime = Runtime::Current(); 2209 if (runtime != nullptr) { 2210 runtime->GetRuntimeCallbacks()->ThreadDeath(self); 2211 } 2212 2213 // this.nativePeer = 0; 2214 if (Runtime::Current()->IsActiveTransaction()) { 2215 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer) 2216 ->SetLong<true>(tlsPtr_.opeer, 0); 2217 } else { 2218 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer) 2219 ->SetLong<false>(tlsPtr_.opeer, 0); 2220 } 2221 2222 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone 2223 // who is waiting. 2224 ObjPtr<mirror::Object> lock = 2225 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); 2226 // (This conditional is only needed for tests, where Thread.lock won't have been set.) 2227 if (lock != nullptr) { 2228 StackHandleScope<1> hs(self); 2229 Handle<mirror::Object> h_obj(hs.NewHandle(lock)); 2230 ObjectLock<mirror::Object> locker(self, h_obj); 2231 locker.NotifyAll(); 2232 } 2233 tlsPtr_.opeer = nullptr; 2234 } 2235 2236 { 2237 ScopedObjectAccess soa(self); 2238 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); 2239 if (kUseReadBarrier) { 2240 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this); 2241 } 2242 } 2243 } 2244 2245 Thread::~Thread() { 2246 CHECK(tlsPtr_.class_loader_override == nullptr); 2247 CHECK(tlsPtr_.jpeer == nullptr); 2248 CHECK(tlsPtr_.opeer == nullptr); 2249 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? 2250 if (initialized) { 2251 delete tlsPtr_.jni_env; 2252 tlsPtr_.jni_env = nullptr; 2253 } 2254 CHECK_NE(GetState(), kRunnable); 2255 CHECK(!ReadFlag(kCheckpointRequest)); 2256 CHECK(!ReadFlag(kEmptyCheckpointRequest)); 2257 CHECK(tlsPtr_.checkpoint_function == nullptr); 2258 CHECK_EQ(checkpoint_overflow_.size(), 0u); 2259 CHECK(tlsPtr_.flip_function == nullptr); 2260 CHECK_EQ(tls32_.is_transitioning_to_runnable, false); 2261 2262 // Make sure we processed all deoptimization requests. 2263 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization"; 2264 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) << 2265 "Not all deoptimized frames have been consumed by the debugger."; 2266 2267 // We may be deleting a still born thread. 2268 SetStateUnsafe(kTerminated); 2269 2270 delete wait_cond_; 2271 delete wait_mutex_; 2272 2273 if (tlsPtr_.long_jump_context != nullptr) { 2274 delete tlsPtr_.long_jump_context; 2275 } 2276 2277 if (initialized) { 2278 CleanupCpu(); 2279 } 2280 2281 if (tlsPtr_.single_step_control != nullptr) { 2282 delete tlsPtr_.single_step_control; 2283 } 2284 delete tlsPtr_.instrumentation_stack; 2285 delete tlsPtr_.name; 2286 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample; 2287 2288 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this); 2289 2290 TearDownAlternateSignalStack(); 2291 } 2292 2293 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) { 2294 if (!IsExceptionPending()) { 2295 return; 2296 } 2297 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 2298 ScopedThreadStateChange tsc(this, kNative); 2299 2300 // Get and clear the exception. 2301 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); 2302 tlsPtr_.jni_env->ExceptionClear(); 2303 2304 // Call the Thread instance's dispatchUncaughtException(Throwable) 2305 tlsPtr_.jni_env->CallVoidMethod(peer.get(), 2306 WellKnownClasses::java_lang_Thread_dispatchUncaughtException, 2307 exception.get()); 2308 2309 // If the dispatchUncaughtException threw, clear that exception too. 2310 tlsPtr_.jni_env->ExceptionClear(); 2311 } 2312 2313 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) { 2314 // this.group.removeThread(this); 2315 // group can be null if we're in the compiler or a test. 2316 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group) 2317 ->GetObject(tlsPtr_.opeer); 2318 if (ogroup != nullptr) { 2319 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); 2320 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 2321 ScopedThreadStateChange tsc(soa.Self(), kNative); 2322 tlsPtr_.jni_env->CallVoidMethod(group.get(), 2323 WellKnownClasses::java_lang_ThreadGroup_removeThread, 2324 peer.get()); 2325 } 2326 } 2327 2328 bool Thread::HandleScopeContains(jobject obj) const { 2329 StackReference<mirror::Object>* hs_entry = 2330 reinterpret_cast<StackReference<mirror::Object>*>(obj); 2331 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) { 2332 if (cur->Contains(hs_entry)) { 2333 return true; 2334 } 2335 } 2336 // JNI code invoked from portable code uses shadow frames rather than the handle scope. 2337 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); 2338 } 2339 2340 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) { 2341 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor( 2342 visitor, RootInfo(kRootNativeStack, thread_id)); 2343 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 2344 cur->VisitRoots(buffered_visitor); 2345 } 2346 } 2347 2348 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const { 2349 if (obj == nullptr) { 2350 return nullptr; 2351 } 2352 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 2353 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref); 2354 ObjPtr<mirror::Object> result; 2355 bool expect_null = false; 2356 // The "kinds" below are sorted by the frequency we expect to encounter them. 2357 if (kind == kLocal) { 2358 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_; 2359 // Local references do not need a read barrier. 2360 result = locals.Get<kWithoutReadBarrier>(ref); 2361 } else if (kind == kHandleScopeOrInvalid) { 2362 // TODO: make stack indirect reference table lookup more efficient. 2363 // Check if this is a local reference in the handle scope. 2364 if (LIKELY(HandleScopeContains(obj))) { 2365 // Read from handle scope. 2366 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr(); 2367 VerifyObject(result); 2368 } else { 2369 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj); 2370 expect_null = true; 2371 result = nullptr; 2372 } 2373 } else if (kind == kGlobal) { 2374 result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref); 2375 } else { 2376 DCHECK_EQ(kind, kWeakGlobal); 2377 result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref); 2378 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) { 2379 // This is a special case where it's okay to return null. 2380 expect_null = true; 2381 result = nullptr; 2382 } 2383 } 2384 2385 if (UNLIKELY(!expect_null && result == nullptr)) { 2386 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p", 2387 ToStr<IndirectRefKind>(kind).c_str(), obj); 2388 } 2389 return result; 2390 } 2391 2392 bool Thread::IsJWeakCleared(jweak obj) const { 2393 CHECK(obj != nullptr); 2394 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 2395 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref); 2396 CHECK_EQ(kind, kWeakGlobal); 2397 return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref); 2398 } 2399 2400 // Implements java.lang.Thread.interrupted. 2401 bool Thread::Interrupted() { 2402 DCHECK_EQ(Thread::Current(), this); 2403 // No other thread can concurrently reset the interrupted flag. 2404 bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent(); 2405 if (interrupted) { 2406 tls32_.interrupted.StoreSequentiallyConsistent(false); 2407 } 2408 return interrupted; 2409 } 2410 2411 // Implements java.lang.Thread.isInterrupted. 2412 bool Thread::IsInterrupted() { 2413 return tls32_.interrupted.LoadSequentiallyConsistent(); 2414 } 2415 2416 void Thread::Interrupt(Thread* self) { 2417 MutexLock mu(self, *wait_mutex_); 2418 if (tls32_.interrupted.LoadSequentiallyConsistent()) { 2419 return; 2420 } 2421 tls32_.interrupted.StoreSequentiallyConsistent(true); 2422 NotifyLocked(self); 2423 } 2424 2425 void Thread::Notify() { 2426 Thread* self = Thread::Current(); 2427 MutexLock mu(self, *wait_mutex_); 2428 NotifyLocked(self); 2429 } 2430 2431 void Thread::NotifyLocked(Thread* self) { 2432 if (wait_monitor_ != nullptr) { 2433 wait_cond_->Signal(self); 2434 } 2435 } 2436 2437 void Thread::SetClassLoaderOverride(jobject class_loader_override) { 2438 if (tlsPtr_.class_loader_override != nullptr) { 2439 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override); 2440 } 2441 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override); 2442 } 2443 2444 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>; 2445 2446 // Counts the stack trace depth and also fetches the first max_saved_frames frames. 