Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
     11 //
     12 // Software pipelining (SWP) is an instruction scheduling technique for loops
     13 // that overlap loop iterations and explioits ILP via a compiler transformation.
     14 //
     15 // Swing Modulo Scheduling is an implementation of software pipelining
     16 // that generates schedules that are near optimal in terms of initiation
     17 // interval, register requirements, and stage count. See the papers:
     18 //
     19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
     20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
     21 // Conference on Parallel Architectures and Compilation Techiniques.
     22 //
     23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
     24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
     25 // Transactions on Computers, Vol. 50, No. 3, 2001.
     26 //
     27 // "An Implementation of Swing Modulo Scheduling With Extensions for
     28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
     29 // Urbana-Chambpain, 2005.
     30 //
     31 //
     32 // The SMS algorithm consists of three main steps after computing the minimal
     33 // initiation interval (MII).
     34 // 1) Analyze the dependence graph and compute information about each
     35 //    instruction in the graph.
     36 // 2) Order the nodes (instructions) by priority based upon the heuristics
     37 //    described in the algorithm.
     38 // 3) Attempt to schedule the nodes in the specified order using the MII.
     39 //
     40 // This SMS implementation is a target-independent back-end pass. When enabled,
     41 // the pass runs just prior to the register allocation pass, while the machine
     42 // IR is in SSA form. If software pipelining is successful, then the original
     43 // loop is replaced by the optimized loop. The optimized loop contains one or
     44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
     45 // the instructions cannot be scheduled in a given MII, we increase the MII by
     46 // one and try again.
     47 //
     48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
     49 // represent loop carried dependences in the DAG as order edges to the Phi
     50 // nodes. We also perform several passes over the DAG to eliminate unnecessary
     51 // edges that inhibit the ability to pipeline. The implementation uses the
     52 // DFAPacketizer class to compute the minimum initiation interval and the check
     53 // where an instruction may be inserted in the pipelined schedule.
     54 //
     55 // In order for the SMS pass to work, several target specific hooks need to be
     56 // implemented to get information about the loop structure and to rewrite
     57 // instructions.
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #include "llvm/ADT/DenseMap.h"
     62 #include "llvm/ADT/MapVector.h"
     63 #include "llvm/ADT/PriorityQueue.h"
     64 #include "llvm/ADT/SetVector.h"
     65 #include "llvm/ADT/SmallPtrSet.h"
     66 #include "llvm/ADT/SmallSet.h"
     67 #include "llvm/ADT/Statistic.h"
     68 #include "llvm/Analysis/AliasAnalysis.h"
     69 #include "llvm/Analysis/ValueTracking.h"
     70 #include "llvm/CodeGen/DFAPacketizer.h"
     71 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     72 #include "llvm/CodeGen/MachineBasicBlock.h"
     73 #include "llvm/CodeGen/MachineDominators.h"
     74 #include "llvm/CodeGen/MachineInstrBuilder.h"
     75 #include "llvm/CodeGen/MachineLoopInfo.h"
     76 #include "llvm/CodeGen/MachineRegisterInfo.h"
     77 #include "llvm/CodeGen/Passes.h"
     78 #include "llvm/CodeGen/RegisterClassInfo.h"
     79 #include "llvm/CodeGen/RegisterPressure.h"
     80 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     81 #include "llvm/MC/MCInstrItineraries.h"
     82 #include "llvm/Support/CommandLine.h"
     83 #include "llvm/Support/Debug.h"
     84 #include "llvm/Support/raw_ostream.h"
     85 #include "llvm/Target/TargetInstrInfo.h"
     86 #include "llvm/Target/TargetMachine.h"
     87 #include "llvm/Target/TargetRegisterInfo.h"
     88 #include "llvm/Target/TargetSubtargetInfo.h"
     89 #include <climits>
     90 #include <deque>
     91 #include <map>
     92 
     93 using namespace llvm;
     94 
     95 #define DEBUG_TYPE "pipeliner"
     96 
     97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
     98 STATISTIC(NumPipelined, "Number of loops software pipelined");
     99 
    100 /// A command line option to turn software pipelining on or off.
    101 cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
    102                         cl::ZeroOrMore, cl::desc("Enable Software Pipelining"));
    103 
    104 /// A command line option to enable SWP at -Os.
    105 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
    106                                       cl::desc("Enable SWP at Os."), cl::Hidden,
    107                                       cl::init(false));
    108 
    109 /// A command line argument to limit minimum initial interval for pipelining.
    110 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
    111                               cl::desc("Size limit for the the MII."),
    112                               cl::Hidden, cl::init(27));
    113 
    114 /// A command line argument to limit the number of stages in the pipeline.
    115 static cl::opt<int>
    116     SwpMaxStages("pipeliner-max-stages",
    117                  cl::desc("Maximum stages allowed in the generated scheduled."),
    118                  cl::Hidden, cl::init(3));
    119 
    120 /// A command line option to disable the pruning of chain dependences due to
    121 /// an unrelated Phi.
    122 static cl::opt<bool>
    123     SwpPruneDeps("pipeliner-prune-deps",
    124                  cl::desc("Prune dependences between unrelated Phi nodes."),
    125                  cl::Hidden, cl::init(true));
    126 
    127 /// A command line option to disable the pruning of loop carried order
    128 /// dependences.
    129 static cl::opt<bool>
    130     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
    131                         cl::desc("Prune loop carried order dependences."),
    132                         cl::Hidden, cl::init(true));
    133 
    134 #ifndef NDEBUG
    135 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
    136 #endif
    137 
    138 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
    139                                      cl::ReallyHidden, cl::init(false),
    140                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
    141 
    142 namespace {
    143 
    144 class NodeSet;
    145 class SMSchedule;
    146 class SwingSchedulerDAG;
    147 
    148 /// The main class in the implementation of the target independent
    149 /// software pipeliner pass.
    150 class MachinePipeliner : public MachineFunctionPass {
    151 public:
    152   MachineFunction *MF = nullptr;
    153   const MachineLoopInfo *MLI = nullptr;
    154   const MachineDominatorTree *MDT = nullptr;
    155   const InstrItineraryData *InstrItins;
    156   const TargetInstrInfo *TII = nullptr;
    157   RegisterClassInfo RegClassInfo;
    158 
    159 #ifndef NDEBUG
    160   static int NumTries;
    161 #endif
    162   /// Cache the target analysis information about the loop.
    163   struct LoopInfo {
    164     MachineBasicBlock *TBB = nullptr;
    165     MachineBasicBlock *FBB = nullptr;
    166     SmallVector<MachineOperand, 4> BrCond;
    167     MachineInstr *LoopInductionVar = nullptr;
    168     MachineInstr *LoopCompare = nullptr;
    169   };
    170   LoopInfo LI;
    171 
    172   static char ID;
    173   MachinePipeliner() : MachineFunctionPass(ID) {
    174     initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
    175   }
    176 
    177   virtual bool runOnMachineFunction(MachineFunction &MF);
    178 
    179   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    180     AU.addRequired<AAResultsWrapperPass>();
    181     AU.addPreserved<AAResultsWrapperPass>();
    182     AU.addRequired<MachineLoopInfo>();
    183     AU.addRequired<MachineDominatorTree>();
    184     AU.addRequired<LiveIntervals>();
    185     MachineFunctionPass::getAnalysisUsage(AU);
    186   }
    187 
    188 private:
    189   bool canPipelineLoop(MachineLoop &L);
    190   bool scheduleLoop(MachineLoop &L);
    191   bool swingModuloScheduler(MachineLoop &L);
    192 };
    193 
    194 /// This class builds the dependence graph for the instructions in a loop,
    195 /// and attempts to schedule the instructions using the SMS algorithm.
    196 class SwingSchedulerDAG : public ScheduleDAGInstrs {
    197   MachinePipeliner &Pass;
    198   /// The minimum initiation interval between iterations for this schedule.
    199   unsigned MII;
    200   /// Set to true if a valid pipelined schedule is found for the loop.
    201   bool Scheduled;
    202   MachineLoop &Loop;
    203   LiveIntervals &LIS;
    204   const RegisterClassInfo &RegClassInfo;
    205 
    206   /// A toplogical ordering of the SUnits, which is needed for changing
    207   /// dependences and iterating over the SUnits.
    208   ScheduleDAGTopologicalSort Topo;
    209 
    210   struct NodeInfo {
    211     int ASAP;
    212     int ALAP;
    213     NodeInfo() : ASAP(0), ALAP(0) {}
    214   };
    215   /// Computed properties for each node in the graph.
    216   std::vector<NodeInfo> ScheduleInfo;
    217 
    218   enum OrderKind { BottomUp = 0, TopDown = 1 };
    219   /// Computed node ordering for scheduling.
    220   SetVector<SUnit *> NodeOrder;
    221 
    222   typedef SmallVector<NodeSet, 8> NodeSetType;
    223   typedef DenseMap<unsigned, unsigned> ValueMapTy;
    224   typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
    225   typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
    226 
    227   /// Instructions to change when emitting the final schedule.
    228   DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
    229 
    230   /// We may create a new instruction, so remember it because it
    231   /// must be deleted when the pass is finished.
    232   SmallPtrSet<MachineInstr *, 4> NewMIs;
    233 
    234   /// Helper class to implement Johnson's circuit finding algorithm.
    235   class Circuits {
    236     std::vector<SUnit> &SUnits;
    237     SetVector<SUnit *> Stack;
    238     BitVector Blocked;
    239     SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
    240     SmallVector<SmallVector<int, 4>, 16> AdjK;
    241     unsigned NumPaths;
    242     static unsigned MaxPaths;
    243 
    244   public:
    245     Circuits(std::vector<SUnit> &SUs)
    246         : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
    247           AdjK(SUs.size()) {}
    248     /// Reset the data structures used in the circuit algorithm.
    249     void reset() {
    250       Stack.clear();
    251       Blocked.reset();
    252       B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
    253       NumPaths = 0;
    254     }
    255     void createAdjacencyStructure(SwingSchedulerDAG *DAG);
    256     bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
    257     void unblock(int U);
    258   };
    259 
    260 public:
    261   SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
    262                     const RegisterClassInfo &rci)
    263       : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
    264         Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
    265         Topo(SUnits, &ExitSU) {}
    266 
    267   void schedule();
    268   void finishBlock();
    269 
    270   /// Return true if the loop kernel has been scheduled.
    271   bool hasNewSchedule() { return Scheduled; }
    272 
    273   /// Return the earliest time an instruction may be scheduled.
    274   int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
    275 
    276   /// Return the latest time an instruction my be scheduled.
    277   int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
    278 
    279   /// The mobility function, which the the number of slots in which
    280   /// an instruction may be scheduled.
    281   int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
    282 
    283   /// The depth, in the dependence graph, for a node.
    284   int getDepth(SUnit *Node) { return Node->getDepth(); }
    285 
    286   /// The height, in the dependence graph, for a node.
    287   int getHeight(SUnit *Node) { return Node->getHeight(); }
    288 
    289   /// Return true if the dependence is a back-edge in the data dependence graph.
    290   /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
    291   /// using an anti dependence from a Phi to an instruction.
    292   bool isBackedge(SUnit *Source, const SDep &Dep) {
    293     if (Dep.getKind() != SDep::Anti)
    294       return false;
    295     return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
    296   }
    297 
    298   /// Return true if the dependence is an order dependence between non-Phis.
    299   static bool isOrder(SUnit *Source, const SDep &Dep) {
    300     if (Dep.getKind() != SDep::Order)
    301       return false;
    302     return (!Source->getInstr()->isPHI() &&
    303             !Dep.getSUnit()->getInstr()->isPHI());
    304   }
    305 
    306   bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
    307 
    308   /// The latency of the dependence.
    309   unsigned getLatency(SUnit *Source, const SDep &Dep) {
    310     // Anti dependences represent recurrences, so use the latency of the
    311     // instruction on the back-edge.
    312     if (Dep.getKind() == SDep::Anti) {
    313       if (Source->getInstr()->isPHI())
    314         return Dep.getSUnit()->Latency;
    315       if (Dep.getSUnit()->getInstr()->isPHI())
    316         return Source->Latency;
    317       return Dep.getLatency();
    318     }
    319     return Dep.getLatency();
    320   }
    321 
    322   /// The distance function, which indicates that operation V of iteration I
    323   /// depends on operations U of iteration I-distance.
    324   unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
    325     // Instructions that feed a Phi have a distance of 1. Computing larger
    326     // values for arrays requires data dependence information.
    327     if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
    328       return 1;
    329     return 0;
    330   }
    331 
    332   /// Set the Minimum Initiation Interval for this schedule attempt.
    333   void setMII(unsigned mii) { MII = mii; }
    334 
    335   MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
    336                                  bool UpdateDAG = false);
    337 
    338   /// Return the new base register that was stored away for the changed
    339   /// instruction.
    340   unsigned getInstrBaseReg(SUnit *SU) {
    341     DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
    342         InstrChanges.find(SU);
    343     if (It != InstrChanges.end())
    344       return It->second.first;
    345     return 0;
    346   }
    347 
    348 private:
    349   void addLoopCarriedDependences(AliasAnalysis *AA);
    350   void updatePhiDependences();
    351   void changeDependences();
    352   unsigned calculateResMII();
    353   unsigned calculateRecMII(NodeSetType &RecNodeSets);
    354   void findCircuits(NodeSetType &NodeSets);
    355   void fuseRecs(NodeSetType &NodeSets);
    356   void removeDuplicateNodes(NodeSetType &NodeSets);
    357   void computeNodeFunctions(NodeSetType &NodeSets);
    358   void registerPressureFilter(NodeSetType &NodeSets);
    359   void colocateNodeSets(NodeSetType &NodeSets);
    360   void checkNodeSets(NodeSetType &NodeSets);
    361   void groupRemainingNodes(NodeSetType &NodeSets);
    362   void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
    363                          SetVector<SUnit *> &NodesAdded);
    364   void computeNodeOrder(NodeSetType &NodeSets);
    365   bool schedulePipeline(SMSchedule &Schedule);
    366   void generatePipelinedLoop(SMSchedule &Schedule);
    367   void generateProlog(SMSchedule &Schedule, unsigned LastStage,
    368                       MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
    369                       MBBVectorTy &PrologBBs);
    370   void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
    371                       MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
    372                       MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
    373   void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
    374                             MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
    375                             SMSchedule &Schedule, ValueMapTy *VRMap,
    376                             InstrMapTy &InstrMap, unsigned LastStageNum,
    377                             unsigned CurStageNum, bool IsLast);
    378   void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
    379                     MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
    380                     SMSchedule &Schedule, ValueMapTy *VRMap,
    381                     InstrMapTy &InstrMap, unsigned LastStageNum,
    382                     unsigned CurStageNum, bool IsLast);
    383   void removeDeadInstructions(MachineBasicBlock *KernelBB,
    384                               MBBVectorTy &EpilogBBs);
    385   void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
    386                       SMSchedule &Schedule);
    387   void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
    388                    MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
    389                    ValueMapTy *VRMap);
    390   bool computeDelta(MachineInstr &MI, unsigned &Delta);
    391   void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
    392                          unsigned Num);
    393   MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
    394                            unsigned InstStageNum);
    395   MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
    396                                     unsigned InstStageNum,
    397                                     SMSchedule &Schedule);
    398   void updateInstruction(MachineInstr *NewMI, bool LastDef,
    399                          unsigned CurStageNum, unsigned InstStageNum,
    400                          SMSchedule &Schedule, ValueMapTy *VRMap);
    401   MachineInstr *findDefInLoop(unsigned Reg);
    402   unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
    403                          unsigned LoopStage, ValueMapTy *VRMap,
    404                          MachineBasicBlock *BB);
    405   void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
    406                         SMSchedule &Schedule, ValueMapTy *VRMap,
    407                         InstrMapTy &InstrMap);
    408   void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
    409                              InstrMapTy &InstrMap, unsigned CurStageNum,
    410                              unsigned PhiNum, MachineInstr *Phi,
    411                              unsigned OldReg, unsigned NewReg,
    412                              unsigned PrevReg = 0);
    413   bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
    414                              unsigned &OffsetPos, unsigned &NewBase,
    415                              int64_t &NewOffset);
    416 };
    417 
    418 /// A NodeSet contains a set of SUnit DAG nodes with additional information
    419 /// that assigns a priority to the set.
    420 class NodeSet {
    421   SetVector<SUnit *> Nodes;
    422   bool HasRecurrence;
    423   unsigned RecMII = 0;
    424   int MaxMOV = 0;
    425   int MaxDepth = 0;
    426   unsigned Colocate = 0;
    427   SUnit *ExceedPressure = nullptr;
    428 
    429 public:
    430   typedef SetVector<SUnit *>::const_iterator iterator;
    431 
    432   NodeSet() : Nodes(), HasRecurrence(false) {}
    433 
    434   NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
    435 
    436   bool insert(SUnit *SU) { return Nodes.insert(SU); }
    437 
    438   void insert(iterator S, iterator E) { Nodes.insert(S, E); }
    439 
    440   template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
    441     return Nodes.remove_if(P);
    442   }
    443 
    444   unsigned count(SUnit *SU) const { return Nodes.count(SU); }
    445 
    446   bool hasRecurrence() { return HasRecurrence; };
    447 
    448   unsigned size() const { return Nodes.size(); }
    449 
    450   bool empty() const { return Nodes.empty(); }
    451 
    452   SUnit *getNode(unsigned i) const { return Nodes[i]; };
    453 
    454   void setRecMII(unsigned mii) { RecMII = mii; };
    455 
    456   void setColocate(unsigned c) { Colocate = c; };
    457 
    458   void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
    459 
    460   bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
    461 
    462   int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
    463 
    464   int getRecMII() { return RecMII; }
    465 
    466   /// Summarize node functions for the entire node set.
    467   void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
    468     for (SUnit *SU : *this) {
    469       MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
    470       MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
    471     }
    472   }
    473 
    474   void clear() {
    475     Nodes.clear();
    476     RecMII = 0;
    477     HasRecurrence = false;
    478     MaxMOV = 0;
    479     MaxDepth = 0;
    480     Colocate = 0;
    481     ExceedPressure = nullptr;
    482   }
    483 
    484   operator SetVector<SUnit *> &() { return Nodes; }
    485 
    486   /// Sort the node sets by importance. First, rank them by recurrence MII,
    487   /// then by mobility (least mobile done first), and finally by depth.
    488   /// Each node set may contain a colocate value which is used as the first
    489   /// tie breaker, if it's set.
