Home | History | Annotate | Download | only in CodeGen
      1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass munges the code in the input function to better prepare it for
     11 // SelectionDAG-based code generation. This works around limitations in it's
     12 // basic-block-at-a-time approach. It should eventually be removed.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/LoopInfo.h"
     22 #include "llvm/Analysis/TargetLibraryInfo.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/Analysis/MemoryBuiltins.h"
     26 #include "llvm/IR/CallSite.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/GetElementPtrTypeIterator.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/InlineAsm.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/MDBuilder.h"
     38 #include "llvm/IR/PatternMatch.h"
     39 #include "llvm/IR/Statepoint.h"
     40 #include "llvm/IR/ValueHandle.h"
     41 #include "llvm/IR/ValueMap.h"
     42 #include "llvm/Pass.h"
     43 #include "llvm/Support/BranchProbability.h"
     44 #include "llvm/Support/CommandLine.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 #include "llvm/Target/TargetLowering.h"
     48 #include "llvm/Target/TargetSubtargetInfo.h"
     49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     50 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     51 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
     52 #include "llvm/Transforms/Utils/Local.h"
     53 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     54 using namespace llvm;
     55 using namespace llvm::PatternMatch;
     56 
     57 #define DEBUG_TYPE "codegenprepare"
     58 
     59 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
     60 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
     61 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
     62 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
     63                       "sunken Cmps");
     64 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
     65                        "of sunken Casts");
     66 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
     67                           "computations were sunk");
     68 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
     69 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
     70 STATISTIC(NumAndsAdded,
     71           "Number of and mask instructions added to form ext loads");
     72 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
     73 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
     74 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
     75 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
     76 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
     77 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
     78 
     79 static cl::opt<bool> DisableBranchOpts(
     80   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
     81   cl::desc("Disable branch optimizations in CodeGenPrepare"));
     82 
     83 static cl::opt<bool>
     84     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
     85                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
     86 
     87 static cl::opt<bool> DisableSelectToBranch(
     88   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
     89   cl::desc("Disable select to branch conversion."));
     90 
     91 static cl::opt<bool> AddrSinkUsingGEPs(
     92   "addr-sink-using-gep", cl::Hidden, cl::init(false),
     93   cl::desc("Address sinking in CGP using GEPs."));
     94 
     95 static cl::opt<bool> EnableAndCmpSinking(
     96    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
     97    cl::desc("Enable sinkinig and/cmp into branches."));
     98 
     99 static cl::opt<bool> DisableStoreExtract(
    100     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
    101     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
    102 
    103 static cl::opt<bool> StressStoreExtract(
    104     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
    105     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
    106 
    107 static cl::opt<bool> DisableExtLdPromotion(
    108     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
    109     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
    110              "CodeGenPrepare"));
    111 
    112 static cl::opt<bool> StressExtLdPromotion(
    113     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
    114     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
    115              "optimization in CodeGenPrepare"));
    116 
    117 static cl::opt<bool> DisablePreheaderProtect(
    118     "disable-preheader-prot", cl::Hidden, cl::init(false),
    119     cl::desc("Disable protection against removing loop preheaders"));
    120 
    121 namespace {
    122 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
    123 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt;
    124 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy;
    125 class TypePromotionTransaction;
    126 
    127   class CodeGenPrepare : public FunctionPass {
    128     const TargetMachine *TM;
    129     const TargetLowering *TLI;
    130     const TargetTransformInfo *TTI;
    131     const TargetLibraryInfo *TLInfo;
    132     const LoopInfo *LI;
    133 
    134     /// As we scan instructions optimizing them, this is the next instruction
    135     /// to optimize. Transforms that can invalidate this should update it.
    136     BasicBlock::iterator CurInstIterator;
    137 
    138     /// Keeps track of non-local addresses that have been sunk into a block.
    139     /// This allows us to avoid inserting duplicate code for blocks with
    140     /// multiple load/stores of the same address.
    141     ValueMap<Value*, Value*> SunkAddrs;
    142 
    143     /// Keeps track of all instructions inserted for the current function.
    144     SetOfInstrs InsertedInsts;
    145     /// Keeps track of the type of the related instruction before their
    146     /// promotion for the current function.
    147     InstrToOrigTy PromotedInsts;
    148 
    149     /// True if CFG is modified in any way.
    150     bool ModifiedDT;
    151 
    152     /// True if optimizing for size.
    153     bool OptSize;
    154 
    155     /// DataLayout for the Function being processed.
    156     const DataLayout *DL;
    157 
    158   public:
    159     static char ID; // Pass identification, replacement for typeid
    160     explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
    161         : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) {
    162         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
    163       }
    164     bool runOnFunction(Function &F) override;
    165 
    166     const char *getPassName() const override { return "CodeGen Prepare"; }
    167 
    168     void getAnalysisUsage(AnalysisUsage &AU) const override {
    169       // FIXME: When we can selectively preserve passes, preserve the domtree.
    170       AU.addRequired<TargetLibraryInfoWrapperPass>();
    171       AU.addRequired<TargetTransformInfoWrapperPass>();
    172       AU.addRequired<LoopInfoWrapperPass>();
    173     }
    174 
    175   private:
    176     bool eliminateFallThrough(Function &F);
    177     bool eliminateMostlyEmptyBlocks(Function &F);
    178     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    179     void eliminateMostlyEmptyBlock(BasicBlock *BB);
    180     bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
    181     bool optimizeInst(Instruction *I, bool& ModifiedDT);
    182     bool optimizeMemoryInst(Instruction *I, Value *Addr,
    183                             Type *AccessTy, unsigned AS);
    184     bool optimizeInlineAsmInst(CallInst *CS);
    185     bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
    186     bool moveExtToFormExtLoad(Instruction *&I);
    187     bool optimizeExtUses(Instruction *I);
    188     bool optimizeLoadExt(LoadInst *I);
    189     bool optimizeSelectInst(SelectInst *SI);
    190     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
    191     bool optimizeSwitchInst(SwitchInst *CI);
    192     bool optimizeExtractElementInst(Instruction *Inst);
    193     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
    194     bool placeDbgValues(Function &F);
    195     bool sinkAndCmp(Function &F);
    196     bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
    197                         Instruction *&Inst,
    198                         const SmallVectorImpl<Instruction *> &Exts,
    199                         unsigned CreatedInstCost);
    200     bool splitBranchCondition(Function &F);
    201     bool simplifyOffsetableRelocate(Instruction &I);
    202     void stripInvariantGroupMetadata(Instruction &I);
    203   };
    204 }
    205 
    206 char CodeGenPrepare::ID = 0;
    207 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
    208                    "Optimize for code generation", false, false)
    209 
    210 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
    211   return new CodeGenPrepare(TM);
    212 }
    213 
    214 bool CodeGenPrepare::runOnFunction(Function &F) {
    215   if (skipFunction(F))
    216     return false;
    217 
    218   DL = &F.getParent()->getDataLayout();
    219 
    220   bool EverMadeChange = false;
    221   // Clear per function information.
    222   InsertedInsts.clear();
    223   PromotedInsts.clear();
    224 
    225   ModifiedDT = false;
    226   if (TM)
    227     TLI = TM->getSubtargetImpl(F)->getTargetLowering();
    228   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    229   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    230   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    231   OptSize = F.optForSize();
    232 
    233   /// This optimization identifies DIV instructions that can be
    234   /// profitably bypassed and carried out with a shorter, faster divide.
    235   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
    236     const DenseMap<unsigned int, unsigned int> &BypassWidths =
    237        TLI->getBypassSlowDivWidths();
    238     BasicBlock* BB = &*F.begin();
    239     while (BB != nullptr) {
    240       // bypassSlowDivision may create new BBs, but we don't want to reapply the
    241       // optimization to those blocks.
    242       BasicBlock* Next = BB->getNextNode();
    243       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
    244       BB = Next;
    245     }
    246   }
    247 
    248   // Eliminate blocks that contain only PHI nodes and an
    249   // unconditional branch.
    250   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
    251 
    252   // llvm.dbg.value is far away from the value then iSel may not be able
    253   // handle it properly. iSel will drop llvm.dbg.value if it can not
    254   // find a node corresponding to the value.
    255   EverMadeChange |= placeDbgValues(F);
    256 
    257   // If there is a mask, compare against zero, and branch that can be combined
    258   // into a single target instruction, push the mask and compare into branch
    259   // users. Do this before OptimizeBlock -> OptimizeInst ->
    260   // OptimizeCmpExpression, which perturbs the pattern being searched for.
    261   if (!DisableBranchOpts) {
    262     EverMadeChange |= sinkAndCmp(F);
    263     EverMadeChange |= splitBranchCondition(F);
    264   }
    265 
    266   bool MadeChange = true;
    267   while (MadeChange) {
    268     MadeChange = false;
    269     for (Function::iterator I = F.begin(); I != F.end(); ) {
    270       BasicBlock *BB = &*I++;
    271       bool ModifiedDTOnIteration = false;
    272       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
    273 
    274       // Restart BB iteration if the dominator tree of the Function was changed
    275       if (ModifiedDTOnIteration)
    276         break;
    277     }
    278     EverMadeChange |= MadeChange;
    279   }
    280 
    281   SunkAddrs.clear();
    282 
    283   if (!DisableBranchOpts) {
    284     MadeChange = false;
    285     SmallPtrSet<BasicBlock*, 8> WorkList;
    286     for (BasicBlock &BB : F) {
    287       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
    288       MadeChange |= ConstantFoldTerminator(&BB, true);
    289       if (!MadeChange) continue;
    290 
    291       for (SmallVectorImpl<BasicBlock*>::iterator
    292              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    293         if (pred_begin(*II) == pred_end(*II))
    294           WorkList.insert(*II);
    295     }
    296 
    297     // Delete the dead blocks and any of their dead successors.
    298     MadeChange |= !WorkList.empty();
    299     while (!WorkList.empty()) {
    300       BasicBlock *BB = *WorkList.begin();
    301       WorkList.erase(BB);
    302       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
    303 
    304       DeleteDeadBlock(BB);
    305 
    306       for (SmallVectorImpl<BasicBlock*>::iterator
    307              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
    308         if (pred_begin(*II) == pred_end(*II))
    309           WorkList.insert(*II);
    310     }
    311 
    312     // Merge pairs of basic blocks with unconditional branches, connected by
    313     // a single edge.
    314     if (EverMadeChange || MadeChange)
    315       MadeChange |= eliminateFallThrough(F);
    316 
    317     EverMadeChange |= MadeChange;
    318   }
    319 
    320   if (!DisableGCOpts) {
    321     SmallVector<Instruction *, 2> Statepoints;
    322     for (BasicBlock &BB : F)
    323       for (Instruction &I : BB)
    324         if (isStatepoint(I))
    325           Statepoints.push_back(&I);
    326     for (auto &I : Statepoints)
    327       EverMadeChange |= simplifyOffsetableRelocate(*I);
    328   }
    329 
    330   return EverMadeChange;
    331 }
    332 
    333 /// Merge basic blocks which are connected by a single edge, where one of the
    334 /// basic blocks has a single successor pointing to the other basic block,
    335 /// which has a single predecessor.
    336 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
    337   bool Changed = false;
    338   // Scan all of the blocks in the function, except for the entry block.
    339   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
    340     BasicBlock *BB = &*I++;
    341     // If the destination block has a single pred, then this is a trivial
    342     // edge, just collapse it.
    343     BasicBlock *SinglePred = BB->getSinglePredecessor();
    344 
    345     // Don't merge if BB's address is taken.
    346     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
    347 
    348     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
    349     if (Term && !Term->isConditional()) {
    350       Changed = true;
    351       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
    352       // Remember if SinglePred was the entry block of the function.
    353       // If so, we will need to move BB back to the entry position.
    354       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    355       MergeBasicBlockIntoOnlyPred(BB, nullptr);
    356 
    357       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    358         BB->moveBefore(&BB->getParent()->getEntryBlock());
    359 
    360       // We have erased a block. Update the iterator.
    361       I = BB->getIterator();
    362     }
    363   }
    364   return Changed;
    365 }
    366 
    367 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
    368 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
    369 /// edges in ways that are non-optimal for isel. Start by eliminating these
    370 /// blocks so we can split them the way we want them.
    371 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
    372   SmallPtrSet<BasicBlock *, 16> Preheaders;
    373   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
    374   while (!LoopList.empty()) {
    375     Loop *L = LoopList.pop_back_val();
    376     LoopList.insert(LoopList.end(), L->begin(), L->end());
    377     if (BasicBlock *Preheader = L->getLoopPreheader())
    378       Preheaders.insert(Preheader);
    379   }
    380 
    381   bool MadeChange = false;
    382   // Note that this intentionally skips the entry block.
    383   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
    384     BasicBlock *BB = &*I++;
    385 
    386     // If this block doesn't end with an uncond branch, ignore it.
    387     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    388     if (!BI || !BI->isUnconditional())
    389       continue;
    390 
    391     // If the instruction before the branch (skipping debug info) isn't a phi
    392     // node, then other stuff is happening here.
    393     BasicBlock::iterator BBI = BI->getIterator();
    394     if (BBI != BB->begin()) {
    395       --BBI;
    396       while (isa<DbgInfoIntrinsic>(BBI)) {
    397         if (BBI == BB->begin())
    398           break;
    399         --BBI;
    400       }
    401       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
    402         continue;
    403     }
    404 
    405     // Do not break infinite loops.
    406     BasicBlock *DestBB = BI->getSuccessor(0);
    407     if (DestBB == BB)
    408       continue;
    409 
    410     if (!canMergeBlocks(BB, DestBB))
    411       continue;
    412 
    413     // Do not delete loop preheaders if doing so would create a critical edge.
    414     // Loop preheaders can be good locations to spill registers. If the
    415     // preheader is deleted and we create a critical edge, registers may be
    416     // spilled in the loop body instead.
    417     if (!DisablePreheaderProtect && Preheaders.count(BB) &&
    418         !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor()))
    419      continue;
    420 
    421     eliminateMostlyEmptyBlock(BB);
    422     MadeChange = true;
    423   }
    424   return MadeChange;
    425 }
    426 
    427 /// Return true if we can merge BB into DestBB if there is a single
    428 /// unconditional branch between them, and BB contains no other non-phi
    429 /// instructions.
    430 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
    431                                     const BasicBlock *DestBB) const {
    432   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
    433   // the successor.  If there are more complex condition (e.g. preheaders),
    434   // don't mess around with them.
    435   BasicBlock::const_iterator BBI = BB->begin();
    436   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    437     for (const User *U : PN->users()) {
    438       const Instruction *UI = cast<Instruction>(U);
    439       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
    440         return false;
    441       // If User is inside DestBB block and it is a PHINode then check
    442       // incoming value. If incoming value is not from BB then this is
    443       // a complex condition (e.g. preheaders) we want to avoid here.
    444       if (UI->getParent() == DestBB) {
    445         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
    446           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
    447             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
    448             if (Insn && Insn->getParent() == BB &&
    449                 Insn->getParent() != UPN->getIncomingBlock(I))
    450               return false;
    451           }
    452       }
    453     }
    454   }
    455 
    456   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
    457   // and DestBB may have conflicting incoming values for the block.  If so, we
    458   // can't merge the block.
    459   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
    460   if (!DestBBPN) return true;  // no conflict.
    461 
    462   // Collect the preds of BB.
    463   SmallPtrSet<const BasicBlock*, 16> BBPreds;
    464   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    465     // It is faster to get preds from a PHI than with pred_iterator.
    466     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    467       BBPreds.insert(BBPN->getIncomingBlock(i));
    468   } else {
    469     BBPreds.insert(pred_begin(BB), pred_end(BB));
    470   }
    471 
    472   // Walk the preds of DestBB.
    473   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    474     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    475     if (BBPreds.count(Pred)) {   // Common predecessor?
    476       BBI = DestBB->begin();
    477       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    478         const Value *V1 = PN->getIncomingValueForBlock(Pred);
    479         const Value *V2 = PN->getIncomingValueForBlock(BB);
    480 
    481         // If V2 is a phi node in BB, look up what the mapped value will be.
    482         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
    483           if (V2PN->getParent() == BB)
    484             V2 = V2PN->getIncomingValueForBlock(Pred);
    485 
    486         // If there is a conflict, bail out.
    487         if (V1 != V2) return false;
    488       }
    489     }
    490   }
    491 
    492   return true;
    493 }
    494 
    495 
    496 /// Eliminate a basic block that has only phi's and an unconditional branch in
    497 /// it.
    498 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
    499   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
    500   BasicBlock *DestBB = BI->getSuccessor(0);
    501 
    502   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
    503 
    504   // If the destination block has a single pred, then this is a trivial edge,
    505   // just collapse it.
    506   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
    507     if (SinglePred != DestBB) {
    508       // Remember if SinglePred was the entry block of the function.  If so, we
    509       // will need to move BB back to the entry position.
    510       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    511       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
    512 
    513       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    514         BB->moveBefore(&BB->getParent()->getEntryBlock());
    515 
    516       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    517       return;
    518     }
    519   }
    520 
    521   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
    522   // to handle the new incoming edges it is about to have.
    523   PHINode *PN;
    524   for (BasicBlock::iterator BBI = DestBB->begin();
    525        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    526     // Remove the incoming value for BB, and remember it.
    527     Value *InVal = PN->removeIncomingValue(BB, false);
    528 
    529     // Two options: either the InVal is a phi node defined in BB or it is some
    530     // value that dominates BB.
    531     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    532     if (InValPhi && InValPhi->getParent() == BB) {
    533       // Add all of the input values of the input PHI as inputs of this phi.
    534       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
    535         PN->addIncoming(InValPhi->getIncomingValue(i),
    536                         InValPhi->getIncomingBlock(i));
    537     } else {
    538       // Otherwise, add one instance of the dominating value for each edge that
    539       // we will be adding.
    540       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    541         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
    542           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
    543       } else {
    544         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    545           PN->addIncoming(InVal, *PI);
    546       }
    547     }
    548   }
    549 
    550   // The PHIs are now updated, change everything that refers to BB to use
    551   // DestBB and remove BB.
    552   BB->replaceAllUsesWith(DestBB);
    553   BB->eraseFromParent();
    554   ++NumBlocksElim;
    555 
    556   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
    557 }
    558 
    559 // Computes a map of base pointer relocation instructions to corresponding
    560 // derived pointer relocation instructions given a vector of all relocate calls
    561 static void computeBaseDerivedRelocateMap(
    562     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
    563     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
    564         &RelocateInstMap) {
    565   // Collect information in two maps: one primarily for locating the base object
    566   // while filling the second map; the second map is the final structure holding
    567   // a mapping between Base and corresponding Derived relocate calls
    568   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
    569   for (auto *ThisRelocate : AllRelocateCalls) {
    570     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
    571                             ThisRelocate->getDerivedPtrIndex());
    572     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
    573   }
    574   for (auto &Item : RelocateIdxMap) {
    575     std::pair<unsigned, unsigned> Key = Item.first;
    576     if (Key.first == Key.second)
    577       // Base relocation: nothing to insert
    578       continue;
    579 
    580     GCRelocateInst *I = Item.second;
    581     auto BaseKey = std::make_pair(Key.first, Key.first);
    582 
    583     // We're iterating over RelocateIdxMap so we cannot modify it.
    584     auto MaybeBase = RelocateIdxMap.find(BaseKey);
    585     if (MaybeBase == RelocateIdxMap.end())
    586       // TODO: We might want to insert a new base object relocate and gep off
    587       // that, if there are enough derived object relocates.
    588       continue;
    589 
    590     RelocateInstMap[MaybeBase->second].push_back(I);
    591   }
    592 }
    593 
    594 // Accepts a GEP and extracts the operands into a vector provided they're all
    595 // small integer constants
    596 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
    597                                           SmallVectorImpl<Value *> &OffsetV) {
    598   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
    599     // Only accept small constant integer operands
    600     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
    601     if (!Op || Op->getZExtValue() > 20)
    602       return false;
    603   }
    604 
    605   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
    606     OffsetV.push_back(GEP->getOperand(i));
    607   return true;
    608 }
    609 
    610 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
    611 // replace, computes a replacement, and affects it.
    612 static bool
    613 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
    614                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
    615   bool MadeChange = false;
    616   for (GCRelocateInst *ToReplace : Targets) {
    617     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
    618            "Not relocating a derived object of the original base object");
    619     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
    620       // A duplicate relocate call. TODO: coalesce duplicates.
    621       continue;
    622     }
    623 
    624     if (RelocatedBase->getParent() != ToReplace->getParent()) {
    625       // Base and derived relocates are in different basic blocks.
    626       // In this case transform is only valid when base dominates derived
    627       // relocate. However it would be too expensive to check dominance
    628       // for each such relocate, so we skip the whole transformation.
    629       continue;
    630     }
    631 
    632     Value *Base = ToReplace->getBasePtr();
    633     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
    634     if (!Derived || Derived->getPointerOperand() != Base)
    635       continue;
    636 
    637     SmallVector<Value *, 2> OffsetV;
    638     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
    639       continue;
    640 
    641     // Create a Builder and replace the target callsite with a gep
    642     assert(RelocatedBase->getNextNode() &&
    643            "Should always have one since it's not a terminator");
    644 
    645     // Insert after RelocatedBase
    646     IRBuilder<> Builder(RelocatedBase->getNextNode());
    647     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
    648 
    649     // If gc_relocate does not match the actual type, cast it to the right type.
    650     // In theory, there must be a bitcast after gc_relocate if the type does not
    651     // match, and we should reuse it to get the derived pointer. But it could be
    652     // cases like this:
    653     // bb1:
    654     //  ...
    655     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
    656     //  br label %merge
    657     //
    658     // bb2:
    659     //  ...
    660     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
    661     //  br label %merge
    662     //
    663     // merge:
    664     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
    665     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
    666     //
    667     // In this case, we can not find the bitcast any more. So we insert a new bitcast
    668     // no matter there is already one or not. In this way, we can handle all cases, and
    669     // the extra bitcast should be optimized away in later passes.
    670     Value *ActualRelocatedBase = RelocatedBase;
    671     if (RelocatedBase->getType() != Base->getType()) {
    672       ActualRelocatedBase =
    673           Builder.CreateBitCast(RelocatedBase, Base->getType());
    674     }
    675     Value *Replacement = Builder.CreateGEP(
    676         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
    677     Replacement->takeName(ToReplace);
    678     // If the newly generated derived pointer's type does not match the original derived
    679     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
    680     Value *ActualReplacement = Replacement;
    681     if (Replacement->getType() != ToReplace->getType()) {
    682       ActualReplacement =
    683           Builder.CreateBitCast(Replacement, ToReplace->getType());
    684     }
    685     ToReplace->replaceAllUsesWith(ActualReplacement);
    686     ToReplace->eraseFromParent();
    687 
    688     MadeChange = true;
    689   }
    690   return MadeChange;
    691 }
    692 
    693 // Turns this:
    694 //
    695 // %base = ...
    696 // %ptr = gep %base + 15
    697 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
    698 // %base' = relocate(%tok, i32 4, i32 4)
    699 // %ptr' = relocate(%tok, i32 4, i32 5)
    700 // %val = load %ptr'
    701 //
    702 // into this:
    703 //
    704 // %base = ...
    705 // %ptr = gep %base + 15
    706 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
    707 // %base' = gc.relocate(%tok, i32 4, i32 4)
    708 // %ptr' = gep %base' + 15
    709 // %val = load %ptr'
    710 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
    711   bool MadeChange = false;
    712   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
    713 
    714   for (auto *U : I.users())
    715     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
    716       // Collect all the relocate calls associated with a statepoint
    717       AllRelocateCalls.push_back(Relocate);
    718 
    719   // We need atleast one base pointer relocation + one derived pointer
    720   // relocation to mangle
    721   if (AllRelocateCalls.size() < 2)
    722     return false;
    723 
    724   // RelocateInstMap is a mapping from the base relocate instruction to the
    725   // corresponding derived relocate instructions
    726   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
    727   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
    728   if (RelocateInstMap.empty())
    729     return false;
    730 
    731   for (auto &Item : RelocateInstMap)
    732     // Item.first is the RelocatedBase to offset against
    733     // Item.second is the vector of Targets to replace
    734     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
    735   return MadeChange;
    736 }
    737 
    738 /// SinkCast - Sink the specified cast instruction into its user blocks
    739 static bool SinkCast(CastInst *CI) {
    740   BasicBlock *DefBB = CI->getParent();
    741 
    742   /// InsertedCasts - Only insert a cast in each block once.
    743   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
    744 
    745   bool MadeChange = false;
    746   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
    747        UI != E; ) {
    748     Use &TheUse = UI.getUse();
    749     Instruction *User = cast<Instruction>(*UI);
    750 
    751     // Figure out which BB this cast is used in.  For PHI's this is the
    752     // appropriate predecessor block.
    753     BasicBlock *UserBB = User->getParent();
    754     if (PHINode *PN = dyn_cast<PHINode>(User)) {
    755       UserBB = PN->getIncomingBlock(TheUse);
    756     }
    757 
    758     // Preincrement use iterator so we don't invalidate it.
    759     ++UI;
    760 
    761     // The first insertion point of a block containing an EH pad is after the
    762     // pad.  If the pad is the user, we cannot sink the cast past the pad.
    763     if (User->isEHPad())
    764       continue;
    765 
    766     // If the block selected to receive the cast is an EH pad that does not
    767     // allow non-PHI instructions before the terminator, we can't sink the
    768     // cast.
    769     if (UserBB->getTerminator()->isEHPad())
    770       continue;
    771 
    772     // If this user is in the same block as the cast, don't change the cast.
