Home | History | Annotate | Download | only in Hexagon
      1 //===--- BitTracker.h -----------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef BITTRACKER_H
     11 #define BITTRACKER_H
     12 
     13 #include "llvm/ADT/SetVector.h"
     14 #include "llvm/ADT/SmallVector.h"
     15 #include "llvm/CodeGen/MachineFunction.h"
     16 
     17 #include <map>
     18 #include <queue>
     19 #include <set>
     20 
     21 namespace llvm {
     22   class ConstantInt;
     23   class MachineRegisterInfo;
     24   class MachineBasicBlock;
     25   class MachineInstr;
     26   class MachineOperand;
     27   class raw_ostream;
     28 
     29 struct BitTracker {
     30   struct BitRef;
     31   struct RegisterRef;
     32   struct BitValue;
     33   struct BitMask;
     34   struct RegisterCell;
     35   struct MachineEvaluator;
     36 
     37   typedef SetVector<const MachineBasicBlock *> BranchTargetList;
     38 
     39   typedef std::map<unsigned, RegisterCell> CellMapType;
     40 
     41   BitTracker(const MachineEvaluator &E, MachineFunction &F);
     42   ~BitTracker();
     43 
     44   void run();
     45   void trace(bool On = false) { Trace = On; }
     46   bool has(unsigned Reg) const;
     47   const RegisterCell &lookup(unsigned Reg) const;
     48   RegisterCell get(RegisterRef RR) const;
     49   void put(RegisterRef RR, const RegisterCell &RC);
     50   void subst(RegisterRef OldRR, RegisterRef NewRR);
     51   bool reached(const MachineBasicBlock *B) const;
     52 
     53 private:
     54   void visitPHI(const MachineInstr &PI);
     55   void visitNonBranch(const MachineInstr &MI);
     56   void visitBranchesFrom(const MachineInstr &BI);
     57   void visitUsesOf(unsigned Reg);
     58   void reset();
     59 
     60   typedef std::pair<int,int> CFGEdge;
     61   typedef std::set<CFGEdge> EdgeSetType;
     62   typedef std::set<const MachineInstr *> InstrSetType;
     63   typedef std::queue<CFGEdge> EdgeQueueType;
     64 
     65   EdgeSetType EdgeExec;       // Executable flow graph edges.
     66   InstrSetType InstrExec;     // Executable instructions.
     67   EdgeQueueType FlowQ;        // Work queue of CFG edges.
     68   bool Trace;                 // Enable tracing for debugging.
     69 
     70   const MachineEvaluator &ME;
     71   MachineFunction &MF;
     72   MachineRegisterInfo &MRI;
     73   CellMapType &Map;
     74 };
     75 
     76 
     77 // Abstraction of a reference to bit at position Pos from a register Reg.
     78 struct BitTracker::BitRef {
     79   BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
     80   bool operator== (const BitRef &BR) const {
     81     // If Reg is 0, disregard Pos.
     82     return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
     83   }
     84   unsigned Reg;
     85   uint16_t Pos;
     86 };
     87 
     88 
     89 // Abstraction of a register reference in MachineOperand.  It contains the
     90 // register number and the subregister index.
     91 struct BitTracker::RegisterRef {
     92   RegisterRef(unsigned R = 0, unsigned S = 0)
     93     : Reg(R), Sub(S) {}
     94   RegisterRef(const MachineOperand &MO)
     95       : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
     96   unsigned Reg, Sub;
     97 };
     98 
     99 
    100 // Value that a single bit can take.  This is outside of the context of
    101 // any register, it is more of an abstraction of the two-element set of
    102 // possible bit values.  One extension here is the "Ref" type, which
    103 // indicates that this bit takes the same value as the bit described by
    104 // RefInfo.