    490   bool operator>(const NodeSet &RHS) const {
    491     if (RecMII == RHS.RecMII) {
    492       if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
    493         return Colocate < RHS.Colocate;
    494       if (MaxMOV == RHS.MaxMOV)
    495         return MaxDepth > RHS.MaxDepth;
    496       return MaxMOV < RHS.MaxMOV;
    497     }
    498     return RecMII > RHS.RecMII;
    499   }
    500 
    501   bool operator==(const NodeSet &RHS) const {
    502     return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
    503            MaxDepth == RHS.MaxDepth;
    504   }
    505 
    506   bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
    507 
    508   iterator begin() { return Nodes.begin(); }
    509   iterator end() { return Nodes.end(); }
    510 
    511   void print(raw_ostream &os) const {
    512     os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
    513        << " depth " << MaxDepth << " col " << Colocate << "\n";
    514     for (const auto &I : Nodes)
    515       os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
    516     os << "\n";
    517   }
    518 
    519   void dump() const { print(dbgs()); }
    520 };
    521 
    522 /// This class repesents the scheduled code.  The main data structure is a
    523 /// map from scheduled cycle to instructions.  During scheduling, the
    524 /// data structure explicitly represents all stages/iterations.   When
    525 /// the algorithm finshes, the schedule is collapsed into a single stage,
    526 /// which represents instructions from different loop iterations.
    527 ///
    528 /// The SMS algorithm allows negative values for cycles, so the first cycle
    529 /// in the schedule is the smallest cycle value.
    530 class SMSchedule {
    531 private:
    532   /// Map from execution cycle to instructions.
    533   DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
    534 
    535   /// Map from instruction to execution cycle.
    536   std::map<SUnit *, int> InstrToCycle;
    537 
    538   /// Map for each register and the max difference between its uses and def.
    539   /// The first element in the pair is the max difference in stages. The
    540   /// second is true if the register defines a Phi value and loop value is
    541   /// scheduled before the Phi.
    542   std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
    543 
    544   /// Keep track of the first cycle value in the schedule.  It starts
    545   /// as zero, but the algorithm allows negative values.
    546   int FirstCycle;
    547 
    548   /// Keep track of the last cycle value in the schedule.
    549   int LastCycle;
    550 
    551   /// The initiation interval (II) for the schedule.
    552   int InitiationInterval;
    553 
    554   /// Target machine information.
    555   const TargetSubtargetInfo &ST;
    556 
    557   /// Virtual register information.
    558   MachineRegisterInfo &MRI;
    559 
    560   DFAPacketizer *Resources;
    561 
    562 public:
    563   SMSchedule(MachineFunction *mf)
    564       : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
    565         Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
    566     FirstCycle = 0;
    567     LastCycle = 0;
    568     InitiationInterval = 0;
    569   }
    570 
    571   ~SMSchedule() {
    572     ScheduledInstrs.clear();
    573     InstrToCycle.clear();
    574     RegToStageDiff.clear();
    575     delete Resources;
    576   }
    577 
    578   void reset() {
    579     ScheduledInstrs.clear();
    580     InstrToCycle.clear();
    581     RegToStageDiff.clear();
    582     FirstCycle = 0;
    583     LastCycle = 0;
    584     InitiationInterval = 0;
    585   }
    586 
    587   /// Set the initiation interval for this schedule.
    588   void setInitiationInterval(int ii) { InitiationInterval = ii; }
    589 
    590   /// Return the first cycle in the completed schedule.  This
    591   /// can be a negative value.
    592   int getFirstCycle() const { return FirstCycle; }
    593 
    594   /// Return the last cycle in the finalized schedule.
    595   int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
    596 
    597   /// Return the cycle of the earliest scheduled instruction in the dependence
    598   /// chain.
    599   int earliestCycleInChain(const SDep &Dep);
    600 
    601   /// Return the cycle of the latest scheduled instruction in the dependence
    602   /// chain.
    603   int latestCycleInChain(const SDep &Dep);
    604 
    605   void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
    606                     int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
    607   bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
    608 
    609   /// Iterators for the cycle to instruction map.
    610   typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
    611   typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
    612       const_sched_iterator;
    613 
    614   /// Return true if the instruction is scheduled at the specified stage.
    615   bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
    616     return (stageScheduled(SU) == (int)StageNum);
    617   }
    618 
    619   /// Return the stage for a scheduled instruction.  Return -1 if
    620   /// the instruction has not been scheduled.
    621   int stageScheduled(SUnit *SU) const {
    622     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
    623     if (it == InstrToCycle.end())
    624       return -1;
    625     return (it->second - FirstCycle) / InitiationInterval;
    626   }
    627 
    628   /// Return the cycle for a scheduled instruction. This function normalizes
    629   /// the first cycle to be 0.
    630   unsigned cycleScheduled(SUnit *SU) const {
    631     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
    632     assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
    633     return (it->second - FirstCycle) % InitiationInterval;
    634   }
    635 
    636   /// Return the maximum stage count needed for this schedule.
    637   unsigned getMaxStageCount() {
    638     return (LastCycle - FirstCycle) / InitiationInterval;
    639   }
    640 
    641   /// Return the max. number of stages/iterations that can occur between a
    642   /// register definition and its uses.
    643   unsigned getStagesForReg(int Reg, unsigned CurStage) {
    644     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
    645     if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
    646       return 1;
    647     return Stages.first;
    648   }
    649 
    650   /// The number of stages for a Phi is a little different than other
    651   /// instructions. The minimum value computed in RegToStageDiff is 1
    652   /// because we assume the Phi is needed for at least 1 iteration.
    653   /// This is not the case if the loop value is scheduled prior to the
    654   /// Phi in the same stage.  This function returns the number of stages
    655   /// or iterations needed between the Phi definition and any uses.
    656   unsigned getStagesForPhi(int Reg) {
    657     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
    658     if (Stages.second)
    659       return Stages.first;
    660     return Stages.first - 1;
    661   }
    662 
    663   /// Return the instructions that are scheduled at the specified cycle.
    664   std::deque<SUnit *> &getInstructions(int cycle) {
    665     return ScheduledInstrs[cycle];
    666   }
    667 
    668   bool isValidSchedule(SwingSchedulerDAG *SSD);
    669   void finalizeSchedule(SwingSchedulerDAG *SSD);
    670   bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
    671                        std::deque<SUnit *> &Insts);
    672   bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
    673   bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
    674                              MachineOperand &MO);
    675   void print(raw_ostream &os) const;
    676   void dump() const;
    677 };
    678 
    679 } // end anonymous namespace
    680 
    681 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
    682 char MachinePipeliner::ID = 0;
    683 #ifndef NDEBUG
    684 int MachinePipeliner::NumTries = 0;
    685 #endif
    686 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
    687 INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
    688                       "Modulo Software Pipelining", false, false)
    689 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    690 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    691 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    692 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    693 INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
    694                     "Modulo Software Pipelining", false, false)
    695 
    696 /// The "main" function for implementing Swing Modulo Scheduling.
    697 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
    698   if (skipFunction(*mf.getFunction()))
    699     return false;
    700 
    701   if (!EnableSWP)
    702     return false;
    703 
    704   if (mf.getFunction()->getAttributes().hasAttribute(
    705           AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
    706       !EnableSWPOptSize.getPosition())
    707     return false;
    708 
    709   MF = &mf;
    710   MLI = &getAnalysis<MachineLoopInfo>();
    711   MDT = &getAnalysis<MachineDominatorTree>();
    712   TII = MF->getSubtarget().getInstrInfo();
    713   RegClassInfo.runOnMachineFunction(*MF);
    714 
    715   for (auto &L : *MLI)
    716     scheduleLoop(*L);
    717 
    718   return false;
    719 }
    720 
    721 /// Attempt to perform the SMS algorithm on the specified loop. This function is
    722 /// the main entry point for the algorithm.  The function identifies candidate
    723 /// loops, calculates the minimum initiation interval, and attempts to schedule
    724 /// the loop.
    725 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
    726   bool Changed = false;
    727   for (auto &InnerLoop : L)
    728     Changed |= scheduleLoop(*InnerLoop);
    729 
    730 #ifndef NDEBUG
    731   // Stop trying after reaching the limit (if any).
    732   int Limit = SwpLoopLimit;
    733   if (Limit >= 0) {
    734     if (NumTries >= SwpLoopLimit)
    735       return Changed;
    736     NumTries++;
    737   }
    738 #endif
    739 
    740   if (!canPipelineLoop(L))
    741     return Changed;
    742 
    743   ++NumTrytoPipeline;
    744 
    745   Changed = swingModuloScheduler(L);
    746 
    747   return Changed;
    748 }
    749 
    750 /// Return true if the loop can be software pipelined.  The algorithm is
    751 /// restricted to loops with a single basic block.  Make sure that the
    752 /// branch in the loop can be analyzed.
    753 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
    754   if (L.getNumBlocks() != 1)
    755     return false;
    756 
    757   // Check if the branch can't be understood because we can't do pipelining
    758   // if that's the case.
    759   LI.TBB = nullptr;
    760   LI.FBB = nullptr;
    761   LI.BrCond.clear();
    762   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
    763     return false;
    764 
    765   LI.LoopInductionVar = nullptr;
    766   LI.LoopCompare = nullptr;
    767   if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
    768     return false;
    769 
    770   if (!L.getLoopPreheader())
    771     return false;
    772 
    773   // If any of the Phis contain subregs, then we can't pipeline
    774   // because we don't know how to maintain subreg information in the
    775   // VMap structure.
    776   MachineBasicBlock *MBB = L.getHeader();
    777   for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
    778                                    BBE = MBB->getFirstNonPHI();
    779        BBI != BBE; ++BBI)
    780     for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
    781       if (BBI->getOperand(i).getSubReg() != 0)
    782         return false;
    783 
    784   return true;
    785 }
    786 
    787 /// The SMS algorithm consists of the following main steps:
    788 /// 1. Computation and analysis of the dependence graph.
    789 /// 2. Ordering of the nodes (instructions).
    790 /// 3. Attempt to Schedule the loop.
    791 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
    792   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
    793 
    794   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
    795 
    796   MachineBasicBlock *MBB = L.getHeader();
    797   // The kernel should not include any terminator instructions.  These
    798   // will be added back later.
    799   SMS.startBlock(MBB);
    800 
    801   // Compute the number of 'real' instructions in the basic block by
    802   // ignoring terminators.
    803   unsigned size = MBB->size();
    804   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
    805                                    E = MBB->instr_end();
    806        I != E; ++I, --size)
    807     ;
    808 
    809   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
    810   SMS.schedule();
    811   SMS.exitRegion();
    812 
    813   SMS.finishBlock();
    814   return SMS.hasNewSchedule();
    815 }
    816 
    817 /// We override the schedule function in ScheduleDAGInstrs to implement the
    818 /// scheduling part of the Swing Modulo Scheduling algorithm.
    819 void SwingSchedulerDAG::schedule() {
    820   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
    821   buildSchedGraph(AA);
    822   addLoopCarriedDependences(AA);
    823   updatePhiDependences();
    824   Topo.InitDAGTopologicalSorting();
    825   changeDependences();
    826   DEBUG({
    827     for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    828       SUnits[su].dumpAll(this);
    829   });
    830 
    831   NodeSetType NodeSets;
    832   findCircuits(NodeSets);
    833 
    834   // Calculate the MII.
    835   unsigned ResMII = calculateResMII();
    836   unsigned RecMII = calculateRecMII(NodeSets);
    837 
    838   fuseRecs(NodeSets);
    839 
    840   // This flag is used for testing and can cause correctness problems.
    841   if (SwpIgnoreRecMII)
    842     RecMII = 0;
    843 
    844   MII = std::max(ResMII, RecMII);
    845   DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
    846                << ")\n");
    847 
    848   // Can't schedule a loop without a valid MII.
    849   if (MII == 0)
    850     return;
    851 
    852   // Don't pipeline large loops.
    853   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
    854     return;
    855 
    856   computeNodeFunctions(NodeSets);
    857 
    858   registerPressureFilter(NodeSets);
    859 
    860   colocateNodeSets(NodeSets);
    861 
    862   checkNodeSets(NodeSets);
    863 
    864   DEBUG({
    865     for (auto &I : NodeSets) {
    866       dbgs() << "  Rec NodeSet ";
    867       I.dump();
    868     }
    869   });
    870 
    871   std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
    872 
    873   groupRemainingNodes(NodeSets);
    874 
    875   removeDuplicateNodes(NodeSets);
    876 
    877   DEBUG({
    878     for (auto &I : NodeSets) {
    879       dbgs() << "  NodeSet ";
    880       I.dump();
    881     }
    882   });
    883 
    884   computeNodeOrder(NodeSets);
    885 
    886   SMSchedule Schedule(Pass.MF);
    887   Scheduled = schedulePipeline(Schedule);
    888 
    889   if (!Scheduled)
    890     return;
    891 
    892   unsigned numStages = Schedule.getMaxStageCount();
    893   // No need to generate pipeline if there are no overlapped iterations.
    894   if (numStages == 0)
    895     return;
    896 
    897   // Check that the maximum stage count is less than user-defined limit.
    898   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
    899     return;
    900 
    901   generatePipelinedLoop(Schedule);
    902   ++NumPipelined;
    903 }
    904 
    905 /// Clean up after the software pipeliner runs.
    906 void SwingSchedulerDAG::finishBlock() {
    907   for (MachineInstr *I : NewMIs)
    908     MF.DeleteMachineInstr(I);
    909   NewMIs.clear();
    910 
    911   // Call the superclass.
    912   ScheduleDAGInstrs::finishBlock();
    913 }
    914 
    915 /// Return the register values for  the operands of a Phi instruction.
    916 /// This function assume the instruction is a Phi.
    917 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
    918                        unsigned &InitVal, unsigned &LoopVal) {
    919   assert(Phi.isPHI() && "Expecting a Phi.");
    920 
    921   InitVal = 0;
    922   LoopVal = 0;
    923   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    924     if (Phi.getOperand(i + 1).getMBB() != Loop)
    925       InitVal = Phi.getOperand(i).getReg();
    926     else if (Phi.getOperand(i + 1).getMBB() == Loop)
    927       LoopVal = Phi.getOperand(i).getReg();
    928 
    929   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
    930 }
    931 
    932 /// Return the Phi register value that comes from the incoming block.
    933 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
    934   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    935     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
    936       return Phi.getOperand(i).getReg();
    937   return 0;
    938 }
    939 
    940 /// Return the Phi register value that comes the the loop block.
    941 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
    942   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    943     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
    944       return Phi.getOperand(i).getReg();
    945   return 0;
    946 }
    947 
    948 /// Return true if SUb can be reached from SUa following the chain edges.
    949 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
    950   SmallPtrSet<SUnit *, 8> Visited;
    951   SmallVector<SUnit *, 8> Worklist;
    952   Worklist.push_back(SUa);
    953   while (!Worklist.empty()) {
    954     const SUnit *SU = Worklist.pop_back_val();
    955     for (auto &SI : SU->Succs) {
    956       SUnit *SuccSU = SI.getSUnit();
    957       if (SI.getKind() == SDep::Order) {
    958         if (Visited.count(SuccSU))
    959           continue;
    960         if (SuccSU == SUb)
    961           return true;
    962         Worklist.push_back(SuccSU);
    963         Visited.insert(SuccSU);
    964       }
    965     }
    966   }
    967   return false;
    968 }
    969 
    970 /// Return true if the instruction causes a chain between memory
    971 /// references before and after it.
    972 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
    973   return MI.isCall() || MI.hasUnmodeledSideEffects() ||
    974          (MI.hasOrderedMemoryRef() &&
    975           (!MI.mayLoad() || !MI.isInvariantLoad(AA)));
    976 }
    977 
    978 /// Return the underlying objects for the memory references of an instruction.
    979 /// This function calls the code in ValueTracking, but first checks that the
    980 /// instruction has a memory operand.
    981 static void getUnderlyingObjects(MachineInstr *MI,
    982                                  SmallVectorImpl<Value *> &Objs,
    983                                  const DataLayout &DL) {
    984   if (!MI->hasOneMemOperand())
    985     return;
    986   MachineMemOperand *MM = *MI->memoperands_begin();
    987   if (!MM->getValue())
    988     return;
    989   GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
    990 }
    991 
    992 /// Add a chain edge between a load and store if the store can be an
    993 /// alias of the load on a subsequent iteration, i.e., a loop carried
    994 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
    995 /// but that code doesn't create loop carried dependences.
    996 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
    997   MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
    998   for (auto &SU : SUnits) {
    999     MachineInstr &MI = *SU.getInstr();
   1000     if (isDependenceBarrier(MI, AA))
   1001       PendingLoads.clear();
   1002     else if (MI.mayLoad()) {
   1003       SmallVector<Value *, 4> Objs;
   1004       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
   1005       for (auto V : Objs) {
   1006         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
   1007         SUs.push_back(&SU);
   1008       }
   1009     } else if (MI.mayStore()) {
   1010       SmallVector<Value *, 4> Objs;
   1011       getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
   1012       for (auto V : Objs) {
   1013         MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
   1014             PendingLoads.find(V);
   1015         if (I == PendingLoads.end())
   1016           continue;
   1017         for (auto Load : I->second) {
   1018           if (isSuccOrder(Load, &SU))
   1019             continue;
   1020           MachineInstr &LdMI = *Load->getInstr();
   1021           // First, perform the cheaper check that compares the base register.
   1022           // If they are the same and the load offset is less than the store
   1023           // offset, then mark the dependence as loop carried potentially.
   1024           unsigned BaseReg1, BaseReg2;
   1025           int64_t Offset1, Offset2;
   1026           if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
   1027               !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
   1028             SU.addPred(SDep(Load, SDep::Barrier));
   1029             continue;
   1030           }
   1031           if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
   1032             assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
   1033                    "What happened to the chain edge?");
   1034             SU.addPred(SDep(Load, SDep::Barrier));
   1035             continue;
   1036           }
   1037           // Second, the more expensive check that uses alias analysis on the
   1038           // base registers. If they alias, and the load offset is less than
   1039           // the store offset, the mark the dependence as loop carried.
