Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread.h"
     18 
     19 #if !defined(__APPLE__)
     20 #include <sched.h>
     21 #endif
     22 
     23 #include <pthread.h>
     24 #include <signal.h>
     25 #include <sys/resource.h>
     26 #include <sys/time.h>
     27 
     28 #include <algorithm>
     29 #include <bitset>
     30 #include <cerrno>
     31 #include <iostream>
     32 #include <list>
     33 #include <sstream>
     34 
     35 #include "android-base/stringprintf.h"
     36 
     37 #include "arch/context-inl.h"
     38 #include "arch/context.h"
     39 #include "art_field-inl.h"
     40 #include "art_method-inl.h"
     41 #include "base/bit_utils.h"
     42 #include "base/file_utils.h"
     43 #include "base/memory_tool.h"
     44 #include "base/mutex.h"
     45 #include "base/systrace.h"
     46 #include "base/timing_logger.h"
     47 #include "base/to_str.h"
     48 #include "base/utils.h"
     49 #include "class_linker-inl.h"
     50 #include "debugger.h"
     51 #include "dex/descriptors_names.h"
     52 #include "dex/dex_file-inl.h"
     53 #include "dex/dex_file_annotations.h"
     54 #include "dex/dex_file_types.h"
     55 #include "entrypoints/entrypoint_utils.h"
     56 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     57 #include "gc/accounting/card_table-inl.h"
     58 #include "gc/accounting/heap_bitmap-inl.h"
     59 #include "gc/allocator/rosalloc.h"
     60 #include "gc/heap.h"
     61 #include "gc/space/space-inl.h"
     62 #include "gc_root.h"
     63 #include "handle_scope-inl.h"
     64 #include "indirect_reference_table-inl.h"
     65 #include "interpreter/interpreter.h"
     66 #include "interpreter/shadow_frame.h"
     67 #include "java_frame_root_info.h"
     68 #include "java_vm_ext.h"
     69 #include "jni_internal.h"
     70 #include "mirror/class-inl.h"
     71 #include "mirror/class_loader.h"
     72 #include "mirror/object_array-inl.h"
     73 #include "mirror/stack_trace_element.h"
     74 #include "monitor.h"
     75 #include "monitor_objects_stack_visitor.h"
     76 #include "native_stack_dump.h"
     77 #include "nativehelper/scoped_local_ref.h"
     78 #include "nativehelper/scoped_utf_chars.h"
     79 #include "nth_caller_visitor.h"
     80 #include "oat_quick_method_header.h"
     81 #include "obj_ptr-inl.h"
     82 #include "object_lock.h"
     83 #include "quick/quick_method_frame_info.h"
     84 #include "quick_exception_handler.h"
     85 #include "read_barrier-inl.h"
     86 #include "reflection.h"
     87 #include "runtime.h"
     88 #include "runtime_callbacks.h"
     89 #include "scoped_thread_state_change-inl.h"
     90 #include "stack.h"
     91 #include "stack_map.h"
     92 #include "thread-inl.h"
     93 #include "thread_list.h"
     94 #include "verifier/method_verifier.h"
     95 #include "verify_object.h"
     96 #include "well_known_classes.h"
     97 
     98 #if ART_USE_FUTEXES
     99 #include "linux/futex.h"
    100 #include "sys/syscall.h"
    101 #ifndef SYS_futex
    102 #define SYS_futex __NR_futex
    103 #endif
    104 #endif  // ART_USE_FUTEXES
    105 
    106 namespace art {
    107 
    108 using android::base::StringAppendV;
    109 using android::base::StringPrintf;
    110 
    111 extern "C" NO_RETURN void artDeoptimize(Thread* self);
    112 
    113 bool Thread::is_started_ = false;
    114 pthread_key_t Thread::pthread_key_self_;
    115 ConditionVariable* Thread::resume_cond_ = nullptr;
    116 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
    117 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
    118 Thread* Thread::jit_sensitive_thread_ = nullptr;
    119 
    120 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
    121 
    122 // For implicit overflow checks we reserve an extra piece of memory at the bottom
    123 // of the stack (lowest memory).  The higher portion of the memory
    124 // is protected against reads and the lower is available for use while
    125 // throwing the StackOverflow exception.
    126 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
    127 
    128 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
    129 
    130 void Thread::InitCardTable() {
    131   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
    132 }
    133 
    134 static void UnimplementedEntryPoint() {
    135   UNIMPLEMENTED(FATAL);
    136 }
    137 
    138 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
    139 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
    140 
    141 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
    142   CHECK(kUseReadBarrier);
    143   tls32_.is_gc_marking = is_marking;
    144   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
    145   ResetQuickAllocEntryPointsForThread(is_marking);
    146 }
    147 
    148 void Thread::InitTlsEntryPoints() {
    149   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
    150   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
    151   uintptr_t* end = reinterpret_cast<uintptr_t*>(
    152       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
    153   for (uintptr_t* it = begin; it != end; ++it) {
    154     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    155   }
    156   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
    157 }
    158 
    159 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
    160   if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
    161     // Allocation entrypoint switching is currently only implemented for X86_64.
    162     is_marking = true;
    163   }
    164   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
    165 }
    166 
    167 class DeoptimizationContextRecord {
    168  public:
    169   DeoptimizationContextRecord(const JValue& ret_val,
    170                               bool is_reference,
    171                               bool from_code,
    172                               ObjPtr<mirror::Throwable> pending_exception,
    173                               DeoptimizationMethodType method_type,
    174                               DeoptimizationContextRecord* link)
    175       : ret_val_(ret_val),
    176         is_reference_(is_reference),
    177         from_code_(from_code),
    178         pending_exception_(pending_exception.Ptr()),
    179         deopt_method_type_(method_type),
    180         link_(link) {}
    181 
    182   JValue GetReturnValue() const { return ret_val_; }
    183   bool IsReference() const { return is_reference_; }
    184   bool GetFromCode() const { return from_code_; }
    185   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
    186   DeoptimizationContextRecord* GetLink() const { return link_; }
    187   mirror::Object** GetReturnValueAsGCRoot() {
    188     DCHECK(is_reference_);
    189     return ret_val_.GetGCRoot();
    190   }
    191   mirror::Object** GetPendingExceptionAsGCRoot() {
    192     return reinterpret_cast<mirror::Object**>(&pending_exception_);
    193   }
    194   DeoptimizationMethodType GetDeoptimizationMethodType() const {
    195     return deopt_method_type_;
    196   }
    197 
    198  private:
    199   // The value returned by the method at the top of the stack before deoptimization.
    200   JValue ret_val_;
    201 
    202   // Indicates whether the returned value is a reference. If so, the GC will visit it.
    203   const bool is_reference_;
    204 
    205   // Whether the context was created from an explicit deoptimization in the code.
    206   const bool from_code_;
    207 
    208   // The exception that was pending before deoptimization (or null if there was no pending
    209   // exception).
    210   mirror::Throwable* pending_exception_;
    211 
    212   // Whether the context was created for an (idempotent) runtime method.
    213   const DeoptimizationMethodType deopt_method_type_;
    214 
    215   // A link to the previous DeoptimizationContextRecord.
    216   DeoptimizationContextRecord* const link_;
    217 
    218   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
    219 };
    220 
    221 class StackedShadowFrameRecord {
    222  public:
    223   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
    224                            StackedShadowFrameType type,
    225                            StackedShadowFrameRecord* link)
    226       : shadow_frame_(shadow_frame),
    227         type_(type),
    228         link_(link) {}
    229 
    230   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    231   StackedShadowFrameType GetType() const { return type_; }
    232   StackedShadowFrameRecord* GetLink() const { return link_; }
    233 
    234  private:
    235   ShadowFrame* const shadow_frame_;
    236   const StackedShadowFrameType type_;
    237   StackedShadowFrameRecord* const link_;
    238 
    239   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
    240 };
    241 
    242 void Thread::PushDeoptimizationContext(const JValue& return_value,
    243                                        bool is_reference,
    244                                        ObjPtr<mirror::Throwable> exception,
    245                                        bool from_code,
    246                                        DeoptimizationMethodType method_type) {
    247   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
    248       return_value,
    249       is_reference,
    250       from_code,
    251       exception,
    252       method_type,
    253       tlsPtr_.deoptimization_context_stack);
    254   tlsPtr_.deoptimization_context_stack = record;
    255 }
    256 
    257 void Thread::PopDeoptimizationContext(JValue* result,
    258                                       ObjPtr<mirror::Throwable>* exception,
    259                                       bool* from_code,
    260                                       DeoptimizationMethodType* method_type) {
    261   AssertHasDeoptimizationContext();
    262   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
    263   tlsPtr_.deoptimization_context_stack = record->GetLink();
    264   result->SetJ(record->GetReturnValue().GetJ());
    265   *exception = record->GetPendingException();
    266   *from_code = record->GetFromCode();
    267   *method_type = record->GetDeoptimizationMethodType();
    268   delete record;
    269 }
    270 
    271 void Thread::AssertHasDeoptimizationContext() {
    272   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
    273       << "No deoptimization context for thread " << *this;
    274 }
    275 
    276 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
    277   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
    278       sf, type, tlsPtr_.stacked_shadow_frame_record);
    279   tlsPtr_.stacked_shadow_frame_record = record;
    280 }
    281 
    282 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
    283   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
    284   if (must_be_present) {
    285     DCHECK(record != nullptr);
    286   } else {
    287     if (record == nullptr || record->GetType() != type) {
    288       return nullptr;
    289     }
    290   }
    291   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
    292   ShadowFrame* shadow_frame = record->GetShadowFrame();
    293   delete record;
    294   return shadow_frame;
    295 }
    296 
    297 class FrameIdToShadowFrame {
    298  public:
    299   static FrameIdToShadowFrame* Create(size_t frame_id,
    300                                       ShadowFrame* shadow_frame,
    301                                       FrameIdToShadowFrame* next,
    302                                       size_t num_vregs) {
    303     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
    304     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
    305     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
    306   }
    307 
    308   static void Delete(FrameIdToShadowFrame* f) {
    309     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
    310     delete[] memory;
    311   }
    312 
    313   size_t GetFrameId() const { return frame_id_; }
    314   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    315   FrameIdToShadowFrame* GetNext() const { return next_; }
    316   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
    317   bool* GetUpdatedVRegFlags() {
    318     return updated_vreg_flags_;
    319   }
    320 
    321  private:
    322   FrameIdToShadowFrame(size_t frame_id,
    323                        ShadowFrame* shadow_frame,
    324                        FrameIdToShadowFrame* next)
    325       : frame_id_(frame_id),
    326         shadow_frame_(shadow_frame),
    327         next_(next) {}
    328 
    329   const size_t frame_id_;
    330   ShadowFrame* const shadow_frame_;
    331   FrameIdToShadowFrame* next_;
    332   bool updated_vreg_flags_[0];
    333 
    334   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
    335 };
    336 
    337 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
    338                                                       size_t frame_id) {
    339   FrameIdToShadowFrame* found = nullptr;
    340   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
    341     if (record->GetFrameId() == frame_id) {
    342       if (kIsDebugBuild) {
    343         // Sanity check we have at most one record for this frame.
    344         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
    345         found = record;
    346       } else {
    347         return record;
    348       }
    349     }
    350   }
    351   return found;
    352 }
    353 
    354 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
    355   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    356       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    357   if (record != nullptr) {
    358     return record->GetShadowFrame();
    359   }
    360   return nullptr;
    361 }
    362 
    363 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
    364 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
    365   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    366       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    367   CHECK(record != nullptr);
    368   return record->GetUpdatedVRegFlags();
    369 }
    370 
    371 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
    372                                                      uint32_t num_vregs,
    373                                                      ArtMethod* method,
    374                                                      uint32_t dex_pc) {
    375   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
    376   if (shadow_frame != nullptr) {
    377     return shadow_frame;
    378   }
    379   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
    380   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
    381   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
    382                                                               shadow_frame,
    383                                                               tlsPtr_.frame_id_to_shadow_frame,
    384                                                               num_vregs);
    385   for (uint32_t i = 0; i < num_vregs; i++) {
    386     // Do this to clear all references for root visitors.
    387     shadow_frame->SetVRegReference(i, nullptr);
    388     // This flag will be changed to true if the debugger modifies the value.
    389     record->GetUpdatedVRegFlags()[i] = false;
    390   }
    391   tlsPtr_.frame_id_to_shadow_frame = record;
    392   return shadow_frame;
    393 }
    394 
    395 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
    396   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
    397   if (head->GetFrameId() == frame_id) {
    398     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
    399     FrameIdToShadowFrame::Delete(head);
    400     return;
    401   }
    402   FrameIdToShadowFrame* prev = head;
    403   for (FrameIdToShadowFrame* record = head->GetNext();
    404        record != nullptr;
    405        prev = record, record = record->GetNext()) {
    406     if (record->GetFrameId() == frame_id) {
    407       prev->SetNext(record->GetNext());
    408       FrameIdToShadowFrame::Delete(record);
    409       return;
    410     }
    411   }
    412   LOG(FATAL) << "No shadow frame for frame " << frame_id;
    413   UNREACHABLE();
    414 }
    415 
    416 void Thread::InitTid() {
    417   tls32_.tid = ::art::GetTid();
    418 }
    419 
    420 void Thread::InitAfterFork() {
    421   // One thread (us) survived the fork, but we have a new tid so we need to
    422   // update the value stashed in this Thread*.
    423   InitTid();
    424 }
    425 
    426 void* Thread::CreateCallback(void* arg) {
    427   Thread* self = reinterpret_cast<Thread*>(arg);
    428   Runtime* runtime = Runtime::Current();
    429   if (runtime == nullptr) {
    430     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    431     return nullptr;
    432   }
    433   {
    434     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    435     //       after self->Init().
    436     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    437     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    438     // while threads are being born).
    439     CHECK(!runtime->IsShuttingDownLocked());
    440     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
    441     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
    442     //       the runtime in such a case. In case this ever changes, we need to make sure here to
    443     //       delete the tmp_jni_env, as we own it at this point.
    444     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
    445     self->tlsPtr_.tmp_jni_env = nullptr;
    446     Runtime::Current()->EndThreadBirth();
    447   }
    448   {
    449     ScopedObjectAccess soa(self);
    450     self->InitStringEntryPoints();
    451 
    452     // Copy peer into self, deleting global reference when done.
    453     CHECK(self->tlsPtr_.jpeer != nullptr);
    454     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
    455     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    456     self->tlsPtr_.jpeer = nullptr;
    457     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
    458 
    459     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
    460     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    461 
    462     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    463 
    464     // Invoke the 'run' method of our java.lang.Thread.
    465     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
    466     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    467     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
    468     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
    469   }
    470   // Detach and delete self.
    471   Runtime::Current()->GetThreadList()->Unregister(self);
    472 
    473   return nullptr;
    474 }
    475 
    476 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    477                                   ObjPtr<mirror::Object> thread_peer) {
    478   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
    479   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
    480   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    481   // to stop it from going away.
    482   if (kIsDebugBuild) {
    483     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    484     if (result != nullptr && !result->IsSuspended()) {
    485       Locks::thread_list_lock_->AssertHeld(soa.Self());
    486     }
    487   }
    488   return result;
    489 }
    490 
    491 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    492                                   jobject java_thread) {
    493   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
    494 }
    495 
    496 static size_t FixStackSize(size_t stack_size) {
    497   // A stack size of zero means "use the default".
    498   if (stack_size == 0) {
    499     stack_size = Runtime::Current()->GetDefaultStackSize();
    500   }
    501 
    502   // Dalvik used the bionic pthread default stack size for native threads,
    503   // so include that here to support apps that expect large native stacks.
    504   stack_size += 1 * MB;
    505 
    506   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    507   if (stack_size < PTHREAD_STACK_MIN) {
    508     stack_size = PTHREAD_STACK_MIN;
    509   }
    510 
    511   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    512     // It's likely that callers are trying to ensure they have at least a certain amount of
    513     // stack space, so we should add our reserved space on top of what they requested, rather
    514     // than implicitly take it away from them.
    515     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    516   } else {
    517     // If we are going to use implicit stack checks, allocate space for the protected
    518     // region at the bottom of the stack.
    519     stack_size += Thread::kStackOverflowImplicitCheckSize +
    520         GetStackOverflowReservedBytes(kRuntimeISA);
    521   }
    522 
    523   // Some systems require the stack size to be a multiple of the system page size, so round up.