    773     if (UserBB == DefBB) continue;
    774 
    775     // If we have already inserted a cast into this block, use it.
    776     CastInst *&InsertedCast = InsertedCasts[UserBB];
    777 
    778     if (!InsertedCast) {
    779       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    780       assert(InsertPt != UserBB->end());
    781       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
    782                                       CI->getType(), "", &*InsertPt);
    783     }
    784 
    785     // Replace a use of the cast with a use of the new cast.
    786     TheUse = InsertedCast;
    787     MadeChange = true;
    788     ++NumCastUses;
    789   }
    790 
    791   // If we removed all uses, nuke the cast.
    792   if (CI->use_empty()) {
    793     CI->eraseFromParent();
    794     MadeChange = true;
    795   }
    796 
    797   return MadeChange;
    798 }
    799 
    800 /// If the specified cast instruction is a noop copy (e.g. it's casting from
    801 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
    802 /// reduce the number of virtual registers that must be created and coalesced.
    803 ///
    804 /// Return true if any changes are made.
    805 ///
    806 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
    807                                        const DataLayout &DL) {
    808   // If this is a noop copy,
    809   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
    810   EVT DstVT = TLI.getValueType(DL, CI->getType());
    811 
    812   // This is an fp<->int conversion?
    813   if (SrcVT.isInteger() != DstVT.isInteger())
    814     return false;
    815 
    816   // If this is an extension, it will be a zero or sign extension, which
    817   // isn't a noop.
    818   if (SrcVT.bitsLT(DstVT)) return false;
    819 
    820   // If these values will be promoted, find out what they will be promoted
    821   // to.  This helps us consider truncates on PPC as noop copies when they
    822   // are.
    823   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
    824       TargetLowering::TypePromoteInteger)
    825     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
    826   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
    827       TargetLowering::TypePromoteInteger)
    828     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
    829 
    830   // If, after promotion, these are the same types, this is a noop copy.
    831   if (SrcVT != DstVT)
    832     return false;
    833 
    834   return SinkCast(CI);
    835 }
    836 
    837 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
    838 /// possible.
    839 ///
    840 /// Return true if any changes were made.
    841 static bool CombineUAddWithOverflow(CmpInst *CI) {
    842   Value *A, *B;
    843   Instruction *AddI;
    844   if (!match(CI,
    845              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
    846     return false;
    847 
    848   Type *Ty = AddI->getType();
    849   if (!isa<IntegerType>(Ty))
    850     return false;
    851 
    852   // We don't want to move around uses of condition values this late, so we we
    853   // check if it is legal to create the call to the intrinsic in the basic
    854   // block containing the icmp:
    855 
    856   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
    857     return false;
    858 
    859 #ifndef NDEBUG
    860   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
    861   // for now:
    862   if (AddI->hasOneUse())
    863     assert(*AddI->user_begin() == CI && "expected!");
    864 #endif
    865 
    866   Module *M = CI->getModule();
    867   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
    868 
    869   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
    870 
    871   auto *UAddWithOverflow =
    872       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
    873   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
    874   auto *Overflow =
    875       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
    876 
    877   CI->replaceAllUsesWith(Overflow);
    878   AddI->replaceAllUsesWith(UAdd);
    879   CI->eraseFromParent();
    880   AddI->eraseFromParent();
    881   return true;
    882 }
    883 
    884 /// Sink the given CmpInst into user blocks to reduce the number of virtual
    885 /// registers that must be created and coalesced. This is a clear win except on
    886 /// targets with multiple condition code registers (PowerPC), where it might
    887 /// lose; some adjustment may be wanted there.
    888 ///
    889 /// Return true if any changes are made.
    890 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
    891   BasicBlock *DefBB = CI->getParent();
    892 
    893   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
    894   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
    895     return false;
    896 
    897   // Only insert a cmp in each block once.
    898   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
    899 
    900   bool MadeChange = false;
    901   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
    902        UI != E; ) {
    903     Use &TheUse = UI.getUse();
    904     Instruction *User = cast<Instruction>(*UI);
    905 
    906     // Preincrement use iterator so we don't invalidate it.
    907     ++UI;
    908 
    909     // Don't bother for PHI nodes.
    910     if (isa<PHINode>(User))
    911       continue;
    912 
    913     // Figure out which BB this cmp is used in.
    914     BasicBlock *UserBB = User->getParent();
    915 
    916     // If this user is in the same block as the cmp, don't change the cmp.
    917     if (UserBB == DefBB) continue;
    918 
    919     // If we have already inserted a cmp into this block, use it.
    920     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
    921 
    922     if (!InsertedCmp) {
    923       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
    924       assert(InsertPt != UserBB->end());
    925       InsertedCmp =
    926           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
    927                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
    928     }
    929 
    930     // Replace a use of the cmp with a use of the new cmp.
    931     TheUse = InsertedCmp;
    932     MadeChange = true;
    933     ++NumCmpUses;
    934   }
    935 
    936   // If we removed all uses, nuke the cmp.
    937   if (CI->use_empty()) {
    938     CI->eraseFromParent();
    939     MadeChange = true;
    940   }
    941 
    942   return MadeChange;
    943 }
    944 
    945 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
    946   if (SinkCmpExpression(CI, TLI))
    947     return true;
    948 
    949   if (CombineUAddWithOverflow(CI))
    950     return true;
    951 
    952   return false;
    953 }
    954 
    955 /// Check if the candidates could be combined with a shift instruction, which
    956 /// includes:
    957 /// 1. Truncate instruction
    958 /// 2. And instruction and the imm is a mask of the low bits:
    959 /// imm & (imm+1) == 0
    960 static bool isExtractBitsCandidateUse(Instruction *User) {
    961   if (!isa<TruncInst>(User)) {
    962     if (User->getOpcode() != Instruction::And ||
    963         !isa<ConstantInt>(User->getOperand(1)))
    964       return false;
    965 
    966     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
    967 
    968     if ((Cimm & (Cimm + 1)).getBoolValue())
    969       return false;
    970   }
    971   return true;
    972 }
    973 
    974 /// Sink both shift and truncate instruction to the use of truncate's BB.
    975 static bool
    976 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
    977                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
    978                      const TargetLowering &TLI, const DataLayout &DL) {
    979   BasicBlock *UserBB = User->getParent();
    980   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
    981   TruncInst *TruncI = dyn_cast<TruncInst>(User);
    982   bool MadeChange = false;
    983 
    984   for (Value::user_iterator TruncUI = TruncI->user_begin(),
    985                             TruncE = TruncI->user_end();
    986        TruncUI != TruncE;) {
    987 
    988     Use &TruncTheUse = TruncUI.getUse();
    989     Instruction *TruncUser = cast<Instruction>(*TruncUI);
    990     // Preincrement use iterator so we don't invalidate it.
    991 
    992     ++TruncUI;
    993 
    994     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
    995     if (!ISDOpcode)
    996       continue;
    997 
    998     // If the use is actually a legal node, there will not be an
    999     // implicit truncate.
   1000     // FIXME: always querying the result type is just an
   1001     // approximation; some nodes' legality is determined by the
   1002     // operand or other means. There's no good way to find out though.
   1003     if (TLI.isOperationLegalOrCustom(
   1004             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
   1005       continue;
   1006 
   1007     // Don't bother for PHI nodes.
   1008     if (isa<PHINode>(TruncUser))
   1009       continue;
   1010 
   1011     BasicBlock *TruncUserBB = TruncUser->getParent();
   1012 
   1013     if (UserBB == TruncUserBB)
   1014       continue;
   1015 
   1016     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
   1017     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
   1018 
   1019     if (!InsertedShift && !InsertedTrunc) {
   1020       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
   1021       assert(InsertPt != TruncUserBB->end());
   1022       // Sink the shift
   1023       if (ShiftI->getOpcode() == Instruction::AShr)
   1024         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
   1025                                                    "", &*InsertPt);
   1026       else
   1027         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
   1028                                                    "", &*InsertPt);
   1029 
   1030       // Sink the trunc
   1031       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
   1032       TruncInsertPt++;
   1033       assert(TruncInsertPt != TruncUserBB->end());
   1034 
   1035       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
   1036                                        TruncI->getType(), "", &*TruncInsertPt);
   1037 
   1038       MadeChange = true;
   1039 
   1040       TruncTheUse = InsertedTrunc;
   1041     }
   1042   }
   1043   return MadeChange;
   1044 }
   1045 
   1046 /// Sink the shift *right* instruction into user blocks if the uses could
   1047 /// potentially be combined with this shift instruction and generate BitExtract
   1048 /// instruction. It will only be applied if the architecture supports BitExtract
   1049 /// instruction. Here is an example:
   1050 /// BB1:
   1051 ///   %x.extract.shift = lshr i64 %arg1, 32
   1052 /// BB2:
   1053 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
   1054 /// ==>
   1055 ///
   1056 /// BB2:
   1057 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
   1058 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
   1059 ///
   1060 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
   1061 /// instruction.
   1062 /// Return true if any changes are made.
   1063 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
   1064                                 const TargetLowering &TLI,
   1065                                 const DataLayout &DL) {
   1066   BasicBlock *DefBB = ShiftI->getParent();
   1067 
   1068   /// Only insert instructions in each block once.
   1069   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
   1070 
   1071   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
   1072 
   1073   bool MadeChange = false;
   1074   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
   1075        UI != E;) {
   1076     Use &TheUse = UI.getUse();
   1077     Instruction *User = cast<Instruction>(*UI);
   1078     // Preincrement use iterator so we don't invalidate it.
   1079     ++UI;
   1080 
   1081     // Don't bother for PHI nodes.
   1082     if (isa<PHINode>(User))
   1083       continue;
   1084 
   1085     if (!isExtractBitsCandidateUse(User))
   1086       continue;
   1087 
   1088     BasicBlock *UserBB = User->getParent();
   1089 
   1090     if (UserBB == DefBB) {
   1091       // If the shift and truncate instruction are in the same BB. The use of
   1092       // the truncate(TruncUse) may still introduce another truncate if not
   1093       // legal. In this case, we would like to sink both shift and truncate
   1094       // instruction to the BB of TruncUse.
   1095       // for example:
   1096       // BB1:
   1097       // i64 shift.result = lshr i64 opnd, imm
   1098       // trunc.result = trunc shift.result to i16
   1099       //
   1100       // BB2:
   1101       //   ----> We will have an implicit truncate here if the architecture does
   1102       //   not have i16 compare.
   1103       // cmp i16 trunc.result, opnd2
   1104       //
   1105       if (isa<TruncInst>(User) && shiftIsLegal
   1106           // If the type of the truncate is legal, no trucate will be
   1107           // introduced in other basic blocks.
   1108           &&
   1109           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
   1110         MadeChange =
   1111             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
   1112 
   1113       continue;
   1114     }
   1115     // If we have already inserted a shift into this block, use it.
   1116     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
   1117 
   1118     if (!InsertedShift) {
   1119       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   1120       assert(InsertPt != UserBB->end());
   1121 
   1122       if (ShiftI->getOpcode() == Instruction::AShr)
   1123         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
   1124                                                    "", &*InsertPt);
   1125       else
   1126         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
   1127                                                    "", &*InsertPt);
   1128 
   1129       MadeChange = true;
   1130     }
   1131 
   1132     // Replace a use of the shift with a use of the new shift.
   1133     TheUse = InsertedShift;
   1134   }
   1135 
   1136   // If we removed all uses, nuke the shift.
   1137   if (ShiftI->use_empty())
   1138     ShiftI->eraseFromParent();
   1139 
   1140   return MadeChange;
   1141 }
   1142 
   1143 // Translate a masked load intrinsic like
   1144 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align,
   1145 //                               <16 x i1> %mask, <16 x i32> %passthru)
   1146 // to a chain of basic blocks, with loading element one-by-one if
   1147 // the appropriate mask bit is set
   1148 //
   1149 //  %1 = bitcast i8* %addr to i32*
   1150 //  %2 = extractelement <16 x i1> %mask, i32 0
   1151 //  %3 = icmp eq i1 %2, true
   1152 //  br i1 %3, label %cond.load, label %else
   1153 //
   1154 //cond.load:                                        ; preds = %0
   1155 //  %4 = getelementptr i32* %1, i32 0
   1156 //  %5 = load i32* %4
   1157 //  %6 = insertelement <16 x i32> undef, i32 %5, i32 0
   1158 //  br label %else
   1159 //
   1160 //else:                                             ; preds = %0, %cond.load
   1161 //  %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ]
   1162 //  %7 = extractelement <16 x i1> %mask, i32 1
   1163 //  %8 = icmp eq i1 %7, true
   1164 //  br i1 %8, label %cond.load1, label %else2
   1165 //
   1166 //cond.load1:                                       ; preds = %else
   1167 //  %9 = getelementptr i32* %1, i32 1
   1168 //  %10 = load i32* %9
   1169 //  %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1
   1170 //  br label %else2
   1171 //
   1172 //else2:                                            ; preds = %else, %cond.load1
   1173 //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
   1174 //  %12 = extractelement <16 x i1> %mask, i32 2
   1175 //  %13 = icmp eq i1 %12, true
   1176 //  br i1 %13, label %cond.load4, label %else5
   1177 //
   1178 static void scalarizeMaskedLoad(CallInst *CI) {
   1179   Value *Ptr  = CI->getArgOperand(0);
   1180   Value *Alignment = CI->getArgOperand(1);
   1181   Value *Mask = CI->getArgOperand(2);
   1182   Value *Src0 = CI->getArgOperand(3);
   1183 
   1184   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
   1185   VectorType *VecType = dyn_cast<VectorType>(CI->getType());
   1186   assert(VecType && "Unexpected return type of masked load intrinsic");
   1187 
   1188   Type *EltTy = CI->getType()->getVectorElementType();
   1189 
   1190   IRBuilder<> Builder(CI->getContext());
   1191   Instruction *InsertPt = CI;
   1192   BasicBlock *IfBlock = CI->getParent();
   1193   BasicBlock *CondBlock = nullptr;
   1194   BasicBlock *PrevIfBlock = CI->getParent();
   1195 
   1196   Builder.SetInsertPoint(InsertPt);
   1197   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
   1198 
   1199   // Short-cut if the mask is all-true.
   1200   bool IsAllOnesMask = isa<Constant>(Mask) &&
   1201     cast<Constant>(Mask)->isAllOnesValue();
   1202 
   1203   if (IsAllOnesMask) {
   1204     Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal);
   1205     CI->replaceAllUsesWith(NewI);
   1206     CI->eraseFromParent();
   1207     return;
   1208   }
   1209 
   1210   // Adjust alignment for the scalar instruction.
   1211   AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8);
   1212   // Bitcast %addr fron i8* to EltTy*
   1213   Type *NewPtrType =
   1214     EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
   1215   Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
   1216   unsigned VectorWidth = VecType->getNumElements();
   1217 
   1218   Value *UndefVal = UndefValue::get(VecType);
   1219 
   1220   // The result vector
   1221   Value *VResult = UndefVal;
   1222 
   1223   if (isa<ConstantVector>(Mask)) {
   1224     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1225       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
   1226           continue;
   1227       Value *Gep =
   1228           Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
   1229       LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal);
   1230       VResult = Builder.CreateInsertElement(VResult, Load,
   1231                                             Builder.getInt32(Idx));
   1232     }
   1233     Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
   1234     CI->replaceAllUsesWith(NewI);
   1235     CI->eraseFromParent();
   1236     return;
   1237   }
   1238 
   1239   PHINode *Phi = nullptr;
   1240   Value *PrevPhi = UndefVal;
   1241 
   1242   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1243 
   1244     // Fill the "else" block, created in the previous iteration
   1245     //
   1246     //  %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ]
   1247     //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
   1248     //  %to_load = icmp eq i1 %mask_1, true
   1249     //  br i1 %to_load, label %cond.load, label %else
   1250     //
   1251     if (Idx > 0) {
   1252       Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
   1253       Phi->addIncoming(VResult, CondBlock);
   1254       Phi->addIncoming(PrevPhi, PrevIfBlock);
   1255       PrevPhi = Phi;
   1256       VResult = Phi;
   1257     }
   1258 
   1259     Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
   1260     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
   1261                                     ConstantInt::get(Predicate->getType(), 1));
   1262 
   1263     // Create "cond" block
   1264     //
   1265     //  %EltAddr = getelementptr i32* %1, i32 0
   1266     //  %Elt = load i32* %EltAddr
   1267     //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
   1268     //
   1269     CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load");
   1270     Builder.SetInsertPoint(InsertPt);
   1271 
   1272     Value *Gep =
   1273         Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
   1274     LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal);
   1275     VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx));
   1276 
   1277     // Create "else" block, fill it in the next iteration
   1278     BasicBlock *NewIfBlock =
   1279         CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
   1280     Builder.SetInsertPoint(InsertPt);
   1281     Instruction *OldBr = IfBlock->getTerminator();
   1282     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   1283     OldBr->eraseFromParent();
   1284     PrevIfBlock = IfBlock;
   1285     IfBlock = NewIfBlock;
   1286   }
   1287 
   1288   Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
   1289   Phi->addIncoming(VResult, CondBlock);
   1290   Phi->addIncoming(PrevPhi, PrevIfBlock);
   1291   Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
   1292   CI->replaceAllUsesWith(NewI);
   1293   CI->eraseFromParent();
   1294 }
   1295 
   1296 // Translate a masked store intrinsic, like
   1297 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align,
   1298 //                               <16 x i1> %mask)
   1299 // to a chain of basic blocks, that stores element one-by-one if
   1300 // the appropriate mask bit is set
   1301 //
   1302 //   %1 = bitcast i8* %addr to i32*
   1303 //   %2 = extractelement <16 x i1> %mask, i32 0
   1304 //   %3 = icmp eq i1 %2, true
   1305 //   br i1 %3, label %cond.store, label %else
   1306 //
   1307 // cond.store:                                       ; preds = %0
   1308 //   %4 = extractelement <16 x i32> %val, i32 0
   1309 //   %5 = getelementptr i32* %1, i32 0
   1310 //   store i32 %4, i32* %5
   1311 //   br label %else
   1312 //
   1313 // else:                                             ; preds = %0, %cond.store
   1314 //   %6 = extractelement <16 x i1> %mask, i32 1
   1315 //   %7 = icmp eq i1 %6, true
   1316 //   br i1 %7, label %cond.store1, label %else2
   1317 //
   1318 // cond.store1:                                      ; preds = %else
   1319 //   %8 = extractelement <16 x i32> %val, i32 1
   1320 //   %9 = getelementptr i32* %1, i32 1
   1321 //   store i32 %8, i32* %9
   1322 //   br label %else2
   1323 //   . . .
   1324 static void scalarizeMaskedStore(CallInst *CI) {
   1325   Value *Src = CI->getArgOperand(0);
   1326   Value *Ptr  = CI->getArgOperand(1);
   1327   Value *Alignment = CI->getArgOperand(2);
   1328   Value *Mask = CI->getArgOperand(3);
   1329 
   1330   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
   1331   VectorType *VecType = dyn_cast<VectorType>(Src->getType());
   1332   assert(VecType && "Unexpected data type in masked store intrinsic");
   1333 
   1334   Type *EltTy = VecType->getElementType();
   1335 
   1336   IRBuilder<> Builder(CI->getContext());
   1337   Instruction *InsertPt = CI;
   1338   BasicBlock *IfBlock = CI->getParent();
   1339   Builder.SetInsertPoint(InsertPt);
   1340   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
   1341 
   1342   // Short-cut if the mask is all-true.
   1343   bool IsAllOnesMask = isa<Constant>(Mask) &&
   1344     cast<Constant>(Mask)->isAllOnesValue();
   1345 
   1346   if (IsAllOnesMask) {
   1347     Builder.CreateAlignedStore(Src, Ptr, AlignVal);
   1348     CI->eraseFromParent();
   1349     return;
   1350   }
   1351 
   1352   // Adjust alignment for the scalar instruction.
   1353   AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8);
   1354   // Bitcast %addr fron i8* to EltTy*
   1355   Type *NewPtrType =
   1356     EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace());
   1357   Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType);
   1358   unsigned VectorWidth = VecType->getNumElements();
   1359 
   1360   if (isa<ConstantVector>(Mask)) {
   1361     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1362       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
   1363           continue;
   1364       Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
   1365       Value *Gep =
   1366           Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
   1367       Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
   1368     }
   1369     CI->eraseFromParent();
   1370     return;
   1371   }
   1372 
   1373   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1374 
   1375     // Fill the "else" block, created in the previous iteration
   1376     //
   1377     //  %mask_1 = extractelement <16 x i1> %mask, i32 Idx
   1378     //  %to_store = icmp eq i1 %mask_1, true
   1379     //  br i1 %to_store, label %cond.store, label %else
   1380     //
   1381     Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx));
   1382     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
   1383                                     ConstantInt::get(Predicate->getType(), 1));
   1384 
   1385     // Create "cond" block
   1386     //
   1387     //  %OneElt = extractelement <16 x i32> %Src, i32 Idx
   1388     //  %EltAddr = getelementptr i32* %1, i32 0
   1389     //  %store i32 %OneElt, i32* %EltAddr
   1390     //
   1391     BasicBlock *CondBlock =
   1392         IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store");
   1393     Builder.SetInsertPoint(InsertPt);
   1394 
   1395     Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx));
   1396     Value *Gep =
   1397         Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx));
   1398     Builder.CreateAlignedStore(OneElt, Gep, AlignVal);
   1399 
   1400     // Create "else" block, fill it in the next iteration
   1401     BasicBlock *NewIfBlock =
   1402         CondBlock->splitBasicBlock(InsertPt->getIterator(), "else");
   1403     Builder.SetInsertPoint(InsertPt);
   1404     Instruction *OldBr = IfBlock->getTerminator();
   1405     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   1406     OldBr->eraseFromParent();
   1407     IfBlock = NewIfBlock;
   1408   }
   1409   CI->eraseFromParent();
   1410 }
   1411 
   1412 // Translate a masked gather intrinsic like
   1413 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4,
   1414 //                               <16 x i1> %Mask, <16 x i32> %Src)
   1415 // to a chain of basic blocks, with loading element one-by-one if
   1416 // the appropriate mask bit is set
   1417 //
   1418 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind
   1419 // % Mask0 = extractelement <16 x i1> %Mask, i32 0
   1420 // % ToLoad0 = icmp eq i1 % Mask0, true
   1421 // br i1 % ToLoad0, label %cond.load, label %else
   1422 //
   1423 // cond.load:
   1424 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
   1425 // % Load0 = load i32, i32* % Ptr0, align 4
   1426 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0
   1427 // br label %else
   1428 //
   1429 // else:
   1430 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0]
   1431 // % Mask1 = extractelement <16 x i1> %Mask, i32 1
   1432 // % ToLoad1 = icmp eq i1 % Mask1, true
   1433 // br i1 % ToLoad1, label %cond.load1, label %else2
   1434 //
   1435 // cond.load1:
   1436 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
   1437 // % Load1 = load i32, i32* % Ptr1, align 4
   1438 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1
   1439 // br label %else2
   1440 // . . .
   1441 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src
   1442 // ret <16 x i32> %Result
   1443 static void scalarizeMaskedGather(CallInst *CI) {
   1444   Value *Ptrs = CI->getArgOperand(0);
   1445   Value *Alignment = CI->getArgOperand(1);
   1446   Value *Mask = CI->getArgOperand(2);
   1447   Value *Src0 = CI->getArgOperand(3);
   1448 
   1449   VectorType *VecType = dyn_cast<VectorType>(CI->getType());
   1450 
   1451   assert(VecType && "Unexpected return type of masked load intrinsic");
   1452 
   1453   IRBuilder<> Builder(CI->getContext());
   1454   Instruction *InsertPt = CI;
   1455   BasicBlock *IfBlock = CI->getParent();
   1456   BasicBlock *CondBlock = nullptr;
   1457   BasicBlock *PrevIfBlock = CI->getParent();
   1458   Builder.SetInsertPoint(InsertPt);
   1459   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
   1460 
   1461   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
   1462 
   1463   Value *UndefVal = UndefValue::get(VecType);
   1464 
   1465   // The result vector
   1466   Value *VResult = UndefVal;
   1467   unsigned VectorWidth = VecType->getNumElements();
   1468 
   1469   // Shorten the way if the mask is a vector of constants.
