Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #define DEBUG_TYPE "scalar-evolution"
     62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     63 #include "llvm/Constants.h"
     64 #include "llvm/DerivedTypes.h"
     65 #include "llvm/GlobalVariable.h"
     66 #include "llvm/GlobalAlias.h"
     67 #include "llvm/Instructions.h"
     68 #include "llvm/LLVMContext.h"
     69 #include "llvm/Operator.h"
     70 #include "llvm/Analysis/ConstantFolding.h"
     71 #include "llvm/Analysis/Dominators.h"
     72 #include "llvm/Analysis/InstructionSimplify.h"
     73 #include "llvm/Analysis/LoopInfo.h"
     74 #include "llvm/Analysis/ValueTracking.h"
     75 #include "llvm/Assembly/Writer.h"
     76 #include "llvm/Target/TargetData.h"
     77 #include "llvm/Support/CommandLine.h"
     78 #include "llvm/Support/ConstantRange.h"
     79 #include "llvm/Support/Debug.h"
     80 #include "llvm/Support/ErrorHandling.h"
     81 #include "llvm/Support/GetElementPtrTypeIterator.h"
     82 #include "llvm/Support/InstIterator.h"
     83 #include "llvm/Support/MathExtras.h"
     84 #include "llvm/Support/raw_ostream.h"
     85 #include "llvm/ADT/Statistic.h"
     86 #include "llvm/ADT/STLExtras.h"
     87 #include "llvm/ADT/SmallPtrSet.h"
     88 #include <algorithm>
     89 using namespace llvm;
     90 
     91 STATISTIC(NumArrayLenItCounts,
     92           "Number of trip counts computed with array length");
     93 STATISTIC(NumTripCountsComputed,
     94           "Number of loops with predictable loop counts");
     95 STATISTIC(NumTripCountsNotComputed,
     96           "Number of loops without predictable loop counts");
     97 STATISTIC(NumBruteForceTripCountsComputed,
     98           "Number of loops with trip counts computed by force");
     99 
    100 static cl::opt<unsigned>
    101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    102                         cl::desc("Maximum number of iterations SCEV will "
    103                                  "symbolically execute a constant "
    104                                  "derived loop"),
    105                         cl::init(100));
    106 
    107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
    108                 "Scalar Evolution Analysis", false, true)
    109 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    110 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
    112                 "Scalar Evolution Analysis", false, true)
    113 char ScalarEvolution::ID = 0;
    114 
    115 //===----------------------------------------------------------------------===//
    116 //                           SCEV class definitions
    117 //===----------------------------------------------------------------------===//
    118 
    119 //===----------------------------------------------------------------------===//
    120 // Implementation of the SCEV class.
    121 //
    122 
    123 void SCEV::dump() const {
    124   print(dbgs());
    125   dbgs() << '\n';
    126 }
    127 
    128 void SCEV::print(raw_ostream &OS) const {
    129   switch (getSCEVType()) {
    130   case scConstant:
    131     WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
    132     return;
    133   case scTruncate: {
    134     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    135     const SCEV *Op = Trunc->getOperand();
    136     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    137        << *Trunc->getType() << ")";
    138     return;
    139   }
    140   case scZeroExtend: {
    141     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    142     const SCEV *Op = ZExt->getOperand();
    143     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    144        << *ZExt->getType() << ")";
    145     return;
    146   }
    147   case scSignExtend: {
    148     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    149     const SCEV *Op = SExt->getOperand();
    150     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    151        << *SExt->getType() << ")";
    152     return;
    153   }
    154   case scAddRecExpr: {
    155     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    156     OS << "{" << *AR->getOperand(0);
    157     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    158       OS << ",+," << *AR->getOperand(i);
    159     OS << "}<";
    160     if (AR->getNoWrapFlags(FlagNUW))
    161       OS << "nuw><";
    162     if (AR->getNoWrapFlags(FlagNSW))
    163       OS << "nsw><";
    164     if (AR->getNoWrapFlags(FlagNW) &&
    165         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    166       OS << "nw><";
    167     WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
    168     OS << ">";
    169     return;
    170   }
    171   case scAddExpr:
    172   case scMulExpr:
    173   case scUMaxExpr:
    174   case scSMaxExpr: {
    175     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    176     const char *OpStr = 0;
    177     switch (NAry->getSCEVType()) {
    178     case scAddExpr: OpStr = " + "; break;
    179     case scMulExpr: OpStr = " * "; break;
    180     case scUMaxExpr: OpStr = " umax "; break;
    181     case scSMaxExpr: OpStr = " smax "; break;
    182     }
    183     OS << "(";
    184     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    185          I != E; ++I) {
    186       OS << **I;
    187       if (llvm::next(I) != E)
    188         OS << OpStr;
    189     }
    190     OS << ")";
    191     return;
    192   }
    193   case scUDivExpr: {
    194     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    195     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    196     return;
    197   }
    198   case scUnknown: {
    199     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    200     Type *AllocTy;
    201     if (U->isSizeOf(AllocTy)) {
    202       OS << "sizeof(" << *AllocTy << ")";
    203       return;
    204     }
    205     if (U->isAlignOf(AllocTy)) {
    206       OS << "alignof(" << *AllocTy << ")";
    207       return;
    208     }
    209 
    210     Type *CTy;
    211     Constant *FieldNo;
    212     if (U->isOffsetOf(CTy, FieldNo)) {
    213       OS << "offsetof(" << *CTy << ", ";
    214       WriteAsOperand(OS, FieldNo, false);
    215       OS << ")";
    216       return;
    217     }
    218 
    219     // Otherwise just print it normally.
    220     WriteAsOperand(OS, U->getValue(), false);
    221     return;
    222   }
    223   case scCouldNotCompute:
    224     OS << "***COULDNOTCOMPUTE***";
    225     return;
    226   default: break;
    227   }
    228   llvm_unreachable("Unknown SCEV kind!");
    229 }
    230 
    231 Type *SCEV::getType() const {
    232   switch (getSCEVType()) {
    233   case scConstant:
    234     return cast<SCEVConstant>(this)->getType();
    235   case scTruncate:
    236   case scZeroExtend:
    237   case scSignExtend:
    238     return cast<SCEVCastExpr>(this)->getType();
    239   case scAddRecExpr:
    240   case scMulExpr:
    241   case scUMaxExpr:
    242   case scSMaxExpr:
    243     return cast<SCEVNAryExpr>(this)->getType();
    244   case scAddExpr:
    245     return cast<SCEVAddExpr>(this)->getType();
    246   case scUDivExpr:
    247     return cast<SCEVUDivExpr>(this)->getType();
    248   case scUnknown:
    249     return cast<SCEVUnknown>(this)->getType();
    250   case scCouldNotCompute:
    251     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    252     return 0;
    253   default: break;
    254   }
    255   llvm_unreachable("Unknown SCEV kind!");
    256   return 0;
    257 }
    258 
    259 bool SCEV::isZero() const {
    260   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    261     return SC->getValue()->isZero();
    262   return false;
    263 }
    264 
    265 bool SCEV::isOne() const {
    266   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    267     return SC->getValue()->isOne();
    268   return false;
    269 }
    270 
    271 bool SCEV::isAllOnesValue() const {
    272   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    273     return SC->getValue()->isAllOnesValue();
    274   return false;
    275 }
    276 
    277 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    278   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    279 
    280 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    281   return S->getSCEVType() == scCouldNotCompute;
    282 }
    283 
    284 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    285   FoldingSetNodeID ID;
    286   ID.AddInteger(scConstant);
    287   ID.AddPointer(V);
    288   void *IP = 0;
    289   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    290   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    291   UniqueSCEVs.InsertNode(S, IP);
    292   return S;
    293 }
    294 
    295 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
    296   return getConstant(ConstantInt::get(getContext(), Val));
    297 }
    298 
    299 const SCEV *
    300 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    301   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    302   return getConstant(ConstantInt::get(ITy, V, isSigned));
    303 }
    304 
    305 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    306                            unsigned SCEVTy, const SCEV *op, Type *ty)
    307   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    308 
    309 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    310                                    const SCEV *op, Type *ty)
    311   : SCEVCastExpr(ID, scTruncate, op, ty) {
    312   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    313          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    314          "Cannot truncate non-integer value!");
    315 }
    316 
    317 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    318                                        const SCEV *op, Type *ty)
    319   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    320   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    321          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    322          "Cannot zero extend non-integer value!");
    323 }
    324 
    325 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    326                                        const SCEV *op, Type *ty)
    327   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    328   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    329          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    330          "Cannot sign extend non-integer value!");
    331 }
    332 
    333 void SCEVUnknown::deleted() {
    334   // Clear this SCEVUnknown from various maps.
    335   SE->forgetMemoizedResults(this);
    336 
    337   // Remove this SCEVUnknown from the uniquing map.
    338   SE->UniqueSCEVs.RemoveNode(this);
    339 
    340   // Release the value.
    341   setValPtr(0);
    342 }
    343 
    344 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    345   // Clear this SCEVUnknown from various maps.
    346   SE->forgetMemoizedResults(this);
    347 
    348   // Remove this SCEVUnknown from the uniquing map.
    349   SE->UniqueSCEVs.RemoveNode(this);
    350 
    351   // Update this SCEVUnknown to point to the new value. This is needed
    352   // because there may still be outstanding SCEVs which still point to
    353   // this SCEVUnknown.
    354   setValPtr(New);
    355 }
    356 
    357 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    358   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    359     if (VCE->getOpcode() == Instruction::PtrToInt)
    360       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    361         if (CE->getOpcode() == Instruction::GetElementPtr &&
    362             CE->getOperand(0)->isNullValue() &&
    363             CE->getNumOperands() == 2)
    364           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    365             if (CI->isOne()) {
    366               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    367                                  ->getElementType();
    368               return true;
    369             }
    370 
    371   return false;
    372 }
    373 
    374 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    375   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    376     if (VCE->getOpcode() == Instruction::PtrToInt)
    377       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    378         if (CE->getOpcode() == Instruction::GetElementPtr &&
    379             CE->getOperand(0)->isNullValue()) {
    380           Type *Ty =
    381             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    382           if (StructType *STy = dyn_cast<StructType>(Ty))
    383             if (!STy->isPacked() &&
    384                 CE->getNumOperands() == 3 &&
    385                 CE->getOperand(1)->isNullValue()) {
    386               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    387                 if (CI->isOne() &&
    388                     STy->getNumElements() == 2 &&
    389                     STy->getElementType(0)->isIntegerTy(1)) {
    390                   AllocTy = STy->getElementType(1);
    391                   return true;
    392                 }
    393             }
    394         }
    395 
    396   return false;
    397 }
    398 
    399 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    400   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    401     if (VCE->getOpcode() == Instruction::PtrToInt)
    402       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    403         if (CE->getOpcode() == Instruction::GetElementPtr &&
    404             CE->getNumOperands() == 3 &&
    405             CE->getOperand(0)->isNullValue() &&
    406             CE->getOperand(1)->isNullValue()) {
    407           Type *Ty =
    408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    409           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    410           // emit getelementptrs that index into vectors.
    411           if (Ty->isStructTy() || Ty->isArrayTy()) {
    412             CTy = Ty;
    413             FieldNo = CE->getOperand(2);
    414             return true;
    415           }
    416         }
    417 
    418   return false;
    419 }
    420 
    421 //===----------------------------------------------------------------------===//
    422 //                               SCEV Utilities
    423 //===----------------------------------------------------------------------===//
    424 
    425 namespace {
    426   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    427   /// than the complexity of the RHS.  This comparator is used to canonicalize
    428   /// expressions.
    429   class SCEVComplexityCompare {
    430     const LoopInfo *const LI;
    431   public:
    432     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    433 
    434     // Return true or false if LHS is less than, or at least RHS, respectively.
    435     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    436       return compare(LHS, RHS) < 0;
    437     }
    438 
    439     // Return negative, zero, or positive, if LHS is less than, equal to, or
    440     // greater than RHS, respectively. A three-way result allows recursive
    441     // comparisons to be more efficient.
    442     int compare(const SCEV *LHS, const SCEV *RHS) const {
    443       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    444       if (LHS == RHS)
    445         return 0;
    446 
    447       // Primarily, sort the SCEVs by their getSCEVType().
    448       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    449       if (LType != RType)
    450         return (int)LType - (int)RType;
    451 
    452       // Aside from the getSCEVType() ordering, the particular ordering
    453       // isn't very important except that it's beneficial to be consistent,
    454       // so that (a + b) and (b + a) don't end up as different expressions.
    455       switch (LType) {
    456       case scUnknown: {
    457         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    458         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    459 
    460         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    461         // not as complete as it could be.
    462         const Value *LV = LU->getValue(), *RV = RU->getValue();
    463 
    464         // Order pointer values after integer values. This helps SCEVExpander
    465         // form GEPs.