2447 class FetchStackTraceVisitor : public StackVisitor { 2448 public: 2449 explicit FetchStackTraceVisitor(Thread* thread, 2450 ArtMethodDexPcPair* saved_frames = nullptr, 2451 size_t max_saved_frames = 0) 2452 REQUIRES_SHARED(Locks::mutator_lock_) 2453 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 2454 saved_frames_(saved_frames), 2455 max_saved_frames_(max_saved_frames) {} 2456 2457 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) { 2458 // We want to skip frames up to and including the exception's constructor. 2459 // Note we also skip the frame if it doesn't have a method (namely the callee 2460 // save frame) 2461 ArtMethod* m = GetMethod(); 2462 if (skipping_ && !m->IsRuntimeMethod() && 2463 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { 2464 skipping_ = false; 2465 } 2466 if (!skipping_) { 2467 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). 2468 if (depth_ < max_saved_frames_) { 2469 saved_frames_[depth_].first = m; 2470 saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc(); 2471 } 2472 ++depth_; 2473 } 2474 } else { 2475 ++skip_depth_; 2476 } 2477 return true; 2478 } 2479 2480 uint32_t GetDepth() const { 2481 return depth_; 2482 } 2483 2484 uint32_t GetSkipDepth() const { 2485 return skip_depth_; 2486 } 2487 2488 private: 2489 uint32_t depth_ = 0; 2490 uint32_t skip_depth_ = 0; 2491 bool skipping_ = true; 2492 ArtMethodDexPcPair* saved_frames_; 2493 const size_t max_saved_frames_; 2494 2495 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor); 2496 }; 2497 2498 template<bool kTransactionActive> 2499 class BuildInternalStackTraceVisitor : public StackVisitor { 2500 public: 2501 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) 2502 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 2503 self_(self), 2504 skip_depth_(skip_depth), 2505 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {} 2506 2507 bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) { 2508 // Allocate method trace as an object array where the first element is a pointer array that 2509 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring 2510 // class of the ArtMethod pointers. 2511 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 2512 StackHandleScope<1> hs(self_); 2513 ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass); 2514 // The first element is the methods and dex pc array, the other elements are declaring classes 2515 // for the methods to ensure classes in the stack trace don't get unloaded. 2516 Handle<mirror::ObjectArray<mirror::Object>> trace( 2517 hs.NewHandle( 2518 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1))); 2519 if (trace == nullptr) { 2520 // Acquire uninterruptible_ in all paths. 2521 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 2522 self_->AssertPendingOOMException(); 2523 return false; 2524 } 2525 ObjPtr<mirror::PointerArray> methods_and_pcs = 2526 class_linker->AllocPointerArray(self_, depth * 2); 2527 const char* last_no_suspend_cause = 2528 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 2529 if (methods_and_pcs == nullptr) { 2530 self_->AssertPendingOOMException(); 2531 return false; 2532 } 2533 trace->Set(0, methods_and_pcs); 2534 trace_ = trace.Get(); 2535 // If We are called from native, use non-transactional mode. 2536 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; 2537 return true; 2538 } 2539 2540 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) { 2541 self_->EndAssertNoThreadSuspension(nullptr); 2542 } 2543 2544 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) { 2545 if (trace_ == nullptr) { 2546 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. 2547 } 2548 if (skip_depth_ > 0) { 2549 skip_depth_--; 2550 return true; 2551 } 2552 ArtMethod* m = GetMethod(); 2553 if (m->IsRuntimeMethod()) { 2554 return true; // Ignore runtime frames (in particular callee save). 2555 } 2556 AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc()); 2557 return true; 2558 } 2559 2560 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { 2561 ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs(); 2562 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_); 2563 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>( 2564 trace_methods_and_pcs->GetLength() / 2 + count_, 2565 dex_pc, 2566 pointer_size_); 2567 // Save the declaring class of the method to ensure that the declaring classes of the methods 2568 // do not get unloaded while the stack trace is live. 2569 trace_->Set(count_ + 1, method->GetDeclaringClass()); 2570 ++count_; 2571 } 2572 2573 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) { 2574 return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0))); 2575 } 2576 2577 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { 2578 return trace_; 2579 } 2580 2581 private: 2582 Thread* const self_; 2583 // How many more frames to skip. 2584 int32_t skip_depth_; 2585 // Current position down stack trace. 2586 uint32_t count_ = 0; 2587 // An object array where the first element is a pointer array that contains the ArtMethod 2588 // pointers on the stack and dex PCs. The rest of the elements are the declaring 2589 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of 2590 // the i'th frame. 2591 mirror::ObjectArray<mirror::Object>* trace_ = nullptr; 2592 // For cross compilation. 2593 const PointerSize pointer_size_; 2594 2595 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor); 2596 }; 2597 2598 template<bool kTransactionActive> 2599 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { 2600 // Compute depth of stack, save frames if possible to avoid needing to recompute many. 2601 constexpr size_t kMaxSavedFrames = 256; 2602 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]); 2603 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this), 2604 &saved_frames[0], 2605 kMaxSavedFrames); 2606 count_visitor.WalkStack(); 2607 const uint32_t depth = count_visitor.GetDepth(); 2608 const uint32_t skip_depth = count_visitor.GetSkipDepth(); 2609 2610 // Build internal stack trace. 2611 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(), 2612 const_cast<Thread*>(this), 2613 skip_depth); 2614 if (!build_trace_visitor.Init(depth)) { 2615 return nullptr; // Allocation failed. 2616 } 2617 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster 2618 // than doing the stack walk twice. 2619 if (depth < kMaxSavedFrames) { 2620 for (size_t i = 0; i < depth; ++i) { 2621 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second); 2622 } 2623 } else { 2624 build_trace_visitor.WalkStack(); 2625 } 2626 2627 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); 2628 if (kIsDebugBuild) { 2629 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs(); 2630 // Second half of trace_methods is dex PCs. 2631 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) { 2632 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>( 2633 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); 2634 CHECK(method != nullptr); 2635 } 2636 } 2637 return soa.AddLocalReference<jobject>(trace); 2638 } 2639 template jobject Thread::CreateInternalStackTrace<false>( 2640 const ScopedObjectAccessAlreadyRunnable& soa) const; 2641 template jobject Thread::CreateInternalStackTrace<true>( 2642 const ScopedObjectAccessAlreadyRunnable& soa) const; 2643 2644 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const { 2645 // Only count the depth since we do not pass a stack frame array as an argument. 2646 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this)); 2647 count_visitor.WalkStack(); 2648 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth()); 2649 } 2650 2651 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement( 2652 const ScopedObjectAccessAlreadyRunnable& soa, 2653 ArtMethod* method, 2654 uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { 2655 int32_t line_number; 2656 StackHandleScope<3> hs(soa.Self()); 2657 auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); 2658 auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); 2659 if (method->IsProxyMethod()) { 2660 line_number = -1; 2661 class_name_object.Assign(method->GetDeclaringClass()->GetName()); 2662 // source_name_object intentionally left null for proxy methods 2663 } else { 2664 line_number = method->GetLineNumFromDexPC(dex_pc); 2665 // Allocate element, potentially triggering GC 2666 // TODO: reuse class_name_object via Class::name_? 