   1040           if (!AA) {
   1041             SU.addPred(SDep(Load, SDep::Barrier));
   1042             continue;
   1043           }
   1044           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
   1045           MachineMemOperand *MMO2 = *MI.memoperands_begin();
   1046           if (!MMO1->getValue() || !MMO2->getValue()) {
   1047             SU.addPred(SDep(Load, SDep::Barrier));
   1048             continue;
   1049           }
   1050           if (MMO1->getValue() == MMO2->getValue() &&
   1051               MMO1->getOffset() <= MMO2->getOffset()) {
   1052             SU.addPred(SDep(Load, SDep::Barrier));
   1053             continue;
   1054           }
   1055           AliasResult AAResult = AA->alias(
   1056               MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
   1057                              MMO1->getAAInfo()),
   1058               MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
   1059                              MMO2->getAAInfo()));
   1060 
   1061           if (AAResult != NoAlias)
   1062             SU.addPred(SDep(Load, SDep::Barrier));
   1063         }
   1064       }
   1065     }
   1066   }
   1067 }
   1068 
   1069 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
   1070 /// processes dependences for PHIs. This function adds true dependences
   1071 /// from a PHI to a use, and a loop carried dependence from the use to the
   1072 /// PHI. The loop carried dependence is represented as an anti dependence
   1073 /// edge. This function also removes chain dependences between unrelated
   1074 /// PHIs.
   1075 void SwingSchedulerDAG::updatePhiDependences() {
   1076   SmallVector<SDep, 4> RemoveDeps;
   1077   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
   1078 
   1079   // Iterate over each DAG node.
   1080   for (SUnit &I : SUnits) {
   1081     RemoveDeps.clear();
   1082     // Set to true if the instruction has an operand defined by a Phi.
   1083     unsigned HasPhiUse = 0;
   1084     unsigned HasPhiDef = 0;
   1085     MachineInstr *MI = I.getInstr();
   1086     // Iterate over each operand, and we process the definitions.
   1087     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
   1088                                     MOE = MI->operands_end();
   1089          MOI != MOE; ++MOI) {
   1090       if (!MOI->isReg())
   1091         continue;
   1092       unsigned Reg = MOI->getReg();
   1093       if (MOI->isDef()) {
   1094         // If the register is used by a Phi, then create an anti dependence.
   1095         for (MachineRegisterInfo::use_instr_iterator
   1096                  UI = MRI.use_instr_begin(Reg),
   1097                  UE = MRI.use_instr_end();
   1098              UI != UE; ++UI) {
   1099           MachineInstr *UseMI = &*UI;
   1100           SUnit *SU = getSUnit(UseMI);
   1101           if (SU != 0 && UseMI->isPHI()) {
   1102             if (!MI->isPHI()) {
   1103               SDep Dep(SU, SDep::Anti, Reg);
   1104               I.addPred(Dep);
   1105             } else {
   1106               HasPhiDef = Reg;
   1107               // Add a chain edge to a dependent Phi that isn't an existing
   1108               // predecessor.
   1109               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
   1110                 I.addPred(SDep(SU, SDep::Barrier));
   1111             }
   1112           }
   1113         }
   1114       } else if (MOI->isUse()) {
   1115         // If the register is defined by a Phi, then create a true dependence.
   1116         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
   1117         if (DefMI == 0)
   1118           continue;
   1119         SUnit *SU = getSUnit(DefMI);
   1120         if (SU != 0 && DefMI->isPHI()) {
   1121           if (!MI->isPHI()) {
   1122             SDep Dep(SU, SDep::Data, Reg);
   1123             Dep.setLatency(0);
   1124             ST.adjustSchedDependency(SU, &I, Dep);
   1125             I.addPred(Dep);
   1126           } else {
   1127             HasPhiUse = Reg;
   1128             // Add a chain edge to a dependent Phi that isn't an existing
   1129             // predecessor.
   1130             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
   1131               I.addPred(SDep(SU, SDep::Barrier));
   1132           }
   1133         }
   1134       }
   1135     }
   1136     // Remove order dependences from an unrelated Phi.
   1137     if (!SwpPruneDeps)
   1138       continue;
   1139     for (auto &PI : I.Preds) {
   1140       MachineInstr *PMI = PI.getSUnit()->getInstr();
   1141       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
   1142         if (I.getInstr()->isPHI()) {
   1143           if (PMI->getOperand(0).getReg() == HasPhiUse)
   1144             continue;
   1145           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
   1146             continue;
   1147         }
   1148         RemoveDeps.push_back(PI);
   1149       }
   1150     }
   1151     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
   1152       I.removePred(RemoveDeps[i]);
   1153   }
   1154 }
   1155 
   1156 /// Iterate over each DAG node and see if we can change any dependences
   1157 /// in order to reduce the recurrence MII.
   1158 void SwingSchedulerDAG::changeDependences() {
   1159   // See if an instruction can use a value from the previous iteration.
   1160   // If so, we update the base and offset of the instruction and change
   1161   // the dependences.
   1162   for (SUnit &I : SUnits) {
   1163     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
   1164     int64_t NewOffset = 0;
   1165     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
   1166                                NewOffset))
   1167       continue;
   1168 
   1169     // Get the MI and SUnit for the instruction that defines the original base.
   1170     unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
   1171     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
   1172     if (!DefMI)
   1173       continue;
   1174     SUnit *DefSU = getSUnit(DefMI);
   1175     if (!DefSU)
   1176       continue;
   1177     // Get the MI and SUnit for the instruction that defins the new base.
   1178     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
   1179     if (!LastMI)
   1180       continue;
   1181     SUnit *LastSU = getSUnit(LastMI);
   1182     if (!LastSU)
   1183       continue;
   1184 
   1185     if (Topo.IsReachable(&I, LastSU))
   1186       continue;
   1187 
   1188     // Remove the dependence. The value now depends on a prior iteration.
   1189     SmallVector<SDep, 4> Deps;
   1190     for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
   1191          ++P)
   1192       if (P->getSUnit() == DefSU)
   1193         Deps.push_back(*P);
   1194     for (int i = 0, e = Deps.size(); i != e; i++) {
   1195       Topo.RemovePred(&I, Deps[i].getSUnit());
   1196       I.removePred(Deps[i]);
   1197     }
   1198     // Remove the chain dependence between the instructions.
   1199     Deps.clear();
   1200     for (auto &P : LastSU->Preds)
   1201       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
   1202         Deps.push_back(P);
   1203     for (int i = 0, e = Deps.size(); i != e; i++) {
   1204       Topo.RemovePred(LastSU, Deps[i].getSUnit());
   1205       LastSU->removePred(Deps[i]);
   1206     }
   1207 
   1208     // Add a dependence between the new instruction and the instruction
   1209     // that defines the new base.
   1210     SDep Dep(&I, SDep::Anti, NewBase);
   1211     LastSU->addPred(Dep);
   1212 
   1213     // Remember the base and offset information so that we can update the
   1214     // instruction during code generation.
   1215     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
   1216   }
   1217 }
   1218 
   1219 namespace {
   1220 // FuncUnitSorter - Comparison operator used to sort instructions by
   1221 // the number of functional unit choices.
   1222 struct FuncUnitSorter {
   1223   const InstrItineraryData *InstrItins;
   1224   DenseMap<unsigned, unsigned> Resources;
   1225 
   1226   // Compute the number of functional unit alternatives needed
   1227   // at each stage, and take the minimum value. We prioritize the
   1228   // instructions by the least number of choices first.
   1229   unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
   1230     unsigned schedClass = Inst->getDesc().getSchedClass();
   1231     unsigned min = UINT_MAX;
   1232     for (const InstrStage *IS = InstrItins->beginStage(schedClass),
   1233                           *IE = InstrItins->endStage(schedClass);
   1234          IS != IE; ++IS) {
   1235       unsigned funcUnits = IS->getUnits();
   1236       unsigned numAlternatives = countPopulation(funcUnits);
   1237       if (numAlternatives < min) {
   1238         min = numAlternatives;
   1239         F = funcUnits;
   1240       }
   1241     }
   1242     return min;
   1243   }
   1244 
   1245   // Compute the critical resources needed by the instruction. This
   1246   // function records the functional units needed by instructions that
   1247   // must use only one functional unit. We use this as a tie breaker
   1248   // for computing the resource MII. The instrutions that require
   1249   // the same, highly used, functional unit have high priority.
   1250   void calcCriticalResources(MachineInstr &MI) {
   1251     unsigned SchedClass = MI.getDesc().getSchedClass();
   1252     for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
   1253                           *IE = InstrItins->endStage(SchedClass);
   1254          IS != IE; ++IS) {
   1255       unsigned FuncUnits = IS->getUnits();
   1256       if (countPopulation(FuncUnits) == 1)
   1257         Resources[FuncUnits]++;
   1258     }
   1259   }
   1260 
   1261   FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
   1262   /// Return true if IS1 has less priority than IS2.
   1263   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
   1264     unsigned F1 = 0, F2 = 0;
   1265     unsigned MFUs1 = minFuncUnits(IS1, F1);
   1266     unsigned MFUs2 = minFuncUnits(IS2, F2);
   1267     if (MFUs1 == 1 && MFUs2 == 1)
   1268       return Resources.lookup(F1) < Resources.lookup(F2);
   1269     return MFUs1 > MFUs2;
   1270   }
   1271 };
   1272 }
   1273 
   1274 /// Calculate the resource constrained minimum initiation interval for the
   1275 /// specified loop. We use the DFA to model the resources needed for
   1276 /// each instruction, and we ignore dependences. A different DFA is created
   1277 /// for each cycle that is required. When adding a new instruction, we attempt
   1278 /// to add it to each existing DFA, until a legal space is found. If the
   1279 /// instruction cannot be reserved in an existing DFA, we create a new one.
   1280 unsigned SwingSchedulerDAG::calculateResMII() {
   1281   SmallVector<DFAPacketizer *, 8> Resources;
   1282   MachineBasicBlock *MBB = Loop.getHeader();
   1283   Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
   1284 
   1285   // Sort the instructions by the number of available choices for scheduling,
   1286   // least to most. Use the number of critical resources as the tie breaker.
   1287   FuncUnitSorter FUS =
   1288       FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
   1289   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
   1290                                    E = MBB->getFirstTerminator();
   1291        I != E; ++I)
   1292     FUS.calcCriticalResources(*I);
   1293   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
   1294       FuncUnitOrder(FUS);
   1295 
   1296   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
   1297                                    E = MBB->getFirstTerminator();
   1298        I != E; ++I)
   1299     FuncUnitOrder.push(&*I);
   1300 
   1301   while (!FuncUnitOrder.empty()) {
   1302     MachineInstr *MI = FuncUnitOrder.top();
   1303     FuncUnitOrder.pop();
   1304     if (TII->isZeroCost(MI->getOpcode()))
   1305       continue;
   1306     // Attempt to reserve the instruction in an existing DFA. At least one
   1307     // DFA is needed for each cycle.
   1308     unsigned NumCycles = getSUnit(MI)->Latency;
   1309     unsigned ReservedCycles = 0;
   1310     SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
   1311     SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
   1312     for (unsigned C = 0; C < NumCycles; ++C)
   1313       while (RI != RE) {
   1314         if ((*RI++)->canReserveResources(*MI)) {
   1315           ++ReservedCycles;
   1316           break;
   1317         }
   1318       }
   1319     // Start reserving resources using existing DFAs.
   1320     for (unsigned C = 0; C < ReservedCycles; ++C) {
   1321       --RI;
   1322       (*RI)->reserveResources(*MI);
   1323     }
   1324     // Add new DFAs, if needed, to reserve resources.
   1325     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
   1326       DFAPacketizer *NewResource =
   1327           TII->CreateTargetScheduleState(MF.getSubtarget());
   1328       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
   1329       NewResource->reserveResources(*MI);
   1330       Resources.push_back(NewResource);
   1331     }
   1332   }
   1333   int Resmii = Resources.size();
   1334   // Delete the memory for each of the DFAs that were created earlier.
   1335   for (DFAPacketizer *RI : Resources) {
   1336     DFAPacketizer *D = RI;
   1337     delete D;
   1338   }
   1339   Resources.clear();
   1340   return Resmii;
   1341 }
   1342 
   1343 /// Calculate the recurrence-constrainted minimum initiation interval.
   1344 /// Iterate over each circuit.  Compute the delay(c) and distance(c)
   1345 /// for each circuit. The II needs to satisfy the inequality
   1346 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
   1347 /// II that satistifies the inequality, and the RecMII is the maximum
   1348 /// of those values.
   1349 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
   1350   unsigned RecMII = 0;
   1351 
   1352   for (NodeSet &Nodes : NodeSets) {
   1353     if (Nodes.size() == 0)
   1354       continue;
   1355 
   1356     unsigned Delay = Nodes.size() - 1;
   1357     unsigned Distance = 1;
   1358 
   1359     // ii = ceil(delay / distance)
   1360     unsigned CurMII = (Delay + Distance - 1) / Distance;
   1361     Nodes.setRecMII(CurMII);
   1362     if (CurMII > RecMII)
   1363       RecMII = CurMII;
   1364   }
   1365 
   1366   return RecMII;
   1367 }
   1368 
   1369 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
   1370 /// but we do this to find the circuits, and then change them back.
   1371 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
   1372   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
   1373   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
   1374     SUnit *SU = &SUnits[i];
   1375     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
   1376          IP != EP; ++IP) {
   1377       if (IP->getKind() != SDep::Anti)
   1378         continue;
   1379       DepsAdded.push_back(std::make_pair(SU, *IP));
   1380     }
   1381   }
   1382   for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
   1383                                                           E = DepsAdded.end();
   1384        I != E; ++I) {
   1385     // Remove this anti dependency and add one in the reverse direction.
   1386     SUnit *SU = I->first;
   1387     SDep &D = I->second;
   1388     SUnit *TargetSU = D.getSUnit();
   1389     unsigned Reg = D.getReg();
   1390     unsigned Lat = D.getLatency();
   1391     SU->removePred(D);
   1392     SDep Dep(SU, SDep::Anti, Reg);
   1393     Dep.setLatency(Lat);
   1394     TargetSU->addPred(Dep);
   1395   }
   1396 }
   1397 
   1398 /// Create the adjacency structure of the nodes in the graph.
   1399 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
   1400     SwingSchedulerDAG *DAG) {
   1401   BitVector Added(SUnits.size());
   1402   for (int i = 0, e = SUnits.size(); i != e; ++i) {
   1403     Added.reset();
   1404     // Add any successor to the adjacency matrix and exclude duplicates.
   1405     for (auto &SI : SUnits[i].Succs) {
   1406       // Do not process a boundary node and a back-edge is processed only
   1407       // if it goes to a Phi.
   1408       if (SI.getSUnit()->isBoundaryNode() ||
   1409           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
   1410         continue;
   1411       int N = SI.getSUnit()->NodeNum;
   1412       if (!Added.test(N)) {
   1413         AdjK[i].push_back(N);
   1414         Added.set(N);
   1415       }
   1416     }
   1417     // A chain edge between a store and a load is treated as a back-edge in the
   1418     // adjacency matrix.
   1419     for (auto &PI : SUnits[i].Preds) {
   1420       if (!SUnits[i].getInstr()->mayStore() ||
   1421           !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
   1422         continue;
   1423       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
   1424         int N = PI.getSUnit()->NodeNum;
   1425         if (!Added.test(N)) {
   1426           AdjK[i].push_back(N);
   1427           Added.set(N);
   1428         }
   1429       }
   1430     }
   1431   }
   1432 }
   1433 
   1434 /// Identify an elementary circuit in the dependence graph starting at the
   1435 /// specified node.
   1436 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
   1437                                           bool HasBackedge) {
   1438   SUnit *SV = &SUnits[V];
   1439   bool F = false;
   1440   Stack.insert(SV);
   1441   Blocked.set(V);
   1442 
   1443   for (auto W : AdjK[V]) {
   1444     if (NumPaths > MaxPaths)
   1445       break;
   1446     if (W < S)
   1447       continue;
   1448     if (W == S) {
   1449       if (!HasBackedge)
   1450         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
   1451       F = true;
   1452       ++NumPaths;
   1453       break;
   1454     } else if (!Blocked.test(W)) {
   1455       if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
   1456         F = true;
   1457     }
   1458   }
   1459 
   1460   if (F)
   1461     unblock(V);
   1462   else {
   1463     for (auto W : AdjK[V]) {
   1464       if (W < S)
   1465         continue;
   1466       if (B[W].count(SV) == 0)
   1467         B[W].insert(SV);
   1468     }
   1469   }
   1470   Stack.pop_back();
   1471   return F;
   1472 }
   1473 
   1474 /// Unblock a node in the circuit finding algorithm.
   1475 void SwingSchedulerDAG::Circuits::unblock(int U) {
   1476   Blocked.reset(U);
   1477   SmallPtrSet<SUnit *, 4> &BU = B[U];
   1478   while (!BU.empty()) {
   1479     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
   1480     assert(SI != BU.end() && "Invalid B set.");
   1481     SUnit *W = *SI;
   1482     BU.erase(W);
   1483     if (Blocked.test(W->NodeNum))
   1484       unblock(W->NodeNum);
   1485   }
   1486 }
   1487 
   1488 /// Identify all the elementary circuits in the dependence graph using
   1489 /// Johnson's circuit algorithm.
   1490 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
   1491   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
   1492   // but we do this to find the circuits, and then change them back.
   1493   swapAntiDependences(SUnits);
   1494 
   1495   Circuits Cir(SUnits);
   1496   // Create the adjacency structure.
   1497   Cir.createAdjacencyStructure(this);
   1498   for (int i = 0, e = SUnits.size(); i != e; ++i) {
   1499     Cir.reset();
   1500     Cir.circuit(i, i, NodeSets);
   1501   }
   1502 
   1503   // Change the dependences back so that we've created a DAG again.
   1504   swapAntiDependences(SUnits);
   1505 }
   1506 
   1507 /// Return true for DAG nodes that we ignore when computing the cost functions.
   1508 /// We ignore the back-edge recurrence in order to avoid unbounded recurison
   1509 /// in the calculation of the ASAP, ALAP, etc functions.
   1510 static bool ignoreDependence(const SDep &D, bool isPred) {
   1511   if (D.isArtificial())
   1512     return true;
   1513   return D.getKind() == SDep::Anti && isPred;
   1514 }
   1515 
   1516 /// Compute several functions need to order the nodes for scheduling.
   1517 ///  ASAP - Earliest time to schedule a node.
   1518 ///  ALAP - Latest time to schedule a node.
   1519 ///  MOV - Mobility function, difference between ALAP and ASAP.
   1520 ///  D - Depth of each node.
   1521 ///  H - Height of each node.
   1522 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
   1523 
   1524   ScheduleInfo.resize(SUnits.size());
   1525 
   1526   DEBUG({
   1527     for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
   1528                                                     E = Topo.end();
   1529          I != E; ++I) {
   1530       SUnit *SU = &SUnits[*I];
   1531       SU->dump(this);
   1532     }
   1533   });
   1534 
   1535   int maxASAP = 0;
   1536   // Compute ASAP.
