Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
     16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
     17 
     18 #include "PPC.h"
     19 #include "PPCInstrInfo.h"
     20 #include "PPCRegisterInfo.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 namespace llvm {
     26   namespace PPCISD {
     27     enum NodeType : unsigned {
     28       // Start the numbering where the builtin ops and target ops leave off.
     29       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     30 
     31       /// FSEL - Traditional three-operand fsel node.
     32       ///
     33       FSEL,
     34 
     35       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     36       /// and f64 value containing the FP representation of the integer that
     37       /// was temporarily in the f64 operand.
     38       FCFID,
     39 
     40       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
     41       /// unsigned integers and single-precision outputs.
     42       FCFIDU, FCFIDS, FCFIDUS,
     43 
     44       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     45       /// operand, producing an f64 value containing the integer representation
     46       /// of that FP value.
     47       FCTIDZ, FCTIWZ,
     48 
     49       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
     50       /// unsigned integers.
     51       FCTIDUZ, FCTIWUZ,
     52 
     53       /// Reciprocal estimate instructions (unary FP ops).
     54       FRE, FRSQRTE,
     55 
     56       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     57       // three v4f32 operands and producing a v4f32 result.
     58       VMADDFP, VNMSUBFP,
     59 
     60       /// VPERM - The PPC VPERM Instruction.
     61       ///
     62       VPERM,
     63 
     64       /// XXSPLT - The PPC VSX splat instructions
     65       ///
     66       XXSPLT,
     67 
     68       /// XXINSERT - The PPC VSX insert instruction
     69       ///
     70       XXINSERT,
     71 
     72       /// VECSHL - The PPC VSX shift left instruction
     73       ///
     74       VECSHL,
     75 
     76       /// The CMPB instruction (takes two operands of i32 or i64).
     77       CMPB,
     78 
     79       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     80       /// address respectively.  These nodes have two operands, the first of
     81       /// which must be a TargetGlobalAddress, and the second of which must be a
     82       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     83       /// though these are usually folded into other nodes.
     84       Hi, Lo,
     85 
     86       /// The following two target-specific nodes are used for calls through
     87       /// function pointers in the 64-bit SVR4 ABI.
     88 
     89       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     90       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     91       /// compute an allocation on the stack.
     92       DYNALLOC,
     93 
     94       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     95       /// compute an offset from native SP to the address  of the most recent
     96       /// dynamic alloca.
     97       DYNAREAOFFSET,
     98 
     99       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
    100       /// at function entry, used for PIC code.
    101       GlobalBaseReg,
    102 
    103       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
    104       /// shift amounts.  These nodes are generated by the multi-precision shift
    105       /// code.
    106       SRL, SRA, SHL,
    107 
    108       /// The combination of sra[wd]i and addze used to implemented signed
    109       /// integer division by a power of 2. The first operand is the dividend,
    110       /// and the second is the constant shift amount (representing the
    111       /// divisor).
    112       SRA_ADDZE,
    113 
    114       /// CALL - A direct function call.
    115       /// CALL_NOP is a call with the special NOP which follows 64-bit
    116       /// SVR4 calls.
    117       CALL, CALL_NOP,
    118 
    119       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    120       /// MTCTR instruction.
    121       MTCTR,
    122 
    123       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    124       /// BCTRL instruction.
    125       BCTRL,
    126 
    127       /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
    128       /// instruction and the TOC reload required on SVR4 PPC64.
    129       BCTRL_LOAD_TOC,
    130 
    131       /// Return with a flag operand, matched by 'blr'
    132       RET_FLAG,
    133 
    134       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
    135       /// This copies the bits corresponding to the specified CRREG into the
    136       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
    137       MFOCRF,
    138 
    139       /// Direct move from a VSX register to a GPR
    140       MFVSR,
    141 
    142       /// Direct move from a GPR to a VSX register (algebraic)
    143       MTVSRA,
    144 
    145       /// Direct move from a GPR to a VSX register (zero)
    146       MTVSRZ,
    147 
    148       /// Extract a subvector from signed integer vector and convert to FP.