2667 const char* descriptor = method->GetDeclaringClassDescriptor(); 2668 CHECK(descriptor != nullptr); 2669 std::string class_name(PrettyDescriptor(descriptor)); 2670 class_name_object.Assign( 2671 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); 2672 if (class_name_object == nullptr) { 2673 soa.Self()->AssertPendingOOMException(); 2674 return nullptr; 2675 } 2676 const char* source_file = method->GetDeclaringClassSourceFile(); 2677 if (line_number == -1) { 2678 // Make the line_number field of StackTraceElement hold the dex pc. 2679 // source_name_object is intentionally left null if we failed to map the dex pc to 2680 // a line number (most probably because there is no debug info). See b/30183883. 2681 line_number = dex_pc; 2682 } else { 2683 if (source_file != nullptr) { 2684 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); 2685 if (source_name_object == nullptr) { 2686 soa.Self()->AssertPendingOOMException(); 2687 return nullptr; 2688 } 2689 } 2690 } 2691 } 2692 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName(); 2693 CHECK(method_name != nullptr); 2694 Handle<mirror::String> method_name_object( 2695 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); 2696 if (method_name_object == nullptr) { 2697 return nullptr; 2698 } 2699 return mirror::StackTraceElement::Alloc(soa.Self(), 2700 class_name_object, 2701 method_name_object, 2702 source_name_object, 2703 line_number); 2704 } 2705 2706 jobjectArray Thread::InternalStackTraceToStackTraceElementArray( 2707 const ScopedObjectAccessAlreadyRunnable& soa, 2708 jobject internal, 2709 jobjectArray output_array, 2710 int* stack_depth) { 2711 // Decode the internal stack trace into the depth, method trace and PC trace. 2712 // Subtract one for the methods and PC trace. 2713 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1; 2714 DCHECK_GE(depth, 0); 2715 2716 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); 2717 2718 jobjectArray result; 2719 2720 if (output_array != nullptr) { 2721 // Reuse the array we were given. 2722 result = output_array; 2723 // ...adjusting the number of frames we'll write to not exceed the array length. 2724 const int32_t traces_length = 2725 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength(); 2726 depth = std::min(depth, traces_length); 2727 } else { 2728 // Create java_trace array and place in local reference table 2729 mirror::ObjectArray<mirror::StackTraceElement>* java_traces = 2730 class_linker->AllocStackTraceElementArray(soa.Self(), depth); 2731 if (java_traces == nullptr) { 2732 return nullptr; 2733 } 2734 result = soa.AddLocalReference<jobjectArray>(java_traces); 2735 } 2736 2737 if (stack_depth != nullptr) { 2738 *stack_depth = depth; 2739 } 2740 2741 for (int32_t i = 0; i < depth; ++i) { 2742 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces = 2743 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>(); 2744 // Methods and dex PC trace is element 0. 2745 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray()); 2746 ObjPtr<mirror::PointerArray> const method_trace = 2747 ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0))); 2748 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) 2749 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize); 2750 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>( 2751 i + method_trace->GetLength() / 2, kRuntimePointerSize); 2752 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc); 2753 if (obj == nullptr) { 2754 return nullptr; 2755 } 2756 // We are called from native: use non-transactional mode. 2757 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj); 2758 } 2759 return result; 2760 } 2761 2762 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { 2763 // This code allocates. Do not allow it to operate with a pending exception. 2764 if (IsExceptionPending()) { 2765 return nullptr; 2766 } 2767 2768 // If flip_function is not null, it means we have run a checkpoint 2769 // before the thread wakes up to execute the flip function and the 2770 // thread roots haven't been forwarded. So the following access to 2771 // the roots (locks or methods in the frames) would be bad. Run it 2772 // here. TODO: clean up. 2773 // Note: copied from DumpJavaStack. 2774 { 2775 Thread* this_thread = const_cast<Thread*>(this); 2776 Closure* flip_func = this_thread->GetFlipFunction(); 2777 if (flip_func != nullptr) { 2778 flip_func->Run(this_thread); 2779 } 2780 } 2781 2782 class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor { 2783 public: 2784 CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in, 2785 Thread* self, 2786 Context* context) 2787 : MonitorObjectsStackVisitor(self, context), 2788 wait_jobject_(soaa_in.Env(), nullptr), 2789 block_jobject_(soaa_in.Env(), nullptr), 2790 soaa_(soaa_in) {} 2791 2792 protected: 2793 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED) 2794 OVERRIDE 2795 REQUIRES_SHARED(Locks::mutator_lock_) { 2796 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement( 2797 soaa_, m, GetDexPc(/* abort on error */ false)); 2798 if (obj == nullptr) { 2799 return VisitMethodResult::kEndStackWalk; 2800 } 2801 stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr())); 2802 return VisitMethodResult::kContinueMethod; 2803 } 2804 2805 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE { 2806 lock_objects_.push_back({}); 2807 lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_); 2808 2809 DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size()); 2810 2811 return VisitMethodResult::kContinueMethod; 2812 } 2813 2814 void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED) 2815 OVERRIDE 2816 REQUIRES_SHARED(Locks::mutator_lock_) { 2817 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj)); 2818 } 2819 void VisitSleepingObject(mirror::Object* obj) 2820 OVERRIDE 2821 REQUIRES_SHARED(Locks::mutator_lock_) { 2822 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj)); 2823 } 2824 void VisitBlockedOnObject(mirror::Object* obj, 2825 ThreadState state ATTRIBUTE_UNUSED, 2826 uint32_t owner_tid ATTRIBUTE_UNUSED) 2827 OVERRIDE 2828 REQUIRES_SHARED(Locks::mutator_lock_) { 2829 block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj)); 2830 } 2831 void VisitLockedObject(mirror::Object* obj) 2832 OVERRIDE 2833 REQUIRES_SHARED(Locks::mutator_lock_) { 2834 frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj)); 2835 } 2836 2837 public: 2838 std::vector<ScopedLocalRef<jobject>> stack_trace_elements_; 2839 ScopedLocalRef<jobject> wait_jobject_; 2840 ScopedLocalRef<jobject> block_jobject_; 2841 std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_; 2842 2843 private: 2844 const ScopedObjectAccessAlreadyRunnable& soaa_; 2845 2846 std::vector<ScopedLocalRef<jobject>> frame_lock_objects_; 2847 }; 2848 2849 std::unique_ptr<Context> context(Context::Create()); 2850 CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get()); 2851 dumper.WalkStack(); 2852 2853 // There should not be a pending exception. Otherwise, return with it pending. 2854 if (IsExceptionPending()) { 2855 return nullptr; 2856 } 2857 2858 // Now go and create Java arrays. 2859 2860 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 2861 2862 StackHandleScope<6> hs(soa.Self()); 2863 mirror::Class* aste_array_class = class_linker->FindClass( 2864 soa.Self(), 2865 "[Ldalvik/system/AnnotatedStackTraceElement;", 2866 ScopedNullHandle<mirror::ClassLoader>()); 2867 if (aste_array_class == nullptr) { 2868 return nullptr; 2869 } 2870 Handle<mirror::Class> h_aste_array_class(hs.NewHandle<mirror::Class>(aste_array_class)); 2871 2872 mirror::Class* o_array_class = class_linker->FindClass(soa.Self(), 2873 "[Ljava/lang/Object;", 2874 ScopedNullHandle<mirror::ClassLoader>()); 2875 if (o_array_class == nullptr) { 2876 // This should not fail in a healthy runtime. 2877 soa.Self()->AssertPendingException(); 2878 return nullptr; 2879 } 2880 Handle<mirror::Class> h_o_array_class(hs.NewHandle<mirror::Class>(o_array_class)); 2881 2882 Handle<mirror::Class> h_aste_class(hs.NewHandle<mirror::Class>( 2883 h_aste_array_class->GetComponentType())); 2884 2885 // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 . 2886 class_linker->EnsureInitialized(soa.Self(), 2887 h_aste_class, 2888 /* can_init_fields */ true, 2889 /* can_init_parents */ true); 2890 if (soa.Self()->IsExceptionPending()) { 2891 // This should not fail in a healthy runtime. 