Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLoweringBase class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     23 #include "llvm/CodeGen/StackMaps.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Mangler.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCContext.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/Support/BranchProbability.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Target/TargetLoweringObjectFile.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include "llvm/Target/TargetSubtargetInfo.h"
     39 #include <cctype>
     40 using namespace llvm;
     41 
     42 static cl::opt<bool> JumpIsExpensiveOverride(
     43     "jump-is-expensive", cl::init(false),
     44     cl::desc("Do not create extra branches to split comparison logic."),
     45     cl::Hidden);
     46 
     47 // Although this default value is arbitrary, it is not random. It is assumed
     48 // that a condition that evaluates the same way by a higher percentage than this
     49 // is best represented as control flow. Therefore, the default value N should be
     50 // set such that the win from N% correct executions is greater than the loss
     51 // from (100 - N)% mispredicted executions for the majority of intended targets.
     52 static cl::opt<int> MinPercentageForPredictableBranch(
     53     "min-predictable-branch", cl::init(99),
     54     cl::desc("Minimum percentage (0-100) that a condition must be either true "
     55              "or false to assume that the condition is predictable"),
     56     cl::Hidden);
     57 
     58 /// InitLibcallNames - Set default libcall names.
     59 ///
     60 static void InitLibcallNames(const char **Names, const Triple &TT) {
     61   Names[RTLIB::SHL_I16] = "__ashlhi3";
     62   Names[RTLIB::SHL_I32] = "__ashlsi3";
     63   Names[RTLIB::SHL_I64] = "__ashldi3";
     64   Names[RTLIB::SHL_I128] = "__ashlti3";
     65   Names[RTLIB::SRL_I16] = "__lshrhi3";
     66   Names[RTLIB::SRL_I32] = "__lshrsi3";
     67   Names[RTLIB::SRL_I64] = "__lshrdi3";
     68   Names[RTLIB::SRL_I128] = "__lshrti3";
     69   Names[RTLIB::SRA_I16] = "__ashrhi3";
     70   Names[RTLIB::SRA_I32] = "__ashrsi3";
     71   Names[RTLIB::SRA_I64] = "__ashrdi3";
     72   Names[RTLIB::SRA_I128] = "__ashrti3";
     73   Names[RTLIB::MUL_I8] = "__mulqi3";
     74   Names[RTLIB::MUL_I16] = "__mulhi3";
     75   Names[RTLIB::MUL_I32] = "__mulsi3";
     76   Names[RTLIB::MUL_I64] = "__muldi3";
     77   Names[RTLIB::MUL_I128] = "__multi3";
     78   Names[RTLIB::MULO_I32] = "__mulosi4";
     79   Names[RTLIB::MULO_I64] = "__mulodi4";
     80   Names[RTLIB::MULO_I128] = "__muloti4";
     81   Names[RTLIB::SDIV_I8] = "__divqi3";
     82   Names[RTLIB::SDIV_I16] = "__divhi3";
     83   Names[RTLIB::SDIV_I32] = "__divsi3";
     84   Names[RTLIB::SDIV_I64] = "__divdi3";
     85   Names[RTLIB::SDIV_I128] = "__divti3";
     86   Names[RTLIB::UDIV_I8] = "__udivqi3";
     87   Names[RTLIB::UDIV_I16] = "__udivhi3";
     88   Names[RTLIB::UDIV_I32] = "__udivsi3";
     89   Names[RTLIB::UDIV_I64] = "__udivdi3";
     90   Names[RTLIB::UDIV_I128] = "__udivti3";
     91   Names[RTLIB::SREM_I8] = "__modqi3";
     92   Names[RTLIB::SREM_I16] = "__modhi3";
     93   Names[RTLIB::SREM_I32] = "__modsi3";
     94   Names[RTLIB::SREM_I64] = "__moddi3";
     95   Names[RTLIB::SREM_I128] = "__modti3";
     96   Names[RTLIB::UREM_I8] = "__umodqi3";
     97   Names[RTLIB::UREM_I16] = "__umodhi3";
     98   Names[RTLIB::UREM_I32] = "__umodsi3";
     99   Names[RTLIB::UREM_I64] = "__umoddi3";
    100   Names[RTLIB::UREM_I128] = "__umodti3";
    101 
    102   Names[RTLIB::NEG_I32] = "__negsi2";
    103   Names[RTLIB::NEG_I64] = "__negdi2";
    104   Names[RTLIB::ADD_F32] = "__addsf3";
    105   Names[RTLIB::ADD_F64] = "__adddf3";
    106   Names[RTLIB::ADD_F80] = "__addxf3";
    107   Names[RTLIB::ADD_F128] = "__addtf3";
    108   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
    109   Names[RTLIB::SUB_F32] = "__subsf3";
    110   Names[RTLIB::SUB_F64] = "__subdf3";
    111   Names[RTLIB::SUB_F80] = "__subxf3";
    112   Names[RTLIB::SUB_F128] = "__subtf3";
    113   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    114   Names[RTLIB::MUL_F32] = "__mulsf3";
    115   Names[RTLIB::MUL_F64] = "__muldf3";
    116   Names[RTLIB::MUL_F80] = "__mulxf3";
    117   Names[RTLIB::MUL_F128] = "__multf3";
    118   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    119   Names[RTLIB::DIV_F32] = "__divsf3";
    120   Names[RTLIB::DIV_F64] = "__divdf3";
    121   Names[RTLIB::DIV_F80] = "__divxf3";
    122   Names[RTLIB::DIV_F128] = "__divtf3";
    123   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    124   Names[RTLIB::REM_F32] = "fmodf";
    125   Names[RTLIB::REM_F64] = "fmod";
    126   Names[RTLIB::REM_F80] = "fmodl";
    127   Names[RTLIB::REM_F128] = "fmodl";
    128   Names[RTLIB::REM_PPCF128] = "fmodl";
    129   Names[RTLIB::FMA_F32] = "fmaf";
    130   Names[RTLIB::FMA_F64] = "fma";
    131   Names[RTLIB::FMA_F80] = "fmal";
    132   Names[RTLIB::FMA_F128] = "fmal";
    133   Names[RTLIB::FMA_PPCF128] = "fmal";
    134   Names[RTLIB::POWI_F32] = "__powisf2";
    135   Names[RTLIB::POWI_F64] = "__powidf2";
    136   Names[RTLIB::POWI_F80] = "__powixf2";
    137   Names[RTLIB::POWI_F128] = "__powitf2";
    138   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    139   Names[RTLIB::SQRT_F32] = "sqrtf";
    140   Names[RTLIB::SQRT_F64] = "sqrt";
    141   Names[RTLIB::SQRT_F80] = "sqrtl";
    142   Names[RTLIB::SQRT_F128] = "sqrtl";
    143   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    144   Names[RTLIB::LOG_F32] = "logf";
    145   Names[RTLIB::LOG_F64] = "log";
    146   Names[RTLIB::LOG_F80] = "logl";
    147   Names[RTLIB::LOG_F128] = "logl";
    148   Names[RTLIB::LOG_PPCF128] = "logl";
    149   Names[RTLIB::LOG2_F32] = "log2f";
    150   Names[RTLIB::LOG2_F64] = "log2";
    151   Names[RTLIB::LOG2_F80] = "log2l";
    152   Names[RTLIB::LOG2_F128] = "log2l";
    153   Names[RTLIB::LOG2_PPCF128] = "log2l";
    154   Names[RTLIB::LOG10_F32] = "log10f";
    155   Names[RTLIB::LOG10_F64] = "log10";
    156   Names[RTLIB::LOG10_F80] = "log10l";
    157   Names[RTLIB::LOG10_F128] = "log10l";
    158   Names[RTLIB::LOG10_PPCF128] = "log10l";
    159   Names[RTLIB::EXP_F32] = "expf";
    160   Names[RTLIB::EXP_F64] = "exp";
    161   Names[RTLIB::EXP_F80] = "expl";
    162   Names[RTLIB::EXP_F128] = "expl";
    163   Names[RTLIB::EXP_PPCF128] = "expl";
    164   Names[RTLIB::EXP2_F32] = "exp2f";
    165   Names[RTLIB::EXP2_F64] = "exp2";
    166   Names[RTLIB::EXP2_F80] = "exp2l";
    167   Names[RTLIB::EXP2_F128] = "exp2l";
    168   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    169   Names[RTLIB::SIN_F32] = "sinf";
    170   Names[RTLIB::SIN_F64] = "sin";
    171   Names[RTLIB::SIN_F80] = "sinl";
    172   Names[RTLIB::SIN_F128] = "sinl";
    173   Names[RTLIB::SIN_PPCF128] = "sinl";
    174   Names[RTLIB::COS_F32] = "cosf";
    175   Names[RTLIB::COS_F64] = "cos";
    176   Names[RTLIB::COS_F80] = "cosl";
    177   Names[RTLIB::COS_F128] = "cosl";
    178   Names[RTLIB::COS_PPCF128] = "cosl";
    179   Names[RTLIB::POW_F32] = "powf";
    180   Names[RTLIB::POW_F64] = "pow";
    181   Names[RTLIB::POW_F80] = "powl";
    182   Names[RTLIB::POW_F128] = "powl";
    183   Names[RTLIB::POW_PPCF128] = "powl";
    184   Names[RTLIB::CEIL_F32] = "ceilf";
    185   Names[RTLIB::CEIL_F64] = "ceil";
    186   Names[RTLIB::CEIL_F80] = "ceill";
    187   Names[RTLIB::CEIL_F128] = "ceill";
    188   Names[RTLIB::CEIL_PPCF128] = "ceill";
    189   Names[RTLIB::TRUNC_F32] = "truncf";
    190   Names[RTLIB::TRUNC_F64] = "trunc";
    191   Names[RTLIB::TRUNC_F80] = "truncl";
    192   Names[RTLIB::TRUNC_F128] = "truncl";
    193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    194   Names[RTLIB::RINT_F32] = "rintf";
    195   Names[RTLIB::RINT_F64] = "rint";
    196   Names[RTLIB::RINT_F80] = "rintl";
    197   Names[RTLIB::RINT_F128] = "rintl";
    198   Names[RTLIB::RINT_PPCF128] = "rintl";
    199   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    200   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    201   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    202   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
    203   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    204   Names[RTLIB::ROUND_F32] = "roundf";
    205   Names[RTLIB::ROUND_F64] = "round";
    206   Names[RTLIB::ROUND_F80] = "roundl";
    207   Names[RTLIB::ROUND_F128] = "roundl";
    208   Names[RTLIB::ROUND_PPCF128] = "roundl";
    209   Names[RTLIB::FLOOR_F32] = "floorf";
    210   Names[RTLIB::FLOOR_F64] = "floor";
    211   Names[RTLIB::FLOOR_F80] = "floorl";
    212   Names[RTLIB::FLOOR_F128] = "floorl";
    213   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    214   Names[RTLIB::FMIN_F32] = "fminf";
    215   Names[RTLIB::FMIN_F64] = "fmin";
    216   Names[RTLIB::FMIN_F80] = "fminl";
    217   Names[RTLIB::FMIN_F128] = "fminl";
    218   Names[RTLIB::FMIN_PPCF128] = "fminl";
    219   Names[RTLIB::FMAX_F32] = "fmaxf";
    220   Names[RTLIB::FMAX_F64] = "fmax";
    221   Names[RTLIB::FMAX_F80] = "fmaxl";
    222   Names[RTLIB::FMAX_F128] = "fmaxl";
    223   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
    224   Names[RTLIB::ROUND_F32] = "roundf";
    225   Names[RTLIB::ROUND_F64] = "round";
    226   Names[RTLIB::ROUND_F80] = "roundl";
    227   Names[RTLIB::ROUND_F128] = "roundl";
    228   Names[RTLIB::ROUND_PPCF128] = "roundl";
    229   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    230   Names[RTLIB::COPYSIGN_F64] = "copysign";
    231   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    232   Names[RTLIB::COPYSIGN_F128] = "copysignl";
    233   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    234   Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
    235   Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
    236   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
    237   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
    238   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    239   if (TT.isOSDarwin()) {
    240     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
    241     // of the gnueabi-style __gnu_*_ieee.
    242     // FIXME: What about other targets?
    243     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
    244     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
    245   } else {
    246     Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    247     Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    248   }
    249   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
    250   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
    251   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
    252   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
    253   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    254   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    255   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
    256   Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
    257   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    258   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
    259   Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
    260   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    261   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    262   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    263   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    264   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    265   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    266   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    267   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    268   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    269   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
    270   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
    271   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
    272   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
    273   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    274   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    275   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    276   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    277   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    278   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    279   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    280   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    281   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    282   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    283   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    284   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