    466         bool LIsPointer = LV->getType()->isPointerTy(),
    467              RIsPointer = RV->getType()->isPointerTy();
    468         if (LIsPointer != RIsPointer)
    469           return (int)LIsPointer - (int)RIsPointer;
    470 
    471         // Compare getValueID values.
    472         unsigned LID = LV->getValueID(),
    473                  RID = RV->getValueID();
    474         if (LID != RID)
    475           return (int)LID - (int)RID;
    476 
    477         // Sort arguments by their position.
    478         if (const Argument *LA = dyn_cast<Argument>(LV)) {
    479           const Argument *RA = cast<Argument>(RV);
    480           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    481           return (int)LArgNo - (int)RArgNo;
    482         }
    483 
    484         // For instructions, compare their loop depth, and their operand
    485         // count.  This is pretty loose.
    486         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    487           const Instruction *RInst = cast<Instruction>(RV);
    488 
    489           // Compare loop depths.
    490           const BasicBlock *LParent = LInst->getParent(),
    491                            *RParent = RInst->getParent();
    492           if (LParent != RParent) {
    493             unsigned LDepth = LI->getLoopDepth(LParent),
    494                      RDepth = LI->getLoopDepth(RParent);
    495             if (LDepth != RDepth)
    496               return (int)LDepth - (int)RDepth;
    497           }
    498 
    499           // Compare the number of operands.
    500           unsigned LNumOps = LInst->getNumOperands(),
    501                    RNumOps = RInst->getNumOperands();
    502           return (int)LNumOps - (int)RNumOps;
    503         }
    504 
    505         return 0;
    506       }
    507 
    508       case scConstant: {
    509         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    510         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    511 
    512         // Compare constant values.
    513         const APInt &LA = LC->getValue()->getValue();
    514         const APInt &RA = RC->getValue()->getValue();
    515         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    516         if (LBitWidth != RBitWidth)
    517           return (int)LBitWidth - (int)RBitWidth;
    518         return LA.ult(RA) ? -1 : 1;
    519       }
    520 
    521       case scAddRecExpr: {
    522         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    523         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    524 
    525         // Compare addrec loop depths.
    526         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    527         if (LLoop != RLoop) {
    528           unsigned LDepth = LLoop->getLoopDepth(),
    529                    RDepth = RLoop->getLoopDepth();
    530           if (LDepth != RDepth)
    531             return (int)LDepth - (int)RDepth;
    532         }
    533 
    534         // Addrec complexity grows with operand count.
    535         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    536         if (LNumOps != RNumOps)
    537           return (int)LNumOps - (int)RNumOps;
    538 
    539         // Lexicographically compare.
    540         for (unsigned i = 0; i != LNumOps; ++i) {
    541           long X = compare(LA->getOperand(i), RA->getOperand(i));
    542           if (X != 0)
    543             return X;
    544         }
    545 
    546         return 0;
    547       }
    548 
    549       case scAddExpr:
    550       case scMulExpr:
    551       case scSMaxExpr:
    552       case scUMaxExpr: {
    553         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    554         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    555 
    556         // Lexicographically compare n-ary expressions.
    557         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    558         for (unsigned i = 0; i != LNumOps; ++i) {
    559           if (i >= RNumOps)
    560             return 1;
    561           long X = compare(LC->getOperand(i), RC->getOperand(i));
    562           if (X != 0)
    563             return X;
    564         }
    565         return (int)LNumOps - (int)RNumOps;
    566       }
    567 
    568       case scUDivExpr: {
    569         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    570         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    571 
    572         // Lexicographically compare udiv expressions.
    573         long X = compare(LC->getLHS(), RC->getLHS());
    574         if (X != 0)
    575           return X;
    576         return compare(LC->getRHS(), RC->getRHS());
    577       }
    578 
    579       case scTruncate:
    580       case scZeroExtend:
    581       case scSignExtend: {
    582         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    583         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    584 
    585         // Compare cast expressions by operand.
    586         return compare(LC->getOperand(), RC->getOperand());
    587       }
    588 
    589       default:
    590         break;
    591       }
    592 
    593       llvm_unreachable("Unknown SCEV kind!");
    594       return 0;
    595     }
    596   };
    597 }
    598 
    599 /// GroupByComplexity - Given a list of SCEV objects, order them by their
    600 /// complexity, and group objects of the same complexity together by value.
    601 /// When this routine is finished, we know that any duplicates in the vector are
    602 /// consecutive and that complexity is monotonically increasing.
    603 ///
    604 /// Note that we go take special precautions to ensure that we get deterministic
    605 /// results from this routine.  In other words, we don't want the results of
    606 /// this to depend on where the addresses of various SCEV objects happened to
    607 /// land in memory.
    608 ///
    609 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    610                               LoopInfo *LI) {
    611   if (Ops.size() < 2) return;  // Noop
    612   if (Ops.size() == 2) {
    613     // This is the common case, which also happens to be trivially simple.
    614     // Special case it.
    615     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    616     if (SCEVComplexityCompare(LI)(RHS, LHS))
    617       std::swap(LHS, RHS);
    618     return;
    619   }
    620 
    621   // Do the rough sort by complexity.
    622   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    623 
    624   // Now that we are sorted by complexity, group elements of the same
    625   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    626   // be extremely short in practice.  Note that we take this approach because we
    627   // do not want to depend on the addresses of the objects we are grouping.
    628   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    629     const SCEV *S = Ops[i];
    630     unsigned Complexity = S->getSCEVType();
    631 
    632     // If there are any objects of the same complexity and same value as this
    633     // one, group them.
    634     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    635       if (Ops[j] == S) { // Found a duplicate.
    636         // Move it to immediately after i'th element.
    637         std::swap(Ops[i+1], Ops[j]);
    638         ++i;   // no need to rescan it.
    639         if (i == e-2) return;  // Done!
    640       }
    641     }
    642   }
    643 }
    644 
    645 
    646 
    647 //===----------------------------------------------------------------------===//
    648 //                      Simple SCEV method implementations
    649 //===----------------------------------------------------------------------===//
    650 
    651 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
    652 /// Assume, K > 0.
    653 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    654                                        ScalarEvolution &SE,
    655                                        Type *ResultTy) {
    656   // Handle the simplest case efficiently.
    657   if (K == 1)
    658     return SE.getTruncateOrZeroExtend(It, ResultTy);
    659 
    660   // We are using the following formula for BC(It, K):
    661   //
    662   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    663   //
    664   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    665   // overflow.  Hence, we must assure that the result of our computation is
    666   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    667   // safe in modular arithmetic.
    668   //
    669   // However, this code doesn't use exactly that formula; the formula it uses
    670   // is something like the following, where T is the number of factors of 2 in
    671   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    672   // exponentiation:
    673   //
    674   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    675   //
    676   // This formula is trivially equivalent to the previous formula.  However,
    677   // this formula can be implemented much more efficiently.  The trick is that
    678   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    679   // arithmetic.  To do exact division in modular arithmetic, all we have
    680   // to do is multiply by the inverse.  Therefore, this step can be done at
    681   // width W.
    682   //
    683   // The next issue is how to safely do the division by 2^T.  The way this
    684   // is done is by doing the multiplication step at a width of at least W + T
    685   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    686   // when we perform the division by 2^T (which is equivalent to a right shift
    687   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    688   // truncated out after the division by 2^T.
    689   //
    690   // In comparison to just directly using the first formula, this technique
    691   // is much more efficient; using the first formula requires W * K bits,
    692   // but this formula less than W + K bits. Also, the first formula requires
    693   // a division step, whereas this formula only requires multiplies and shifts.
    694   //
    695   // It doesn't matter whether the subtraction step is done in the calculation
    696   // width or the input iteration count's width; if the subtraction overflows,
    697   // the result must be zero anyway.  We prefer here to do it in the width of
    698   // the induction variable because it helps a lot for certain cases; CodeGen
    699   // isn't smart enough to ignore the overflow, which leads to much less
    700   // efficient code if the width of the subtraction is wider than the native
    701   // register width.
    702   //
    703   // (It's possible to not widen at all by pulling out factors of 2 before
    704   // the multiplication; for example, K=2 can be calculated as
    705   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    706   // extra arithmetic, so it's not an obvious win, and it gets
    707   // much more complicated for K > 3.)
    708 
    709   // Protection from insane SCEVs; this bound is conservative,
    710   // but it probably doesn't matter.
    711   if (K > 1000)
    712     return SE.getCouldNotCompute();
    713 
    714   unsigned W = SE.getTypeSizeInBits(ResultTy);
    715 
    716   // Calculate K! / 2^T and T; we divide out the factors of two before
    717   // multiplying for calculating K! / 2^T to avoid overflow.
    718   // Other overflow doesn't matter because we only care about the bottom
    719   // W bits of the result.
    720   APInt OddFactorial(W, 1);
    721   unsigned T = 1;
    722   for (unsigned i = 3; i <= K; ++i) {
    723     APInt Mult(W, i);
    724     unsigned TwoFactors = Mult.countTrailingZeros();
    725     T += TwoFactors;
    726     Mult = Mult.lshr(TwoFactors);
    727     OddFactorial *= Mult;
    728   }
    729 
    730   // We need at least W + T bits for the multiplication step
    731   unsigned CalculationBits = W + T;
    732 
    733   // Calculate 2^T, at width T+W.
    734   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
    735 
    736   // Calculate the multiplicative inverse of K! / 2^T;
    737   // this multiplication factor will perform the exact division by
    738   // K! / 2^T.
    739   APInt Mod = APInt::getSignedMinValue(W+1);
    740   APInt MultiplyFactor = OddFactorial.zext(W+1);
    741   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
    742   MultiplyFactor = MultiplyFactor.trunc(W);
    743 
    744   // Calculate the product, at width T+W
    745   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
    746                                                       CalculationBits);
    747   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
    748   for (unsigned i = 1; i != K; ++i) {
    749     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
    750     Dividend = SE.getMulExpr(Dividend,
    751                              SE.getTruncateOrZeroExtend(S, CalculationTy));
    752   }
    753 
    754   // Divide by 2^T
    755   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
    756 
    757   // Truncate the result, and divide by K! / 2^T.
    758 
    759   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
    760                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
    761 }
    762 
    763 /// evaluateAtIteration - Return the value of this chain of recurrences at
    764 /// the specified iteration number.  We can evaluate this recurrence by
    765 /// multiplying each element in the chain by the binomial coefficient
    766 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
    767 ///
    768 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
    769 ///
    770 /// where BC(It, k) stands for binomial coefficient.
    771 ///
    772 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
    773                                                 ScalarEvolution &SE) const {
    774   const SCEV *Result = getStart();
    775   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
    776     // The computation is correct in the face of overflow provided that the
    777     // multiplication is performed _after_ the evaluation of the binomial
    778     // coefficient.
    779     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
    780     if (isa<SCEVCouldNotCompute>(Coeff))
    781       return Coeff;
    782 
    783     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
    784   }
    785   return Result;
    786 }
    787 
    788 //===----------------------------------------------------------------------===//
    789 //                    SCEV Expression folder implementations
    790 //===----------------------------------------------------------------------===//
    791 
    792 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
    793                                              Type *Ty) {
    794   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
    795          "This is not a truncating conversion!");
    796   assert(isSCEVable(Ty) &&
    797          "This is not a conversion to a SCEVable type!");
    798   Ty = getEffectiveSCEVType(Ty);
    799 
    800   FoldingSetNodeID ID;
    801   ID.AddInteger(scTruncate);
    802   ID.AddPointer(Op);
    803   ID.AddPointer(Ty);
    804   void *IP = 0;
    805   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    806 
    807   // Fold if the operand is constant.
    808   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    809     return getConstant(
    810       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
    811                                                getEffectiveSCEVType(Ty))));
    812 
    813   // trunc(trunc(x)) --> trunc(x)
    814   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
    815     return getTruncateExpr(ST->getOperand(), Ty);
    816 
    817   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
    818   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
    819     return getTruncateOrSignExtend(SS->getOperand(), Ty);
    820 
    821   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
    822   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    823     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
    824 
    825   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
    826   // eliminate all the truncates.
    827   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
    828     SmallVector<const SCEV *, 4> Operands;
    829     bool hasTrunc = false;
    830     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
    831       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
    832       hasTrunc = isa<SCEVTruncateExpr>(S);
    833       Operands.push_back(S);
    834     }
    835     if (!hasTrunc)
    836       return getAddExpr(Operands);
    837     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    838   }
    839 
    840   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
    841   // eliminate all the truncates.
    842   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
    843     SmallVector<const SCEV *, 4> Operands;
    844     bool hasTrunc = false;
    845     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
    846       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
    847       hasTrunc = isa<SCEVTruncateExpr>(S);
    848       Operands.push_back(S);
    849     }
    850     if (!hasTrunc)
    851       return getMulExpr(Operands);
    852     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    853   }
    854 
    855   // If the input value is a chrec scev, truncate the chrec's operands.