2892 return nullptr; 2893 } 2894 2895 ArtField* stack_trace_element_field = h_aste_class->FindField( 2896 soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;"); 2897 DCHECK(stack_trace_element_field != nullptr); 2898 ArtField* held_locks_field = h_aste_class->FindField( 2899 soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;"); 2900 DCHECK(held_locks_field != nullptr); 2901 ArtField* blocked_on_field = h_aste_class->FindField( 2902 soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;"); 2903 DCHECK(blocked_on_field != nullptr); 2904 2905 size_t length = dumper.stack_trace_elements_.size(); 2906 ObjPtr<mirror::ObjectArray<mirror::Object>> array = 2907 mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), aste_array_class, length); 2908 if (array == nullptr) { 2909 soa.Self()->AssertPendingOOMException(); 2910 return nullptr; 2911 } 2912 2913 ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array)); 2914 2915 MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr)); 2916 MutableHandle<mirror::ObjectArray<mirror::Object>> handle2( 2917 hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr)); 2918 for (size_t i = 0; i != length; ++i) { 2919 handle.Assign(h_aste_class->AllocObject(soa.Self())); 2920 if (handle == nullptr) { 2921 soa.Self()->AssertPendingOOMException(); 2922 return nullptr; 2923 } 2924 2925 // Set stack trace element. 2926 stack_trace_element_field->SetObject<false>( 2927 handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get())); 2928 2929 // Create locked-on array. 2930 if (!dumper.lock_objects_[i].empty()) { 2931 handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), 2932 h_o_array_class.Get(), 2933 dumper.lock_objects_[i].size())); 2934 if (handle2 == nullptr) { 2935 soa.Self()->AssertPendingOOMException(); 2936 return nullptr; 2937 } 2938 int32_t j = 0; 2939 for (auto& scoped_local : dumper.lock_objects_[i]) { 2940 if (scoped_local == nullptr) { 2941 continue; 2942 } 2943 handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get())); 2944 DCHECK(!soa.Self()->IsExceptionPending()); 2945 j++; 2946 } 2947 held_locks_field->SetObject<false>(handle.Get(), handle2.Get()); 2948 } 2949 2950 // Set blocked-on object. 2951 if (i == 0) { 2952 if (dumper.block_jobject_ != nullptr) { 2953 blocked_on_field->SetObject<false>( 2954 handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get())); 2955 } 2956 } 2957 2958 ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get())); 2959 soa.Env()->SetObjectArrayElement(result.get(), i, elem.get()); 2960 DCHECK(!soa.Self()->IsExceptionPending()); 2961 } 2962 2963 return result.release(); 2964 } 2965 2966 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { 2967 va_list args; 2968 va_start(args, fmt); 2969 ThrowNewExceptionV(exception_class_descriptor, fmt, args); 2970 va_end(args); 2971 } 2972 2973 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, 2974 const char* fmt, va_list ap) { 2975 std::string msg; 2976 StringAppendV(&msg, fmt, ap); 2977 ThrowNewException(exception_class_descriptor, msg.c_str()); 2978 } 2979 2980 void Thread::ThrowNewException(const char* exception_class_descriptor, 2981 const char* msg) { 2982 // Callers should either clear or call ThrowNewWrappedException. 2983 AssertNoPendingExceptionForNewException(msg); 2984 ThrowNewWrappedException(exception_class_descriptor, msg); 2985 } 2986 2987 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self) 2988 REQUIRES_SHARED(Locks::mutator_lock_) { 2989 ArtMethod* method = self->GetCurrentMethod(nullptr); 2990 return method != nullptr 2991 ? method->GetDeclaringClass()->GetClassLoader() 2992 : nullptr; 2993 } 2994 2995 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, 2996 const char* msg) { 2997 DCHECK_EQ(this, Thread::Current()); 2998 ScopedObjectAccessUnchecked soa(this); 2999 StackHandleScope<3> hs(soa.Self()); 3000 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self()))); 3001 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException())); 3002 ClearException(); 3003 Runtime* runtime = Runtime::Current(); 3004 auto* cl = runtime->GetClassLinker(); 3005 Handle<mirror::Class> exception_class( 3006 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader))); 3007 if (UNLIKELY(exception_class == nullptr)) { 3008 CHECK(IsExceptionPending()); 3009 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); 3010 return; 3011 } 3012 3013 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true, 3014 true))) { 3015 DCHECK(IsExceptionPending()); 3016 return; 3017 } 3018 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); 3019 Handle<mirror::Throwable> exception( 3020 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this)))); 3021 3022 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. 3023 if (exception == nullptr) { 3024 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 3025 return; 3026 } 3027 3028 // Choose an appropriate constructor and set up the arguments. 3029 const char* signature; 3030 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); 3031 if (msg != nullptr) { 3032 // Ensure we remember this and the method over the String allocation. 3033 msg_string.reset( 3034 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); 3035 if (UNLIKELY(msg_string.get() == nullptr)) { 3036 CHECK(IsExceptionPending()); // OOME. 3037 return; 3038 } 3039 if (cause.get() == nullptr) { 3040 signature = "(Ljava/lang/String;)V"; 3041 } else { 3042 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; 3043 } 3044 } else { 3045 if (cause.get() == nullptr) { 3046 signature = "()V"; 3047 } else { 3048 signature = "(Ljava/lang/Throwable;)V"; 3049 } 3050 } 3051 ArtMethod* exception_init_method = 3052 exception_class->FindConstructor(signature, cl->GetImagePointerSize()); 3053 3054 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " 3055 << PrettyDescriptor(exception_class_descriptor); 3056 3057 if (UNLIKELY(!runtime->IsStarted())) { 3058 // Something is trying to throw an exception without a started runtime, which is the common 3059 // case in the compiler. We won't be able to invoke the constructor of the exception, so set 3060 // the exception fields directly. 3061 if (msg != nullptr) { 3062 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString()); 3063 } 3064 if (cause.get() != nullptr) { 3065 exception->SetCause(DecodeJObject(cause.get())->AsThrowable()); 3066 } 3067 ScopedLocalRef<jobject> trace(GetJniEnv(), 3068 Runtime::Current()->IsActiveTransaction() 3069 ? CreateInternalStackTrace<true>(soa) 3070 : CreateInternalStackTrace<false>(soa)); 3071 if (trace.get() != nullptr) { 3072 exception->SetStackState(DecodeJObject(trace.get()).Ptr()); 3073 } 3074 SetException(exception.Get()); 3075 } else { 3076 jvalue jv_args[2]; 3077 size_t i = 0; 3078 3079 if (msg != nullptr) { 3080 jv_args[i].l = msg_string.get(); 3081 ++i; 3082 } 3083 if (cause.get() != nullptr) { 3084 jv_args[i].l = cause.get(); 3085 ++i; 3086 } 3087 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get())); 3088 InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args); 3089 if (LIKELY(!IsExceptionPending())) { 3090 SetException(exception.Get()); 3091 } 3092 } 3093 } 3094 3095 void Thread::ThrowOutOfMemoryError(const char* msg) { 3096 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", 3097 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : "")); 3098 if (!tls32_.throwing_OutOfMemoryError) { 3099 tls32_.throwing_OutOfMemoryError = true; 3100 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); 3101 tls32_.throwing_OutOfMemoryError = false; 3102 } else { 3103 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. 3104 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 3105 } 3106 } 3107 3108 Thread* Thread::CurrentFromGdb() { 3109 return Thread::Current(); 3110 } 3111 3112 void Thread::DumpFromGdb() const { 3113 std::ostringstream ss; 3114 Dump(ss); 3115 std::string str(ss.str()); 3116 // log to stderr for debugging command line processes 3117 std::cerr << str; 3118 #ifdef ART_TARGET_ANDROID 3119 // log to logcat for debugging frameworks processes 3120 LOG(INFO) << str; 3121 #endif 3122 } 3123 3124 // Explicitly instantiate 32 and 64bit thread offset dumping support. 