    524   stack_size = RoundUp(stack_size, kPageSize);
    525 
    526   return stack_size;
    527 }
    528 
    529 // Return the nearest page-aligned address below the current stack top.
    530 NO_INLINE
    531 static uint8_t* FindStackTop() {
    532   return reinterpret_cast<uint8_t*>(
    533       AlignDown(__builtin_frame_address(0), kPageSize));
    534 }
    535 
    536 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    537 // overflow is detected.  It is located right below the stack_begin_.
    538 ATTRIBUTE_NO_SANITIZE_ADDRESS
    539 void Thread::InstallImplicitProtection() {
    540   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    541   // Page containing current top of stack.
    542   uint8_t* stack_top = FindStackTop();
    543 
    544   // Try to directly protect the stack.
    545   VLOG(threads) << "installing stack protected region at " << std::hex <<
    546         static_cast<void*>(pregion) << " to " <<
    547         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    548   if (ProtectStack(/* fatal_on_error */ false)) {
    549     // Tell the kernel that we won't be needing these pages any more.
    550     // NB. madvise will probably write zeroes into the memory (on linux it does).
    551     uint32_t unwanted_size = stack_top - pregion - kPageSize;
    552     madvise(pregion, unwanted_size, MADV_DONTNEED);
    553     return;
    554   }
    555 
    556   // There is a little complexity here that deserves a special mention.  On some
    557   // architectures, the stack is created using a VM_GROWSDOWN flag
    558   // to prevent memory being allocated when it's not needed.  This flag makes the
    559   // kernel only allocate memory for the stack by growing down in memory.  Because we
    560   // want to put an mprotected region far away from that at the stack top, we need
    561   // to make sure the pages for the stack are mapped in before we call mprotect.
    562   //
    563   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
    564   // with a non-mapped stack (usually only the main thread).
    565   //
    566   // We map in the stack by reading every page from the stack bottom (highest address)
    567   // to the stack top. (We then madvise this away.) This must be done by reading from the
    568   // current stack pointer downwards.
    569   //
    570   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
    571   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
    572   // thus have to move the stack pointer. We do this portably by using a recursive function with a
    573   // large stack frame size.
    574 
    575   // (Defensively) first remove the protection on the protected region as we'll want to read
    576   // and write it. Ignore errors.
    577   UnprotectStack();
    578 
    579   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
    580       static_cast<void*>(pregion);
    581 
    582   struct RecurseDownStack {
    583     // This function has an intentionally large stack size.
    584 #pragma GCC diagnostic push
    585 #pragma GCC diagnostic ignored "-Wframe-larger-than="
    586     NO_INLINE
    587     static void Touch(uintptr_t target) {
    588       volatile size_t zero = 0;
    589       // Use a large local volatile array to ensure a large frame size. Do not use anything close
    590       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
    591       // there is no pragma support for this.
    592       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
    593       constexpr size_t kAsanMultiplier =
    594 #ifdef ADDRESS_SANITIZER
    595           2u;
    596 #else
    597           1u;
    598 #endif
    599       volatile char space[kPageSize - (kAsanMultiplier * 256)];
    600       char sink ATTRIBUTE_UNUSED = space[zero];
    601       if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
    602         Touch(target);
    603       }
    604       zero *= 2;  // Try to avoid tail recursion.
    605     }
    606 #pragma GCC diagnostic pop
    607   };
    608   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
    609 
    610   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
    611       static_cast<void*>(pregion) << " to " <<
    612       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    613 
    614   // Protect the bottom of the stack to prevent read/write to it.
    615   ProtectStack(/* fatal_on_error */ true);
    616 
    617   // Tell the kernel that we won't be needing these pages any more.
    618   // NB. madvise will probably write zeroes into the memory (on linux it does).
    619   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    620   madvise(pregion, unwanted_size, MADV_DONTNEED);
    621 }
    622 
    623 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    624   CHECK(java_peer != nullptr);
    625   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
    626 
    627   if (VLOG_IS_ON(threads)) {
    628     ScopedObjectAccess soa(env);
    629 
    630     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
    631     ObjPtr<mirror::String> java_name =
    632         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
    633     std::string thread_name;
    634     if (java_name != nullptr) {
    635       thread_name = java_name->ToModifiedUtf8();
    636     } else {
    637       thread_name = "(Unnamed)";
    638     }
    639 
    640     VLOG(threads) << "Creating native thread for " << thread_name;
    641     self->Dump(LOG_STREAM(INFO));
    642   }
    643 
    644   Runtime* runtime = Runtime::Current();
    645 
    646   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    647   bool thread_start_during_shutdown = false;
    648   {
    649     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    650     if (runtime->IsShuttingDownLocked()) {
    651       thread_start_during_shutdown = true;
    652     } else {
    653       runtime->StartThreadBirth();
    654     }
    655   }
    656   if (thread_start_during_shutdown) {
    657     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    658     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    659     return;
    660   }
    661 
    662   Thread* child_thread = new Thread(is_daemon);
    663   // Use global JNI ref to hold peer live while child thread starts.
    664   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    665   stack_size = FixStackSize(stack_size);
    666 
    667   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
    668   // to assign it.
    669   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    670                     reinterpret_cast<jlong>(child_thread));
    671 
    672   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
    673   // do not have a good way to report this on the child's side.
    674   std::string error_msg;
    675   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
    676       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
    677 
    678   int pthread_create_result = 0;
    679   if (child_jni_env_ext.get() != nullptr) {
    680     pthread_t new_pthread;
    681     pthread_attr_t attr;
    682     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
    683     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    684     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
    685                        "PTHREAD_CREATE_DETACHED");
    686     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    687     pthread_create_result = pthread_create(&new_pthread,
    688                                            &attr,
    689                                            Thread::CreateCallback,
    690                                            child_thread);
    691     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    692 
    693     if (pthread_create_result == 0) {
    694       // pthread_create started the new thread. The child is now responsible for managing the
    695       // JNIEnvExt we created.
    696       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
    697       //       between the threads.
    698       child_jni_env_ext.release();
    699       return;
    700     }
    701   }
    702 
    703   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
    704   {
    705     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    706     runtime->EndThreadBirth();
    707   }
    708   // Manually delete the global reference since Thread::Init will not have been run.
    709   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    710   child_thread->tlsPtr_.jpeer = nullptr;
    711   delete child_thread;
    712   child_thread = nullptr;
    713   // TODO: remove from thread group?
    714   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    715   {
    716     std::string msg(child_jni_env_ext.get() == nullptr ?
    717         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
    718         StringPrintf("pthread_create (%s stack) failed: %s",
    719                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    720     ScopedObjectAccess soa(env);
    721     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    722   }
    723 }
    724 
    725 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
    726   // This function does all the initialization that must be run by the native thread it applies to.
    727   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    728   // we can handshake with the corresponding native thread when it's ready.) Check this native
    729   // thread hasn't been through here already...
    730   CHECK(Thread::Current() == nullptr);
    731 
    732   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    733   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    734   tlsPtr_.pthread_self = pthread_self();
    735   CHECK(is_started_);
    736 
    737   SetUpAlternateSignalStack();
    738   if (!InitStackHwm()) {
    739     return false;
    740   }
    741   InitCpu();
    742   InitTlsEntryPoints();
    743   RemoveSuspendTrigger();
    744   InitCardTable();
    745   InitTid();
    746   interpreter::InitInterpreterTls(this);
    747 
    748 #ifdef ART_TARGET_ANDROID
    749   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
    750 #else
    751   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    752 #endif
    753   DCHECK_EQ(Thread::Current(), this);
    754 
    755   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    756 
    757   if (jni_env_ext != nullptr) {
    758     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
    759     DCHECK_EQ(jni_env_ext->GetSelf(), this);
    760     tlsPtr_.jni_env = jni_env_ext;
    761   } else {
    762     std::string error_msg;
    763     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
    764     if (tlsPtr_.jni_env == nullptr) {
    765       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
    766       return false;
    767     }
    768   }
    769 
    770   thread_list->Register(this);
    771   return true;
    772 }
    773 
    774 template <typename PeerAction>
    775 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
    776   Runtime* runtime = Runtime::Current();
    777   if (runtime == nullptr) {
    778     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
    779         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
    780     return nullptr;
    781   }
    782   Thread* self;
    783   {
    784     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    785     if (runtime->IsShuttingDownLocked()) {
    786       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
    787           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
    788       return nullptr;
    789     } else {
    790       Runtime::Current()->StartThreadBirth();
    791       self = new Thread(as_daemon);
    792       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    793       Runtime::Current()->EndThreadBirth();
    794       if (!init_success) {
    795         delete self;
    796         return nullptr;
    797       }
    798     }
    799   }
    800 
    801   self->InitStringEntryPoints();
    802 
    803   CHECK_NE(self->GetState(), kRunnable);
    804   self->SetState(kNative);
    805 
    806   // Run the action that is acting on the peer.
    807   if (!peer_action(self)) {
    808     runtime->GetThreadList()->Unregister(self);
    809     // Unregister deletes self, no need to do this here.
    810     return nullptr;
    811   }
    812 
    813   if (VLOG_IS_ON(threads)) {
    814     if (thread_name != nullptr) {
    815       VLOG(threads) << "Attaching thread " << thread_name;
    816     } else {
    817       VLOG(threads) << "Attaching unnamed thread.";
    818     }
    819     ScopedObjectAccess soa(self);
    820     self->Dump(LOG_STREAM(INFO));
    821   }
    822 
    823   {
    824     ScopedObjectAccess soa(self);
    825     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    826   }
    827 
    828   return self;
    829 }
    830 
    831 Thread* Thread::Attach(const char* thread_name,
    832                        bool as_daemon,
    833                        jobject thread_group,
    834                        bool create_peer) {
    835   auto create_peer_action = [&](Thread* self) {
    836     // If we're the main thread, ClassLinker won't be created until after we're attached,
    837     // so that thread needs a two-stage attach. Regular threads don't need this hack.
    838     // In the compiler, all threads need this hack, because no-one's going to be getting
    839     // a native peer!
    840     if (create_peer) {
    841       self->CreatePeer(thread_name, as_daemon, thread_group);
    842       if (self->IsExceptionPending()) {
    843         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
    844         // it.
    845         {
    846           ScopedObjectAccess soa(self);
    847           LOG(ERROR) << "Exception creating thread peer:";
    848           LOG(ERROR) << self->GetException()->Dump();
    849           self->ClearException();
    850         }
    851         return false;
    852       }
    853     } else {
    854       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    855       if (thread_name != nullptr) {
    856         self->tlsPtr_.name->assign(thread_name);
    857         ::art::SetThreadName(thread_name);
    858       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
    859         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    860       }
    861     }
    862     return true;
    863   };
    864   return Attach(thread_name, as_daemon, create_peer_action);
    865 }
    866 
    867 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
    868   auto set_peer_action = [&](Thread* self) {
    869     // Install the given peer.
    870     {
    871       DCHECK(self == Thread::Current());
    872       ScopedObjectAccess soa(self);
    873       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
    874     }
    875     self->GetJniEnv()->SetLongField(thread_peer,
    876                                     WellKnownClasses::java_lang_Thread_nativePeer,
    877                                     reinterpret_cast<jlong>(self));
    878     return true;
    879   };
    880   return Attach(thread_name, as_daemon, set_peer_action);
    881 }
    882 
    883 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
    884   Runtime* runtime = Runtime::Current();
    885   CHECK(runtime->IsStarted());
    886   JNIEnv* env = tlsPtr_.jni_env;
    887 
    888   if (thread_group == nullptr) {
    889     thread_group = runtime->GetMainThreadGroup();
    890   }
    891   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    892   // Add missing null check in case of OOM b/18297817
    893   if (name != nullptr && thread_name.get() == nullptr) {
    894     CHECK(IsExceptionPending());
    895     return;
    896   }
    897   jint thread_priority = GetNativePriority();
    898   jboolean thread_is_daemon = as_daemon;
    899 
    900   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    901   if (peer.get() == nullptr) {
    902     CHECK(IsExceptionPending());
    903     return;
    904   }
    905   {
    906     ScopedObjectAccess soa(this);
    907     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
    908   }
    909   env->CallNonvirtualVoidMethod(peer.get(),
    910                                 WellKnownClasses::java_lang_Thread,
    911                                 WellKnownClasses::java_lang_Thread_init,
    912                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
    913   if (IsExceptionPending()) {
    914     return;
    915   }
    916 
    917   Thread* self = this;
    918   DCHECK_EQ(self, Thread::Current());
    919   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
    920                     reinterpret_cast<jlong>(self));
    921 
    922   ScopedObjectAccess soa(self);
    923   StackHandleScope<1> hs(self);
    924   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
    925   if (peer_thread_name == nullptr) {
    926     // The Thread constructor should have set the Thread.name to a
    927     // non-null value. However, because we can run without code
    928     // available (in the compiler, in tests), we manually assign the
    929     // fields the constructor should have set.
    930     if (runtime->IsActiveTransaction()) {
    931       InitPeer<true>(soa,
    932                      tlsPtr_.opeer,
    933                      thread_is_daemon,
    934                      thread_group,
    935                      thread_name.get(),
    936                      thread_priority);
    937     } else {
    938       InitPeer<false>(soa,
    939                       tlsPtr_.opeer,
    940                       thread_is_daemon,
    941                       thread_group,
    942                       thread_name.get(),
    943                       thread_priority);
    944     }
    945     peer_thread_name.Assign(GetThreadName());
    946   }
    947   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
    948   if (peer_thread_name != nullptr) {
    949     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
    950   }
    951 }
    952 
    953 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
    954                                       const char* name,
    955                                       bool as_daemon,
    956                                       jobject thread_group) {
    957   Runtime* runtime = Runtime::Current();
    958   CHECK(!runtime->IsStarted());
    959 
    960   if (thread_group == nullptr) {
    961     thread_group = runtime->GetMainThreadGroup();
    962   }
    963   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    964   // Add missing null check in case of OOM b/18297817
    965   if (name != nullptr && thread_name.get() == nullptr) {
    966     CHECK(Thread::Current()->IsExceptionPending());
    967     return nullptr;
    968   }
    969   jint thread_priority = GetNativePriority();
    970   jboolean thread_is_daemon = as_daemon;
    971 
    972   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    973   if (peer.get() == nullptr) {
    974     CHECK(Thread::Current()->IsExceptionPending());
    975     return nullptr;
    976   }
    977 
    978   // We cannot call Thread.init, as it will recursively ask for currentThread.
    979 
    980   // The Thread constructor should have set the Thread.name to a
    981   // non-null value. However, because we can run without code
    982   // available (in the compiler, in tests), we manually assign the
    983   // fields the constructor should have set.
    984   ScopedObjectAccessUnchecked soa(Thread::Current());
    985   if (runtime->IsActiveTransaction()) {
    986     InitPeer<true>(soa,
    987                    soa.Decode<mirror::Object>(peer.get()),
    988                    thread_is_daemon,
    989                    thread_group,
    990                    thread_name.get(),
    991                    thread_priority);
    992   } else {
    993     InitPeer<false>(soa,
    994                     soa.Decode<mirror::Object>(peer.get()),
    995                     thread_is_daemon,
    996                     thread_group,
    997                     thread_name.get(),
    998                     thread_priority);
    999   }
   1000 
   1001   return peer.release();
   1002 }
   1003 
   1004 template<bool kTransactionActive>
   1005 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
   1006                       ObjPtr<mirror::Object> peer,
   1007                       jboolean thread_is_daemon,
   1008                       jobject thread_group,
   1009                       jobject thread_name,
   1010                       jint thread_priority) {
   1011   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
   1012       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
   1013   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
   1014       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
   1015   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
   1016       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
   1017   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
   1018       SetInt<kTransactionActive>(peer, thread_priority);
   1019 }
   1020 
   1021 void Thread::SetThreadName(const char* name) {
   1022   tlsPtr_.name->assign(name);
   1023   ::art::SetThreadName(name);
   1024   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
   1025 }
   1026 
   1027 static void GetThreadStack(pthread_t thread,
   1028                            void** stack_base,
   1029                            size_t* stack_size,
   1030                            size_t* guard_size) {
   1031 #if defined(__APPLE__)
   1032   *stack_size = pthread_get_stacksize_np(thread);
   1033   void* stack_addr = pthread_get_stackaddr_np(thread);
   1034 
   1035   // Check whether stack_addr is the base or end of the stack.
   1036   // (On Mac OS 10.7, it's the end.)