    149       /// It is primarily used to convert a (widened) illegal integer vector
    150       /// type to a legal floating point vector type.
    151       /// For example v2i32 -> widened to v4i32 -> v2f64
    152       SINT_VEC_TO_FP,
    153 
    154       /// Extract a subvector from unsigned integer vector and convert to FP.
    155       /// As with SINT_VEC_TO_FP, used for converting illegal types.
    156       UINT_VEC_TO_FP,
    157 
    158       // FIXME: Remove these once the ANDI glue bug is fixed:
    159       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
    160       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
    161       /// implement truncation of i32 or i64 to i1.
    162       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
    163 
    164       // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
    165       // target (returns (Lo, Hi)). It takes a chain operand.
    166       READ_TIME_BASE,
    167 
    168       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
    169       EH_SJLJ_SETJMP,
    170 
    171       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
    172       EH_SJLJ_LONGJMP,
    173 
    174       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    175       /// instructions.  For lack of better number, we use the opcode number
    176       /// encoding for the OPC field to identify the compare.  For example, 838
    177       /// is VCMPGTSH.
    178       VCMP,
    179 
    180       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    181       /// altivec VCMP*o instructions.  For lack of better number, we use the
    182       /// opcode number encoding for the OPC field to identify the compare.  For
    183       /// example, 838 is VCMPGTSH.
    184       VCMPo,
    185 
    186       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    187       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    188       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    189       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    190       /// an optional input flag argument.
    191       COND_BRANCH,
    192 
    193       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
    194       /// loops.
    195       BDNZ, BDZ,
    196 
    197       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
    198       /// towards zero.  Used only as part of the long double-to-int
    199       /// conversion sequence.
    200       FADDRTZ,
    201 
    202       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
    203       MFFS,
    204 
    205       /// TC_RETURN - A tail call return.
    206       ///   operand #0 chain
    207       ///   operand #1 callee (register or absolute)
    208       ///   operand #2 stack adjustment
    209       ///   operand #3 optional in flag
    210       TC_RETURN,
    211 
    212       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
    213       CR6SET,
    214       CR6UNSET,
    215 
    216       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
    217       /// on PPC32.
    218       PPC32_GOT,
    219 
    220       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
    221       /// local dynamic TLS on PPC32.
    222       PPC32_PICGOT,
    223 
    224       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
    225       /// TLS model, produces an ADDIS8 instruction that adds the GOT
    226       /// base to sym\@got\@tprel\@ha.
    227       ADDIS_GOT_TPREL_HA,
    228 
    229       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
    230       /// TLS model, produces a LD instruction with base register G8RReg
    231       /// and offset sym\@got\@tprel\@l.  This completes the addition that
    232       /// finds the offset of "sym" relative to the thread pointer.
    233       LD_GOT_TPREL_L,
    234 
    235       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
    236       /// model, produces an ADD instruction that adds the contents of
    237       /// G8RReg to the thread pointer.  Symbol contains a relocation
    238       /// sym\@tls which is to be replaced by the thread pointer and
    239       /// identifies to the linker that the instruction is part of a
    240       /// TLS sequence.
    241       ADD_TLS,
    242 
    243       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
    244       /// model, produces an ADDIS8 instruction that adds the GOT base
    245       /// register to sym\@got\@tlsgd\@ha.
    246       ADDIS_TLSGD_HA,
    247 
    248       /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
    249       /// model, produces an ADDI8 instruction that adds G8RReg to
    250       /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
    251       /// ADDIS_TLSGD_L_ADDR until after register assignment.
    252       ADDI_TLSGD_L,
    253 
    254       /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
    255       /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
    256       /// ADDIS_TLSGD_L_ADDR until after register assignment.
    257       GET_TLS_ADDR,
    258 
    259       /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
    260       /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
    261       /// register assignment.