3125 template 3126 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset); 3127 template 3128 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset); 3129 3130 template<PointerSize ptr_size> 3131 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { 3132 #define DO_THREAD_OFFSET(x, y) \ 3133 if (offset == (x).Uint32Value()) { \ 3134 os << (y); \ 3135 return; \ 3136 } 3137 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") 3138 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") 3139 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") 3140 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); 3141 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") 3142 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") 3143 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") 3144 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") 3145 DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking") 3146 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") 3147 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") 3148 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") 3149 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") 3150 #undef DO_THREAD_OFFSET 3151 3152 #define JNI_ENTRY_POINT_INFO(x) \ 3153 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 3154 os << #x; \ 3155 return; \ 3156 } 3157 JNI_ENTRY_POINT_INFO(pDlsymLookup) 3158 #undef JNI_ENTRY_POINT_INFO 3159 3160 #define QUICK_ENTRY_POINT_INFO(x) \ 3161 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 3162 os << #x; \ 3163 return; \ 3164 } 3165 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) 3166 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8) 3167 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16) 3168 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32) 3169 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64) 3170 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) 3171 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) 3172 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks) 3173 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes) 3174 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars) 3175 QUICK_ENTRY_POINT_INFO(pAllocStringFromString) 3176 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) 3177 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf) 3178 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) 3179 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess) 3180 QUICK_ENTRY_POINT_INFO(pInitializeType) 3181 QUICK_ENTRY_POINT_INFO(pResolveString) 3182 QUICK_ENTRY_POINT_INFO(pSet8Instance) 3183 QUICK_ENTRY_POINT_INFO(pSet8Static) 3184 QUICK_ENTRY_POINT_INFO(pSet16Instance) 3185 QUICK_ENTRY_POINT_INFO(pSet16Static) 3186 QUICK_ENTRY_POINT_INFO(pSet32Instance) 3187 QUICK_ENTRY_POINT_INFO(pSet32Static) 3188 QUICK_ENTRY_POINT_INFO(pSet64Instance) 3189 QUICK_ENTRY_POINT_INFO(pSet64Static) 3190 QUICK_ENTRY_POINT_INFO(pSetObjInstance) 3191 QUICK_ENTRY_POINT_INFO(pSetObjStatic) 3192 QUICK_ENTRY_POINT_INFO(pGetByteInstance) 3193 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance) 3194 QUICK_ENTRY_POINT_INFO(pGetByteStatic) 3195 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic) 3196 QUICK_ENTRY_POINT_INFO(pGetShortInstance) 3197 QUICK_ENTRY_POINT_INFO(pGetCharInstance) 3198 QUICK_ENTRY_POINT_INFO(pGetShortStatic) 3199 QUICK_ENTRY_POINT_INFO(pGetCharStatic) 3200 QUICK_ENTRY_POINT_INFO(pGet32Instance) 3201 QUICK_ENTRY_POINT_INFO(pGet32Static) 3202 QUICK_ENTRY_POINT_INFO(pGet64Instance) 3203 QUICK_ENTRY_POINT_INFO(pGet64Static) 3204 QUICK_ENTRY_POINT_INFO(pGetObjInstance) 3205 QUICK_ENTRY_POINT_INFO(pGetObjStatic) 3206 QUICK_ENTRY_POINT_INFO(pAputObject) 3207 QUICK_ENTRY_POINT_INFO(pJniMethodStart) 3208 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) 3209 QUICK_ENTRY_POINT_INFO(pJniMethodEnd) 3210 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) 3211 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) 3212 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) 3213 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) 3214 QUICK_ENTRY_POINT_INFO(pLockObject) 3215 QUICK_ENTRY_POINT_INFO(pUnlockObject) 3216 QUICK_ENTRY_POINT_INFO(pCmpgDouble) 3217 QUICK_ENTRY_POINT_INFO(pCmpgFloat) 3218 QUICK_ENTRY_POINT_INFO(pCmplDouble) 3219 QUICK_ENTRY_POINT_INFO(pCmplFloat) 3220 QUICK_ENTRY_POINT_INFO(pCos) 3221 QUICK_ENTRY_POINT_INFO(pSin) 3222 QUICK_ENTRY_POINT_INFO(pAcos) 3223 QUICK_ENTRY_POINT_INFO(pAsin) 3224 QUICK_ENTRY_POINT_INFO(pAtan) 3225 QUICK_ENTRY_POINT_INFO(pAtan2) 3226 QUICK_ENTRY_POINT_INFO(pCbrt) 3227 QUICK_ENTRY_POINT_INFO(pCosh) 3228 QUICK_ENTRY_POINT_INFO(pExp) 3229 QUICK_ENTRY_POINT_INFO(pExpm1) 3230 QUICK_ENTRY_POINT_INFO(pHypot) 3231 QUICK_ENTRY_POINT_INFO(pLog) 3232 QUICK_ENTRY_POINT_INFO(pLog10) 3233 QUICK_ENTRY_POINT_INFO(pNextAfter) 3234 QUICK_ENTRY_POINT_INFO(pSinh) 3235 QUICK_ENTRY_POINT_INFO(pTan) 3236 QUICK_ENTRY_POINT_INFO(pTanh) 3237 QUICK_ENTRY_POINT_INFO(pFmod) 3238 QUICK_ENTRY_POINT_INFO(pL2d) 3239 QUICK_ENTRY_POINT_INFO(pFmodf) 3240 QUICK_ENTRY_POINT_INFO(pL2f) 3241 QUICK_ENTRY_POINT_INFO(pD2iz) 3242 QUICK_ENTRY_POINT_INFO(pF2iz) 3243 QUICK_ENTRY_POINT_INFO(pIdivmod) 3244 QUICK_ENTRY_POINT_INFO(pD2l) 3245 QUICK_ENTRY_POINT_INFO(pF2l) 3246 QUICK_ENTRY_POINT_INFO(pLdiv) 3247 QUICK_ENTRY_POINT_INFO(pLmod) 3248 QUICK_ENTRY_POINT_INFO(pLmul) 3249 QUICK_ENTRY_POINT_INFO(pShlLong) 3250 QUICK_ENTRY_POINT_INFO(pShrLong) 3251 QUICK_ENTRY_POINT_INFO(pUshrLong) 3252 QUICK_ENTRY_POINT_INFO(pIndexOf) 3253 QUICK_ENTRY_POINT_INFO(pStringCompareTo) 3254 QUICK_ENTRY_POINT_INFO(pMemcpy) 3255 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) 3256 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) 3257 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) 3258 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) 3259 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) 3260 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) 3261 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) 3262 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) 3263 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic) 3264 QUICK_ENTRY_POINT_INFO(pTestSuspend) 3265 QUICK_ENTRY_POINT_INFO(pDeliverException) 3266 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) 3267 QUICK_ENTRY_POINT_INFO(pThrowDivZero) 3268 QUICK_ENTRY_POINT_INFO(pThrowNullPointer) 3269 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) 3270 QUICK_ENTRY_POINT_INFO(pDeoptimize) 3271 QUICK_ENTRY_POINT_INFO(pA64Load) 3272 QUICK_ENTRY_POINT_INFO(pA64Store) 3273 QUICK_ENTRY_POINT_INFO(pNewEmptyString) 3274 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B) 3275 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI) 3276 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII) 3277 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII) 3278 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString) 3279 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString) 3280 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset) 3281 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset) 3282 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C) 3283 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII) 3284 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC) 3285 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints) 3286 QUICK_ENTRY_POINT_INFO(pNewStringFromString) 3287 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer) 3288 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder) 3289 QUICK_ENTRY_POINT_INFO(pReadBarrierJni) 3290 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00) 3291 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01) 3292 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02) 3293 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03) 3294 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04) 3295 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05) 3296 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06) 3297 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07) 3298 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08) 3299 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09) 3300 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10) 3301 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11) 3302 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12) 3303 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13) 3304 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14) 3305 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15) 3306 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16) 3307 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17) 3308 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18) 3309 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19) 3310 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20) 3311 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21) 3312 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22) 3313 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23) 3314 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24) 3315 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25) 3316 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26) 3317 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27) 3318 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28) 3319 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29) 3320 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow) 3321 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow) 3322 3323 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart) 3324 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd) 3325 #undef QUICK_ENTRY_POINT_INFO 3326 3327 os << offset; 3328 } 3329 3330 void Thread::QuickDeliverException() { 3331 // Get exception from thread. 