   1470   bool IsConstMask = isa<ConstantVector>(Mask);
   1471 
   1472   if (IsConstMask) {
   1473     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1474       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
   1475         continue;
   1476       Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
   1477                                                 "Ptr" + Twine(Idx));
   1478       LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
   1479                                                  "Load" + Twine(Idx));
   1480       VResult = Builder.CreateInsertElement(VResult, Load,
   1481                                             Builder.getInt32(Idx),
   1482                                             "Res" + Twine(Idx));
   1483     }
   1484     Value *NewI = Builder.CreateSelect(Mask, VResult, Src0);
   1485     CI->replaceAllUsesWith(NewI);
   1486     CI->eraseFromParent();
   1487     return;
   1488   }
   1489 
   1490   PHINode *Phi = nullptr;
   1491   Value *PrevPhi = UndefVal;
   1492 
   1493   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1494 
   1495     // Fill the "else" block, created in the previous iteration
   1496     //
   1497     //  %Mask1 = extractelement <16 x i1> %Mask, i32 1
   1498     //  %ToLoad1 = icmp eq i1 %Mask1, true
   1499     //  br i1 %ToLoad1, label %cond.load, label %else
   1500     //
   1501     if (Idx > 0) {
   1502       Phi = Builder.CreatePHI(VecType, 2, "res.phi.else");
   1503       Phi->addIncoming(VResult, CondBlock);
   1504       Phi->addIncoming(PrevPhi, PrevIfBlock);
   1505       PrevPhi = Phi;
   1506       VResult = Phi;
   1507     }
   1508 
   1509     Value *Predicate = Builder.CreateExtractElement(Mask,
   1510                                                     Builder.getInt32(Idx),
   1511                                                     "Mask" + Twine(Idx));
   1512     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
   1513                                     ConstantInt::get(Predicate->getType(), 1),
   1514                                     "ToLoad" + Twine(Idx));
   1515 
   1516     // Create "cond" block
   1517     //
   1518     //  %EltAddr = getelementptr i32* %1, i32 0
   1519     //  %Elt = load i32* %EltAddr
   1520     //  VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx
   1521     //
   1522     CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load");
   1523     Builder.SetInsertPoint(InsertPt);
   1524 
   1525     Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
   1526                                               "Ptr" + Twine(Idx));
   1527     LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal,
   1528                                                "Load" + Twine(Idx));
   1529     VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx),
   1530                                           "Res" + Twine(Idx));
   1531 
   1532     // Create "else" block, fill it in the next iteration
   1533     BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
   1534     Builder.SetInsertPoint(InsertPt);
   1535     Instruction *OldBr = IfBlock->getTerminator();
   1536     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   1537     OldBr->eraseFromParent();
   1538     PrevIfBlock = IfBlock;
   1539     IfBlock = NewIfBlock;
   1540   }
   1541 
   1542   Phi = Builder.CreatePHI(VecType, 2, "res.phi.select");
   1543   Phi->addIncoming(VResult, CondBlock);
   1544   Phi->addIncoming(PrevPhi, PrevIfBlock);
   1545   Value *NewI = Builder.CreateSelect(Mask, Phi, Src0);
   1546   CI->replaceAllUsesWith(NewI);
   1547   CI->eraseFromParent();
   1548 }
   1549 
   1550 // Translate a masked scatter intrinsic, like
   1551 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4,
   1552 //                                  <16 x i1> %Mask)
   1553 // to a chain of basic blocks, that stores element one-by-one if
   1554 // the appropriate mask bit is set.
   1555 //
   1556 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind
   1557 // % Mask0 = extractelement <16 x i1> % Mask, i32 0
   1558 // % ToStore0 = icmp eq i1 % Mask0, true
   1559 // br i1 %ToStore0, label %cond.store, label %else
   1560 //
   1561 // cond.store:
   1562 // % Elt0 = extractelement <16 x i32> %Src, i32 0
   1563 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0
   1564 // store i32 %Elt0, i32* % Ptr0, align 4
   1565 // br label %else
   1566 //
   1567 // else:
   1568 // % Mask1 = extractelement <16 x i1> % Mask, i32 1
   1569 // % ToStore1 = icmp eq i1 % Mask1, true
   1570 // br i1 % ToStore1, label %cond.store1, label %else2
   1571 //
   1572 // cond.store1:
   1573 // % Elt1 = extractelement <16 x i32> %Src, i32 1
   1574 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
   1575 // store i32 % Elt1, i32* % Ptr1, align 4
   1576 // br label %else2
   1577 //   . . .
   1578 static void scalarizeMaskedScatter(CallInst *CI) {
   1579   Value *Src = CI->getArgOperand(0);
   1580   Value *Ptrs = CI->getArgOperand(1);
   1581   Value *Alignment = CI->getArgOperand(2);
   1582   Value *Mask = CI->getArgOperand(3);
   1583 
   1584   assert(isa<VectorType>(Src->getType()) &&
   1585          "Unexpected data type in masked scatter intrinsic");
   1586   assert(isa<VectorType>(Ptrs->getType()) &&
   1587          isa<PointerType>(Ptrs->getType()->getVectorElementType()) &&
   1588          "Vector of pointers is expected in masked scatter intrinsic");
   1589 
   1590   IRBuilder<> Builder(CI->getContext());
   1591   Instruction *InsertPt = CI;
   1592   BasicBlock *IfBlock = CI->getParent();
   1593   Builder.SetInsertPoint(InsertPt);
   1594   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
   1595 
   1596   unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue();
   1597   unsigned VectorWidth = Src->getType()->getVectorNumElements();
   1598 
   1599   // Shorten the way if the mask is a vector of constants.
   1600   bool IsConstMask = isa<ConstantVector>(Mask);
   1601 
   1602   if (IsConstMask) {
   1603     for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1604       if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue())
   1605         continue;
   1606       Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
   1607                                                    "Elt" + Twine(Idx));
   1608       Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
   1609                                                 "Ptr" + Twine(Idx));
   1610       Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
   1611     }
   1612     CI->eraseFromParent();
   1613     return;
   1614   }
   1615   for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) {
   1616     // Fill the "else" block, created in the previous iteration
   1617     //
   1618     //  % Mask1 = extractelement <16 x i1> % Mask, i32 Idx
   1619     //  % ToStore = icmp eq i1 % Mask1, true
   1620     //  br i1 % ToStore, label %cond.store, label %else
   1621     //
   1622     Value *Predicate = Builder.CreateExtractElement(Mask,
   1623                                                     Builder.getInt32(Idx),
   1624                                                     "Mask" + Twine(Idx));
   1625     Value *Cmp =
   1626        Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate,
   1627                           ConstantInt::get(Predicate->getType(), 1),
   1628                           "ToStore" + Twine(Idx));
   1629 
   1630     // Create "cond" block
   1631     //
   1632     //  % Elt1 = extractelement <16 x i32> %Src, i32 1
   1633     //  % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1
   1634     //  %store i32 % Elt1, i32* % Ptr1
   1635     //
   1636     BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
   1637     Builder.SetInsertPoint(InsertPt);
   1638 
   1639     Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx),
   1640                                                  "Elt" + Twine(Idx));
   1641     Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx),
   1642                                               "Ptr" + Twine(Idx));
   1643     Builder.CreateAlignedStore(OneElt, Ptr, AlignVal);
   1644 
   1645     // Create "else" block, fill it in the next iteration
   1646     BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
   1647     Builder.SetInsertPoint(InsertPt);
   1648     Instruction *OldBr = IfBlock->getTerminator();
   1649     BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   1650     OldBr->eraseFromParent();
   1651     IfBlock = NewIfBlock;
   1652   }
   1653   CI->eraseFromParent();
   1654 }
   1655 
   1656 /// If counting leading or trailing zeros is an expensive operation and a zero
   1657 /// input is defined, add a check for zero to avoid calling the intrinsic.
   1658 ///
   1659 /// We want to transform:
   1660 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
   1661 ///
   1662 /// into:
   1663 ///   entry:
   1664 ///     %cmpz = icmp eq i64 %A, 0
   1665 ///     br i1 %cmpz, label %cond.end, label %cond.false
   1666 ///   cond.false:
   1667 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
   1668 ///     br label %cond.end
   1669 ///   cond.end:
   1670 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
   1671 ///
   1672 /// If the transform is performed, return true and set ModifiedDT to true.
   1673 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
   1674                                   const TargetLowering *TLI,
   1675                                   const DataLayout *DL,
   1676                                   bool &ModifiedDT) {
   1677   if (!TLI || !DL)
   1678     return false;
   1679 
   1680   // If a zero input is undefined, it doesn't make sense to despeculate that.
   1681   if (match(CountZeros->getOperand(1), m_One()))
   1682     return false;
   1683 
   1684   // If it's cheap to speculate, there's nothing to do.
   1685   auto IntrinsicID = CountZeros->getIntrinsicID();
   1686   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
   1687       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
   1688     return false;
   1689 
   1690   // Only handle legal scalar cases. Anything else requires too much work.
   1691   Type *Ty = CountZeros->getType();
   1692   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
   1693   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
   1694     return false;
   1695 
   1696   // The intrinsic will be sunk behind a compare against zero and branch.
   1697   BasicBlock *StartBlock = CountZeros->getParent();
   1698   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
   1699 
   1700   // Create another block after the count zero intrinsic. A PHI will be added
   1701   // in this block to select the result of the intrinsic or the bit-width
   1702   // constant if the input to the intrinsic is zero.
   1703   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
   1704   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
   1705 
   1706   // Set up a builder to create a compare, conditional branch, and PHI.
   1707   IRBuilder<> Builder(CountZeros->getContext());
   1708   Builder.SetInsertPoint(StartBlock->getTerminator());
   1709   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
   1710 
   1711   // Replace the unconditional branch that was created by the first split with
   1712   // a compare against zero and a conditional branch.
   1713   Value *Zero = Constant::getNullValue(Ty);
   1714   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
   1715   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
   1716   StartBlock->getTerminator()->eraseFromParent();
   1717 
   1718   // Create a PHI in the end block to select either the output of the intrinsic
   1719   // or the bit width of the operand.
   1720   Builder.SetInsertPoint(&EndBlock->front());
   1721   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
   1722   CountZeros->replaceAllUsesWith(PN);
   1723   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
   1724   PN->addIncoming(BitWidth, StartBlock);
   1725   PN->addIncoming(CountZeros, CallBlock);
   1726 
   1727   // We are explicitly handling the zero case, so we can set the intrinsic's
   1728   // undefined zero argument to 'true'. This will also prevent reprocessing the
   1729   // intrinsic; we only despeculate when a zero input is defined.
   1730   CountZeros->setArgOperand(1, Builder.getTrue());
   1731   ModifiedDT = true;
   1732   return true;
   1733 }
   1734 
   1735 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
   1736   BasicBlock *BB = CI->getParent();
   1737 
   1738   // Lower inline assembly if we can.
   1739   // If we found an inline asm expession, and if the target knows how to
   1740   // lower it to normal LLVM code, do so now.
   1741   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
   1742     if (TLI->ExpandInlineAsm(CI)) {
   1743       // Avoid invalidating the iterator.
   1744       CurInstIterator = BB->begin();
   1745       // Avoid processing instructions out of order, which could cause
   1746       // reuse before a value is defined.
   1747       SunkAddrs.clear();
   1748       return true;
   1749     }
   1750     // Sink address computing for memory operands into the block.
   1751     if (optimizeInlineAsmInst(CI))
   1752       return true;
   1753   }
   1754 
   1755   // Align the pointer arguments to this call if the target thinks it's a good
   1756   // idea
   1757   unsigned MinSize, PrefAlign;
   1758   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
   1759     for (auto &Arg : CI->arg_operands()) {
   1760       // We want to align both objects whose address is used directly and
   1761       // objects whose address is used in casts and GEPs, though it only makes
   1762       // sense for GEPs if the offset is a multiple of the desired alignment and
   1763       // if size - offset meets the size threshold.
   1764       if (!Arg->getType()->isPointerTy())
   1765         continue;
   1766       APInt Offset(DL->getPointerSizeInBits(
   1767                        cast<PointerType>(Arg->getType())->getAddressSpace()),
   1768                    0);
   1769       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
   1770       uint64_t Offset2 = Offset.getLimitedValue();
   1771       if ((Offset2 & (PrefAlign-1)) != 0)
   1772         continue;
   1773       AllocaInst *AI;
   1774       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
   1775           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
   1776         AI->setAlignment(PrefAlign);
   1777       // Global variables can only be aligned if they are defined in this
   1778       // object (i.e. they are uniquely initialized in this object), and
   1779       // over-aligning global variables that have an explicit section is
   1780       // forbidden.
   1781       GlobalVariable *GV;
   1782       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
   1783           GV->getAlignment() < PrefAlign &&
   1784           DL->getTypeAllocSize(GV->getValueType()) >=
   1785               MinSize + Offset2)
   1786         GV->setAlignment(PrefAlign);
   1787     }
   1788     // If this is a memcpy (or similar) then we may be able to improve the
   1789     // alignment
   1790     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
   1791       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
   1792       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
   1793         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
   1794       if (Align > MI->getAlignment())
   1795         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
   1796     }
   1797   }
   1798 
   1799   // If we have a cold call site, try to sink addressing computation into the
   1800   // cold block.  This interacts with our handling for loads and stores to
   1801   // ensure that we can fold all uses of a potential addressing computation
   1802   // into their uses.  TODO: generalize this to work over profiling data
   1803   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
   1804     for (auto &Arg : CI->arg_operands()) {
   1805       if (!Arg->getType()->isPointerTy())
   1806         continue;
   1807       unsigned AS = Arg->getType()->getPointerAddressSpace();
   1808       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
   1809     }
   1810 
   1811   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
   1812   if (II) {
   1813     switch (II->getIntrinsicID()) {
   1814     default: break;
   1815     case Intrinsic::objectsize: {
   1816       // Lower all uses of llvm.objectsize.*
   1817       uint64_t Size;
   1818       Type *ReturnTy = CI->getType();
   1819       Constant *RetVal = nullptr;
   1820       ConstantInt *Op1 = cast<ConstantInt>(II->getArgOperand(1));
   1821       ObjSizeMode Mode = Op1->isZero() ? ObjSizeMode::Max : ObjSizeMode::Min;
   1822       if (getObjectSize(II->getArgOperand(0),
   1823                         Size, *DL, TLInfo, false, Mode)) {
   1824         RetVal = ConstantInt::get(ReturnTy, Size);
   1825       } else {
   1826         RetVal = ConstantInt::get(ReturnTy,
   1827                                   Mode == ObjSizeMode::Min ? 0 : -1ULL);
   1828       }
   1829       // Substituting this can cause recursive simplifications, which can
   1830       // invalidate our iterator.  Use a WeakVH to hold onto it in case this
   1831       // happens.
   1832       Value *CurValue = &*CurInstIterator;
   1833       WeakVH IterHandle(CurValue);
   1834 
   1835       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
   1836 
   1837       // If the iterator instruction was recursively deleted, start over at the
   1838       // start of the block.
   1839       if (IterHandle != CurValue) {
   1840         CurInstIterator = BB->begin();
   1841         SunkAddrs.clear();
   1842       }
   1843       return true;
   1844     }
   1845     case Intrinsic::masked_load: {
   1846       // Scalarize unsupported vector masked load
   1847       if (!TTI->isLegalMaskedLoad(CI->getType())) {
   1848         scalarizeMaskedLoad(CI);
   1849         ModifiedDT = true;
   1850         return true;
   1851       }
   1852       return false;
   1853     }
   1854     case Intrinsic::masked_store: {
   1855       if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) {
   1856         scalarizeMaskedStore(CI);
   1857         ModifiedDT = true;
   1858         return true;
   1859       }
   1860       return false;
   1861     }
   1862     case Intrinsic::masked_gather: {
   1863       if (!TTI->isLegalMaskedGather(CI->getType())) {
   1864         scalarizeMaskedGather(CI);
   1865         ModifiedDT = true;
   1866         return true;
   1867       }
   1868       return false;
   1869     }
   1870     case Intrinsic::masked_scatter: {
   1871       if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) {
   1872         scalarizeMaskedScatter(CI);
   1873         ModifiedDT = true;
   1874         return true;
   1875       }
   1876       return false;
   1877     }
   1878     case Intrinsic::aarch64_stlxr:
   1879     case Intrinsic::aarch64_stxr: {
   1880       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
   1881       if (!ExtVal || !ExtVal->hasOneUse() ||
   1882           ExtVal->getParent() == CI->getParent())
   1883         return false;
   1884       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
   1885       ExtVal->moveBefore(CI);
   1886       // Mark this instruction as "inserted by CGP", so that other
   1887       // optimizations don't touch it.
   1888       InsertedInsts.insert(ExtVal);
   1889       return true;
   1890     }
   1891     case Intrinsic::invariant_group_barrier:
   1892       II->replaceAllUsesWith(II->getArgOperand(0));
   1893       II->eraseFromParent();
   1894       return true;
   1895 
   1896     case Intrinsic::cttz:
   1897     case Intrinsic::ctlz:
   1898       // If counting zeros is expensive, try to avoid it.
   1899       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
   1900     }
   1901 
   1902     if (TLI) {
   1903       // Unknown address space.
   1904       // TODO: Target hook to pick which address space the intrinsic cares
   1905       // about?
   1906       unsigned AddrSpace = ~0u;
   1907       SmallVector<Value*, 2> PtrOps;
   1908       Type *AccessTy;
   1909       if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
   1910         while (!PtrOps.empty())
   1911           if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
   1912             return true;
   1913     }
   1914   }
   1915 
   1916   // From here on out we're working with named functions.
   1917   if (!CI->getCalledFunction()) return false;
   1918 
   1919   // Lower all default uses of _chk calls.  This is very similar
   1920   // to what InstCombineCalls does, but here we are only lowering calls
   1921   // to fortified library functions (e.g. __memcpy_chk) that have the default
   1922   // "don't know" as the objectsize.  Anything else should be left alone.
   1923   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
   1924   if (Value *V = Simplifier.optimizeCall(CI)) {
   1925     CI->replaceAllUsesWith(V);
   1926     CI->eraseFromParent();
   1927     return true;
   1928   }
   1929   return false;
   1930 }
   1931 
   1932 /// Look for opportunities to duplicate return instructions to the predecessor
   1933 /// to enable tail call optimizations. The case it is currently looking for is:
   1934 /// @code
   1935 /// bb0:
   1936 ///   %tmp0 = tail call i32 @f0()
   1937 ///   br label %return
   1938 /// bb1:
   1939 ///   %tmp1 = tail call i32 @f1()
   1940 ///   br label %return
   1941 /// bb2:
   1942 ///   %tmp2 = tail call i32 @f2()
   1943 ///   br label %return
   1944 /// return:
   1945 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
   1946 ///   ret i32 %retval
   1947 /// @endcode
   1948 ///
   1949 /// =>
   1950 ///
   1951 /// @code
   1952 /// bb0:
   1953 ///   %tmp0 = tail call i32 @f0()
   1954 ///   ret i32 %tmp0
   1955 /// bb1:
   1956 ///   %tmp1 = tail call i32 @f1()
   1957 ///   ret i32 %tmp1
   1958 /// bb2:
   1959 ///   %tmp2 = tail call i32 @f2()
   1960 ///   ret i32 %tmp2
   1961 /// @endcode
   1962 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
   1963   if (!TLI)
   1964     return false;
   1965 
   1966   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
   1967   if (!RI)
   1968     return false;
   1969 
   1970   PHINode *PN = nullptr;
   1971   BitCastInst *BCI = nullptr;
   1972   Value *V = RI->getReturnValue();
   1973   if (V) {
   1974     BCI = dyn_cast<BitCastInst>(V);
   1975     if (BCI)
   1976       V = BCI->getOperand(0);
   1977 
   1978     PN = dyn_cast<PHINode>(V);
   1979     if (!PN)
   1980       return false;
   1981   }
   1982 
   1983   if (PN && PN->getParent() != BB)
   1984     return false;
   1985 
   1986   // It's not safe to eliminate the sign / zero extension of the return value.
   1987   // See llvm::isInTailCallPosition().
   1988   const Function *F = BB->getParent();
   1989   AttributeSet CallerAttrs = F->getAttributes();
   1990   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
   1991       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1992     return false;
   1993 
   1994   // Make sure there are no instructions between the PHI and return, or that the
   1995   // return is the first instruction in the block.
   1996   if (PN) {
   1997     BasicBlock::iterator BI = BB->begin();
   1998     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
   1999     if (&*BI == BCI)
   2000       // Also skip over the bitcast.
   2001       ++BI;
   2002     if (&*BI != RI)
   2003       return false;
   2004   } else {
   2005     BasicBlock::iterator BI = BB->begin();
   2006     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
   2007     if (&*BI != RI)
   2008       return false;
   2009   }
   2010 
   2011   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
   2012   /// call.
   2013   SmallVector<CallInst*, 4> TailCalls;
   2014   if (PN) {
   2015     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
   2016       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
   2017       // Make sure the phi value is indeed produced by the tail call.
   2018       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
   2019           TLI->mayBeEmittedAsTailCall(CI))
   2020         TailCalls.push_back(CI);
   2021     }
   2022   } else {
   2023     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
   2024     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
   2025       if (!VisitedBBs.insert(*PI).second)
   2026         continue;
   2027 
   2028       BasicBlock::InstListType &InstList = (*PI)->getInstList();
   2029       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
   2030       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
   2031       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
   2032       if (RI == RE)
   2033         continue;
   2034 
   2035       CallInst *CI = dyn_cast<CallInst>(&*RI);
   2036       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
   2037         TailCalls.push_back(CI);
   2038     }
   2039   }
   2040 
   2041   bool Changed = false;
   2042   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
   2043     CallInst *CI = TailCalls[i];
   2044     CallSite CS(CI);
   2045 
   2046     // Conservatively require the attributes of the call to match those of the
   2047     // return. Ignore noalias because it doesn't affect the call sequence.
   2048     AttributeSet CalleeAttrs = CS.getAttributes();
   2049     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
   2050           removeAttribute(Attribute::NoAlias) !=
   2051         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
   2052           removeAttribute(Attribute::NoAlias))
   2053       continue;
   2054 
   2055     // Make sure the call instruction is followed by an unconditional branch to
   2056     // the return block.
   2057     BasicBlock *CallBB = CI->getParent();
   2058     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
   2059     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
   2060       continue;
   2061 
   2062     // Duplicate the return into CallBB.
   2063     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
   2064     ModifiedDT = Changed = true;
   2065     ++NumRetsDup;
   2066   }
   2067 
   2068   // If we eliminated all predecessors of the block, delete the block now.
   2069   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
   2070     BB->eraseFromParent();
   2071 
   2072   return Changed;
   2073 }
   2074 
   2075 //===----------------------------------------------------------------------===//
   2076 // Memory Optimization
   2077 //===----------------------------------------------------------------------===//
   2078 
   2079 namespace {
   2080 
   2081 /// This is an extended version of TargetLowering::AddrMode
   2082 /// which holds actual Value*'s for register values.
   2083 struct ExtAddrMode : public TargetLowering::AddrMode {
   2084   Value *BaseReg;
   2085   Value *ScaledReg;
   2086   ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
   2087   void print(raw_ostream &OS) const;
   2088   void dump() const;
   2089 
   2090   bool operator==(const ExtAddrMode& O) const {
   2091     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
   2092            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
   2093            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
   2094   }
   2095 };
   2096 
   2097 #ifndef NDEBUG
   2098 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
   2099   AM.print(OS);
   2100   return OS;
   2101 }
   2102 #endif
   2103 
   2104 void ExtAddrMode::print(raw_ostream &OS) const {
   2105   bool NeedPlus = false;
   2106   OS << "[";
   2107   if (BaseGV) {
   2108     OS << (NeedPlus ? " + " : "")
   2109        << "GV:";
   2110     BaseGV->printAsOperand(OS, /*PrintType=*/false);
   2111     NeedPlus = true;
   2112   }
   2113 
   2114   if (BaseOffs) {
   2115     OS << (NeedPlus ? " + " : "")
   2116        << BaseOffs;
   2117     NeedPlus = true;
   2118   }
   2119 
   2120   if (BaseReg) {
   2121     OS << (NeedPlus ? " + " : "")
   2122        << "Base:";
   2123     BaseReg->printAsOperand(OS, /*PrintType=*/false);
   2124     NeedPlus = true;
   2125   }
   2126   if (Scale) {
   2127     OS << (NeedPlus ? " + " : "")
   2128        << Scale << "*";
   2129     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
   2130   }
   2131 
   2132   OS << ']';
   2133 }
   2134 
   2135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   2136 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
   2137   print(dbgs());
   2138   dbgs() << '\n';
   2139 }
   2140 #endif
   2141 
   2142 /// \brief This class provides transaction based operation on the IR.
   2143 /// Every change made through this class is recorded in the internal state and
   2144 /// can be undone (rollback) until commit is called.
   2145 class TypePromotionTransaction {
   2146 
   2147   /// \brief This represents the common interface of the individual transaction.
   2148   /// Each class implements the logic for doing one specific modification on
   2149   /// the IR via the TypePromotionTransaction.
   2150   class TypePromotionAction {
   2151   protected:
   2152     /// The Instruction modified.
   2153     Instruction *Inst;
   2154 
   2155   public:
   2156     /// \brief Constructor of the action.
   2157     /// The constructor performs the related action on the IR.
   2158     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
   2159 
   2160     virtual ~TypePromotionAction() {}
   2161 
   2162     /// \brief Undo the modification done by this action.
   2163     /// When this method is called, the IR must be in the same state as it was
   2164     /// before this action was applied.
   2165     /// \pre Undoing the action works if and only if the IR is in the exact same
   2166     /// state as it was directly after this action was applied.
   2167     virtual void undo() = 0;
   2168 
   2169     /// \brief Advocate every change made by this action.
   2170     /// When the results on the IR of the action are to be kept, it is important
   2171     /// to call this function, otherwise hidden information may be kept forever.
   2172     virtual void commit() {
   2173       // Nothing to be done, this action is not doing anything.
   2174     }
   2175   };
   2176 
   2177   /// \brief Utility to remember the position of an instruction.
   2178   class InsertionHandler {
   2179     /// Position of an instruction.
   2180     /// Either an instruction:
   2181     /// - Is the first in a basic block: BB is used.
   2182     /// - Has a previous instructon: PrevInst is used.
   2183     union {
   2184       Instruction *PrevInst;
   2185       BasicBlock *BB;
   2186     } Point;
   2187     /// Remember whether or not the instruction had a previous instruction.
   2188     bool HasPrevInstruction;
   2189 
   2190   public:
   2191     /// \brief Record the position of \p Inst.