   1037   int stack_variable;
   1038   if (stack_addr > &stack_variable) {
   1039     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
   1040   } else {
   1041     *stack_base = stack_addr;
   1042   }
   1043 
   1044   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
   1045   pthread_attr_t attributes;
   1046   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
   1047   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1048   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1049 #else
   1050   pthread_attr_t attributes;
   1051   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
   1052   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
   1053   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1054   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1055 
   1056 #if defined(__GLIBC__)
   1057   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
   1058   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
   1059   // will be broken because we'll die long before we get close to 2GB.
   1060   bool is_main_thread = (::art::GetTid() == getpid());
   1061   if (is_main_thread) {
   1062     rlimit stack_limit;
   1063     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
   1064       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
   1065     }
   1066     if (stack_limit.rlim_cur == RLIM_INFINITY) {
   1067       size_t old_stack_size = *stack_size;
   1068 
   1069       // Use the kernel default limit as our size, and adjust the base to match.
   1070       *stack_size = 8 * MB;
   1071       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
   1072 
   1073       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
   1074                     << " to " << PrettySize(*stack_size)
   1075                     << " with base " << *stack_base;
   1076     }
   1077   }
   1078 #endif
   1079 
   1080 #endif
   1081 }
   1082 
   1083 bool Thread::InitStackHwm() {
   1084   void* read_stack_base;
   1085   size_t read_stack_size;
   1086   size_t read_guard_size;
   1087   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
   1088 
   1089   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
   1090   tlsPtr_.stack_size = read_stack_size;
   1091 
   1092   // The minimum stack size we can cope with is the overflow reserved bytes (typically
   1093   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
   1094   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
   1095   // between 8K and 12K.
   1096   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
   1097     + 4 * KB;
   1098   if (read_stack_size <= min_stack) {
   1099     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
   1100     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
   1101                                __LINE__,
   1102                                ::android::base::ERROR,
   1103                                "Attempt to attach a thread with a too-small stack");
   1104     return false;
   1105   }
   1106 
   1107   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
   1108   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
   1109                                 read_stack_base,
   1110                                 PrettySize(read_stack_size).c_str(),
   1111                                 PrettySize(read_guard_size).c_str());
   1112 
   1113   // Set stack_end_ to the bottom of the stack saving space of stack overflows
   1114 
   1115   Runtime* runtime = Runtime::Current();
   1116   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
   1117 
   1118   // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
   1119   // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
   1120   // stack_begin to 0.
   1121   const bool valgrind_on_arm =
   1122       (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kArm64) &&
   1123       kMemoryToolIsValgrind &&
   1124       RUNNING_ON_MEMORY_TOOL != 0;
   1125   if (valgrind_on_arm) {
   1126     tlsPtr_.stack_begin = nullptr;
   1127   }
   1128 
   1129   ResetDefaultStackEnd();
   1130 
   1131   // Install the protected region if we are doing implicit overflow checks.
   1132   if (implicit_stack_check && !valgrind_on_arm) {
   1133     // The thread might have protected region at the bottom.  We need
   1134     // to install our own region so we need to move the limits
   1135     // of the stack to make room for it.
   1136 
   1137     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
   1138     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
   1139     tlsPtr_.stack_size -= read_guard_size;
   1140 
   1141     InstallImplicitProtection();
   1142   }
   1143 
   1144   // Sanity check.
   1145   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
   1146 
   1147   return true;
   1148 }
   1149 
   1150 void Thread::ShortDump(std::ostream& os) const {
   1151   os << "Thread[";
   1152   if (GetThreadId() != 0) {
   1153     // If we're in kStarting, we won't have a thin lock id or tid yet.
   1154     os << GetThreadId()
   1155        << ",tid=" << GetTid() << ',';
   1156   }
   1157   os << GetState()
   1158      << ",Thread*=" << this
   1159      << ",peer=" << tlsPtr_.opeer
   1160      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
   1161      << "]";
   1162 }
   1163 
   1164 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
   1165                   bool force_dump_stack) const {
   1166   DumpState(os);
   1167   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
   1168 }
   1169 
   1170 mirror::String* Thread::GetThreadName() const {
   1171   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
   1172   if (tlsPtr_.opeer == nullptr) {
   1173     return nullptr;
   1174   }
   1175   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
   1176   return name == nullptr ? nullptr : name->AsString();
   1177 }
   1178 
   1179 void Thread::GetThreadName(std::string& name) const {
   1180   name.assign(*tlsPtr_.name);
   1181 }
   1182 
   1183 uint64_t Thread::GetCpuMicroTime() const {
   1184 #if defined(__linux__)
   1185   clockid_t cpu_clock_id;
   1186   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
   1187   timespec now;
   1188   clock_gettime(cpu_clock_id, &now);
   1189   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
   1190 #else  // __APPLE__
   1191   UNIMPLEMENTED(WARNING);
   1192   return -1;
   1193 #endif
   1194 }
   1195 
   1196 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
   1197 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
   1198   LOG(ERROR) << *thread << " suspend count already zero.";
   1199   Locks::thread_suspend_count_lock_->Unlock(self);
   1200   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1201     Locks::mutator_lock_->SharedTryLock(self);
   1202     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1203       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
   1204     }
   1205   }
   1206   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1207     Locks::thread_list_lock_->TryLock(self);
   1208     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1209       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
   1210     }
   1211   }
   1212   std::ostringstream ss;
   1213   Runtime::Current()->GetThreadList()->Dump(ss);
   1214   LOG(FATAL) << ss.str();
   1215 }
   1216 
   1217 bool Thread::ModifySuspendCountInternal(Thread* self,
   1218                                         int delta,
   1219                                         AtomicInteger* suspend_barrier,
   1220                                         SuspendReason reason) {
   1221   if (kIsDebugBuild) {
   1222     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
   1223           << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
   1224     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
   1225     Locks::thread_suspend_count_lock_->AssertHeld(self);
   1226     if (this != self && !IsSuspended()) {
   1227       Locks::thread_list_lock_->AssertHeld(self);
   1228     }
   1229   }
   1230   // User code suspensions need to be checked more closely since they originate from code outside of
   1231   // the runtime's control.
   1232   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
   1233     Locks::user_code_suspension_lock_->AssertHeld(self);
   1234     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
   1235       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
   1236       return false;
   1237     }
   1238   }
   1239   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
   1240     UnsafeLogFatalForSuspendCount(self, this);
   1241     return false;
   1242   }
   1243 
   1244   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
   1245     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
   1246     // deadlock. b/31683379.
   1247     return false;
   1248   }
   1249 
   1250   uint16_t flags = kSuspendRequest;
   1251   if (delta > 0 && suspend_barrier != nullptr) {
   1252     uint32_t available_barrier = kMaxSuspendBarriers;
   1253     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1254       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
   1255         available_barrier = i;
   1256         break;
   1257       }
   1258     }
   1259     if (available_barrier == kMaxSuspendBarriers) {
   1260       // No barrier spaces available, we can't add another.
   1261       return false;
   1262     }
   1263     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
   1264     flags |= kActiveSuspendBarrier;
   1265   }
   1266 
   1267   tls32_.suspend_count += delta;
   1268   switch (reason) {
   1269     case SuspendReason::kForDebugger:
   1270       tls32_.debug_suspend_count += delta;
   1271       break;
   1272     case SuspendReason::kForUserCode:
   1273       tls32_.user_code_suspend_count += delta;
   1274       break;
   1275     case SuspendReason::kInternal:
   1276       break;
   1277   }
   1278 
   1279   if (tls32_.suspend_count == 0) {
   1280     AtomicClearFlag(kSuspendRequest);
   1281   } else {
   1282     // Two bits might be set simultaneously.
   1283     tls32_.state_and_flags.as_atomic_int.FetchAndBitwiseOrSequentiallyConsistent(flags);
   1284     TriggerSuspend();
   1285   }
   1286   return true;
   1287 }
   1288 
   1289 bool Thread::PassActiveSuspendBarriers(Thread* self) {
   1290   // Grab the suspend_count lock and copy the current set of
   1291   // barriers. Then clear the list and the flag. The ModifySuspendCount
   1292   // function requires the lock so we prevent a race between setting
   1293   // the kActiveSuspendBarrier flag and clearing it.
   1294   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
   1295   {
   1296     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1297     if (!ReadFlag(kActiveSuspendBarrier)) {
   1298       // quick exit test: the barriers have already been claimed - this is
   1299       // possible as there may be a race to claim and it doesn't matter
   1300       // who wins.
   1301       // All of the callers of this function (except the SuspendAllInternal)
   1302       // will first test the kActiveSuspendBarrier flag without lock. Here
   1303       // double-check whether the barrier has been passed with the
   1304       // suspend_count lock.
   1305       return false;
   1306     }
   1307 
   1308     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1309       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
   1310       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1311     }
   1312     AtomicClearFlag(kActiveSuspendBarrier);
   1313   }
   1314 
   1315   uint32_t barrier_count = 0;
   1316   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
   1317     AtomicInteger* pending_threads = pass_barriers[i];
   1318     if (pending_threads != nullptr) {
   1319       bool done = false;
   1320       do {
   1321         int32_t cur_val = pending_threads->LoadRelaxed();
   1322         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
   1323         // Reduce value by 1.
   1324         done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
   1325 #if ART_USE_FUTEXES
   1326         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
   1327           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
   1328         }
   1329 #endif
   1330       } while (!done);
   1331       ++barrier_count;
   1332     }
   1333   }
   1334   CHECK_GT(barrier_count, 0U);
   1335   return true;
   1336 }
   1337 
   1338 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
   1339   CHECK(ReadFlag(kActiveSuspendBarrier));
   1340   bool clear_flag = true;
   1341   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1342     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
   1343     if (ptr == target) {
   1344       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1345     } else if (ptr != nullptr) {
   1346       clear_flag = false;
   1347     }
   1348   }
   1349   if (LIKELY(clear_flag)) {
   1350     AtomicClearFlag(kActiveSuspendBarrier);
   1351   }
   1352 }
   1353 
   1354 void Thread::RunCheckpointFunction() {
   1355   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
   1356   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
   1357   Closure* checkpoint;
   1358   {
   1359     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
   1360     checkpoint = tlsPtr_.checkpoint_function;
   1361     if (!checkpoint_overflow_.empty()) {
   1362       // Overflow list not empty, copy the first one out and continue.
   1363       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
   1364       checkpoint_overflow_.pop_front();
   1365     } else {
   1366       // No overflow checkpoints. Clear the kCheckpointRequest flag
   1367       tlsPtr_.checkpoint_function = nullptr;
   1368       AtomicClearFlag(kCheckpointRequest);
   1369     }
   1370   }
   1371   // Outside the lock, run the checkpoint function.
   1372   ScopedTrace trace("Run checkpoint function");
   1373   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
   1374   checkpoint->Run(this);
   1375 }
   1376 
   1377 void Thread::RunEmptyCheckpoint() {
   1378   DCHECK_EQ(Thread::Current(), this);
   1379   AtomicClearFlag(kEmptyCheckpointRequest);
   1380   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
   1381 }
   1382 
   1383 bool Thread::RequestCheckpoint(Closure* function) {
   1384   union StateAndFlags old_state_and_flags;
   1385   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1386   if (old_state_and_flags.as_struct.state != kRunnable) {
   1387     return false;  // Fail, thread is suspended and so can't run a checkpoint.
   1388   }
   1389 
   1390   // We must be runnable to request a checkpoint.
   1391   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1392   union StateAndFlags new_state_and_flags;
   1393   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1394   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
   1395   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
   1396       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1397   if (success) {
   1398     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
   1399     if (tlsPtr_.checkpoint_function == nullptr) {
   1400       tlsPtr_.checkpoint_function = function;
   1401     } else {
   1402       checkpoint_overflow_.push_back(function);
   1403     }
   1404     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
   1405     TriggerSuspend();
   1406   }
   1407   return success;
   1408 }
   1409 
   1410 bool Thread::RequestEmptyCheckpoint() {
   1411   union StateAndFlags old_state_and_flags;
   1412   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1413   if (old_state_and_flags.as_struct.state != kRunnable) {
   1414     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
   1415     // heap access (eg. the read barrier).
   1416     return false;
   1417   }
   1418 
   1419   // We must be runnable to request a checkpoint.
   1420   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1421   union StateAndFlags new_state_and_flags;
   1422   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1423   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
   1424   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
   1425       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1426   if (success) {
   1427     TriggerSuspend();
   1428   }
   1429   return success;
   1430 }
   1431 
   1432 class BarrierClosure : public Closure {
   1433  public:
   1434   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
   1435 
   1436   void Run(Thread* self) OVERRIDE {
   1437     wrapped_->Run(self);
   1438     barrier_.Pass(self);
   1439   }
   1440 
   1441   void Wait(Thread* self, ThreadState suspend_state) {
   1442     if (suspend_state != ThreadState::kRunnable) {
   1443       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
   1444     } else {
   1445       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
   1446     }
   1447   }
   1448 
   1449  private:
   1450   Closure* wrapped_;
   1451   Barrier barrier_;
   1452 };
   1453 
   1454 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
   1455 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
   1456   Thread* self = Thread::Current();
   1457   if (this == Thread::Current()) {
   1458     Locks::thread_list_lock_->AssertExclusiveHeld(self);
   1459     // Unlock the tll before running so that the state is the same regardless of thread.
   1460     Locks::thread_list_lock_->ExclusiveUnlock(self);
   1461     // Asked to run on this thread. Just run.
   1462     function->Run(this);
   1463     return true;
   1464   }
   1465 
   1466   // The current thread is not this thread.
   1467 
   1468   if (GetState() == ThreadState::kTerminated) {
   1469     Locks::thread_list_lock_->ExclusiveUnlock(self);
   1470     return false;
   1471   }
   1472 
   1473   struct ScopedThreadListLockUnlock {
   1474     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
   1475         : self_thread(self_in) {
   1476       Locks::thread_list_lock_->AssertHeld(self_thread);
   1477       Locks::thread_list_lock_->Unlock(self_thread);
   1478     }
   1479 
   1480     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
   1481       Locks::thread_list_lock_->AssertNotHeld(self_thread);
   1482       Locks::thread_list_lock_->Lock(self_thread);
   1483     }
   1484 
   1485     Thread* self_thread;
   1486   };
   1487 
   1488   for (;;) {
   1489     Locks::thread_list_lock_->AssertExclusiveHeld(self);
   1490     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
   1491     // suspend-count lock for too long.
   1492     if (GetState() == ThreadState::kRunnable) {
   1493       BarrierClosure barrier_closure(function);
   1494       bool installed = false;
   1495       {
   1496         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1497         installed = RequestCheckpoint(&barrier_closure);
   1498       }
   1499       if (installed) {
   1500         // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
   1501         // reacquire it since we don't know if 'this' hasn't been deleted yet.
   1502         Locks::thread_list_lock_->ExclusiveUnlock(self);
   1503         ScopedThreadStateChange sts(self, suspend_state);
   1504         barrier_closure.Wait(self, suspend_state);
   1505         return true;
   1506       }
   1507       // Fall-through.
   1508     }
   1509 
   1510     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
   1511     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
   1512     //       certain situations.
   1513     {
   1514       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1515 
   1516       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
   1517         // Just retry the loop.
   1518         sched_yield();
   1519         continue;
   1520       }
   1521     }
   1522 
   1523     {
   1524       // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
   1525       // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
   1526       ScopedThreadListLockUnlock stllu(self);
   1527       {
   1528         ScopedThreadStateChange sts(self, suspend_state);
   1529         while (GetState() == ThreadState::kRunnable) {
   1530           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
   1531           // moves us to suspended.
   1532           sched_yield();
   1533         }
   1534       }
   1535 
   1536       function->Run(this);
   1537     }
   1538 
   1539     {
   1540       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1541 
   1542       DCHECK_NE(GetState(), ThreadState::kRunnable);
   1543       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
   1544       DCHECK(updated);
   1545     }
   1546 
   1547     {
   1548       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
   1549       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
   1550       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1551       Thread::resume_cond_->Broadcast(self);
   1552     }
   1553 
   1554     // Release the thread_list_lock_ to be consistent with the barrier-closure path.
   1555     Locks::thread_list_lock_->ExclusiveUnlock(self);
   1556 
   1557     return true;  // We're done, break out of the loop.