3332 ObjPtr<mirror::Throwable> exception = GetException(); 3333 CHECK(exception != nullptr); 3334 if (exception == GetDeoptimizationException()) { 3335 artDeoptimize(this); 3336 UNREACHABLE(); 3337 } 3338 3339 ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr()); 3340 3341 // This is a real exception: let the instrumentation know about it. 3342 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); 3343 if (instrumentation->HasExceptionThrownListeners() && 3344 IsExceptionThrownByCurrentMethod(exception)) { 3345 // Instrumentation may cause GC so keep the exception object safe. 3346 StackHandleScope<1> hs(this); 3347 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception)); 3348 instrumentation->ExceptionThrownEvent(this, exception.Ptr()); 3349 } 3350 // Does instrumentation need to deoptimize the stack? 3351 // Note: we do this *after* reporting the exception to instrumentation in case it 3352 // now requires deoptimization. It may happen if a debugger is attached and requests 3353 // new events (single-step, breakpoint, ...) when the exception is reported. 3354 if (Dbg::IsForcedInterpreterNeededForException(this)) { 3355 NthCallerVisitor visitor(this, 0, false); 3356 visitor.WalkStack(); 3357 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) { 3358 // method_type shouldn't matter due to exception handling. 3359 const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault; 3360 // Save the exception into the deoptimization context so it can be restored 3361 // before entering the interpreter. 3362 PushDeoptimizationContext( 3363 JValue(), 3364 false /* is_reference */, 3365 exception, 3366 false /* from_code */, 3367 method_type); 3368 artDeoptimize(this); 3369 UNREACHABLE(); 3370 } else { 3371 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " 3372 << visitor.caller->PrettyMethod(); 3373 } 3374 } 3375 3376 // Don't leave exception visible while we try to find the handler, which may cause class 3377 // resolution. 3378 ClearException(); 3379 QuickExceptionHandler exception_handler(this, false); 3380 exception_handler.FindCatch(exception); 3381 exception_handler.UpdateInstrumentationStack(); 3382 if (exception_handler.GetClearException()) { 3383 // Exception was cleared as part of delivery. 3384 DCHECK(!IsExceptionPending()); 3385 } else { 3386 // Exception was put back with a throw location. 3387 DCHECK(IsExceptionPending()); 3388 // Check the to-space invariant on the re-installed exception (if applicable). 3389 ReadBarrier::MaybeAssertToSpaceInvariant(GetException()); 3390 } 3391 exception_handler.DoLongJump(); 3392 } 3393 3394 Context* Thread::GetLongJumpContext() { 3395 Context* result = tlsPtr_.long_jump_context; 3396 if (result == nullptr) { 3397 result = Context::Create(); 3398 } else { 3399 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. 3400 result->Reset(); 3401 } 3402 return result; 3403 } 3404 3405 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is 3406 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack. 3407 struct CurrentMethodVisitor FINAL : public StackVisitor { 3408 CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error) 3409 REQUIRES_SHARED(Locks::mutator_lock_) 3410 : StackVisitor(thread, 3411 context, 3412 StackVisitor::StackWalkKind::kIncludeInlinedFrames, 3413 check_suspended), 3414 this_object_(nullptr), 3415 method_(nullptr), 3416 dex_pc_(0), 3417 abort_on_error_(abort_on_error) {} 3418 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 3419 ArtMethod* m = GetMethod(); 3420 if (m->IsRuntimeMethod()) { 3421 // Continue if this is a runtime method. 3422 return true; 3423 } 3424 if (context_ != nullptr) { 3425 this_object_ = GetThisObject(); 3426 } 3427 method_ = m; 3428 dex_pc_ = GetDexPc(abort_on_error_); 3429 return false; 3430 } 3431 ObjPtr<mirror::Object> this_object_; 3432 ArtMethod* method_; 3433 uint32_t dex_pc_; 3434 const bool abort_on_error_; 3435 }; 3436 3437 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, 3438 bool check_suspended, 3439 bool abort_on_error) const { 3440 CurrentMethodVisitor visitor(const_cast<Thread*>(this), 3441 nullptr, 3442 check_suspended, 3443 abort_on_error); 3444 visitor.WalkStack(false); 3445 if (dex_pc != nullptr) { 3446 *dex_pc = visitor.dex_pc_; 3447 } 3448 return visitor.method_; 3449 } 3450 3451 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const { 3452 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId(); 3453 } 3454 3455 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp) 3456 REQUIRES_SHARED(Locks::mutator_lock_); 3457 3458 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). 3459 template <typename RootVisitor, bool kPrecise = false> 3460 class ReferenceMapVisitor : public StackVisitor { 3461 public: 3462 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor) 3463 REQUIRES_SHARED(Locks::mutator_lock_) 3464 // We are visiting the references in compiled frames, so we do not need 3465 // to know the inlined frames. 3466 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames), 3467 visitor_(visitor) {} 3468 3469 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) { 3470 if (false) { 3471 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod()) 3472 << StringPrintf("@ PC:%04x", GetDexPc()); 3473 } 3474 ShadowFrame* shadow_frame = GetCurrentShadowFrame(); 3475 if (shadow_frame != nullptr) { 3476 VisitShadowFrame(shadow_frame); 3477 } else { 3478 VisitQuickFrame(); 3479 } 3480 return true; 3481 } 3482 3483 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) { 3484 ArtMethod* m = shadow_frame->GetMethod(); 3485 VisitDeclaringClass(m); 3486 DCHECK(m != nullptr); 3487 size_t num_regs = shadow_frame->NumberOfVRegs(); 3488 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray()); 3489 // handle scope for JNI or References for interpreter. 3490 for (size_t reg = 0; reg < num_regs; ++reg) { 3491 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 3492 if (ref != nullptr) { 3493 mirror::Object* new_ref = ref; 3494 visitor_(&new_ref, reg, this); 3495 if (new_ref != ref) { 3496 shadow_frame->SetVRegReference(reg, new_ref); 3497 } 3498 } 3499 } 3500 // Mark lock count map required for structured locking checks. 3501 shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg */ -1, this); 3502 } 3503 3504 private: 3505 // Visiting the declaring class is necessary so that we don't unload the class of a method that 3506 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since 3507 // the threads do not all hold the heap bitmap lock for parallel GC. 3508 void VisitDeclaringClass(ArtMethod* method) 3509 REQUIRES_SHARED(Locks::mutator_lock_) 3510 NO_THREAD_SAFETY_ANALYSIS { 3511 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>(); 3512 // klass can be null for runtime methods. 3513 if (klass != nullptr) { 3514 if (kVerifyImageObjectsMarked) { 3515 gc::Heap* const heap = Runtime::Current()->GetHeap(); 3516 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass, 3517 /*fail_ok*/true); 3518 if (space != nullptr && space->IsImageSpace()) { 3519 bool failed = false; 3520 if (!space->GetLiveBitmap()->Test(klass.Ptr())) { 3521 failed = true; 3522 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space; 3523 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) { 3524 failed = true; 3525 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space; 3526 } 3527 if (failed) { 3528 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT)); 3529 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT)); 3530 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method 3531 << " klass@" << klass.Ptr(); 3532 // Pretty info last in case it crashes. 