   2192     InsertionHandler(Instruction *Inst) {
   2193       BasicBlock::iterator It = Inst->getIterator();
   2194       HasPrevInstruction = (It != (Inst->getParent()->begin()));
   2195       if (HasPrevInstruction)
   2196         Point.PrevInst = &*--It;
   2197       else
   2198         Point.BB = Inst->getParent();
   2199     }
   2200 
   2201     /// \brief Insert \p Inst at the recorded position.
   2202     void insert(Instruction *Inst) {
   2203       if (HasPrevInstruction) {
   2204         if (Inst->getParent())
   2205           Inst->removeFromParent();
   2206         Inst->insertAfter(Point.PrevInst);
   2207       } else {
   2208         Instruction *Position = &*Point.BB->getFirstInsertionPt();
   2209         if (Inst->getParent())
   2210           Inst->moveBefore(Position);
   2211         else
   2212           Inst->insertBefore(Position);
   2213       }
   2214     }
   2215   };
   2216 
   2217   /// \brief Move an instruction before another.
   2218   class InstructionMoveBefore : public TypePromotionAction {
   2219     /// Original position of the instruction.
   2220     InsertionHandler Position;
   2221 
   2222   public:
   2223     /// \brief Move \p Inst before \p Before.
   2224     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
   2225         : TypePromotionAction(Inst), Position(Inst) {
   2226       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
   2227       Inst->moveBefore(Before);
   2228     }
   2229 
   2230     /// \brief Move the instruction back to its original position.
   2231     void undo() override {
   2232       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
   2233       Position.insert(Inst);
   2234     }
   2235   };
   2236 
   2237   /// \brief Set the operand of an instruction with a new value.
   2238   class OperandSetter : public TypePromotionAction {
   2239     /// Original operand of the instruction.
   2240     Value *Origin;
   2241     /// Index of the modified instruction.
   2242     unsigned Idx;
   2243 
   2244   public:
   2245     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
   2246     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
   2247         : TypePromotionAction(Inst), Idx(Idx) {
   2248       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
   2249                    << "for:" << *Inst << "\n"
   2250                    << "with:" << *NewVal << "\n");
   2251       Origin = Inst->getOperand(Idx);
   2252       Inst->setOperand(Idx, NewVal);
   2253     }
   2254 
   2255     /// \brief Restore the original value of the instruction.
   2256     void undo() override {
   2257       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
   2258                    << "for: " << *Inst << "\n"
   2259                    << "with: " << *Origin << "\n");
   2260       Inst->setOperand(Idx, Origin);
   2261     }
   2262   };
   2263 
   2264   /// \brief Hide the operands of an instruction.
   2265   /// Do as if this instruction was not using any of its operands.
   2266   class OperandsHider : public TypePromotionAction {
   2267     /// The list of original operands.
   2268     SmallVector<Value *, 4> OriginalValues;
   2269 
   2270   public:
   2271     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
   2272     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
   2273       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
   2274       unsigned NumOpnds = Inst->getNumOperands();
   2275       OriginalValues.reserve(NumOpnds);
   2276       for (unsigned It = 0; It < NumOpnds; ++It) {
   2277         // Save the current operand.
   2278         Value *Val = Inst->getOperand(It);
   2279         OriginalValues.push_back(Val);
   2280         // Set a dummy one.
   2281         // We could use OperandSetter here, but that would imply an overhead
   2282         // that we are not willing to pay.
   2283         Inst->setOperand(It, UndefValue::get(Val->getType()));
   2284       }
   2285     }
   2286 
   2287     /// \brief Restore the original list of uses.
   2288     void undo() override {
   2289       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
   2290       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
   2291         Inst->setOperand(It, OriginalValues[It]);
   2292     }
   2293   };
   2294 
   2295   /// \brief Build a truncate instruction.
   2296   class TruncBuilder : public TypePromotionAction {
   2297     Value *Val;
   2298   public:
   2299     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
   2300     /// result.
   2301     /// trunc Opnd to Ty.
   2302     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
   2303       IRBuilder<> Builder(Opnd);
   2304       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
   2305       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
   2306     }
   2307 
   2308     /// \brief Get the built value.
   2309     Value *getBuiltValue() { return Val; }
   2310 
   2311     /// \brief Remove the built instruction.
   2312     void undo() override {
   2313       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
   2314       if (Instruction *IVal = dyn_cast<Instruction>(Val))
   2315         IVal->eraseFromParent();
   2316     }
   2317   };
   2318 
   2319   /// \brief Build a sign extension instruction.
   2320   class SExtBuilder : public TypePromotionAction {
   2321     Value *Val;
   2322   public:
   2323     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
   2324     /// result.
   2325     /// sext Opnd to Ty.
   2326     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
   2327         : TypePromotionAction(InsertPt) {
   2328       IRBuilder<> Builder(InsertPt);
   2329       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
   2330       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
   2331     }
   2332 
   2333     /// \brief Get the built value.
   2334     Value *getBuiltValue() { return Val; }
   2335 
   2336     /// \brief Remove the built instruction.
   2337     void undo() override {
   2338       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
   2339       if (Instruction *IVal = dyn_cast<Instruction>(Val))
   2340         IVal->eraseFromParent();
   2341     }
   2342   };
   2343 
   2344   /// \brief Build a zero extension instruction.
   2345   class ZExtBuilder : public TypePromotionAction {
   2346     Value *Val;
   2347   public:
   2348     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
   2349     /// result.
   2350     /// zext Opnd to Ty.
   2351     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
   2352         : TypePromotionAction(InsertPt) {
   2353       IRBuilder<> Builder(InsertPt);
   2354       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
   2355       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
   2356     }
   2357 
   2358     /// \brief Get the built value.
   2359     Value *getBuiltValue() { return Val; }
   2360 
   2361     /// \brief Remove the built instruction.
   2362     void undo() override {
   2363       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
   2364       if (Instruction *IVal = dyn_cast<Instruction>(Val))
   2365         IVal->eraseFromParent();
   2366     }
   2367   };
   2368 
   2369   /// \brief Mutate an instruction to another type.
   2370   class TypeMutator : public TypePromotionAction {
   2371     /// Record the original type.
   2372     Type *OrigTy;
   2373 
   2374   public:
   2375     /// \brief Mutate the type of \p Inst into \p NewTy.
   2376     TypeMutator(Instruction *Inst, Type *NewTy)
   2377         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
   2378       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
   2379                    << "\n");
   2380       Inst->mutateType(NewTy);
   2381     }
   2382 
   2383     /// \brief Mutate the instruction back to its original type.
   2384     void undo() override {
   2385       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
   2386                    << "\n");
   2387       Inst->mutateType(OrigTy);
   2388     }
   2389   };
   2390 
   2391   /// \brief Replace the uses of an instruction by another instruction.
   2392   class UsesReplacer : public TypePromotionAction {
   2393     /// Helper structure to keep track of the replaced uses.
   2394     struct InstructionAndIdx {
   2395       /// The instruction using the instruction.
   2396       Instruction *Inst;
   2397       /// The index where this instruction is used for Inst.
   2398       unsigned Idx;
   2399       InstructionAndIdx(Instruction *Inst, unsigned Idx)
   2400           : Inst(Inst), Idx(Idx) {}
   2401     };
   2402 
   2403     /// Keep track of the original uses (pair Instruction, Index).
   2404     SmallVector<InstructionAndIdx, 4> OriginalUses;
   2405     typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
   2406 
   2407   public:
   2408     /// \brief Replace all the use of \p Inst by \p New.
   2409     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
   2410       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
   2411                    << "\n");
   2412       // Record the original uses.
   2413       for (Use &U : Inst->uses()) {
   2414         Instruction *UserI = cast<Instruction>(U.getUser());
   2415         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
   2416       }
   2417       // Now, we can replace the uses.
   2418       Inst->replaceAllUsesWith(New);
   2419     }
   2420 
   2421     /// \brief Reassign the original uses of Inst to Inst.
   2422     void undo() override {
   2423       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
   2424       for (use_iterator UseIt = OriginalUses.begin(),
   2425                         EndIt = OriginalUses.end();
   2426            UseIt != EndIt; ++UseIt) {
   2427         UseIt->Inst->setOperand(UseIt->Idx, Inst);
   2428       }
   2429     }
   2430   };
   2431 
   2432   /// \brief Remove an instruction from the IR.
   2433   class InstructionRemover : public TypePromotionAction {
   2434     /// Original position of the instruction.
   2435     InsertionHandler Inserter;
   2436     /// Helper structure to hide all the link to the instruction. In other
   2437     /// words, this helps to do as if the instruction was removed.
   2438     OperandsHider Hider;
   2439     /// Keep track of the uses replaced, if any.
   2440     UsesReplacer *Replacer;
   2441 
   2442   public:
   2443     /// \brief Remove all reference of \p Inst and optinally replace all its
   2444     /// uses with New.
   2445     /// \pre If !Inst->use_empty(), then New != nullptr
   2446     InstructionRemover(Instruction *Inst, Value *New = nullptr)
   2447         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
   2448           Replacer(nullptr) {
   2449       if (New)
   2450         Replacer = new UsesReplacer(Inst, New);
   2451       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
   2452       Inst->removeFromParent();
   2453     }
   2454 
   2455     ~InstructionRemover() override { delete Replacer; }
   2456 
   2457     /// \brief Really remove the instruction.
   2458     void commit() override { delete Inst; }
   2459 
   2460     /// \brief Resurrect the instruction and reassign it to the proper uses if
   2461     /// new value was provided when build this action.
   2462     void undo() override {
   2463       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
   2464       Inserter.insert(Inst);
   2465       if (Replacer)
   2466         Replacer->undo();
   2467       Hider.undo();
   2468     }
   2469   };
   2470 
   2471 public:
   2472   /// Restoration point.
   2473   /// The restoration point is a pointer to an action instead of an iterator
   2474   /// because the iterator may be invalidated but not the pointer.
   2475   typedef const TypePromotionAction *ConstRestorationPt;
   2476   /// Advocate every changes made in that transaction.
   2477   void commit();
   2478   /// Undo all the changes made after the given point.
   2479   void rollback(ConstRestorationPt Point);
   2480   /// Get the current restoration point.
   2481   ConstRestorationPt getRestorationPoint() const;
   2482 
   2483   /// \name API for IR modification with state keeping to support rollback.
   2484   /// @{
   2485   /// Same as Instruction::setOperand.
   2486   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
   2487   /// Same as Instruction::eraseFromParent.
   2488   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
   2489   /// Same as Value::replaceAllUsesWith.
   2490   void replaceAllUsesWith(Instruction *Inst, Value *New);
   2491   /// Same as Value::mutateType.
   2492   void mutateType(Instruction *Inst, Type *NewTy);
   2493   /// Same as IRBuilder::createTrunc.
   2494   Value *createTrunc(Instruction *Opnd, Type *Ty);
   2495   /// Same as IRBuilder::createSExt.
   2496   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
   2497   /// Same as IRBuilder::createZExt.
   2498   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
   2499   /// Same as Instruction::moveBefore.
   2500   void moveBefore(Instruction *Inst, Instruction *Before);
   2501   /// @}
   2502 
   2503 private:
   2504   /// The ordered list of actions made so far.
   2505   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
   2506   typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
   2507 };
   2508 
   2509 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
   2510                                           Value *NewVal) {
   2511   Actions.push_back(
   2512       make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
   2513 }
   2514 
   2515 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
   2516                                                 Value *NewVal) {
   2517   Actions.push_back(
   2518       make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
   2519 }
   2520 
   2521 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
   2522                                                   Value *New) {
   2523   Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
   2524 }
   2525 
   2526 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
   2527   Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
   2528 }
   2529 
   2530 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
   2531                                              Type *Ty) {
   2532   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
   2533   Value *Val = Ptr->getBuiltValue();
   2534   Actions.push_back(std::move(Ptr));
   2535   return Val;
   2536 }
   2537 
   2538 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
   2539                                             Value *Opnd, Type *Ty) {
   2540   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
   2541   Value *Val = Ptr->getBuiltValue();
   2542   Actions.push_back(std::move(Ptr));
   2543   return Val;
   2544 }
   2545 
   2546 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
   2547                                             Value *Opnd, Type *Ty) {
   2548   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
   2549   Value *Val = Ptr->getBuiltValue();
   2550   Actions.push_back(std::move(Ptr));
   2551   return Val;
   2552 }
   2553 
   2554 void TypePromotionTransaction::moveBefore(Instruction *Inst,
   2555                                           Instruction *Before) {
   2556   Actions.push_back(
   2557       make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
   2558 }
   2559 
   2560 TypePromotionTransaction::ConstRestorationPt
   2561 TypePromotionTransaction::getRestorationPoint() const {
   2562   return !Actions.empty() ? Actions.back().get() : nullptr;
   2563 }
   2564 
   2565 void TypePromotionTransaction::commit() {
   2566   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
   2567        ++It)
   2568     (*It)->commit();
   2569   Actions.clear();
   2570 }
   2571 
   2572 void TypePromotionTransaction::rollback(
   2573     TypePromotionTransaction::ConstRestorationPt Point) {
   2574   while (!Actions.empty() && Point != Actions.back().get()) {
   2575     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
   2576     Curr->undo();
   2577   }
   2578 }
   2579 
   2580 /// \brief A helper class for matching addressing modes.
   2581 ///
   2582 /// This encapsulates the logic for matching the target-legal addressing modes.
   2583 class AddressingModeMatcher {
   2584   SmallVectorImpl<Instruction*> &AddrModeInsts;
   2585   const TargetMachine &TM;
   2586   const TargetLowering &TLI;
   2587   const DataLayout &DL;
   2588 
   2589   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
   2590   /// the memory instruction that we're computing this address for.
   2591   Type *AccessTy;
   2592   unsigned AddrSpace;
   2593   Instruction *MemoryInst;
   2594 
   2595   /// This is the addressing mode that we're building up. This is
   2596   /// part of the return value of this addressing mode matching stuff.
   2597   ExtAddrMode &AddrMode;
   2598 
   2599   /// The instructions inserted by other CodeGenPrepare optimizations.
   2600   const SetOfInstrs &InsertedInsts;
   2601   /// A map from the instructions to their type before promotion.
   2602   InstrToOrigTy &PromotedInsts;
   2603   /// The ongoing transaction where every action should be registered.
   2604   TypePromotionTransaction &TPT;
   2605 
   2606   /// This is set to true when we should not do profitability checks.
   2607   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
   2608   bool IgnoreProfitability;
   2609 
   2610   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
   2611                         const TargetMachine &TM, Type *AT, unsigned AS,
   2612                         Instruction *MI, ExtAddrMode &AM,
   2613                         const SetOfInstrs &InsertedInsts,
   2614                         InstrToOrigTy &PromotedInsts,
   2615                         TypePromotionTransaction &TPT)
   2616       : AddrModeInsts(AMI), TM(TM),
   2617         TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent())
   2618                  ->getTargetLowering()),
   2619         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
   2620         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
   2621         PromotedInsts(PromotedInsts), TPT(TPT) {
   2622     IgnoreProfitability = false;
   2623   }
   2624 public:
   2625 
   2626   /// Find the maximal addressing mode that a load/store of V can fold,
   2627   /// give an access type of AccessTy.  This returns a list of involved
   2628   /// instructions in AddrModeInsts.
   2629   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
   2630   /// optimizations.
   2631   /// \p PromotedInsts maps the instructions to their type before promotion.
   2632   /// \p The ongoing transaction where every action should be registered.
   2633   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
   2634                            Instruction *MemoryInst,
   2635                            SmallVectorImpl<Instruction*> &AddrModeInsts,
   2636                            const TargetMachine &TM,
   2637                            const SetOfInstrs &InsertedInsts,
   2638                            InstrToOrigTy &PromotedInsts,
   2639                            TypePromotionTransaction &TPT) {
   2640     ExtAddrMode Result;
   2641 
   2642     bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
   2643                                          MemoryInst, Result, InsertedInsts,
   2644                                          PromotedInsts, TPT).matchAddr(V, 0);
   2645     (void)Success; assert(Success && "Couldn't select *anything*?");
   2646     return Result;
   2647   }
   2648 private:
   2649   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
   2650   bool matchAddr(Value *V, unsigned Depth);
   2651   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
   2652                           bool *MovedAway = nullptr);
   2653   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
   2654                                             ExtAddrMode &AMBefore,
   2655                                             ExtAddrMode &AMAfter);
   2656   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
   2657   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
   2658                              Value *PromotedOperand) const;
   2659 };
   2660 
   2661 /// Try adding ScaleReg*Scale to the current addressing mode.
   2662 /// Return true and update AddrMode if this addr mode is legal for the target,
   2663 /// false if not.
   2664 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
   2665                                              unsigned Depth) {
   2666   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
   2667   // mode.  Just process that directly.
   2668   if (Scale == 1)
   2669     return matchAddr(ScaleReg, Depth);
   2670 
   2671   // If the scale is 0, it takes nothing to add this.
   2672   if (Scale == 0)
   2673     return true;
   2674 
   2675   // If we already have a scale of this value, we can add to it, otherwise, we
   2676   // need an available scale field.
   2677   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
   2678     return false;
   2679 
   2680   ExtAddrMode TestAddrMode = AddrMode;
   2681 
   2682   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
   2683   // [A+B + A*7] -> [B+A*8].
   2684   TestAddrMode.Scale += Scale;
   2685   TestAddrMode.ScaledReg = ScaleReg;
   2686 
   2687   // If the new address isn't legal, bail out.
   2688   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
   2689     return false;
   2690 
   2691   // It was legal, so commit it.
   2692   AddrMode = TestAddrMode;
   2693 
   2694   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
   2695   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
   2696   // X*Scale + C*Scale to addr mode.
   2697   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
   2698   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
   2699       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
   2700     TestAddrMode.ScaledReg = AddLHS;
   2701     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
   2702 
   2703     // If this addressing mode is legal, commit it and remember that we folded
   2704     // this instruction.
   2705     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
   2706       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
   2707       AddrMode = TestAddrMode;
   2708       return true;
   2709     }
   2710   }
   2711 
   2712   // Otherwise, not (x+c)*scale, just return what we have.
   2713   return true;
   2714 }
   2715 
   2716 /// This is a little filter, which returns true if an addressing computation
   2717 /// involving I might be folded into a load/store accessing it.
   2718 /// This doesn't need to be perfect, but needs to accept at least
   2719 /// the set of instructions that MatchOperationAddr can.
   2720 static bool MightBeFoldableInst(Instruction *I) {
   2721   switch (I->getOpcode()) {
   2722   case Instruction::BitCast:
   2723   case Instruction::AddrSpaceCast:
   2724     // Don't touch identity bitcasts.
   2725     if (I->getType() == I->getOperand(0)->getType())
   2726       return false;
   2727     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
   2728   case Instruction::PtrToInt:
   2729     // PtrToInt is always a noop, as we know that the int type is pointer sized.
   2730     return true;
   2731   case Instruction::IntToPtr:
   2732     // We know the input is intptr_t, so this is foldable.
   2733     return true;
   2734   case Instruction::Add:
   2735     return true;
   2736   case Instruction::Mul:
   2737   case Instruction::Shl:
   2738     // Can only handle X*C and X << C.
   2739     return isa<ConstantInt>(I->getOperand(1));
   2740   case Instruction::GetElementPtr:
   2741     return true;
   2742   default:
   2743     return false;
   2744   }
   2745 }
   2746 
   2747 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
   2748 /// \note \p Val is assumed to be the product of some type promotion.
   2749 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
   2750 /// to be legal, as the non-promoted value would have had the same state.
   2751 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
   2752                                        const DataLayout &DL, Value *Val) {
   2753   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
   2754   if (!PromotedInst)
   2755     return false;
   2756   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
   2757   // If the ISDOpcode is undefined, it was undefined before the promotion.
   2758   if (!ISDOpcode)
   2759     return true;
   2760   // Otherwise, check if the promoted instruction is legal or not.
   2761   return TLI.isOperationLegalOrCustom(
   2762       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
   2763 }
   2764 
   2765 /// \brief Hepler class to perform type promotion.
   2766 class TypePromotionHelper {
   2767   /// \brief Utility function to check whether or not a sign or zero extension
   2768   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
   2769   /// either using the operands of \p Inst or promoting \p Inst.
   2770   /// The type of the extension is defined by \p IsSExt.
   2771   /// In other words, check if:
   2772   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
   2773   /// #1 Promotion applies:
   2774   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
   2775   /// #2 Operand reuses:
   2776   /// ext opnd1 to ConsideredExtType.
   2777   /// \p PromotedInsts maps the instructions to their type before promotion.
   2778   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
   2779                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
   2780 
   2781   /// \brief Utility function to determine if \p OpIdx should be promoted when
   2782   /// promoting \p Inst.
   2783   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
   2784     return !(isa<SelectInst>(Inst) && OpIdx == 0);
   2785   }
   2786 
   2787   /// \brief Utility function to promote the operand of \p Ext when this
   2788   /// operand is a promotable trunc or sext or zext.
   2789   /// \p PromotedInsts maps the instructions to their type before promotion.
   2790   /// \p CreatedInstsCost[out] contains the cost of all instructions
   2791   /// created to promote the operand of Ext.
   2792   /// Newly added extensions are inserted in \p Exts.
   2793   /// Newly added truncates are inserted in \p Truncs.
   2794   /// Should never be called directly.
   2795   /// \return The promoted value which is used instead of Ext.
   2796   static Value *promoteOperandForTruncAndAnyExt(
   2797       Instruction *Ext, TypePromotionTransaction &TPT,
   2798       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
   2799       SmallVectorImpl<Instruction *> *Exts,
   2800       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
   2801 
   2802   /// \brief Utility function to promote the operand of \p Ext when this
   2803   /// operand is promotable and is not a supported trunc or sext.
   2804   /// \p PromotedInsts maps the instructions to their type before promotion.
   2805   /// \p CreatedInstsCost[out] contains the cost of all the instructions
   2806   /// created to promote the operand of Ext.
   2807   /// Newly added extensions are inserted in \p Exts.
   2808   /// Newly added truncates are inserted in \p Truncs.
   2809   /// Should never be called directly.
   2810   /// \return The promoted value which is used instead of Ext.
   2811   static Value *promoteOperandForOther(Instruction *Ext,
   2812                                        TypePromotionTransaction &TPT,
   2813                                        InstrToOrigTy &PromotedInsts,
   2814                                        unsigned &CreatedInstsCost,
   2815                                        SmallVectorImpl<Instruction *> *Exts,
   2816                                        SmallVectorImpl<Instruction *> *Truncs,
   2817                                        const TargetLowering &TLI, bool IsSExt);
   2818 
   2819   /// \see promoteOperandForOther.
   2820   static Value *signExtendOperandForOther(
   2821       Instruction *Ext, TypePromotionTransaction &TPT,
   2822       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
   2823       SmallVectorImpl<Instruction *> *Exts,
   2824       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
   2825     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
   2826                                   Exts, Truncs, TLI, true);
   2827   }
   2828 
   2829   /// \see promoteOperandForOther.
   2830   static Value *zeroExtendOperandForOther(
   2831       Instruction *Ext, TypePromotionTransaction &TPT,
   2832       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
   2833       SmallVectorImpl<Instruction *> *Exts,
   2834       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
   2835     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
   2836                                   Exts, Truncs, TLI, false);
   2837   }
   2838 
   2839 public:
   2840   /// Type for the utility function that promotes the operand of Ext.
   2841   typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT,
   2842                            InstrToOrigTy &PromotedInsts,
   2843                            unsigned &CreatedInstsCost,
   2844                            SmallVectorImpl<Instruction *> *Exts,
   2845                            SmallVectorImpl<Instruction *> *Truncs,
   2846                            const TargetLowering &TLI);
   2847   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
   2848   /// action to promote the operand of \p Ext instead of using Ext.
   2849   /// \return NULL if no promotable action is possible with the current
   2850   /// sign extension.
   2851   /// \p InsertedInsts keeps track of all the instructions inserted by the
   2852   /// other CodeGenPrepare optimizations. This information is important
   2853   /// because we do not want to promote these instructions as CodeGenPrepare
   2854   /// will reinsert them later. Thus creating an infinite loop: create/remove.
   2855   /// \p PromotedInsts maps the instructions to their type before promotion.
   2856   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
   2857                           const TargetLowering &TLI,
   2858                           const InstrToOrigTy &PromotedInsts);
   2859 };
   2860 
   2861 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
   2862                                         Type *ConsideredExtType,
   2863                                         const InstrToOrigTy &PromotedInsts,
   2864                                         bool IsSExt) {
   2865   // The promotion helper does not know how to deal with vector types yet.
   2866   // To be able to fix that, we would need to fix the places where we
   2867   // statically extend, e.g., constants and such.
   2868   if (Inst->getType()->isVectorTy())
   2869     return false;
   2870 
   2871   // We can always get through zext.
   2872   if (isa<ZExtInst>(Inst))
   2873     return true;
   2874 
   2875   // sext(sext) is ok too.
   2876   if (IsSExt && isa<SExtInst>(Inst))
   2877     return true;
   2878 
   2879   // We can get through binary operator, if it is legal. In other words, the
   2880   // binary operator must have a nuw or nsw flag.
   2881   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
   2882   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
   2883       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
   2884        (IsSExt && BinOp->hasNoSignedWrap())))
   2885     return true;
   2886 
   2887   // Check if we can do the following simplification.
   2888   // ext(trunc(opnd)) --> ext(opnd)
   2889   if (!isa<TruncInst>(Inst))
   2890     return false;
   2891 
   2892   Value *OpndVal = Inst->getOperand(0);
   2893   // Check if we can use this operand in the extension.
   2894   // If the type is larger than the result type of the extension, we cannot.