    285   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
    286   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
    287   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    288   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    289   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    290   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    291   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    292   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    293   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
    294   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
    295   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    296   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    297   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    298   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
    299   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    300   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    301   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    302   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    303   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
    304   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    305   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    306   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    307   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    308   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
    309   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
    310   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    311   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    312   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    313   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
    314   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    315   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    316   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    317   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    318   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
    319   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    320   Names[RTLIB::OEQ_F32] = "__eqsf2";
    321   Names[RTLIB::OEQ_F64] = "__eqdf2";
    322   Names[RTLIB::OEQ_F128] = "__eqtf2";
    323   Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
    324   Names[RTLIB::UNE_F32] = "__nesf2";
    325   Names[RTLIB::UNE_F64] = "__nedf2";
    326   Names[RTLIB::UNE_F128] = "__netf2";
    327   Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
    328   Names[RTLIB::OGE_F32] = "__gesf2";
    329   Names[RTLIB::OGE_F64] = "__gedf2";
    330   Names[RTLIB::OGE_F128] = "__getf2";
    331   Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
    332   Names[RTLIB::OLT_F32] = "__ltsf2";
    333   Names[RTLIB::OLT_F64] = "__ltdf2";
    334   Names[RTLIB::OLT_F128] = "__lttf2";
    335   Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
    336   Names[RTLIB::OLE_F32] = "__lesf2";
    337   Names[RTLIB::OLE_F64] = "__ledf2";
    338   Names[RTLIB::OLE_F128] = "__letf2";
    339   Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
    340   Names[RTLIB::OGT_F32] = "__gtsf2";
    341   Names[RTLIB::OGT_F64] = "__gtdf2";
    342   Names[RTLIB::OGT_F128] = "__gttf2";
    343   Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
    344   Names[RTLIB::UO_F32] = "__unordsf2";
    345   Names[RTLIB::UO_F64] = "__unorddf2";
    346   Names[RTLIB::UO_F128] = "__unordtf2";
    347   Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
    348   Names[RTLIB::O_F32] = "__unordsf2";
    349   Names[RTLIB::O_F64] = "__unorddf2";
    350   Names[RTLIB::O_F128] = "__unordtf2";
    351   Names[RTLIB::O_PPCF128] = "__gcc_qunord";
    352   Names[RTLIB::MEMCPY] = "memcpy";
    353   Names[RTLIB::MEMMOVE] = "memmove";
    354   Names[RTLIB::MEMSET] = "memset";
    355   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    356   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    357   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    358   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    359   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    360   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
    361   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    362   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    363   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    364   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    365   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
    366   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    367   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    368   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    369   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    370   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
    371   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    372   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    373   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    374   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    375   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
    376   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    377   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    378   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    379   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    380   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
    381   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    382   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    383   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    384   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    385   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
    386   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    387   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    388   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    389   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    390   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
    391   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    392   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    393   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    394   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    395   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
    396   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
    397   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
    398   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
    399   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
    400   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
    401   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
    402   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
    403   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
    404   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
    405   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
    406   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
    407   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
    408   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
    409   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
    410   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
    411   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
    412   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
    413   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
    414   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
    415   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
    416 
    417   Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
    418   Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
    419   Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
    420   Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
    421   Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
    422   Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";
    423 
    424   Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
    425   Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
    426   Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
    427   Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
    428   Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
    429   Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";
    430 
    431   Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
    432   Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
    433   Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
    434   Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
    435   Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
    436   Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";
    437 
    438   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
    439   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
    440   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
    441   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
    442   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
    443   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";
    444 
    445   Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
    446   Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
    447   Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
    448   Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
    449   Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
    450   Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
    451   Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
    452   Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
    453   Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
    454   Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
    455   Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
    456   Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
    457   Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
    458   Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
    459   Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
    460   Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
    461   Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
    462   Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
    463   Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
    464   Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
    465   Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
    466   Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
    467   Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
    468   Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
    469   Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
    470   Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
    471   Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
    472   Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
    473   Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
    474   Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";
    475 
    476   if (TT.isGNUEnvironment()) {
    477     Names[RTLIB::SINCOS_F32] = "sincosf";
    478     Names[RTLIB::SINCOS_F64] = "sincos";
    479     Names[RTLIB::SINCOS_F80] = "sincosl";
    480     Names[RTLIB::SINCOS_F128] = "sincosl";
    481     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
    482   }
    483 
    484   if (!TT.isOSOpenBSD()) {
    485     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
    486   }
    487 
    488   Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
    489 }
    490 
    491 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    492 ///
    493 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    494   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    495     CCs[i] = CallingConv::C;
    496   }
    497 }
    498 
    499 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    500 /// UNKNOWN_LIBCALL if there is none.