   1537   for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
   1538                                                   E = Topo.end();
   1539        I != E; ++I) {
   1540     int asap = 0;
   1541     SUnit *SU = &SUnits[*I];
   1542     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
   1543                                     EP = SU->Preds.end();
   1544          IP != EP; ++IP) {
   1545       if (ignoreDependence(*IP, true))
   1546         continue;
   1547       SUnit *pred = IP->getSUnit();
   1548       asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
   1549                                   getDistance(pred, SU, *IP) * MII));
   1550     }
   1551     maxASAP = std::max(maxASAP, asap);
   1552     ScheduleInfo[*I].ASAP = asap;
   1553   }
   1554 
   1555   // Compute ALAP and MOV.
   1556   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
   1557                                                           E = Topo.rend();
   1558        I != E; ++I) {
   1559     int alap = maxASAP;
   1560     SUnit *SU = &SUnits[*I];
   1561     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
   1562                                     ES = SU->Succs.end();
   1563          IS != ES; ++IS) {
   1564       if (ignoreDependence(*IS, true))
   1565         continue;
   1566       SUnit *succ = IS->getSUnit();
   1567       alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
   1568                                   getDistance(SU, succ, *IS) * MII));
   1569     }
   1570 
   1571     ScheduleInfo[*I].ALAP = alap;
   1572   }
   1573 
   1574   // After computing the node functions, compute the summary for each node set.
   1575   for (NodeSet &I : NodeSets)
   1576     I.computeNodeSetInfo(this);
   1577 
   1578   DEBUG({
   1579     for (unsigned i = 0; i < SUnits.size(); i++) {
   1580       dbgs() << "\tNode " << i << ":\n";
   1581       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
   1582       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
   1583       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
   1584       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
   1585       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
   1586     }
   1587   });
   1588 }
   1589 
   1590 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
   1591 /// as the predecessors of the elements of NodeOrder that are not also in
   1592 /// NodeOrder.
   1593 static bool pred_L(SetVector<SUnit *> &NodeOrder,
   1594                    SmallSetVector<SUnit *, 8> &Preds,
   1595                    const NodeSet *S = nullptr) {
   1596   Preds.clear();
   1597   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
   1598        I != E; ++I) {
   1599     for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
   1600          PI != PE; ++PI) {
   1601       if (S && S->count(PI->getSUnit()) == 0)
   1602         continue;
   1603       if (ignoreDependence(*PI, true))
   1604         continue;
   1605       if (NodeOrder.count(PI->getSUnit()) == 0)
   1606         Preds.insert(PI->getSUnit());
   1607     }
   1608     // Back-edges are predecessors with an anti-dependence.
   1609     for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
   1610                                     ES = (*I)->Succs.end();
   1611          IS != ES; ++IS) {
   1612       if (IS->getKind() != SDep::Anti)
   1613         continue;
   1614       if (S && S->count(IS->getSUnit()) == 0)
   1615         continue;
   1616       if (NodeOrder.count(IS->getSUnit()) == 0)
   1617         Preds.insert(IS->getSUnit());
   1618     }
   1619   }
   1620   return Preds.size() > 0;
   1621 }
   1622 
   1623 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
   1624 /// as the successors of the elements of NodeOrder that are not also in
   1625 /// NodeOrder.
   1626 static bool succ_L(SetVector<SUnit *> &NodeOrder,
   1627                    SmallSetVector<SUnit *, 8> &Succs,
   1628                    const NodeSet *S = nullptr) {
   1629   Succs.clear();
   1630   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
   1631        I != E; ++I) {
   1632     for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
   1633          SI != SE; ++SI) {
   1634       if (S && S->count(SI->getSUnit()) == 0)
   1635         continue;
   1636       if (ignoreDependence(*SI, false))
   1637         continue;
   1638       if (NodeOrder.count(SI->getSUnit()) == 0)
   1639         Succs.insert(SI->getSUnit());
   1640     }
   1641     for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
   1642                                     PE = (*I)->Preds.end();
   1643          PI != PE; ++PI) {
   1644       if (PI->getKind() != SDep::Anti)
   1645         continue;
   1646       if (S && S->count(PI->getSUnit()) == 0)
   1647         continue;
   1648       if (NodeOrder.count(PI->getSUnit()) == 0)
   1649         Succs.insert(PI->getSUnit());
   1650     }
   1651   }
   1652   return Succs.size() > 0;
   1653 }
   1654 
   1655 /// Return true if there is a path from the specified node to any of the nodes
   1656 /// in DestNodes. Keep track and return the nodes in any path.
   1657 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
   1658                         SetVector<SUnit *> &DestNodes,
   1659                         SetVector<SUnit *> &Exclude,
   1660                         SmallPtrSet<SUnit *, 8> &Visited) {
   1661   if (Cur->isBoundaryNode())
   1662     return false;
   1663   if (Exclude.count(Cur) != 0)
   1664     return false;
   1665   if (DestNodes.count(Cur) != 0)
   1666     return true;
   1667   if (!Visited.insert(Cur).second)
   1668     return Path.count(Cur) != 0;
   1669   bool FoundPath = false;
   1670   for (auto &SI : Cur->Succs)
   1671     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
   1672   for (auto &PI : Cur->Preds)
   1673     if (PI.getKind() == SDep::Anti)
   1674       FoundPath |=
   1675           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
   1676   if (FoundPath)
   1677     Path.insert(Cur);
   1678   return FoundPath;
   1679 }
   1680 
   1681 /// Return true if Set1 is a subset of Set2.
   1682 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
   1683   for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
   1684     if (Set2.count(*I) == 0)
   1685       return false;
   1686   return true;
   1687 }
   1688 
   1689 /// Compute the live-out registers for the instructions in a node-set.
   1690 /// The live-out registers are those that are defined in the node-set,
   1691 /// but not used. Except for use operands of Phis.
   1692 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
   1693                             NodeSet &NS) {
   1694   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
   1695   MachineRegisterInfo &MRI = MF.getRegInfo();
   1696   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
   1697   SmallSet<unsigned, 4> Uses;
   1698   for (SUnit *SU : NS) {
   1699     const MachineInstr *MI = SU->getInstr();
   1700     if (MI->isPHI())
   1701       continue;
   1702     for (ConstMIOperands MO(*MI); MO.isValid(); ++MO)
   1703       if (MO->isReg() && MO->isUse()) {
   1704         unsigned Reg = MO->getReg();
   1705         if (TargetRegisterInfo::isVirtualRegister(Reg))
   1706           Uses.insert(Reg);
   1707         else if (MRI.isAllocatable(Reg))
   1708           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
   1709             Uses.insert(*Units);
   1710       }
   1711   }
   1712   for (SUnit *SU : NS)
   1713     for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO)
   1714       if (MO->isReg() && MO->isDef() && !MO->isDead()) {
   1715         unsigned Reg = MO->getReg();
   1716         if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1717           if (!Uses.count(Reg))
   1718             LiveOutRegs.push_back(RegisterMaskPair(Reg, 0));
   1719         } else if (MRI.isAllocatable(Reg)) {
   1720           for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
   1721             if (!Uses.count(*Units))
   1722               LiveOutRegs.push_back(RegisterMaskPair(*Units, 0));
   1723         }
   1724       }
   1725   RPTracker.addLiveRegs(LiveOutRegs);
   1726 }
   1727 
   1728 /// A heuristic to filter nodes in recurrent node-sets if the register
   1729 /// pressure of a set is too high.
   1730 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
   1731   for (auto &NS : NodeSets) {
   1732     // Skip small node-sets since they won't cause register pressure problems.
   1733     if (NS.size() <= 2)
   1734       continue;
   1735     IntervalPressure RecRegPressure;
   1736     RegPressureTracker RecRPTracker(RecRegPressure);
   1737     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
   1738     computeLiveOuts(MF, RecRPTracker, NS);
   1739     RecRPTracker.closeBottom();
   1740 
   1741     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
   1742     std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
   1743       return A->NodeNum > B->NodeNum;
   1744     });
   1745 
   1746     for (auto &SU : SUnits) {
   1747       // Since we're computing the register pressure for a subset of the
   1748       // instructions in a block, we need to set the tracker for each
   1749       // instruction in the node-set. The tracker is set to the instruction
   1750       // just after the one we're interested in.
   1751       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
   1752       RecRPTracker.setPos(std::next(CurInstI));
   1753 
   1754       RegPressureDelta RPDelta;
   1755       ArrayRef<PressureChange> CriticalPSets;
   1756       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
   1757                                              CriticalPSets,
   1758                                              RecRegPressure.MaxSetPressure);
   1759       if (RPDelta.Excess.isValid()) {
   1760         DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
   1761                      << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
   1762                      << ":" << RPDelta.Excess.getUnitInc());
   1763         NS.setExceedPressure(SU);
   1764         break;
   1765       }
   1766       RecRPTracker.recede();
   1767     }
   1768   }
   1769 }
   1770 
   1771 /// A heuristic to colocate node sets that have the same set of
   1772 /// successors.
   1773 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
   1774   unsigned Colocate = 0;
   1775   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
   1776     NodeSet &N1 = NodeSets[i];
   1777     SmallSetVector<SUnit *, 8> S1;
   1778     if (N1.empty() || !succ_L(N1, S1))
   1779       continue;
   1780     for (int j = i + 1; j < e; ++j) {
   1781       NodeSet &N2 = NodeSets[j];
   1782       if (N1.compareRecMII(N2) != 0)
   1783         continue;
   1784       SmallSetVector<SUnit *, 8> S2;
   1785       if (N2.empty() || !succ_L(N2, S2))
   1786         continue;
   1787       if (isSubset(S1, S2) && S1.size() == S2.size()) {
   1788         N1.setColocate(++Colocate);
   1789         N2.setColocate(Colocate);
   1790         break;
   1791       }
   1792     }
   1793   }
   1794 }
   1795 
   1796 /// Check if the existing node-sets are profitable. If not, then ignore the
   1797 /// recurrent node-sets, and attempt to schedule all nodes together. This is
   1798 /// a heuristic. If the MII is large and there is a non-recurrent node with
   1799 /// a large depth compared to the MII, then it's best to try and schedule
   1800 /// all instruction together instead of starting with the recurrent node-sets.
   1801 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
   1802   // Look for loops with a large MII.
   1803   if (MII <= 20)
   1804     return;
   1805   // Check if the node-set contains only a simple add recurrence.
   1806   for (auto &NS : NodeSets)
   1807     if (NS.size() > 2)
   1808       return;
   1809   // If the depth of any instruction is significantly larger than the MII, then
   1810   // ignore the recurrent node-sets and treat all instructions equally.
   1811   for (auto &SU : SUnits)
   1812     if (SU.getDepth() > MII * 1.5) {
   1813       NodeSets.clear();
   1814       DEBUG(dbgs() << "Clear recurrence node-sets\n");
   1815       return;
   1816     }
   1817 }
   1818 
   1819 /// Add the nodes that do not belong to a recurrence set into groups
   1820 /// based upon connected componenets.
   1821 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
   1822   SetVector<SUnit *> NodesAdded;
   1823   SmallPtrSet<SUnit *, 8> Visited;
   1824   // Add the nodes that are on a path between the previous node sets and
   1825   // the current node set.
   1826   for (NodeSet &I : NodeSets) {
   1827     SmallSetVector<SUnit *, 8> N;
   1828     // Add the nodes from the current node set to the previous node set.
   1829     if (succ_L(I, N)) {
   1830       SetVector<SUnit *> Path;
   1831       for (SUnit *NI : N) {
   1832         Visited.clear();
   1833         computePath(NI, Path, NodesAdded, I, Visited);
   1834       }
   1835       if (Path.size() > 0)
   1836         I.insert(Path.begin(), Path.end());
   1837     }
   1838     // Add the nodes from the previous node set to the current node set.
   1839     N.clear();
   1840     if (succ_L(NodesAdded, N)) {
   1841       SetVector<SUnit *> Path;
   1842       for (SUnit *NI : N) {
   1843         Visited.clear();
   1844         computePath(NI, Path, I, NodesAdded, Visited);
   1845       }
   1846       if (Path.size() > 0)
   1847         I.insert(Path.begin(), Path.end());
   1848     }
   1849     NodesAdded.insert(I.begin(), I.end());
   1850   }
   1851 
   1852   // Create a new node set with the connected nodes of any successor of a node
   1853   // in a recurrent set.
   1854   NodeSet NewSet;
   1855   SmallSetVector<SUnit *, 8> N;
   1856   if (succ_L(NodesAdded, N))
   1857     for (SUnit *I : N)
   1858       addConnectedNodes(I, NewSet, NodesAdded);
   1859   if (NewSet.size() > 0)
   1860     NodeSets.push_back(NewSet);
   1861 
   1862   // Create a new node set with the connected nodes of any predecessor of a node
   1863   // in a recurrent set.
   1864   NewSet.clear();
   1865   if (pred_L(NodesAdded, N))
   1866     for (SUnit *I : N)
   1867       addConnectedNodes(I, NewSet, NodesAdded);
   1868   if (NewSet.size() > 0)
   1869     NodeSets.push_back(NewSet);
   1870 
   1871   // Create new nodes sets with the connected nodes any any remaining node that
   1872   // has no predecessor.
   1873   for (unsigned i = 0; i < SUnits.size(); ++i) {
   1874     SUnit *SU = &SUnits[i];
   1875     if (NodesAdded.count(SU) == 0) {
   1876       NewSet.clear();
   1877       addConnectedNodes(SU, NewSet, NodesAdded);
   1878       if (NewSet.size() > 0)
   1879         NodeSets.push_back(NewSet);
   1880     }
   1881   }
   1882 }
   1883 
   1884 /// Add the node to the set, and add all is its connected nodes to the set.
   1885 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
   1886                                           SetVector<SUnit *> &NodesAdded) {
   1887   NewSet.insert(SU);
   1888   NodesAdded.insert(SU);
   1889   for (auto &SI : SU->Succs) {
   1890     SUnit *Successor = SI.getSUnit();
   1891     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
   1892       addConnectedNodes(Successor, NewSet, NodesAdded);
   1893   }
   1894   for (auto &PI : SU->Preds) {
   1895     SUnit *Predecessor = PI.getSUnit();
   1896     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
   1897       addConnectedNodes(Predecessor, NewSet, NodesAdded);
   1898   }
   1899 }
   1900 
   1901 /// Return true if Set1 contains elements in Set2. The elements in common
   1902 /// are returned in a different container.
   1903 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
   1904                         SmallSetVector<SUnit *, 8> &Result) {
   1905   Result.clear();
   1906   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
   1907     SUnit *SU = Set1[i];
   1908     if (Set2.count(SU) != 0)
   1909       Result.insert(SU);
   1910   }
   1911   return !Result.empty();
   1912 }
   1913 
   1914 /// Merge the recurrence node sets that have the same initial node.
   1915 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
   1916   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
   1917        ++I) {
   1918     NodeSet &NI = *I;
   1919     for (NodeSetType::iterator J = I + 1; J != E;) {
   1920       NodeSet &NJ = *J;
   1921       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
   1922         if (NJ.compareRecMII(NI) > 0)
   1923           NI.setRecMII(NJ.getRecMII());
   1924         for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
   1925              ++NII)
   1926           I->insert(*NII);
   1927         NodeSets.erase(J);
   1928         E = NodeSets.end();
   1929       } else {
   1930         ++J;
   1931       }
   1932     }
   1933   }
   1934 }
   1935 
   1936 /// Remove nodes that have been scheduled in previous NodeSets.
   1937 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
   1938   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
   1939        ++I)
   1940     for (NodeSetType::iterator J = I + 1; J != E;) {
   1941       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
   1942 
   1943       if (J->size() == 0) {
   1944         NodeSets.erase(J);
   1945         E = NodeSets.end();
   1946       } else {
   1947         ++J;
   1948       }
   1949     }
   1950 }
   1951 
   1952 /// Return true if Inst1 defines a value that is used in Inst2.
   1953 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
   1954   for (auto &SI : Inst1->Succs)
   1955     if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
   1956       return true;
   1957   return false;
   1958 }
   1959 
   1960 /// Compute an ordered list of the dependence graph nodes, which
   1961 /// indicates the order that the nodes will be scheduled.  This is a
   1962 /// two-level algorithm. First, a partial order is created, which
   1963 /// consists of a list of sets ordered from highest to lowest priority.
   1964 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
   1965   SmallSetVector<SUnit *, 8> R;
   1966   NodeOrder.clear();
   1967 
   1968   for (auto &Nodes : NodeSets) {
   1969     DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
   1970     OrderKind Order;
   1971     SmallSetVector<SUnit *, 8> N;
   1972     if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
   1973       R.insert(N.begin(), N.end());
   1974       Order = BottomUp;
   1975       DEBUG(dbgs() << "  Bottom up (preds) ");
   1976     } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
   1977       R.insert(N.begin(), N.end());
   1978       Order = TopDown;
   1979       DEBUG(dbgs() << "  Top down (succs) ");
   1980     } else if (isIntersect(N, Nodes, R)) {
   1981       // If some of the successors are in the existing node-set, then use the
   1982       // top-down ordering.
   1983       Order = TopDown;
   1984       DEBUG(dbgs() << "  Top down (intersect) ");
   1985     } else if (NodeSets.size() == 1) {
   1986       for (auto &N : Nodes)
   1987         if (N->Succs.size() == 0)
   1988           R.insert(N);
   1989       Order = BottomUp;
   1990       DEBUG(dbgs() << "  Bottom up (all) ");
   1991     } else {
   1992       // Find the node with the highest ASAP.
   1993       SUnit *maxASAP = nullptr;
   1994       for (SUnit *SU : Nodes) {
   1995         if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
   1996           maxASAP = SU;
   1997       }
   1998       R.insert(maxASAP);
   1999       Order = BottomUp;
   2000       DEBUG(dbgs() << "  Bottom up (default) ");
   2001     }
   2002 
   2003     while (!R.empty()) {
   2004       if (Order == TopDown) {
   2005         // Choose the node with the maximum height.  If more than one, choose
   2006         // the node with the lowest MOV. If still more than one, check if there
   2007         // is a dependence between the instructions.
   2008         while (!R.empty()) {
   2009           SUnit *maxHeight = nullptr;
   2010           for (SUnit *I : R) {
   2011             if (maxHeight == 0 || getHeight(I) > getHeight(maxHeight))
   2012               maxHeight = I;
   2013             else if (getHeight(I) == getHeight(maxHeight) &&
   2014                      getMOV(I) < getMOV(maxHeight) &&
   2015                      !hasDataDependence(maxHeight, I))
   2016               maxHeight = I;
   2017             else if (hasDataDependence(I, maxHeight))
   2018               maxHeight = I;
   2019           }
   2020           NodeOrder.insert(maxHeight);
   2021           DEBUG(dbgs() << maxHeight->NodeNum << " ");
   2022           R.remove(maxHeight);
   2023           for (const auto &I : maxHeight->Succs) {
   2024             if (Nodes.count(I.getSUnit()) == 0)
   2025               continue;
   2026             if (NodeOrder.count(I.getSUnit()) != 0)
   2027               continue;
   2028             if (ignoreDependence(I, false))
   2029               continue;
   2030             R.insert(I.getSUnit());
   2031           }
   2032           // Back-edges are predecessors with an anti-dependence.