   2895   if (!OpndVal->getType()->isIntegerTy() ||
   2896       OpndVal->getType()->getIntegerBitWidth() >
   2897           ConsideredExtType->getIntegerBitWidth())
   2898     return false;
   2899 
   2900   // If the operand of the truncate is not an instruction, we will not have
   2901   // any information on the dropped bits.
   2902   // (Actually we could for constant but it is not worth the extra logic).
   2903   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
   2904   if (!Opnd)
   2905     return false;
   2906 
   2907   // Check if the source of the type is narrow enough.
   2908   // I.e., check that trunc just drops extended bits of the same kind of
   2909   // the extension.
   2910   // #1 get the type of the operand and check the kind of the extended bits.
   2911   const Type *OpndType;
   2912   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
   2913   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
   2914     OpndType = It->second.getPointer();
   2915   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
   2916     OpndType = Opnd->getOperand(0)->getType();
   2917   else
   2918     return false;
   2919 
   2920   // #2 check that the truncate just drops extended bits.
   2921   return Inst->getType()->getIntegerBitWidth() >=
   2922          OpndType->getIntegerBitWidth();
   2923 }
   2924 
   2925 TypePromotionHelper::Action TypePromotionHelper::getAction(
   2926     Instruction *Ext, const SetOfInstrs &InsertedInsts,
   2927     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
   2928   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
   2929          "Unexpected instruction type");
   2930   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
   2931   Type *ExtTy = Ext->getType();
   2932   bool IsSExt = isa<SExtInst>(Ext);
   2933   // If the operand of the extension is not an instruction, we cannot
   2934   // get through.
   2935   // If it, check we can get through.
   2936   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
   2937     return nullptr;
   2938 
   2939   // Do not promote if the operand has been added by codegenprepare.
   2940   // Otherwise, it means we are undoing an optimization that is likely to be
   2941   // redone, thus causing potential infinite loop.
   2942   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
   2943     return nullptr;
   2944 
   2945   // SExt or Trunc instructions.
   2946   // Return the related handler.
   2947   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
   2948       isa<ZExtInst>(ExtOpnd))
   2949     return promoteOperandForTruncAndAnyExt;
   2950 
   2951   // Regular instruction.
   2952   // Abort early if we will have to insert non-free instructions.
   2953   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
   2954     return nullptr;
   2955   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
   2956 }
   2957 
   2958 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
   2959     llvm::Instruction *SExt, TypePromotionTransaction &TPT,
   2960     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
   2961     SmallVectorImpl<Instruction *> *Exts,
   2962     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
   2963   // By construction, the operand of SExt is an instruction. Otherwise we cannot
   2964   // get through it and this method should not be called.
   2965   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
   2966   Value *ExtVal = SExt;
   2967   bool HasMergedNonFreeExt = false;
   2968   if (isa<ZExtInst>(SExtOpnd)) {
   2969     // Replace s|zext(zext(opnd))
   2970     // => zext(opnd).
   2971     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
   2972     Value *ZExt =
   2973         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
   2974     TPT.replaceAllUsesWith(SExt, ZExt);
   2975     TPT.eraseInstruction(SExt);
   2976     ExtVal = ZExt;
   2977   } else {
   2978     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
   2979     // => z|sext(opnd).
   2980     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
   2981   }
   2982   CreatedInstsCost = 0;
   2983 
   2984   // Remove dead code.
   2985   if (SExtOpnd->use_empty())
   2986     TPT.eraseInstruction(SExtOpnd);
   2987 
   2988   // Check if the extension is still needed.
   2989   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
   2990   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
   2991     if (ExtInst) {
   2992       if (Exts)
   2993         Exts->push_back(ExtInst);
   2994       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
   2995     }
   2996     return ExtVal;
   2997   }
   2998 
   2999   // At this point we have: ext ty opnd to ty.
   3000   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
   3001   Value *NextVal = ExtInst->getOperand(0);
   3002   TPT.eraseInstruction(ExtInst, NextVal);
   3003   return NextVal;
   3004 }
   3005 
   3006 Value *TypePromotionHelper::promoteOperandForOther(
   3007     Instruction *Ext, TypePromotionTransaction &TPT,
   3008     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
   3009     SmallVectorImpl<Instruction *> *Exts,
   3010     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
   3011     bool IsSExt) {
   3012   // By construction, the operand of Ext is an instruction. Otherwise we cannot
   3013   // get through it and this method should not be called.
   3014   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
   3015   CreatedInstsCost = 0;
   3016   if (!ExtOpnd->hasOneUse()) {
   3017     // ExtOpnd will be promoted.
   3018     // All its uses, but Ext, will need to use a truncated value of the
   3019     // promoted version.
   3020     // Create the truncate now.
   3021     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
   3022     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
   3023       ITrunc->removeFromParent();
   3024       // Insert it just after the definition.
   3025       ITrunc->insertAfter(ExtOpnd);
   3026       if (Truncs)
   3027         Truncs->push_back(ITrunc);
   3028     }
   3029 
   3030     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
   3031     // Restore the operand of Ext (which has been replaced by the previous call
   3032     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
   3033     TPT.setOperand(Ext, 0, ExtOpnd);
   3034   }
   3035 
   3036   // Get through the Instruction:
   3037   // 1. Update its type.
   3038   // 2. Replace the uses of Ext by Inst.
   3039   // 3. Extend each operand that needs to be extended.
   3040 
   3041   // Remember the original type of the instruction before promotion.
   3042   // This is useful to know that the high bits are sign extended bits.
   3043   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
   3044       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
   3045   // Step #1.
   3046   TPT.mutateType(ExtOpnd, Ext->getType());
   3047   // Step #2.
   3048   TPT.replaceAllUsesWith(Ext, ExtOpnd);
   3049   // Step #3.
   3050   Instruction *ExtForOpnd = Ext;
   3051 
   3052   DEBUG(dbgs() << "Propagate Ext to operands\n");
   3053   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
   3054        ++OpIdx) {
   3055     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
   3056     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
   3057         !shouldExtOperand(ExtOpnd, OpIdx)) {
   3058       DEBUG(dbgs() << "No need to propagate\n");
   3059       continue;
   3060     }
   3061     // Check if we can statically extend the operand.
   3062     Value *Opnd = ExtOpnd->getOperand(OpIdx);
   3063     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
   3064       DEBUG(dbgs() << "Statically extend\n");
   3065       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
   3066       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
   3067                             : Cst->getValue().zext(BitWidth);
   3068       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
   3069       continue;
   3070     }
   3071     // UndefValue are typed, so we have to statically sign extend them.
   3072     if (isa<UndefValue>(Opnd)) {
   3073       DEBUG(dbgs() << "Statically extend\n");
   3074       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
   3075       continue;
   3076     }
   3077 
   3078     // Otherwise we have to explicity sign extend the operand.
   3079     // Check if Ext was reused to extend an operand.
   3080     if (!ExtForOpnd) {
   3081       // If yes, create a new one.
   3082       DEBUG(dbgs() << "More operands to ext\n");
   3083       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
   3084         : TPT.createZExt(Ext, Opnd, Ext->getType());
   3085       if (!isa<Instruction>(ValForExtOpnd)) {
   3086         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
   3087         continue;
   3088       }
   3089       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
   3090     }
   3091     if (Exts)
   3092       Exts->push_back(ExtForOpnd);
   3093     TPT.setOperand(ExtForOpnd, 0, Opnd);
   3094 
   3095     // Move the sign extension before the insertion point.
   3096     TPT.moveBefore(ExtForOpnd, ExtOpnd);
   3097     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
   3098     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
   3099     // If more sext are required, new instructions will have to be created.
   3100     ExtForOpnd = nullptr;
   3101   }
   3102   if (ExtForOpnd == Ext) {
   3103     DEBUG(dbgs() << "Extension is useless now\n");
   3104     TPT.eraseInstruction(Ext);
   3105   }
   3106   return ExtOpnd;
   3107 }
   3108 
   3109 /// Check whether or not promoting an instruction to a wider type is profitable.
   3110 /// \p NewCost gives the cost of extension instructions created by the
   3111 /// promotion.
   3112 /// \p OldCost gives the cost of extension instructions before the promotion
   3113 /// plus the number of instructions that have been
   3114 /// matched in the addressing mode the promotion.
   3115 /// \p PromotedOperand is the value that has been promoted.
   3116 /// \return True if the promotion is profitable, false otherwise.
   3117 bool AddressingModeMatcher::isPromotionProfitable(
   3118     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
   3119   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
   3120   // The cost of the new extensions is greater than the cost of the
   3121   // old extension plus what we folded.
   3122   // This is not profitable.
   3123   if (NewCost > OldCost)
   3124     return false;
   3125   if (NewCost < OldCost)
   3126     return true;
   3127   // The promotion is neutral but it may help folding the sign extension in
   3128   // loads for instance.
   3129   // Check that we did not create an illegal instruction.
   3130   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
   3131 }
   3132 
   3133 /// Given an instruction or constant expr, see if we can fold the operation
   3134 /// into the addressing mode. If so, update the addressing mode and return
   3135 /// true, otherwise return false without modifying AddrMode.
   3136 /// If \p MovedAway is not NULL, it contains the information of whether or
   3137 /// not AddrInst has to be folded into the addressing mode on success.
   3138 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
   3139 /// because it has been moved away.
   3140 /// Thus AddrInst must not be added in the matched instructions.
   3141 /// This state can happen when AddrInst is a sext, since it may be moved away.
   3142 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
   3143 /// not be referenced anymore.
   3144 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
   3145                                                unsigned Depth,
   3146                                                bool *MovedAway) {
   3147   // Avoid exponential behavior on extremely deep expression trees.
   3148   if (Depth >= 5) return false;
   3149 
   3150   // By default, all matched instructions stay in place.
   3151   if (MovedAway)
   3152     *MovedAway = false;
   3153 
   3154   switch (Opcode) {
   3155   case Instruction::PtrToInt:
   3156     // PtrToInt is always a noop, as we know that the int type is pointer sized.
   3157     return matchAddr(AddrInst->getOperand(0), Depth);
   3158   case Instruction::IntToPtr: {
   3159     auto AS = AddrInst->getType()->getPointerAddressSpace();
   3160     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
   3161     // This inttoptr is a no-op if the integer type is pointer sized.
   3162     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
   3163       return matchAddr(AddrInst->getOperand(0), Depth);
   3164     return false;
   3165   }
   3166   case Instruction::BitCast:
   3167     // BitCast is always a noop, and we can handle it as long as it is
   3168     // int->int or pointer->pointer (we don't want int<->fp or something).
   3169     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
   3170          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
   3171         // Don't touch identity bitcasts.  These were probably put here by LSR,
   3172         // and we don't want to mess around with them.  Assume it knows what it
   3173         // is doing.
   3174         AddrInst->getOperand(0)->getType() != AddrInst->getType())
   3175       return matchAddr(AddrInst->getOperand(0), Depth);
   3176     return false;
   3177   case Instruction::AddrSpaceCast: {
   3178     unsigned SrcAS
   3179       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
   3180     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
   3181     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
   3182       return matchAddr(AddrInst->getOperand(0), Depth);
   3183     return false;
   3184   }
   3185   case Instruction::Add: {
   3186     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
   3187     ExtAddrMode BackupAddrMode = AddrMode;
   3188     unsigned OldSize = AddrModeInsts.size();
   3189     // Start a transaction at this point.
   3190     // The LHS may match but not the RHS.
   3191     // Therefore, we need a higher level restoration point to undo partially
   3192     // matched operation.
   3193     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   3194         TPT.getRestorationPoint();
   3195 
   3196     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
   3197         matchAddr(AddrInst->getOperand(0), Depth+1))
   3198       return true;
   3199 
   3200     // Restore the old addr mode info.
   3201     AddrMode = BackupAddrMode;
   3202     AddrModeInsts.resize(OldSize);
   3203     TPT.rollback(LastKnownGood);
   3204 
   3205     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
   3206     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
   3207         matchAddr(AddrInst->getOperand(1), Depth+1))
   3208       return true;
   3209 
   3210     // Otherwise we definitely can't merge the ADD in.
   3211     AddrMode = BackupAddrMode;
   3212     AddrModeInsts.resize(OldSize);
   3213     TPT.rollback(LastKnownGood);
   3214     break;
   3215   }
   3216   //case Instruction::Or:
   3217   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
   3218   //break;
   3219   case Instruction::Mul:
   3220   case Instruction::Shl: {
   3221     // Can only handle X*C and X << C.
   3222     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
   3223     if (!RHS)
   3224       return false;
   3225     int64_t Scale = RHS->getSExtValue();
   3226     if (Opcode == Instruction::Shl)
   3227       Scale = 1LL << Scale;
   3228 
   3229     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
   3230   }
   3231   case Instruction::GetElementPtr: {
   3232     // Scan the GEP.  We check it if it contains constant offsets and at most
   3233     // one variable offset.
   3234     int VariableOperand = -1;
   3235     unsigned VariableScale = 0;
   3236 
   3237     int64_t ConstantOffset = 0;
   3238     gep_type_iterator GTI = gep_type_begin(AddrInst);
   3239     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
   3240       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   3241         const StructLayout *SL = DL.getStructLayout(STy);
   3242         unsigned Idx =
   3243           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
   3244         ConstantOffset += SL->getElementOffset(Idx);
   3245       } else {
   3246         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
   3247         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
   3248           ConstantOffset += CI->getSExtValue()*TypeSize;
   3249         } else if (TypeSize) {  // Scales of zero don't do anything.
   3250           // We only allow one variable index at the moment.
   3251           if (VariableOperand != -1)
   3252             return false;
   3253 
   3254           // Remember the variable index.
   3255           VariableOperand = i;
   3256           VariableScale = TypeSize;
   3257         }
   3258       }
   3259     }
   3260 
   3261     // A common case is for the GEP to only do a constant offset.  In this case,
   3262     // just add it to the disp field and check validity.
   3263     if (VariableOperand == -1) {
   3264       AddrMode.BaseOffs += ConstantOffset;
   3265       if (ConstantOffset == 0 ||
   3266           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
   3267         // Check to see if we can fold the base pointer in too.
   3268         if (matchAddr(AddrInst->getOperand(0), Depth+1))
   3269           return true;
   3270       }
   3271       AddrMode.BaseOffs -= ConstantOffset;
   3272       return false;
   3273     }
   3274 
   3275     // Save the valid addressing mode in case we can't match.
   3276     ExtAddrMode BackupAddrMode = AddrMode;
   3277     unsigned OldSize = AddrModeInsts.size();
   3278 
   3279     // See if the scale and offset amount is valid for this target.
   3280     AddrMode.BaseOffs += ConstantOffset;
   3281 
   3282     // Match the base operand of the GEP.
   3283     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
   3284       // If it couldn't be matched, just stuff the value in a register.
   3285       if (AddrMode.HasBaseReg) {
   3286         AddrMode = BackupAddrMode;
   3287         AddrModeInsts.resize(OldSize);
   3288         return false;
   3289       }
   3290       AddrMode.HasBaseReg = true;
   3291       AddrMode.BaseReg = AddrInst->getOperand(0);
   3292     }
   3293 
   3294     // Match the remaining variable portion of the GEP.
   3295     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
   3296                           Depth)) {
   3297       // If it couldn't be matched, try stuffing the base into a register
   3298       // instead of matching it, and retrying the match of the scale.
   3299       AddrMode = BackupAddrMode;
   3300       AddrModeInsts.resize(OldSize);
   3301       if (AddrMode.HasBaseReg)
   3302         return false;
   3303       AddrMode.HasBaseReg = true;
   3304       AddrMode.BaseReg = AddrInst->getOperand(0);
   3305       AddrMode.BaseOffs += ConstantOffset;
   3306       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
   3307                             VariableScale, Depth)) {
   3308         // If even that didn't work, bail.
   3309         AddrMode = BackupAddrMode;
   3310         AddrModeInsts.resize(OldSize);
   3311         return false;
   3312       }
   3313     }
   3314 
   3315     return true;
   3316   }
   3317   case Instruction::SExt:
   3318   case Instruction::ZExt: {
   3319     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
   3320     if (!Ext)
   3321       return false;
   3322 
   3323     // Try to move this ext out of the way of the addressing mode.
   3324     // Ask for a method for doing so.
   3325     TypePromotionHelper::Action TPH =
   3326         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
   3327     if (!TPH)
   3328       return false;
   3329 
   3330     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   3331         TPT.getRestorationPoint();
   3332     unsigned CreatedInstsCost = 0;
   3333     unsigned ExtCost = !TLI.isExtFree(Ext);
   3334     Value *PromotedOperand =
   3335         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
   3336     // SExt has been moved away.
   3337     // Thus either it will be rematched later in the recursive calls or it is
   3338     // gone. Anyway, we must not fold it into the addressing mode at this point.
   3339     // E.g.,
   3340     // op = add opnd, 1
   3341     // idx = ext op
   3342     // addr = gep base, idx
   3343     // is now:
   3344     // promotedOpnd = ext opnd            <- no match here
   3345     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
   3346     // addr = gep base, op                <- match
   3347     if (MovedAway)
   3348       *MovedAway = true;
   3349 
   3350     assert(PromotedOperand &&
   3351            "TypePromotionHelper should have filtered out those cases");
   3352 
   3353     ExtAddrMode BackupAddrMode = AddrMode;
   3354     unsigned OldSize = AddrModeInsts.size();
   3355 
   3356     if (!matchAddr(PromotedOperand, Depth) ||
   3357         // The total of the new cost is equal to the cost of the created
   3358         // instructions.
   3359         // The total of the old cost is equal to the cost of the extension plus
   3360         // what we have saved in the addressing mode.
   3361         !isPromotionProfitable(CreatedInstsCost,
   3362                                ExtCost + (AddrModeInsts.size() - OldSize),
   3363                                PromotedOperand)) {
   3364       AddrMode = BackupAddrMode;
   3365       AddrModeInsts.resize(OldSize);
   3366       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
   3367       TPT.rollback(LastKnownGood);
   3368       return false;
   3369     }
   3370     return true;
   3371   }
   3372   }
   3373   return false;
   3374 }
   3375 
   3376 /// If we can, try to add the value of 'Addr' into the current addressing mode.
   3377 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
   3378 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
   3379 /// for the target.
   3380 ///
   3381 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
   3382   // Start a transaction at this point that we will rollback if the matching
   3383   // fails.
   3384   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   3385       TPT.getRestorationPoint();
   3386   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
   3387     // Fold in immediates if legal for the target.
   3388     AddrMode.BaseOffs += CI->getSExtValue();
   3389     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
   3390       return true;
   3391     AddrMode.BaseOffs -= CI->getSExtValue();
   3392   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
   3393     // If this is a global variable, try to fold it into the addressing mode.
   3394     if (!AddrMode.BaseGV) {
   3395       AddrMode.BaseGV = GV;
   3396       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
   3397         return true;
   3398       AddrMode.BaseGV = nullptr;
   3399     }
   3400   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
   3401     ExtAddrMode BackupAddrMode = AddrMode;
   3402     unsigned OldSize = AddrModeInsts.size();
   3403 
   3404     // Check to see if it is possible to fold this operation.
   3405     bool MovedAway = false;
   3406     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
   3407       // This instruction may have been moved away. If so, there is nothing
   3408       // to check here.
   3409       if (MovedAway)
   3410         return true;
   3411       // Okay, it's possible to fold this.  Check to see if it is actually
   3412       // *profitable* to do so.  We use a simple cost model to avoid increasing
   3413       // register pressure too much.
   3414       if (I->hasOneUse() ||
   3415           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
   3416         AddrModeInsts.push_back(I);
   3417         return true;
   3418       }
   3419 
   3420       // It isn't profitable to do this, roll back.
   3421       //cerr << "NOT FOLDING: " << *I;
   3422       AddrMode = BackupAddrMode;
   3423       AddrModeInsts.resize(OldSize);
   3424       TPT.rollback(LastKnownGood);
   3425     }
   3426   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
   3427     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
   3428       return true;
   3429     TPT.rollback(LastKnownGood);
   3430   } else if (isa<ConstantPointerNull>(Addr)) {
   3431     // Null pointer gets folded without affecting the addressing mode.
   3432     return true;
   3433   }
   3434 
   3435   // Worse case, the target should support [reg] addressing modes. :)
   3436   if (!AddrMode.HasBaseReg) {
   3437     AddrMode.HasBaseReg = true;
   3438     AddrMode.BaseReg = Addr;
   3439     // Still check for legality in case the target supports [imm] but not [i+r].
   3440     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
   3441       return true;
   3442     AddrMode.HasBaseReg = false;
   3443     AddrMode.BaseReg = nullptr;
   3444   }
   3445 
   3446   // If the base register is already taken, see if we can do [r+r].
   3447   if (AddrMode.Scale == 0) {
   3448     AddrMode.Scale = 1;
   3449     AddrMode.ScaledReg = Addr;
   3450     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
   3451       return true;
   3452     AddrMode.Scale = 0;
   3453     AddrMode.ScaledReg = nullptr;
   3454   }
   3455   // Couldn't match.
   3456   TPT.rollback(LastKnownGood);
   3457   return false;
   3458 }
   3459 
   3460 /// Check to see if all uses of OpVal by the specified inline asm call are due
   3461 /// to memory operands. If so, return true, otherwise return false.
   3462 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
   3463                                     const TargetMachine &TM) {
   3464   const Function *F = CI->getParent()->getParent();
   3465   const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering();
   3466   const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo();
   3467   TargetLowering::AsmOperandInfoVector TargetConstraints =
   3468       TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI,
   3469                             ImmutableCallSite(CI));
   3470   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   3471     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   3472 
   3473     // Compute the constraint code and ConstraintType to use.
   3474     TLI->ComputeConstraintToUse(OpInfo, SDValue());
   3475 
   3476     // If this asm operand is our Value*, and if it isn't an indirect memory
   3477     // operand, we can't fold it!
   3478     if (OpInfo.CallOperandVal == OpVal &&
   3479         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
   3480          !OpInfo.isIndirect))
   3481       return false;
   3482   }
   3483 
   3484   return true;
   3485 }
   3486 
   3487 /// Recursively walk all the uses of I until we find a memory use.
   3488 /// If we find an obviously non-foldable instruction, return true.
   3489 /// Add the ultimately found memory instructions to MemoryUses.
   3490 static bool FindAllMemoryUses(
   3491     Instruction *I,
   3492     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
   3493     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) {
   3494   // If we already considered this instruction, we're done.
   3495   if (!ConsideredInsts.insert(I).second)
   3496     return false;
   3497 
   3498   // If this is an obviously unfoldable instruction, bail out.
   3499   if (!MightBeFoldableInst(I))
   3500     return true;
   3501 
   3502   const bool OptSize = I->getFunction()->optForSize();
   3503 
   3504   // Loop over all the uses, recursively processing them.
   3505   for (Use &U : I->uses()) {
   3506     Instruction *UserI = cast<Instruction>(U.getUser());
   3507 
   3508     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
   3509       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
   3510       continue;
   3511     }
   3512 
   3513     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
   3514       unsigned opNo = U.getOperandNo();
   3515       if (opNo == 0) return true; // Storing addr, not into addr.
   3516       MemoryUses.push_back(std::make_pair(SI, opNo));
   3517       continue;
   3518     }
   3519 
   3520     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
   3521       // If this is a cold call, we can sink the addressing calculation into
   3522       // the cold path.  See optimizeCallInst
   3523       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
   3524         continue;
   3525 
   3526       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
   3527       if (!IA) return true;
   3528 
   3529       // If this is a memory operand, we're cool, otherwise bail out.
   3530       if (!IsOperandAMemoryOperand(CI, IA, I, TM))
   3531         return true;
   3532       continue;
   3533     }
   3534 
   3535     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM))
   3536       return true;
   3537   }
   3538 
   3539   return false;
   3540 }
   3541 
   3542 /// Return true if Val is already known to be live at the use site that we're
   3543 /// folding it into. If so, there is no cost to include it in the addressing
   3544 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
   3545 /// instruction already.
   3546 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
   3547                                                    Value *KnownLive2) {
   3548   // If Val is either of the known-live values, we know it is live!
   3549   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
   3550     return true;
   3551 
   3552   // All values other than instructions and arguments (e.g. constants) are live.
   3553   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
   3554 
   3555   // If Val is a constant sized alloca in the entry block, it is live, this is
   3556   // true because it is just a reference to the stack/frame pointer, which is
   3557   // live for the whole function.
   3558   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
   3559     if (AI->isStaticAlloca())
   3560       return true;
   3561 
   3562   // Check to see if this value is already used in the memory instruction's
   3563   // block.  If so, it's already live into the block at the very least, so we
   3564   // can reasonably fold it.
   3565   return Val->isUsedInBasicBlock(MemoryInst->getParent());
   3566 }
   3567 
   3568 /// It is possible for the addressing mode of the machine to fold the specified
   3569 /// instruction into a load or store that ultimately uses it.
   3570 /// However, the specified instruction has multiple uses.
   3571 /// Given this, it may actually increase register pressure to fold it
   3572 /// into the load. For example, consider this code:
   3573 ///
   3574 ///     X = ...
   3575 ///     Y = X+1
   3576 ///     use(Y)   -> nonload/store
   3577 ///     Z = Y+1
   3578 ///     load Z
   3579 ///
   3580 /// In this case, Y has multiple uses, and can be folded into the load of Z
   3581 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
   3582 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
   3583 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
   3584 /// number of computations either.
   3585 ///
   3586 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
   3587 /// X was live across 'load Z' for other reasons, we actually *would* want to
   3588 /// fold the addressing mode in the Z case.  This would make Y die earlier.