    501 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    502   if (OpVT == MVT::f16) {
    503     if (RetVT == MVT::f32)
    504       return FPEXT_F16_F32;
    505   } else if (OpVT == MVT::f32) {
    506     if (RetVT == MVT::f64)
    507       return FPEXT_F32_F64;
    508     if (RetVT == MVT::f128)
    509       return FPEXT_F32_F128;
    510     if (RetVT == MVT::ppcf128)
    511       return FPEXT_F32_PPCF128;
    512   } else if (OpVT == MVT::f64) {
    513     if (RetVT == MVT::f128)
    514       return FPEXT_F64_F128;
    515     else if (RetVT == MVT::ppcf128)
    516       return FPEXT_F64_PPCF128;
    517   }
    518 
    519   return UNKNOWN_LIBCALL;
    520 }
    521 
    522 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    523 /// UNKNOWN_LIBCALL if there is none.
    524 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    525   if (RetVT == MVT::f16) {
    526     if (OpVT == MVT::f32)
    527       return FPROUND_F32_F16;
    528     if (OpVT == MVT::f64)
    529       return FPROUND_F64_F16;
    530     if (OpVT == MVT::f80)
    531       return FPROUND_F80_F16;
    532     if (OpVT == MVT::f128)
    533       return FPROUND_F128_F16;
    534     if (OpVT == MVT::ppcf128)
    535       return FPROUND_PPCF128_F16;
    536   } else if (RetVT == MVT::f32) {
    537     if (OpVT == MVT::f64)
    538       return FPROUND_F64_F32;
    539     if (OpVT == MVT::f80)
    540       return FPROUND_F80_F32;
    541     if (OpVT == MVT::f128)
    542       return FPROUND_F128_F32;
    543     if (OpVT == MVT::ppcf128)
    544       return FPROUND_PPCF128_F32;
    545   } else if (RetVT == MVT::f64) {
    546     if (OpVT == MVT::f80)
    547       return FPROUND_F80_F64;
    548     if (OpVT == MVT::f128)
    549       return FPROUND_F128_F64;
    550     if (OpVT == MVT::ppcf128)
    551       return FPROUND_PPCF128_F64;
    552   }
    553 
    554   return UNKNOWN_LIBCALL;
    555 }
    556 
    557 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    558 /// UNKNOWN_LIBCALL if there is none.
    559 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    560   if (OpVT == MVT::f32) {
    561     if (RetVT == MVT::i32)
    562       return FPTOSINT_F32_I32;
    563     if (RetVT == MVT::i64)
    564       return FPTOSINT_F32_I64;
    565     if (RetVT == MVT::i128)
    566       return FPTOSINT_F32_I128;
    567   } else if (OpVT == MVT::f64) {
    568     if (RetVT == MVT::i32)
    569       return FPTOSINT_F64_I32;
    570     if (RetVT == MVT::i64)
    571       return FPTOSINT_F64_I64;
    572     if (RetVT == MVT::i128)
    573       return FPTOSINT_F64_I128;
    574   } else if (OpVT == MVT::f80) {
    575     if (RetVT == MVT::i32)
    576       return FPTOSINT_F80_I32;
    577     if (RetVT == MVT::i64)
    578       return FPTOSINT_F80_I64;
    579     if (RetVT == MVT::i128)
    580       return FPTOSINT_F80_I128;
    581   } else if (OpVT == MVT::f128) {
    582     if (RetVT == MVT::i32)
    583       return FPTOSINT_F128_I32;
    584     if (RetVT == MVT::i64)
    585       return FPTOSINT_F128_I64;
    586     if (RetVT == MVT::i128)
    587       return FPTOSINT_F128_I128;
    588   } else if (OpVT == MVT::ppcf128) {
    589     if (RetVT == MVT::i32)
    590       return FPTOSINT_PPCF128_I32;
    591     if (RetVT == MVT::i64)
    592       return FPTOSINT_PPCF128_I64;
    593     if (RetVT == MVT::i128)
    594       return FPTOSINT_PPCF128_I128;
    595   }
    596   return UNKNOWN_LIBCALL;
    597 }
    598 
    599 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    600 /// UNKNOWN_LIBCALL if there is none.
    601 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    602   if (OpVT == MVT::f32) {
    603     if (RetVT == MVT::i32)
    604       return FPTOUINT_F32_I32;
    605     if (RetVT == MVT::i64)
    606       return FPTOUINT_F32_I64;
    607     if (RetVT == MVT::i128)
    608       return FPTOUINT_F32_I128;
    609   } else if (OpVT == MVT::f64) {
    610     if (RetVT == MVT::i32)
    611       return FPTOUINT_F64_I32;
    612     if (RetVT == MVT::i64)
    613       return FPTOUINT_F64_I64;
    614     if (RetVT == MVT::i128)
    615       return FPTOUINT_F64_I128;
    616   } else if (OpVT == MVT::f80) {
    617     if (RetVT == MVT::i32)
    618       return FPTOUINT_F80_I32;
    619     if (RetVT == MVT::i64)
    620       return FPTOUINT_F80_I64;
    621     if (RetVT == MVT::i128)
    622       return FPTOUINT_F80_I128;
    623   } else if (OpVT == MVT::f128) {
    624     if (RetVT == MVT::i32)
    625       return FPTOUINT_F128_I32;
    626     if (RetVT == MVT::i64)
    627       return FPTOUINT_F128_I64;
    628     if (RetVT == MVT::i128)
    629       return FPTOUINT_F128_I128;
    630   } else if (OpVT == MVT::ppcf128) {
    631     if (RetVT == MVT::i32)
    632       return FPTOUINT_PPCF128_I32;
    633     if (RetVT == MVT::i64)
    634       return FPTOUINT_PPCF128_I64;
    635     if (RetVT == MVT::i128)
    636       return FPTOUINT_PPCF128_I128;
    637   }
    638   return UNKNOWN_LIBCALL;
    639 }
    640 
    641 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    642 /// UNKNOWN_LIBCALL if there is none.
    643 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    644   if (OpVT == MVT::i32) {
    645     if (RetVT == MVT::f32)
    646       return SINTTOFP_I32_F32;
    647     if (RetVT == MVT::f64)
    648       return SINTTOFP_I32_F64;
    649     if (RetVT == MVT::f80)
    650       return SINTTOFP_I32_F80;
    651     if (RetVT == MVT::f128)
    652       return SINTTOFP_I32_F128;
    653     if (RetVT == MVT::ppcf128)
    654       return SINTTOFP_I32_PPCF128;
    655   } else if (OpVT == MVT::i64) {
    656     if (RetVT == MVT::f32)
    657       return SINTTOFP_I64_F32;
    658     if (RetVT == MVT::f64)
    659       return SINTTOFP_I64_F64;
    660     if (RetVT == MVT::f80)
    661       return SINTTOFP_I64_F80;
    662     if (RetVT == MVT::f128)
    663       return SINTTOFP_I64_F128;
    664     if (RetVT == MVT::ppcf128)
    665       return SINTTOFP_I64_PPCF128;
    666   } else if (OpVT == MVT::i128) {
    667     if (RetVT == MVT::f32)
    668       return SINTTOFP_I128_F32;
    669     if (RetVT == MVT::f64)
    670       return SINTTOFP_I128_F64;
    671     if (RetVT == MVT::f80)
    672       return SINTTOFP_I128_F80;
    673     if (RetVT == MVT::f128)
    674       return SINTTOFP_I128_F128;
    675     if (RetVT == MVT::ppcf128)
    676       return SINTTOFP_I128_PPCF128;
    677   }
    678   return UNKNOWN_LIBCALL;
    679 }
    680 
    681 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    682 /// UNKNOWN_LIBCALL if there is none.