   2033           for (const auto &I : maxHeight->Preds) {
   2034             if (I.getKind() != SDep::Anti)
   2035               continue;
   2036             if (Nodes.count(I.getSUnit()) == 0)
   2037               continue;
   2038             if (NodeOrder.count(I.getSUnit()) != 0)
   2039               continue;
   2040             R.insert(I.getSUnit());
   2041           }
   2042         }
   2043         Order = BottomUp;
   2044         DEBUG(dbgs() << "\n   Switching order to bottom up ");
   2045         SmallSetVector<SUnit *, 8> N;
   2046         if (pred_L(NodeOrder, N, &Nodes))
   2047           R.insert(N.begin(), N.end());
   2048       } else {
   2049         // Choose the node with the maximum depth.  If more than one, choose
   2050         // the node with the lowest MOV. If there is still more than one, check
   2051         // for a dependence between the instructions.
   2052         while (!R.empty()) {
   2053           SUnit *maxDepth = nullptr;
   2054           for (SUnit *I : R) {
   2055             if (maxDepth == 0 || getDepth(I) > getDepth(maxDepth))
   2056               maxDepth = I;
   2057             else if (getDepth(I) == getDepth(maxDepth) &&
   2058                      getMOV(I) < getMOV(maxDepth) &&
   2059                      !hasDataDependence(I, maxDepth))
   2060               maxDepth = I;
   2061             else if (hasDataDependence(maxDepth, I))
   2062               maxDepth = I;
   2063           }
   2064           NodeOrder.insert(maxDepth);
   2065           DEBUG(dbgs() << maxDepth->NodeNum << " ");
   2066           R.remove(maxDepth);
   2067           if (Nodes.isExceedSU(maxDepth)) {
   2068             Order = TopDown;
   2069             R.clear();
   2070             R.insert(Nodes.getNode(0));
   2071             break;
   2072           }
   2073           for (const auto &I : maxDepth->Preds) {
   2074             if (Nodes.count(I.getSUnit()) == 0)
   2075               continue;
   2076             if (NodeOrder.count(I.getSUnit()) != 0)
   2077               continue;
   2078             if (I.getKind() == SDep::Anti)
   2079               continue;
   2080             R.insert(I.getSUnit());
   2081           }
   2082           // Back-edges are predecessors with an anti-dependence.
   2083           for (const auto &I : maxDepth->Succs) {
   2084             if (I.getKind() != SDep::Anti)
   2085               continue;
   2086             if (Nodes.count(I.getSUnit()) == 0)
   2087               continue;
   2088             if (NodeOrder.count(I.getSUnit()) != 0)
   2089               continue;
   2090             R.insert(I.getSUnit());
   2091           }
   2092         }
   2093         Order = TopDown;
   2094         DEBUG(dbgs() << "\n   Switching order to top down ");
   2095         SmallSetVector<SUnit *, 8> N;
   2096         if (succ_L(NodeOrder, N, &Nodes))
   2097           R.insert(N.begin(), N.end());
   2098       }
   2099     }
   2100     DEBUG(dbgs() << "\nDone with Nodeset\n");
   2101   }
   2102 
   2103   DEBUG({
   2104     dbgs() << "Node order: ";
   2105     for (SUnit *I : NodeOrder)
   2106       dbgs() << " " << I->NodeNum << " ";
   2107     dbgs() << "\n";
   2108   });
   2109 }
   2110 
   2111 /// Process the nodes in the computed order and create the pipelined schedule
   2112 /// of the instructions, if possible. Return true if a schedule is found.
   2113 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
   2114 
   2115   if (NodeOrder.size() == 0)
   2116     return false;
   2117 
   2118   bool scheduleFound = false;
   2119   // Keep increasing II until a valid schedule is found.
   2120   for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
   2121     Schedule.reset();
   2122     Schedule.setInitiationInterval(II);
   2123     DEBUG(dbgs() << "Try to schedule with " << II << "\n");
   2124 
   2125     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
   2126     SetVector<SUnit *>::iterator NE = NodeOrder.end();
   2127     do {
   2128       SUnit *SU = *NI;
   2129 
   2130       // Compute the schedule time for the instruction, which is based
   2131       // upon the scheduled time for any predecessors/successors.
   2132       int EarlyStart = INT_MIN;
   2133       int LateStart = INT_MAX;
   2134       // These values are set when the size of the schedule window is limited
   2135       // due to chain dependences.
   2136       int SchedEnd = INT_MAX;
   2137       int SchedStart = INT_MIN;
   2138       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
   2139                             II, this);
   2140       DEBUG({
   2141         dbgs() << "Inst (" << SU->NodeNum << ") ";
   2142         SU->getInstr()->dump();
   2143         dbgs() << "\n";
   2144       });
   2145       DEBUG({
   2146         dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
   2147                << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
   2148       });
   2149 
   2150       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
   2151           SchedStart > LateStart)
   2152         scheduleFound = false;
   2153       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
   2154         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
   2155         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
   2156       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
   2157         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
   2158         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
   2159       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
   2160         SchedEnd =
   2161             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
   2162         // When scheduling a Phi it is better to start at the late cycle and go
   2163         // backwards. The default order may insert the Phi too far away from
   2164         // its first dependence.
   2165         if (SU->getInstr()->isPHI())
   2166           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
   2167         else
   2168           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
   2169       } else {
   2170         int FirstCycle = Schedule.getFirstCycle();
   2171         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
   2172                                         FirstCycle + getASAP(SU) + II - 1, II);
   2173       }
   2174       // Even if we find a schedule, make sure the schedule doesn't exceed the
   2175       // allowable number of stages. We keep trying if this happens.
   2176       if (scheduleFound)
   2177         if (SwpMaxStages > -1 &&
   2178             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
   2179           scheduleFound = false;
   2180 
   2181       DEBUG({
   2182         if (!scheduleFound)
   2183           dbgs() << "\tCan't schedule\n";
   2184       });
   2185     } while (++NI != NE && scheduleFound);
   2186 
   2187     // If a schedule is found, check if it is a valid schedule too.
   2188     if (scheduleFound)
   2189       scheduleFound = Schedule.isValidSchedule(this);
   2190   }
   2191 
   2192   DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
   2193 
   2194   if (scheduleFound)
   2195     Schedule.finalizeSchedule(this);
   2196   else
   2197     Schedule.reset();
   2198 
   2199   return scheduleFound && Schedule.getMaxStageCount() > 0;
   2200 }
   2201 
   2202 /// Given a schedule for the loop, generate a new version of the loop,
   2203 /// and replace the old version.  This function generates a prolog
   2204 /// that contains the initial iterations in the pipeline, and kernel
   2205 /// loop, and the epilogue that contains the code for the final
   2206 /// iterations.
   2207 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
   2208   // Create a new basic block for the kernel and add it to the CFG.
   2209   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
   2210 
   2211   unsigned MaxStageCount = Schedule.getMaxStageCount();
   2212 
   2213   // Remember the registers that are used in different stages. The index is
   2214   // the iteration, or stage, that the instruction is scheduled in.  This is
   2215   // a map between register names in the orignal block and the names created
   2216   // in each stage of the pipelined loop.
   2217   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
   2218   InstrMapTy InstrMap;
   2219 
   2220   SmallVector<MachineBasicBlock *, 4> PrologBBs;
   2221   // Generate the prolog instructions that set up the pipeline.
   2222   generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
   2223   MF.insert(BB->getIterator(), KernelBB);
   2224 
   2225   // Rearrange the instructions to generate the new, pipelined loop,
   2226   // and update register names as needed.
   2227   for (int Cycle = Schedule.getFirstCycle(),
   2228            LastCycle = Schedule.getFinalCycle();
   2229        Cycle <= LastCycle; ++Cycle) {
   2230     std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
   2231     // This inner loop schedules each instruction in the cycle.
   2232     for (SUnit *CI : CycleInstrs) {
   2233       if (CI->getInstr()->isPHI())
   2234         continue;
   2235       unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
   2236       MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
   2237       updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
   2238       KernelBB->push_back(NewMI);
   2239       InstrMap[NewMI] = CI->getInstr();
   2240     }
   2241   }
   2242 
   2243   // Copy any terminator instructions to the new kernel, and update
   2244   // names as needed.
   2245   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
   2246                                    E = BB->instr_end();
   2247        I != E; ++I) {
   2248     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
   2249     updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
   2250     KernelBB->push_back(NewMI);
   2251     InstrMap[NewMI] = &*I;
   2252   }
   2253 
   2254   KernelBB->transferSuccessors(BB);
   2255   KernelBB->replaceSuccessor(BB, KernelBB);
   2256 
   2257   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
   2258                        VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
   2259   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
   2260                InstrMap, MaxStageCount, MaxStageCount, false);
   2261 
   2262   DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
   2263 
   2264   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
   2265   // Generate the epilog instructions to complete the pipeline.
   2266   generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
   2267                  PrologBBs);
   2268 
   2269   // We need this step because the register allocation doesn't handle some
   2270   // situations well, so we insert copies to help out.
   2271   splitLifetimes(KernelBB, EpilogBBs, Schedule);
   2272 
   2273   // Remove dead instructions due to loop induction variables.
   2274   removeDeadInstructions(KernelBB, EpilogBBs);
   2275 
   2276   // Add branches between prolog and epilog blocks.
   2277   addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
   2278 
   2279   // Remove the original loop since it's no longer referenced.
   2280   BB->clear();
   2281   BB->eraseFromParent();
   2282 
   2283   delete[] VRMap;
   2284 }
   2285 
   2286 /// Generate the pipeline prolog code.
   2287 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
   2288                                        MachineBasicBlock *KernelBB,
   2289                                        ValueMapTy *VRMap,
   2290                                        MBBVectorTy &PrologBBs) {
   2291   MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
   2292   assert(PreheaderBB != NULL &&
   2293          "Need to add code to handle loops w/o preheader");
   2294   MachineBasicBlock *PredBB = PreheaderBB;
   2295   InstrMapTy InstrMap;
   2296 
   2297   // Generate a basic block for each stage, not including the last stage,
   2298   // which will be generated in the kernel. Each basic block may contain
   2299   // instructions from multiple stages/iterations.
   2300   for (unsigned i = 0; i < LastStage; ++i) {
   2301     // Create and insert the prolog basic block prior to the original loop
   2302     // basic block.  The original loop is removed later.
   2303     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
   2304     PrologBBs.push_back(NewBB);
   2305     MF.insert(BB->getIterator(), NewBB);
   2306     NewBB->transferSuccessors(PredBB);
   2307     PredBB->addSuccessor(NewBB);
   2308     PredBB = NewBB;
   2309 
   2310     // Generate instructions for each appropriate stage. Process instructions
   2311     // in original program order.
   2312     for (int StageNum = i; StageNum >= 0; --StageNum) {
   2313       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
   2314                                        BBE = BB->getFirstTerminator();
   2315            BBI != BBE; ++BBI) {
   2316         if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
   2317           if (BBI->isPHI())
   2318             continue;
   2319           MachineInstr *NewMI =
   2320               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
   2321           updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
   2322                             VRMap);
   2323           NewBB->push_back(NewMI);
   2324           InstrMap[NewMI] = &*BBI;
   2325         }
   2326       }
   2327     }
   2328     rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
   2329     DEBUG({
   2330       dbgs() << "prolog:\n";
   2331       NewBB->dump();
   2332     });
   2333   }
   2334 
   2335   PredBB->replaceSuccessor(BB, KernelBB);
   2336 
   2337   // Check if we need to remove the branch from the preheader to the original
   2338   // loop, and replace it with a branch to the new loop.
   2339   unsigned numBranches = TII->RemoveBranch(*PreheaderBB);
   2340   if (numBranches) {
   2341     SmallVector<MachineOperand, 0> Cond;
   2342     TII->InsertBranch(*PreheaderBB, PrologBBs[0], 0, Cond, DebugLoc());
   2343   }
   2344 }
   2345 
   2346 /// Generate the pipeline epilog code. The epilog code finishes the iterations
   2347 /// that were started in either the prolog or the kernel.  We create a basic
   2348 /// block for each stage that needs to complete.
   2349 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
   2350                                        MachineBasicBlock *KernelBB,
   2351                                        ValueMapTy *VRMap,
   2352                                        MBBVectorTy &EpilogBBs,
   2353                                        MBBVectorTy &PrologBBs) {
   2354   // We need to change the branch from the kernel to the first epilog block, so
   2355   // this call to analyze branch uses the kernel rather than the original BB.
   2356   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
   2357   SmallVector<MachineOperand, 4> Cond;
   2358   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
   2359   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
   2360   if (checkBranch)
   2361     return;
   2362 
   2363   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
   2364   if (*LoopExitI == KernelBB)
   2365     ++LoopExitI;
   2366   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
   2367   MachineBasicBlock *LoopExitBB = *LoopExitI;
   2368 
   2369   MachineBasicBlock *PredBB = KernelBB;
   2370   MachineBasicBlock *EpilogStart = LoopExitBB;
   2371   InstrMapTy InstrMap;
   2372 
   2373   // Generate a basic block for each stage, not including the last stage,
   2374   // which was generated for the kernel.  Each basic block may contain
   2375   // instructions from multiple stages/iterations.
   2376   int EpilogStage = LastStage + 1;
   2377   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
   2378     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
   2379     EpilogBBs.push_back(NewBB);
   2380     MF.insert(BB->getIterator(), NewBB);
   2381 
   2382     PredBB->replaceSuccessor(LoopExitBB, NewBB);
   2383     NewBB->addSuccessor(LoopExitBB);
   2384 
   2385     if (EpilogStart == LoopExitBB)
   2386       EpilogStart = NewBB;
   2387 
   2388     // Add instructions to the epilog depending on the current block.
   2389     // Process instructions in original program order.
   2390     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
   2391       for (auto &BBI : *BB) {
   2392         if (BBI.isPHI())
   2393           continue;
   2394         MachineInstr *In = &BBI;
   2395         if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
   2396           MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
   2397           updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
   2398           NewBB->push_back(NewMI);
   2399           InstrMap[NewMI] = In;
   2400         }
   2401       }
   2402     }
   2403     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
   2404                          VRMap, InstrMap, LastStage, EpilogStage, i == 1);
   2405     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
   2406                  InstrMap, LastStage, EpilogStage, i == 1);
   2407     PredBB = NewBB;
   2408 
   2409     DEBUG({
   2410       dbgs() << "epilog:\n";
   2411       NewBB->dump();
   2412     });
   2413   }
   2414 
   2415   // Fix any Phi nodes in the loop exit block.
   2416   for (MachineInstr &MI : *LoopExitBB) {
   2417     if (!MI.isPHI())
   2418       break;
   2419     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
   2420       MachineOperand &MO = MI.getOperand(i);
   2421       if (MO.getMBB() == BB)
   2422         MO.setMBB(PredBB);
   2423     }
   2424   }
   2425 
   2426   // Create a branch to the new epilog from the kernel.
   2427   // Remove the original branch and add a new branch to the epilog.
   2428   TII->RemoveBranch(*KernelBB);
   2429   TII->InsertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
   2430   // Add a branch to the loop exit.
   2431   if (EpilogBBs.size() > 0) {
   2432     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
   2433     SmallVector<MachineOperand, 4> Cond1;
   2434     TII->InsertBranch(*LastEpilogBB, LoopExitBB, 0, Cond1, DebugLoc());
   2435   }
   2436 }
   2437 
   2438 /// Replace all uses of FromReg that appear outside the specified
   2439 /// basic block with ToReg.
   2440 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
   2441                                     MachineBasicBlock *MBB,
   2442                                     MachineRegisterInfo &MRI,
   2443                                     LiveIntervals &LIS) {
   2444   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
   2445                                          E = MRI.use_end();
   2446        I != E;) {
   2447     MachineOperand &O = *I;
   2448     ++I;
   2449     if (O.getParent()->getParent() != MBB)
   2450       O.setReg(ToReg);
   2451   }
   2452   if (!LIS.hasInterval(ToReg))
   2453     LIS.createEmptyInterval(ToReg);
   2454 }
   2455 
   2456 /// Return true if the register has a use that occurs outside the
   2457 /// specified loop.
   2458 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
   2459                             MachineRegisterInfo &MRI) {
   2460   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
   2461                                          E = MRI.use_end();
   2462        I != E; ++I)
   2463     if (I->getParent()->getParent() != BB)
   2464       return true;
   2465   return false;
   2466 }
   2467 
   2468 /// Generate Phis for the specific block in the generated pipelined code.
   2469 /// This function looks at the Phis from the original code to guide the
   2470 /// creation of new Phis.
   2471 void SwingSchedulerDAG::generateExistingPhis(
   2472     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
   2473     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
   2474     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
   2475     bool IsLast) {
   2476   // Compute the stage number for the inital value of the Phi, which
   2477   // comes from the prolog. The prolog to use depends on to which kernel/
   2478   // epilog that we're adding the Phi.
   2479   unsigned PrologStage = 0;
   2480   unsigned PrevStage = 0;
   2481   bool InKernel = (LastStageNum == CurStageNum);
   2482   if (InKernel) {
   2483     PrologStage = LastStageNum - 1;
   2484     PrevStage = CurStageNum;
   2485   } else {
   2486     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
   2487     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
   2488   }
   2489 
   2490   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
   2491                                    BBE = BB->getFirstNonPHI();
   2492        BBI != BBE; ++BBI) {
   2493     unsigned Def = BBI->getOperand(0).getReg();
   2494 
   2495     unsigned InitVal = 0;
   2496     unsigned LoopVal = 0;
   2497     getPhiRegs(*BBI, BB, InitVal, LoopVal);
   2498 
   2499     unsigned PhiOp1 = 0;
   2500     // The Phi value from the loop body typically is defined in the loop, but
   2501     // not always. So, we need to check if the value is defined in the loop.
   2502     unsigned PhiOp2 = LoopVal;
   2503     if (VRMap[LastStageNum].count(LoopVal))
   2504       PhiOp2 = VRMap[LastStageNum][LoopVal];
   2505 
   2506     int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
   2507     int LoopValStage =
   2508         Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
   2509     unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
   2510     if (NumStages == 0) {
   2511       // We don't need to generate a Phi anymore, but we need to rename any uses
   2512       // of the Phi value.