    856   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
    857     SmallVector<const SCEV *, 4> Operands;
    858     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
    859       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
    860     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
    861   }
    862 
    863   // As a special case, fold trunc(undef) to undef. We don't want to
    864   // know too much about SCEVUnknowns, but this special case is handy
    865   // and harmless.
    866   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
    867     if (isa<UndefValue>(U->getValue()))
    868       return getSCEV(UndefValue::get(Ty));
    869 
    870   // The cast wasn't folded; create an explicit cast node. We can reuse
    871   // the existing insert position since if we get here, we won't have
    872   // made any changes which would invalidate it.
    873   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
    874                                                  Op, Ty);
    875   UniqueSCEVs.InsertNode(S, IP);
    876   return S;
    877 }
    878 
    879 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
    880                                                Type *Ty) {
    881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
    882          "This is not an extending conversion!");
    883   assert(isSCEVable(Ty) &&
    884          "This is not a conversion to a SCEVable type!");
    885   Ty = getEffectiveSCEVType(Ty);
    886 
    887   // Fold if the operand is constant.
    888   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    889     return getConstant(
    890       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
    891                                               getEffectiveSCEVType(Ty))));
    892 
    893   // zext(zext(x)) --> zext(x)
    894   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    895     return getZeroExtendExpr(SZ->getOperand(), Ty);
    896 
    897   // Before doing any expensive analysis, check to see if we've already
    898   // computed a SCEV for this Op and Ty.
    899   FoldingSetNodeID ID;
    900   ID.AddInteger(scZeroExtend);
    901   ID.AddPointer(Op);
    902   ID.AddPointer(Ty);
    903   void *IP = 0;
    904   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    905 
    906   // zext(trunc(x)) --> zext(x) or x or trunc(x)
    907   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
    908     // It's possible the bits taken off by the truncate were all zero bits. If
    909     // so, we should be able to simplify this further.
    910     const SCEV *X = ST->getOperand();
    911     ConstantRange CR = getUnsignedRange(X);
    912     unsigned TruncBits = getTypeSizeInBits(ST->getType());
    913     unsigned NewBits = getTypeSizeInBits(Ty);
    914     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
    915             CR.zextOrTrunc(NewBits)))
    916       return getTruncateOrZeroExtend(X, Ty);
    917   }
    918 
    919   // If the input value is a chrec scev, and we can prove that the value
    920   // did not overflow the old, smaller, value, we can zero extend all of the
    921   // operands (often constants).  This allows analysis of something like
    922   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
    923   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
    924     if (AR->isAffine()) {
    925       const SCEV *Start = AR->getStart();
    926       const SCEV *Step = AR->getStepRecurrence(*this);
    927       unsigned BitWidth = getTypeSizeInBits(AR->getType());
    928       const Loop *L = AR->getLoop();
    929 
    930       // If we have special knowledge that this addrec won't overflow,
    931       // we don't need to do any further analysis.
    932       if (AR->getNoWrapFlags(SCEV::FlagNUW))
    933         return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    934                              getZeroExtendExpr(Step, Ty),
    935                              L, AR->getNoWrapFlags());
    936 
    937       // Check whether the backedge-taken count is SCEVCouldNotCompute.
    938       // Note that this serves two purposes: It filters out loops that are
    939       // simply not analyzable, and it covers the case where this code is
    940       // being called from within backedge-taken count analysis, such that
    941       // attempting to ask for the backedge-taken count would likely result
    942       // in infinite recursion. In the later case, the analysis code will
    943       // cope with a conservative value, and it will take care to purge
    944       // that value once it has finished.
    945       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
    946       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
    947         // Manually compute the final value for AR, checking for
    948         // overflow.
    949 
    950         // Check whether the backedge-taken count can be losslessly casted to
    951         // the addrec's type. The count is always unsigned.
    952         const SCEV *CastedMaxBECount =
    953           getTruncateOrZeroExtend(MaxBECount, Start->getType());
    954         const SCEV *RecastedMaxBECount =
    955           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
    956         if (MaxBECount == RecastedMaxBECount) {
    957           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
    958           // Check whether Start+Step*MaxBECount has no unsigned overflow.
    959           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
    960           const SCEV *Add = getAddExpr(Start, ZMul);
    961           const SCEV *OperandExtendedAdd =
    962             getAddExpr(getZeroExtendExpr(Start, WideTy),
    963                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
    964                                   getZeroExtendExpr(Step, WideTy)));
    965           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
    966             // Cache knowledge of AR NUW, which is propagated to this AddRec.
    967             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
    968             // Return the expression with the addrec on the outside.
    969             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    970                                  getZeroExtendExpr(Step, Ty),
    971                                  L, AR->getNoWrapFlags());
    972           }
    973           // Similar to above, only this time treat the step value as signed.
    974           // This covers loops that count down.
    975           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
    976           Add = getAddExpr(Start, SMul);
    977           OperandExtendedAdd =
    978             getAddExpr(getZeroExtendExpr(Start, WideTy),
    979                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
    980                                   getSignExtendExpr(Step, WideTy)));
    981           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
    982             // Cache knowledge of AR NW, which is propagated to this AddRec.
    983             // Negative step causes unsigned wrap, but it still can't self-wrap.
    984             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
    985             // Return the expression with the addrec on the outside.
    986             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    987                                  getSignExtendExpr(Step, Ty),
    988                                  L, AR->getNoWrapFlags());
    989           }
    990         }
    991 
    992         // If the backedge is guarded by a comparison with the pre-inc value
    993         // the addrec is safe. Also, if the entry is guarded by a comparison
    994         // with the start value and the backedge is guarded by a comparison
    995         // with the post-inc value, the addrec is safe.
    996         if (isKnownPositive(Step)) {
    997           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
    998                                       getUnsignedRange(Step).getUnsignedMax());
    999           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1000               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1001                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1002                                            AR->getPostIncExpr(*this), N))) {
   1003             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1004             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1005             // Return the expression with the addrec on the outside.
   1006             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1007                                  getZeroExtendExpr(Step, Ty),
   1008                                  L, AR->getNoWrapFlags());
   1009           }
   1010         } else if (isKnownNegative(Step)) {
   1011           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1012                                       getSignedRange(Step).getSignedMin());
   1013           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1014               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1015                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1016                                            AR->getPostIncExpr(*this), N))) {
   1017             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1018             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1019             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1020             // Return the expression with the addrec on the outside.
   1021             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1022                                  getSignExtendExpr(Step, Ty),
   1023                                  L, AR->getNoWrapFlags());
   1024           }
   1025         }
   1026       }
   1027     }
   1028 
   1029   // The cast wasn't folded; create an explicit cast node.
   1030   // Recompute the insert position, as it may have been invalidated.
   1031   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1032   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1033                                                    Op, Ty);
   1034   UniqueSCEVs.InsertNode(S, IP);
   1035   return S;
   1036 }
   1037 
   1038 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1039 // signed overflow as long as the value of the recurrence within the loop does
   1040 // not exceed this limit before incrementing.
   1041 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1042                                            ICmpInst::Predicate *Pred,
   1043                                            ScalarEvolution *SE) {
   1044   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1045   if (SE->isKnownPositive(Step)) {
   1046     *Pred = ICmpInst::ICMP_SLT;
   1047     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1048                            SE->getSignedRange(Step).getSignedMax());
   1049   }
   1050   if (SE->isKnownNegative(Step)) {
   1051     *Pred = ICmpInst::ICMP_SGT;
   1052     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1053                        SE->getSignedRange(Step).getSignedMin());
   1054   }
   1055   return 0;
   1056 }
   1057 
   1058 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
   1059 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
   1060 // or postincrement sibling. This allows normalizing a sign extended AddRec as
   1061 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
   1062 // result, the expression "Step + sext(PreIncAR)" is congruent with
   1063 // "sext(PostIncAR)"
   1064 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
   1065                                             Type *Ty,
   1066                                             ScalarEvolution *SE) {
   1067   const Loop *L = AR->getLoop();
   1068   const SCEV *Start = AR->getStart();
   1069   const SCEV *Step = AR->getStepRecurrence(*SE);
   1070 
   1071   // Check for a simple looking step prior to loop entry.
   1072   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1073   if (!SA)
   1074     return 0;
   1075 
   1076   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1077   // subtraction is expensive. For this purpose, perform a quick and dirty
   1078   // difference, by checking for Step in the operand list.
   1079   SmallVector<const SCEV *, 4> DiffOps;
   1080   for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
   1081        I != E; ++I) {
   1082     if (*I != Step)
   1083       DiffOps.push_back(*I);
   1084   }
   1085   if (DiffOps.size() == SA->getNumOperands())
   1086     return 0;
   1087 
   1088   // This is a postinc AR. Check for overflow on the preinc recurrence using the
   1089   // same three conditions that getSignExtendedExpr checks.
   1090 
   1091   // 1. NSW flags on the step increment.
   1092   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
   1093   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1094     SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1095 
   1096   if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
   1097     return PreStart;
   1098 
   1099   // 2. Direct overflow check on the step operation's expression.
   1100   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1101   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1102   const SCEV *OperandExtendedStart =
   1103     SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
   1104                    SE->getSignExtendExpr(Step, WideTy));
   1105   if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
   1106     // Cache knowledge of PreAR NSW.
   1107     if (PreAR)
   1108       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
   1109     // FIXME: this optimization needs a unit test
   1110     DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
   1111     return PreStart;
   1112   }
   1113 
   1114   // 3. Loop precondition.
   1115   ICmpInst::Predicate Pred;
   1116   const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
   1117 
   1118   if (OverflowLimit &&
   1119       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
   1120     return PreStart;
   1121   }
   1122   return 0;
   1123 }
   1124 
   1125 // Get the normalized sign-extended expression for this AddRec's Start.
   1126 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
   1127                                             Type *Ty,
   1128                                             ScalarEvolution *SE) {
   1129   const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
   1130   if (!PreStart)
   1131     return SE->getSignExtendExpr(AR->getStart(), Ty);
   1132 
   1133   return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
   1134                         SE->getSignExtendExpr(PreStart, Ty));
   1135 }
   1136 
   1137 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1138                                                Type *Ty) {
   1139   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1140          "This is not an extending conversion!");
   1141   assert(isSCEVable(Ty) &&
   1142          "This is not a conversion to a SCEVable type!");
   1143   Ty = getEffectiveSCEVType(Ty);
   1144 
   1145   // Fold if the operand is constant.
   1146   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1147     return getConstant(
   1148       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
   1149                                               getEffectiveSCEVType(Ty))));
   1150 
   1151   // sext(sext(x)) --> sext(x)
   1152   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1153     return getSignExtendExpr(SS->getOperand(), Ty);
   1154 
   1155   // sext(zext(x)) --> zext(x)
   1156   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1157     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1158 
   1159   // Before doing any expensive analysis, check to see if we've already
   1160   // computed a SCEV for this Op and Ty.
   1161   FoldingSetNodeID ID;
   1162   ID.AddInteger(scSignExtend);
   1163   ID.AddPointer(Op);
   1164   ID.AddPointer(Ty);
   1165   void *IP = 0;
   1166   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1167 
   1168   // If the input value is provably positive, build a zext instead.
   1169   if (isKnownNonNegative(Op))
   1170     return getZeroExtendExpr(Op, Ty);
   1171 
   1172   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1173   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1174     // It's possible the bits taken off by the truncate were all sign bits. If
   1175     // so, we should be able to simplify this further.
   1176     const SCEV *X = ST->getOperand();
   1177     ConstantRange CR = getSignedRange(X);
   1178     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1179     unsigned NewBits = getTypeSizeInBits(Ty);
   1180     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1181             CR.sextOrTrunc(NewBits)))
   1182       return getTruncateOrSignExtend(X, Ty);
   1183   }
   1184 
   1185   // If the input value is a chrec scev, and we can prove that the value
   1186   // did not overflow the old, smaller, value, we can sign extend all of the
   1187   // operands (often constants).  This allows analysis of something like
   1188   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1189   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1190     if (AR->isAffine()) {
   1191       const SCEV *Start = AR->getStart();
   1192       const SCEV *Step = AR->getStepRecurrence(*this);
   1193       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1194       const Loop *L = AR->getLoop();
   1195 
   1196       // If we have special knowledge that this addrec won't overflow,
   1197       // we don't need to do any further analysis.
   1198       if (AR->getNoWrapFlags(SCEV::FlagNSW))
   1199         return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1200                              getSignExtendExpr(Step, Ty),
   1201                              L, SCEV::FlagNSW);
   1202 
   1203       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1204       // Note that this serves two purposes: It filters out loops that are
   1205       // simply not analyzable, and it covers the case where this code is
   1206       // being called from within backedge-taken count analysis, such that
   1207       // attempting to ask for the backedge-taken count would likely result
   1208       // in infinite recursion. In the later case, the analysis code will
   1209       // cope with a conservative value, and it will take care to purge
   1210       // that value once it has finished.
   1211       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1212       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1213         // Manually compute the final value for AR, checking for
   1214         // overflow.