   1558   }
   1559 }
   1560 
   1561 Closure* Thread::GetFlipFunction() {
   1562   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1563   Closure* func;
   1564   do {
   1565     func = atomic_func->LoadRelaxed();
   1566     if (func == nullptr) {
   1567       return nullptr;
   1568     }
   1569   } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
   1570   DCHECK(func != nullptr);
   1571   return func;
   1572 }
   1573 
   1574 void Thread::SetFlipFunction(Closure* function) {
   1575   CHECK(function != nullptr);
   1576   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1577   atomic_func->StoreSequentiallyConsistent(function);
   1578 }
   1579 
   1580 void Thread::FullSuspendCheck() {
   1581   ScopedTrace trace(__FUNCTION__);
   1582   VLOG(threads) << this << " self-suspending";
   1583   // Make thread appear suspended to other threads, release mutator_lock_.
   1584   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
   1585   ScopedThreadSuspension(this, kSuspended);
   1586   VLOG(threads) << this << " self-reviving";
   1587 }
   1588 
   1589 static std::string GetSchedulerGroupName(pid_t tid) {
   1590   // /proc/<pid>/cgroup looks like this:
   1591   // 2:devices:/
   1592   // 1:cpuacct,cpu:/
   1593   // We want the third field from the line whose second field contains the "cpu" token.
   1594   std::string cgroup_file;
   1595   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1596     return "";
   1597   }
   1598   std::vector<std::string> cgroup_lines;
   1599   Split(cgroup_file, '\n', &cgroup_lines);
   1600   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1601     std::vector<std::string> cgroup_fields;
   1602     Split(cgroup_lines[i], ':', &cgroup_fields);
   1603     std::vector<std::string> cgroups;
   1604     Split(cgroup_fields[1], ',', &cgroups);
   1605     for (size_t j = 0; j < cgroups.size(); ++j) {
   1606       if (cgroups[j] == "cpu") {
   1607         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1608       }
   1609     }
   1610   }
   1611   return "";
   1612 }
   1613 
   1614 
   1615 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
   1616   std::string group_name;
   1617   int priority;
   1618   bool is_daemon = false;
   1619   Thread* self = Thread::Current();
   1620 
   1621   // If flip_function is not null, it means we have run a checkpoint
   1622   // before the thread wakes up to execute the flip function and the
   1623   // thread roots haven't been forwarded.  So the following access to
   1624   // the roots (opeer or methods in the frames) would be bad. Run it
   1625   // here. TODO: clean up.
   1626   if (thread != nullptr) {
   1627     ScopedObjectAccessUnchecked soa(self);
   1628     Thread* this_thread = const_cast<Thread*>(thread);
   1629     Closure* flip_func = this_thread->GetFlipFunction();
   1630     if (flip_func != nullptr) {
   1631       flip_func->Run(this_thread);
   1632     }
   1633   }
   1634 
   1635   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
   1636   // cause ScopedObjectAccessUnchecked to deadlock.
   1637   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
   1638     ScopedObjectAccessUnchecked soa(self);
   1639     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
   1640         ->GetInt(thread->tlsPtr_.opeer);
   1641     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
   1642         ->GetBoolean(thread->tlsPtr_.opeer);
   1643 
   1644     ObjPtr<mirror::Object> thread_group =
   1645         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   1646             ->GetObject(thread->tlsPtr_.opeer);
   1647 
   1648     if (thread_group != nullptr) {
   1649       ArtField* group_name_field =
   1650           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
   1651       ObjPtr<mirror::String> group_name_string =
   1652           group_name_field->GetObject(thread_group)->AsString();
   1653       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
   1654     }
   1655   } else {
   1656     priority = GetNativePriority();
   1657   }
   1658 
   1659   std::string scheduler_group_name(GetSchedulerGroupName(tid));
   1660   if (scheduler_group_name.empty()) {
   1661     scheduler_group_name = "default";
   1662   }
   1663 
   1664   if (thread != nullptr) {
   1665     os << '"' << *thread->tlsPtr_.name << '"';
   1666     if (is_daemon) {
   1667       os << " daemon";
   1668     }
   1669     os << " prio=" << priority
   1670        << " tid=" << thread->GetThreadId()
   1671        << " " << thread->GetState();
   1672     if (thread->IsStillStarting()) {
   1673       os << " (still starting up)";
   1674     }
   1675     os << "\n";
   1676   } else {
   1677     os << '"' << ::art::GetThreadName(tid) << '"'
   1678        << " prio=" << priority
   1679        << " (not attached)\n";
   1680   }
   1681 
   1682   if (thread != nullptr) {
   1683     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1684     os << "  | group=\"" << group_name << "\""
   1685        << " sCount=" << thread->tls32_.suspend_count
   1686        << " dsCount=" << thread->tls32_.debug_suspend_count
   1687        << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
   1688        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
   1689        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
   1690   }
   1691 
   1692   os << "  | sysTid=" << tid
   1693      << " nice=" << getpriority(PRIO_PROCESS, tid)
   1694      << " cgrp=" << scheduler_group_name;
   1695   if (thread != nullptr) {
   1696     int policy;
   1697     sched_param sp;
   1698 #if !defined(__APPLE__)
   1699     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
   1700     policy = sched_getscheduler(tid);
   1701     if (policy == -1) {
   1702       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
   1703     }
   1704     int sched_getparam_result = sched_getparam(tid, &sp);
   1705     if (sched_getparam_result == -1) {
   1706       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
   1707       sp.sched_priority = -1;
   1708     }
   1709 #else
   1710     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
   1711                        __FUNCTION__);
   1712 #endif
   1713     os << " sched=" << policy << "/" << sp.sched_priority
   1714        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
   1715   }
   1716   os << "\n";
   1717 
   1718   // Grab the scheduler stats for this thread.
   1719   std::string scheduler_stats;
   1720   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
   1721     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
   1722   } else {
   1723     scheduler_stats = "0 0 0";
   1724   }
   1725 
   1726   char native_thread_state = '?';
   1727   int utime = 0;
   1728   int stime = 0;
   1729   int task_cpu = 0;
   1730   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
   1731 
   1732   os << "  | state=" << native_thread_state
   1733      << " schedstat=( " << scheduler_stats << " )"
   1734      << " utm=" << utime
   1735      << " stm=" << stime
   1736      << " core=" << task_cpu
   1737      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
   1738   if (thread != nullptr) {
   1739     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
   1740         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
   1741         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
   1742     // Dump the held mutexes.
   1743     os << "  | held mutexes=";
   1744     for (size_t i = 0; i < kLockLevelCount; ++i) {
   1745       if (i != kMonitorLock) {
   1746         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
   1747         if (mutex != nullptr) {
   1748           os << " \"" << mutex->GetName() << "\"";
   1749           if (mutex->IsReaderWriterMutex()) {
   1750             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
   1751             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
   1752               os << "(exclusive held)";
   1753             } else {
   1754               os << "(shared held)";
   1755             }
   1756           }
   1757         }
   1758       }
   1759     }
   1760     os << "\n";
   1761   }
   1762 }
   1763 
   1764 void Thread::DumpState(std::ostream& os) const {
   1765   Thread::DumpState(os, this, GetTid());
   1766 }
   1767 
   1768 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
   1769   StackDumpVisitor(std::ostream& os_in,
   1770                    Thread* thread_in,
   1771                    Context* context,
   1772                    bool can_allocate,
   1773                    bool check_suspended = true,
   1774                    bool dump_locks = true)
   1775       REQUIRES_SHARED(Locks::mutator_lock_)
   1776       : MonitorObjectsStackVisitor(thread_in,
   1777                                    context,
   1778                                    check_suspended,
   1779                                    can_allocate && dump_locks),
   1780         os(os_in),
   1781         last_method(nullptr),
   1782         last_line_number(0),
   1783         repetition_count(0) {}
   1784 
   1785   virtual ~StackDumpVisitor() {
   1786     if (frame_count == 0) {
   1787       os << "  (no managed stack frames)\n";
   1788     }
   1789   }
   1790 
   1791   static constexpr size_t kMaxRepetition = 3u;
   1792 
   1793   VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
   1794       OVERRIDE
   1795       REQUIRES_SHARED(Locks::mutator_lock_) {
   1796     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1797     ObjPtr<mirror::Class> c = m->GetDeclaringClass();
   1798     ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
   1799     int line_number = -1;
   1800     if (dex_cache != nullptr) {  // be tolerant of bad input
   1801       const DexFile* dex_file = dex_cache->GetDexFile();
   1802       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
   1803     }
   1804     if (line_number == last_line_number && last_method == m) {
   1805       ++repetition_count;
   1806     } else {
   1807       if (repetition_count >= kMaxRepetition) {
   1808         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
   1809       }
   1810       repetition_count = 0;
   1811       last_line_number = line_number;
   1812       last_method = m;
   1813     }
   1814 
   1815     if (repetition_count >= kMaxRepetition) {
   1816       // Skip visiting=printing anything.
   1817       return VisitMethodResult::kSkipMethod;
   1818     }
   1819 
   1820     os << "  at " << m->PrettyMethod(false);
   1821     if (m->IsNative()) {
   1822       os << "(Native method)";
   1823     } else {
   1824       const char* source_file(m->GetDeclaringClassSourceFile());
   1825       os << "(" << (source_file != nullptr ? source_file : "unavailable")
   1826                        << ":" << line_number << ")";
   1827     }
   1828     os << "\n";
   1829     // Go and visit locks.
   1830     return VisitMethodResult::kContinueMethod;
   1831   }
   1832 
   1833   VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
   1834     return VisitMethodResult::kContinueMethod;
   1835   }
   1836 
   1837   void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
   1838       OVERRIDE
   1839       REQUIRES_SHARED(Locks::mutator_lock_) {
   1840     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
   1841   }
   1842   void VisitSleepingObject(mirror::Object* obj)
   1843       OVERRIDE
   1844       REQUIRES_SHARED(Locks::mutator_lock_) {
   1845     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
   1846   }
   1847   void VisitBlockedOnObject(mirror::Object* obj,
   1848                             ThreadState state,
   1849                             uint32_t owner_tid)
   1850       OVERRIDE
   1851       REQUIRES_SHARED(Locks::mutator_lock_) {
   1852     const char* msg;
   1853     switch (state) {
   1854       case kBlocked:
   1855         msg = "  - waiting to lock ";
   1856         break;
   1857 
   1858       case kWaitingForLockInflation:
   1859         msg = "  - waiting for lock inflation of ";
   1860         break;
   1861 
   1862       default:
   1863         LOG(FATAL) << "Unreachable";
   1864         UNREACHABLE();
   1865     }
   1866     PrintObject(obj, msg, owner_tid);
   1867   }
   1868   void VisitLockedObject(mirror::Object* obj)
   1869       OVERRIDE
   1870       REQUIRES_SHARED(Locks::mutator_lock_) {
   1871     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
   1872   }
   1873 
   1874   void PrintObject(mirror::Object* obj,
   1875                    const char* msg,
   1876                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
   1877     if (obj == nullptr) {
   1878       os << msg << "an unknown object";
   1879     } else {
   1880       if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
   1881           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
   1882         // Getting the identity hashcode here would result in lock inflation and suspension of the
   1883         // current thread, which isn't safe if this is the only runnable thread.
   1884         os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
   1885                                   reinterpret_cast<intptr_t>(obj),
   1886                                   obj->PrettyTypeOf().c_str());
   1887       } else {
   1888         // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
   1889         // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
   1890         // suspension and move pretty_object.
   1891         const std::string pretty_type(obj->PrettyTypeOf());
   1892         os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
   1893       }
   1894     }
   1895     if (owner_tid != ThreadList::kInvalidThreadId) {
   1896       os << " held by thread " << owner_tid;
   1897     }
   1898     os << "\n";
   1899   }
   1900 
   1901   std::ostream& os;
   1902   ArtMethod* last_method;
   1903   int last_line_number;
   1904   size_t repetition_count;
   1905 };
   1906 
   1907 static bool ShouldShowNativeStack(const Thread* thread)
   1908     REQUIRES_SHARED(Locks::mutator_lock_) {
   1909   ThreadState state = thread->GetState();
   1910 
   1911   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
   1912   if (state > kWaiting && state < kStarting) {
   1913     return true;
   1914   }
   1915 
   1916   // In an Object.wait variant or Thread.sleep? That's not interesting.
   1917   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
   1918     return false;
   1919   }
   1920 
   1921   // Threads with no managed stack frames should be shown.
   1922   if (!thread->HasManagedStack()) {
   1923     return true;
   1924   }
   1925 
   1926   // In some other native method? That's interesting.
   1927   // We don't just check kNative because native methods will be in state kSuspended if they're
   1928   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
   1929   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
   1930   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
   1931   return current_method != nullptr && current_method->IsNative();
   1932 }
   1933 
   1934 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
   1935   // If flip_function is not null, it means we have run a checkpoint
   1936   // before the thread wakes up to execute the flip function and the
   1937   // thread roots haven't been forwarded.  So the following access to
   1938   // the roots (locks or methods in the frames) would be bad. Run it
   1939   // here. TODO: clean up.
   1940   {
   1941     Thread* this_thread = const_cast<Thread*>(this);
   1942     Closure* flip_func = this_thread->GetFlipFunction();
   1943     if (flip_func != nullptr) {
   1944       flip_func->Run(this_thread);
   1945     }
   1946   }
   1947 
   1948   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
   1949   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
   1950   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
   1951   // thread.
   1952   StackHandleScope<1> scope(Thread::Current());
   1953   Handle<mirror::Throwable> exc;
   1954   bool have_exception = false;
   1955   if (IsExceptionPending()) {
   1956     exc = scope.NewHandle(GetException());
   1957     const_cast<Thread*>(this)->ClearException();
   1958     have_exception = true;
   1959   }
   1960 
   1961   std::unique_ptr<Context> context(Context::Create());
   1962   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
   1963                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
   1964   dumper.WalkStack();
   1965 
   1966   if (have_exception) {
   1967     const_cast<Thread*>(this)->SetException(exc.Get());
   1968   }
   1969 }
   1970 
   1971 void Thread::DumpStack(std::ostream& os,
   1972                        bool dump_native_stack,
   1973                        BacktraceMap* backtrace_map,
   1974                        bool force_dump_stack) const {
   1975   // TODO: we call this code when dying but may not have suspended the thread ourself. The
   1976   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
   1977   //       the race with the thread_suspend_count_lock_).
   1978   bool dump_for_abort = (gAborting > 0);
   1979   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
   1980   if (!kIsDebugBuild) {
   1981     // We always want to dump the stack for an abort, however, there is no point dumping another
   1982     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
   1983     safe_to_dump = (safe_to_dump || dump_for_abort);
   1984   }
   1985   if (safe_to_dump || force_dump_stack) {
   1986     // If we're currently in native code, dump that stack before dumping the managed stack.
   1987     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
   1988       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   1989       ArtMethod* method =
   1990           GetCurrentMethod(nullptr,
   1991                            /*check_suspended*/ !force_dump_stack,
   1992                            /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
   1993       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
   1994     }
   1995     DumpJavaStack(os,
   1996                   /*check_suspended*/ !force_dump_stack,
   1997                   /*dump_locks*/ !force_dump_stack);
   1998   } else {
   1999     os << "Not able to dump stack of thread that isn't suspended";
   2000   }
   2001 }
   2002 
   2003 void Thread::ThreadExitCallback(void* arg) {
   2004   Thread* self = reinterpret_cast<Thread*>(arg);
   2005   if (self->tls32_.thread_exit_check_count == 0) {
   2006     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   2007         "going to use a pthread_key_create destructor?): " << *self;
   2008     CHECK(is_started_);
   2009 #ifdef ART_TARGET_ANDROID
   2010     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
   2011 #else
   2012     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   2013 #endif
   2014     self->tls32_.thread_exit_check_count = 1;
   2015   } else {
   2016     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   2017   }
   2018 }
   2019 
   2020 void Thread::Startup() {
   2021   CHECK(!is_started_);
   2022   is_started_ = true;
   2023   {
   2024     // MutexLock to keep annotalysis happy.
   2025     //
   2026     // Note we use null for the thread because Thread::Current can
   2027     // return garbage since (is_started_ == true) and
   2028     // Thread::pthread_key_self_ is not yet initialized.
   2029     // This was seen on glibc.
   2030     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   2031     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   2032                                          *Locks::thread_suspend_count_lock_);
   2033   }
   2034 
   2035   // Allocate a TLS slot.
   2036   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
   2037                      "self key");
   2038 
   2039   // Double-check the TLS slot allocation.
   2040   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   2041     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   2042   }
   2043 }
   2044 
   2045 void Thread::FinishStartup() {
   2046   Runtime* runtime = Runtime::Current();
   2047   CHECK(runtime->IsStarted());
   2048 
   2049   // Finish attaching the main thread.