   3589 bool AddressingModeMatcher::
   3590 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
   3591                                      ExtAddrMode &AMAfter) {
   3592   if (IgnoreProfitability) return true;
   3593 
   3594   // AMBefore is the addressing mode before this instruction was folded into it,
   3595   // and AMAfter is the addressing mode after the instruction was folded.  Get
   3596   // the set of registers referenced by AMAfter and subtract out those
   3597   // referenced by AMBefore: this is the set of values which folding in this
   3598   // address extends the lifetime of.
   3599   //
   3600   // Note that there are only two potential values being referenced here,
   3601   // BaseReg and ScaleReg (global addresses are always available, as are any
   3602   // folded immediates).
   3603   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
   3604 
   3605   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
   3606   // lifetime wasn't extended by adding this instruction.
   3607   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
   3608     BaseReg = nullptr;
   3609   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
   3610     ScaledReg = nullptr;
   3611 
   3612   // If folding this instruction (and it's subexprs) didn't extend any live
   3613   // ranges, we're ok with it.
   3614   if (!BaseReg && !ScaledReg)
   3615     return true;
   3616 
   3617   // If all uses of this instruction can have the address mode sunk into them,
   3618   // we can remove the addressing mode and effectively trade one live register
   3619   // for another (at worst.)  In this context, folding an addressing mode into
   3620   // the use is just a particularly nice way of sinking it.
   3621   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
   3622   SmallPtrSet<Instruction*, 16> ConsideredInsts;
   3623   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM))
   3624     return false;  // Has a non-memory, non-foldable use!
   3625 
   3626   // Now that we know that all uses of this instruction are part of a chain of
   3627   // computation involving only operations that could theoretically be folded
   3628   // into a memory use, loop over each of these memory operation uses and see
   3629   // if they could  *actually* fold the instruction.  The assumption is that
   3630   // addressing modes are cheap and that duplicating the computation involved
   3631   // many times is worthwhile, even on a fastpath. For sinking candidates
   3632   // (i.e. cold call sites), this serves as a way to prevent excessive code
   3633   // growth since most architectures have some reasonable small and fast way to
   3634   // compute an effective address.  (i.e LEA on x86)
   3635   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
   3636   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
   3637     Instruction *User = MemoryUses[i].first;
   3638     unsigned OpNo = MemoryUses[i].second;
   3639 
   3640     // Get the access type of this use.  If the use isn't a pointer, we don't
   3641     // know what it accesses.
   3642     Value *Address = User->getOperand(OpNo);
   3643     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
   3644     if (!AddrTy)
   3645       return false;
   3646     Type *AddressAccessTy = AddrTy->getElementType();
   3647     unsigned AS = AddrTy->getAddressSpace();
   3648 
   3649     // Do a match against the root of this address, ignoring profitability. This
   3650     // will tell us if the addressing mode for the memory operation will
   3651     // *actually* cover the shared instruction.
   3652     ExtAddrMode Result;
   3653     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   3654         TPT.getRestorationPoint();
   3655     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS,
   3656                                   MemoryInst, Result, InsertedInsts,
   3657                                   PromotedInsts, TPT);
   3658     Matcher.IgnoreProfitability = true;
   3659     bool Success = Matcher.matchAddr(Address, 0);
   3660     (void)Success; assert(Success && "Couldn't select *anything*?");
   3661 
   3662     // The match was to check the profitability, the changes made are not
   3663     // part of the original matcher. Therefore, they should be dropped
   3664     // otherwise the original matcher will not present the right state.
   3665     TPT.rollback(LastKnownGood);
   3666 
   3667     // If the match didn't cover I, then it won't be shared by it.
   3668     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
   3669                   I) == MatchedAddrModeInsts.end())
   3670       return false;
   3671 
   3672     MatchedAddrModeInsts.clear();
   3673   }
   3674 
   3675   return true;
   3676 }
   3677 
   3678 } // end anonymous namespace
   3679 
   3680 /// Return true if the specified values are defined in a
   3681 /// different basic block than BB.
   3682 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
   3683   if (Instruction *I = dyn_cast<Instruction>(V))
   3684     return I->getParent() != BB;
   3685   return false;
   3686 }
   3687 
   3688 /// Sink addressing mode computation immediate before MemoryInst if doing so
   3689 /// can be done without increasing register pressure.  The need for the
   3690 /// register pressure constraint means this can end up being an all or nothing
   3691 /// decision for all uses of the same addressing computation.
   3692 ///
   3693 /// Load and Store Instructions often have addressing modes that can do
   3694 /// significant amounts of computation. As such, instruction selection will try
   3695 /// to get the load or store to do as much computation as possible for the
   3696 /// program. The problem is that isel can only see within a single block. As
   3697 /// such, we sink as much legal addressing mode work into the block as possible.
   3698 ///
   3699 /// This method is used to optimize both load/store and inline asms with memory
   3700 /// operands.  It's also used to sink addressing computations feeding into cold
   3701 /// call sites into their (cold) basic block.
   3702 ///
   3703 /// The motivation for handling sinking into cold blocks is that doing so can
   3704 /// both enable other address mode sinking (by satisfying the register pressure
   3705 /// constraint above), and reduce register pressure globally (by removing the
   3706 /// addressing mode computation from the fast path entirely.).
   3707 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
   3708                                         Type *AccessTy, unsigned AddrSpace) {
   3709   Value *Repl = Addr;
   3710 
   3711   // Try to collapse single-value PHI nodes.  This is necessary to undo
   3712   // unprofitable PRE transformations.
   3713   SmallVector<Value*, 8> worklist;
   3714   SmallPtrSet<Value*, 16> Visited;
   3715   worklist.push_back(Addr);
   3716 
   3717   // Use a worklist to iteratively look through PHI nodes, and ensure that
   3718   // the addressing mode obtained from the non-PHI roots of the graph
   3719   // are equivalent.
   3720   Value *Consensus = nullptr;
   3721   unsigned NumUsesConsensus = 0;
   3722   bool IsNumUsesConsensusValid = false;
   3723   SmallVector<Instruction*, 16> AddrModeInsts;
   3724   ExtAddrMode AddrMode;
   3725   TypePromotionTransaction TPT;
   3726   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   3727       TPT.getRestorationPoint();
   3728   while (!worklist.empty()) {
   3729     Value *V = worklist.back();
   3730     worklist.pop_back();
   3731 
   3732     // Break use-def graph loops.
   3733     if (!Visited.insert(V).second) {
   3734       Consensus = nullptr;
   3735       break;
   3736     }
   3737 
   3738     // For a PHI node, push all of its incoming values.
   3739     if (PHINode *P = dyn_cast<PHINode>(V)) {
   3740       for (Value *IncValue : P->incoming_values())
   3741         worklist.push_back(IncValue);
   3742       continue;
   3743     }
   3744 
   3745     // For non-PHIs, determine the addressing mode being computed.  Note that
   3746     // the result may differ depending on what other uses our candidate
   3747     // addressing instructions might have.
   3748     SmallVector<Instruction*, 16> NewAddrModeInsts;
   3749     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
   3750       V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM,
   3751       InsertedInsts, PromotedInsts, TPT);
   3752 
   3753     // This check is broken into two cases with very similar code to avoid using
   3754     // getNumUses() as much as possible. Some values have a lot of uses, so
   3755     // calling getNumUses() unconditionally caused a significant compile-time
   3756     // regression.
   3757     if (!Consensus) {
   3758       Consensus = V;
   3759       AddrMode = NewAddrMode;
   3760       AddrModeInsts = NewAddrModeInsts;
   3761       continue;
   3762     } else if (NewAddrMode == AddrMode) {
   3763       if (!IsNumUsesConsensusValid) {
   3764         NumUsesConsensus = Consensus->getNumUses();
   3765         IsNumUsesConsensusValid = true;
   3766       }
   3767 
   3768       // Ensure that the obtained addressing mode is equivalent to that obtained
   3769       // for all other roots of the PHI traversal.  Also, when choosing one
   3770       // such root as representative, select the one with the most uses in order
   3771       // to keep the cost modeling heuristics in AddressingModeMatcher
   3772       // applicable.
   3773       unsigned NumUses = V->getNumUses();
   3774       if (NumUses > NumUsesConsensus) {
   3775         Consensus = V;
   3776         NumUsesConsensus = NumUses;
   3777         AddrModeInsts = NewAddrModeInsts;
   3778       }
   3779       continue;
   3780     }
   3781 
   3782     Consensus = nullptr;
   3783     break;
   3784   }
   3785 
   3786   // If the addressing mode couldn't be determined, or if multiple different
   3787   // ones were determined, bail out now.
   3788   if (!Consensus) {
   3789     TPT.rollback(LastKnownGood);
   3790     return false;
   3791   }
   3792   TPT.commit();
   3793 
   3794   // Check to see if any of the instructions supersumed by this addr mode are
   3795   // non-local to I's BB.
   3796   bool AnyNonLocal = false;
   3797   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
   3798     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
   3799       AnyNonLocal = true;
   3800       break;
   3801     }
   3802   }
   3803 
   3804   // If all the instructions matched are already in this BB, don't do anything.
   3805   if (!AnyNonLocal) {
   3806     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
   3807     return false;
   3808   }
   3809 
   3810   // Insert this computation right after this user.  Since our caller is
   3811   // scanning from the top of the BB to the bottom, reuse of the expr are
   3812   // guaranteed to happen later.
   3813   IRBuilder<> Builder(MemoryInst);
   3814 
   3815   // Now that we determined the addressing expression we want to use and know
   3816   // that we have to sink it into this block.  Check to see if we have already
   3817   // done this for some other load/store instr in this block.  If so, reuse the
   3818   // computation.
   3819   Value *&SunkAddr = SunkAddrs[Addr];
   3820   if (SunkAddr) {
   3821     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
   3822                  << *MemoryInst << "\n");
   3823     if (SunkAddr->getType() != Addr->getType())
   3824       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
   3825   } else if (AddrSinkUsingGEPs ||
   3826              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
   3827               TM->getSubtargetImpl(*MemoryInst->getParent()->getParent())
   3828                   ->useAA())) {
   3829     // By default, we use the GEP-based method when AA is used later. This
   3830     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
   3831     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
   3832                  << *MemoryInst << "\n");
   3833     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
   3834     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
   3835 
   3836     // First, find the pointer.
   3837     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
   3838       ResultPtr = AddrMode.BaseReg;
   3839       AddrMode.BaseReg = nullptr;
   3840     }
   3841 
   3842     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
   3843       // We can't add more than one pointer together, nor can we scale a
   3844       // pointer (both of which seem meaningless).
   3845       if (ResultPtr || AddrMode.Scale != 1)
   3846         return false;
   3847 
   3848       ResultPtr = AddrMode.ScaledReg;
   3849       AddrMode.Scale = 0;
   3850     }
   3851 
   3852     if (AddrMode.BaseGV) {
   3853       if (ResultPtr)
   3854         return false;
   3855 
   3856       ResultPtr = AddrMode.BaseGV;
   3857     }
   3858 
   3859     // If the real base value actually came from an inttoptr, then the matcher
   3860     // will look through it and provide only the integer value. In that case,
   3861     // use it here.
   3862     if (!ResultPtr && AddrMode.BaseReg) {
   3863       ResultPtr =
   3864         Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
   3865       AddrMode.BaseReg = nullptr;
   3866     } else if (!ResultPtr && AddrMode.Scale == 1) {
   3867       ResultPtr =
   3868         Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
   3869       AddrMode.Scale = 0;
   3870     }
   3871 
   3872     if (!ResultPtr &&
   3873         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
   3874       SunkAddr = Constant::getNullValue(Addr->getType());
   3875     } else if (!ResultPtr) {
   3876       return false;
   3877     } else {
   3878       Type *I8PtrTy =
   3879           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
   3880       Type *I8Ty = Builder.getInt8Ty();
   3881 
   3882       // Start with the base register. Do this first so that subsequent address
   3883       // matching finds it last, which will prevent it from trying to match it
   3884       // as the scaled value in case it happens to be a mul. That would be
   3885       // problematic if we've sunk a different mul for the scale, because then
   3886       // we'd end up sinking both muls.
   3887       if (AddrMode.BaseReg) {
   3888         Value *V = AddrMode.BaseReg;
   3889         if (V->getType() != IntPtrTy)
   3890           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
   3891 
   3892         ResultIndex = V;
   3893       }
   3894 
   3895       // Add the scale value.
   3896       if (AddrMode.Scale) {
   3897         Value *V = AddrMode.ScaledReg;
   3898         if (V->getType() == IntPtrTy) {
   3899           // done.
   3900         } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
   3901                    cast<IntegerType>(V->getType())->getBitWidth()) {
   3902           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
   3903         } else {
   3904           // It is only safe to sign extend the BaseReg if we know that the math
   3905           // required to create it did not overflow before we extend it. Since
   3906           // the original IR value was tossed in favor of a constant back when
   3907           // the AddrMode was created we need to bail out gracefully if widths
   3908           // do not match instead of extending it.
   3909           Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
   3910           if (I && (ResultIndex != AddrMode.BaseReg))
   3911             I->eraseFromParent();
   3912           return false;
   3913         }
   3914 
   3915         if (AddrMode.Scale != 1)
   3916           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
   3917                                 "sunkaddr");
   3918         if (ResultIndex)
   3919           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
   3920         else
   3921           ResultIndex = V;
   3922       }
   3923 
   3924       // Add in the Base Offset if present.
   3925       if (AddrMode.BaseOffs) {
   3926         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
   3927         if (ResultIndex) {
   3928           // We need to add this separately from the scale above to help with
   3929           // SDAG consecutive load/store merging.
   3930           if (ResultPtr->getType() != I8PtrTy)
   3931             ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
   3932           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
   3933         }
   3934 
   3935         ResultIndex = V;
   3936       }
   3937 
   3938       if (!ResultIndex) {
   3939         SunkAddr = ResultPtr;
   3940       } else {
   3941         if (ResultPtr->getType() != I8PtrTy)
   3942           ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
   3943         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
   3944       }
   3945 
   3946       if (SunkAddr->getType() != Addr->getType())
   3947         SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
   3948     }
   3949   } else {
   3950     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
   3951                  << *MemoryInst << "\n");
   3952     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
   3953     Value *Result = nullptr;
   3954 
   3955     // Start with the base register. Do this first so that subsequent address
   3956     // matching finds it last, which will prevent it from trying to match it
   3957     // as the scaled value in case it happens to be a mul. That would be
   3958     // problematic if we've sunk a different mul for the scale, because then
   3959     // we'd end up sinking both muls.
   3960     if (AddrMode.BaseReg) {
   3961       Value *V = AddrMode.BaseReg;
   3962       if (V->getType()->isPointerTy())
   3963         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
   3964       if (V->getType() != IntPtrTy)
   3965         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
   3966       Result = V;
   3967     }
   3968 
   3969     // Add the scale value.
   3970     if (AddrMode.Scale) {
   3971       Value *V = AddrMode.ScaledReg;
   3972       if (V->getType() == IntPtrTy) {
   3973         // done.
   3974       } else if (V->getType()->isPointerTy()) {
   3975         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
   3976       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
   3977                  cast<IntegerType>(V->getType())->getBitWidth()) {
   3978         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
   3979       } else {
   3980         // It is only safe to sign extend the BaseReg if we know that the math
   3981         // required to create it did not overflow before we extend it. Since
   3982         // the original IR value was tossed in favor of a constant back when
   3983         // the AddrMode was created we need to bail out gracefully if widths
   3984         // do not match instead of extending it.
   3985         Instruction *I = dyn_cast_or_null<Instruction>(Result);
   3986         if (I && (Result != AddrMode.BaseReg))
   3987           I->eraseFromParent();
   3988         return false;
   3989       }
   3990       if (AddrMode.Scale != 1)
   3991         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
   3992                               "sunkaddr");
   3993       if (Result)
   3994         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   3995       else
   3996         Result = V;
   3997     }
   3998 
   3999     // Add in the BaseGV if present.
   4000     if (AddrMode.BaseGV) {
   4001       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
   4002       if (Result)
   4003         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   4004       else
   4005         Result = V;
   4006     }
   4007 
   4008     // Add in the Base Offset if present.
   4009     if (AddrMode.BaseOffs) {
   4010       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
   4011       if (Result)
   4012         Result = Builder.CreateAdd(Result, V, "sunkaddr");
   4013       else
   4014         Result = V;
   4015     }
   4016 
   4017     if (!Result)
   4018       SunkAddr = Constant::getNullValue(Addr->getType());
   4019     else
   4020       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
   4021   }
   4022 
   4023   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
   4024 
   4025   // If we have no uses, recursively delete the value and all dead instructions
   4026   // using it.
   4027   if (Repl->use_empty()) {
   4028     // This can cause recursive deletion, which can invalidate our iterator.
   4029     // Use a WeakVH to hold onto it in case this happens.
   4030     Value *CurValue = &*CurInstIterator;
   4031     WeakVH IterHandle(CurValue);
   4032     BasicBlock *BB = CurInstIterator->getParent();
   4033 
   4034     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
   4035 
   4036     if (IterHandle != CurValue) {
   4037       // If the iterator instruction was recursively deleted, start over at the
   4038       // start of the block.
   4039       CurInstIterator = BB->begin();
   4040       SunkAddrs.clear();
   4041     }
   4042   }
   4043   ++NumMemoryInsts;
   4044   return true;
   4045 }
   4046 
   4047 /// If there are any memory operands, use OptimizeMemoryInst to sink their
   4048 /// address computing into the block when possible / profitable.
   4049 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
   4050   bool MadeChange = false;
   4051 
   4052   const TargetRegisterInfo *TRI =
   4053       TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo();
   4054   TargetLowering::AsmOperandInfoVector TargetConstraints =
   4055       TLI->ParseConstraints(*DL, TRI, CS);
   4056   unsigned ArgNo = 0;
   4057   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   4058     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   4059 
   4060     // Compute the constraint code and ConstraintType to use.
   4061     TLI->ComputeConstraintToUse(OpInfo, SDValue());
   4062 
   4063     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   4064         OpInfo.isIndirect) {
   4065       Value *OpVal = CS->getArgOperand(ArgNo++);
   4066       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
   4067     } else if (OpInfo.Type == InlineAsm::isInput)
   4068       ArgNo++;
   4069   }
   4070 
   4071   return MadeChange;
   4072 }
   4073 
   4074 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or
   4075 /// sign extensions.
   4076 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) {
   4077   assert(!Inst->use_empty() && "Input must have at least one use");
   4078   const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin());
   4079   bool IsSExt = isa<SExtInst>(FirstUser);
   4080   Type *ExtTy = FirstUser->getType();
   4081   for (const User *U : Inst->users()) {
   4082     const Instruction *UI = cast<Instruction>(U);
   4083     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
   4084       return false;
   4085     Type *CurTy = UI->getType();
   4086     // Same input and output types: Same instruction after CSE.
   4087     if (CurTy == ExtTy)
   4088       continue;
   4089 
   4090     // If IsSExt is true, we are in this situation:
   4091     // a = Inst
   4092     // b = sext ty1 a to ty2
   4093     // c = sext ty1 a to ty3
   4094     // Assuming ty2 is shorter than ty3, this could be turned into:
   4095     // a = Inst
   4096     // b = sext ty1 a to ty2
   4097     // c = sext ty2 b to ty3
   4098     // However, the last sext is not free.
   4099     if (IsSExt)
   4100       return false;
   4101 
   4102     // This is a ZExt, maybe this is free to extend from one type to another.
   4103     // In that case, we would not account for a different use.
   4104     Type *NarrowTy;
   4105     Type *LargeTy;
   4106     if (ExtTy->getScalarType()->getIntegerBitWidth() >
   4107         CurTy->getScalarType()->getIntegerBitWidth()) {
   4108       NarrowTy = CurTy;
   4109       LargeTy = ExtTy;
   4110     } else {
   4111       NarrowTy = ExtTy;
   4112       LargeTy = CurTy;
   4113     }
   4114 
   4115     if (!TLI.isZExtFree(NarrowTy, LargeTy))
   4116       return false;
   4117   }
   4118   // All uses are the same or can be derived from one another for free.
   4119   return true;
   4120 }
   4121 
   4122 /// \brief Try to form ExtLd by promoting \p Exts until they reach a
   4123 /// load instruction.
   4124 /// If an ext(load) can be formed, it is returned via \p LI for the load
   4125 /// and \p Inst for the extension.
   4126 /// Otherwise LI == nullptr and Inst == nullptr.
   4127 /// When some promotion happened, \p TPT contains the proper state to
   4128 /// revert them.
   4129 ///
   4130 /// \return true when promoting was necessary to expose the ext(load)
   4131 /// opportunity, false otherwise.
   4132 ///
   4133 /// Example:
   4134 /// \code
   4135 /// %ld = load i32* %addr
   4136 /// %add = add nuw i32 %ld, 4
   4137 /// %zext = zext i32 %add to i64
   4138 /// \endcode
   4139 /// =>
   4140 /// \code
   4141 /// %ld = load i32* %addr
   4142 /// %zext = zext i32 %ld to i64
   4143 /// %add = add nuw i64 %zext, 4
   4144 /// \encode
   4145 /// Thanks to the promotion, we can match zext(load i32*) to i64.
   4146 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
   4147                                     LoadInst *&LI, Instruction *&Inst,
   4148                                     const SmallVectorImpl<Instruction *> &Exts,
   4149                                     unsigned CreatedInstsCost = 0) {
   4150   // Iterate over all the extensions to see if one form an ext(load).
   4151   for (auto I : Exts) {
   4152     // Check if we directly have ext(load).
   4153     if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) {
   4154       Inst = I;
   4155       // No promotion happened here.
   4156       return false;
   4157     }
   4158     // Check whether or not we want to do any promotion.
   4159     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
   4160       continue;
   4161     // Get the action to perform the promotion.
   4162     TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
   4163         I, InsertedInsts, *TLI, PromotedInsts);
   4164     // Check if we can promote.
   4165     if (!TPH)
   4166       continue;
   4167     // Save the current state.
   4168     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   4169         TPT.getRestorationPoint();
   4170     SmallVector<Instruction *, 4> NewExts;
   4171     unsigned NewCreatedInstsCost = 0;
   4172     unsigned ExtCost = !TLI->isExtFree(I);
   4173     // Promote.
   4174     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
   4175                              &NewExts, nullptr, *TLI);
   4176     assert(PromotedVal &&
   4177            "TypePromotionHelper should have filtered out those cases");
   4178 
   4179     // We would be able to merge only one extension in a load.
   4180     // Therefore, if we have more than 1 new extension we heuristically
   4181     // cut this search path, because it means we degrade the code quality.
   4182     // With exactly 2, the transformation is neutral, because we will merge
   4183     // one extension but leave one. However, we optimistically keep going,
   4184     // because the new extension may be removed too.
   4185     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
   4186     TotalCreatedInstsCost -= ExtCost;
   4187     if (!StressExtLdPromotion &&
   4188         (TotalCreatedInstsCost > 1 ||
   4189          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
   4190       // The promotion is not profitable, rollback to the previous state.
   4191       TPT.rollback(LastKnownGood);
   4192       continue;
   4193     }
   4194     // The promotion is profitable.
   4195     // Check if it exposes an ext(load).
   4196     (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
   4197     if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
   4198                // If we have created a new extension, i.e., now we have two
   4199                // extensions. We must make sure one of them is merged with
   4200                // the load, otherwise we may degrade the code quality.
   4201                (LI->hasOneUse() || hasSameExtUse(LI, *TLI))))
   4202       // Promotion happened.
   4203       return true;
   4204     // If this does not help to expose an ext(load) then, rollback.
   4205     TPT.rollback(LastKnownGood);
   4206   }
   4207   // None of the extension can form an ext(load).
   4208   LI = nullptr;
   4209   Inst = nullptr;
   4210   return false;
   4211 }
   4212 
   4213 /// Move a zext or sext fed by a load into the same basic block as the load,
   4214 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
   4215 /// extend into the load.
   4216 /// \p I[in/out] the extension may be modified during the process if some
   4217 /// promotions apply.
   4218 ///
   4219 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
   4220   // Try to promote a chain of computation if it allows to form
   4221   // an extended load.
   4222   TypePromotionTransaction TPT;
   4223   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
   4224     TPT.getRestorationPoint();
   4225   SmallVector<Instruction *, 1> Exts;
   4226   Exts.push_back(I);
   4227   // Look for a load being extended.
   4228   LoadInst *LI = nullptr;
   4229   Instruction *OldExt = I;
   4230   bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
   4231   if (!LI || !I) {
   4232     assert(!HasPromoted && !LI && "If we did not match any load instruction "
   4233                                   "the code must remain the same");
   4234     I = OldExt;
   4235     return false;
   4236   }
   4237 
   4238   // If they're already in the same block, there's nothing to do.
   4239   // Make the cheap checks first if we did not promote.
   4240   // If we promoted, we need to check if it is indeed profitable.
   4241   if (!HasPromoted && LI->getParent() == I->getParent())
   4242     return false;
   4243 
   4244   EVT VT = TLI->getValueType(*DL, I->getType());
   4245   EVT LoadVT = TLI->getValueType(*DL, LI->getType());
   4246 
   4247   // If the load has other users and the truncate is not free, this probably
   4248   // isn't worthwhile.
   4249   if (!LI->hasOneUse() && TLI &&
   4250       (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) &&
   4251       !TLI->isTruncateFree(I->getType(), LI->getType())) {
   4252     I = OldExt;
   4253     TPT.rollback(LastKnownGood);
   4254     return false;
   4255   }
   4256 
   4257   // Check whether the target supports casts folded into loads.