    105 struct BitTracker::BitValue {
    106   enum ValueType {
    107     Top,    // Bit not yet defined.
    108     Zero,   // Bit = 0.
    109     One,    // Bit = 1.
    110     Ref     // Bit value same as the one described in RefI.
    111     // Conceptually, there is no explicit "bottom" value: the lattice's
    112     // bottom will be expressed as a "ref to itself", which, in the context
    113     // of registers, could be read as "this value of this bit is defined by
    114     // this bit".
    115     // The ordering is:
    116     //   x <= Top,
    117     //   Self <= x, where "Self" is "ref to itself".
    118     // This makes the value lattice different for each virtual register
    119     // (even for each bit in the same virtual register), since the "bottom"
    120     // for one register will be a simple "ref" for another register.
    121     // Since we do not store the "Self" bit and register number, the meet
    122     // operation will need to take it as a parameter.
    123     //
    124     // In practice there is a special case for values that are not associa-
    125     // ted with any specific virtual register. An example would be a value
    126     // corresponding to a bit of a physical register, or an intermediate
    127     // value obtained in some computation (such as instruction evaluation).
    128     // Such cases are identical to the usual Ref type, but the register
    129     // number is 0. In such case the Pos field of the reference is ignored.
    130     //
    131     // What is worthy of notice is that in value V (that is a "ref"), as long
    132     // as the RefI.Reg is not 0, it may actually be the same register as the
    133     // one in which V will be contained.  If the RefI.Pos refers to the posi-
    134     // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
    135     // otherwise V is taken to be identical to the referenced bit of the
    136     // same register.
    137     // If RefI.Reg is 0, however, such a reference to the same register is
    138     // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
    139     // is treated as "bottom".
    140   };
    141   ValueType Type;
    142   BitRef RefI;
    143 
    144   BitValue(ValueType T = Top) : Type(T) {}
    145   BitValue(bool B) : Type(B ? One : Zero) {}
    146   BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
    147 
    148   bool operator== (const BitValue &V) const {
    149     if (Type != V.Type)
    150       return false;
    151     if (Type == Ref && !(RefI == V.RefI))
    152       return false;
    153     return true;
    154   }
    155   bool operator!= (const BitValue &V) const {
    156     return !operator==(V);
    157   }
    158   bool is(unsigned T) const {
    159     assert(T == 0 || T == 1);
    160     return T == 0 ? Type == Zero
    161                   : (T == 1 ? Type == One : false);
    162   }
    163 
    164   // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
    165   // (1)  x.x = x
    166   // (2)  x.y = y.x
    167   // (3)  x.(y.z) = (x.y).z
    168   // (4)  x.T = x  (i.e. T = "top")
    169   // (5)  x.B = B  (i.e. B = "bottom")
    170   //
    171   // This "meet" function will update the value of the "*this" object with
    172   // the newly calculated one, and return "true" if the value of *this has
    173   // changed, and "false" otherwise.
    174   // To prove that it satisfies the conditions (1)-(5), it is sufficient
    175   // to show that a relation
    176   //   x <= y  <=>  x.y = x
    177   // defines a partial order (i.e. that "meet" is same as "infimum").
    178   bool meet(const BitValue &V, const BitRef &Self) {
    179     // First, check the cases where there is nothing to be done.
    180     if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
    181       return false;
    182     if (V.Type == Top)                  // This.meet(Top) = This
    183       return false;
    184     if (*this == V)                     // This.meet(This) = This
    185       return false;
    186 
    187     // At this point, we know that the value of "this" will change.
    188     // If it is Top, it will become the same as V, otherwise it will
    189     // become "bottom" (i.e. Self).
    190     if (Type == Top) {
    191       Type = V.Type;
    192       RefI = V.RefI;  // This may be irrelevant, but copy anyway.
    193       return true;
    194     }
    195     // Become "bottom".
    196     Type = Ref;
    197     RefI = Self;
    198     return true;
    199   }
    200 
    201   // Create a reference to the bit value V.
    202   static BitValue ref(const BitValue &V);
    203   // Create a "self".