   2050   ScopedObjectAccess soa(Thread::Current());
   2051   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   2052   Thread::Current()->AssertNoPendingException();
   2053 
   2054   Runtime::Current()->GetClassLinker()->RunRootClinits();
   2055 
   2056   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
   2057   // threads, this is done in Thread.start() on the Java side.
   2058   Thread::Current()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
   2059   Thread::Current()->AssertNoPendingException();
   2060 }
   2061 
   2062 void Thread::Shutdown() {
   2063   CHECK(is_started_);
   2064   is_started_ = false;
   2065   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   2066   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   2067   if (resume_cond_ != nullptr) {
   2068     delete resume_cond_;
   2069     resume_cond_ = nullptr;
   2070   }
   2071 }
   2072 
   2073 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
   2074   ScopedLocalRef<jobject> thread_jobject(
   2075       soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
   2076   ScopedLocalRef<jobject> thread_group_jobject_scoped(
   2077       soa.Env(), nullptr);
   2078   jobject thread_group_jobject = thread_group;
   2079   if (thread_group == nullptr || kIsDebugBuild) {
   2080     // There is always a group set. Retrieve it.
   2081     thread_group_jobject_scoped.reset(
   2082         soa.Env()->GetObjectField(thread_jobject.get(),
   2083                                   WellKnownClasses::java_lang_Thread_group));
   2084     thread_group_jobject = thread_group_jobject_scoped.get();
   2085     if (kIsDebugBuild && thread_group != nullptr) {
   2086       CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
   2087     }
   2088   }
   2089   soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
   2090                                       WellKnownClasses::java_lang_ThreadGroup,
   2091                                       WellKnownClasses::java_lang_ThreadGroup_add,
   2092                                       thread_jobject.get());
   2093 }
   2094 
   2095 Thread::Thread(bool daemon)
   2096     : tls32_(daemon),
   2097       wait_monitor_(nullptr),
   2098       custom_tls_(nullptr),
   2099       can_call_into_java_(true) {
   2100   wait_mutex_ = new Mutex("a thread wait mutex");
   2101   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   2102   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   2103   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   2104 
   2105   static_assert((sizeof(Thread) % 4) == 0U,
   2106                 "art::Thread has a size which is not a multiple of 4.");
   2107   tls32_.state_and_flags.as_struct.flags = 0;
   2108   tls32_.state_and_flags.as_struct.state = kNative;
   2109   tls32_.interrupted.StoreRelaxed(false);
   2110   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   2111   std::fill(tlsPtr_.rosalloc_runs,
   2112             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
   2113             gc::allocator::RosAlloc::GetDedicatedFullRun());
   2114   tlsPtr_.checkpoint_function = nullptr;
   2115   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   2116     tlsPtr_.active_suspend_barriers[i] = nullptr;
   2117   }
   2118   tlsPtr_.flip_function = nullptr;
   2119   tlsPtr_.thread_local_mark_stack = nullptr;
   2120   tls32_.is_transitioning_to_runnable = false;
   2121 }
   2122 
   2123 bool Thread::IsStillStarting() const {
   2124   // You might think you can check whether the state is kStarting, but for much of thread startup,
   2125   // the thread is in kNative; it might also be in kVmWait.
   2126   // You might think you can check whether the peer is null, but the peer is actually created and
   2127   // assigned fairly early on, and needs to be.
   2128   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   2129   // this thread _ever_ entered kRunnable".
   2130   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   2131       (*tlsPtr_.name == kThreadNameDuringStartup);
   2132 }
   2133 
   2134 void Thread::AssertPendingException() const {
   2135   CHECK(IsExceptionPending()) << "Pending exception expected.";
   2136 }
   2137 
   2138 void Thread::AssertPendingOOMException() const {
   2139   AssertPendingException();
   2140   auto* e = GetException();
   2141   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
   2142       << e->Dump();
   2143 }
   2144 
   2145 void Thread::AssertNoPendingException() const {
   2146   if (UNLIKELY(IsExceptionPending())) {
   2147     ScopedObjectAccess soa(Thread::Current());
   2148     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
   2149   }
   2150 }
   2151 
   2152 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   2153   if (UNLIKELY(IsExceptionPending())) {
   2154     ScopedObjectAccess soa(Thread::Current());
   2155     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   2156         << GetException()->Dump();
   2157   }
   2158 }
   2159 
   2160 class MonitorExitVisitor : public SingleRootVisitor {
   2161  public:
   2162   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
   2163 
   2164   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
   2165   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
   2166       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   2167     if (self_->HoldsLock(entered_monitor)) {
   2168       LOG(WARNING) << "Calling MonitorExit on object "
   2169                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
   2170                    << " left locked by native thread "
   2171                    << *Thread::Current() << " which is detaching";
   2172       entered_monitor->MonitorExit(self_);
   2173     }
   2174   }
   2175 
   2176  private:
   2177   Thread* const self_;
   2178 };
   2179 
   2180 void Thread::Destroy() {
   2181   Thread* self = this;
   2182   DCHECK_EQ(self, Thread::Current());
   2183 
   2184   if (tlsPtr_.jni_env != nullptr) {
   2185     {
   2186       ScopedObjectAccess soa(self);
   2187       MonitorExitVisitor visitor(self);
   2188       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   2189       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
   2190     }
   2191     // Release locally held global references which releasing may require the mutator lock.
   2192     if (tlsPtr_.jpeer != nullptr) {
   2193       // If pthread_create fails we don't have a jni env here.
   2194       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   2195       tlsPtr_.jpeer = nullptr;
   2196     }
   2197     if (tlsPtr_.class_loader_override != nullptr) {
   2198       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2199       tlsPtr_.class_loader_override = nullptr;
   2200     }
   2201   }
   2202 
   2203   if (tlsPtr_.opeer != nullptr) {
   2204     ScopedObjectAccess soa(self);
   2205     // We may need to call user-supplied managed code, do this before final clean-up.
   2206     HandleUncaughtExceptions(soa);
   2207     RemoveFromThreadGroup(soa);
   2208     Runtime* runtime = Runtime::Current();
   2209     if (runtime != nullptr) {
   2210       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
   2211     }
   2212 
   2213     // this.nativePeer = 0;
   2214     if (Runtime::Current()->IsActiveTransaction()) {
   2215       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2216           ->SetLong<true>(tlsPtr_.opeer, 0);
   2217     } else {
   2218       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2219           ->SetLong<false>(tlsPtr_.opeer, 0);
   2220     }
   2221 
   2222     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   2223     // who is waiting.
   2224     ObjPtr<mirror::Object> lock =
   2225         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   2226     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   2227     if (lock != nullptr) {
   2228       StackHandleScope<1> hs(self);
   2229       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   2230       ObjectLock<mirror::Object> locker(self, h_obj);
   2231       locker.NotifyAll();
   2232     }
   2233     tlsPtr_.opeer = nullptr;
   2234   }
   2235 
   2236   {
   2237     ScopedObjectAccess soa(self);
   2238     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   2239     if (kUseReadBarrier) {
   2240       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
   2241     }
   2242   }
   2243 }
   2244 
   2245 Thread::~Thread() {
   2246   CHECK(tlsPtr_.class_loader_override == nullptr);
   2247   CHECK(tlsPtr_.jpeer == nullptr);
   2248   CHECK(tlsPtr_.opeer == nullptr);
   2249   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   2250   if (initialized) {
   2251     delete tlsPtr_.jni_env;
   2252     tlsPtr_.jni_env = nullptr;
   2253   }
   2254   CHECK_NE(GetState(), kRunnable);
   2255   CHECK(!ReadFlag(kCheckpointRequest));
   2256   CHECK(!ReadFlag(kEmptyCheckpointRequest));
   2257   CHECK(tlsPtr_.checkpoint_function == nullptr);
   2258   CHECK_EQ(checkpoint_overflow_.size(), 0u);
   2259   CHECK(tlsPtr_.flip_function == nullptr);
   2260   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
   2261 
   2262   // Make sure we processed all deoptimization requests.
   2263   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
   2264   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
   2265       "Not all deoptimized frames have been consumed by the debugger.";
   2266 
   2267   // We may be deleting a still born thread.
   2268   SetStateUnsafe(kTerminated);
   2269 
   2270   delete wait_cond_;
   2271   delete wait_mutex_;
   2272 
   2273   if (tlsPtr_.long_jump_context != nullptr) {
   2274     delete tlsPtr_.long_jump_context;
   2275   }
   2276 
   2277   if (initialized) {
   2278     CleanupCpu();
   2279   }
   2280 
   2281   if (tlsPtr_.single_step_control != nullptr) {
   2282     delete tlsPtr_.single_step_control;
   2283   }
   2284   delete tlsPtr_.instrumentation_stack;
   2285   delete tlsPtr_.name;
   2286   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
   2287 
   2288   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
   2289 
   2290   TearDownAlternateSignalStack();
   2291 }
   2292 
   2293 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
   2294   if (!IsExceptionPending()) {
   2295     return;
   2296   }
   2297   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2298   ScopedThreadStateChange tsc(this, kNative);
   2299 
   2300   // Get and clear the exception.
   2301   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   2302   tlsPtr_.jni_env->ExceptionClear();
   2303 
   2304   // Call the Thread instance's dispatchUncaughtException(Throwable)
   2305   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
   2306       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
   2307       exception.get());
   2308 
   2309   // If the dispatchUncaughtException threw, clear that exception too.
   2310   tlsPtr_.jni_env->ExceptionClear();
   2311 }
   2312 
   2313 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
   2314   // this.group.removeThread(this);
   2315   // group can be null if we're in the compiler or a test.
   2316   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   2317       ->GetObject(tlsPtr_.opeer);
   2318   if (ogroup != nullptr) {
   2319     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   2320     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2321     ScopedThreadStateChange tsc(soa.Self(), kNative);
   2322     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   2323                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   2324                                     peer.get());
   2325   }
   2326 }
   2327 
   2328 bool Thread::HandleScopeContains(jobject obj) const {
   2329   StackReference<mirror::Object>* hs_entry =
   2330       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   2331   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
   2332     if (cur->Contains(hs_entry)) {
   2333       return true;
   2334     }
   2335   }
   2336   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   2337   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   2338 }
   2339 
   2340 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
   2341   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
   2342       visitor, RootInfo(kRootNativeStack, thread_id));
   2343   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   2344     cur->VisitRoots(buffered_visitor);
   2345   }
   2346 }
   2347 
   2348 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
   2349   if (obj == nullptr) {
   2350     return nullptr;
   2351   }
   2352   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2353   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2354   ObjPtr<mirror::Object> result;
   2355   bool expect_null = false;
   2356   // The "kinds" below are sorted by the frequency we expect to encounter them.
   2357   if (kind == kLocal) {
   2358     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
   2359     // Local references do not need a read barrier.
   2360     result = locals.Get<kWithoutReadBarrier>(ref);
   2361   } else if (kind == kHandleScopeOrInvalid) {
   2362     // TODO: make stack indirect reference table lookup more efficient.
   2363     // Check if this is a local reference in the handle scope.
   2364     if (LIKELY(HandleScopeContains(obj))) {
   2365       // Read from handle scope.
   2366       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   2367       VerifyObject(result);
   2368     } else {
   2369       tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
   2370       expect_null = true;
   2371       result = nullptr;
   2372     }
   2373   } else if (kind == kGlobal) {
   2374     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
   2375   } else {
   2376     DCHECK_EQ(kind, kWeakGlobal);
   2377     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   2378     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
   2379       // This is a special case where it's okay to return null.
   2380       expect_null = true;
   2381       result = nullptr;
   2382     }
   2383   }
   2384 
   2385   if (UNLIKELY(!expect_null && result == nullptr)) {
   2386     tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
   2387                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
   2388   }
   2389   return result;
   2390 }
   2391 
   2392 bool Thread::IsJWeakCleared(jweak obj) const {
   2393   CHECK(obj != nullptr);
   2394   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2395   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2396   CHECK_EQ(kind, kWeakGlobal);
   2397   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
   2398 }
   2399 
   2400 // Implements java.lang.Thread.interrupted.
   2401 bool Thread::Interrupted() {
   2402   DCHECK_EQ(Thread::Current(), this);
   2403   // No other thread can concurrently reset the interrupted flag.
   2404   bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
   2405   if (interrupted) {
   2406     tls32_.interrupted.StoreSequentiallyConsistent(false);
   2407   }
   2408   return interrupted;
   2409 }
   2410 
   2411 // Implements java.lang.Thread.isInterrupted.
   2412 bool Thread::IsInterrupted() {
   2413   return tls32_.interrupted.LoadSequentiallyConsistent();
   2414 }
   2415 
   2416 void Thread::Interrupt(Thread* self) {
   2417   MutexLock mu(self, *wait_mutex_);
   2418   if (tls32_.interrupted.LoadSequentiallyConsistent()) {
   2419     return;
   2420   }
   2421   tls32_.interrupted.StoreSequentiallyConsistent(true);
   2422   NotifyLocked(self);
   2423 }
   2424 
   2425 void Thread::Notify() {
   2426   Thread* self = Thread::Current();
   2427   MutexLock mu(self, *wait_mutex_);
   2428   NotifyLocked(self);
   2429 }
   2430 
   2431 void Thread::NotifyLocked(Thread* self) {
   2432   if (wait_monitor_ != nullptr) {
   2433     wait_cond_->Signal(self);
   2434   }
   2435 }
   2436 
   2437 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
   2438   if (tlsPtr_.class_loader_override != nullptr) {
   2439     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2440   }
   2441   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
   2442 }
   2443 
   2444 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
   2445 
   2446 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
   2447 class FetchStackTraceVisitor : public StackVisitor {
   2448  public:
   2449   explicit FetchStackTraceVisitor(Thread* thread,
   2450                                   ArtMethodDexPcPair* saved_frames = nullptr,
   2451                                   size_t max_saved_frames = 0)
   2452       REQUIRES_SHARED(Locks::mutator_lock_)
   2453       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2454         saved_frames_(saved_frames),
   2455         max_saved_frames_(max_saved_frames) {}
   2456 
   2457   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   2458     // We want to skip frames up to and including the exception's constructor.
   2459     // Note we also skip the frame if it doesn't have a method (namely the callee
   2460     // save frame)
   2461     ArtMethod* m = GetMethod();
   2462     if (skipping_ && !m->IsRuntimeMethod() &&
   2463         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
   2464       skipping_ = false;
   2465     }
   2466     if (!skipping_) {
   2467       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   2468         if (depth_ < max_saved_frames_) {
   2469           saved_frames_[depth_].first = m;
   2470           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
   2471         }
   2472         ++depth_;
   2473       }
   2474     } else {
   2475       ++skip_depth_;
   2476     }
   2477     return true;
   2478   }
   2479 
   2480   uint32_t GetDepth() const {
   2481     return depth_;
   2482   }
   2483 
   2484   uint32_t GetSkipDepth() const {
   2485     return skip_depth_;
   2486   }
   2487 
   2488  private:
   2489   uint32_t depth_ = 0;
   2490   uint32_t skip_depth_ = 0;
   2491   bool skipping_ = true;
   2492   ArtMethodDexPcPair* saved_frames_;
   2493   const size_t max_saved_frames_;
   2494 
   2495   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
   2496 };
   2497 
   2498 template<bool kTransactionActive>
   2499 class BuildInternalStackTraceVisitor : public StackVisitor {
   2500  public:
   2501   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   2502       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2503         self_(self),
   2504         skip_depth_(skip_depth),
   2505         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
   2506 
   2507   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
   2508     // Allocate method trace as an object array where the first element is a pointer array that
   2509     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
   2510     // class of the ArtMethod pointers.
   2511     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2512     StackHandleScope<1> hs(self_);
   2513     ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
   2514     // The first element is the methods and dex pc array, the other elements are declaring classes
   2515     // for the methods to ensure classes in the stack trace don't get unloaded.
   2516     Handle<mirror::ObjectArray<mirror::Object>> trace(
   2517         hs.NewHandle(
   2518             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
   2519     if (trace == nullptr) {
   2520       // Acquire uninterruptible_ in all paths.
   2521       self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2522       self_->AssertPendingOOMException();
   2523       return false;
   2524     }
   2525     ObjPtr<mirror::PointerArray> methods_and_pcs =
   2526         class_linker->AllocPointerArray(self_, depth * 2);
   2527     const char* last_no_suspend_cause =
   2528         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2529     if (methods_and_pcs == nullptr) {
   2530       self_->AssertPendingOOMException();
   2531       return false;
   2532     }
   2533     trace->Set(0, methods_and_pcs);
   2534     trace_ = trace.Get();
   2535     // If We are called from native, use non-transactional mode.