    262       ADDI_TLSGD_L_ADDR,
    263 
    264       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
    265       /// model, produces an ADDIS8 instruction that adds the GOT base
    266       /// register to sym\@got\@tlsld\@ha.
    267       ADDIS_TLSLD_HA,
    268 
    269       /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
    270       /// model, produces an ADDI8 instruction that adds G8RReg to
    271       /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
    272       /// ADDIS_TLSLD_L_ADDR until after register assignment.
    273       ADDI_TLSLD_L,
    274 
    275       /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
    276       /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
    277       /// ADDIS_TLSLD_L_ADDR until after register assignment.
    278       GET_TLSLD_ADDR,
    279 
    280       /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
    281       /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
    282       /// following register assignment.
    283       ADDI_TLSLD_L_ADDR,
    284 
    285       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
    286       /// model, produces an ADDIS8 instruction that adds X3 to
    287       /// sym\@dtprel\@ha.
    288       ADDIS_DTPREL_HA,
    289 
    290       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
    291       /// model, produces an ADDI8 instruction that adds G8RReg to
    292       /// sym\@got\@dtprel\@l.
    293       ADDI_DTPREL_L,
    294 
    295       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
    296       /// during instruction selection to optimize a BUILD_VECTOR into
    297       /// operations on splats.  This is necessary to avoid losing these
    298       /// optimizations due to constant folding.
    299       VADD_SPLAT,
    300 
    301       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
    302       /// operand identifies the operating system entry point.
    303       SC,
    304 
    305       /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
    306       CLRBHRB,
    307 
    308       /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
    309       /// history rolling buffer entry.
    310       MFBHRBE,
    311 
    312       /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
    313       RFEBB,
    314 
    315       /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
    316       /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
    317       /// or stxvd2x instruction.  The chain is necessary because the
    318       /// sequence replaces a load and needs to provide the same number
    319       /// of outputs.
    320       XXSWAPD,
    321 
    322       /// An SDNode for swaps that are not associated with any loads/stores
    323       /// and thereby have no chain.
    324       SWAP_NO_CHAIN,
    325 
    326       /// QVFPERM = This corresponds to the QPX qvfperm instruction.
    327       QVFPERM,
    328 
    329       /// QVGPCI = This corresponds to the QPX qvgpci instruction.
    330       QVGPCI,
    331 
    332       /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
    333       QVALIGNI,
    334 
    335       /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
    336       QVESPLATI,
    337 
    338       /// QBFLT = Access the underlying QPX floating-point boolean
    339       /// representation.
    340       QBFLT,
    341 
    342       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    343       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    344       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    345       /// i32.
    346       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
    347 
    348       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    349       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    350       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    351       /// or i32.
    352       LBRX,
    353 
    354       /// STFIWX - The STFIWX instruction.  The first operand is an input token
    355       /// chain, then an f64 value to store, then an address to store it to.
    356       STFIWX,
    357 
    358       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
    359       /// load which sign-extends from a 32-bit integer value into the
    360       /// destination 64-bit register.
    361       LFIWAX,
    362 
    363       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
    364       /// load which zero-extends from a 32-bit integer value into the
    365       /// destination 64-bit register.
    366       LFIWZX,
    367 
    368       /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
    369       /// Maps directly to an lxvd2x instruction that will be followed by
    370       /// an xxswapd.
    371       LXVD2X,
    372 
    373       /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
    374       /// Maps directly to an stxvd2x instruction that will be preceded by
    375       /// an xxswapd.
    376       STXVD2X,
    377 
    378       /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
    379       /// The 4xf32 load used for v4i1 constants.
    380       QVLFSb,
    381 
    382       /// GPRC = TOC_ENTRY GA, TOC
    383       /// Loads the entry for GA from the TOC, where the TOC base is given by
    384       /// the last operand.
    385       TOC_ENTRY
    386     };
    387   }
    388 
    389   /// Define some predicates that are used for node matching.