    683 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    684   if (OpVT == MVT::i32) {
    685     if (RetVT == MVT::f32)
    686       return UINTTOFP_I32_F32;
    687     if (RetVT == MVT::f64)
    688       return UINTTOFP_I32_F64;
    689     if (RetVT == MVT::f80)
    690       return UINTTOFP_I32_F80;
    691     if (RetVT == MVT::f128)
    692       return UINTTOFP_I32_F128;
    693     if (RetVT == MVT::ppcf128)
    694       return UINTTOFP_I32_PPCF128;
    695   } else if (OpVT == MVT::i64) {
    696     if (RetVT == MVT::f32)
    697       return UINTTOFP_I64_F32;
    698     if (RetVT == MVT::f64)
    699       return UINTTOFP_I64_F64;
    700     if (RetVT == MVT::f80)
    701       return UINTTOFP_I64_F80;
    702     if (RetVT == MVT::f128)
    703       return UINTTOFP_I64_F128;
    704     if (RetVT == MVT::ppcf128)
    705       return UINTTOFP_I64_PPCF128;
    706   } else if (OpVT == MVT::i128) {
    707     if (RetVT == MVT::f32)
    708       return UINTTOFP_I128_F32;
    709     if (RetVT == MVT::f64)
    710       return UINTTOFP_I128_F64;
    711     if (RetVT == MVT::f80)
    712       return UINTTOFP_I128_F80;
    713     if (RetVT == MVT::f128)
    714       return UINTTOFP_I128_F128;
    715     if (RetVT == MVT::ppcf128)
    716       return UINTTOFP_I128_PPCF128;
    717   }
    718   return UNKNOWN_LIBCALL;
    719 }
    720 
    721 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
    722 #define OP_TO_LIBCALL(Name, Enum)                                              \
    723   case Name:                                                                   \
    724     switch (VT.SimpleTy) {                                                     \
    725     default:                                                                   \
    726       return UNKNOWN_LIBCALL;                                                  \
    727     case MVT::i8:                                                              \
    728       return Enum##_1;                                                         \
    729     case MVT::i16:                                                             \
    730       return Enum##_2;                                                         \
    731     case MVT::i32:                                                             \
    732       return Enum##_4;                                                         \
    733     case MVT::i64:                                                             \
    734       return Enum##_8;                                                         \
    735     case MVT::i128:                                                            \
    736       return Enum##_16;                                                        \
    737     }
    738 
    739   switch (Opc) {
    740     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
    741     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
    742     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
    743     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
    744     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
    745     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
    746     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
    747     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
    748     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
    749     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
    750     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
    751     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
    752   }
    753 
    754 #undef OP_TO_LIBCALL
    755 
    756   return UNKNOWN_LIBCALL;
    757 }
    758 
    759 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    760 ///
    761 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    762   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    763   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    764   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    765   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
    766   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
    767   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    768   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    769   CCs[RTLIB::UNE_F128] = ISD::SETNE;
    770   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
    771   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    772   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    773   CCs[RTLIB::OGE_F128] = ISD::SETGE;
    774   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
    775   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    776   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    777   CCs[RTLIB::OLT_F128] = ISD::SETLT;
    778   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
    779   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    780   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    781   CCs[RTLIB::OLE_F128] = ISD::SETLE;
    782   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
    783   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    784   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    785   CCs[RTLIB::OGT_F128] = ISD::SETGT;
    786   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
    787   CCs[RTLIB::UO_F32] = ISD::SETNE;
    788   CCs[RTLIB::UO_F64] = ISD::SETNE;
    789   CCs[RTLIB::UO_F128] = ISD::SETNE;
    790   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
    791   CCs[RTLIB::O_F32] = ISD::SETEQ;
    792   CCs[RTLIB::O_F64] = ISD::SETEQ;
    793   CCs[RTLIB::O_F128] = ISD::SETEQ;
    794   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
    795 }
    796 
    797 /// NOTE: The TargetMachine owns TLOF.
    798 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
    799   initActions();
    800 
    801   // Perform these initializations only once.
    802   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
    803   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
    804     = MaxStoresPerMemmoveOptSize = 4;
    805   UseUnderscoreSetJmp = false;
    806   UseUnderscoreLongJmp = false;
    807   SelectIsExpensive = false;
    808   HasMultipleConditionRegisters = false;
    809   HasExtractBitsInsn = false;
    810   FsqrtIsCheap = false;
    811   JumpIsExpensive = JumpIsExpensiveOverride;
    812   PredictableSelectIsExpensive = false;
    813   MaskAndBranchFoldingIsLegal = false;
    814   EnableExtLdPromotion = false;
    815   HasFloatingPointExceptions = true;
    816   StackPointerRegisterToSaveRestore = 0;
    817   BooleanContents = UndefinedBooleanContent;
    818   BooleanFloatContents = UndefinedBooleanContent;
    819   BooleanVectorContents = UndefinedBooleanContent;
    820   SchedPreferenceInfo = Sched::ILP;
    821   JumpBufSize = 0;
    822   JumpBufAlignment = 0;
    823   MinFunctionAlignment = 0;
    824   PrefFunctionAlignment = 0;
    825   PrefLoopAlignment = 0;
    826   GatherAllAliasesMaxDepth = 6;
    827   MinStackArgumentAlignment = 1;
    828   MinimumJumpTableEntries = 4;
    829   // TODO: the default will be switched to 0 in the next commit, along
    830   // with the Target-specific changes necessary.
    831   MaxAtomicSizeInBitsSupported = 1024;
    832 
    833   MinCmpXchgSizeInBits = 0;
    834 
    835   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
    836 
    837   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
    838   InitCmpLibcallCCs(CmpLibcallCCs);
    839   InitLibcallCallingConvs(LibcallCallingConvs);
    840 }
    841 
    842 void TargetLoweringBase::initActions() {
    843   // All operations default to being supported.
    844   memset(OpActions, 0, sizeof(OpActions));
    845   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    846   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    847   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    848   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    849   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
    850   std::fill(std::begin(TargetDAGCombineArray),
    851             std::end(TargetDAGCombineArray), 0);
    852 
    853   // Set default actions for various operations.
    854   for (MVT VT : MVT::all_valuetypes()) {
    855     // Default all indexed load / store to expand.
    856     for (unsigned IM = (unsigned)ISD::PRE_INC;
    857          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    858       setIndexedLoadAction(IM, VT, Expand);
    859       setIndexedStoreAction(IM, VT, Expand);
    860     }
    861 
    862     // Most backends expect to see the node which just returns the value loaded.
    863     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
    864 
    865     // These operations default to expand.
    866     setOperationAction(ISD::FGETSIGN, VT, Expand);
    867     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
    868     setOperationAction(ISD::FMINNUM, VT, Expand);
    869     setOperationAction(ISD::FMAXNUM, VT, Expand);
    870     setOperationAction(ISD::FMINNAN, VT, Expand);
    871     setOperationAction(ISD::FMAXNAN, VT, Expand);
    872     setOperationAction(ISD::FMAD, VT, Expand);
    873     setOperationAction(ISD::SMIN, VT, Expand);
    874     setOperationAction(ISD::SMAX, VT, Expand);
    875     setOperationAction(ISD::UMIN, VT, Expand);
    876     setOperationAction(ISD::UMAX, VT, Expand);
    877 
    878     // Overflow operations default to expand
    879     setOperationAction(ISD::SADDO, VT, Expand);
    880     setOperationAction(ISD::SSUBO, VT, Expand);
    881     setOperationAction(ISD::UADDO, VT, Expand);
    882     setOperationAction(ISD::USUBO, VT, Expand);
    883     setOperationAction(ISD::SMULO, VT, Expand);
    884     setOperationAction(ISD::UMULO, VT, Expand);
    885 
    886     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
    887     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    888     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    889 
    890     setOperationAction(ISD::BITREVERSE, VT, Expand);
    891 
    892     // These library functions default to expand.
    893     setOperationAction(ISD::FROUND, VT, Expand);
    894 
    895     // These operations default to expand for vector types.
    896     if (VT.isVector()) {
    897       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
    898       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
    899       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
    900       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
    901     }
    902 
    903     // For most targets @llvm.get.dynamic.area.offset just returns 0.
    904     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
    905   }
    906 
    907   // Most targets ignore the @llvm.prefetch intrinsic.
    908   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    909 
    910   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
    911   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
    912 
    913   // ConstantFP nodes default to expand.  Targets can either change this to
    914   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    915   // to optimize expansions for certain constants.
    916   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    917   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    918   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    919   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    920   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
    921 
    922   // These library functions default to expand.
    923   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
    924     setOperationAction(ISD::FLOG ,      VT, Expand);
    925     setOperationAction(ISD::FLOG2,      VT, Expand);
    926     setOperationAction(ISD::FLOG10,     VT, Expand);
    927     setOperationAction(ISD::FEXP ,      VT, Expand);
    928     setOperationAction(ISD::FEXP2,      VT, Expand);
    929     setOperationAction(ISD::FFLOOR,     VT, Expand);
    930     setOperationAction(ISD::FNEARBYINT, VT, Expand);
    931     setOperationAction(ISD::FCEIL,      VT, Expand);
    932     setOperationAction(ISD::FRINT,      VT, Expand);
    933     setOperationAction(ISD::FTRUNC,     VT, Expand);
    934     setOperationAction(ISD::FROUND,     VT, Expand);
    935   }
    936 
    937   // Default ISD::TRAP to expand (which turns it into abort).