   1215 
   1216         // Check whether the backedge-taken count can be losslessly casted to
   1217         // the addrec's type. The count is always unsigned.
   1218         const SCEV *CastedMaxBECount =
   1219           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1220         const SCEV *RecastedMaxBECount =
   1221           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1222         if (MaxBECount == RecastedMaxBECount) {
   1223           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1224           // Check whether Start+Step*MaxBECount has no signed overflow.
   1225           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1226           const SCEV *Add = getAddExpr(Start, SMul);
   1227           const SCEV *OperandExtendedAdd =
   1228             getAddExpr(getSignExtendExpr(Start, WideTy),
   1229                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
   1230                                   getSignExtendExpr(Step, WideTy)));
   1231           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
   1232             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1233             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1234             // Return the expression with the addrec on the outside.
   1235             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1236                                  getSignExtendExpr(Step, Ty),
   1237                                  L, AR->getNoWrapFlags());
   1238           }
   1239           // Similar to above, only this time treat the step value as unsigned.
   1240           // This covers loops that count up with an unsigned step.
   1241           const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
   1242           Add = getAddExpr(Start, UMul);
   1243           OperandExtendedAdd =
   1244             getAddExpr(getSignExtendExpr(Start, WideTy),
   1245                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
   1246                                   getZeroExtendExpr(Step, WideTy)));
   1247           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
   1248             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1249             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1250             // Return the expression with the addrec on the outside.
   1251             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1252                                  getZeroExtendExpr(Step, Ty),
   1253                                  L, AR->getNoWrapFlags());
   1254           }
   1255         }
   1256 
   1257         // If the backedge is guarded by a comparison with the pre-inc value
   1258         // the addrec is safe. Also, if the entry is guarded by a comparison
   1259         // with the start value and the backedge is guarded by a comparison
   1260         // with the post-inc value, the addrec is safe.
   1261         ICmpInst::Predicate Pred;
   1262         const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
   1263         if (OverflowLimit &&
   1264             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1265              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1266               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1267                                           OverflowLimit)))) {
   1268           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1269           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1270           return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1271                                getSignExtendExpr(Step, Ty),
   1272                                L, AR->getNoWrapFlags());
   1273         }
   1274       }
   1275     }
   1276 
   1277   // The cast wasn't folded; create an explicit cast node.
   1278   // Recompute the insert position, as it may have been invalidated.
   1279   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1280   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1281                                                    Op, Ty);
   1282   UniqueSCEVs.InsertNode(S, IP);
   1283   return S;
   1284 }
   1285 
   1286 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1287 /// unspecified bits out to the given type.
   1288 ///
   1289 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1290                                               Type *Ty) {
   1291   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1292          "This is not an extending conversion!");
   1293   assert(isSCEVable(Ty) &&
   1294          "This is not a conversion to a SCEVable type!");
   1295   Ty = getEffectiveSCEVType(Ty);
   1296 
   1297   // Sign-extend negative constants.
   1298   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1299     if (SC->getValue()->getValue().isNegative())
   1300       return getSignExtendExpr(Op, Ty);
   1301 
   1302   // Peel off a truncate cast.
   1303   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1304     const SCEV *NewOp = T->getOperand();
   1305     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1306       return getAnyExtendExpr(NewOp, Ty);
   1307     return getTruncateOrNoop(NewOp, Ty);
   1308   }
   1309 
   1310   // Next try a zext cast. If the cast is folded, use it.
   1311   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1312   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1313     return ZExt;
   1314 
   1315   // Next try a sext cast. If the cast is folded, use it.
   1316   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1317   if (!isa<SCEVSignExtendExpr>(SExt))
   1318     return SExt;
   1319 
   1320   // Force the cast to be folded into the operands of an addrec.
   1321   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1322     SmallVector<const SCEV *, 4> Ops;
   1323     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   1324          I != E; ++I)
   1325       Ops.push_back(getAnyExtendExpr(*I, Ty));
   1326     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1327   }
   1328 
   1329   // As a special case, fold anyext(undef) to undef. We don't want to
   1330   // know too much about SCEVUnknowns, but this special case is handy
   1331   // and harmless.
   1332   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
   1333     if (isa<UndefValue>(U->getValue()))
   1334       return getSCEV(UndefValue::get(Ty));
   1335 
   1336   // If the expression is obviously signed, use the sext cast value.
   1337   if (isa<SCEVSMaxExpr>(Op))
   1338     return SExt;
   1339 
   1340   // Absent any other information, use the zext cast value.
   1341   return ZExt;
   1342 }
   1343 
   1344 /// CollectAddOperandsWithScales - Process the given Ops list, which is
   1345 /// a list of operands to be added under the given scale, update the given
   1346 /// map. This is a helper function for getAddRecExpr. As an example of
   1347 /// what it does, given a sequence of operands that would form an add
   1348 /// expression like this:
   1349 ///
   1350 ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
   1351 ///
   1352 /// where A and B are constants, update the map with these values:
   1353 ///
   1354 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1355 ///
   1356 /// and add 13 + A*B*29 to AccumulatedConstant.
   1357 /// This will allow getAddRecExpr to produce this:
   1358 ///
   1359 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1360 ///
   1361 /// This form often exposes folding opportunities that are hidden in
   1362 /// the original operand list.
   1363 ///
   1364 /// Return true iff it appears that any interesting folding opportunities
   1365 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1366 /// the common case where no interesting opportunities are present, and
   1367 /// is also used as a check to avoid infinite recursion.
   1368 ///
   1369 static bool
   1370 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1371                              SmallVector<const SCEV *, 8> &NewOps,
   1372                              APInt &AccumulatedConstant,
   1373                              const SCEV *const *Ops, size_t NumOperands,
   1374                              const APInt &Scale,
   1375                              ScalarEvolution &SE) {
   1376   bool Interesting = false;
   1377 
   1378   // Iterate over the add operands. They are sorted, with constants first.
   1379   unsigned i = 0;
   1380   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1381     ++i;
   1382     // Pull a buried constant out to the outside.
   1383     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1384       Interesting = true;
   1385     AccumulatedConstant += Scale * C->getValue()->getValue();
   1386   }
   1387 
   1388   // Next comes everything else. We're especially interested in multiplies
   1389   // here, but they're in the middle, so just visit the rest with one loop.
   1390   for (; i != NumOperands; ++i) {
   1391     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1392     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1393       APInt NewScale =
   1394         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
   1395       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1396         // A multiplication of a constant with another add; recurse.
   1397         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1398         Interesting |=
   1399           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1400                                        Add->op_begin(), Add->getNumOperands(),
   1401                                        NewScale, SE);
   1402       } else {
   1403         // A multiplication of a constant with some other value. Update
   1404         // the map.
   1405         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1406         const SCEV *Key = SE.getMulExpr(MulOps);
   1407         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1408           M.insert(std::make_pair(Key, NewScale));
   1409         if (Pair.second) {
   1410           NewOps.push_back(Pair.first->first);
   1411         } else {
   1412           Pair.first->second += NewScale;
   1413           // The map already had an entry for this value, which may indicate
   1414           // a folding opportunity.
   1415           Interesting = true;
   1416         }
   1417       }
   1418     } else {
   1419       // An ordinary operand. Update the map.
   1420       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1421         M.insert(std::make_pair(Ops[i], Scale));
   1422       if (Pair.second) {
   1423         NewOps.push_back(Pair.first->first);
   1424       } else {
   1425         Pair.first->second += Scale;
   1426         // The map already had an entry for this value, which may indicate
   1427         // a folding opportunity.
   1428         Interesting = true;
   1429       }
   1430     }
   1431   }
   1432 
   1433   return Interesting;
   1434 }
   1435 
   1436 namespace {
   1437   struct APIntCompare {
   1438     bool operator()(const APInt &LHS, const APInt &RHS) const {
   1439       return LHS.ult(RHS);
   1440     }
   1441   };
   1442 }
   1443 
   1444 /// getAddExpr - Get a canonical add expression, or something simpler if
   1445 /// possible.
   1446 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1447                                         SCEV::NoWrapFlags Flags) {
   1448   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   1449          "only nuw or nsw allowed");
   1450   assert(!Ops.empty() && "Cannot get empty add!");
   1451   if (Ops.size() == 1) return Ops[0];
   1452 #ifndef NDEBUG
   1453   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1454   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1455     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1456            "SCEVAddExpr operand types don't match!");
   1457 #endif
   1458 
   1459   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1460   // And vice-versa.
   1461   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1462   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1463   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1464     bool All = true;
   1465     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1466          E = Ops.end(); I != E; ++I)
   1467       if (!isKnownNonNegative(*I)) {
   1468         All = false;
   1469         break;
   1470       }
   1471     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1472   }
   1473 
   1474   // Sort by complexity, this groups all similar expression types together.
   1475   GroupByComplexity(Ops, LI);
   1476 
   1477   // If there are any constants, fold them together.
   1478   unsigned Idx = 0;
   1479   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1480     ++Idx;
   1481     assert(Idx < Ops.size());
   1482     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1483       // We found two constants, fold them together!
   1484       Ops[0] = getConstant(LHSC->getValue()->getValue() +
   1485                            RHSC->getValue()->getValue());
   1486       if (Ops.size() == 2) return Ops[0];
   1487       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1488       LHSC = cast<SCEVConstant>(Ops[0]);
   1489     }
   1490 
   1491     // If we are left with a constant zero being added, strip it off.
   1492     if (LHSC->getValue()->isZero()) {
   1493       Ops.erase(Ops.begin());
   1494       --Idx;
   1495     }
   1496 
   1497     if (Ops.size() == 1) return Ops[0];
   1498   }
   1499 
   1500   // Okay, check to see if the same value occurs in the operand list more than
   1501   // once.  If so, merge them together into an multiply expression.  Since we
   1502   // sorted the list, these values are required to be adjacent.
   1503   Type *Ty = Ops[0]->getType();
   1504   bool FoundMatch = false;
   1505   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   1506     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   1507       // Scan ahead to count how many equal operands there are.
   1508       unsigned Count = 2;
   1509       while (i+Count != e && Ops[i+Count] == Ops[i])
   1510         ++Count;
   1511       // Merge the values into a multiply.
   1512       const SCEV *Scale = getConstant(Ty, Count);
   1513       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   1514       if (Ops.size() == Count)
   1515         return Mul;
   1516       Ops[i] = Mul;
   1517       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   1518       --i; e -= Count - 1;
   1519       FoundMatch = true;
   1520     }
   1521   if (FoundMatch)
   1522     return getAddExpr(Ops, Flags);
   1523 
   1524   // Check for truncates. If all the operands are truncated from the same
   1525   // type, see if factoring out the truncate would permit the result to be
   1526   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   1527   // if the contents of the resulting outer trunc fold to something simple.
   1528   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   1529     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   1530     Type *DstType = Trunc->getType();
   1531     Type *SrcType = Trunc->getOperand()->getType();
   1532     SmallVector<const SCEV *, 8> LargeOps;
   1533     bool Ok = true;
   1534     // Check all the operands to see if they can be represented in the
   1535     // source type of the truncate.
   1536     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1537       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   1538         if (T->getOperand()->getType() != SrcType) {
   1539           Ok = false;
   1540           break;
   1541         }
   1542         LargeOps.push_back(T->getOperand());
   1543       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1544         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   1545       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   1546         SmallVector<const SCEV *, 8> LargeMulOps;
   1547         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   1548           if (const SCEVTruncateExpr *T =
   1549                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   1550             if (T->getOperand()->getType() != SrcType) {
   1551               Ok = false;
   1552               break;
   1553             }
   1554             LargeMulOps.push_back(T->getOperand());
   1555           } else if (const SCEVConstant *C =
   1556                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
   1557             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   1558           } else {
   1559             Ok = false;
   1560             break;
   1561           }
   1562         }
   1563         if (Ok)
   1564           LargeOps.push_back(getMulExpr(LargeMulOps));
   1565       } else {
   1566         Ok = false;
   1567         break;
   1568       }
   1569     }
   1570     if (Ok) {
   1571       // Evaluate the expression in the larger type.
   1572       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   1573       // If it folds to something simple, use it. Otherwise, don't.
   1574       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   1575         return getTruncateExpr(Fold, DstType);
   1576     }
   1577   }
   1578 
   1579   // Skip past any other cast SCEVs.
   1580   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   1581     ++Idx;
   1582 
   1583   // If there are add operands they would be next.
   1584   if (Idx < Ops.size()) {
   1585     bool DeletedAdd = false;
   1586     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   1587       // If we have an add, expand the add operands onto the end of the operands
   1588       // list.
   1589       Ops.erase(Ops.begin()+Idx);
   1590       Ops.append(Add->op_begin(), Add->op_end());
   1591       DeletedAdd = true;
   1592     }
   1593 
   1594     // If we deleted at least one add, we added operands to the end of the list,
   1595     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1596     // any operands we just acquired.