    390   namespace PPC {
    391     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    392     /// VPKUHUM instruction.
    393     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    394                               SelectionDAG &DAG);
    395 
    396     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    397     /// VPKUWUM instruction.
    398     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    399                               SelectionDAG &DAG);
    400 
    401     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
    402     /// VPKUDUM instruction.
    403     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    404                               SelectionDAG &DAG);
    405 
    406     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    407     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    408     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    409                             unsigned ShuffleKind, SelectionDAG &DAG);
    410 
    411     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    412     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    413     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    414                             unsigned ShuffleKind, SelectionDAG &DAG);
    415 
    416     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
    417     /// a VMRGEW or VMRGOW instruction
    418     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
    419                              unsigned ShuffleKind, SelectionDAG &DAG);
    420 
    421     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
    422     /// shift amount, otherwise return -1.
    423     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
    424                             SelectionDAG &DAG);
    425 
    426     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    427     /// specifies a splat of a single element that is suitable for input to
    428     /// VSPLTB/VSPLTH/VSPLTW.
    429     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    430 
    431     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
    432     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
    433     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
    434     /// vector into the other. This function will also set a couple of
    435     /// output parameters for how much the source vector needs to be shifted and
    436     /// what byte number needs to be specified for the instruction to put the
    437     /// element in the desired location of the target vector.
    438     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
    439                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
    440 
    441     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    442     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    443     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
    444 
    445     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    446     /// formed by using a vspltis[bhw] instruction of the specified element
    447     /// size, return the constant being splatted.  The ByteSize field indicates
    448     /// the number of bytes of each element [124] -> [bhw].
    449     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    450 
    451     /// If this is a qvaligni shuffle mask, return the shift
    452     /// amount, otherwise return -1.
    453     int isQVALIGNIShuffleMask(SDNode *N);
    454   }
    455 
    456   class PPCTargetLowering : public TargetLowering {
    457     const PPCSubtarget &Subtarget;
    458 
    459   public:
    460     explicit PPCTargetLowering(const PPCTargetMachine &TM,
    461                                const PPCSubtarget &STI);
    462 
    463     /// getTargetNodeName() - This method returns the name of a target specific
    464     /// DAG node.
    465     const char *getTargetNodeName(unsigned Opcode) const override;
    466 
    467     /// getPreferredVectorAction - The code we generate when vector types are
    468     /// legalized by promoting the integer element type is often much worse
    469     /// than code we generate if we widen the type for applicable vector types.
    470     /// The issue with promoting is that the vector is scalaraized, individual
    471     /// elements promoted and then the vector is rebuilt. So say we load a pair
    472     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
    473     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
    474     /// then the VPERM for the shuffle. All in all a very slow sequence.
    475     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
    476       const override {
    477       if (VT.getVectorElementType().getSizeInBits() % 8 == 0)
    478         return TypeWidenVector;
    479       return TargetLoweringBase::getPreferredVectorAction(VT);
    480     }
    481     bool useSoftFloat() const override;
    482 
    483     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
    484       return MVT::i32;
    485     }
    486 
    487     bool isCheapToSpeculateCttz() const override {
    488       return true;
    489     }
    490 
    491     bool isCheapToSpeculateCtlz() const override {
    492       return true;
    493     }
    494 
    495     bool supportSplitCSR(MachineFunction *MF) const override {
    496       return
    497         MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS &&
    498         MF->getFunction()->hasFnAttribute(Attribute::NoUnwind);
    499     }
    500 
    501     void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    502 
    503     void insertCopiesSplitCSR(
    504       MachineBasicBlock *Entry,
    505       const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
    506 
    507     /// getSetCCResultType - Return the ISD::SETCC ValueType
    508     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
    509                            EVT VT) const override;
    510 
    511     /// Return true if target always beneficiates from combining into FMA for a
    512     /// given value type. This must typically return false on targets where FMA
    513     /// takes more cycles to execute than FADD.