   2536     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   2537     return true;
   2538   }
   2539 
   2540   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
   2541     self_->EndAssertNoThreadSuspension(nullptr);
   2542   }
   2543 
   2544   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   2545     if (trace_ == nullptr) {
   2546       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   2547     }
   2548     if (skip_depth_ > 0) {
   2549       skip_depth_--;
   2550       return true;
   2551     }
   2552     ArtMethod* m = GetMethod();
   2553     if (m->IsRuntimeMethod()) {
   2554       return true;  // Ignore runtime frames (in particular callee save).
   2555     }
   2556     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
   2557     return true;
   2558   }
   2559 
   2560   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
   2561     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
   2562     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
   2563     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
   2564         trace_methods_and_pcs->GetLength() / 2 + count_,
   2565         dex_pc,
   2566         pointer_size_);
   2567     // Save the declaring class of the method to ensure that the declaring classes of the methods
   2568     // do not get unloaded while the stack trace is live.
   2569     trace_->Set(count_ + 1, method->GetDeclaringClass());
   2570     ++count_;
   2571   }
   2572 
   2573   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
   2574     return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
   2575   }
   2576 
   2577   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
   2578     return trace_;
   2579   }
   2580 
   2581  private:
   2582   Thread* const self_;
   2583   // How many more frames to skip.
   2584   int32_t skip_depth_;
   2585   // Current position down stack trace.
   2586   uint32_t count_ = 0;
   2587   // An object array where the first element is a pointer array that contains the ArtMethod
   2588   // pointers on the stack and dex PCs. The rest of the elements are the declaring
   2589   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
   2590   // the i'th frame.
   2591   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
   2592   // For cross compilation.
   2593   const PointerSize pointer_size_;
   2594 
   2595   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
   2596 };
   2597 
   2598 template<bool kTransactionActive>
   2599 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   2600   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
   2601   constexpr size_t kMaxSavedFrames = 256;
   2602   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
   2603   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
   2604                                        &saved_frames[0],
   2605                                        kMaxSavedFrames);
   2606   count_visitor.WalkStack();
   2607   const uint32_t depth = count_visitor.GetDepth();
   2608   const uint32_t skip_depth = count_visitor.GetSkipDepth();
   2609 
   2610   // Build internal stack trace.
   2611   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   2612                                                                          const_cast<Thread*>(this),
   2613                                                                          skip_depth);
   2614   if (!build_trace_visitor.Init(depth)) {
   2615     return nullptr;  // Allocation failed.
   2616   }
   2617   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
   2618   // than doing the stack walk twice.
   2619   if (depth < kMaxSavedFrames) {
   2620     for (size_t i = 0; i < depth; ++i) {
   2621       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
   2622     }
   2623   } else {
   2624     build_trace_visitor.WalkStack();
   2625   }
   2626 
   2627   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
   2628   if (kIsDebugBuild) {
   2629     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
   2630     // Second half of trace_methods is dex PCs.
   2631     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
   2632       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
   2633           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
   2634       CHECK(method != nullptr);
   2635     }
   2636   }
   2637   return soa.AddLocalReference<jobject>(trace);
   2638 }
   2639 template jobject Thread::CreateInternalStackTrace<false>(
   2640     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2641 template jobject Thread::CreateInternalStackTrace<true>(
   2642     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2643 
   2644 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
   2645   // Only count the depth since we do not pass a stack frame array as an argument.
   2646   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
   2647   count_visitor.WalkStack();
   2648   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
   2649 }
   2650 
   2651 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
   2652     const ScopedObjectAccessAlreadyRunnable& soa,
   2653     ArtMethod* method,
   2654     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
   2655   int32_t line_number;
   2656   StackHandleScope<3> hs(soa.Self());
   2657   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   2658   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   2659   if (method->IsProxyMethod()) {
   2660     line_number = -1;
   2661     class_name_object.Assign(method->GetDeclaringClass()->GetName());
   2662     // source_name_object intentionally left null for proxy methods
   2663   } else {
   2664     line_number = method->GetLineNumFromDexPC(dex_pc);
   2665     // Allocate element, potentially triggering GC
   2666     // TODO: reuse class_name_object via Class::name_?
   2667     const char* descriptor = method->GetDeclaringClassDescriptor();
   2668     CHECK(descriptor != nullptr);
   2669     std::string class_name(PrettyDescriptor(descriptor));
   2670     class_name_object.Assign(
   2671         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   2672     if (class_name_object == nullptr) {
   2673       soa.Self()->AssertPendingOOMException();
   2674       return nullptr;
   2675     }
   2676     const char* source_file = method->GetDeclaringClassSourceFile();
   2677     if (line_number == -1) {
   2678       // Make the line_number field of StackTraceElement hold the dex pc.
   2679       // source_name_object is intentionally left null if we failed to map the dex pc to
   2680       // a line number (most probably because there is no debug info). See b/30183883.
   2681       line_number = dex_pc;
   2682     } else {
   2683       if (source_file != nullptr) {
   2684         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   2685         if (source_name_object == nullptr) {
   2686           soa.Self()->AssertPendingOOMException();
   2687           return nullptr;
   2688         }
   2689       }
   2690     }
   2691   }
   2692   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
   2693   CHECK(method_name != nullptr);
   2694   Handle<mirror::String> method_name_object(
   2695       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   2696   if (method_name_object == nullptr) {
   2697     return nullptr;
   2698   }
   2699   return mirror::StackTraceElement::Alloc(soa.Self(),
   2700                                           class_name_object,
   2701                                           method_name_object,
   2702                                           source_name_object,
   2703                                           line_number);
   2704 }
   2705 
   2706 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   2707     const ScopedObjectAccessAlreadyRunnable& soa,
   2708     jobject internal,
   2709     jobjectArray output_array,
   2710     int* stack_depth) {
   2711   // Decode the internal stack trace into the depth, method trace and PC trace.
   2712   // Subtract one for the methods and PC trace.
   2713   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
   2714   DCHECK_GE(depth, 0);
   2715 
   2716   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
   2717 
   2718   jobjectArray result;
   2719 
   2720   if (output_array != nullptr) {
   2721     // Reuse the array we were given.
   2722     result = output_array;
   2723     // ...adjusting the number of frames we'll write to not exceed the array length.
   2724     const int32_t traces_length =
   2725         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
   2726     depth = std::min(depth, traces_length);
   2727   } else {
   2728     // Create java_trace array and place in local reference table
   2729     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
   2730         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
   2731     if (java_traces == nullptr) {
   2732       return nullptr;
   2733     }
   2734     result = soa.AddLocalReference<jobjectArray>(java_traces);
   2735   }
   2736 
   2737   if (stack_depth != nullptr) {
   2738     *stack_depth = depth;
   2739   }
   2740 
   2741   for (int32_t i = 0; i < depth; ++i) {
   2742     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
   2743         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
   2744     // Methods and dex PC trace is element 0.
   2745     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
   2746     ObjPtr<mirror::PointerArray> const method_trace =
   2747         ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
   2748     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   2749     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
   2750     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
   2751         i + method_trace->GetLength() / 2, kRuntimePointerSize);
   2752     ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
   2753     if (obj == nullptr) {
   2754       return nullptr;
   2755     }
   2756     // We are called from native: use non-transactional mode.
   2757     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
   2758   }
   2759   return result;
   2760 }
   2761 
   2762 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   2763   // This code allocates. Do not allow it to operate with a pending exception.
   2764   if (IsExceptionPending()) {
   2765     return nullptr;
   2766   }
   2767 
   2768   // If flip_function is not null, it means we have run a checkpoint
   2769   // before the thread wakes up to execute the flip function and the
   2770   // thread roots haven't been forwarded.  So the following access to
   2771   // the roots (locks or methods in the frames) would be bad. Run it
   2772   // here. TODO: clean up.
   2773   // Note: copied from DumpJavaStack.
   2774   {
   2775     Thread* this_thread = const_cast<Thread*>(this);
   2776     Closure* flip_func = this_thread->GetFlipFunction();
   2777     if (flip_func != nullptr) {
   2778       flip_func->Run(this_thread);
   2779     }
   2780   }
   2781 
   2782   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
   2783    public:
   2784     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
   2785                                       Thread* self,
   2786                                       Context* context)
   2787         : MonitorObjectsStackVisitor(self, context),
   2788           wait_jobject_(soaa_in.Env(), nullptr),
   2789           block_jobject_(soaa_in.Env(), nullptr),
   2790           soaa_(soaa_in) {}
   2791 
   2792    protected:
   2793     VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
   2794         OVERRIDE
   2795         REQUIRES_SHARED(Locks::mutator_lock_) {
   2796       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
   2797           soaa_, m, GetDexPc(/* abort on error */ false));
   2798       if (obj == nullptr) {
   2799         return VisitMethodResult::kEndStackWalk;
   2800       }
   2801       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
   2802       return VisitMethodResult::kContinueMethod;
   2803     }
   2804 
   2805     VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
   2806       lock_objects_.push_back({});
   2807       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
   2808 
   2809       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
   2810 
   2811       return VisitMethodResult::kContinueMethod;
   2812     }
   2813 
   2814     void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
   2815         OVERRIDE
   2816         REQUIRES_SHARED(Locks::mutator_lock_) {
   2817       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
   2818     }
   2819     void VisitSleepingObject(mirror::Object* obj)
   2820         OVERRIDE
   2821         REQUIRES_SHARED(Locks::mutator_lock_) {
   2822       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
   2823     }
   2824     void VisitBlockedOnObject(mirror::Object* obj,
   2825                               ThreadState state ATTRIBUTE_UNUSED,
   2826                               uint32_t owner_tid ATTRIBUTE_UNUSED)
   2827         OVERRIDE
   2828         REQUIRES_SHARED(Locks::mutator_lock_) {
   2829       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
   2830     }
   2831     void VisitLockedObject(mirror::Object* obj)
   2832         OVERRIDE
   2833         REQUIRES_SHARED(Locks::mutator_lock_) {
   2834       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
   2835     }
   2836 
   2837    public:
   2838     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
   2839     ScopedLocalRef<jobject> wait_jobject_;
   2840     ScopedLocalRef<jobject> block_jobject_;
   2841     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
   2842 
   2843    private:
   2844     const ScopedObjectAccessAlreadyRunnable& soaa_;
   2845 
   2846     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
   2847   };
   2848 
   2849   std::unique_ptr<Context> context(Context::Create());
   2850   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
   2851   dumper.WalkStack();
   2852 
   2853   // There should not be a pending exception. Otherwise, return with it pending.
   2854   if (IsExceptionPending()) {
   2855     return nullptr;
   2856   }
   2857 
   2858   // Now go and create Java arrays.
   2859 
   2860   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2861 
   2862   StackHandleScope<6> hs(soa.Self());
   2863   mirror::Class* aste_array_class = class_linker->FindClass(
   2864       soa.Self(),
   2865       "[Ldalvik/system/AnnotatedStackTraceElement;",
   2866       ScopedNullHandle<mirror::ClassLoader>());
   2867   if (aste_array_class == nullptr) {
   2868     return nullptr;
   2869   }
   2870   Handle<mirror::Class> h_aste_array_class(hs.NewHandle<mirror::Class>(aste_array_class));
   2871 
   2872   mirror::Class* o_array_class = class_linker->FindClass(soa.Self(),
   2873                                                          "[Ljava/lang/Object;",
   2874                                                          ScopedNullHandle<mirror::ClassLoader>());
   2875   if (o_array_class == nullptr) {
   2876     // This should not fail in a healthy runtime.
   2877     soa.Self()->AssertPendingException();
   2878     return nullptr;
   2879   }
   2880   Handle<mirror::Class> h_o_array_class(hs.NewHandle<mirror::Class>(o_array_class));
   2881 
   2882   Handle<mirror::Class> h_aste_class(hs.NewHandle<mirror::Class>(
   2883       h_aste_array_class->GetComponentType()));
   2884 
   2885   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
   2886   class_linker->EnsureInitialized(soa.Self(),
   2887                                   h_aste_class,
   2888                                   /* can_init_fields */ true,
   2889                                   /* can_init_parents */ true);
   2890   if (soa.Self()->IsExceptionPending()) {
   2891     // This should not fail in a healthy runtime.
   2892     return nullptr;
   2893   }
   2894 
   2895   ArtField* stack_trace_element_field = h_aste_class->FindField(
   2896       soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
   2897   DCHECK(stack_trace_element_field != nullptr);
   2898   ArtField* held_locks_field = h_aste_class->FindField(
   2899         soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
   2900   DCHECK(held_locks_field != nullptr);
   2901   ArtField* blocked_on_field = h_aste_class->FindField(
   2902         soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
   2903   DCHECK(blocked_on_field != nullptr);
   2904 
   2905   size_t length = dumper.stack_trace_elements_.size();
   2906   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
   2907       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), aste_array_class, length);
   2908   if (array == nullptr) {
   2909     soa.Self()->AssertPendingOOMException();
   2910     return nullptr;
   2911   }
   2912 
   2913   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
   2914 
   2915   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
   2916   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
   2917       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
   2918   for (size_t i = 0; i != length; ++i) {
   2919     handle.Assign(h_aste_class->AllocObject(soa.Self()));
   2920     if (handle == nullptr) {
   2921       soa.Self()->AssertPendingOOMException();
   2922       return nullptr;
   2923     }
   2924 
   2925     // Set stack trace element.
   2926     stack_trace_element_field->SetObject<false>(
   2927         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
   2928 
   2929     // Create locked-on array.
   2930     if (!dumper.lock_objects_[i].empty()) {
   2931       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
   2932                                                                 h_o_array_class.Get(),
   2933                                                                 dumper.lock_objects_[i].size()));
   2934       if (handle2 == nullptr) {
   2935         soa.Self()->AssertPendingOOMException();
   2936         return nullptr;
   2937       }
   2938       int32_t j = 0;
   2939       for (auto& scoped_local : dumper.lock_objects_[i]) {
   2940         if (scoped_local == nullptr) {
   2941           continue;
   2942         }
   2943         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
   2944         DCHECK(!soa.Self()->IsExceptionPending());
   2945         j++;
   2946       }
   2947       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
   2948     }
   2949 
   2950     // Set blocked-on object.
   2951     if (i == 0) {
   2952       if (dumper.block_jobject_ != nullptr) {
   2953         blocked_on_field->SetObject<false>(
   2954             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
   2955       }
   2956     }
   2957 
   2958     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
   2959     soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
   2960     DCHECK(!soa.Self()->IsExceptionPending());
   2961   }
   2962 
   2963   return result.release();
   2964 }
   2965 
   2966 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
   2967   va_list args;
   2968   va_start(args, fmt);
   2969   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
   2970   va_end(args);
   2971 }
   2972 
   2973 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
   2974                                 const char* fmt, va_list ap) {
   2975   std::string msg;
   2976   StringAppendV(&msg, fmt, ap);
   2977   ThrowNewException(exception_class_descriptor, msg.c_str());
   2978 }
   2979 
   2980 void Thread::ThrowNewException(const char* exception_class_descriptor,
   2981                                const char* msg) {
   2982   // Callers should either clear or call ThrowNewWrappedException.
   2983   AssertNoPendingExceptionForNewException(msg);
   2984   ThrowNewWrappedException(exception_class_descriptor, msg);
   2985 }
   2986 
   2987 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
   2988     REQUIRES_SHARED(Locks::mutator_lock_) {
   2989   ArtMethod* method = self->GetCurrentMethod(nullptr);
   2990   return method != nullptr
   2991       ? method->GetDeclaringClass()->GetClassLoader()
   2992       : nullptr;
   2993 }
   2994 
   2995 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
   2996                                       const char* msg) {
   2997   DCHECK_EQ(this, Thread::Current());
   2998   ScopedObjectAccessUnchecked soa(this);
   2999   StackHandleScope<3> hs(soa.Self());
   3000   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
   3001   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
   3002   ClearException();
   3003   Runtime* runtime = Runtime::Current();
   3004   auto* cl = runtime->GetClassLinker();
   3005   Handle<mirror::Class> exception_class(
   3006       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
   3007   if (UNLIKELY(exception_class == nullptr)) {
   3008     CHECK(IsExceptionPending());
   3009     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   3010     return;
   3011   }
   3012 
   3013   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
   3014                                                              true))) {
   3015     DCHECK(IsExceptionPending());
   3016     return;
   3017   }
   3018   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   3019   Handle<mirror::Throwable> exception(
   3020       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
   3021 
   3022   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   3023   if (exception == nullptr) {
   3024     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   3025     return;
   3026   }
   3027 
   3028   // Choose an appropriate constructor and set up the arguments.