   1597     if (DeletedAdd)
   1598       return getAddExpr(Ops);
   1599   }
   1600 
   1601   // Skip over the add expression until we get to a multiply.
   1602   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1603     ++Idx;
   1604 
   1605   // Check to see if there are any folding opportunities present with
   1606   // operands multiplied by constant values.
   1607   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   1608     uint64_t BitWidth = getTypeSizeInBits(Ty);
   1609     DenseMap<const SCEV *, APInt> M;
   1610     SmallVector<const SCEV *, 8> NewOps;
   1611     APInt AccumulatedConstant(BitWidth, 0);
   1612     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1613                                      Ops.data(), Ops.size(),
   1614                                      APInt(BitWidth, 1), *this)) {
   1615       // Some interesting folding opportunity is present, so its worthwhile to
   1616       // re-generate the operands list. Group the operands by constant scale,
   1617       // to avoid multiplying by the same constant scale multiple times.
   1618       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   1619       for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
   1620            E = NewOps.end(); I != E; ++I)
   1621         MulOpLists[M.find(*I)->second].push_back(*I);
   1622       // Re-generate the operands list.
   1623       Ops.clear();
   1624       if (AccumulatedConstant != 0)
   1625         Ops.push_back(getConstant(AccumulatedConstant));
   1626       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
   1627            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
   1628         if (I->first != 0)
   1629           Ops.push_back(getMulExpr(getConstant(I->first),
   1630                                    getAddExpr(I->second)));
   1631       if (Ops.empty())
   1632         return getConstant(Ty, 0);
   1633       if (Ops.size() == 1)
   1634         return Ops[0];
   1635       return getAddExpr(Ops);
   1636     }
   1637   }
   1638 
   1639   // If we are adding something to a multiply expression, make sure the
   1640   // something is not already an operand of the multiply.  If so, merge it into
   1641   // the multiply.
   1642   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   1643     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   1644     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   1645       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   1646       if (isa<SCEVConstant>(MulOpSCEV))
   1647         continue;
   1648       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   1649         if (MulOpSCEV == Ops[AddOp]) {
   1650           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   1651           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   1652           if (Mul->getNumOperands() != 2) {
   1653             // If the multiply has more than two operands, we must get the
   1654             // Y*Z term.
   1655             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1656                                                 Mul->op_begin()+MulOp);
   1657             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1658             InnerMul = getMulExpr(MulOps);
   1659           }
   1660           const SCEV *One = getConstant(Ty, 1);
   1661           const SCEV *AddOne = getAddExpr(One, InnerMul);
   1662           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   1663           if (Ops.size() == 2) return OuterMul;
   1664           if (AddOp < Idx) {
   1665             Ops.erase(Ops.begin()+AddOp);
   1666             Ops.erase(Ops.begin()+Idx-1);
   1667           } else {
   1668             Ops.erase(Ops.begin()+Idx);
   1669             Ops.erase(Ops.begin()+AddOp-1);
   1670           }
   1671           Ops.push_back(OuterMul);
   1672           return getAddExpr(Ops);
   1673         }
   1674 
   1675       // Check this multiply against other multiplies being added together.
   1676       for (unsigned OtherMulIdx = Idx+1;
   1677            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   1678            ++OtherMulIdx) {
   1679         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   1680         // If MulOp occurs in OtherMul, we can fold the two multiplies
   1681         // together.
   1682         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   1683              OMulOp != e; ++OMulOp)
   1684           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   1685             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   1686             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   1687             if (Mul->getNumOperands() != 2) {
   1688               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1689                                                   Mul->op_begin()+MulOp);
   1690               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1691               InnerMul1 = getMulExpr(MulOps);
   1692             }
   1693             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   1694             if (OtherMul->getNumOperands() != 2) {
   1695               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   1696                                                   OtherMul->op_begin()+OMulOp);
   1697               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   1698               InnerMul2 = getMulExpr(MulOps);
   1699             }
   1700             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   1701             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   1702             if (Ops.size() == 2) return OuterMul;
   1703             Ops.erase(Ops.begin()+Idx);
   1704             Ops.erase(Ops.begin()+OtherMulIdx-1);
   1705             Ops.push_back(OuterMul);
   1706             return getAddExpr(Ops);
   1707           }
   1708       }
   1709     }
   1710   }
   1711 
   1712   // If there are any add recurrences in the operands list, see if any other
   1713   // added values are loop invariant.  If so, we can fold them into the
   1714   // recurrence.
   1715   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1716     ++Idx;
   1717 
   1718   // Scan over all recurrences, trying to fold loop invariants into them.
   1719   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1720     // Scan all of the other operands to this add and add them to the vector if
   1721     // they are loop invariant w.r.t. the recurrence.
   1722     SmallVector<const SCEV *, 8> LIOps;
   1723     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1724     const Loop *AddRecLoop = AddRec->getLoop();
   1725     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1726       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1727         LIOps.push_back(Ops[i]);
   1728         Ops.erase(Ops.begin()+i);
   1729         --i; --e;
   1730       }
   1731 
   1732     // If we found some loop invariants, fold them into the recurrence.
   1733     if (!LIOps.empty()) {
   1734       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   1735       LIOps.push_back(AddRec->getStart());
   1736 
   1737       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1738                                              AddRec->op_end());
   1739       AddRecOps[0] = getAddExpr(LIOps);
   1740 
   1741       // Build the new addrec. Propagate the NUW and NSW flags if both the
   1742       // outer add and the inner addrec are guaranteed to have no overflow.
   1743       // Always propagate NW.
   1744       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   1745       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   1746 
   1747       // If all of the other operands were loop invariant, we are done.
   1748       if (Ops.size() == 1) return NewRec;
   1749 
   1750       // Otherwise, add the folded AddRec by the non-invariant parts.
   1751       for (unsigned i = 0;; ++i)
   1752         if (Ops[i] == AddRec) {
   1753           Ops[i] = NewRec;
   1754           break;
   1755         }
   1756       return getAddExpr(Ops);
   1757     }
   1758 
   1759     // Okay, if there weren't any loop invariants to be folded, check to see if
   1760     // there are multiple AddRec's with the same loop induction variable being
   1761     // added together.  If so, we can fold them.
   1762     for (unsigned OtherIdx = Idx+1;
   1763          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1764          ++OtherIdx)
   1765       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   1766         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   1767         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1768                                                AddRec->op_end());
   1769         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1770              ++OtherIdx)
   1771           if (const SCEVAddRecExpr *OtherAddRec =
   1772                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   1773             if (OtherAddRec->getLoop() == AddRecLoop) {
   1774               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   1775                    i != e; ++i) {
   1776                 if (i >= AddRecOps.size()) {
   1777                   AddRecOps.append(OtherAddRec->op_begin()+i,
   1778                                    OtherAddRec->op_end());
   1779                   break;
   1780                 }
   1781                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   1782                                           OtherAddRec->getOperand(i));
   1783               }
   1784               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   1785             }
   1786         // Step size has changed, so we cannot guarantee no self-wraparound.
   1787         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   1788         return getAddExpr(Ops);
   1789       }
   1790 
   1791     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   1792     // next one.
   1793   }
   1794 
   1795   // Okay, it looks like we really DO need an add expr.  Check to see if we
   1796   // already have one, otherwise create a new one.
   1797   FoldingSetNodeID ID;
   1798   ID.AddInteger(scAddExpr);
   1799   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1800     ID.AddPointer(Ops[i]);
   1801   void *IP = 0;
   1802   SCEVAddExpr *S =
   1803     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1804   if (!S) {
   1805     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   1806     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   1807     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   1808                                         O, Ops.size());
   1809     UniqueSCEVs.InsertNode(S, IP);
   1810   }
   1811   S->setNoWrapFlags(Flags);
   1812   return S;
   1813 }
   1814 
   1815 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   1816   uint64_t k = i*j;
   1817   if (j > 1 && k / j != i) Overflow = true;
   1818   return k;
   1819 }
   1820 
   1821 /// Compute the result of "n choose k", the binomial coefficient.  If an
   1822 /// intermediate computation overflows, Overflow will be set and the return will
   1823 /// be garbage. Overflow is not cleared on absense of overflow.
   1824 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   1825   // We use the multiplicative formula:
   1826   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   1827   // At each iteration, we take the n-th term of the numeral and divide by the
   1828   // (k-n)th term of the denominator.  This division will always produce an
   1829   // integral result, and helps reduce the chance of overflow in the
   1830   // intermediate computations. However, we can still overflow even when the
   1831   // final result would fit.
   1832 
   1833   if (n == 0 || n == k) return 1;
   1834   if (k > n) return 0;
   1835 
   1836   if (k > n/2)
   1837     k = n-k;
   1838 
   1839   uint64_t r = 1;
   1840   for (uint64_t i = 1; i <= k; ++i) {
   1841     r = umul_ov(r, n-(i-1), Overflow);
   1842     r /= i;
   1843   }
   1844   return r;
   1845 }
   1846 
   1847 /// getMulExpr - Get a canonical multiply expression, or something simpler if
   1848 /// possible.
   1849 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   1850                                         SCEV::NoWrapFlags Flags) {
   1851   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   1852          "only nuw or nsw allowed");
   1853   assert(!Ops.empty() && "Cannot get empty mul!");
   1854   if (Ops.size() == 1) return Ops[0];
   1855 #ifndef NDEBUG
   1856   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1857   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1858     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1859            "SCEVMulExpr operand types don't match!");
   1860 #endif
   1861 
   1862   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1863   // And vice-versa.
   1864   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1865   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1866   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1867     bool All = true;
   1868     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1869          E = Ops.end(); I != E; ++I)
   1870       if (!isKnownNonNegative(*I)) {
   1871         All = false;
   1872         break;
   1873       }
   1874     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1875   }
   1876 
   1877   // Sort by complexity, this groups all similar expression types together.
   1878   GroupByComplexity(Ops, LI);
   1879 
   1880   // If there are any constants, fold them together.
   1881   unsigned Idx = 0;
   1882   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1883 
   1884     // C1*(C2+V) -> C1*C2 + C1*V
   1885     if (Ops.size() == 2)
   1886       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   1887         if (Add->getNumOperands() == 2 &&
   1888             isa<SCEVConstant>(Add->getOperand(0)))
   1889           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   1890                             getMulExpr(LHSC, Add->getOperand(1)));
   1891 
   1892     ++Idx;
   1893     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1894       // We found two constants, fold them together!
   1895       ConstantInt *Fold = ConstantInt::get(getContext(),
   1896                                            LHSC->getValue()->getValue() *
   1897                                            RHSC->getValue()->getValue());
   1898       Ops[0] = getConstant(Fold);
   1899       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1900       if (Ops.size() == 1) return Ops[0];
   1901       LHSC = cast<SCEVConstant>(Ops[0]);
   1902     }
   1903 
   1904     // If we are left with a constant one being multiplied, strip it off.
   1905     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   1906       Ops.erase(Ops.begin());
   1907       --Idx;
   1908     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   1909       // If we have a multiply of zero, it will always be zero.
   1910       return Ops[0];
   1911     } else if (Ops[0]->isAllOnesValue()) {
   1912       // If we have a mul by -1 of an add, try distributing the -1 among the
   1913       // add operands.
   1914       if (Ops.size() == 2) {
   1915         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   1916           SmallVector<const SCEV *, 4> NewOps;
   1917           bool AnyFolded = false;
   1918           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
   1919                  E = Add->op_end(); I != E; ++I) {
   1920             const SCEV *Mul = getMulExpr(Ops[0], *I);
   1921             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   1922             NewOps.push_back(Mul);
   1923           }
   1924           if (AnyFolded)
   1925             return getAddExpr(NewOps);
   1926         }
   1927         else if (const SCEVAddRecExpr *
   1928                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   1929           // Negation preserves a recurrence's no self-wrap property.
   1930           SmallVector<const SCEV *, 4> Operands;
   1931           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
   1932                  E = AddRec->op_end(); I != E; ++I) {
   1933             Operands.push_back(getMulExpr(Ops[0], *I));
   1934           }
   1935           return getAddRecExpr(Operands, AddRec->getLoop(),
   1936                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   1937         }
   1938       }
   1939     }
   1940 
   1941     if (Ops.size() == 1)
   1942       return Ops[0];
   1943   }
   1944 
   1945   // Skip over the add expression until we get to a multiply.
   1946   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1947     ++Idx;
   1948 
   1949   // If there are mul operands inline them all into this expression.
   1950   if (Idx < Ops.size()) {
   1951     bool DeletedMul = false;
   1952     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   1953       // If we have an mul, expand the mul operands onto the end of the operands
   1954       // list.
   1955       Ops.erase(Ops.begin()+Idx);
   1956       Ops.append(Mul->op_begin(), Mul->op_end());
   1957       DeletedMul = true;
   1958     }
   1959 
   1960     // If we deleted at least one mul, we added operands to the end of the list,
   1961     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1962     // any operands we just acquired.