   2513       unsigned NewReg = VRMap[PrevStage][LoopVal];
   2514       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
   2515                             Def, NewReg);
   2516       if (VRMap[CurStageNum].count(LoopVal))
   2517         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
   2518     }
   2519     // Adjust the number of Phis needed depending on the number of prologs left,
   2520     // and the distance from where the Phi is first scheduled.
   2521     unsigned NumPhis = NumStages;
   2522     if (!InKernel && (int)PrologStage < LoopValStage)
   2523       // The NumPhis is the maximum number of new Phis needed during the steady
   2524       // state. If the Phi has not been scheduled in current prolog, then we
   2525       // need to generate less Phis.
   2526       NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
   2527     // The number of Phis cannot exceed the number of prolog stages. Each
   2528     // stage can potentially define two values.
   2529     NumPhis = std::min(NumPhis, PrologStage + 2);
   2530 
   2531     unsigned NewReg = 0;
   2532 
   2533     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
   2534     // In the epilog, we may need to look back one stage to get the correct
   2535     // Phi name because the epilog and prolog blocks execute the same stage.
   2536     // The correct name is from the previous block only when the Phi has
   2537     // been completely scheduled prior to the epilog, and Phi value is not
   2538     // needed in multiple stages.
   2539     int StageDiff = 0;
   2540     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
   2541         NumPhis == 1)
   2542       StageDiff = 1;
   2543     // Adjust the computations below when the phi and the loop definition
   2544     // are scheduled in different stages.
   2545     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
   2546       StageDiff = StageScheduled - LoopValStage;
   2547     for (unsigned np = 0; np < NumPhis; ++np) {
   2548       // If the Phi hasn't been scheduled, then use the initial Phi operand
   2549       // value. Otherwise, use the scheduled version of the instruction. This
   2550       // is a little complicated when a Phi references another Phi.
   2551       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
   2552         PhiOp1 = InitVal;
   2553       // Check if the Phi has already been scheduled in a prolog stage.
   2554       else if (PrologStage >= AccessStage + StageDiff + np &&
   2555                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
   2556         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
   2557       // Check if the Phi has already been scheduled, but the loop intruction
   2558       // is either another Phi, or doesn't occur in the loop.
   2559       else if (PrologStage >= AccessStage + StageDiff + np) {
   2560         // If the Phi references another Phi, we need to examine the other
   2561         // Phi to get the correct value.
   2562         PhiOp1 = LoopVal;
   2563         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
   2564         int Indirects = 1;
   2565         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
   2566           int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
   2567           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
   2568             PhiOp1 = getInitPhiReg(*InstOp1, BB);
   2569           else
   2570             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
   2571           InstOp1 = MRI.getVRegDef(PhiOp1);
   2572           int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
   2573           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
   2574           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
   2575               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
   2576             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
   2577             break;
   2578           }
   2579           ++Indirects;
   2580         }
   2581       } else
   2582         PhiOp1 = InitVal;
   2583       // If this references a generated Phi in the kernel, get the Phi operand
   2584       // from the incoming block.
   2585       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
   2586         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
   2587           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
   2588 
   2589       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
   2590       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
   2591       // In the epilog, a map lookup is needed to get the value from the kernel,
   2592       // or previous epilog block. How is does this depends on if the
   2593       // instruction is scheduled in the previous block.
   2594       if (!InKernel) {
   2595         int StageDiffAdj = 0;
   2596         if (LoopValStage != -1 && StageScheduled > LoopValStage)
   2597           StageDiffAdj = StageScheduled - LoopValStage;
   2598         // Use the loop value defined in the kernel, unless the kernel
   2599         // contains the last definition of the Phi.
   2600         if (np == 0 && PrevStage == LastStageNum &&
   2601             (StageScheduled != 0 || LoopValStage != 0) &&
   2602             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
   2603           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
   2604         // Use the value defined by the Phi. We add one because we switch
   2605         // from looking at the loop value to the Phi definition.
   2606         else if (np > 0 && PrevStage == LastStageNum &&
   2607                  VRMap[PrevStage - np + 1].count(Def))
   2608           PhiOp2 = VRMap[PrevStage - np + 1][Def];
   2609         // Use the loop value defined in the kernel.
   2610         else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
   2611                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
   2612           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
   2613         // Use the value defined by the Phi, unless we're generating the first
   2614         // epilog and the Phi refers to a Phi in a different stage.
   2615         else if (VRMap[PrevStage - np].count(Def) &&
   2616                  (!LoopDefIsPhi || PrevStage != LastStageNum))
   2617           PhiOp2 = VRMap[PrevStage - np][Def];
   2618       }
   2619 
   2620       // Check if we can reuse an existing Phi. This occurs when a Phi
   2621       // references another Phi, and the other Phi is scheduled in an
   2622       // earlier stage. We can try to reuse an existing Phi up until the last
   2623       // stage of the current Phi.
   2624       if (LoopDefIsPhi && VRMap[CurStageNum].count(LoopVal) &&
   2625           LoopValStage >= (int)(CurStageNum - LastStageNum)) {
   2626         int LVNumStages = Schedule.getStagesForPhi(LoopVal);
   2627         int StageDiff = (StageScheduled - LoopValStage);
   2628         LVNumStages -= StageDiff;
   2629         if (LVNumStages > (int)np) {
   2630           NewReg = PhiOp2;
   2631           unsigned ReuseStage = CurStageNum;
   2632           if (Schedule.isLoopCarried(this, *PhiInst))
   2633             ReuseStage -= LVNumStages;
   2634           // Check if the Phi to reuse has been generated yet. If not, then
   2635           // there is nothing to reuse.
   2636           if (VRMap[ReuseStage].count(LoopVal)) {
   2637             NewReg = VRMap[ReuseStage][LoopVal];
   2638 
   2639             rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
   2640                                   &*BBI, Def, NewReg);
   2641             // Update the map with the new Phi name.
   2642             VRMap[CurStageNum - np][Def] = NewReg;
   2643             PhiOp2 = NewReg;
   2644             if (VRMap[LastStageNum - np - 1].count(LoopVal))
   2645               PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
   2646 
   2647             if (IsLast && np == NumPhis - 1)
   2648               replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
   2649             continue;
   2650           }
   2651         } else if (StageDiff > 0 &&
   2652                    VRMap[CurStageNum - StageDiff - np].count(LoopVal))
   2653           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
   2654       }
   2655 
   2656       const TargetRegisterClass *RC = MRI.getRegClass(Def);
   2657       NewReg = MRI.createVirtualRegister(RC);
   2658 
   2659       MachineInstrBuilder NewPhi =
   2660           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
   2661                   TII->get(TargetOpcode::PHI), NewReg);
   2662       NewPhi.addReg(PhiOp1).addMBB(BB1);
   2663       NewPhi.addReg(PhiOp2).addMBB(BB2);
   2664       if (np == 0)
   2665         InstrMap[NewPhi] = &*BBI;
   2666 
   2667       // We define the Phis after creating the new pipelined code, so
   2668       // we need to rename the Phi values in scheduled instructions.
   2669 
   2670       unsigned PrevReg = 0;
   2671       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
   2672         PrevReg = VRMap[PrevStage - np][LoopVal];
   2673       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
   2674                             Def, NewReg, PrevReg);
   2675       // If the Phi has been scheduled, use the new name for rewriting.
   2676       if (VRMap[CurStageNum - np].count(Def)) {
   2677         unsigned R = VRMap[CurStageNum - np][Def];
   2678         rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
   2679                               R, NewReg);
   2680       }
   2681 
   2682       // Check if we need to rename any uses that occurs after the loop. The
   2683       // register to replace depends on whether the Phi is scheduled in the
   2684       // epilog.
   2685       if (IsLast && np == NumPhis - 1)
   2686         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
   2687 
   2688       // In the kernel, a dependent Phi uses the value from this Phi.
   2689       if (InKernel)
   2690         PhiOp2 = NewReg;
   2691 
   2692       // Update the map with the new Phi name.
   2693       VRMap[CurStageNum - np][Def] = NewReg;
   2694     }
   2695 
   2696     while (NumPhis++ < NumStages) {
   2697       rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
   2698                             &*BBI, Def, NewReg, 0);
   2699     }
   2700 
   2701     // Check if we need to rename a Phi that has been eliminated due to
   2702     // scheduling.
   2703     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
   2704       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
   2705   }
   2706 }
   2707 
   2708 /// Generate Phis for the specified block in the generated pipelined code.
   2709 /// These are new Phis needed because the definition is scheduled after the
   2710 /// use in the pipelened sequence.
   2711 void SwingSchedulerDAG::generatePhis(
   2712     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
   2713     MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
   2714     InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
   2715     bool IsLast) {
   2716   // Compute the stage number that contains the initial Phi value, and
   2717   // the Phi from the previous stage.
   2718   unsigned PrologStage = 0;
   2719   unsigned PrevStage = 0;
   2720   unsigned StageDiff = CurStageNum - LastStageNum;
   2721   bool InKernel = (StageDiff == 0);
   2722   if (InKernel) {
   2723     PrologStage = LastStageNum - 1;
   2724     PrevStage = CurStageNum;
   2725   } else {
   2726     PrologStage = LastStageNum - StageDiff;
   2727     PrevStage = LastStageNum + StageDiff - 1;
   2728   }
   2729 
   2730   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
   2731                                    BBE = BB->instr_end();
   2732        BBI != BBE; ++BBI) {
   2733     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
   2734       MachineOperand &MO = BBI->getOperand(i);
   2735       if (!MO.isReg() || !MO.isDef() ||
   2736           !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   2737         continue;
   2738 
   2739       int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
   2740       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
   2741       unsigned Def = MO.getReg();
   2742       unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
   2743       // An instruction scheduled in stage 0 and is used after the loop
   2744       // requires a phi in the epilog for the last definition from either
   2745       // the kernel or prolog.
   2746       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
   2747           hasUseAfterLoop(Def, BB, MRI))
   2748         NumPhis = 1;
   2749       if (!InKernel && (unsigned)StageScheduled > PrologStage)
   2750         continue;
   2751 
   2752       unsigned PhiOp2 = VRMap[PrevStage][Def];
   2753       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
   2754         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
   2755           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
   2756       // The number of Phis can't exceed the number of prolog stages. The
   2757       // prolog stage number is zero based.
   2758       if (NumPhis > PrologStage + 1 - StageScheduled)
   2759         NumPhis = PrologStage + 1 - StageScheduled;
   2760       for (unsigned np = 0; np < NumPhis; ++np) {
   2761         unsigned PhiOp1 = VRMap[PrologStage][Def];
   2762         if (np <= PrologStage)
   2763           PhiOp1 = VRMap[PrologStage - np][Def];
   2764         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
   2765           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
   2766             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
   2767           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
   2768             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
   2769         }
   2770         if (!InKernel)
   2771           PhiOp2 = VRMap[PrevStage - np][Def];
   2772 
   2773         const TargetRegisterClass *RC = MRI.getRegClass(Def);
   2774         unsigned NewReg = MRI.createVirtualRegister(RC);
   2775 
   2776         MachineInstrBuilder NewPhi =
   2777             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
   2778                     TII->get(TargetOpcode::PHI), NewReg);
   2779         NewPhi.addReg(PhiOp1).addMBB(BB1);
   2780         NewPhi.addReg(PhiOp2).addMBB(BB2);
   2781         if (np == 0)
   2782           InstrMap[NewPhi] = &*BBI;
   2783 
   2784         // Rewrite uses and update the map. The actions depend upon whether
   2785         // we generating code for the kernel or epilog blocks.
   2786         if (InKernel) {
   2787           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
   2788                                 &*BBI, PhiOp1, NewReg);
   2789           rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
   2790                                 &*BBI, PhiOp2, NewReg);
   2791 
   2792           PhiOp2 = NewReg;
   2793           VRMap[PrevStage - np - 1][Def] = NewReg;
   2794         } else {
   2795           VRMap[CurStageNum - np][Def] = NewReg;
   2796           if (np == NumPhis - 1)
   2797             rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
   2798                                   &*BBI, Def, NewReg);
   2799         }
   2800         if (IsLast && np == NumPhis - 1)
   2801           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
   2802       }
   2803     }
   2804   }
   2805 }
   2806 
   2807 /// Remove instructions that generate values with no uses.
   2808 /// Typically, these are induction variable operations that generate values
   2809 /// used in the loop itself.  A dead instruction has a definition with
   2810 /// no uses, or uses that occur in the original loop only.
   2811 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
   2812                                                MBBVectorTy &EpilogBBs) {
   2813   // For each epilog block, check that the value defined by each instruction
   2814   // is used.  If not, delete it.
   2815   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
   2816                                      MBE = EpilogBBs.rend();
   2817        MBB != MBE; ++MBB)
   2818     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
   2819                                                    ME = (*MBB)->instr_rend();
   2820          MI != ME;) {
   2821       // From DeadMachineInstructionElem. Don't delete inline assembly.
   2822       if (MI->isInlineAsm()) {
   2823         ++MI;
   2824         continue;
   2825       }
   2826       bool SawStore = false;
   2827       // Check if it's safe to remove the instruction due to side effects.
   2828       // We can, and want to, remove Phis here.
   2829       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
   2830         ++MI;
   2831         continue;
   2832       }
   2833       bool used = true;
   2834       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
   2835                                       MOE = MI->operands_end();
   2836            MOI != MOE; ++MOI) {
   2837         if (!MOI->isReg() || !MOI->isDef())
   2838           continue;
   2839         unsigned reg = MOI->getReg();
   2840         unsigned realUses = 0;
   2841         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
   2842                                                EI = MRI.use_end();
   2843              UI != EI; ++UI) {
   2844           // Check if there are any uses that occur only in the original
   2845           // loop.  If so, that's not a real use.
   2846           if (UI->getParent()->getParent() != BB) {
   2847             realUses++;
   2848             used = true;
   2849             break;
   2850           }
   2851         }
   2852         if (realUses > 0)
   2853           break;
   2854         used = false;
   2855       }
   2856       if (!used) {
   2857         MI->eraseFromParent();
   2858         ME = (*MBB)->instr_rend();
   2859         continue;
   2860       }
   2861       ++MI;
   2862     }
   2863   // In the kernel block, check if we can remove a Phi that generates a value
   2864   // used in an instruction removed in the epilog block.
   2865   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
   2866                                    BBE = KernelBB->getFirstNonPHI();
   2867        BBI != BBE;) {
   2868     MachineInstr *MI = &*BBI;
   2869     ++BBI;
   2870     unsigned reg = MI->getOperand(0).getReg();
   2871     if (MRI.use_begin(reg) == MRI.use_end()) {
   2872       MI->eraseFromParent();
   2873     }
   2874   }
   2875 }
   2876 
   2877 /// For loop carried definitions, we split the lifetime of a virtual register
   2878 /// that has uses past the definition in the next iteration. A copy with a new
   2879 /// virtual register is inserted before the definition, which helps with
   2880 /// generating a better register assignment.
   2881 ///
   2882 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
   2883 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
   2884 ///   v3 = ..             v4 = copy v1
   2885 ///   .. = V1             v3 = ..
   2886 ///                       .. = v4
   2887 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
   2888                                        MBBVectorTy &EpilogBBs,
   2889                                        SMSchedule &Schedule) {
   2890   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
   2891   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
   2892                                    BBF = KernelBB->getFirstNonPHI();
   2893        BBI != BBF; ++BBI) {
   2894     unsigned Def = BBI->getOperand(0).getReg();
   2895     // Check for any Phi definition that used as an operand of another Phi
   2896     // in the same block.
   2897     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
   2898                                                  E = MRI.use_instr_end();
   2899          I != E; ++I) {
   2900       if (I->isPHI() && I->getParent() == KernelBB) {
   2901         // Get the loop carried definition.
   2902         unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
   2903         if (!LCDef)
   2904           continue;
   2905         MachineInstr *MI = MRI.getVRegDef(LCDef);
   2906         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
   2907           continue;
   2908         // Search through the rest of the block looking for uses of the Phi
   2909         // definition. If one occurs, then split the lifetime.
   2910         unsigned SplitReg = 0;
   2911         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
   2912                                     KernelBB->instr_end()))
   2913           if (BBJ.readsRegister(Def)) {
   2914             // We split the lifetime when we find the first use.
   2915             if (SplitReg == 0) {
   2916               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
   2917               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
   2918                       TII->get(TargetOpcode::COPY), SplitReg)
   2919                   .addReg(Def);
   2920             }
   2921             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
   2922           }
   2923         if (!SplitReg)
   2924           continue;
   2925         // Search through each of the epilog blocks for any uses to be renamed.
   2926         for (auto &Epilog : EpilogBBs)
   2927           for (auto &I : *Epilog)
   2928             if (I.readsRegister(Def))
   2929               I.substituteRegister(Def, SplitReg, 0, *TRI);
   2930         break;
   2931       }
   2932     }
   2933   }
   2934 }
   2935 
   2936 /// Remove the incoming block from the Phis in a basic block.
   2937 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
   2938   for (MachineInstr &MI : *BB) {
   2939     if (!MI.isPHI())
   2940       break;
   2941     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
   2942       if (MI.getOperand(i + 1).getMBB() == Incoming) {
   2943         MI.RemoveOperand(i + 1);
   2944         MI.RemoveOperand(i);
   2945         break;
   2946       }
   2947   }
   2948 }
   2949 
   2950 /// Create branches from each prolog basic block to the appropriate epilog
   2951 /// block.  These edges are needed if the loop ends before reaching the
   2952 /// kernel.
   2953 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
   2954                                     MachineBasicBlock *KernelBB,
   2955                                     MBBVectorTy &EpilogBBs,
   2956                                     SMSchedule &Schedule, ValueMapTy *VRMap) {
   2957   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
   2958   MachineInstr *IndVar = Pass.LI.LoopInductionVar;
   2959   MachineInstr *Cmp = Pass.LI.LoopCompare;
   2960   MachineBasicBlock *LastPro = KernelBB;
   2961   MachineBasicBlock *LastEpi = KernelBB;
   2962 
   2963   // Start from the blocks connected to the kernel and work "out"
   2964   // to the first prolog and the last epilog blocks.
   2965   SmallVector<MachineInstr *, 4> PrevInsts;
   2966   unsigned MaxIter = PrologBBs.size() - 1;
   2967   unsigned LC = UINT_MAX;
   2968   unsigned LCMin = UINT_MAX;
   2969   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
   2970     // Add branches to the prolog that go to the corresponding
   2971     // epilog, and the fall-thru prolog/kernel block.