   3029   const char* signature;
   3030   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   3031   if (msg != nullptr) {
   3032     // Ensure we remember this and the method over the String allocation.
   3033     msg_string.reset(
   3034         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   3035     if (UNLIKELY(msg_string.get() == nullptr)) {
   3036       CHECK(IsExceptionPending());  // OOME.
   3037       return;
   3038     }
   3039     if (cause.get() == nullptr) {
   3040       signature = "(Ljava/lang/String;)V";
   3041     } else {
   3042       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   3043     }
   3044   } else {
   3045     if (cause.get() == nullptr) {
   3046       signature = "()V";
   3047     } else {
   3048       signature = "(Ljava/lang/Throwable;)V";
   3049     }
   3050   }
   3051   ArtMethod* exception_init_method =
   3052       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
   3053 
   3054   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   3055       << PrettyDescriptor(exception_class_descriptor);
   3056 
   3057   if (UNLIKELY(!runtime->IsStarted())) {
   3058     // Something is trying to throw an exception without a started runtime, which is the common
   3059     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   3060     // the exception fields directly.
   3061     if (msg != nullptr) {
   3062       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
   3063     }
   3064     if (cause.get() != nullptr) {
   3065       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
   3066     }
   3067     ScopedLocalRef<jobject> trace(GetJniEnv(),
   3068                                   Runtime::Current()->IsActiveTransaction()
   3069                                       ? CreateInternalStackTrace<true>(soa)
   3070                                       : CreateInternalStackTrace<false>(soa));
   3071     if (trace.get() != nullptr) {
   3072       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
   3073     }
   3074     SetException(exception.Get());
   3075   } else {
   3076     jvalue jv_args[2];
   3077     size_t i = 0;
   3078 
   3079     if (msg != nullptr) {
   3080       jv_args[i].l = msg_string.get();
   3081       ++i;
   3082     }
   3083     if (cause.get() != nullptr) {
   3084       jv_args[i].l = cause.get();
   3085       ++i;
   3086     }
   3087     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
   3088     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
   3089     if (LIKELY(!IsExceptionPending())) {
   3090       SetException(exception.Get());
   3091     }
   3092   }
   3093 }
   3094 
   3095 void Thread::ThrowOutOfMemoryError(const char* msg) {
   3096   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
   3097       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
   3098   if (!tls32_.throwing_OutOfMemoryError) {
   3099     tls32_.throwing_OutOfMemoryError = true;
   3100     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
   3101     tls32_.throwing_OutOfMemoryError = false;
   3102   } else {
   3103     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
   3104     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   3105   }
   3106 }
   3107 
   3108 Thread* Thread::CurrentFromGdb() {
   3109   return Thread::Current();
   3110 }
   3111 
   3112 void Thread::DumpFromGdb() const {
   3113   std::ostringstream ss;
   3114   Dump(ss);
   3115   std::string str(ss.str());
   3116   // log to stderr for debugging command line processes
   3117   std::cerr << str;
   3118 #ifdef ART_TARGET_ANDROID
   3119   // log to logcat for debugging frameworks processes
   3120   LOG(INFO) << str;
   3121 #endif
   3122 }
   3123 
   3124 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   3125 template
   3126 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
   3127 template
   3128 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
   3129 
   3130 template<PointerSize ptr_size>
   3131 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   3132 #define DO_THREAD_OFFSET(x, y) \
   3133     if (offset == (x).Uint32Value()) { \
   3134       os << (y); \
   3135       return; \
   3136     }
   3137   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   3138   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   3139   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   3140   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   3141   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   3142   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   3143   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   3144   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   3145   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
   3146   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   3147   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   3148   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   3149   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   3150 #undef DO_THREAD_OFFSET
   3151 
   3152 #define JNI_ENTRY_POINT_INFO(x) \
   3153     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   3154       os << #x; \
   3155       return; \
   3156     }
   3157   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   3158 #undef JNI_ENTRY_POINT_INFO
   3159 
   3160 #define QUICK_ENTRY_POINT_INFO(x) \
   3161     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   3162       os << #x; \
   3163       return; \
   3164     }
   3165   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   3166   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
   3167   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
   3168   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
   3169   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
   3170   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   3171   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   3172   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
   3173   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
   3174   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
   3175   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
   3176   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   3177   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
   3178   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   3179   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
   3180   QUICK_ENTRY_POINT_INFO(pInitializeType)
   3181   QUICK_ENTRY_POINT_INFO(pResolveString)
   3182   QUICK_ENTRY_POINT_INFO(pSet8Instance)
   3183   QUICK_ENTRY_POINT_INFO(pSet8Static)
   3184   QUICK_ENTRY_POINT_INFO(pSet16Instance)
   3185   QUICK_ENTRY_POINT_INFO(pSet16Static)
   3186   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   3187   QUICK_ENTRY_POINT_INFO(pSet32Static)
   3188   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   3189   QUICK_ENTRY_POINT_INFO(pSet64Static)
   3190   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   3191   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   3192   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
   3193   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
   3194   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
   3195   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
   3196   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
   3197   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
   3198   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
   3199   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
   3200   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   3201   QUICK_ENTRY_POINT_INFO(pGet32Static)
   3202   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   3203   QUICK_ENTRY_POINT_INFO(pGet64Static)
   3204   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   3205   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   3206   QUICK_ENTRY_POINT_INFO(pAputObject)
   3207   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   3208   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   3209   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   3210   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   3211   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   3212   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   3213   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   3214   QUICK_ENTRY_POINT_INFO(pLockObject)
   3215   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   3216   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   3217   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   3218   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   3219   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   3220   QUICK_ENTRY_POINT_INFO(pCos)
   3221   QUICK_ENTRY_POINT_INFO(pSin)
   3222   QUICK_ENTRY_POINT_INFO(pAcos)
   3223   QUICK_ENTRY_POINT_INFO(pAsin)
   3224   QUICK_ENTRY_POINT_INFO(pAtan)
   3225   QUICK_ENTRY_POINT_INFO(pAtan2)
   3226   QUICK_ENTRY_POINT_INFO(pCbrt)
   3227   QUICK_ENTRY_POINT_INFO(pCosh)
   3228   QUICK_ENTRY_POINT_INFO(pExp)
   3229   QUICK_ENTRY_POINT_INFO(pExpm1)
   3230   QUICK_ENTRY_POINT_INFO(pHypot)
   3231   QUICK_ENTRY_POINT_INFO(pLog)
   3232   QUICK_ENTRY_POINT_INFO(pLog10)
   3233   QUICK_ENTRY_POINT_INFO(pNextAfter)
   3234   QUICK_ENTRY_POINT_INFO(pSinh)
   3235   QUICK_ENTRY_POINT_INFO(pTan)
   3236   QUICK_ENTRY_POINT_INFO(pTanh)
   3237   QUICK_ENTRY_POINT_INFO(pFmod)
   3238   QUICK_ENTRY_POINT_INFO(pL2d)
   3239   QUICK_ENTRY_POINT_INFO(pFmodf)
   3240   QUICK_ENTRY_POINT_INFO(pL2f)
   3241   QUICK_ENTRY_POINT_INFO(pD2iz)
   3242   QUICK_ENTRY_POINT_INFO(pF2iz)
   3243   QUICK_ENTRY_POINT_INFO(pIdivmod)
   3244   QUICK_ENTRY_POINT_INFO(pD2l)
   3245   QUICK_ENTRY_POINT_INFO(pF2l)
   3246   QUICK_ENTRY_POINT_INFO(pLdiv)
   3247   QUICK_ENTRY_POINT_INFO(pLmod)
   3248   QUICK_ENTRY_POINT_INFO(pLmul)
   3249   QUICK_ENTRY_POINT_INFO(pShlLong)
   3250   QUICK_ENTRY_POINT_INFO(pShrLong)
   3251   QUICK_ENTRY_POINT_INFO(pUshrLong)
   3252   QUICK_ENTRY_POINT_INFO(pIndexOf)
   3253   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   3254   QUICK_ENTRY_POINT_INFO(pMemcpy)
   3255   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   3256   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   3257   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   3258   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   3259   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   3260   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   3261   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   3262   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   3263   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
   3264   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   3265   QUICK_ENTRY_POINT_INFO(pDeliverException)
   3266   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   3267   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   3268   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   3269   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   3270   QUICK_ENTRY_POINT_INFO(pDeoptimize)
   3271   QUICK_ENTRY_POINT_INFO(pA64Load)
   3272   QUICK_ENTRY_POINT_INFO(pA64Store)
   3273   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
   3274   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
   3275   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
   3276   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
   3277   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
   3278   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
   3279   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
   3280   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
   3281   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
   3282   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
   3283   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
   3284   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
   3285   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
   3286   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
   3287   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
   3288   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
   3289   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
   3290   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
   3291   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
   3292   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
   3293   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
   3294   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
   3295   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
   3296   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
   3297   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
   3298   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
   3299   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
   3300   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
   3301   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
   3302   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
   3303   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
   3304   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
   3305   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
   3306   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
   3307   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
   3308   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
   3309   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
   3310   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
   3311   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
   3312   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
   3313   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
   3314   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
   3315   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
   3316   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
   3317   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
   3318   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
   3319   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
   3320   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
   3321   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
   3322 
   3323   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
   3324   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
   3325 #undef QUICK_ENTRY_POINT_INFO
   3326 
   3327   os << offset;
   3328 }
   3329 
   3330 void Thread::QuickDeliverException() {
   3331   // Get exception from thread.
   3332   ObjPtr<mirror::Throwable> exception = GetException();
   3333   CHECK(exception != nullptr);
   3334   if (exception == GetDeoptimizationException()) {
   3335     artDeoptimize(this);
   3336     UNREACHABLE();
   3337   }
   3338 
   3339   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
   3340 
   3341   // This is a real exception: let the instrumentation know about it.
   3342   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   3343   if (instrumentation->HasExceptionThrownListeners() &&
   3344       IsExceptionThrownByCurrentMethod(exception)) {
   3345     // Instrumentation may cause GC so keep the exception object safe.
   3346     StackHandleScope<1> hs(this);
   3347     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
   3348     instrumentation->ExceptionThrownEvent(this, exception.Ptr());
   3349   }
   3350   // Does instrumentation need to deoptimize the stack?
   3351   // Note: we do this *after* reporting the exception to instrumentation in case it
   3352   // now requires deoptimization. It may happen if a debugger is attached and requests
   3353   // new events (single-step, breakpoint, ...) when the exception is reported.
   3354   if (Dbg::IsForcedInterpreterNeededForException(this)) {
   3355     NthCallerVisitor visitor(this, 0, false);
   3356     visitor.WalkStack();
   3357     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
   3358       // method_type shouldn't matter due to exception handling.
   3359       const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
   3360       // Save the exception into the deoptimization context so it can be restored
   3361       // before entering the interpreter.
   3362       PushDeoptimizationContext(
   3363           JValue(),
   3364           false /* is_reference */,
   3365           exception,
   3366           false /* from_code */,
   3367           method_type);
   3368       artDeoptimize(this);
   3369       UNREACHABLE();
   3370     } else {
   3371       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
   3372                    << visitor.caller->PrettyMethod();
   3373     }
   3374   }
   3375 
   3376   // Don't leave exception visible while we try to find the handler, which may cause class
   3377   // resolution.
   3378   ClearException();
   3379   QuickExceptionHandler exception_handler(this, false);
   3380   exception_handler.FindCatch(exception);
   3381   exception_handler.UpdateInstrumentationStack();
   3382   if (exception_handler.GetClearException()) {
   3383     // Exception was cleared as part of delivery.
   3384     DCHECK(!IsExceptionPending());
   3385   } else {
   3386     // Exception was put back with a throw location.
   3387     DCHECK(IsExceptionPending());
   3388     // Check the to-space invariant on the re-installed exception (if applicable).
   3389     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
   3390   }
   3391   exception_handler.DoLongJump();
   3392 }
   3393 
   3394 Context* Thread::GetLongJumpContext() {
   3395   Context* result = tlsPtr_.long_jump_context;
   3396   if (result == nullptr) {
   3397     result = Context::Create();
   3398   } else {
   3399     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   3400     result->Reset();
   3401   }
   3402   return result;
   3403 }
   3404 
   3405 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   3406 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
   3407 struct CurrentMethodVisitor FINAL : public StackVisitor {
   3408   CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
   3409       REQUIRES_SHARED(Locks::mutator_lock_)
   3410       : StackVisitor(thread,
   3411                      context,
   3412                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
   3413                      check_suspended),
   3414         this_object_(nullptr),
   3415         method_(nullptr),
   3416         dex_pc_(0),
   3417         abort_on_error_(abort_on_error) {}
   3418   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   3419     ArtMethod* m = GetMethod();
   3420     if (m->IsRuntimeMethod()) {
   3421       // Continue if this is a runtime method.
   3422       return true;
   3423     }
   3424     if (context_ != nullptr) {
   3425       this_object_ = GetThisObject();
   3426     }
   3427     method_ = m;
   3428     dex_pc_ = GetDexPc(abort_on_error_);
   3429     return false;
   3430   }
   3431   ObjPtr<mirror::Object> this_object_;
   3432   ArtMethod* method_;
   3433   uint32_t dex_pc_;
   3434   const bool abort_on_error_;
   3435 };
   3436 
   3437 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
   3438                                     bool check_suspended,
   3439                                     bool abort_on_error) const {
   3440   CurrentMethodVisitor visitor(const_cast<Thread*>(this),
   3441                                nullptr,
   3442                                check_suspended,
   3443                                abort_on_error);
   3444   visitor.WalkStack(false);
   3445   if (dex_pc != nullptr) {
   3446     *dex_pc = visitor.dex_pc_;
   3447   }
   3448   return visitor.method_;
   3449 }
   3450 
   3451 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
   3452   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
   3453 }
   3454 
   3455 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
   3456     REQUIRES_SHARED(Locks::mutator_lock_);
   3457 
   3458 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   3459 template <typename RootVisitor, bool kPrecise = false>
   3460 class ReferenceMapVisitor : public StackVisitor {
   3461  public:
   3462   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
   3463       REQUIRES_SHARED(Locks::mutator_lock_)
   3464         // We are visiting the references in compiled frames, so we do not need
   3465         // to know the inlined frames.
   3466       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
   3467         visitor_(visitor) {}
   3468 
   3469   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3470     if (false) {
   3471       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
   3472                 << StringPrintf("@ PC:%04x", GetDexPc());
   3473     }
   3474     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   3475     if (shadow_frame != nullptr) {
   3476       VisitShadowFrame(shadow_frame);
   3477     } else {
   3478       VisitQuickFrame();
   3479     }
   3480     return true;
   3481   }
   3482 
   3483   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
   3484     ArtMethod* m = shadow_frame->GetMethod();
   3485     VisitDeclaringClass(m);
   3486     DCHECK(m != nullptr);
   3487     size_t num_regs = shadow_frame->NumberOfVRegs();
   3488     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
   3489     // handle scope for JNI or References for interpreter.
   3490     for (size_t reg = 0; reg < num_regs; ++reg) {
   3491       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   3492       if (ref != nullptr) {
   3493         mirror::Object* new_ref = ref;
   3494         visitor_(&new_ref, reg, this);
   3495         if (new_ref != ref) {
   3496           shadow_frame->SetVRegReference(reg, new_ref);
   3497         }
   3498       }
   3499     }
   3500     // Mark lock count map required for structured locking checks.
   3501     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg */ -1, this);
   3502   }
   3503 
   3504  private:
   3505   // Visiting the declaring class is necessary so that we don't unload the class of a method that
   3506   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
   3507   // the threads do not all hold the heap bitmap lock for parallel GC.
   3508   void VisitDeclaringClass(ArtMethod* method)
   3509       REQUIRES_SHARED(Locks::mutator_lock_)
   3510       NO_THREAD_SAFETY_ANALYSIS {
   3511     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
   3512     // klass can be null for runtime methods.