    514     bool enableAggressiveFMAFusion(EVT VT) const override;
    515 
    516     /// getPreIndexedAddressParts - returns true by value, base pointer and
    517     /// offset pointer and addressing mode by reference if the node's address
    518     /// can be legally represented as pre-indexed load / store address.
    519     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    520                                    SDValue &Offset,
    521                                    ISD::MemIndexedMode &AM,
    522                                    SelectionDAG &DAG) const override;
    523 
    524     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    525     /// can be represented as an indexed [r+r] operation.  Returns false if it
    526     /// can be more efficiently represented with [r+imm].
    527     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    528                              SelectionDAG &DAG) const;
    529 
    530     /// SelectAddressRegImm - Returns true if the address N can be represented
    531     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    532     /// is not better represented as reg+reg.  If Aligned is true, only accept
    533     /// displacements suitable for STD and friends, i.e. multiples of 4.
    534     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    535                              SelectionDAG &DAG, bool Aligned) const;
    536 
    537     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    538     /// represented as an indexed [r+r] operation.
    539     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    540                                  SelectionDAG &DAG) const;
    541 
    542     Sched::Preference getSchedulingPreference(SDNode *N) const override;
    543 
    544     /// LowerOperation - Provide custom lowering hooks for some operations.
    545     ///
    546     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    547 
    548     /// ReplaceNodeResults - Replace the results of node with an illegal result
    549     /// type with new values built out of custom code.
    550     ///
    551     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    552                             SelectionDAG &DAG) const override;
    553 
    554     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    555     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    556 
    557     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    558 
    559     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
    560                           std::vector<SDNode *> *Created) const override;
    561 
    562     unsigned getRegisterByName(const char* RegName, EVT VT,
    563                                SelectionDAG &DAG) const override;
    564 
    565     void computeKnownBitsForTargetNode(const SDValue Op,
    566                                        APInt &KnownZero,
    567                                        APInt &KnownOne,
    568                                        const SelectionDAG &DAG,
    569                                        unsigned Depth = 0) const override;
    570 
    571     unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
    572 
    573     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
    574       return true;
    575     }
    576 
    577     Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
    578                                   bool IsStore, bool IsLoad) const override;
    579     Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
    580                                    bool IsStore, bool IsLoad) const override;
    581 
    582     MachineBasicBlock *
    583     EmitInstrWithCustomInserter(MachineInstr &MI,
    584                                 MachineBasicBlock *MBB) const override;
    585     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
    586                                         MachineBasicBlock *MBB,
    587                                         unsigned AtomicSize,
    588                                         unsigned BinOpcode) const;
    589     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
    590                                                 MachineBasicBlock *MBB,
    591                                                 bool is8bit,
    592                                                 unsigned Opcode) const;
    593 
    594     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
    595                                         MachineBasicBlock *MBB) const;
    596 
    597     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
    598                                          MachineBasicBlock *MBB) const;
    599 
    600     ConstraintType getConstraintType(StringRef Constraint) const override;
    601 
    602     /// Examine constraint string and operand type and determine a weight value.
    603     /// The operand object must already have been set up with the operand type.
    604     ConstraintWeight getSingleConstraintMatchWeight(
    605       AsmOperandInfo &info, const char *constraint) const override;
    606 
    607     std::pair<unsigned, const TargetRegisterClass *>
    608     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    609                                  StringRef Constraint, MVT VT) const override;
    610 
    611     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    612     /// function arguments in the caller parameter area.  This is the actual
    613     /// alignment, not its logarithm.
    614     unsigned getByValTypeAlignment(Type *Ty,
    615                                    const DataLayout &DL) const override;
    616 
    617     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    618     /// vector.  If it is invalid, don't add anything to Ops.