   2972     MachineBasicBlock *Prolog = PrologBBs[j];
   2973     MachineBasicBlock *Epilog = EpilogBBs[i];
   2974     // We've executed one iteration, so decrement the loop count and check for
   2975     // the loop end.
   2976     SmallVector<MachineOperand, 4> Cond;
   2977     // Check if the LOOP0 has already been removed. If so, then there is no need
   2978     // to reduce the trip count.
   2979     if (LC != 0)
   2980       LC = TII->reduceLoopCount(*Prolog, IndVar, Cmp, Cond, PrevInsts, j,
   2981                                 MaxIter);
   2982 
   2983     // Record the value of the first trip count, which is used to determine if
   2984     // branches and blocks can be removed for constant trip counts.
   2985     if (LCMin == UINT_MAX)
   2986       LCMin = LC;
   2987 
   2988     unsigned numAdded = 0;
   2989     if (TargetRegisterInfo::isVirtualRegister(LC)) {
   2990       Prolog->addSuccessor(Epilog);
   2991       numAdded = TII->InsertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
   2992     } else if (j >= LCMin) {
   2993       Prolog->addSuccessor(Epilog);
   2994       Prolog->removeSuccessor(LastPro);
   2995       LastEpi->removeSuccessor(Epilog);
   2996       numAdded = TII->InsertBranch(*Prolog, Epilog, 0, Cond, DebugLoc());
   2997       removePhis(Epilog, LastEpi);
   2998       // Remove the blocks that are no longer referenced.
   2999       if (LastPro != LastEpi) {
   3000         LastEpi->clear();
   3001         LastEpi->eraseFromParent();
   3002       }
   3003       LastPro->clear();
   3004       LastPro->eraseFromParent();
   3005     } else {
   3006       numAdded = TII->InsertBranch(*Prolog, LastPro, 0, Cond, DebugLoc());
   3007       removePhis(Epilog, Prolog);
   3008     }
   3009     LastPro = Prolog;
   3010     LastEpi = Epilog;
   3011     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
   3012                                                    E = Prolog->instr_rend();
   3013          I != E && numAdded > 0; ++I, --numAdded)
   3014       updateInstruction(&*I, false, j, 0, Schedule, VRMap);
   3015   }
   3016 }
   3017 
   3018 /// Return true if we can compute the amount the instruction changes
   3019 /// during each iteration. Set Delta to the amount of the change.
   3020 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
   3021   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
   3022   unsigned BaseReg;
   3023   int64_t Offset;
   3024   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
   3025     return false;
   3026 
   3027   MachineRegisterInfo &MRI = MF.getRegInfo();
   3028   // Check if there is a Phi. If so, get the definition in the loop.
   3029   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
   3030   if (BaseDef && BaseDef->isPHI()) {
   3031     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
   3032     BaseDef = MRI.getVRegDef(BaseReg);
   3033   }
   3034   if (!BaseDef)
   3035     return false;
   3036 
   3037   int D = 0;
   3038   if (!TII->getIncrementValue(BaseDef, D) && D >= 0)
   3039     return false;
   3040 
   3041   Delta = D;
   3042   return true;
   3043 }
   3044 
   3045 /// Update the memory operand with a new offset when the pipeliner
   3046 /// generate a new copy of the instruction that refers to a
   3047 /// different memory location.
   3048 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
   3049                                           MachineInstr &OldMI, unsigned Num) {
   3050   if (Num == 0)
   3051     return;
   3052   // If the instruction has memory operands, then adjust the offset
   3053   // when the instruction appears in different stages.
   3054   unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
   3055   if (NumRefs == 0)
   3056     return;
   3057   MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
   3058   unsigned Refs = 0;
   3059   for (MachineInstr::mmo_iterator I = NewMI.memoperands_begin(),
   3060                                   E = NewMI.memoperands_end();
   3061        I != E; ++I) {
   3062     if ((*I)->isVolatile() || (*I)->isInvariant() || (!(*I)->getValue())) {
   3063       NewMemRefs[Refs++] = *I;
   3064       continue;
   3065     }
   3066     unsigned Delta;
   3067     if (computeDelta(OldMI, Delta)) {
   3068       int64_t AdjOffset = Delta * Num;
   3069       NewMemRefs[Refs++] =
   3070           MF.getMachineMemOperand(*I, AdjOffset, (*I)->getSize());
   3071     } else
   3072       NewMemRefs[Refs++] = MF.getMachineMemOperand(*I, 0, UINT64_MAX);
   3073   }
   3074   NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
   3075 }
   3076 
   3077 /// Clone the instruction for the new pipelined loop and update the
   3078 /// memory operands, if needed.
   3079 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
   3080                                             unsigned CurStageNum,
   3081                                             unsigned InstStageNum) {
   3082   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
   3083   // Check for tied operands in inline asm instructions. This should be handled
   3084   // elsewhere, but I'm not sure of the best solution.
   3085   if (OldMI->isInlineAsm())
   3086     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
   3087       const auto &MO = OldMI->getOperand(i);
   3088       if (MO.isReg() && MO.isUse())
   3089         break;
   3090       unsigned UseIdx;
   3091       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
   3092         NewMI->tieOperands(i, UseIdx);
   3093     }
   3094   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
   3095   return NewMI;
   3096 }
   3097 
   3098 /// Clone the instruction for the new pipelined loop. If needed, this
   3099 /// function updates the instruction using the values saved in the
   3100 /// InstrChanges structure.
   3101 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
   3102                                                      unsigned CurStageNum,
   3103                                                      unsigned InstStageNum,
   3104                                                      SMSchedule &Schedule) {
   3105   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
   3106   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
   3107       InstrChanges.find(getSUnit(OldMI));
   3108   if (It != InstrChanges.end()) {
   3109     std::pair<unsigned, int64_t> RegAndOffset = It->second;
   3110     unsigned BasePos, OffsetPos;
   3111     if (!TII->getBaseAndOffsetPosition(OldMI, BasePos, OffsetPos))
   3112       return nullptr;
   3113     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
   3114     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
   3115     if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
   3116       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
   3117     NewMI->getOperand(OffsetPos).setImm(NewOffset);
   3118   }
   3119   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
   3120   return NewMI;
   3121 }
   3122 
   3123 /// Update the machine instruction with new virtual registers.  This
   3124 /// function may change the defintions and/or uses.
   3125 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
   3126                                           unsigned CurStageNum,
   3127                                           unsigned InstrStageNum,
   3128                                           SMSchedule &Schedule,
   3129                                           ValueMapTy *VRMap) {
   3130   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
   3131     MachineOperand &MO = NewMI->getOperand(i);
   3132     if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   3133       continue;
   3134     unsigned reg = MO.getReg();
   3135     if (MO.isDef()) {
   3136       // Create a new virtual register for the definition.
   3137       const TargetRegisterClass *RC = MRI.getRegClass(reg);
   3138       unsigned NewReg = MRI.createVirtualRegister(RC);
   3139       MO.setReg(NewReg);
   3140       VRMap[CurStageNum][reg] = NewReg;
   3141       if (LastDef)
   3142         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
   3143     } else if (MO.isUse()) {
   3144       MachineInstr *Def = MRI.getVRegDef(reg);
   3145       // Compute the stage that contains the last definition for instruction.
   3146       int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
   3147       unsigned StageNum = CurStageNum;
   3148       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
   3149         // Compute the difference in stages between the defintion and the use.
   3150         unsigned StageDiff = (InstrStageNum - DefStageNum);
   3151         // Make an adjustment to get the last definition.
   3152         StageNum -= StageDiff;
   3153       }
   3154       if (VRMap[StageNum].count(reg))
   3155         MO.setReg(VRMap[StageNum][reg]);
   3156     }
   3157   }
   3158 }
   3159 
   3160 /// Return the instruction in the loop that defines the register.
   3161 /// If the definition is a Phi, then follow the Phi operand to
   3162 /// the instruction in the loop.
   3163 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
   3164   SmallPtrSet<MachineInstr *, 8> Visited;
   3165   MachineInstr *Def = MRI.getVRegDef(Reg);
   3166   while (Def->isPHI()) {
   3167     if (!Visited.insert(Def).second)
   3168       break;
   3169     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
   3170       if (Def->getOperand(i + 1).getMBB() == BB) {
   3171         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
   3172         break;
   3173       }
   3174   }
   3175   return Def;
   3176 }
   3177 
   3178 /// Return the new name for the value from the previous stage.
   3179 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
   3180                                           unsigned LoopVal, unsigned LoopStage,
   3181                                           ValueMapTy *VRMap,
   3182                                           MachineBasicBlock *BB) {
   3183   unsigned PrevVal = 0;
   3184   if (StageNum > PhiStage) {
   3185     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
   3186     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
   3187       // The name is defined in the previous stage.
   3188       PrevVal = VRMap[StageNum - 1][LoopVal];
   3189     else if (VRMap[StageNum].count(LoopVal))
   3190       // The previous name is defined in the current stage when the instruction
   3191       // order is swapped.
   3192       PrevVal = VRMap[StageNum][LoopVal];
   3193     else if (!LoopInst->isPHI())
   3194       // The loop value hasn't yet been scheduled.
   3195       PrevVal = LoopVal;
   3196     else if (StageNum == PhiStage + 1)
   3197       // The loop value is another phi, which has not been scheduled.
   3198       PrevVal = getInitPhiReg(*LoopInst, BB);
   3199     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
   3200       // The loop value is another phi, which has been scheduled.
   3201       PrevVal =
   3202           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
   3203                         LoopStage, VRMap, BB);
   3204   }
   3205   return PrevVal;
   3206 }
   3207 
   3208 /// Rewrite the Phi values in the specified block to use the mappings
   3209 /// from the initial operand. Once the Phi is scheduled, we switch
   3210 /// to using the loop value instead of the Phi value, so those names
   3211 /// do not need to be rewritten.
   3212 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
   3213                                          unsigned StageNum,
   3214                                          SMSchedule &Schedule,
   3215                                          ValueMapTy *VRMap,
   3216                                          InstrMapTy &InstrMap) {
   3217   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
   3218                                    BBE = BB->getFirstNonPHI();
   3219        BBI != BBE; ++BBI) {
   3220     unsigned InitVal = 0;
   3221     unsigned LoopVal = 0;
   3222     getPhiRegs(*BBI, BB, InitVal, LoopVal);
   3223     unsigned PhiDef = BBI->getOperand(0).getReg();
   3224 
   3225     unsigned PhiStage =
   3226         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
   3227     unsigned LoopStage =
   3228         (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
   3229     unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
   3230     if (NumPhis > StageNum)
   3231       NumPhis = StageNum;
   3232     for (unsigned np = 0; np <= NumPhis; ++np) {
   3233       unsigned NewVal =
   3234           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
   3235       if (!NewVal)
   3236         NewVal = InitVal;
   3237       rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
   3238                             PhiDef, NewVal);
   3239     }
   3240   }
   3241 }
   3242 
   3243 /// Rewrite a previously scheduled instruction to use the register value
   3244 /// from the new instruction. Make sure the instruction occurs in the
   3245 /// basic block, and we don't change the uses in the new instruction.
   3246 void SwingSchedulerDAG::rewriteScheduledInstr(
   3247     MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
   3248     unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
   3249     unsigned NewReg, unsigned PrevReg) {
   3250   bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
   3251   int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
   3252   // Rewrite uses that have been scheduled already to use the new
   3253   // Phi register.
   3254   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
   3255                                          EI = MRI.use_end();
   3256        UI != EI;) {
   3257     MachineOperand &UseOp = *UI;
   3258     MachineInstr *UseMI = UseOp.getParent();
   3259     ++UI;
   3260     if (UseMI->getParent() != BB)
   3261       continue;
   3262     if (UseMI->isPHI()) {
   3263       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
   3264         continue;
   3265       if (getLoopPhiReg(*UseMI, BB) != OldReg)
   3266         continue;
   3267     }
   3268     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
   3269     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
   3270     SUnit *OrigMISU = getSUnit(OrigInstr->second);
   3271     int StageSched = Schedule.stageScheduled(OrigMISU);
   3272     int CycleSched = Schedule.cycleScheduled(OrigMISU);
   3273     unsigned ReplaceReg = 0;
   3274     // This is the stage for the scheduled instruction.
   3275     if (StagePhi == StageSched && Phi->isPHI()) {
   3276       int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
   3277       if (PrevReg && InProlog)
   3278         ReplaceReg = PrevReg;
   3279       else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
   3280                (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
   3281         ReplaceReg = PrevReg;
   3282       else
   3283         ReplaceReg = NewReg;
   3284     }
   3285     // The scheduled instruction occurs before the scheduled Phi, and the
   3286     // Phi is not loop carried.
   3287     if (!InProlog && StagePhi + 1 == StageSched &&
   3288         !Schedule.isLoopCarried(this, *Phi))
   3289       ReplaceReg = NewReg;
   3290     if (StagePhi > StageSched && Phi->isPHI())
   3291       ReplaceReg = NewReg;
   3292     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
   3293       ReplaceReg = NewReg;
   3294     if (ReplaceReg) {
   3295       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
   3296       UseOp.setReg(ReplaceReg);
   3297     }
   3298   }
   3299 }
   3300 
   3301 /// Check if we can change the instruction to use an offset value from the
   3302 /// previous iteration. If so, return true and set the base and offset values
   3303 /// so that we can rewrite the load, if necessary.
   3304 ///   v1 = Phi(v0, v3)
   3305 ///   v2 = load v1, 0
   3306 ///   v3 = post_store v1, 4, x
   3307 /// This function enables the load to be rewritten as v2 = load v3, 4.
   3308 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
   3309                                               unsigned &BasePos,
   3310                                               unsigned &OffsetPos,
   3311                                               unsigned &NewBase,
   3312                                               int64_t &Offset) {
   3313   // Get the load instruction.
   3314   if (TII->isPostIncrement(MI))
   3315     return false;
   3316   unsigned BasePosLd, OffsetPosLd;
   3317   if (!TII->getBaseAndOffsetPosition(MI, BasePosLd, OffsetPosLd))
   3318     return false;
   3319   unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
   3320 
   3321   // Look for the Phi instruction.
   3322   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
   3323   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
   3324   if (!Phi || !Phi->isPHI())
   3325     return false;
   3326   // Get the register defined in the loop block.
   3327   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
   3328   if (!PrevReg)
   3329     return false;
   3330 
   3331   // Check for the post-increment load/store instruction.
   3332   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
   3333   if (!PrevDef || PrevDef == MI)
   3334     return false;
   3335 
   3336   if (!TII->isPostIncrement(PrevDef))
   3337     return false;
   3338 
   3339   unsigned BasePos1 = 0, OffsetPos1 = 0;
   3340   if (!TII->getBaseAndOffsetPosition(PrevDef, BasePos1, OffsetPos1))
   3341     return false;
   3342 
   3343   // Make sure offset values are both positive or both negative.
   3344   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
   3345   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
   3346   if ((LoadOffset >= 0) != (StoreOffset >= 0))
   3347     return false;
   3348 
   3349   // Set the return value once we determine that we return true.
   3350   BasePos = BasePosLd;
   3351   OffsetPos = OffsetPosLd;
   3352   NewBase = PrevReg;
   3353   Offset = StoreOffset;
   3354   return true;
   3355 }
   3356 
   3357 /// Apply changes to the instruction if needed. The changes are need
   3358 /// to improve the scheduling and depend up on the final schedule.
   3359 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
   3360                                                   SMSchedule &Schedule,
   3361                                                   bool UpdateDAG) {
   3362   SUnit *SU = getSUnit(MI);
   3363   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
   3364       InstrChanges.find(SU);
   3365   if (It != InstrChanges.end()) {
   3366     std::pair<unsigned, int64_t> RegAndOffset = It->second;
   3367     unsigned BasePos, OffsetPos;
   3368     if (!TII->getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
   3369       return nullptr;
   3370     unsigned BaseReg = MI->getOperand(BasePos).getReg();
   3371     MachineInstr *LoopDef = findDefInLoop(BaseReg);
   3372     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
   3373     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
   3374     int BaseStageNum = Schedule.stageScheduled(SU);
   3375     int BaseCycleNum = Schedule.cycleScheduled(SU);
   3376     if (BaseStageNum < DefStageNum) {
   3377       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
   3378       int OffsetDiff = DefStageNum - BaseStageNum;
   3379       if (DefCycleNum < BaseCycleNum) {
   3380         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
   3381         if (OffsetDiff > 0)
   3382           --OffsetDiff;
   3383       }
   3384       int64_t NewOffset =
   3385           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
   3386       NewMI->getOperand(OffsetPos).setImm(NewOffset);
   3387       if (UpdateDAG) {
   3388         SU->setInstr(NewMI);
   3389         MISUnitMap[NewMI] = SU;
   3390       }
   3391       NewMIs.insert(NewMI);
   3392       return NewMI;
   3393     }
   3394   }
   3395   return nullptr;
   3396 }
   3397 
   3398 /// Return true for an order dependence that is loop carried potentially.
   3399 /// An order dependence is loop carried if the destination defines a value
   3400 /// that may be used by the source in a subsequent iteration.
   3401 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
   3402                                            bool isSucc) {
   3403   if (!isOrder(Source, Dep) || Dep.isArtificial())
   3404     return false;
   3405 
   3406   if (!SwpPruneLoopCarried)
   3407     return true;
   3408 
   3409   MachineInstr *SI = Source->getInstr();
   3410   MachineInstr *DI = Dep.getSUnit()->getInstr();
   3411   if (!isSucc)
   3412     std::swap(SI, DI);
   3413   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
   3414 
   3415   // Assume ordered loads and stores may have a loop carried dependence.
   3416   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
   3417       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
   3418     return true;
   3419 
   3420   // Only chain dependences between a load and store can be loop carried.
   3421   if (!DI->mayStore() || !SI->mayLoad())
   3422     return false;
   3423 
   3424   unsigned DeltaS, DeltaD;
   3425   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
   3426     return true;
   3427 
   3428   unsigned BaseRegS, BaseRegD;
   3429   int64_t OffsetS, OffsetD;
   3430   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
   3431   if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
   3432       !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
   3433     return true;
   3434 
   3435   if (BaseRegS != BaseRegD)
   3436     return true;
   3437 
   3438   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
   3439   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
   3440 
   3441   // This is the main test, which checks the offset values and the loop
   3442   // increment value to determine if the accesses may be loop carried.
   3443   if (OffsetS >= OffsetD)
   3444     return OffsetS + AccessSizeS > DeltaS;
   3445   else if (OffsetS < OffsetD)
   3446     return OffsetD + AccessSizeD > DeltaD;
   3447 
   3448   return true;
   3449 }
   3450 
   3451 /// Try to schedule the node at the specified StartCycle and continue
   3452 /// until the node is schedule or the EndCycle is reached.  This function
   3453 /// returns true if the node is scheduled.  This routine may search either
   3454 /// forward or backward for a place to insert the instruction based upon
   3455 /// the relative values of StartCycle and EndCycle.