    204   static BitValue self(const BitRef &Self = BitRef());
    205 
    206   bool num() const {
    207     return Type == Zero || Type == One;
    208   }
    209   operator bool() const {
    210     assert(Type == Zero || Type == One);
    211     return Type == One;
    212   }
    213 
    214   friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
    215 };
    216 
    217 
    218 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
    219 inline BitTracker::BitValue
    220 BitTracker::BitValue::ref(const BitValue &V) {
    221   if (V.Type != Ref)
    222     return BitValue(V.Type);
    223   if (V.RefI.Reg != 0)
    224     return BitValue(V.RefI.Reg, V.RefI.Pos);
    225   return self();
    226 }
    227 
    228 
    229 inline BitTracker::BitValue
    230 BitTracker::BitValue::self(const BitRef &Self) {
    231   return BitValue(Self.Reg, Self.Pos);
    232 }
    233 
    234 
    235 // A sequence of bits starting from index B up to and including index E.
    236 // If E < B, the mask represents two sections: [0..E] and [B..W) where
    237 // W is the width of the register.
    238 struct BitTracker::BitMask {
    239   BitMask() : B(0), E(0) {}
    240   BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
    241   uint16_t first() const { return B; }
    242   uint16_t last() const { return E; }
    243 private:
    244   uint16_t B, E;
    245 };
    246 
    247 
    248 // Representation of a register: a list of BitValues.
    249 struct BitTracker::RegisterCell {
    250   RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
    251 
    252   uint16_t width() const {
    253     return Bits.size();
    254   }
    255   const BitValue &operator[](uint16_t BitN) const {
    256     assert(BitN < Bits.size());
    257     return Bits[BitN];
    258   }
    259   BitValue &operator[](uint16_t BitN) {
    260     assert(BitN < Bits.size());
    261     return Bits[BitN];
    262   }
    263 
    264   bool meet(const RegisterCell &RC, unsigned SelfR);
    265   RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
    266   RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
    267   RegisterCell &rol(uint16_t Sh);    // Rotate left.
    268   RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
    269   RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
    270   uint16_t cl(bool B) const;
    271   uint16_t ct(bool B) const;
    272 
    273   bool operator== (const RegisterCell &RC) const;
    274   bool operator!= (const RegisterCell &RC) const {
    275     return !operator==(RC);
    276   }
    277 
    278   // Generate a "ref" cell for the corresponding register. In the resulting
    279   // cell each bit will be described as being the same as the corresponding
    280   // bit in register Reg (i.e. the cell is "defined" by register Reg).
    281   static RegisterCell self(unsigned Reg, uint16_t Width);
    282   // Generate a "top" cell of given size.
    283   static RegisterCell top(uint16_t Width);
    284   // Generate a cell that is a "ref" to another cell.
    285   static RegisterCell ref(const RegisterCell &C);
    286 
    287 private:
    288   // The DefaultBitN is here only to avoid frequent reallocation of the
    289   // memory in the vector.
    290   static const unsigned DefaultBitN = 32;
    291   typedef SmallVector<BitValue, DefaultBitN> BitValueList;
    292   BitValueList Bits;
    293 
    294   friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
    295 };
    296 
    297 
    298 inline bool BitTracker::has(unsigned Reg) const {
    299   return Map.find(Reg) != Map.end();
    300 }
    301 
    302 
    303 inline const BitTracker::RegisterCell&
    304 BitTracker::lookup(unsigned Reg) const {
    305   CellMapType::const_iterator F = Map.find(Reg);
    306   assert(F != Map.end());
    307   return F->second;
    308 }
    309 
    310 
    311 inline BitTracker::RegisterCell
    312 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
    313   RegisterCell RC(Width);
    314   for (uint16_t i = 0; i < Width; ++i)
    315     RC.Bits[i] = BitValue::self(BitRef(Reg, i));
    316   return RC;
    317 }
    318 
    319 
    320 inline BitTracker::RegisterCell
    321 BitTracker::RegisterCell::top(uint16_t Width) {
    322   RegisterCell RC(Width);
    323   for (uint16_t i = 0; i < Width; ++i)
    324     RC.Bits[i] = BitValue(BitValue::Top);
    325   return RC;
    326 }
    327 
    328 
    329 inline BitTracker::RegisterCell
    330 BitTracker::RegisterCell::ref(const RegisterCell &C) {
    331   uint16_t W = C.width();
    332   RegisterCell RC(W);
    333   for (unsigned i = 0; i < W; ++i)
    334     RC[i] = BitValue::ref(C[i]);
    335   return RC;
    336 }
    337 
    338 // A class to evaluate target's instructions and update the cell maps.