   4258   unsigned LType;
   4259   if (isa<ZExtInst>(I))
   4260     LType = ISD::ZEXTLOAD;
   4261   else {
   4262     assert(isa<SExtInst>(I) && "Unexpected ext type!");
   4263     LType = ISD::SEXTLOAD;
   4264   }
   4265   if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) {
   4266     I = OldExt;
   4267     TPT.rollback(LastKnownGood);
   4268     return false;
   4269   }
   4270 
   4271   // Move the extend into the same block as the load, so that SelectionDAG
   4272   // can fold it.
   4273   TPT.commit();
   4274   I->removeFromParent();
   4275   I->insertAfter(LI);
   4276   ++NumExtsMoved;
   4277   return true;
   4278 }
   4279 
   4280 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
   4281   BasicBlock *DefBB = I->getParent();
   4282 
   4283   // If the result of a {s|z}ext and its source are both live out, rewrite all
   4284   // other uses of the source with result of extension.
   4285   Value *Src = I->getOperand(0);
   4286   if (Src->hasOneUse())
   4287     return false;
   4288 
   4289   // Only do this xform if truncating is free.
   4290   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
   4291     return false;
   4292 
   4293   // Only safe to perform the optimization if the source is also defined in
   4294   // this block.
   4295   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
   4296     return false;
   4297 
   4298   bool DefIsLiveOut = false;
   4299   for (User *U : I->users()) {
   4300     Instruction *UI = cast<Instruction>(U);
   4301 
   4302     // Figure out which BB this ext is used in.
   4303     BasicBlock *UserBB = UI->getParent();
   4304     if (UserBB == DefBB) continue;
   4305     DefIsLiveOut = true;
   4306     break;
   4307   }
   4308   if (!DefIsLiveOut)
   4309     return false;
   4310 
   4311   // Make sure none of the uses are PHI nodes.
   4312   for (User *U : Src->users()) {
   4313     Instruction *UI = cast<Instruction>(U);
   4314     BasicBlock *UserBB = UI->getParent();
   4315     if (UserBB == DefBB) continue;
   4316     // Be conservative. We don't want this xform to end up introducing
   4317     // reloads just before load / store instructions.
   4318     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
   4319       return false;
   4320   }
   4321 
   4322   // InsertedTruncs - Only insert one trunc in each block once.
   4323   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
   4324 
   4325   bool MadeChange = false;
   4326   for (Use &U : Src->uses()) {
   4327     Instruction *User = cast<Instruction>(U.getUser());
   4328 
   4329     // Figure out which BB this ext is used in.
   4330     BasicBlock *UserBB = User->getParent();
   4331     if (UserBB == DefBB) continue;
   4332 
   4333     // Both src and def are live in this block. Rewrite the use.
   4334     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
   4335 
   4336     if (!InsertedTrunc) {
   4337       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   4338       assert(InsertPt != UserBB->end());
   4339       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
   4340       InsertedInsts.insert(InsertedTrunc);
   4341     }
   4342 
   4343     // Replace a use of the {s|z}ext source with a use of the result.
   4344     U = InsertedTrunc;
   4345     ++NumExtUses;
   4346     MadeChange = true;
   4347   }
   4348 
   4349   return MadeChange;
   4350 }
   4351 
   4352 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
   4353 // just after the load if the target can fold this into one extload instruction,
   4354 // with the hope of eliminating some of the other later "and" instructions using
   4355 // the loaded value.  "and"s that are made trivially redundant by the insertion
   4356 // of the new "and" are removed by this function, while others (e.g. those whose
   4357 // path from the load goes through a phi) are left for isel to potentially
   4358 // remove.
   4359 //
   4360 // For example:
   4361 //
   4362 // b0:
   4363 //   x = load i32
   4364 //   ...
   4365 // b1:
   4366 //   y = and x, 0xff
   4367 //   z = use y
   4368 //
   4369 // becomes:
   4370 //
   4371 // b0:
   4372 //   x = load i32
   4373 //   x' = and x, 0xff
   4374 //   ...
   4375 // b1:
   4376 //   z = use x'
   4377 //
   4378 // whereas:
   4379 //
   4380 // b0:
   4381 //   x1 = load i32
   4382 //   ...
   4383 // b1:
   4384 //   x2 = load i32
   4385 //   ...
   4386 // b2:
   4387 //   x = phi x1, x2
   4388 //   y = and x, 0xff
   4389 //
   4390 // becomes (after a call to optimizeLoadExt for each load):
   4391 //
   4392 // b0:
   4393 //   x1 = load i32
   4394 //   x1' = and x1, 0xff
   4395 //   ...
   4396 // b1:
   4397 //   x2 = load i32
   4398 //   x2' = and x2, 0xff
   4399 //   ...
   4400 // b2:
   4401 //   x = phi x1', x2'
   4402 //   y = and x, 0xff
   4403 //
   4404 
   4405 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
   4406 
   4407   if (!Load->isSimple() ||
   4408       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
   4409     return false;
   4410 
   4411   // Skip loads we've already transformed or have no reason to transform.
   4412   if (Load->hasOneUse()) {
   4413     User *LoadUser = *Load->user_begin();
   4414     if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() &&
   4415         !dyn_cast<PHINode>(LoadUser))
   4416       return false;
   4417   }
   4418 
   4419   // Look at all uses of Load, looking through phis, to determine how many bits
   4420   // of the loaded value are needed.
   4421   SmallVector<Instruction *, 8> WorkList;
   4422   SmallPtrSet<Instruction *, 16> Visited;
   4423   SmallVector<Instruction *, 8> AndsToMaybeRemove;
   4424   for (auto *U : Load->users())
   4425     WorkList.push_back(cast<Instruction>(U));
   4426 
   4427   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
   4428   unsigned BitWidth = LoadResultVT.getSizeInBits();
   4429   APInt DemandBits(BitWidth, 0);
   4430   APInt WidestAndBits(BitWidth, 0);
   4431 
   4432   while (!WorkList.empty()) {
   4433     Instruction *I = WorkList.back();
   4434     WorkList.pop_back();
   4435 
   4436     // Break use-def graph loops.
   4437     if (!Visited.insert(I).second)
   4438       continue;
   4439 
   4440     // For a PHI node, push all of its users.
   4441     if (auto *Phi = dyn_cast<PHINode>(I)) {
   4442       for (auto *U : Phi->users())
   4443         WorkList.push_back(cast<Instruction>(U));
   4444       continue;
   4445     }
   4446 
   4447     switch (I->getOpcode()) {
   4448     case llvm::Instruction::And: {
   4449       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
   4450       if (!AndC)
   4451         return false;
   4452       APInt AndBits = AndC->getValue();
   4453       DemandBits |= AndBits;
   4454       // Keep track of the widest and mask we see.
   4455       if (AndBits.ugt(WidestAndBits))
   4456         WidestAndBits = AndBits;
   4457       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
   4458         AndsToMaybeRemove.push_back(I);
   4459       break;
   4460     }
   4461 
   4462     case llvm::Instruction::Shl: {
   4463       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
   4464       if (!ShlC)
   4465         return false;
   4466       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
   4467       auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt);
   4468       DemandBits |= ShlDemandBits;
   4469       break;
   4470     }
   4471 
   4472     case llvm::Instruction::Trunc: {
   4473       EVT TruncVT = TLI->getValueType(*DL, I->getType());
   4474       unsigned TruncBitWidth = TruncVT.getSizeInBits();
   4475       auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth);
   4476       DemandBits |= TruncBits;
   4477       break;
   4478     }
   4479 
   4480     default:
   4481       return false;
   4482     }
   4483   }
   4484 
   4485   uint32_t ActiveBits = DemandBits.getActiveBits();
   4486   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
   4487   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
   4488   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
   4489   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
   4490   // followed by an AND.
   4491   // TODO: Look into removing this restriction by fixing backends to either
   4492   // return false for isLoadExtLegal for i1 or have them select this pattern to
   4493   // a single instruction.
   4494   //
   4495   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
   4496   // mask, since these are the only ands that will be removed by isel.
   4497   if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) ||
   4498       WidestAndBits != DemandBits)
   4499     return false;
   4500 
   4501   LLVMContext &Ctx = Load->getType()->getContext();
   4502   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
   4503   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
   4504 
   4505   // Reject cases that won't be matched as extloads.
   4506   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
   4507       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
   4508     return false;
   4509 
   4510   IRBuilder<> Builder(Load->getNextNode());
   4511   auto *NewAnd = dyn_cast<Instruction>(
   4512       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
   4513 
   4514   // Replace all uses of load with new and (except for the use of load in the
   4515   // new and itself).
   4516   Load->replaceAllUsesWith(NewAnd);
   4517   NewAnd->setOperand(0, Load);
   4518 
   4519   // Remove any and instructions that are now redundant.
   4520   for (auto *And : AndsToMaybeRemove)
   4521     // Check that the and mask is the same as the one we decided to put on the
   4522     // new and.
   4523     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
   4524       And->replaceAllUsesWith(NewAnd);
   4525       if (&*CurInstIterator == And)
   4526         CurInstIterator = std::next(And->getIterator());
   4527       And->eraseFromParent();
   4528       ++NumAndUses;
   4529     }
   4530 
   4531   ++NumAndsAdded;
   4532   return true;
   4533 }
   4534 
   4535 /// Check if V (an operand of a select instruction) is an expensive instruction
   4536 /// that is only used once.
   4537 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
   4538   auto *I = dyn_cast<Instruction>(V);
   4539   // If it's safe to speculatively execute, then it should not have side
   4540   // effects; therefore, it's safe to sink and possibly *not* execute.
   4541   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
   4542          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
   4543 }
   4544 
   4545 /// Returns true if a SelectInst should be turned into an explicit branch.
   4546 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
   4547                                                 const TargetLowering *TLI,
   4548                                                 SelectInst *SI) {
   4549   // If even a predictable select is cheap, then a branch can't be cheaper.
   4550   if (!TLI->isPredictableSelectExpensive())
   4551     return false;
   4552 
   4553   // FIXME: This should use the same heuristics as IfConversion to determine
   4554   // whether a select is better represented as a branch.
   4555 
   4556   // If metadata tells us that the select condition is obviously predictable,
   4557   // then we want to replace the select with a branch.
   4558   uint64_t TrueWeight, FalseWeight;
   4559   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
   4560     uint64_t Max = std::max(TrueWeight, FalseWeight);
   4561     uint64_t Sum = TrueWeight + FalseWeight;
   4562     if (Sum != 0) {
   4563       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
   4564       if (Probability > TLI->getPredictableBranchThreshold())
   4565         return true;
   4566     }
   4567   }
   4568 
   4569   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   4570 
   4571   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
   4572   // comparison condition. If the compare has more than one use, there's
   4573   // probably another cmov or setcc around, so it's not worth emitting a branch.
   4574   if (!Cmp || !Cmp->hasOneUse())
   4575     return false;
   4576 
   4577   // If either operand of the select is expensive and only needed on one side
   4578   // of the select, we should form a branch.
   4579   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
   4580       sinkSelectOperand(TTI, SI->getFalseValue()))
   4581     return true;
   4582 
   4583   return false;
   4584 }
   4585 
   4586 
   4587 /// If we have a SelectInst that will likely profit from branch prediction,
   4588 /// turn it into a branch.
   4589 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
   4590   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
   4591 
   4592   // Can we convert the 'select' to CF ?
   4593   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
   4594       SI->getMetadata(LLVMContext::MD_unpredictable))
   4595     return false;
   4596 
   4597   TargetLowering::SelectSupportKind SelectKind;
   4598   if (VectorCond)
   4599     SelectKind = TargetLowering::VectorMaskSelect;
   4600   else if (SI->getType()->isVectorTy())
   4601     SelectKind = TargetLowering::ScalarCondVectorVal;
   4602   else
   4603     SelectKind = TargetLowering::ScalarValSelect;
   4604 
   4605   if (TLI->isSelectSupported(SelectKind) &&
   4606       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
   4607     return false;
   4608 
   4609   ModifiedDT = true;
   4610 
   4611   // Transform a sequence like this:
   4612   //    start:
   4613   //       %cmp = cmp uge i32 %a, %b
   4614   //       %sel = select i1 %cmp, i32 %c, i32 %d
   4615   //
   4616   // Into:
   4617   //    start:
   4618   //       %cmp = cmp uge i32 %a, %b
   4619   //       br i1 %cmp, label %select.true, label %select.false
   4620   //    select.true:
   4621   //       br label %select.end
   4622   //    select.false:
   4623   //       br label %select.end
   4624   //    select.end:
   4625   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
   4626   //
   4627   // In addition, we may sink instructions that produce %c or %d from
   4628   // the entry block into the destination(s) of the new branch.
   4629   // If the true or false blocks do not contain a sunken instruction, that
   4630   // block and its branch may be optimized away. In that case, one side of the
   4631   // first branch will point directly to select.end, and the corresponding PHI
   4632   // predecessor block will be the start block.
   4633 
   4634   // First, we split the block containing the select into 2 blocks.
   4635   BasicBlock *StartBlock = SI->getParent();
   4636   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
   4637   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
   4638 
   4639   // Delete the unconditional branch that was just created by the split.
   4640   StartBlock->getTerminator()->eraseFromParent();
   4641 
   4642   // These are the new basic blocks for the conditional branch.
   4643   // At least one will become an actual new basic block.
   4644   BasicBlock *TrueBlock = nullptr;
   4645   BasicBlock *FalseBlock = nullptr;
   4646 
   4647   // Sink expensive instructions into the conditional blocks to avoid executing
   4648   // them speculatively.
   4649   if (sinkSelectOperand(TTI, SI->getTrueValue())) {
   4650     TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
   4651                                    EndBlock->getParent(), EndBlock);
   4652     auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
   4653     auto *TrueInst = cast<Instruction>(SI->getTrueValue());
   4654     TrueInst->moveBefore(TrueBranch);
   4655   }
   4656   if (sinkSelectOperand(TTI, SI->getFalseValue())) {
   4657     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
   4658                                     EndBlock->getParent(), EndBlock);
   4659     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
   4660     auto *FalseInst = cast<Instruction>(SI->getFalseValue());
   4661     FalseInst->moveBefore(FalseBranch);
   4662   }
   4663 
   4664   // If there was nothing to sink, then arbitrarily choose the 'false' side
   4665   // for a new input value to the PHI.
   4666   if (TrueBlock == FalseBlock) {
   4667     assert(TrueBlock == nullptr &&
   4668            "Unexpected basic block transform while optimizing select");
   4669 
   4670     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
   4671                                     EndBlock->getParent(), EndBlock);
   4672     BranchInst::Create(EndBlock, FalseBlock);
   4673   }
   4674 
   4675   // Insert the real conditional branch based on the original condition.
   4676   // If we did not create a new block for one of the 'true' or 'false' paths
   4677   // of the condition, it means that side of the branch goes to the end block
   4678   // directly and the path originates from the start block from the point of
   4679   // view of the new PHI.
   4680   if (TrueBlock == nullptr) {
   4681     BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI);
   4682     TrueBlock = StartBlock;
   4683   } else if (FalseBlock == nullptr) {
   4684     BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI);
   4685     FalseBlock = StartBlock;
   4686   } else {
   4687     BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI);
   4688   }
   4689 
   4690   // The select itself is replaced with a PHI Node.
   4691   PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
   4692   PN->takeName(SI);
   4693   PN->addIncoming(SI->getTrueValue(), TrueBlock);
   4694   PN->addIncoming(SI->getFalseValue(), FalseBlock);
   4695 
   4696   SI->replaceAllUsesWith(PN);
   4697   SI->eraseFromParent();
   4698 
   4699   // Instruct OptimizeBlock to skip to the next block.
   4700   CurInstIterator = StartBlock->end();
   4701   ++NumSelectsExpanded;
   4702   return true;
   4703 }
   4704 
   4705 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
   4706   SmallVector<int, 16> Mask(SVI->getShuffleMask());
   4707   int SplatElem = -1;
   4708   for (unsigned i = 0; i < Mask.size(); ++i) {
   4709     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
   4710       return false;
   4711     SplatElem = Mask[i];
   4712   }
   4713 
   4714   return true;
   4715 }
   4716 
   4717 /// Some targets have expensive vector shifts if the lanes aren't all the same
   4718 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
   4719 /// it's often worth sinking a shufflevector splat down to its use so that
   4720 /// codegen can spot all lanes are identical.
   4721 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
   4722   BasicBlock *DefBB = SVI->getParent();
   4723 
   4724   // Only do this xform if variable vector shifts are particularly expensive.
   4725   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
   4726     return false;
   4727 
   4728   // We only expect better codegen by sinking a shuffle if we can recognise a
   4729   // constant splat.
   4730   if (!isBroadcastShuffle(SVI))
   4731     return false;
   4732 
   4733   // InsertedShuffles - Only insert a shuffle in each block once.
   4734   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
   4735 
   4736   bool MadeChange = false;
   4737   for (User *U : SVI->users()) {
   4738     Instruction *UI = cast<Instruction>(U);
   4739 
   4740     // Figure out which BB this ext is used in.
   4741     BasicBlock *UserBB = UI->getParent();
   4742     if (UserBB == DefBB) continue;
   4743 
   4744     // For now only apply this when the splat is used by a shift instruction.
   4745     if (!UI->isShift()) continue;
   4746 
   4747     // Everything checks out, sink the shuffle if the user's block doesn't
   4748     // already have a copy.
   4749     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
   4750 
   4751     if (!InsertedShuffle) {
   4752       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
   4753       assert(InsertPt != UserBB->end());
   4754       InsertedShuffle =
   4755           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
   4756                                 SVI->getOperand(2), "", &*InsertPt);
   4757     }
   4758 
   4759     UI->replaceUsesOfWith(SVI, InsertedShuffle);
   4760     MadeChange = true;
   4761   }
   4762 
   4763   // If we removed all uses, nuke the shuffle.
   4764   if (SVI->use_empty()) {
   4765     SVI->eraseFromParent();
   4766     MadeChange = true;
   4767   }
   4768 
   4769   return MadeChange;
   4770 }
   4771 
   4772 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
   4773   if (!TLI || !DL)
   4774     return false;
   4775 
   4776   Value *Cond = SI->getCondition();
   4777   Type *OldType = Cond->getType();
   4778   LLVMContext &Context = Cond->getContext();
   4779   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
   4780   unsigned RegWidth = RegType.getSizeInBits();
   4781 
   4782   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
   4783     return false;
   4784 
   4785   // If the register width is greater than the type width, expand the condition
   4786   // of the switch instruction and each case constant to the width of the
   4787   // register. By widening the type of the switch condition, subsequent
   4788   // comparisons (for case comparisons) will not need to be extended to the
   4789   // preferred register width, so we will potentially eliminate N-1 extends,
   4790   // where N is the number of cases in the switch.
   4791   auto *NewType = Type::getIntNTy(Context, RegWidth);
   4792 
   4793   // Zero-extend the switch condition and case constants unless the switch
   4794   // condition is a function argument that is already being sign-extended.
   4795   // In that case, we can avoid an unnecessary mask/extension by sign-extending
   4796   // everything instead.
   4797   Instruction::CastOps ExtType = Instruction::ZExt;
   4798   if (auto *Arg = dyn_cast<Argument>(Cond))
   4799     if (Arg->hasSExtAttr())
   4800       ExtType = Instruction::SExt;
   4801 
   4802   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
   4803   ExtInst->insertBefore(SI);
   4804   SI->setCondition(ExtInst);
   4805   for (SwitchInst::CaseIt Case : SI->cases()) {
   4806     APInt NarrowConst = Case.getCaseValue()->getValue();
   4807     APInt WideConst = (ExtType == Instruction::ZExt) ?
   4808                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
   4809     Case.setValue(ConstantInt::get(Context, WideConst));
   4810   }
   4811 
   4812   return true;
   4813 }
   4814 
   4815 namespace {
   4816 /// \brief Helper class to promote a scalar operation to a vector one.
   4817 /// This class is used to move downward extractelement transition.
   4818 /// E.g.,
   4819 /// a = vector_op <2 x i32>
   4820 /// b = extractelement <2 x i32> a, i32 0
   4821 /// c = scalar_op b
   4822 /// store c
   4823 ///
   4824 /// =>
   4825 /// a = vector_op <2 x i32>
   4826 /// c = vector_op a (equivalent to scalar_op on the related lane)
   4827 /// * d = extractelement <2 x i32> c, i32 0
   4828 /// * store d
   4829 /// Assuming both extractelement and store can be combine, we get rid of the
   4830 /// transition.
   4831 class VectorPromoteHelper {
   4832   /// DataLayout associated with the current module.
   4833   const DataLayout &DL;
   4834 
   4835   /// Used to perform some checks on the legality of vector operations.
   4836   const TargetLowering &TLI;
   4837 
   4838   /// Used to estimated the cost of the promoted chain.
   4839   const TargetTransformInfo &TTI;
   4840 
   4841   /// The transition being moved downwards.
   4842   Instruction *Transition;
   4843   /// The sequence of instructions to be promoted.
   4844   SmallVector<Instruction *, 4> InstsToBePromoted;
   4845   /// Cost of combining a store and an extract.
   4846   unsigned StoreExtractCombineCost;
   4847   /// Instruction that will be combined with the transition.
   4848   Instruction *CombineInst;
   4849 
   4850   /// \brief The instruction that represents the current end of the transition.
   4851   /// Since we are faking the promotion until we reach the end of the chain
   4852   /// of computation, we need a way to get the current end of the transition.
   4853   Instruction *getEndOfTransition() const {
   4854     if (InstsToBePromoted.empty())
   4855       return Transition;
   4856     return InstsToBePromoted.back();
   4857   }
   4858 
   4859   /// \brief Return the index of the original value in the transition.
   4860   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
   4861   /// c, is at index 0.
   4862   unsigned getTransitionOriginalValueIdx() const {
   4863     assert(isa<ExtractElementInst>(Transition) &&
   4864            "Other kind of transitions are not supported yet");
   4865     return 0;
   4866   }
   4867 
   4868   /// \brief Return the index of the index in the transition.
   4869   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
   4870   /// is at index 1.
   4871   unsigned getTransitionIdx() const {
   4872     assert(isa<ExtractElementInst>(Transition) &&
   4873            "Other kind of transitions are not supported yet");
   4874     return 1;
   4875   }
   4876 
   4877   /// \brief Get the type of the transition.
   4878   /// This is the type of the original value.
   4879   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
   4880   /// transition is <2 x i32>.
   4881   Type *getTransitionType() const {
   4882     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
   4883   }
   4884 
   4885   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
   4886   /// I.e., we have the following sequence:
   4887   /// Def = Transition <ty1> a to <ty2>
   4888   /// b = ToBePromoted <ty2> Def, ...
   4889   /// =>
   4890   /// b = ToBePromoted <ty1> a, ...
   4891   /// Def = Transition <ty1> ToBePromoted to <ty2>
   4892   void promoteImpl(Instruction *ToBePromoted);
   4893 
   4894   /// \brief Check whether or not it is profitable to promote all the
   4895   /// instructions enqueued to be promoted.
   4896   bool isProfitableToPromote() {
   4897     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
   4898     unsigned Index = isa<ConstantInt>(ValIdx)
   4899                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
   4900                          : -1;
   4901     Type *PromotedType = getTransitionType();
   4902 
   4903     StoreInst *ST = cast<StoreInst>(CombineInst);
   4904     unsigned AS = ST->getPointerAddressSpace();
   4905     unsigned Align = ST->getAlignment();
   4906     // Check if this store is supported.
   4907     if (!TLI.allowsMisalignedMemoryAccesses(
   4908             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
   4909             Align)) {
   4910       // If this is not supported, there is no way we can combine
   4911       // the extract with the store.
   4912       return false;
   4913     }
   4914 
   4915     // The scalar chain of computation has to pay for the transition
   4916     // scalar to vector.
   4917     // The vector chain has to account for the combining cost.
   4918     uint64_t ScalarCost =
   4919         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
   4920     uint64_t VectorCost = StoreExtractCombineCost;
   4921     for (const auto &Inst : InstsToBePromoted) {
   4922       // Compute the cost.
   4923       // By construction, all instructions being promoted are arithmetic ones.
   4924       // Moreover, one argument is a constant that can be viewed as a splat
   4925       // constant.
   4926       Value *Arg0 = Inst->getOperand(0);
   4927       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
   4928                             isa<ConstantFP>(Arg0);
   4929       TargetTransformInfo::OperandValueKind Arg0OVK =
   4930           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
   4931                          : TargetTransformInfo::OK_AnyValue;
   4932       TargetTransformInfo::OperandValueKind Arg1OVK =
   4933           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
   4934                           : TargetTransformInfo::OK_AnyValue;
   4935       ScalarCost += TTI.getArithmeticInstrCost(
   4936           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
   4937       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
   4938                                                Arg0OVK, Arg1OVK);
   4939     }
   4940     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
   4941                  << ScalarCost << "\nVector: " << VectorCost << '\n');
   4942     return ScalarCost > VectorCost;
   4943   }
   4944 
   4945   /// \brief Generate a constant vector with \p Val with the same
   4946   /// number of elements as the transition.
   4947   /// \p UseSplat defines whether or not \p Val should be replicated
   4948   /// across the whole vector.
   4949   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
   4950   /// otherwise we generate a vector with as many undef as possible:
   4951   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
   4952   /// used at the index of the extract.