   3513     if (klass != nullptr) {
   3514       if (kVerifyImageObjectsMarked) {
   3515         gc::Heap* const heap = Runtime::Current()->GetHeap();
   3516         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
   3517                                                                                 /*fail_ok*/true);
   3518         if (space != nullptr && space->IsImageSpace()) {
   3519           bool failed = false;
   3520           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
   3521             failed = true;
   3522             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
   3523           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
   3524             failed = true;
   3525             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
   3526           }
   3527           if (failed) {
   3528             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3529             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3530             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
   3531                                      << " klass@" << klass.Ptr();
   3532             // Pretty info last in case it crashes.
   3533             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
   3534                        << klass->PrettyClass();
   3535           }
   3536         }
   3537       }
   3538       mirror::Object* new_ref = klass.Ptr();
   3539       visitor_(&new_ref, /* vreg */ -1, this);
   3540       if (new_ref != klass) {
   3541         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
   3542       }
   3543     }
   3544   }
   3545 
   3546   template <typename T>
   3547   ALWAYS_INLINE
   3548   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
   3549     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
   3550     DCHECK(cur_quick_frame != nullptr);
   3551     ArtMethod* m = *cur_quick_frame;
   3552     VisitDeclaringClass(m);
   3553 
   3554     // Process register map (which native and runtime methods don't have)
   3555     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
   3556       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
   3557       DCHECK(method_header->IsOptimized());
   3558       StackReference<mirror::Object>* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
   3559           reinterpret_cast<uintptr_t>(cur_quick_frame));
   3560       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
   3561       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
   3562       CodeInfoEncoding encoding = code_info.ExtractEncoding();
   3563       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
   3564       DCHECK(map.IsValid());
   3565 
   3566       T vreg_info(m, code_info, encoding, map, visitor_);
   3567 
   3568       // Visit stack entries that hold pointers.
   3569       const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
   3570       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
   3571       for (size_t i = 0; i < number_of_bits; ++i) {
   3572         if (stack_mask.LoadBit(i)) {
   3573           StackReference<mirror::Object>* ref_addr = vreg_base + i;
   3574           mirror::Object* ref = ref_addr->AsMirrorPtr();
   3575           if (ref != nullptr) {
   3576             mirror::Object* new_ref = ref;
   3577             vreg_info.VisitStack(&new_ref, i, this);
   3578             if (ref != new_ref) {
   3579               ref_addr->Assign(new_ref);
   3580            }
   3581           }
   3582         }
   3583       }
   3584       // Visit callee-save registers that hold pointers.
   3585       uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
   3586       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
   3587         if (register_mask & (1 << i)) {
   3588           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
   3589           if (kIsDebugBuild && ref_addr == nullptr) {
   3590             std::string thread_name;
   3591             GetThread()->GetThreadName(thread_name);
   3592             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
   3593             DescribeStack(GetThread());
   3594             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
   3595                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
   3596           }
   3597           if (*ref_addr != nullptr) {
   3598             vreg_info.VisitRegister(ref_addr, i, this);
   3599           }
   3600         }
   3601       }
   3602     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
   3603       // If this is a proxy method, visit its reference arguments.
   3604       DCHECK(!m->IsStatic());
   3605       DCHECK(!m->IsNative());
   3606       std::vector<StackReference<mirror::Object>*> ref_addrs =
   3607           GetProxyReferenceArguments(cur_quick_frame);
   3608       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
   3609         mirror::Object* ref = ref_addr->AsMirrorPtr();
   3610         if (ref != nullptr) {
   3611           mirror::Object* new_ref = ref;
   3612           visitor_(&new_ref, /* vreg */ -1, this);
   3613           if (ref != new_ref) {
   3614             ref_addr->Assign(new_ref);
   3615           }
   3616         }
   3617       }
   3618     }
   3619   }
   3620 
   3621   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3622     if (kPrecise) {
   3623       VisitQuickFramePrecise();
   3624     } else {
   3625       VisitQuickFrameNonPrecise();
   3626     }
   3627   }
   3628 
   3629   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3630     struct UndefinedVRegInfo {
   3631       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
   3632                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
   3633                         const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
   3634                         const StackMap& map ATTRIBUTE_UNUSED,
   3635                         RootVisitor& _visitor)
   3636           : visitor(_visitor) {
   3637       }
   3638 
   3639       ALWAYS_INLINE
   3640       void VisitStack(mirror::Object** ref,
   3641                       size_t stack_index ATTRIBUTE_UNUSED,
   3642                       const StackVisitor* stack_visitor)
   3643           REQUIRES_SHARED(Locks::mutator_lock_) {
   3644         visitor(ref, -1, stack_visitor);
   3645       }
   3646 
   3647       ALWAYS_INLINE
   3648       void VisitRegister(mirror::Object** ref,
   3649                          size_t register_index ATTRIBUTE_UNUSED,
   3650                          const StackVisitor* stack_visitor)
   3651           REQUIRES_SHARED(Locks::mutator_lock_) {
   3652         visitor(ref, -1, stack_visitor);
   3653       }
   3654 
   3655       RootVisitor& visitor;
   3656     };
   3657     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
   3658   }
   3659 
   3660   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3661     struct StackMapVRegInfo {
   3662       StackMapVRegInfo(ArtMethod* method,
   3663                        const CodeInfo& _code_info,
   3664                        const CodeInfoEncoding& _encoding,
   3665                        const StackMap& map,
   3666                        RootVisitor& _visitor)
   3667           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
   3668             code_info(_code_info),
   3669             encoding(_encoding),
   3670             dex_register_map(code_info.GetDexRegisterMapOf(map,
   3671                                                            encoding,
   3672                                                            number_of_dex_registers)),
   3673             visitor(_visitor) {
   3674       }
   3675 
   3676       // TODO: If necessary, we should consider caching a reverse map instead of the linear
   3677       //       lookups for each location.
   3678       void FindWithType(const size_t index,
   3679                         const DexRegisterLocation::Kind kind,
   3680                         mirror::Object** ref,
   3681                         const StackVisitor* stack_visitor)
   3682           REQUIRES_SHARED(Locks::mutator_lock_) {
   3683         bool found = false;
   3684         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
   3685           DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
   3686               dex_reg, number_of_dex_registers, code_info, encoding);
   3687           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
   3688             visitor(ref, dex_reg, stack_visitor);
   3689             found = true;
   3690           }
   3691         }
   3692 
   3693         if (!found) {
   3694           // If nothing found, report with -1.
   3695           visitor(ref, -1, stack_visitor);
   3696         }
   3697       }
   3698 
   3699       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
   3700           REQUIRES_SHARED(Locks::mutator_lock_) {
   3701         const size_t stack_offset = stack_index * kFrameSlotSize;
   3702         FindWithType(stack_offset,
   3703                      DexRegisterLocation::Kind::kInStack,
   3704                      ref,
   3705                      stack_visitor);
   3706       }
   3707 
   3708       void VisitRegister(mirror::Object** ref,
   3709                          size_t register_index,
   3710                          const StackVisitor* stack_visitor)
   3711           REQUIRES_SHARED(Locks::mutator_lock_) {
   3712         FindWithType(register_index,
   3713                      DexRegisterLocation::Kind::kInRegister,
   3714                      ref,
   3715                      stack_visitor);
   3716       }
   3717 
   3718       size_t number_of_dex_registers;
   3719       const CodeInfo& code_info;
   3720       const CodeInfoEncoding& encoding;
   3721       DexRegisterMap dex_register_map;
   3722       RootVisitor& visitor;
   3723     };
   3724     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
   3725   }
   3726 
   3727   // Visitor for when we visit a root.
   3728   RootVisitor& visitor_;
   3729 };
   3730 
   3731 class RootCallbackVisitor {
   3732  public:
   3733   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
   3734 
   3735   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
   3736       REQUIRES_SHARED(Locks::mutator_lock_) {
   3737     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
   3738   }
   3739 
   3740  private:
   3741   RootVisitor* const visitor_;
   3742   const uint32_t tid_;
   3743 };
   3744 
   3745 template <bool kPrecise>
   3746 void Thread::VisitRoots(RootVisitor* visitor) {
   3747   const pid_t thread_id = GetThreadId();
   3748   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
   3749   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   3750     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
   3751                        RootInfo(kRootNativeStack, thread_id));
   3752   }
   3753   if (tlsPtr_.async_exception != nullptr) {
   3754     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
   3755                        RootInfo(kRootNativeStack, thread_id));
   3756   }
   3757   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
   3758   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
   3759   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
   3760   HandleScopeVisitRoots(visitor, thread_id);
   3761   if (tlsPtr_.debug_invoke_req != nullptr) {
   3762     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
   3763   }
   3764   // Visit roots for deoptimization.
   3765   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
   3766     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3767     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3768     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
   3769          record != nullptr;
   3770          record = record->GetLink()) {
   3771       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
   3772            shadow_frame != nullptr;
   3773            shadow_frame = shadow_frame->GetLink()) {
   3774         mapper.VisitShadowFrame(shadow_frame);
   3775       }
   3776     }
   3777   }
   3778   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
   3779        record != nullptr;
   3780        record = record->GetLink()) {
   3781     if (record->IsReference()) {
   3782       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
   3783                                   RootInfo(kRootThreadObject, thread_id));
   3784     }
   3785     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
   3786                                 RootInfo(kRootThreadObject, thread_id));
   3787   }
   3788   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
   3789     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3790     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3791     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
   3792          record != nullptr;
   3793          record = record->GetNext()) {
   3794       mapper.VisitShadowFrame(record->GetShadowFrame());
   3795     }
   3796   }
   3797   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
   3798     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
   3799   }
   3800   // Visit roots on this thread's stack
   3801   RuntimeContextType context;
   3802   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3803   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
   3804   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
   3805   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   3806     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
   3807   }
   3808 }
   3809 
   3810 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   3811   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
   3812     VisitRoots</* kPrecise */ true>(visitor);
   3813   } else {
   3814     VisitRoots</* kPrecise */ false>(visitor);
   3815   }
   3816 }
   3817 
   3818 class VerifyRootVisitor : public SingleRootVisitor {
   3819  public:
   3820   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   3821       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   3822     VerifyObject(root);
   3823   }
   3824 };
   3825 
   3826 void Thread::VerifyStackImpl() {
   3827   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
   3828     VerifyRootVisitor visitor;
   3829     std::unique_ptr<Context> context(Context::Create());
   3830     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
   3831     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
   3832     mapper.WalkStack();
   3833   }
   3834 }
   3835 
   3836 // Set the stack end to that to be used during a stack overflow
   3837 void Thread::SetStackEndForStackOverflow() {
   3838   // During stack overflow we allow use of the full stack.
   3839   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   3840     // However, we seem to have already extended to use the full stack.
   3841     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   3842                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   3843     DumpStack(LOG_STREAM(ERROR));
   3844     LOG(FATAL) << "Recursive stack overflow.";
   3845   }
   3846 
   3847   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   3848 
   3849   // Remove the stack overflow protection if is it set up.
   3850   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   3851   if (implicit_stack_check) {
   3852     if (!UnprotectStack()) {
   3853       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   3854     }
   3855   }
   3856 }
   3857 
   3858 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
   3859   DCHECK_LE(start, end);
   3860   DCHECK_LE(end, limit);
   3861   tlsPtr_.thread_local_start = start;
   3862   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   3863   tlsPtr_.thread_local_end = end;
   3864   tlsPtr_.thread_local_limit = limit;
   3865   tlsPtr_.thread_local_objects = 0;
   3866 }
   3867 
   3868 bool Thread::HasTlab() const {
   3869   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   3870   if (has_tlab) {
   3871     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   3872   } else {
   3873     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   3874   }
   3875   return has_tlab;
   3876 }
   3877 
   3878 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   3879   thread.ShortDump(os);
   3880   return os;
   3881 }
   3882 
   3883 bool Thread::ProtectStack(bool fatal_on_error) {
   3884   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   3885   VLOG(threads) << "Protecting stack at " << pregion;
   3886   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   3887     if (fatal_on_error) {
   3888       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   3889           "Reason: "
   3890           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   3891     }
   3892     return false;
   3893   }
   3894   return true;
   3895 }
   3896 
   3897 bool Thread::UnprotectStack() {
   3898   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   3899   VLOG(threads) << "Unprotecting stack at " << pregion;
   3900   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   3901 }
   3902 
   3903 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
   3904   CHECK(Dbg::IsDebuggerActive());
   3905   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
   3906   CHECK(ssc != nullptr);
   3907   tlsPtr_.single_step_control = ssc;
   3908 }
   3909 
   3910 void Thread::DeactivateSingleStepControl() {
   3911   CHECK(Dbg::IsDebuggerActive());
   3912   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
   3913   SingleStepControl* ssc = GetSingleStepControl();
   3914   tlsPtr_.single_step_control = nullptr;
   3915   delete ssc;
   3916 }
   3917 
   3918 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
   3919   CHECK(Dbg::IsDebuggerActive());
   3920   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
   3921   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
   3922   CHECK(req != nullptr);
   3923   tlsPtr_.debug_invoke_req = req;
   3924 }
   3925 
   3926 void Thread::ClearDebugInvokeReq() {
   3927   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
   3928   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
   3929   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
   3930   tlsPtr_.debug_invoke_req = nullptr;
   3931   delete req;
   3932 }
   3933 
   3934 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
   3935   verifier->link_ = tlsPtr_.method_verifier;
   3936   tlsPtr_.method_verifier = verifier;
   3937 }
   3938 
   3939 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
   3940   CHECK_EQ(tlsPtr_.method_verifier, verifier);
   3941   tlsPtr_.method_verifier = verifier->link_;
   3942 }
   3943 
   3944 size_t Thread::NumberOfHeldMutexes() const {
   3945   size_t count = 0;
   3946   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
   3947     count += mu != nullptr ? 1 : 0;
   3948   }
   3949   return count;
   3950 }
   3951 
   3952 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
   3953   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
   3954   ClearException();
   3955   ShadowFrame* shadow_frame =
   3956       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
   3957   ObjPtr<mirror::Throwable> pending_exception;
   3958   bool from_code = false;
   3959   DeoptimizationMethodType method_type;
   3960   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
   3961   SetTopOfStack(nullptr);
   3962   SetTopOfShadowStack(shadow_frame);
   3963 
   3964   // Restore the exception that was pending before deoptimization then interpret the
   3965   // deoptimized frames.
   3966   if (pending_exception != nullptr) {
   3967     SetException(pending_exception);
   3968   }
   3969   interpreter::EnterInterpreterFromDeoptimize(this,
   3970                                               shadow_frame,
   3971                                               result,
   3972                                               from_code,
   3973                                               method_type);
   3974 }
   3975 
   3976 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
   3977   CHECK(new_exception != nullptr);
   3978   Runtime::Current()->SetAsyncExceptionsThrown();
   3979   if (kIsDebugBuild) {
   3980     // Make sure we are in a checkpoint.
   3981     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   3982     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
   3983         << "It doesn't look like this was called in a checkpoint! this: "
   3984         << this << " count: " << GetSuspendCount();
   3985   }
   3986   tlsPtr_.async_exception = new_exception.Ptr();
   3987 }
   3988 
   3989 bool Thread::ObserveAsyncException() {
   3990   DCHECK(this == Thread::Current());
   3991   if (tlsPtr_.async_exception != nullptr) {
   3992     if (tlsPtr_.exception != nullptr) {
   3993       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
   3994                    << tlsPtr_.exception->Dump();
   3995       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
   3996     }
   3997     tlsPtr_.exception = tlsPtr_.async_exception;
   3998     tlsPtr_.async_exception = nullptr;
   3999     return true;
   4000   } else {
   4001     return IsExceptionPending();
   4002   }
   4003 }
   4004 
   4005 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
   4006   CHECK(new_exception != nullptr);
   4007   // TODO: DCHECK(!IsExceptionPending());
   4008   tlsPtr_.exception = new_exception.Ptr();
   4009 }
   4010 
   4011 bool Thread::IsAotCompiler() {
   4012   return Runtime::Current()->IsAotCompiler();
   4013 }
   4014 
   4015 mirror::Object* Thread::GetPeerFromOtherThread() const {
   4016   DCHECK(tlsPtr_.jpeer == nullptr);
   4017   mirror::Object* peer = tlsPtr_.opeer;
   4018   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
   4019     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
   4020     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
   4021     // mark/forward it here.
   4022     peer = art::ReadBarrier::Mark(peer);
   4023   }
   4024   return peer;
   4025 }
   4026 
   4027 void Thread::SetReadBarrierEntrypoints() {
   4028   // Make sure entrypoints aren't null.
   4029   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
   4030 }
   4031 
   4032 }  // namespace art
   4033