    938   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    939 
    940   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
    941   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
    942   //
    943   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
    944 }
    945 
    946 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
    947                                                EVT) const {
    948   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
    949 }
    950 
    951 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
    952                                          const DataLayout &DL) const {
    953   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
    954   if (LHSTy.isVector())
    955     return LHSTy;
    956   return getScalarShiftAmountTy(DL, LHSTy);
    957 }
    958 
    959 /// canOpTrap - Returns true if the operation can trap for the value type.
    960 /// VT must be a legal type.
    961 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
    962   assert(isTypeLegal(VT));
    963   switch (Op) {
    964   default:
    965     return false;
    966   case ISD::FDIV:
    967   case ISD::FREM:
    968   case ISD::SDIV:
    969   case ISD::UDIV:
    970   case ISD::SREM:
    971   case ISD::UREM:
    972     return true;
    973   }
    974 }
    975 
    976 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
    977   // If the command-line option was specified, ignore this request.
    978   if (!JumpIsExpensiveOverride.getNumOccurrences())
    979     JumpIsExpensive = isExpensive;
    980 }
    981 
    982 TargetLoweringBase::LegalizeKind
    983 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
    984   // If this is a simple type, use the ComputeRegisterProp mechanism.
    985   if (VT.isSimple()) {
    986     MVT SVT = VT.getSimpleVT();
    987     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
    988     MVT NVT = TransformToType[SVT.SimpleTy];
    989     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
    990 
    991     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
    992             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
    993            "Promote may not follow Expand or Promote");
    994 
    995     if (LA == TypeSplitVector)
    996       return LegalizeKind(LA,
    997                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
    998                                            SVT.getVectorNumElements() / 2));
    999     if (LA == TypeScalarizeVector)
   1000       return LegalizeKind(LA, SVT.getVectorElementType());
   1001     return LegalizeKind(LA, NVT);
   1002   }
   1003 
   1004   // Handle Extended Scalar Types.
   1005   if (!VT.isVector()) {
   1006     assert(VT.isInteger() && "Float types must be simple");
   1007     unsigned BitSize = VT.getSizeInBits();
   1008     // First promote to a power-of-two size, then expand if necessary.
   1009     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
   1010       EVT NVT = VT.getRoundIntegerType(Context);
   1011       assert(NVT != VT && "Unable to round integer VT");
   1012       LegalizeKind NextStep = getTypeConversion(Context, NVT);
   1013       // Avoid multi-step promotion.
   1014       if (NextStep.first == TypePromoteInteger)
   1015         return NextStep;
   1016       // Return rounded integer type.
   1017       return LegalizeKind(TypePromoteInteger, NVT);
   1018     }
   1019 
   1020     return LegalizeKind(TypeExpandInteger,
   1021                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
   1022   }
   1023 
   1024   // Handle vector types.
   1025   unsigned NumElts = VT.getVectorNumElements();
   1026   EVT EltVT = VT.getVectorElementType();
   1027 
   1028   // Vectors with only one element are always scalarized.
   1029   if (NumElts == 1)
   1030     return LegalizeKind(TypeScalarizeVector, EltVT);
   1031 
   1032   // Try to widen vector elements until the element type is a power of two and
   1033   // promote it to a legal type later on, for example:
   1034   // <3 x i8> -> <4 x i8> -> <4 x i32>
   1035   if (EltVT.isInteger()) {
   1036     // Vectors with a number of elements that is not a power of two are always
   1037     // widened, for example <3 x i8> -> <4 x i8>.
   1038     if (!VT.isPow2VectorType()) {
   1039       NumElts = (unsigned)NextPowerOf2(NumElts);
   1040       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
   1041       return LegalizeKind(TypeWidenVector, NVT);
   1042     }
   1043 
   1044     // Examine the element type.
   1045     LegalizeKind LK = getTypeConversion(Context, EltVT);
   1046 
   1047     // If type is to be expanded, split the vector.
   1048     //  <4 x i140> -> <2 x i140>
   1049     if (LK.first == TypeExpandInteger)
   1050       return LegalizeKind(TypeSplitVector,
   1051                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
   1052 
   1053     // Promote the integer element types until a legal vector type is found
   1054     // or until the element integer type is too big. If a legal type was not
   1055     // found, fallback to the usual mechanism of widening/splitting the
   1056     // vector.
   1057     EVT OldEltVT = EltVT;
   1058     while (1) {
   1059       // Increase the bitwidth of the element to the next pow-of-two
   1060       // (which is greater than 8 bits).
   1061       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
   1062                   .getRoundIntegerType(Context);
   1063 
   1064       // Stop trying when getting a non-simple element type.
   1065       // Note that vector elements may be greater than legal vector element
   1066       // types. Example: X86 XMM registers hold 64bit element on 32bit
   1067       // systems.
   1068       if (!EltVT.isSimple())
   1069         break;
   1070 
   1071       // Build a new vector type and check if it is legal.
   1072       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1073       // Found a legal promoted vector type.
   1074       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
   1075         return LegalizeKind(TypePromoteInteger,
   1076                             EVT::getVectorVT(Context, EltVT, NumElts));
   1077     }
   1078 
   1079     // Reset the type to the unexpanded type if we did not find a legal vector
   1080     // type with a promoted vector element type.
   1081     EltVT = OldEltVT;
   1082   }
   1083 
   1084   // Try to widen the vector until a legal type is found.
   1085   // If there is no wider legal type, split the vector.
   1086   while (1) {
   1087     // Round up to the next power of 2.
   1088     NumElts = (unsigned)NextPowerOf2(NumElts);
   1089 
   1090     // If there is no simple vector type with this many elements then there
   1091     // cannot be a larger legal vector type.  Note that this assumes that
   1092     // there are no skipped intermediate vector types in the simple types.
   1093     if (!EltVT.isSimple())
   1094       break;
   1095     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1096     if (LargerVector == MVT())
   1097       break;
   1098 
   1099     // If this type is legal then widen the vector.
   1100     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1101       return LegalizeKind(TypeWidenVector, LargerVector);
   1102   }
   1103 
   1104   // Widen odd vectors to next power of two.
   1105   if (!VT.isPow2VectorType()) {
   1106     EVT NVT = VT.getPow2VectorType(Context);
   1107     return LegalizeKind(TypeWidenVector, NVT);
   1108   }
   1109 
   1110   // Vectors with illegal element types are expanded.
   1111   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1112   return LegalizeKind(TypeSplitVector, NVT);
   1113 }
   1114 
   1115 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
   1116                                           unsigned &NumIntermediates,
   1117                                           MVT &RegisterVT,
   1118                                           TargetLoweringBase *TLI) {
   1119   // Figure out the right, legal destination reg to copy into.
   1120   unsigned NumElts = VT.getVectorNumElements();
   1121   MVT EltTy = VT.getVectorElementType();
   1122 
   1123   unsigned NumVectorRegs = 1;
   1124 
   1125   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1126   // could break down into LHS/RHS like LegalizeDAG does.
   1127   if (!isPowerOf2_32(NumElts)) {
   1128     NumVectorRegs = NumElts;
   1129     NumElts = 1;
   1130   }
   1131 
   1132   // Divide the input until we get to a supported size.  This will always
   1133   // end with a scalar if the target doesn't support vectors.
   1134   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
   1135     NumElts >>= 1;
   1136     NumVectorRegs <<= 1;
   1137   }
   1138 
   1139   NumIntermediates = NumVectorRegs;
   1140 
   1141   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
   1142   if (!TLI->isTypeLegal(NewVT))
   1143     NewVT = EltTy;
   1144   IntermediateVT = NewVT;
   1145 
   1146   unsigned NewVTSize = NewVT.getSizeInBits();
   1147 
   1148   // Convert sizes such as i33 to i64.
   1149   if (!isPowerOf2_32(NewVTSize))
   1150     NewVTSize = NextPowerOf2(NewVTSize);
   1151 
   1152   MVT DestVT = TLI->getRegisterType(NewVT);
   1153   RegisterVT = DestVT;
   1154   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
   1155     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1156 
   1157   // Otherwise, promotion or legal types use the same number of registers as
   1158   // the vector decimated to the appropriate level.
   1159   return NumVectorRegs;
   1160 }
   1161 
   1162 /// isLegalRC - Return true if the value types that can be represented by the
   1163 /// specified register class are all legal.