    339 // This is used internally by the bit tracker.  A target that wants to
    340 // utilize this should implement the evaluation functions (noted below)
    341 // in a subclass of this class.
    342 struct BitTracker::MachineEvaluator {
    343   MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
    344       : TRI(T), MRI(M) {}
    345   virtual ~MachineEvaluator() {}
    346 
    347   uint16_t getRegBitWidth(const RegisterRef &RR) const;
    348 
    349   RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
    350   void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
    351   // A result of any operation should use refs to the source cells, not
    352   // the cells directly. This function is a convenience wrapper to quickly
    353   // generate a ref for a cell corresponding to a register reference.
    354   RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
    355     RegisterCell RC = getCell(RR, M);
    356     return RegisterCell::ref(RC);
    357   }
    358 
    359   // Helper functions.
    360   // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
    361   bool isInt(const RegisterCell &A) const;
    362   // Convert cell to an immediate value.
    363   uint64_t toInt(const RegisterCell &A) const;
    364 
    365   // Generate cell from an immediate value.
    366   RegisterCell eIMM(int64_t V, uint16_t W) const;
    367   RegisterCell eIMM(const ConstantInt *CI) const;
    368 
    369   // Arithmetic.
    370   RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
    371   RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
    372   RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
    373   RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
    374 
    375   // Shifts.
    376   RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
    377   RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
    378   RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
    379 
    380   // Logical.
    381   RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
    382   RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
    383   RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
    384   RegisterCell eNOT(const RegisterCell &A1) const;
    385 
    386   // Set bit, clear bit.
    387   RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
    388   RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
    389 
    390   // Count leading/trailing bits (zeros/ones).
    391   RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
    392   RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
    393 
    394   // Sign/zero extension.
    395   RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
    396   RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
    397 
    398   // Extract/insert
    399   // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
    400   // INS R,S,b:  take R and replace bits starting from b with S.
    401   RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
    402   RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
    403                     uint16_t AtN) const;
    404 
    405   // User-provided functions for individual targets:
    406 
    407   // Return a sub-register mask that indicates which bits in Reg belong
    408   // to the subregister Sub. These bits are assumed to be contiguous in
    409   // the super-register, and have the same ordering in the sub-register
    410   // as in the super-register. It is valid to call this function with
    411   // Sub == 0, in this case, the function should return a mask that spans
    412   // the entire register Reg (which is what the default implementation
    413   // does).
    414   virtual BitMask mask(unsigned Reg, unsigned Sub) const;
    415   // Indicate whether a given register class should be tracked.
    416   virtual bool track(const TargetRegisterClass *RC) const { return true; }
    417   // Evaluate a non-branching machine instruction, given the cell map with
    418   // the input values. Place the results in the Outputs map. Return "true"
    419   // if evaluation succeeded, "false" otherwise.
    420   virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
    421                         CellMapType &Outputs) const;
    422   // Evaluate a branch, given the cell map with the input values. Fill out
    423   // a list of all possible branch targets and indicate (through a flag)
    424   // whether the branch could fall-through. Return "true" if this information
    425   // has been successfully computed, "false" otherwise.
    426   virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
    427                         BranchTargetList &Targets, bool &FallsThru) const = 0;
    428 
    429   const TargetRegisterInfo &TRI;
    430   MachineRegisterInfo &MRI;
    431 };
    432 
    433 } // end namespace llvm
    434 
    435 #endif
    436