    619     void LowerAsmOperandForConstraint(SDValue Op,
    620                                       std::string &Constraint,
    621                                       std::vector<SDValue> &Ops,
    622                                       SelectionDAG &DAG) const override;
    623 
    624     unsigned
    625     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
    626       if (ConstraintCode == "es")
    627         return InlineAsm::Constraint_es;
    628       else if (ConstraintCode == "o")
    629         return InlineAsm::Constraint_o;
    630       else if (ConstraintCode == "Q")
    631         return InlineAsm::Constraint_Q;
    632       else if (ConstraintCode == "Z")
    633         return InlineAsm::Constraint_Z;
    634       else if (ConstraintCode == "Zy")
    635         return InlineAsm::Constraint_Zy;
    636       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    637     }
    638 
    639     /// isLegalAddressingMode - Return true if the addressing mode represented
    640     /// by AM is legal for this target, for a load/store of the specified type.
    641     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
    642                                Type *Ty, unsigned AS) const override;
    643 
    644     /// isLegalICmpImmediate - Return true if the specified immediate is legal
    645     /// icmp immediate, that is the target has icmp instructions which can
    646     /// compare a register against the immediate without having to materialize
    647     /// the immediate into a register.
    648     bool isLegalICmpImmediate(int64_t Imm) const override;
    649 
    650     /// isLegalAddImmediate - Return true if the specified immediate is legal
    651     /// add immediate, that is the target has add instructions which can
    652     /// add a register and the immediate without having to materialize
    653     /// the immediate into a register.
    654     bool isLegalAddImmediate(int64_t Imm) const override;
    655 
    656     /// isTruncateFree - Return true if it's free to truncate a value of
    657     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
    658     /// register X1 to i32 by referencing its sub-register R1.
    659     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    660     bool isTruncateFree(EVT VT1, EVT VT2) const override;
    661 
    662     bool isZExtFree(SDValue Val, EVT VT2) const override;
    663 
    664     bool isFPExtFree(EVT VT) const override;
    665 
    666     /// \brief Returns true if it is beneficial to convert a load of a constant
    667     /// to just the constant itself.
    668     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
    669                                            Type *Ty) const override;
    670 
    671     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
    672 
    673     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
    674                             const CallInst &I,
    675                             unsigned Intrinsic) const override;
    676 
    677     /// getOptimalMemOpType - Returns the target specific optimal type for load
    678     /// and store operations as a result of memset, memcpy, and memmove
    679     /// lowering. If DstAlign is zero that means it's safe to destination
    680     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    681     /// means there isn't a need to check it against alignment requirement,
    682     /// probably because the source does not need to be loaded. If 'IsMemset' is
    683     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    684     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    685     /// source is constant so it does not need to be loaded.
    686     /// It returns EVT::Other if the type should be determined using generic
    687     /// target-independent logic.
    688     EVT
    689     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    690                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    691                         MachineFunction &MF) const override;
    692 
    693     /// Is unaligned memory access allowed for the given type, and is it fast
    694     /// relative to software emulation.
    695     bool allowsMisalignedMemoryAccesses(EVT VT,
    696                                         unsigned AddrSpace,
    697                                         unsigned Align = 1,
    698                                         bool *Fast = nullptr) const override;
    699 
    700     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    701     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    702     /// expanded to FMAs when this method returns true, otherwise fmuladd is
    703     /// expanded to fmul + fadd.
    704     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
    705 
    706     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
    707 
    708     // Should we expand the build vector with shuffles?
    709     bool
    710     shouldExpandBuildVectorWithShuffles(EVT VT,
    711                                         unsigned DefinedValues) const override;
    712 
    713     /// createFastISel - This method returns a target-specific FastISel object,
    714     /// or null if the target does not support "fast" instruction selection.
    715     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    716                              const TargetLibraryInfo *LibInfo) const override;
    717 
    718     /// \brief Returns true if an argument of type Ty needs to be passed in a
    719     /// contiguous block of registers in calling convention CallConv.