   1164 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
   1165   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
   1166        I != E; ++I) {
   1167     if (isTypeLegal(*I))
   1168       return true;
   1169   }
   1170   return false;
   1171 }
   1172 
   1173 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   1174 /// sequence of memory operands that is recognized by PrologEpilogInserter.
   1175 MachineBasicBlock *
   1176 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
   1177                                    MachineBasicBlock *MBB) const {
   1178   MachineInstr *MI = &InitialMI;
   1179   MachineFunction &MF = *MI->getParent()->getParent();
   1180   MachineFrameInfo &MFI = *MF.getFrameInfo();
   1181 
   1182   // We're handling multiple types of operands here:
   1183   // PATCHPOINT MetaArgs - live-in, read only, direct
   1184   // STATEPOINT Deopt Spill - live-through, read only, indirect
   1185   // STATEPOINT Deopt Alloca - live-through, read only, direct
   1186   // (We're currently conservative and mark the deopt slots read/write in
   1187   // practice.)
   1188   // STATEPOINT GC Spill - live-through, read/write, indirect
   1189   // STATEPOINT GC Alloca - live-through, read/write, direct
   1190   // The live-in vs live-through is handled already (the live through ones are
   1191   // all stack slots), but we need to handle the different type of stackmap
   1192   // operands and memory effects here.
   1193 
   1194   // MI changes inside this loop as we grow operands.
   1195   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
   1196     MachineOperand &MO = MI->getOperand(OperIdx);
   1197     if (!MO.isFI())
   1198       continue;
   1199 
   1200     // foldMemoryOperand builds a new MI after replacing a single FI operand
   1201     // with the canonical set of five x86 addressing-mode operands.
   1202     int FI = MO.getIndex();
   1203     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
   1204 
   1205     // Copy operands before the frame-index.
   1206     for (unsigned i = 0; i < OperIdx; ++i)
   1207       MIB.addOperand(MI->getOperand(i));
   1208     // Add frame index operands recognized by stackmaps.cpp
   1209     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
   1210       // indirect-mem-ref tag, size, #FI, offset.
   1211       // Used for spills inserted by StatepointLowering.  This codepath is not
   1212       // used for patchpoints/stackmaps at all, for these spilling is done via
   1213       // foldMemoryOperand callback only.
   1214       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
   1215       MIB.addImm(StackMaps::IndirectMemRefOp);
   1216       MIB.addImm(MFI.getObjectSize(FI));
   1217       MIB.addOperand(MI->getOperand(OperIdx));
   1218       MIB.addImm(0);
   1219     } else {
   1220       // direct-mem-ref tag, #FI, offset.
   1221       // Used by patchpoint, and direct alloca arguments to statepoints
   1222       MIB.addImm(StackMaps::DirectMemRefOp);
   1223       MIB.addOperand(MI->getOperand(OperIdx));
   1224       MIB.addImm(0);
   1225     }
   1226     // Copy the operands after the frame index.
   1227     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
   1228       MIB.addOperand(MI->getOperand(i));
   1229 
   1230     // Inherit previous memory operands.
   1231     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1232     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
   1233 
   1234     // Add a new memory operand for this FI.
   1235     assert(MFI.getObjectOffset(FI) != -1);
   1236 
   1237     unsigned Flags = MachineMemOperand::MOLoad;
   1238     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
   1239       Flags |= MachineMemOperand::MOStore;
   1240       Flags |= MachineMemOperand::MOVolatile;
   1241     }
   1242     MachineMemOperand *MMO = MF.getMachineMemOperand(
   1243         MachinePointerInfo::getFixedStack(MF, FI), Flags,
   1244         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
   1245     MIB->addMemOperand(MF, MMO);
   1246 
   1247     // Replace the instruction and update the operand index.
   1248     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
   1249     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
   1250     MI->eraseFromParent();
   1251     MI = MIB;
   1252   }
   1253   return MBB;
   1254 }
   1255 
   1256 /// findRepresentativeClass - Return the largest legal super-reg register class
   1257 /// of the register class for the specified type and its associated "cost".
   1258 // This function is in TargetLowering because it uses RegClassForVT which would
   1259 // need to be moved to TargetRegisterInfo and would necessitate moving
   1260 // isTypeLegal over as well - a massive change that would just require
   1261 // TargetLowering having a TargetRegisterInfo class member that it would use.
   1262 std::pair<const TargetRegisterClass *, uint8_t>
   1263 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
   1264                                             MVT VT) const {
   1265   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
   1266   if (!RC)
   1267     return std::make_pair(RC, 0);
   1268 
   1269   // Compute the set of all super-register classes.
   1270   BitVector SuperRegRC(TRI->getNumRegClasses());
   1271   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
   1272     SuperRegRC.setBitsInMask(RCI.getMask());
   1273 
   1274   // Find the first legal register class with the largest spill size.
   1275   const TargetRegisterClass *BestRC = RC;
   1276   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
   1277     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
   1278     // We want the largest possible spill size.
   1279     if (SuperRC->getSize() <= BestRC->getSize())
   1280       continue;
   1281     if (!isLegalRC(SuperRC))
   1282       continue;
   1283     BestRC = SuperRC;
   1284   }
   1285   return std::make_pair(BestRC, 1);
   1286 }
   1287 
   1288 /// computeRegisterProperties - Once all of the register classes are added,
   1289 /// this allows us to compute derived properties we expose.
   1290 void TargetLoweringBase::computeRegisterProperties(
   1291     const TargetRegisterInfo *TRI) {
   1292   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
   1293                 "Too many value types for ValueTypeActions to hold!");
   1294 
   1295   // Everything defaults to needing one register.
   1296   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1297     NumRegistersForVT[i] = 1;
   1298     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
   1299   }
   1300   // ...except isVoid, which doesn't need any registers.
   1301   NumRegistersForVT[MVT::isVoid] = 0;
   1302 
   1303   // Find the largest integer register class.
   1304   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
   1305   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
   1306     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
   1307 
   1308   // Every integer value type larger than this largest register takes twice as
   1309   // many registers to represent as the previous ValueType.
   1310   for (unsigned ExpandedReg = LargestIntReg + 1;
   1311        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
   1312     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
   1313     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
   1314     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
   1315     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
   1316                                    TypeExpandInteger);
   1317   }
   1318 
   1319   // Inspect all of the ValueType's smaller than the largest integer
   1320   // register to see which ones need promotion.
   1321   unsigned LegalIntReg = LargestIntReg;
   1322   for (unsigned IntReg = LargestIntReg - 1;
   1323        IntReg >= (unsigned)MVT::i1; --IntReg) {
   1324     MVT IVT = (MVT::SimpleValueType)IntReg;
   1325     if (isTypeLegal(IVT)) {
   1326       LegalIntReg = IntReg;
   1327     } else {
   1328       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
   1329         (const MVT::SimpleValueType)LegalIntReg;
   1330       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
   1331     }
   1332   }
   1333 
   1334   // ppcf128 type is really two f64's.
   1335   if (!isTypeLegal(MVT::ppcf128)) {
   1336     if (isTypeLegal(MVT::f64)) {
   1337       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
   1338       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
   1339       TransformToType[MVT::ppcf128] = MVT::f64;
   1340       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
   1341     } else {
   1342       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
   1343       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
   1344       TransformToType[MVT::ppcf128] = MVT::i128;
   1345       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
   1346     }
   1347   }
   1348 
   1349   // Decide how to handle f128. If the target does not have native f128 support,
   1350   // expand it to i128 and we will be generating soft float library calls.
   1351   if (!isTypeLegal(MVT::f128)) {
   1352     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
   1353     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
   1354     TransformToType[MVT::f128] = MVT::i128;
   1355     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
   1356   }
   1357 
   1358   // Decide how to handle f64. If the target does not have native f64 support,
   1359   // expand it to i64 and we will be generating soft float library calls.
   1360   if (!isTypeLegal(MVT::f64)) {
   1361     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
   1362     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
   1363     TransformToType[MVT::f64] = MVT::i64;
   1364     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
   1365   }
   1366 
   1367   // Decide how to handle f32. If the target does not have native f32 support,
   1368   // expand it to i32 and we will be generating soft float library calls.
   1369   if (!isTypeLegal(MVT::f32)) {
   1370     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
   1371     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
   1372     TransformToType[MVT::f32] = MVT::i32;
   1373     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
   1374   }
   1375 
   1376   // Decide how to handle f16. If the target does not have native f16 support,
   1377   // promote it to f32, because there are no f16 library calls (except for
   1378   // conversions).