3533 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass " 3534 << klass->PrettyClass(); 3535 } 3536 } 3537 } 3538 mirror::Object* new_ref = klass.Ptr(); 3539 visitor_(&new_ref, /* vreg */ -1, this); 3540 if (new_ref != klass) { 3541 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass()); 3542 } 3543 } 3544 } 3545 3546 template <typename T> 3547 ALWAYS_INLINE 3548 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) { 3549 ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); 3550 DCHECK(cur_quick_frame != nullptr); 3551 ArtMethod* m = *cur_quick_frame; 3552 VisitDeclaringClass(m); 3553 3554 // Process register map (which native and runtime methods don't have) 3555 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) { 3556 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); 3557 DCHECK(method_header->IsOptimized()); 3558 StackReference<mirror::Object>* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>( 3559 reinterpret_cast<uintptr_t>(cur_quick_frame)); 3560 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc()); 3561 CodeInfo code_info = method_header->GetOptimizedCodeInfo(); 3562 CodeInfoEncoding encoding = code_info.ExtractEncoding(); 3563 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding); 3564 DCHECK(map.IsValid()); 3565 3566 T vreg_info(m, code_info, encoding, map, visitor_); 3567 3568 // Visit stack entries that hold pointers. 3569 const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding); 3570 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map); 3571 for (size_t i = 0; i < number_of_bits; ++i) { 3572 if (stack_mask.LoadBit(i)) { 3573 StackReference<mirror::Object>* ref_addr = vreg_base + i; 3574 mirror::Object* ref = ref_addr->AsMirrorPtr(); 3575 if (ref != nullptr) { 3576 mirror::Object* new_ref = ref; 3577 vreg_info.VisitStack(&new_ref, i, this); 3578 if (ref != new_ref) { 3579 ref_addr->Assign(new_ref); 3580 } 3581 } 3582 } 3583 } 3584 // Visit callee-save registers that hold pointers. 3585 uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map); 3586 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) { 3587 if (register_mask & (1 << i)) { 3588 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i)); 3589 if (kIsDebugBuild && ref_addr == nullptr) { 3590 std::string thread_name; 3591 GetThread()->GetThreadName(thread_name); 3592 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name; 3593 DescribeStack(GetThread()); 3594 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) " 3595 << "set in register_mask=" << register_mask << " at " << DescribeLocation(); 3596 } 3597 if (*ref_addr != nullptr) { 3598 vreg_info.VisitRegister(ref_addr, i, this); 3599 } 3600 } 3601 } 3602 } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) { 3603 // If this is a proxy method, visit its reference arguments. 3604 DCHECK(!m->IsStatic()); 3605 DCHECK(!m->IsNative()); 3606 std::vector<StackReference<mirror::Object>*> ref_addrs = 3607 GetProxyReferenceArguments(cur_quick_frame); 3608 for (StackReference<mirror::Object>* ref_addr : ref_addrs) { 3609 mirror::Object* ref = ref_addr->AsMirrorPtr(); 3610 if (ref != nullptr) { 3611 mirror::Object* new_ref = ref; 3612 visitor_(&new_ref, /* vreg */ -1, this); 3613 if (ref != new_ref) { 3614 ref_addr->Assign(new_ref); 3615 } 3616 } 3617 } 3618 } 3619 } 3620 3621 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) { 3622 if (kPrecise) { 3623 VisitQuickFramePrecise(); 3624 } else { 3625 VisitQuickFrameNonPrecise(); 3626 } 3627 } 3628 3629 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) { 3630 struct UndefinedVRegInfo { 3631 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED, 3632 const CodeInfo& code_info ATTRIBUTE_UNUSED, 3633 const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED, 3634 const StackMap& map ATTRIBUTE_UNUSED, 3635 RootVisitor& _visitor) 3636 : visitor(_visitor) { 3637 } 3638 3639 ALWAYS_INLINE 3640 void VisitStack(mirror::Object** ref, 3641 size_t stack_index ATTRIBUTE_UNUSED, 3642 const StackVisitor* stack_visitor) 3643 REQUIRES_SHARED(Locks::mutator_lock_) { 3644 visitor(ref, -1, stack_visitor); 3645 } 3646 3647 ALWAYS_INLINE 3648 void VisitRegister(mirror::Object** ref, 3649 size_t register_index ATTRIBUTE_UNUSED, 3650 const StackVisitor* stack_visitor) 3651 REQUIRES_SHARED(Locks::mutator_lock_) { 3652 visitor(ref, -1, stack_visitor); 3653 } 3654 3655 RootVisitor& visitor; 3656 }; 3657 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>(); 3658 } 3659 3660 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) { 3661 struct StackMapVRegInfo { 3662 StackMapVRegInfo(ArtMethod* method, 3663 const CodeInfo& _code_info, 3664 const CodeInfoEncoding& _encoding, 3665 const StackMap& map, 3666 RootVisitor& _visitor) 3667 : number_of_dex_registers(method->DexInstructionData().RegistersSize()), 3668 code_info(_code_info), 3669 encoding(_encoding), 3670 dex_register_map(code_info.GetDexRegisterMapOf(map, 3671 encoding, 3672 number_of_dex_registers)), 3673 visitor(_visitor) { 3674 } 3675 3676 // TODO: If necessary, we should consider caching a reverse map instead of the linear 3677 // lookups for each location. 3678 void FindWithType(const size_t index, 3679 const DexRegisterLocation::Kind kind, 3680 mirror::Object** ref, 3681 const StackVisitor* stack_visitor) 3682 REQUIRES_SHARED(Locks::mutator_lock_) { 3683 bool found = false; 3684 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) { 3685 DexRegisterLocation location = dex_register_map.GetDexRegisterLocation( 3686 dex_reg, number_of_dex_registers, code_info, encoding); 3687 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) { 3688 visitor(ref, dex_reg, stack_visitor); 3689 found = true; 3690 } 3691 } 3692 3693 if (!found) { 3694 // If nothing found, report with -1. 3695 visitor(ref, -1, stack_visitor); 3696 } 3697 } 3698 3699 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor) 3700 REQUIRES_SHARED(Locks::mutator_lock_) { 3701 const size_t stack_offset = stack_index * kFrameSlotSize; 3702 FindWithType(stack_offset, 3703 DexRegisterLocation::Kind::kInStack, 3704 ref, 3705 stack_visitor); 3706 } 3707 3708 void VisitRegister(mirror::Object** ref, 3709 size_t register_index, 3710 const StackVisitor* stack_visitor) 3711 REQUIRES_SHARED(Locks::mutator_lock_) { 3712 FindWithType(register_index, 3713 DexRegisterLocation::Kind::kInRegister, 3714 ref, 3715 stack_visitor); 3716 } 3717 3718 size_t number_of_dex_registers; 3719 const CodeInfo& code_info; 3720 const CodeInfoEncoding& encoding; 3721 DexRegisterMap dex_register_map; 3722 RootVisitor& visitor; 3723 }; 3724 VisitQuickFrameWithVregCallback<StackMapVRegInfo>(); 3725 } 3726 3727 // Visitor for when we visit a root. 3728 RootVisitor& visitor_; 3729 }; 3730 3731 class RootCallbackVisitor { 3732 public: 3733 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {} 3734 3735 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const 3736 REQUIRES_SHARED(Locks::mutator_lock_) { 3737 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg)); 3738 } 3739 3740 private: 3741 RootVisitor* const visitor_; 3742 const uint32_t tid_; 3743 }; 3744 3745 template <bool kPrecise> 3746 void Thread::VisitRoots(RootVisitor* visitor) { 3747 const pid_t thread_id = GetThreadId(); 3748 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id)); 3749 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { 3750 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), 3751 RootInfo(kRootNativeStack, thread_id)); 3752 } 3753 if (tlsPtr_.async_exception != nullptr) { 3754 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception), 3755 RootInfo(kRootNativeStack, thread_id)); 3756 } 3757 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id)); 3758 tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id)); 3759 tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id)); 3760 HandleScopeVisitRoots(visitor, thread_id); 3761 if (tlsPtr_.debug_invoke_req != nullptr) { 3762 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id)); 3763 } 3764 // Visit roots for deoptimization. 