    720     bool functionArgumentNeedsConsecutiveRegisters(
    721       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
    722       // We support any array type as "consecutive" block in the parameter
    723       // save area.  The element type defines the alignment requirement and
    724       // whether the argument should go in GPRs, FPRs, or VRs if available.
    725       //
    726       // Note that clang uses this capability both to implement the ELFv2
    727       // homogeneous float/vector aggregate ABI, and to avoid having to use
    728       // "byval" when passing aggregates that might fully fit in registers.
    729       return Ty->isArrayTy();
    730     }
    731 
    732     /// If a physical register, this returns the register that receives the
    733     /// exception address on entry to an EH pad.
    734     unsigned
    735     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
    736 
    737     /// If a physical register, this returns the register that receives the
    738     /// exception typeid on entry to a landing pad.
    739     unsigned
    740     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
    741 
    742     /// Override to support customized stack guard loading.
    743     bool useLoadStackGuardNode() const override;
    744     void insertSSPDeclarations(Module &M) const override;
    745 
    746   private:
    747     struct ReuseLoadInfo {
    748       SDValue Ptr;
    749       SDValue Chain;
    750       SDValue ResChain;
    751       MachinePointerInfo MPI;
    752       bool IsInvariant;
    753       unsigned Alignment;
    754       AAMDNodes AAInfo;
    755       const MDNode *Ranges;
    756 
    757       ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
    758     };
    759 
    760     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
    761                              SelectionDAG &DAG,
    762                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
    763     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
    764                          SelectionDAG &DAG) const;
    765 
    766     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
    767                                 SelectionDAG &DAG, const SDLoc &dl) const;
    768     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
    769                                      const SDLoc &dl) const;
    770     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
    771                                      const SDLoc &dl) const;
    772 
    773     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    774     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    775 
    776     bool
    777     IsEligibleForTailCallOptimization(SDValue Callee,
    778                                       CallingConv::ID CalleeCC,
    779                                       bool isVarArg,
    780                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    781                                       SelectionDAG& DAG) const;
    782 
    783     bool
    784     IsEligibleForTailCallOptimization_64SVR4(
    785                                     SDValue Callee,
    786                                     CallingConv::ID CalleeCC,
    787                                     ImmutableCallSite *CS,
    788                                     bool isVarArg,
    789                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
    790                                     const SmallVectorImpl<ISD::InputArg> &Ins,
    791                                     SelectionDAG& DAG) const;
    792 
    793     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
    794                                          SDValue Chain, SDValue &LROpOut,
    795                                          SDValue &FPOpOut,
    796                                          const SDLoc &dl) const;
    797 
    798     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    799     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    800     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    801     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    802     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    803     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    804     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    805     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    806     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    807     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    808     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    809     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    810     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    811     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
    812     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    813     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    814     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
    815     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
    816     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    817     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    818     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
    819                            const SDLoc &dl) const;
    820     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    821     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    822     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    823     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    824     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    825     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    826     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    827     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    828     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    829     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    830     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    831     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    832 
    833     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
    834     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
    835 
    836     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    837                             CallingConv::ID CallConv, bool isVarArg,
    838                             const SmallVectorImpl<ISD::InputArg> &Ins,
    839                             const SDLoc &dl, SelectionDAG &DAG,
    840                             SmallVectorImpl<SDValue> &InVals) const;
    841     SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
    842                        bool isTailCall, bool isVarArg, bool isPatchPoint,
    843                        bool hasNest, SelectionDAG &DAG,
    844                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