   1379   if (!isTypeLegal(MVT::f16)) {
   1380     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
   1381     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
   1382     TransformToType[MVT::f16] = MVT::f32;
   1383     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
   1384   }
   1385 
   1386   // Loop over all of the vector value types to see which need transformations.
   1387   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
   1388        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1389     MVT VT = (MVT::SimpleValueType) i;
   1390     if (isTypeLegal(VT))
   1391       continue;
   1392 
   1393     MVT EltVT = VT.getVectorElementType();
   1394     unsigned NElts = VT.getVectorNumElements();
   1395     bool IsLegalWiderType = false;
   1396     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
   1397     switch (PreferredAction) {
   1398     case TypePromoteInteger: {
   1399       // Try to promote the elements of integer vectors. If no legal
   1400       // promotion was found, fall through to the widen-vector method.
   1401       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
   1402         MVT SVT = (MVT::SimpleValueType) nVT;
   1403         // Promote vectors of integers to vectors with the same number
   1404         // of elements, with a wider element type.
   1405         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() &&
   1406             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
   1407           TransformToType[i] = SVT;
   1408           RegisterTypeForVT[i] = SVT;
   1409           NumRegistersForVT[i] = 1;
   1410           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
   1411           IsLegalWiderType = true;
   1412           break;
   1413         }
   1414       }
   1415       if (IsLegalWiderType)
   1416         break;
   1417     }
   1418     case TypeWidenVector: {
   1419       // Try to widen the vector.
   1420       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1421         MVT SVT = (MVT::SimpleValueType) nVT;
   1422         if (SVT.getVectorElementType() == EltVT
   1423             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
   1424           TransformToType[i] = SVT;
   1425           RegisterTypeForVT[i] = SVT;
   1426           NumRegistersForVT[i] = 1;
   1427           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1428           IsLegalWiderType = true;
   1429           break;
   1430         }
   1431       }
   1432       if (IsLegalWiderType)
   1433         break;
   1434     }
   1435     case TypeSplitVector:
   1436     case TypeScalarizeVector: {
   1437       MVT IntermediateVT;
   1438       MVT RegisterVT;
   1439       unsigned NumIntermediates;
   1440       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
   1441           NumIntermediates, RegisterVT, this);
   1442       RegisterTypeForVT[i] = RegisterVT;
   1443 
   1444       MVT NVT = VT.getPow2VectorType();
   1445       if (NVT == VT) {
   1446         // Type is already a power of 2.  The default action is to split.
   1447         TransformToType[i] = MVT::Other;
   1448         if (PreferredAction == TypeScalarizeVector)
   1449           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
   1450         else if (PreferredAction == TypeSplitVector)
   1451           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
   1452         else
   1453           // Set type action according to the number of elements.
   1454           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
   1455                                                         : TypeSplitVector);
   1456       } else {
   1457         TransformToType[i] = NVT;
   1458         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1459       }
   1460       break;
   1461     }
   1462     default:
   1463       llvm_unreachable("Unknown vector legalization action!");
   1464     }
   1465   }
   1466 
   1467   // Determine the 'representative' register class for each value type.
   1468   // An representative register class is the largest (meaning one which is
   1469   // not a sub-register class / subreg register class) legal register class for
   1470   // a group of value types. For example, on i386, i8, i16, and i32
   1471   // representative would be GR32; while on x86_64 it's GR64.
   1472   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1473     const TargetRegisterClass* RRC;
   1474     uint8_t Cost;
   1475     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
   1476     RepRegClassForVT[i] = RRC;
   1477     RepRegClassCostForVT[i] = Cost;
   1478   }
   1479 }
   1480 
   1481 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
   1482                                            EVT VT) const {
   1483   assert(!VT.isVector() && "No default SetCC type for vectors!");
   1484   return getPointerTy(DL).SimpleTy;
   1485 }
   1486 
   1487 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
   1488   return MVT::i32; // return the default value
   1489 }
   1490 
   1491 /// getVectorTypeBreakdown - Vector types are broken down into some number of
   1492 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
   1493 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
   1494 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
   1495 ///
   1496 /// This method returns the number of registers needed, and the VT for each
   1497 /// register.  It also returns the VT and quantity of the intermediate values
   1498 /// before they are promoted/expanded.
   1499 ///
   1500 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
   1501                                                 EVT &IntermediateVT,
   1502                                                 unsigned &NumIntermediates,
   1503                                                 MVT &RegisterVT) const {
   1504   unsigned NumElts = VT.getVectorNumElements();
   1505 
   1506   // If there is a wider vector type with the same element type as this one,
   1507   // or a promoted vector type that has the same number of elements which
   1508   // are wider, then we should convert to that legal vector type.
   1509   // This handles things like <2 x float> -> <4 x float> and
   1510   // <4 x i1> -> <4 x i32>.
   1511   LegalizeTypeAction TA = getTypeAction(Context, VT);
   1512   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
   1513     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
   1514     if (isTypeLegal(RegisterEVT)) {
   1515       IntermediateVT = RegisterEVT;
   1516       RegisterVT = RegisterEVT.getSimpleVT();
   1517       NumIntermediates = 1;
   1518       return 1;
   1519     }
   1520   }
   1521 
   1522   // Figure out the right, legal destination reg to copy into.
   1523   EVT EltTy = VT.getVectorElementType();
   1524 
   1525   unsigned NumVectorRegs = 1;
   1526 
   1527   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1528   // could break down into LHS/RHS like LegalizeDAG does.
   1529   if (!isPowerOf2_32(NumElts)) {
   1530     NumVectorRegs = NumElts;
   1531     NumElts = 1;
   1532   }
   1533 
   1534   // Divide the input until we get to a supported size.  This will always
   1535   // end with a scalar if the target doesn't support vectors.
   1536   while (NumElts > 1 && !isTypeLegal(
   1537                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
   1538     NumElts >>= 1;
   1539     NumVectorRegs <<= 1;
   1540   }
   1541 
   1542   NumIntermediates = NumVectorRegs;
   1543 
   1544   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
   1545   if (!isTypeLegal(NewVT))
   1546     NewVT = EltTy;
   1547   IntermediateVT = NewVT;
   1548 
   1549   MVT DestVT = getRegisterType(Context, NewVT);
   1550   RegisterVT = DestVT;
   1551   unsigned NewVTSize = NewVT.getSizeInBits();
   1552 
   1553   // Convert sizes such as i33 to i64.
   1554   if (!isPowerOf2_32(NewVTSize))
   1555     NewVTSize = NextPowerOf2(NewVTSize);
   1556 
   1557   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
   1558     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1559 
   1560   // Otherwise, promotion or legal types use the same number of registers as
   1561   // the vector decimated to the appropriate level.
   1562   return NumVectorRegs;
   1563 }
   1564 
   1565 /// Get the EVTs and ArgFlags collections that represent the legalized return
   1566 /// type of the given function.  This does not require a DAG or a return value,
   1567 /// and is suitable for use before any DAGs for the function are constructed.
   1568 /// TODO: Move this out of TargetLowering.cpp.
   1569 void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
   1570                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1571                          const TargetLowering &TLI, const DataLayout &DL) {
   1572   SmallVector<EVT, 4> ValueVTs;
   1573   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
   1574   unsigned NumValues = ValueVTs.size();
   1575   if (NumValues == 0) return;
   1576 
   1577   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1578     EVT VT = ValueVTs[j];
   1579     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1580 
   1581     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1582       ExtendKind = ISD::SIGN_EXTEND;
   1583     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1584       ExtendKind = ISD::ZERO_EXTEND;
   1585 
   1586     // FIXME: C calling convention requires the return type to be promoted to
   1587     // at least 32-bit. But this is not necessary for non-C calling
   1588     // conventions. The frontend should mark functions whose return values
   1589     // require promoting with signext or zeroext attributes.
   1590     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1591       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1592       if (VT.bitsLT(MinVT))
   1593         VT = MinVT;
   1594     }
   1595 
   1596     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1597     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1598 
   1599     // 'inreg' on function refers to return value
   1600     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1601     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
   1602       Flags.setInReg();
   1603 
   1604     // Propagate extension type if any
   1605     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1606       Flags.setSExt();
   1607     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1608       Flags.setZExt();
   1609 
   1610     for (unsigned i = 0; i < NumParts; ++i)
   1611       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
   1612   }
   1613 }
   1614 
   1615 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1616 /// function arguments in the caller parameter area.  This is the actual
   1617 /// alignment, not its logarithm.