   3456 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
   3457   bool forward = true;
   3458   if (StartCycle > EndCycle)
   3459     forward = false;
   3460 
   3461   // The terminating condition depends on the direction.
   3462   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
   3463   for (int curCycle = StartCycle; curCycle != termCycle;
   3464        forward ? ++curCycle : --curCycle) {
   3465 
   3466     // Add the already scheduled instructions at the specified cycle to the DFA.
   3467     Resources->clearResources();
   3468     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
   3469          checkCycle <= LastCycle; checkCycle += II) {
   3470       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
   3471 
   3472       for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
   3473                                          E = cycleInstrs.end();
   3474            I != E; ++I) {
   3475         if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
   3476           continue;
   3477         assert(Resources->canReserveResources(*(*I)->getInstr()) &&
   3478                "These instructions have already been scheduled.");
   3479         Resources->reserveResources(*(*I)->getInstr());
   3480       }
   3481     }
   3482     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
   3483         Resources->canReserveResources(*SU->getInstr())) {
   3484       DEBUG({
   3485         dbgs() << "\tinsert at cycle " << curCycle << " ";
   3486         SU->getInstr()->dump();
   3487       });
   3488 
   3489       ScheduledInstrs[curCycle].push_back(SU);
   3490       InstrToCycle.insert(std::make_pair(SU, curCycle));
   3491       if (curCycle > LastCycle)
   3492         LastCycle = curCycle;
   3493       if (curCycle < FirstCycle)
   3494         FirstCycle = curCycle;
   3495       return true;
   3496     }
   3497     DEBUG({
   3498       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
   3499       SU->getInstr()->dump();
   3500     });
   3501   }
   3502   return false;
   3503 }
   3504 
   3505 // Return the cycle of the earliest scheduled instruction in the chain.
   3506 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
   3507   SmallPtrSet<SUnit *, 8> Visited;
   3508   SmallVector<SDep, 8> Worklist;
   3509   Worklist.push_back(Dep);
   3510   int EarlyCycle = INT_MAX;
   3511   while (!Worklist.empty()) {
   3512     const SDep &Cur = Worklist.pop_back_val();
   3513     SUnit *PrevSU = Cur.getSUnit();
   3514     if (Visited.count(PrevSU))
   3515       continue;
   3516     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
   3517     if (it == InstrToCycle.end())
   3518       continue;
   3519     EarlyCycle = std::min(EarlyCycle, it->second);
   3520     for (const auto &PI : PrevSU->Preds)
   3521       if (SwingSchedulerDAG::isOrder(PrevSU, PI))
   3522         Worklist.push_back(PI);
   3523     Visited.insert(PrevSU);
   3524   }
   3525   return EarlyCycle;
   3526 }
   3527 
   3528 // Return the cycle of the latest scheduled instruction in the chain.
   3529 int SMSchedule::latestCycleInChain(const SDep &Dep) {
   3530   SmallPtrSet<SUnit *, 8> Visited;
   3531   SmallVector<SDep, 8> Worklist;
   3532   Worklist.push_back(Dep);
   3533   int LateCycle = INT_MIN;
   3534   while (!Worklist.empty()) {
   3535     const SDep &Cur = Worklist.pop_back_val();
   3536     SUnit *SuccSU = Cur.getSUnit();
   3537     if (Visited.count(SuccSU))
   3538       continue;
   3539     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
   3540     if (it == InstrToCycle.end())
   3541       continue;
   3542     LateCycle = std::max(LateCycle, it->second);
   3543     for (const auto &SI : SuccSU->Succs)
   3544       if (SwingSchedulerDAG::isOrder(SuccSU, SI))
   3545         Worklist.push_back(SI);
   3546     Visited.insert(SuccSU);
   3547   }
   3548   return LateCycle;
   3549 }
   3550 
   3551 /// If an instruction has a use that spans multiple iterations, then
   3552 /// return true. These instructions are characterized by having a back-ege
   3553 /// to a Phi, which contains a reference to another Phi.
   3554 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
   3555   for (auto &P : SU->Preds)
   3556     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
   3557       for (auto &S : P.getSUnit()->Succs)
   3558         if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
   3559           return P.getSUnit();
   3560   return nullptr;
   3561 }
   3562 
   3563 /// Compute the scheduling start slot for the instruction.  The start slot
   3564 /// depends on any predecessor or successor nodes scheduled already.
   3565 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
   3566                               int *MinEnd, int *MaxStart, int II,
   3567                               SwingSchedulerDAG *DAG) {
   3568   // Iterate over each instruction that has been scheduled already.  The start
   3569   // slot computuation depends on whether the previously scheduled instruction
   3570   // is a predecessor or successor of the specified instruction.
   3571   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
   3572 
   3573     // Iterate over each instruction in the current cycle.
   3574     for (SUnit *I : getInstructions(cycle)) {
   3575       // Because we're processing a DAG for the dependences, we recognize
   3576       // the back-edge in recurrences by anti dependences.
   3577       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
   3578         const SDep &Dep = SU->Preds[i];
   3579         if (Dep.getSUnit() == I) {
   3580           if (!DAG->isBackedge(SU, Dep)) {
   3581             int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
   3582                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
   3583             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
   3584             if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
   3585               int End = earliestCycleInChain(Dep) + (II - 1);
   3586               *MinEnd = std::min(*MinEnd, End);
   3587             }
   3588           } else {
   3589             int LateStart = cycle - DAG->getLatency(SU, Dep) +
   3590                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
   3591             *MinLateStart = std::min(*MinLateStart, LateStart);
   3592           }
   3593         }
   3594         // For instruction that requires multiple iterations, make sure that
   3595         // the dependent instruction is not scheduled past the definition.
   3596         SUnit *BE = multipleIterations(I, DAG);
   3597         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
   3598             !SU->isPred(I))
   3599           *MinLateStart = std::min(*MinLateStart, cycle);
   3600       }
   3601       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
   3602         if (SU->Succs[i].getSUnit() == I) {
   3603           const SDep &Dep = SU->Succs[i];
   3604           if (!DAG->isBackedge(SU, Dep)) {
   3605             int LateStart = cycle - DAG->getLatency(SU, Dep) +
   3606                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
   3607             *MinLateStart = std::min(*MinLateStart, LateStart);
   3608             if (DAG->isLoopCarriedOrder(SU, Dep)) {
   3609               int Start = latestCycleInChain(Dep) + 1 - II;
   3610               *MaxStart = std::max(*MaxStart, Start);
   3611             }
   3612           } else {
   3613             int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
   3614                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
   3615             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
   3616           }
   3617         }
   3618     }
   3619   }
   3620 }
   3621 
   3622 /// Order the instructions within a cycle so that the definitions occur
   3623 /// before the uses. Returns true if the instruction is added to the start
   3624 /// of the list, or false if added to the end.
   3625 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
   3626                                  std::deque<SUnit *> &Insts) {
   3627   MachineInstr *MI = SU->getInstr();
   3628   bool OrderBeforeUse = false;
   3629   bool OrderAfterDef = false;
   3630   bool OrderBeforeDef = false;
   3631   unsigned MoveDef = 0;
   3632   unsigned MoveUse = 0;
   3633   int StageInst1 = stageScheduled(SU);
   3634 
   3635   unsigned Pos = 0;
   3636   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
   3637        ++I, ++Pos) {
   3638     // Relative order of Phis does not matter.
   3639     if (MI->isPHI() && (*I)->getInstr()->isPHI())
   3640       continue;
   3641     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
   3642       MachineOperand &MO = MI->getOperand(i);
   3643       if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   3644         continue;
   3645       unsigned Reg = MO.getReg();
   3646       unsigned BasePos, OffsetPos;
   3647       if (ST.getInstrInfo()->getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
   3648         if (MI->getOperand(BasePos).getReg() == Reg)
   3649           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
   3650             Reg = NewReg;
   3651       bool Reads, Writes;
   3652       std::tie(Reads, Writes) =
   3653           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
   3654       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
   3655         OrderBeforeUse = true;
   3656         MoveUse = Pos;
   3657       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
   3658         // Add the instruction after the scheduled instruction.
   3659         OrderAfterDef = true;
   3660         MoveDef = Pos;
   3661       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
   3662         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
   3663           OrderBeforeUse = true;
   3664           MoveUse = Pos;
   3665         } else {
   3666           OrderAfterDef = true;
   3667           MoveDef = Pos;
   3668         }
   3669       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
   3670         OrderBeforeUse = true;
   3671         MoveUse = Pos;
   3672         if (MoveUse != 0) {
   3673           OrderAfterDef = true;
   3674           MoveDef = Pos - 1;
   3675         }
   3676       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
   3677         // Add the instruction before the scheduled instruction.
   3678         OrderBeforeUse = true;
   3679         MoveUse = Pos;
   3680       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
   3681                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
   3682         OrderBeforeDef = true;
   3683         MoveUse = Pos;
   3684       }
   3685     }
   3686     // Check for order dependences between instructions. Make sure the source
   3687     // is ordered before the destination.
   3688     for (auto &S : SU->Succs)
   3689       if (S.getKind() == SDep::Order) {
   3690         if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
   3691           OrderBeforeUse = true;
   3692           MoveUse = Pos;
   3693         }
   3694       } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
   3695         if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
   3696           if (S.isAssignedRegDep()) {
   3697             OrderAfterDef = true;
   3698             MoveDef = Pos;
   3699           }
   3700         } else {
   3701           OrderBeforeUse = true;
   3702           MoveUse = Pos;
   3703         }
   3704       }
   3705     for (auto &P : SU->Preds)
   3706       if (P.getKind() == SDep::Order) {
   3707         if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
   3708           OrderAfterDef = true;
   3709           MoveDef = Pos;
   3710         }
   3711       } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
   3712         if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
   3713           if (P.isAssignedRegDep()) {
   3714             OrderBeforeUse = true;
   3715             MoveUse = Pos;
   3716           }
   3717         } else {
   3718           OrderAfterDef = true;
   3719           MoveDef = Pos;
   3720         }
   3721       }
   3722   }
   3723 
   3724   // A circular dependence.
   3725   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
   3726     OrderBeforeUse = false;
   3727 
   3728   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
   3729   // to a loop-carried dependence.
   3730   if (OrderBeforeDef)
   3731     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
   3732 
   3733   // The uncommon case when the instruction order needs to be updated because
   3734   // there is both a use and def.
   3735   if (OrderBeforeUse && OrderAfterDef) {
   3736     SUnit *UseSU = Insts.at(MoveUse);
   3737     SUnit *DefSU = Insts.at(MoveDef);
   3738     if (MoveUse > MoveDef) {
   3739       Insts.erase(Insts.begin() + MoveUse);
   3740       Insts.erase(Insts.begin() + MoveDef);
   3741     } else {
   3742       Insts.erase(Insts.begin() + MoveDef);
   3743       Insts.erase(Insts.begin() + MoveUse);
   3744     }
   3745     if (orderDependence(SSD, UseSU, Insts)) {
   3746       Insts.push_front(SU);
   3747       orderDependence(SSD, DefSU, Insts);
   3748       return true;
   3749     }
   3750     Insts.pop_back();
   3751     Insts.push_back(SU);
   3752     Insts.push_back(UseSU);
   3753     orderDependence(SSD, DefSU, Insts);
   3754     return false;
   3755   }
   3756   // Put the new instruction first if there is a use in the list. Otherwise,
   3757   // put it at the end of the list.
   3758   if (OrderBeforeUse)
   3759     Insts.push_front(SU);
   3760   else
   3761     Insts.push_back(SU);
   3762   return OrderBeforeUse;
   3763 }
   3764 
   3765 /// Return true if the scheduled Phi has a loop carried operand.
   3766 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
   3767   if (!Phi.isPHI())
   3768     return false;
   3769   assert(Phi.isPHI() && "Expecing a Phi.");
   3770   SUnit *DefSU = SSD->getSUnit(&Phi);
   3771   unsigned DefCycle = cycleScheduled(DefSU);
   3772   int DefStage = stageScheduled(DefSU);
   3773 
   3774   unsigned InitVal = 0;
   3775   unsigned LoopVal = 0;
   3776   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
   3777   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
   3778   if (!UseSU)
   3779     return true;
   3780   if (UseSU->getInstr()->isPHI())
   3781     return true;
   3782   unsigned LoopCycle = cycleScheduled(UseSU);
   3783   int LoopStage = stageScheduled(UseSU);
   3784   return LoopCycle > DefCycle ||
   3785          (LoopCycle <= DefCycle && LoopStage <= DefStage);
   3786 }
   3787 
   3788 /// Return true if the instruction is a definition that is loop carried
   3789 /// and defines the use on the next iteration.
   3790 ///        v1 = phi(v2, v3)
   3791 ///  (Def) v3 = op v1
   3792 ///  (MO)   = v1
   3793 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
   3794 /// register.
   3795 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
   3796                                        MachineInstr *Def, MachineOperand &MO) {
   3797   if (!MO.isReg())
   3798     return false;
   3799   if (Def->isPHI())
   3800     return false;
   3801   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
   3802   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
   3803     return false;
   3804   if (!isLoopCarried(SSD, *Phi))
   3805     return false;
   3806   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
   3807   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
   3808     MachineOperand &DMO = Def->getOperand(i);
   3809     if (!DMO.isReg() || !DMO.isDef())
   3810       continue;
   3811     if (DMO.getReg() == LoopReg)
   3812       return true;
   3813   }
   3814   return false;
   3815 }
   3816 
   3817 // Check if the generated schedule is valid. This function checks if
   3818 // an instruction that uses a physical register is scheduled in a
   3819 // different stage than the definition. The pipeliner does not handle
   3820 // physical register values that may cross a basic block boundary.
   3821 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
   3822   const TargetRegisterInfo *TRI = ST.getRegisterInfo();
   3823   for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
   3824     SUnit &SU = SSD->SUnits[i];
   3825     if (!SU.hasPhysRegDefs)
   3826       continue;
   3827     int StageDef = stageScheduled(&SU);
   3828     assert(StageDef != -1 && "Instruction should have been scheduled.");
   3829     for (auto &SI : SU.Succs)
   3830       if (SI.isAssignedRegDep())
   3831         if (TRI->isPhysicalRegister(SI.getReg()))
   3832           if (stageScheduled(SI.getSUnit()) != StageDef)
   3833             return false;
   3834   }
   3835   return true;
   3836 }
   3837 
   3838 /// After the schedule has been formed, call this function to combine
   3839 /// the instructions from the different stages/cycles.  That is, this
   3840 /// function creates a schedule that represents a single iteration.
   3841 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
   3842   // Move all instructions to the first stage from later stages.
   3843   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
   3844     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
   3845          ++stage) {
   3846       std::deque<SUnit *> &cycleInstrs =
   3847           ScheduledInstrs[cycle + (stage * InitiationInterval)];
   3848       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
   3849                                                  E = cycleInstrs.rend();
   3850            I != E; ++I)
   3851         ScheduledInstrs[cycle].push_front(*I);
   3852     }
   3853   }
   3854   // Iterate over the definitions in each instruction, and compute the
   3855   // stage difference for each use.  Keep the maximum value.
   3856   for (auto &I : InstrToCycle) {
   3857     int DefStage = stageScheduled(I.first);
   3858     MachineInstr *MI = I.first->getInstr();
   3859     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
   3860       MachineOperand &Op = MI->getOperand(i);
   3861       if (!Op.isReg() || !Op.isDef())
   3862         continue;
   3863 
   3864       unsigned Reg = Op.getReg();
   3865       unsigned MaxDiff = 0;
   3866       bool PhiIsSwapped = false;
   3867       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
   3868                                              EI = MRI.use_end();
   3869            UI != EI; ++UI) {
   3870         MachineOperand &UseOp = *UI;
   3871         MachineInstr *UseMI = UseOp.getParent();
   3872         SUnit *SUnitUse = SSD->getSUnit(UseMI);
   3873         int UseStage = stageScheduled(SUnitUse);
   3874         unsigned Diff = 0;
   3875         if (UseStage != -1 && UseStage >= DefStage)
   3876           Diff = UseStage - DefStage;
   3877         if (MI->isPHI()) {
   3878           if (isLoopCarried(SSD, *MI))
   3879             ++Diff;
   3880           else
   3881             PhiIsSwapped = true;
   3882         }
   3883         MaxDiff = std::max(Diff, MaxDiff);
   3884       }
   3885       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
   3886     }
   3887   }
   3888 
   3889   // Erase all the elements in the later stages. Only one iteration should
   3890   // remain in the scheduled list, and it contains all the instructions.
   3891   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
   3892     ScheduledInstrs.erase(cycle);
   3893 
   3894   // Change the registers in instruction as specified in the InstrChanges
   3895   // map. We need to use the new registers to create the correct order.
   3896   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
   3897     SUnit *SU = &SSD->SUnits[i];
   3898     SSD->applyInstrChange(SU->getInstr(), *this, true);
   3899   }
   3900 
   3901   // Reorder the instructions in each cycle to fix and improve the
   3902   // generated code.
   3903   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
   3904     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
   3905     std::deque<SUnit *> newOrderZC;
   3906     // Put the zero-cost, pseudo instructions at the start of the cycle.
   3907     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
   3908       SUnit *SU = cycleInstrs[i];
   3909       if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
   3910         orderDependence(SSD, SU, newOrderZC);
   3911     }
   3912     std::deque<SUnit *> newOrderI;
   3913     // Then, add the regular instructions back.
   3914     for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
   3915       SUnit *SU = cycleInstrs[i];
   3916       if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
   3917         orderDependence(SSD, SU, newOrderI);
   3918     }
   3919     // Replace the old order with the new order.
   3920     cycleInstrs.swap(newOrderZC);
   3921     cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
   3922   }
   3923 
   3924   DEBUG(dump(););
   3925 }
   3926 
   3927 /// Print the schedule information to the given output.
   3928 void SMSchedule::print(raw_ostream &os) const {
   3929   // Iterate over each cycle.
   3930   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
   3931     // Iterate over each instruction in the cycle.
   3932     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
   3933     for (SUnit *CI : cycleInstrs->second) {
   3934       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
   3935       os << "(" << CI->NodeNum << ") ";
   3936       CI->getInstr()->print(os);
   3937       os << "\n";
   3938     }
   3939   }
   3940 }
   3941 
   3942 /// Utility function used for debugging to print the schedule.
   3943 void SMSchedule::dump() const { print(dbgs()); }
   3944