   1963     if (DeletedMul)
   1964       return getMulExpr(Ops);
   1965   }
   1966 
   1967   // If there are any add recurrences in the operands list, see if any other
   1968   // added values are loop invariant.  If so, we can fold them into the
   1969   // recurrence.
   1970   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1971     ++Idx;
   1972 
   1973   // Scan over all recurrences, trying to fold loop invariants into them.
   1974   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1975     // Scan all of the other operands to this mul and add them to the vector if
   1976     // they are loop invariant w.r.t. the recurrence.
   1977     SmallVector<const SCEV *, 8> LIOps;
   1978     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1979     const Loop *AddRecLoop = AddRec->getLoop();
   1980     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1981       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1982         LIOps.push_back(Ops[i]);
   1983         Ops.erase(Ops.begin()+i);
   1984         --i; --e;
   1985       }
   1986 
   1987     // If we found some loop invariants, fold them into the recurrence.
   1988     if (!LIOps.empty()) {
   1989       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   1990       SmallVector<const SCEV *, 4> NewOps;
   1991       NewOps.reserve(AddRec->getNumOperands());
   1992       const SCEV *Scale = getMulExpr(LIOps);
   1993       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   1994         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   1995 
   1996       // Build the new addrec. Propagate the NUW and NSW flags if both the
   1997       // outer mul and the inner addrec are guaranteed to have no overflow.
   1998       //
   1999       // No self-wrap cannot be guaranteed after changing the step size, but
   2000       // will be inferred if either NUW or NSW is true.
   2001       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2002       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2003 
   2004       // If all of the other operands were loop invariant, we are done.
   2005       if (Ops.size() == 1) return NewRec;
   2006 
   2007       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2008       for (unsigned i = 0;; ++i)
   2009         if (Ops[i] == AddRec) {
   2010           Ops[i] = NewRec;
   2011           break;
   2012         }
   2013       return getMulExpr(Ops);
   2014     }
   2015 
   2016     // Okay, if there weren't any loop invariants to be folded, check to see if
   2017     // there are multiple AddRec's with the same loop induction variable being
   2018     // multiplied together.  If so, we can fold them.
   2019     for (unsigned OtherIdx = Idx+1;
   2020          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2021          ++OtherIdx) {
   2022       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   2023         // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2024         // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2025         //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2026         //   ]]],+,...up to x=2n}.
   2027         // Note that the arguments to choose() are always integers with values
   2028         // known at compile time, never SCEV objects.
   2029         //
   2030         // The implementation avoids pointless extra computations when the two
   2031         // addrec's are of different length (mathematically, it's equivalent to
   2032         // an infinite stream of zeros on the right).
   2033         bool OpsModified = false;
   2034         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2035              ++OtherIdx)
   2036           if (const SCEVAddRecExpr *OtherAddRec =
   2037                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   2038             if (OtherAddRec->getLoop() == AddRecLoop) {
   2039               bool Overflow = false;
   2040               Type *Ty = AddRec->getType();
   2041               bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2042               SmallVector<const SCEV*, 7> AddRecOps;
   2043               for (int x = 0, xe = AddRec->getNumOperands() +
   2044                      OtherAddRec->getNumOperands() - 1;
   2045                    x != xe && !Overflow; ++x) {
   2046                 const SCEV *Term = getConstant(Ty, 0);
   2047                 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2048                   uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2049                   for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2050                          ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2051                        z < ze && !Overflow; ++z) {
   2052                     uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2053                     uint64_t Coeff;
   2054                     if (LargerThan64Bits)
   2055                       Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2056                     else
   2057                       Coeff = Coeff1*Coeff2;
   2058                     const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2059                     const SCEV *Term1 = AddRec->getOperand(y-z);
   2060                     const SCEV *Term2 = OtherAddRec->getOperand(z);
   2061                     Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2062                   }
   2063                 }
   2064                 AddRecOps.push_back(Term);
   2065               }
   2066               if (!Overflow) {
   2067                 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
   2068                                                       AddRec->getLoop(),
   2069                                                       SCEV::FlagAnyWrap);
   2070                 if (Ops.size() == 2) return NewAddRec;
   2071                 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
   2072                 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2073                 OpsModified = true;
   2074               }
   2075             }
   2076         if (OpsModified)
   2077           return getMulExpr(Ops);
   2078       }
   2079     }
   2080 
   2081     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2082     // next one.
   2083   }
   2084 
   2085   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2086   // already have one, otherwise create a new one.
   2087   FoldingSetNodeID ID;
   2088   ID.AddInteger(scMulExpr);
   2089   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2090     ID.AddPointer(Ops[i]);
   2091   void *IP = 0;
   2092   SCEVMulExpr *S =
   2093     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2094   if (!S) {
   2095     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2096     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2097     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2098                                         O, Ops.size());
   2099     UniqueSCEVs.InsertNode(S, IP);
   2100   }
   2101   S->setNoWrapFlags(Flags);
   2102   return S;
   2103 }
   2104 
   2105 /// getUDivExpr - Get a canonical unsigned division expression, or something
   2106 /// simpler if possible.
   2107 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2108                                          const SCEV *RHS) {
   2109   assert(getEffectiveSCEVType(LHS->getType()) ==
   2110          getEffectiveSCEVType(RHS->getType()) &&
   2111          "SCEVUDivExpr operand types don't match!");
   2112 
   2113   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2114     if (RHSC->getValue()->equalsInt(1))
   2115       return LHS;                               // X udiv 1 --> x
   2116     // If the denominator is zero, the result of the udiv is undefined. Don't
   2117     // try to analyze it, because the resolution chosen here may differ from
   2118     // the resolution chosen in other parts of the compiler.
   2119     if (!RHSC->getValue()->isZero()) {
   2120       // Determine if the division can be folded into the operands of
   2121       // its operands.
   2122       // TODO: Generalize this to non-constants by using known-bits information.
   2123       Type *Ty = LHS->getType();
   2124       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
   2125       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2126       // For non-power-of-two values, effectively round the value up to the
   2127       // nearest power of two.
   2128       if (!RHSC->getValue()->getValue().isPowerOf2())
   2129         ++MaxShiftAmt;
   2130       IntegerType *ExtTy =
   2131         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2132       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2133         if (const SCEVConstant *Step =
   2134             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2135           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2136           const APInt &StepInt = Step->getValue()->getValue();
   2137           const APInt &DivInt = RHSC->getValue()->getValue();
   2138           if (!StepInt.urem(DivInt) &&
   2139               getZeroExtendExpr(AR, ExtTy) ==
   2140               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2141                             getZeroExtendExpr(Step, ExtTy),
   2142                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2143             SmallVector<const SCEV *, 4> Operands;
   2144             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
   2145               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
   2146             return getAddRecExpr(Operands, AR->getLoop(),
   2147                                  SCEV::FlagNW);
   2148           }
   2149           /// Get a canonical UDivExpr for a recurrence.
   2150           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2151           // We can currently only fold X%N if X is constant.
   2152           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2153           if (StartC && !DivInt.urem(StepInt) &&
   2154               getZeroExtendExpr(AR, ExtTy) ==
   2155               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2156                             getZeroExtendExpr(Step, ExtTy),
   2157                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2158             const APInt &StartInt = StartC->getValue()->getValue();
   2159             const APInt &StartRem = StartInt.urem(StepInt);
   2160             if (StartRem != 0)
   2161               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2162                                   AR->getLoop(), SCEV::FlagNW);
   2163           }
   2164         }
   2165       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2166       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2167         SmallVector<const SCEV *, 4> Operands;
   2168         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
   2169           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
   2170         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2171           // Find an operand that's safely divisible.
   2172           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2173             const SCEV *Op = M->getOperand(i);
   2174             const SCEV *Div = getUDivExpr(Op, RHSC);
   2175             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2176               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2177                                                       M->op_end());
   2178               Operands[i] = Div;
   2179               return getMulExpr(Operands);
   2180             }
   2181           }
   2182       }
   2183       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2184       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2185         SmallVector<const SCEV *, 4> Operands;
   2186         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
   2187           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
   2188         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2189           Operands.clear();
   2190           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2191             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2192             if (isa<SCEVUDivExpr>(Op) ||
   2193                 getMulExpr(Op, RHS) != A->getOperand(i))
   2194               break;
   2195             Operands.push_back(Op);
   2196           }
   2197           if (Operands.size() == A->getNumOperands())
   2198             return getAddExpr(Operands);
   2199         }
   2200       }
   2201 
   2202       // Fold if both operands are constant.
   2203       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2204         Constant *LHSCV = LHSC->getValue();
   2205         Constant *RHSCV = RHSC->getValue();
   2206         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2207                                                                    RHSCV)));
   2208       }
   2209     }
   2210   }
   2211 
   2212   FoldingSetNodeID ID;
   2213   ID.AddInteger(scUDivExpr);
   2214   ID.AddPointer(LHS);
   2215   ID.AddPointer(RHS);
   2216   void *IP = 0;
   2217   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2218   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2219                                              LHS, RHS);
   2220   UniqueSCEVs.InsertNode(S, IP);
   2221   return S;
   2222 }
   2223 
   2224 
   2225 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2226 /// Simplify the expression as much as possible.
   2227 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2228                                            const Loop *L,
   2229                                            SCEV::NoWrapFlags Flags) {
   2230   SmallVector<const SCEV *, 4> Operands;
   2231   Operands.push_back(Start);
   2232   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2233     if (StepChrec->getLoop() == L) {
   2234       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2235       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2236     }
   2237 
   2238   Operands.push_back(Step);
   2239   return getAddRecExpr(Operands, L, Flags);
   2240 }
   2241 
   2242 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2243 /// Simplify the expression as much as possible.
   2244 const SCEV *
   2245 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2246                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2247   if (Operands.size() == 1) return Operands[0];
   2248 #ifndef NDEBUG
   2249   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2250   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2251     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2252            "SCEVAddRecExpr operand types don't match!");
   2253   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2254     assert(isLoopInvariant(Operands[i], L) &&
   2255            "SCEVAddRecExpr operand is not loop-invariant!");
   2256 #endif
   2257 
   2258   if (Operands.back()->isZero()) {
   2259     Operands.pop_back();
   2260     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2261   }
   2262 
   2263   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2264   // use that information to infer NUW and NSW flags. However, computing a
   2265   // BE count requires calling getAddRecExpr, so we may not yet have a
   2266   // meaningful BE count at this point (and if we don't, we'd be stuck
   2267   // with a SCEVCouldNotCompute as the cached BE count).
   2268 
   2269   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   2270   // And vice-versa.
   2271   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   2272   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   2273   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   2274     bool All = true;
   2275     for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
   2276          E = Operands.end(); I != E; ++I)
   2277       if (!isKnownNonNegative(*I)) {
   2278         All = false;
   2279         break;
   2280       }
   2281     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   2282   }
   2283 
   2284   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2285   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2286     const Loop *NestedLoop = NestedAR->getLoop();
   2287     if (L->contains(NestedLoop) ?
   2288         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
   2289         (!NestedLoop->contains(L) &&
   2290          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2291       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2292                                                   NestedAR->op_end());
   2293       Operands[0] = NestedAR->getStart();
   2294       // AddRecs require their operands be loop-invariant with respect to their
   2295       // loops. Don't perform this transformation if it would break this
   2296       // requirement.
   2297       bool AllInvariant = true;
   2298       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2299         if (!isLoopInvariant(Operands[i], L)) {
   2300           AllInvariant = false;
   2301           break;
   2302         }
   2303       if (AllInvariant) {
   2304         // Create a recurrence for the outer loop with the same step size.
   2305         //
   2306         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2307         // inner recurrence has the same property.
   2308         SCEV::NoWrapFlags OuterFlags =
   2309           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2310 
   2311         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2312         AllInvariant = true;
   2313         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
   2314           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
   2315             AllInvariant = false;
   2316             break;
   2317           }
   2318         if (AllInvariant) {
   2319           // Ok, both add recurrences are valid after the transformation.
   2320           //
   2321           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2322           // the outer recurrence has the same property.
   2323           SCEV::NoWrapFlags InnerFlags =
   2324             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2325           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2326         }
   2327       }
   2328       // Reset Operands to its original state.
   2329       Operands[0] = NestedAR;
   2330     }
   2331   }
   2332 
   2333   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2334   // already have one, otherwise create a new one.