   1618 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
   1619                                                    const DataLayout &DL) const {
   1620   return DL.getABITypeAlignment(Ty);
   1621 }
   1622 
   1623 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
   1624                                             const DataLayout &DL, EVT VT,
   1625                                             unsigned AddrSpace,
   1626                                             unsigned Alignment,
   1627                                             bool *Fast) const {
   1628   // Check if the specified alignment is sufficient based on the data layout.
   1629   // TODO: While using the data layout works in practice, a better solution
   1630   // would be to implement this check directly (make this a virtual function).
   1631   // For example, the ABI alignment may change based on software platform while
   1632   // this function should only be affected by hardware implementation.
   1633   Type *Ty = VT.getTypeForEVT(Context);
   1634   if (Alignment >= DL.getABITypeAlignment(Ty)) {
   1635     // Assume that an access that meets the ABI-specified alignment is fast.
   1636     if (Fast != nullptr)
   1637       *Fast = true;
   1638     return true;
   1639   }
   1640 
   1641   // This is a misaligned access.
   1642   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
   1643 }
   1644 
   1645 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
   1646   return BranchProbability(MinPercentageForPredictableBranch, 100);
   1647 }
   1648 
   1649 //===----------------------------------------------------------------------===//
   1650 //  TargetTransformInfo Helpers
   1651 //===----------------------------------------------------------------------===//
   1652 
   1653 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
   1654   enum InstructionOpcodes {
   1655 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
   1656 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
   1657 #include "llvm/IR/Instruction.def"
   1658   };
   1659   switch (static_cast<InstructionOpcodes>(Opcode)) {
   1660   case Ret:            return 0;
   1661   case Br:             return 0;
   1662   case Switch:         return 0;
   1663   case IndirectBr:     return 0;
   1664   case Invoke:         return 0;
   1665   case Resume:         return 0;
   1666   case Unreachable:    return 0;
   1667   case CleanupRet:     return 0;
   1668   case CatchRet:       return 0;
   1669   case CatchPad:       return 0;
   1670   case CatchSwitch:    return 0;
   1671   case CleanupPad:     return 0;
   1672   case Add:            return ISD::ADD;
   1673   case FAdd:           return ISD::FADD;
   1674   case Sub:            return ISD::SUB;
   1675   case FSub:           return ISD::FSUB;
   1676   case Mul:            return ISD::MUL;
   1677   case FMul:           return ISD::FMUL;
   1678   case UDiv:           return ISD::UDIV;
   1679   case SDiv:           return ISD::SDIV;
   1680   case FDiv:           return ISD::FDIV;
   1681   case URem:           return ISD::UREM;
   1682   case SRem:           return ISD::SREM;
   1683   case FRem:           return ISD::FREM;
   1684   case Shl:            return ISD::SHL;
   1685   case LShr:           return ISD::SRL;
   1686   case AShr:           return ISD::SRA;
   1687   case And:            return ISD::AND;
   1688   case Or:             return ISD::OR;
   1689   case Xor:            return ISD::XOR;
   1690   case Alloca:         return 0;
   1691   case Load:           return ISD::LOAD;
   1692   case Store:          return ISD::STORE;
   1693   case GetElementPtr:  return 0;
   1694   case Fence:          return 0;
   1695   case AtomicCmpXchg:  return 0;
   1696   case AtomicRMW:      return 0;
   1697   case Trunc:          return ISD::TRUNCATE;
   1698   case ZExt:           return ISD::ZERO_EXTEND;
   1699   case SExt:           return ISD::SIGN_EXTEND;
   1700   case FPToUI:         return ISD::FP_TO_UINT;
   1701   case FPToSI:         return ISD::FP_TO_SINT;
   1702   case UIToFP:         return ISD::UINT_TO_FP;
   1703   case SIToFP:         return ISD::SINT_TO_FP;
   1704   case FPTrunc:        return ISD::FP_ROUND;
   1705   case FPExt:          return ISD::FP_EXTEND;
   1706   case PtrToInt:       return ISD::BITCAST;
   1707   case IntToPtr:       return ISD::BITCAST;
   1708   case BitCast:        return ISD::BITCAST;
   1709   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
   1710   case ICmp:           return ISD::SETCC;
   1711   case FCmp:           return ISD::SETCC;
   1712   case PHI:            return 0;
   1713   case Call:           return 0;
   1714   case Select:         return ISD::SELECT;
   1715   case UserOp1:        return 0;
   1716   case UserOp2:        return 0;
   1717   case VAArg:          return 0;
   1718   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
   1719   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
   1720   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
   1721   case ExtractValue:   return ISD::MERGE_VALUES;
   1722   case InsertValue:    return ISD::MERGE_VALUES;
   1723   case LandingPad:     return 0;
   1724   }
   1725 
   1726   llvm_unreachable("Unknown instruction type encountered!");
   1727 }
   1728 
   1729 std::pair<int, MVT>
   1730 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
   1731                                             Type *Ty) const {
   1732   LLVMContext &C = Ty->getContext();
   1733   EVT MTy = getValueType(DL, Ty);
   1734 
   1735   int Cost = 1;
   1736   // We keep legalizing the type until we find a legal kind. We assume that
   1737   // the only operation that costs anything is the split. After splitting
   1738   // we need to handle two types.
   1739   while (true) {
   1740     LegalizeKind LK = getTypeConversion(C, MTy);
   1741 
   1742     if (LK.first == TypeLegal)
   1743       return std::make_pair(Cost, MTy.getSimpleVT());
   1744 
   1745     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
   1746       Cost *= 2;
   1747 
   1748     // Do not loop with f128 type.
   1749     if (MTy == LK.second)
   1750       return std::make_pair(Cost, MTy.getSimpleVT());
   1751 
   1752     // Keep legalizing the type.
   1753     MTy = LK.second;
   1754   }
   1755 }
   1756 
   1757 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
   1758   if (!TM.getTargetTriple().isAndroid())
   1759     return nullptr;
   1760 
   1761   // Android provides a libc function to retrieve the address of the current
   1762   // thread's unsafe stack pointer.
   1763   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
   1764   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
   1765   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
   1766                                      StackPtrTy->getPointerTo(0), nullptr);
   1767   return IRB.CreateCall(Fn);
   1768 }
   1769 
   1770 //===----------------------------------------------------------------------===//
   1771 //  Loop Strength Reduction hooks
   1772 //===----------------------------------------------------------------------===//
   1773 
   1774 /// isLegalAddressingMode - Return true if the addressing mode represented
   1775 /// by AM is legal for this target, for a load/store of the specified type.
   1776 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
   1777                                                const AddrMode &AM, Type *Ty,
   1778                                                unsigned AS) const {
   1779   // The default implementation of this implements a conservative RISCy, r+r and
   1780   // r+i addr mode.
   1781 
   1782   // Allows a sign-extended 16-bit immediate field.
   1783   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   1784     return false;
   1785 
   1786   // No global is ever allowed as a base.
   1787   if (AM.BaseGV)
   1788     return false;
   1789 
   1790   // Only support r+r,
   1791   switch (AM.Scale) {
   1792   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   1793     break;
   1794   case 1:
   1795     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   1796       return false;
   1797     // Otherwise we have r+r or r+i.
   1798     break;
   1799   case 2:
   1800     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   1801       return false;
   1802     // Allow 2*r as r+r.
   1803     break;
   1804   default: // Don't allow n * r
   1805     return false;
   1806   }
   1807 
   1808   return true;
   1809 }
   1810 
   1811 //===----------------------------------------------------------------------===//
   1812 //  Stack Protector
   1813 //===----------------------------------------------------------------------===//
   1814 
   1815 // For OpenBSD return its special guard variable. Otherwise return nullptr,
   1816 // so that SelectionDAG handle SSP.
   1817 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
   1818   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
   1819     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
   1820     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
   1821     auto Guard = cast<GlobalValue>(M.getOrInsertGlobal("__guard_local", PtrTy));
   1822     Guard->setVisibility(GlobalValue::HiddenVisibility);
   1823     return Guard;
   1824   }
   1825   return nullptr;
   1826 }
   1827 
   1828 // Currently only support "standard" __stack_chk_guard.
   1829 // TODO: add LOAD_STACK_GUARD support.
   1830 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
   1831   M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
   1832 }
   1833 
   1834 // Currently only support "standard" __stack_chk_guard.
   1835 // TODO: add LOAD_STACK_GUARD support.
   1836 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
   1837   return M.getGlobalVariable("__stack_chk_guard", true);
   1838 }
   1839 
   1840 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
   1841   return nullptr;
   1842 }
   1843