   4953   Value *getConstantVector(Constant *Val, bool UseSplat) const {
   4954     unsigned ExtractIdx = UINT_MAX;
   4955     if (!UseSplat) {
   4956       // If we cannot determine where the constant must be, we have to
   4957       // use a splat constant.
   4958       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
   4959       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
   4960         ExtractIdx = CstVal->getSExtValue();
   4961       else
   4962         UseSplat = true;
   4963     }
   4964 
   4965     unsigned End = getTransitionType()->getVectorNumElements();
   4966     if (UseSplat)
   4967       return ConstantVector::getSplat(End, Val);
   4968 
   4969     SmallVector<Constant *, 4> ConstVec;
   4970     UndefValue *UndefVal = UndefValue::get(Val->getType());
   4971     for (unsigned Idx = 0; Idx != End; ++Idx) {
   4972       if (Idx == ExtractIdx)
   4973         ConstVec.push_back(Val);
   4974       else
   4975         ConstVec.push_back(UndefVal);
   4976     }
   4977     return ConstantVector::get(ConstVec);
   4978   }
   4979 
   4980   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
   4981   /// in \p Use can trigger undefined behavior.
   4982   static bool canCauseUndefinedBehavior(const Instruction *Use,
   4983                                         unsigned OperandIdx) {
   4984     // This is not safe to introduce undef when the operand is on
   4985     // the right hand side of a division-like instruction.
   4986     if (OperandIdx != 1)
   4987       return false;
   4988     switch (Use->getOpcode()) {
   4989     default:
   4990       return false;
   4991     case Instruction::SDiv:
   4992     case Instruction::UDiv:
   4993     case Instruction::SRem:
   4994     case Instruction::URem:
   4995       return true;
   4996     case Instruction::FDiv:
   4997     case Instruction::FRem:
   4998       return !Use->hasNoNaNs();
   4999     }
   5000     llvm_unreachable(nullptr);
   5001   }
   5002 
   5003 public:
   5004   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
   5005                       const TargetTransformInfo &TTI, Instruction *Transition,
   5006                       unsigned CombineCost)
   5007       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
   5008         StoreExtractCombineCost(CombineCost), CombineInst(nullptr) {
   5009     assert(Transition && "Do not know how to promote null");
   5010   }
   5011 
   5012   /// \brief Check if we can promote \p ToBePromoted to \p Type.
   5013   bool canPromote(const Instruction *ToBePromoted) const {
   5014     // We could support CastInst too.
   5015     return isa<BinaryOperator>(ToBePromoted);
   5016   }
   5017 
   5018   /// \brief Check if it is profitable to promote \p ToBePromoted
   5019   /// by moving downward the transition through.
   5020   bool shouldPromote(const Instruction *ToBePromoted) const {
   5021     // Promote only if all the operands can be statically expanded.
   5022     // Indeed, we do not want to introduce any new kind of transitions.
   5023     for (const Use &U : ToBePromoted->operands()) {
   5024       const Value *Val = U.get();
   5025       if (Val == getEndOfTransition()) {
   5026         // If the use is a division and the transition is on the rhs,
   5027         // we cannot promote the operation, otherwise we may create a
   5028         // division by zero.
   5029         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
   5030           return false;
   5031         continue;
   5032       }
   5033       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
   5034           !isa<ConstantFP>(Val))
   5035         return false;
   5036     }
   5037     // Check that the resulting operation is legal.
   5038     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
   5039     if (!ISDOpcode)
   5040       return false;
   5041     return StressStoreExtract ||
   5042            TLI.isOperationLegalOrCustom(
   5043                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
   5044   }
   5045 
   5046   /// \brief Check whether or not \p Use can be combined
   5047   /// with the transition.
   5048   /// I.e., is it possible to do Use(Transition) => AnotherUse?
   5049   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
   5050 
   5051   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
   5052   void enqueueForPromotion(Instruction *ToBePromoted) {
   5053     InstsToBePromoted.push_back(ToBePromoted);
   5054   }
   5055 
   5056   /// \brief Set the instruction that will be combined with the transition.
   5057   void recordCombineInstruction(Instruction *ToBeCombined) {
   5058     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
   5059     CombineInst = ToBeCombined;
   5060   }
   5061 
   5062   /// \brief Promote all the instructions enqueued for promotion if it is
   5063   /// is profitable.
   5064   /// \return True if the promotion happened, false otherwise.
   5065   bool promote() {
   5066     // Check if there is something to promote.
   5067     // Right now, if we do not have anything to combine with,
   5068     // we assume the promotion is not profitable.
   5069     if (InstsToBePromoted.empty() || !CombineInst)
   5070       return false;
   5071 
   5072     // Check cost.
   5073     if (!StressStoreExtract && !isProfitableToPromote())
   5074       return false;
   5075 
   5076     // Promote.
   5077     for (auto &ToBePromoted : InstsToBePromoted)
   5078       promoteImpl(ToBePromoted);
   5079     InstsToBePromoted.clear();
   5080     return true;
   5081   }
   5082 };
   5083 } // End of anonymous namespace.
   5084 
   5085 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
   5086   // At this point, we know that all the operands of ToBePromoted but Def
   5087   // can be statically promoted.
   5088   // For Def, we need to use its parameter in ToBePromoted:
   5089   // b = ToBePromoted ty1 a
   5090   // Def = Transition ty1 b to ty2
   5091   // Move the transition down.
   5092   // 1. Replace all uses of the promoted operation by the transition.
   5093   // = ... b => = ... Def.
   5094   assert(ToBePromoted->getType() == Transition->getType() &&
   5095          "The type of the result of the transition does not match "
   5096          "the final type");
   5097   ToBePromoted->replaceAllUsesWith(Transition);
   5098   // 2. Update the type of the uses.
   5099   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
   5100   Type *TransitionTy = getTransitionType();
   5101   ToBePromoted->mutateType(TransitionTy);
   5102   // 3. Update all the operands of the promoted operation with promoted
   5103   // operands.
   5104   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
   5105   for (Use &U : ToBePromoted->operands()) {
   5106     Value *Val = U.get();
   5107     Value *NewVal = nullptr;
   5108     if (Val == Transition)
   5109       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
   5110     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
   5111              isa<ConstantFP>(Val)) {
   5112       // Use a splat constant if it is not safe to use undef.
   5113       NewVal = getConstantVector(
   5114           cast<Constant>(Val),
   5115           isa<UndefValue>(Val) ||
   5116               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
   5117     } else
   5118       llvm_unreachable("Did you modified shouldPromote and forgot to update "
   5119                        "this?");
   5120     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
   5121   }
   5122   Transition->removeFromParent();
   5123   Transition->insertAfter(ToBePromoted);
   5124   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
   5125 }
   5126 
   5127 /// Some targets can do store(extractelement) with one instruction.
   5128 /// Try to push the extractelement towards the stores when the target
   5129 /// has this feature and this is profitable.
   5130 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
   5131   unsigned CombineCost = UINT_MAX;
   5132   if (DisableStoreExtract || !TLI ||
   5133       (!StressStoreExtract &&
   5134        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
   5135                                        Inst->getOperand(1), CombineCost)))
   5136     return false;
   5137 
   5138   // At this point we know that Inst is a vector to scalar transition.
   5139   // Try to move it down the def-use chain, until:
   5140   // - We can combine the transition with its single use
   5141   //   => we got rid of the transition.
   5142   // - We escape the current basic block
   5143   //   => we would need to check that we are moving it at a cheaper place and
   5144   //      we do not do that for now.
   5145   BasicBlock *Parent = Inst->getParent();
   5146   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
   5147   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
   5148   // If the transition has more than one use, assume this is not going to be
   5149   // beneficial.
   5150   while (Inst->hasOneUse()) {
   5151     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
   5152     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
   5153 
   5154     if (ToBePromoted->getParent() != Parent) {
   5155       DEBUG(dbgs() << "Instruction to promote is in a different block ("
   5156                    << ToBePromoted->getParent()->getName()
   5157                    << ") than the transition (" << Parent->getName() << ").\n");
   5158       return false;
   5159     }
   5160 
   5161     if (VPH.canCombine(ToBePromoted)) {
   5162       DEBUG(dbgs() << "Assume " << *Inst << '\n'
   5163                    << "will be combined with: " << *ToBePromoted << '\n');
   5164       VPH.recordCombineInstruction(ToBePromoted);
   5165       bool Changed = VPH.promote();
   5166       NumStoreExtractExposed += Changed;
   5167       return Changed;
   5168     }
   5169 
   5170     DEBUG(dbgs() << "Try promoting.\n");
   5171     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
   5172       return false;
   5173 
   5174     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
   5175 
   5176     VPH.enqueueForPromotion(ToBePromoted);
   5177     Inst = ToBePromoted;
   5178   }
   5179   return false;
   5180 }
   5181 
   5182 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
   5183   // Bail out if we inserted the instruction to prevent optimizations from
   5184   // stepping on each other's toes.
   5185   if (InsertedInsts.count(I))
   5186     return false;
   5187 
   5188   if (PHINode *P = dyn_cast<PHINode>(I)) {
   5189     // It is possible for very late stage optimizations (such as SimplifyCFG)
   5190     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
   5191     // trivial PHI, go ahead and zap it here.
   5192     if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) {
   5193       P->replaceAllUsesWith(V);
   5194       P->eraseFromParent();
   5195       ++NumPHIsElim;
   5196       return true;
   5197     }
   5198     return false;
   5199   }
   5200 
   5201   if (CastInst *CI = dyn_cast<CastInst>(I)) {
   5202     // If the source of the cast is a constant, then this should have
   5203     // already been constant folded.  The only reason NOT to constant fold
   5204     // it is if something (e.g. LSR) was careful to place the constant
   5205     // evaluation in a block other than then one that uses it (e.g. to hoist
   5206     // the address of globals out of a loop).  If this is the case, we don't
   5207     // want to forward-subst the cast.
   5208     if (isa<Constant>(CI->getOperand(0)))
   5209       return false;
   5210 
   5211     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
   5212       return true;
   5213 
   5214     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
   5215       /// Sink a zext or sext into its user blocks if the target type doesn't
   5216       /// fit in one register
   5217       if (TLI &&
   5218           TLI->getTypeAction(CI->getContext(),
   5219                              TLI->getValueType(*DL, CI->getType())) ==
   5220               TargetLowering::TypeExpandInteger) {
   5221         return SinkCast(CI);
   5222       } else {
   5223         bool MadeChange = moveExtToFormExtLoad(I);
   5224         return MadeChange | optimizeExtUses(I);
   5225       }
   5226     }
   5227     return false;
   5228   }
   5229 
   5230   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   5231     if (!TLI || !TLI->hasMultipleConditionRegisters())
   5232       return OptimizeCmpExpression(CI, TLI);
   5233 
   5234   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5235     stripInvariantGroupMetadata(*LI);
   5236     if (TLI) {
   5237       bool Modified = optimizeLoadExt(LI);
   5238       unsigned AS = LI->getPointerAddressSpace();
   5239       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
   5240       return Modified;
   5241     }
   5242     return false;
   5243   }
   5244 
   5245   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
   5246     stripInvariantGroupMetadata(*SI);
   5247     if (TLI) {
   5248       unsigned AS = SI->getPointerAddressSpace();
   5249       return optimizeMemoryInst(I, SI->getOperand(1),
   5250                                 SI->getOperand(0)->getType(), AS);
   5251     }
   5252     return false;
   5253   }
   5254 
   5255   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
   5256 
   5257   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
   5258                 BinOp->getOpcode() == Instruction::LShr)) {
   5259     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
   5260     if (TLI && CI && TLI->hasExtractBitsInsn())
   5261       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
   5262 
   5263     return false;
   5264   }
   5265 
   5266   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
   5267     if (GEPI->hasAllZeroIndices()) {
   5268       /// The GEP operand must be a pointer, so must its result -> BitCast
   5269       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
   5270                                         GEPI->getName(), GEPI);
   5271       GEPI->replaceAllUsesWith(NC);
   5272       GEPI->eraseFromParent();
   5273       ++NumGEPsElim;
   5274       optimizeInst(NC, ModifiedDT);
   5275       return true;
   5276     }
   5277     return false;
   5278   }
   5279 
   5280   if (CallInst *CI = dyn_cast<CallInst>(I))
   5281     return optimizeCallInst(CI, ModifiedDT);
   5282 
   5283   if (SelectInst *SI = dyn_cast<SelectInst>(I))
   5284     return optimizeSelectInst(SI);
   5285 
   5286   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
   5287     return optimizeShuffleVectorInst(SVI);
   5288 
   5289   if (auto *Switch = dyn_cast<SwitchInst>(I))
   5290     return optimizeSwitchInst(Switch);
   5291 
   5292   if (isa<ExtractElementInst>(I))
   5293     return optimizeExtractElementInst(I);
   5294 
   5295   return false;
   5296 }
   5297 
   5298 /// Given an OR instruction, check to see if this is a bitreverse
   5299 /// idiom. If so, insert the new intrinsic and return true.
   5300 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
   5301                            const TargetLowering &TLI) {
   5302   if (!I.getType()->isIntegerTy() ||
   5303       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
   5304                                     TLI.getValueType(DL, I.getType(), true)))
   5305     return false;
   5306 
   5307   SmallVector<Instruction*, 4> Insts;
   5308   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
   5309     return false;
   5310   Instruction *LastInst = Insts.back();
   5311   I.replaceAllUsesWith(LastInst);
   5312   RecursivelyDeleteTriviallyDeadInstructions(&I);
   5313   return true;
   5314 }
   5315 
   5316 // In this pass we look for GEP and cast instructions that are used
   5317 // across basic blocks and rewrite them to improve basic-block-at-a-time
   5318 // selection.
   5319 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
   5320   SunkAddrs.clear();
   5321   bool MadeChange = false;
   5322 
   5323   CurInstIterator = BB.begin();
   5324   while (CurInstIterator != BB.end()) {
   5325     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
   5326     if (ModifiedDT)
   5327       return true;
   5328   }
   5329 
   5330   bool MadeBitReverse = true;
   5331   while (TLI && MadeBitReverse) {
   5332     MadeBitReverse = false;
   5333     for (auto &I : reverse(BB)) {
   5334       if (makeBitReverse(I, *DL, *TLI)) {
   5335         MadeBitReverse = MadeChange = true;
   5336         ModifiedDT = true;
   5337         break;
   5338       }
   5339     }
   5340   }
   5341   MadeChange |= dupRetToEnableTailCallOpts(&BB);
   5342 
   5343   return MadeChange;
   5344 }
   5345 
   5346 // llvm.dbg.value is far away from the value then iSel may not be able
   5347 // handle it properly. iSel will drop llvm.dbg.value if it can not
   5348 // find a node corresponding to the value.
   5349 bool CodeGenPrepare::placeDbgValues(Function &F) {
   5350   bool MadeChange = false;
   5351   for (BasicBlock &BB : F) {
   5352     Instruction *PrevNonDbgInst = nullptr;
   5353     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
   5354       Instruction *Insn = &*BI++;
   5355       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
   5356       // Leave dbg.values that refer to an alloca alone. These
   5357       // instrinsics describe the address of a variable (= the alloca)
   5358       // being taken.  They should not be moved next to the alloca
   5359       // (and to the beginning of the scope), but rather stay close to
   5360       // where said address is used.
   5361       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
   5362         PrevNonDbgInst = Insn;
   5363         continue;
   5364       }
   5365 
   5366       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
   5367       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
   5368         // If VI is a phi in a block with an EHPad terminator, we can't insert
   5369         // after it.
   5370         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
   5371           continue;
   5372         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
   5373         DVI->removeFromParent();
   5374         if (isa<PHINode>(VI))
   5375           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
   5376         else
   5377           DVI->insertAfter(VI);
   5378         MadeChange = true;
   5379         ++NumDbgValueMoved;
   5380       }
   5381     }
   5382   }
   5383   return MadeChange;
   5384 }
   5385 
   5386 // If there is a sequence that branches based on comparing a single bit
   5387 // against zero that can be combined into a single instruction, and the
   5388 // target supports folding these into a single instruction, sink the
   5389 // mask and compare into the branch uses. Do this before OptimizeBlock ->
   5390 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
   5391 // searched for.
   5392 bool CodeGenPrepare::sinkAndCmp(Function &F) {
   5393   if (!EnableAndCmpSinking)
   5394     return false;
   5395   if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
   5396     return false;
   5397   bool MadeChange = false;
   5398   for (BasicBlock &BB : F) {
   5399     // Does this BB end with the following?
   5400     //   %andVal = and %val, #single-bit-set
   5401     //   %icmpVal = icmp %andResult, 0
   5402     //   br i1 %cmpVal label %dest1, label %dest2"
   5403     BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator());
   5404     if (!Brcc || !Brcc->isConditional())
   5405       continue;
   5406     ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
   5407     if (!Cmp || Cmp->getParent() != &BB)
   5408       continue;
   5409     ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
   5410     if (!Zero || !Zero->isZero())
   5411       continue;
   5412     Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
   5413     if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB)
   5414       continue;
   5415     ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
   5416     if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
   5417       continue;
   5418     DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump());
   5419 
   5420     // Push the "and; icmp" for any users that are conditional branches.
   5421     // Since there can only be one branch use per BB, we don't need to keep
   5422     // track of which BBs we insert into.
   5423     for (Use &TheUse : Cmp->uses()) {
   5424       // Find brcc use.
   5425       BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse);
   5426       if (!BrccUser || !BrccUser->isConditional())
   5427         continue;
   5428       BasicBlock *UserBB = BrccUser->getParent();
   5429       if (UserBB == &BB) continue;
   5430       DEBUG(dbgs() << "found Brcc use\n");
   5431 
   5432       // Sink the "and; icmp" to use.
   5433       MadeChange = true;
   5434       BinaryOperator *NewAnd =
   5435         BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
   5436                                   BrccUser);
   5437       CmpInst *NewCmp =
   5438         CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
   5439                         "", BrccUser);
   5440       TheUse = NewCmp;
   5441       ++NumAndCmpsMoved;
   5442       DEBUG(BrccUser->getParent()->dump());
   5443     }
   5444   }
   5445   return MadeChange;
   5446 }
   5447 
   5448 /// \brief Scale down both weights to fit into uint32_t.
   5449 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
   5450   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
   5451   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
   5452   NewTrue = NewTrue / Scale;
   5453   NewFalse = NewFalse / Scale;
   5454 }
   5455 
   5456 /// \brief Some targets prefer to split a conditional branch like:
   5457 /// \code
   5458 ///   %0 = icmp ne i32 %a, 0
   5459 ///   %1 = icmp ne i32 %b, 0
   5460 ///   %or.cond = or i1 %0, %1
   5461 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
   5462 /// \endcode
   5463 /// into multiple branch instructions like:
   5464 /// \code
   5465 ///   bb1:
   5466 ///     %0 = icmp ne i32 %a, 0
   5467 ///     br i1 %0, label %TrueBB, label %bb2
   5468 ///   bb2:
   5469 ///     %1 = icmp ne i32 %b, 0
   5470 ///     br i1 %1, label %TrueBB, label %FalseBB
   5471 /// \endcode
   5472 /// This usually allows instruction selection to do even further optimizations
   5473 /// and combine the compare with the branch instruction. Currently this is
   5474 /// applied for targets which have "cheap" jump instructions.
   5475 ///
   5476 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
   5477 ///
   5478 bool CodeGenPrepare::splitBranchCondition(Function &F) {
   5479   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
   5480     return false;
   5481 
   5482   bool MadeChange = false;
   5483   for (auto &BB : F) {
   5484     // Does this BB end with the following?
   5485     //   %cond1 = icmp|fcmp|binary instruction ...
   5486     //   %cond2 = icmp|fcmp|binary instruction ...
   5487     //   %cond.or = or|and i1 %cond1, cond2
   5488     //   br i1 %cond.or label %dest1, label %dest2"
   5489     BinaryOperator *LogicOp;
   5490     BasicBlock *TBB, *FBB;
   5491     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
   5492       continue;
   5493 
   5494     auto *Br1 = cast<BranchInst>(BB.getTerminator());
   5495     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
   5496       continue;
   5497 
   5498     unsigned Opc;
   5499     Value *Cond1, *Cond2;
   5500     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
   5501                              m_OneUse(m_Value(Cond2)))))
   5502       Opc = Instruction::And;
   5503     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
   5504                                  m_OneUse(m_Value(Cond2)))))
   5505       Opc = Instruction::Or;
   5506     else
   5507       continue;
   5508 
   5509     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
   5510         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
   5511       continue;
   5512 
   5513     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
   5514 
   5515     // Create a new BB.
   5516     auto TmpBB =
   5517         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
   5518                            BB.getParent(), BB.getNextNode());
   5519 
   5520     // Update original basic block by using the first condition directly by the
   5521     // branch instruction and removing the no longer needed and/or instruction.
   5522     Br1->setCondition(Cond1);
   5523     LogicOp->eraseFromParent();
   5524 
   5525     // Depending on the conditon we have to either replace the true or the false
   5526     // successor of the original branch instruction.
   5527     if (Opc == Instruction::And)
   5528       Br1->setSuccessor(0, TmpBB);
   5529     else
   5530       Br1->setSuccessor(1, TmpBB);
   5531 
   5532     // Fill in the new basic block.
   5533     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
   5534     if (auto *I = dyn_cast<Instruction>(Cond2)) {
   5535       I->removeFromParent();
   5536       I->insertBefore(Br2);
   5537     }
   5538 
   5539     // Update PHI nodes in both successors. The original BB needs to be
   5540     // replaced in one succesor's PHI nodes, because the branch comes now from
   5541     // the newly generated BB (NewBB). In the other successor we need to add one
   5542     // incoming edge to the PHI nodes, because both branch instructions target
   5543     // now the same successor. Depending on the original branch condition
   5544     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
   5545     // we perfrom the correct update for the PHI nodes.
   5546     // This doesn't change the successor order of the just created branch
   5547     // instruction (or any other instruction).
   5548     if (Opc == Instruction::Or)
   5549       std::swap(TBB, FBB);
   5550 
   5551     // Replace the old BB with the new BB.
   5552     for (auto &I : *TBB) {
   5553       PHINode *PN = dyn_cast<PHINode>(&I);
   5554       if (!PN)
   5555         break;
   5556       int i;
   5557       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
   5558         PN->setIncomingBlock(i, TmpBB);
   5559     }
   5560 
   5561     // Add another incoming edge form the new BB.
   5562     for (auto &I : *FBB) {
   5563       PHINode *PN = dyn_cast<PHINode>(&I);
   5564       if (!PN)
   5565         break;
   5566       auto *Val = PN->getIncomingValueForBlock(&BB);
   5567       PN->addIncoming(Val, TmpBB);
   5568     }
   5569 
   5570     // Update the branch weights (from SelectionDAGBuilder::
   5571     // FindMergedConditions).
   5572     if (Opc == Instruction::Or) {
   5573       // Codegen X | Y as:
   5574       // BB1:
   5575       //   jmp_if_X TBB
   5576       //   jmp TmpBB
   5577       // TmpBB:
   5578       //   jmp_if_Y TBB
   5579       //   jmp FBB
   5580       //
   5581 
   5582       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
   5583       // The requirement is that
   5584       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
   5585       //     = TrueProb for orignal BB.
   5586       // Assuming the orignal weights are A and B, one choice is to set BB1's
   5587       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
   5588       // assumes that
   5589       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
   5590       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
   5591       // TmpBB, but the math is more complicated.
   5592       uint64_t TrueWeight, FalseWeight;
   5593       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
   5594         uint64_t NewTrueWeight = TrueWeight;
   5595         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
   5596         scaleWeights(NewTrueWeight, NewFalseWeight);
   5597         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
   5598                          .createBranchWeights(TrueWeight, FalseWeight));
   5599 
   5600         NewTrueWeight = TrueWeight;
   5601         NewFalseWeight = 2 * FalseWeight;
   5602         scaleWeights(NewTrueWeight, NewFalseWeight);
   5603         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
   5604                          .createBranchWeights(TrueWeight, FalseWeight));
   5605       }
   5606     } else {
   5607       // Codegen X & Y as:
   5608       // BB1:
   5609       //   jmp_if_X TmpBB
   5610       //   jmp FBB
   5611       // TmpBB:
   5612       //   jmp_if_Y TBB
   5613       //   jmp FBB
   5614       //
   5615       //  This requires creation of TmpBB after CurBB.
   5616 
   5617       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
   5618       // The requirement is that
   5619       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
   5620       //     = FalseProb for orignal BB.
   5621       // Assuming the orignal weights are A and B, one choice is to set BB1's
   5622       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
   5623       // assumes that
   5624       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
   5625       uint64_t TrueWeight, FalseWeight;
   5626       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
   5627         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
   5628         uint64_t NewFalseWeight = FalseWeight;
   5629         scaleWeights(NewTrueWeight, NewFalseWeight);
   5630         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
   5631                          .createBranchWeights(TrueWeight, FalseWeight));
   5632 
   5633         NewTrueWeight = 2 * TrueWeight;
   5634         NewFalseWeight = FalseWeight;
   5635         scaleWeights(NewTrueWeight, NewFalseWeight);
   5636         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
   5637                          .createBranchWeights(TrueWeight, FalseWeight));
   5638       }
   5639     }
   5640 
   5641     // Note: No point in getting fancy here, since the DT info is never
   5642     // available to CodeGenPrepare.
   5643     ModifiedDT = true;
   5644 
   5645     MadeChange = true;
   5646 
   5647     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
   5648           TmpBB->dump());
   5649   }
   5650   return MadeChange;
   5651 }
   5652 
   5653 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) {
   5654   if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group))
   5655     I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID());
   5656 }
   5657