   2335   FoldingSetNodeID ID;
   2336   ID.AddInteger(scAddRecExpr);
   2337   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2338     ID.AddPointer(Operands[i]);
   2339   ID.AddPointer(L);
   2340   void *IP = 0;
   2341   SCEVAddRecExpr *S =
   2342     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2343   if (!S) {
   2344     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2345     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2346     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2347                                            O, Operands.size(), L);
   2348     UniqueSCEVs.InsertNode(S, IP);
   2349   }
   2350   S->setNoWrapFlags(Flags);
   2351   return S;
   2352 }
   2353 
   2354 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   2355                                          const SCEV *RHS) {
   2356   SmallVector<const SCEV *, 2> Ops;
   2357   Ops.push_back(LHS);
   2358   Ops.push_back(RHS);
   2359   return getSMaxExpr(Ops);
   2360 }
   2361 
   2362 const SCEV *
   2363 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2364   assert(!Ops.empty() && "Cannot get empty smax!");
   2365   if (Ops.size() == 1) return Ops[0];
   2366 #ifndef NDEBUG
   2367   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2368   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2369     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2370            "SCEVSMaxExpr operand types don't match!");
   2371 #endif
   2372 
   2373   // Sort by complexity, this groups all similar expression types together.
   2374   GroupByComplexity(Ops, LI);
   2375 
   2376   // If there are any constants, fold them together.
   2377   unsigned Idx = 0;
   2378   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2379     ++Idx;
   2380     assert(Idx < Ops.size());
   2381     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2382       // We found two constants, fold them together!
   2383       ConstantInt *Fold = ConstantInt::get(getContext(),
   2384                               APIntOps::smax(LHSC->getValue()->getValue(),
   2385                                              RHSC->getValue()->getValue()));
   2386       Ops[0] = getConstant(Fold);
   2387       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2388       if (Ops.size() == 1) return Ops[0];
   2389       LHSC = cast<SCEVConstant>(Ops[0]);
   2390     }
   2391 
   2392     // If we are left with a constant minimum-int, strip it off.
   2393     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   2394       Ops.erase(Ops.begin());
   2395       --Idx;
   2396     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   2397       // If we have an smax with a constant maximum-int, it will always be
   2398       // maximum-int.
   2399       return Ops[0];
   2400     }
   2401 
   2402     if (Ops.size() == 1) return Ops[0];
   2403   }
   2404 
   2405   // Find the first SMax
   2406   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   2407     ++Idx;
   2408 
   2409   // Check to see if one of the operands is an SMax. If so, expand its operands
   2410   // onto our operand list, and recurse to simplify.
   2411   if (Idx < Ops.size()) {
   2412     bool DeletedSMax = false;
   2413     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   2414       Ops.erase(Ops.begin()+Idx);
   2415       Ops.append(SMax->op_begin(), SMax->op_end());
   2416       DeletedSMax = true;
   2417     }
   2418 
   2419     if (DeletedSMax)
   2420       return getSMaxExpr(Ops);
   2421   }
   2422 
   2423   // Okay, check to see if the same value occurs in the operand list twice.  If
   2424   // so, delete one.  Since we sorted the list, these values are required to
   2425   // be adjacent.
   2426   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2427     //  X smax Y smax Y  -->  X smax Y
   2428     //  X smax Y         -->  X, if X is always greater than Y
   2429     if (Ops[i] == Ops[i+1] ||
   2430         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   2431       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2432       --i; --e;
   2433     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   2434       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2435       --i; --e;
   2436     }
   2437 
   2438   if (Ops.size() == 1) return Ops[0];
   2439 
   2440   assert(!Ops.empty() && "Reduced smax down to nothing!");
   2441 
   2442   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   2443   // already have one, otherwise create a new one.
   2444   FoldingSetNodeID ID;
   2445   ID.AddInteger(scSMaxExpr);
   2446   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2447     ID.AddPointer(Ops[i]);
   2448   void *IP = 0;
   2449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2450   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2451   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2452   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   2453                                              O, Ops.size());
   2454   UniqueSCEVs.InsertNode(S, IP);
   2455   return S;
   2456 }
   2457 
   2458 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   2459                                          const SCEV *RHS) {
   2460   SmallVector<const SCEV *, 2> Ops;
   2461   Ops.push_back(LHS);
   2462   Ops.push_back(RHS);
   2463   return getUMaxExpr(Ops);
   2464 }
   2465 
   2466 const SCEV *
   2467 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2468   assert(!Ops.empty() && "Cannot get empty umax!");
   2469   if (Ops.size() == 1) return Ops[0];
   2470 #ifndef NDEBUG
   2471   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2472   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2473     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2474            "SCEVUMaxExpr operand types don't match!");
   2475 #endif
   2476 
   2477   // Sort by complexity, this groups all similar expression types together.
   2478   GroupByComplexity(Ops, LI);
   2479 
   2480   // If there are any constants, fold them together.
   2481   unsigned Idx = 0;
   2482   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2483     ++Idx;
   2484     assert(Idx < Ops.size());
   2485     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2486       // We found two constants, fold them together!
   2487       ConstantInt *Fold = ConstantInt::get(getContext(),
   2488                               APIntOps::umax(LHSC->getValue()->getValue(),
   2489                                              RHSC->getValue()->getValue()));
   2490       Ops[0] = getConstant(Fold);
   2491       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2492       if (Ops.size() == 1) return Ops[0];
   2493       LHSC = cast<SCEVConstant>(Ops[0]);
   2494     }
   2495 
   2496     // If we are left with a constant minimum-int, strip it off.
   2497     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   2498       Ops.erase(Ops.begin());
   2499       --Idx;
   2500     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   2501       // If we have an umax with a constant maximum-int, it will always be
   2502       // maximum-int.
   2503       return Ops[0];
   2504     }
   2505 
   2506     if (Ops.size() == 1) return Ops[0];
   2507   }
   2508 
   2509   // Find the first UMax
   2510   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   2511     ++Idx;
   2512 
   2513   // Check to see if one of the operands is a UMax. If so, expand its operands
   2514   // onto our operand list, and recurse to simplify.
   2515   if (Idx < Ops.size()) {
   2516     bool DeletedUMax = false;
   2517     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   2518       Ops.erase(Ops.begin()+Idx);
   2519       Ops.append(UMax->op_begin(), UMax->op_end());
   2520       DeletedUMax = true;
   2521     }
   2522 
   2523     if (DeletedUMax)
   2524       return getUMaxExpr(Ops);
   2525   }
   2526 
   2527   // Okay, check to see if the same value occurs in the operand list twice.  If
   2528   // so, delete one.  Since we sorted the list, these values are required to
   2529   // be adjacent.
   2530   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2531     //  X umax Y umax Y  -->  X umax Y
   2532     //  X umax Y         -->  X, if X is always greater than Y
   2533     if (Ops[i] == Ops[i+1] ||
   2534         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   2535       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2536       --i; --e;
   2537     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   2538       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2539       --i; --e;
   2540     }
   2541 
   2542   if (Ops.size() == 1) return Ops[0];
   2543 
   2544   assert(!Ops.empty() && "Reduced umax down to nothing!");
   2545 
   2546   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   2547   // already have one, otherwise create a new one.
   2548   FoldingSetNodeID ID;
   2549   ID.AddInteger(scUMaxExpr);
   2550   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2551     ID.AddPointer(Ops[i]);
   2552   void *IP = 0;
   2553   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2554   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2555   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2556   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   2557                                              O, Ops.size());
   2558   UniqueSCEVs.InsertNode(S, IP);
   2559   return S;
   2560 }
   2561 
   2562 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   2563                                          const SCEV *RHS) {
   2564   // ~smax(~x, ~y) == smin(x, y).
   2565   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2566 }
   2567 
   2568 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   2569                                          const SCEV *RHS) {
   2570   // ~umax(~x, ~y) == umin(x, y)
   2571   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2572 }
   2573 
   2574 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
   2575   // If we have TargetData, we can bypass creating a target-independent
   2576   // constant expression and then folding it back into a ConstantInt.
   2577   // This is just a compile-time optimization.
   2578   if (TD)
   2579     return getConstant(TD->getIntPtrType(getContext()),
   2580                        TD->getTypeAllocSize(AllocTy));
   2581 
   2582   Constant *C = ConstantExpr::getSizeOf(AllocTy);
   2583   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2584     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
   2585       C = Folded;
   2586   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2587   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2588 }
   2589 
   2590 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
   2591   Constant *C = ConstantExpr::getAlignOf(AllocTy);
   2592   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2593     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
   2594       C = Folded;
   2595   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2596   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2597 }
   2598 
   2599 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
   2600                                              unsigned FieldNo) {
   2601   // If we have TargetData, we can bypass creating a target-independent
   2602   // constant expression and then folding it back into a ConstantInt.
   2603   // This is just a compile-time optimization.
   2604   if (TD)
   2605     return getConstant(TD->getIntPtrType(getContext()),
   2606                        TD->getStructLayout(STy)->getElementOffset(FieldNo));
   2607 
   2608   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
   2609   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2610     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
   2611       C = Folded;
   2612   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
   2613   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2614 }
   2615 
   2616 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
   2617                                              Constant *FieldNo) {
   2618   Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
   2619   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2620     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
   2621       C = Folded;
   2622   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
   2623   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2624 }
   2625 
   2626 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   2627   // Don't attempt to do anything other than create a SCEVUnknown object
   2628   // here.  createSCEV only calls getUnknown after checking for all other
   2629   // interesting possibilities, and any other code that calls getUnknown
   2630   // is doing so in order to hide a value from SCEV canonicalization.
   2631 
   2632   FoldingSetNodeID ID;
   2633   ID.AddInteger(scUnknown);
   2634   ID.AddPointer(V);
   2635   void *IP = 0;
   2636   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   2637     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   2638            "Stale SCEVUnknown in uniquing map!");
   2639     return S;
   2640   }
   2641   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   2642                                             FirstUnknown);
   2643   FirstUnknown = cast<SCEVUnknown>(S);
   2644   UniqueSCEVs.InsertNode(S, IP);
   2645   return S;
   2646 }
   2647 
   2648 //===----------------------------------------------------------------------===//
   2649 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   2650 //
   2651 
   2652 /// isSCEVable - Test if values of the given type are analyzable within
   2653 /// the SCEV framework. This primarily includes integer types, and it
   2654 /// can optionally include pointer types if the ScalarEvolution class
   2655 /// has access to target-specific information.
   2656 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   2657   // Integers and pointers are always SCEVable.
   2658   return Ty->isIntegerTy() || Ty->isPointerTy();
   2659 }
   2660 
   2661 /// getTypeSizeInBits - Return the size in bits of the specified type,
   2662 /// for which isSCEVable must return true.
   2663 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   2664   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2665 
   2666   // If we have a TargetData, use it!
   2667   if (TD)
   2668     return TD->getTypeSizeInBits(Ty);
   2669 
   2670   // Integer types have fixed sizes.
   2671   if (Ty->isIntegerTy())
   2672     return Ty->getPrimitiveSizeInBits();
   2673 
   2674   // The only other support type is pointer. Without TargetData, conservatively
   2675   // assume pointers are 64-bit.
   2676   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
   2677   return 64;
   2678 }
   2679 
   2680 /// getEffectiveSCEVType - Return a type with the same bitwidth as
   2681 /// the given type and which represents how SCEV will treat the given
   2682 /// type, for which isSCEVable must return true. For pointer types,
   2683 /// this is the pointer-sized integer type.
   2684 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   2685   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2686 
   2687   if (Ty->isIntegerTy())
   2688     return Ty;
   2689 
   2690   // The only other support type is pointer.
   2691   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   2692   if (TD) return TD->getIntPtrType(getContext());
   2693 
   2694   // Without TargetData, conservatively assume pointers are 64-bit.
   2695   return Type::getInt64Ty(getContext());
   2696 }
   2697 
   2698 const SCEV *ScalarEvolution::getCouldNotCompute() {
   2699   return &CouldNotCompute;
   2700 }
   2701 
   2702 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
   2703 /// expression and create a new one.
   2704 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   2705   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   2706 
   2707   ValueExprMapType::const_iterator I = ValueExprMap.find(V);
   2708   if (I != ValueExprMap.end()) return I->second;
   2709   const SCEV *S = createSCEV(V);
   2710 
   2711   // The process of creating a SCEV for V may have caused other SCEVs
   2712   // to have been created, so it's necessary to insert the new entry
   2713   // from scratch, rather than trying to remember the insert position
   2714   // above.
   2715   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
   2716   return S;
   2717 }
   2718 
   2719 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
   2720 ///
   2721 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
   2722   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2723     return getConstant(
   2724                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   2725 
   2726   Type *Ty = V->getType();
   2727   Ty = getEffectiveSCEVType(Ty);
   2728   return getMulExpr(V,
   2729                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
   2730 }
   2731 
   2732 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
   2733 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   2734   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2735     return getConstant(
   2736                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   2737 
   2738   Type *Ty = V->getType();
   2739   Ty = getEffectiveSCEVType(Ty);
   2740   const SCEV *AllOnes =
   2741                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   2742   return getMinusSCEV(AllOnes, V);
   2743 }
   2744 
   2745 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   2746 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   2747                                           SCEV::NoWrapFlags Flags) {
   2748   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
   2749 
   2750   // Fast path: X - X --> 0.