3765 if (tlsPtr_.stacked_shadow_frame_record != nullptr) { 3766 RootCallbackVisitor visitor_to_callback(visitor, thread_id); 3767 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback); 3768 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; 3769 record != nullptr; 3770 record = record->GetLink()) { 3771 for (ShadowFrame* shadow_frame = record->GetShadowFrame(); 3772 shadow_frame != nullptr; 3773 shadow_frame = shadow_frame->GetLink()) { 3774 mapper.VisitShadowFrame(shadow_frame); 3775 } 3776 } 3777 } 3778 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; 3779 record != nullptr; 3780 record = record->GetLink()) { 3781 if (record->IsReference()) { 3782 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(), 3783 RootInfo(kRootThreadObject, thread_id)); 3784 } 3785 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(), 3786 RootInfo(kRootThreadObject, thread_id)); 3787 } 3788 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) { 3789 RootCallbackVisitor visitor_to_callback(visitor, thread_id); 3790 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback); 3791 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame; 3792 record != nullptr; 3793 record = record->GetNext()) { 3794 mapper.VisitShadowFrame(record->GetShadowFrame()); 3795 } 3796 } 3797 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) { 3798 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id)); 3799 } 3800 // Visit roots on this thread's stack 3801 RuntimeContextType context; 3802 RootCallbackVisitor visitor_to_callback(visitor, thread_id); 3803 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback); 3804 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false); 3805 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { 3806 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id)); 3807 } 3808 } 3809 3810 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { 3811 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) { 3812 VisitRoots</* kPrecise */ true>(visitor); 3813 } else { 3814 VisitRoots</* kPrecise */ false>(visitor); 3815 } 3816 } 3817 3818 class VerifyRootVisitor : public SingleRootVisitor { 3819 public: 3820 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) 3821 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 3822 VerifyObject(root); 3823 } 3824 }; 3825 3826 void Thread::VerifyStackImpl() { 3827 if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) { 3828 VerifyRootVisitor visitor; 3829 std::unique_ptr<Context> context(Context::Create()); 3830 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId()); 3831 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback); 3832 mapper.WalkStack(); 3833 } 3834 } 3835 3836 // Set the stack end to that to be used during a stack overflow 3837 void Thread::SetStackEndForStackOverflow() { 3838 // During stack overflow we allow use of the full stack. 3839 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { 3840 // However, we seem to have already extended to use the full stack. 3841 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " 3842 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; 3843 DumpStack(LOG_STREAM(ERROR)); 3844 LOG(FATAL) << "Recursive stack overflow."; 3845 } 3846 3847 tlsPtr_.stack_end = tlsPtr_.stack_begin; 3848 3849 // Remove the stack overflow protection if is it set up. 3850 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); 3851 if (implicit_stack_check) { 3852 if (!UnprotectStack()) { 3853 LOG(ERROR) << "Unable to remove stack protection for stack overflow"; 3854 } 3855 } 3856 } 3857 3858 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) { 3859 DCHECK_LE(start, end); 3860 DCHECK_LE(end, limit); 3861 tlsPtr_.thread_local_start = start; 3862 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; 3863 tlsPtr_.thread_local_end = end; 3864 tlsPtr_.thread_local_limit = limit; 3865 tlsPtr_.thread_local_objects = 0; 3866 } 3867 3868 bool Thread::HasTlab() const { 3869 bool has_tlab = tlsPtr_.thread_local_pos != nullptr; 3870 if (has_tlab) { 3871 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); 3872 } else { 3873 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); 3874 } 3875 return has_tlab; 3876 } 3877 3878 std::ostream& operator<<(std::ostream& os, const Thread& thread) { 3879 thread.ShortDump(os); 3880 return os; 3881 } 3882 3883 bool Thread::ProtectStack(bool fatal_on_error) { 3884 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 3885 VLOG(threads) << "Protecting stack at " << pregion; 3886 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { 3887 if (fatal_on_error) { 3888 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. " 3889 "Reason: " 3890 << strerror(errno) << " size: " << kStackOverflowProtectedSize; 3891 } 3892 return false; 3893 } 3894 return true; 3895 } 3896 3897 bool Thread::UnprotectStack() { 3898 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 3899 VLOG(threads) << "Unprotecting stack at " << pregion; 3900 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0; 3901 } 3902 3903 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) { 3904 CHECK(Dbg::IsDebuggerActive()); 3905 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this; 3906 CHECK(ssc != nullptr); 3907 tlsPtr_.single_step_control = ssc; 3908 } 3909 3910 void Thread::DeactivateSingleStepControl() { 3911 CHECK(Dbg::IsDebuggerActive()); 3912 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this; 3913 SingleStepControl* ssc = GetSingleStepControl(); 3914 tlsPtr_.single_step_control = nullptr; 3915 delete ssc; 3916 } 3917 3918 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) { 3919 CHECK(Dbg::IsDebuggerActive()); 3920 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this; 3921 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself"; 3922 CHECK(req != nullptr); 3923 tlsPtr_.debug_invoke_req = req; 3924 } 3925 3926 void Thread::ClearDebugInvokeReq() { 3927 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this; 3928 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself"; 3929 DebugInvokeReq* req = tlsPtr_.debug_invoke_req; 3930 tlsPtr_.debug_invoke_req = nullptr; 3931 delete req; 3932 } 3933 3934 void Thread::PushVerifier(verifier::MethodVerifier* verifier) { 3935 verifier->link_ = tlsPtr_.method_verifier; 3936 tlsPtr_.method_verifier = verifier; 3937 } 3938 3939 void Thread::PopVerifier(verifier::MethodVerifier* verifier) { 3940 CHECK_EQ(tlsPtr_.method_verifier, verifier); 3941 tlsPtr_.method_verifier = verifier->link_; 3942 } 3943 3944 size_t Thread::NumberOfHeldMutexes() const { 3945 size_t count = 0; 3946 for (BaseMutex* mu : tlsPtr_.held_mutexes) { 3947 count += mu != nullptr ? 1 : 0; 3948 } 3949 return count; 3950 } 3951 3952 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) { 3953 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException()); 3954 ClearException(); 3955 ShadowFrame* shadow_frame = 3956 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame); 3957 ObjPtr<mirror::Throwable> pending_exception; 3958 bool from_code = false; 3959 DeoptimizationMethodType method_type; 3960 PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type); 3961 SetTopOfStack(nullptr); 3962 SetTopOfShadowStack(shadow_frame); 3963 3964 // Restore the exception that was pending before deoptimization then interpret the 3965 // deoptimized frames. 3966 if (pending_exception != nullptr) { 3967 SetException(pending_exception); 3968 } 3969 interpreter::EnterInterpreterFromDeoptimize(this, 3970 shadow_frame, 3971 result, 3972 from_code, 3973 method_type); 3974 } 3975 3976 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) { 3977 CHECK(new_exception != nullptr); 3978 Runtime::Current()->SetAsyncExceptionsThrown(); 3979 if (kIsDebugBuild) { 3980 // Make sure we are in a checkpoint. 3981 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); 3982 CHECK(this == Thread::Current() || GetSuspendCount() >= 1) 3983 << "It doesn't look like this was called in a checkpoint! this: " 3984 << this << " count: " << GetSuspendCount(); 3985 } 3986 tlsPtr_.async_exception = new_exception.Ptr(); 3987 } 3988 3989 bool Thread::ObserveAsyncException() { 3990 DCHECK(this == Thread::Current()); 3991 if (tlsPtr_.async_exception != nullptr) { 3992 if (tlsPtr_.exception != nullptr) { 3993 LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: " 3994 << tlsPtr_.exception->Dump(); 3995 LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump(); 3996 } 3997 tlsPtr_.exception = tlsPtr_.async_exception; 3998 tlsPtr_.async_exception = nullptr; 3999 return true; 4000 } else { 4001 return IsExceptionPending(); 4002 } 4003 } 4004 4005 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) { 4006 CHECK(new_exception != nullptr); 4007 // TODO: DCHECK(!IsExceptionPending()); 4008 tlsPtr_.exception = new_exception.Ptr(); 4009 } 4010 4011 bool Thread::IsAotCompiler() { 4012 return Runtime::Current()->IsAotCompiler(); 4013 } 4014 4015 mirror::Object* Thread::GetPeerFromOtherThread() const { 4016 DCHECK(tlsPtr_.jpeer == nullptr); 4017 mirror::Object* peer = tlsPtr_.opeer; 4018 if (kUseReadBarrier && Current()->GetIsGcMarking()) { 4019 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack 4020 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly 4021 // mark/forward it here. 4022 peer = art::ReadBarrier::Mark(peer); 4023 } 4024 return peer; 4025 } 4026 4027 void Thread::SetReadBarrierEntrypoints() { 4028 // Make sure entrypoints aren't null. 4029 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true); 4030 } 4031 4032 } // namespace art 4033