    845                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
    846                        SDValue &Callee, int SPDiff, unsigned NumBytes,
    847                        const SmallVectorImpl<ISD::InputArg> &Ins,
    848                        SmallVectorImpl<SDValue> &InVals,
    849                        ImmutableCallSite *CS) const;
    850 
    851     SDValue
    852     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    853                          const SmallVectorImpl<ISD::InputArg> &Ins,
    854                          const SDLoc &dl, SelectionDAG &DAG,
    855                          SmallVectorImpl<SDValue> &InVals) const override;
    856 
    857     SDValue
    858       LowerCall(TargetLowering::CallLoweringInfo &CLI,
    859                 SmallVectorImpl<SDValue> &InVals) const override;
    860 
    861     bool
    862       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    863                    bool isVarArg,
    864                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    865                    LLVMContext &Context) const override;
    866 
    867     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    868                         const SmallVectorImpl<ISD::OutputArg> &Outs,
    869                         const SmallVectorImpl<SDValue> &OutVals,
    870                         const SDLoc &dl, SelectionDAG &DAG) const override;
    871 
    872     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
    873                               SelectionDAG &DAG, SDValue ArgVal,
    874                               const SDLoc &dl) const;
    875 
    876     SDValue LowerFormalArguments_Darwin(
    877         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    878         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    879         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    880     SDValue LowerFormalArguments_64SVR4(
    881         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    882         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    883         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    884     SDValue LowerFormalArguments_32SVR4(
    885         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    886         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    887         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    888 
    889     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
    890                                        SDValue CallSeqStart,
    891                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
    892                                        const SDLoc &dl) const;
    893 
    894     SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
    895                              CallingConv::ID CallConv, bool isVarArg,
    896                              bool isTailCall, bool isPatchPoint,
    897                              const SmallVectorImpl<ISD::OutputArg> &Outs,
    898                              const SmallVectorImpl<SDValue> &OutVals,
    899                              const SmallVectorImpl<ISD::InputArg> &Ins,
    900                              const SDLoc &dl, SelectionDAG &DAG,
    901                              SmallVectorImpl<SDValue> &InVals,
    902                              ImmutableCallSite *CS) const;
    903     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
    904                              CallingConv::ID CallConv, bool isVarArg,
    905                              bool isTailCall, bool isPatchPoint,
    906                              const SmallVectorImpl<ISD::OutputArg> &Outs,
    907                              const SmallVectorImpl<SDValue> &OutVals,
    908                              const SmallVectorImpl<ISD::InputArg> &Ins,
    909                              const SDLoc &dl, SelectionDAG &DAG,
    910                              SmallVectorImpl<SDValue> &InVals,
    911                              ImmutableCallSite *CS) const;
    912     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
    913                              CallingConv::ID CallConv, bool isVarArg,
    914                              bool isTailCall, bool isPatchPoint,
    915                              const SmallVectorImpl<ISD::OutputArg> &Outs,
    916                              const SmallVectorImpl<SDValue> &OutVals,
    917                              const SmallVectorImpl<ISD::InputArg> &Ins,
    918                              const SDLoc &dl, SelectionDAG &DAG,
    919                              SmallVectorImpl<SDValue> &InVals,
    920                              ImmutableCallSite *CS) const;
    921 
    922     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    923     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    924 
    925     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
    926     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
    927     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
    928     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
    929 
    930     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
    931                              unsigned &RefinementSteps,
    932                              bool &UseOneConstNR) const override;
    933     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
    934                              unsigned &RefinementSteps) const override;
    935     unsigned combineRepeatedFPDivisors() const override;
    936 
    937     CCAssignFn *useFastISelCCs(unsigned Flag) const;
    938   };
    939 
    940   namespace PPC {
    941     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    942                              const TargetLibraryInfo *LibInfo);
    943   }
    944 
    945   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    946                                   CCValAssign::LocInfo &LocInfo,
    947                                   ISD::ArgFlagsTy &ArgFlags,
    948                                   CCState &State);
    949 
    950   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
    951                                          MVT &LocVT,
    952                                          CCValAssign::LocInfo &LocInfo,
    953                                          ISD::ArgFlagsTy &ArgFlags,
    954                                          CCState &State);
    955 
    956   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
    957                                            MVT &LocVT,
    958                                            CCValAssign::LocInfo &LocInfo,
    959                                            ISD::ArgFlagsTy &ArgFlags,
    960                                            CCState &State);
    961 }
    962 
    963 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    964