   2751   if (LHS == RHS)
   2752     return getConstant(LHS->getType(), 0);
   2753 
   2754   // X - Y --> X + -Y
   2755   return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
   2756 }
   2757 
   2758 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2759 /// input value to the specified type.  If the type must be extended, it is zero
   2760 /// extended.
   2761 const SCEV *
   2762 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   2763   Type *SrcTy = V->getType();
   2764   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2765          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2766          "Cannot truncate or zero extend with non-integer arguments!");
   2767   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2768     return V;  // No conversion
   2769   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2770     return getTruncateExpr(V, Ty);
   2771   return getZeroExtendExpr(V, Ty);
   2772 }
   2773 
   2774 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
   2775 /// input value to the specified type.  If the type must be extended, it is sign
   2776 /// extended.
   2777 const SCEV *
   2778 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   2779                                          Type *Ty) {
   2780   Type *SrcTy = V->getType();
   2781   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2782          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2783          "Cannot truncate or zero extend with non-integer arguments!");
   2784   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2785     return V;  // No conversion
   2786   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2787     return getTruncateExpr(V, Ty);
   2788   return getSignExtendExpr(V, Ty);
   2789 }
   2790 
   2791 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2792 /// input value to the specified type.  If the type must be extended, it is zero
   2793 /// extended.  The conversion must not be narrowing.
   2794 const SCEV *
   2795 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   2796   Type *SrcTy = V->getType();
   2797   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2798          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2799          "Cannot noop or zero extend with non-integer arguments!");
   2800   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2801          "getNoopOrZeroExtend cannot truncate!");
   2802   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2803     return V;  // No conversion
   2804   return getZeroExtendExpr(V, Ty);
   2805 }
   2806 
   2807 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
   2808 /// input value to the specified type.  If the type must be extended, it is sign
   2809 /// extended.  The conversion must not be narrowing.
   2810 const SCEV *
   2811 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   2812   Type *SrcTy = V->getType();
   2813   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2814          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2815          "Cannot noop or sign extend with non-integer arguments!");
   2816   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2817          "getNoopOrSignExtend cannot truncate!");
   2818   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2819     return V;  // No conversion
   2820   return getSignExtendExpr(V, Ty);
   2821 }
   2822 
   2823 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
   2824 /// the input value to the specified type. If the type must be extended,
   2825 /// it is extended with unspecified bits. The conversion must not be
   2826 /// narrowing.
   2827 const SCEV *
   2828 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   2829   Type *SrcTy = V->getType();
   2830   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2831          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2832          "Cannot noop or any extend with non-integer arguments!");
   2833   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2834          "getNoopOrAnyExtend cannot truncate!");
   2835   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2836     return V;  // No conversion
   2837   return getAnyExtendExpr(V, Ty);
   2838 }
   2839 
   2840 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
   2841 /// input value to the specified type.  The conversion must not be widening.
   2842 const SCEV *
   2843 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   2844   Type *SrcTy = V->getType();
   2845   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2846          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2847          "Cannot truncate or noop with non-integer arguments!");
   2848   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   2849          "getTruncateOrNoop cannot extend!");
   2850   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2851     return V;  // No conversion
   2852   return getTruncateExpr(V, Ty);
   2853 }
   2854 
   2855 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
   2856 /// the types using zero-extension, and then perform a umax operation
   2857 /// with them.
   2858 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   2859                                                         const SCEV *RHS) {
   2860   const SCEV *PromotedLHS = LHS;
   2861   const SCEV *PromotedRHS = RHS;
   2862 
   2863   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2864     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2865   else
   2866     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2867 
   2868   return getUMaxExpr(PromotedLHS, PromotedRHS);
   2869 }
   2870 
   2871 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
   2872 /// the types using zero-extension, and then perform a umin operation
   2873 /// with them.
   2874 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   2875                                                         const SCEV *RHS) {
   2876   const SCEV *PromotedLHS = LHS;
   2877   const SCEV *PromotedRHS = RHS;
   2878 
   2879   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2880     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2881   else
   2882     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2883 
   2884   return getUMinExpr(PromotedLHS, PromotedRHS);
   2885 }
   2886 
   2887 /// getPointerBase - Transitively follow the chain of pointer-type operands
   2888 /// until reaching a SCEV that does not have a single pointer operand. This
   2889 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
   2890 /// but corner cases do exist.
   2891 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   2892   // A pointer operand may evaluate to a nonpointer expression, such as null.
   2893   if (!V->getType()->isPointerTy())
   2894     return V;
   2895 
   2896   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   2897     return getPointerBase(Cast->getOperand());
   2898   }
   2899   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   2900     const SCEV *PtrOp = 0;
   2901     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   2902          I != E; ++I) {
   2903       if ((*I)->getType()->isPointerTy()) {
   2904         // Cannot find the base of an expression with multiple pointer operands.
   2905         if (PtrOp)
   2906           return V;
   2907         PtrOp = *I;
   2908       }
   2909     }
   2910     if (!PtrOp)
   2911       return V;
   2912     return getPointerBase(PtrOp);
   2913   }
   2914   return V;
   2915 }
   2916 
   2917 /// PushDefUseChildren - Push users of the given Instruction
   2918 /// onto the given Worklist.
   2919 static void
   2920 PushDefUseChildren(Instruction *I,
   2921                    SmallVectorImpl<Instruction *> &Worklist) {
   2922   // Push the def-use children onto the Worklist stack.
   2923   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   2924        UI != UE; ++UI)
   2925     Worklist.push_back(cast<Instruction>(*UI));
   2926 }
   2927 
   2928 /// ForgetSymbolicValue - This looks up computed SCEV values for all
   2929 /// instructions that depend on the given instruction and removes them from
   2930 /// the ValueExprMapType map if they reference SymName. This is used during PHI
   2931 /// resolution.
   2932 void
   2933 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   2934   SmallVector<Instruction *, 16> Worklist;
   2935   PushDefUseChildren(PN, Worklist);
   2936 
   2937   SmallPtrSet<Instruction *, 8> Visited;
   2938   Visited.insert(PN);
   2939   while (!Worklist.empty()) {
   2940     Instruction *I = Worklist.pop_back_val();
   2941     if (!Visited.insert(I)) continue;
   2942 
   2943     ValueExprMapType::iterator It =
   2944       ValueExprMap.find(static_cast<Value *>(I));
   2945     if (It != ValueExprMap.end()) {
   2946       const SCEV *Old = It->second;
   2947 
   2948       // Short-circuit the def-use traversal if the symbolic name
   2949       // ceases to appear in expressions.
   2950       if (Old != SymName && !hasOperand(Old, SymName))
   2951         continue;
   2952 
   2953       // SCEVUnknown for a PHI either means that it has an unrecognized
   2954       // structure, it's a PHI that's in the progress of being computed
   2955       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   2956       // additional loop trip count information isn't going to change anything.
   2957       // In the second case, createNodeForPHI will perform the necessary
   2958       // updates on its own when it gets to that point. In the third, we do
   2959       // want to forget the SCEVUnknown.
   2960       if (!isa<PHINode>(I) ||
   2961           !isa<SCEVUnknown>(Old) ||
   2962           (I != PN && Old == SymName)) {
   2963         forgetMemoizedResults(Old);
   2964         ValueExprMap.erase(It);
   2965       }
   2966     }
   2967 
   2968     PushDefUseChildren(I, Worklist);
   2969   }
   2970 }
   2971 
   2972 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
   2973 /// a loop header, making it a potential recurrence, or it doesn't.
   2974 ///
   2975 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   2976   if (const Loop *L = LI->getLoopFor(PN->getParent()))
   2977     if (L->getHeader() == PN->getParent()) {
   2978       // The loop may have multiple entrances or multiple exits; we can analyze
   2979       // this phi as an addrec if it has a unique entry value and a unique
   2980       // backedge value.
   2981       Value *BEValueV = 0, *StartValueV = 0;
   2982       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2983         Value *V = PN->getIncomingValue(i);
   2984         if (L->contains(PN->getIncomingBlock(i))) {
   2985           if (!BEValueV) {
   2986             BEValueV = V;
   2987           } else if (BEValueV != V) {
   2988             BEValueV = 0;
   2989             break;
   2990           }
   2991         } else if (!StartValueV) {
   2992           StartValueV = V;
   2993         } else if (StartValueV != V) {
   2994           StartValueV = 0;
   2995           break;
   2996         }
   2997       }
   2998       if (BEValueV && StartValueV) {
   2999         // While we are analyzing this PHI node, handle its value symbolically.
   3000         const SCEV *SymbolicName = getUnknown(PN);
   3001         assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
   3002                "PHI node already processed?");
   3003         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
   3004 
   3005         // Using this symbolic name for the PHI, analyze the value coming around
   3006         // the back-edge.
   3007         const SCEV *BEValue = getSCEV(BEValueV);
   3008 
   3009         // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3010         // has a special value for the first iteration of the loop.
   3011 
   3012         // If the value coming around the backedge is an add with the symbolic
   3013         // value we just inserted, then we found a simple induction variable!
   3014         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3015           // If there is a single occurrence of the symbolic value, replace it
   3016           // with a recurrence.
   3017           unsigned FoundIndex = Add->getNumOperands();
   3018           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3019             if (Add->getOperand(i) == SymbolicName)
   3020               if (FoundIndex == e) {
   3021                 FoundIndex = i;
   3022                 break;
   3023               }
   3024 
   3025           if (FoundIndex != Add->getNumOperands()) {
   3026             // Create an add with everything but the specified operand.
   3027             SmallVector<const SCEV *, 8> Ops;
   3028             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3029               if (i != FoundIndex)
   3030                 Ops.push_back(Add->getOperand(i));
   3031             const SCEV *Accum = getAddExpr(Ops);
   3032 
   3033             // This is not a valid addrec if the step amount is varying each
   3034             // loop iteration, but is not itself an addrec in this loop.
   3035             if (isLoopInvariant(Accum, L) ||
   3036                 (isa<SCEVAddRecExpr>(Accum) &&
   3037                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3038               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3039 
   3040               // If the increment doesn't overflow, then neither the addrec nor
   3041               // the post-increment will overflow.
   3042               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
   3043                 if (OBO->hasNoUnsignedWrap())
   3044                   Flags = setFlags(Flags, SCEV::FlagNUW);
   3045                 if (OBO->hasNoSignedWrap())
   3046                   Flags = setFlags(Flags, SCEV::FlagNSW);
   3047               } else if (const GEPOperator *GEP =
   3048                          dyn_cast<GEPOperator>(BEValueV)) {
   3049                 // If the increment is an inbounds GEP, then we know the address
   3050                 // space cannot be wrapped around. We cannot make any guarantee
   3051                 // about signed or unsigned overflow because pointers are
   3052                 // unsigned but we may have a negative index from the base
   3053                 // pointer.
   3054                 if (GEP->isInBounds())
   3055                   Flags = setFlags(Flags, SCEV::FlagNW);
   3056               }
   3057 
   3058               const SCEV *StartVal = getSCEV(StartValueV);
   3059               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   3060 
   3061               // Since the no-wrap flags are on the increment, they apply to the
   3062               // post-incremented value as well.
   3063               if (isLoopInvariant(Accum, L))
   3064                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
   3065                                     Accum, L, Flags);
   3066 
   3067               // Okay, for the entire analysis of this edge we assumed the PHI
   3068               // to be symbolic.  We now need to go back and purge all of the
   3069               // entries for the scalars that use the symbolic expression.
   3070               ForgetSymbolicName(PN, SymbolicName);
   3071               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3072               return PHISCEV;
   3073             }
   3074           }
   3075         } else if (const SCEVAddRecExpr *AddRec =
   3076                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
   3077           // Otherwise, this could be a loop like this:
   3078           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   3079           // In this case, j = {1,+,1}  and BEValue is j.
   3080           // Because the other in-value of i (0) fits the evolution of BEValue
   3081           // i really is an addrec evolution.
   3082           if (AddRec->getLoop() == L && AddRec->isAffine()) {
   3083             const SCEV *StartVal = getSCEV(StartValueV);
   3084 
   3085             // If StartVal = j.start - j.stride, we can use StartVal as the
   3086             // initial step of the addrec evolution.
   3087             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
   3088                                          AddRec->getOperand(1))) {
   3089               // FIXME: For constant StartVal, we should be able to infer
   3090               // no-wrap flags.
   3091               const SCEV *PHISCEV =
   3092                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
   3093                               SCEV::FlagAnyWrap);
   3094 
   3095               // Okay, for the entire analysis of this edge we assumed the PHI
   3096               // to be symbolic.  We now need to go back and purge all of the
   3097               // entries for the scalars that use the symbolic expression.
   3098               ForgetSymbolicName(PN, SymbolicName);
   3099               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3100               return PHISCEV;
   3101             }
   3102           }
   3103         }
   3104       }
   3105     }
   3106 
   3107   // If the PHI has a single incoming value, follow that value, unless the
   3108   // PHI's incoming blocks are in a different loop, in which case doing so
   3109   // risks breaking LCSSA form. Instcombine would normally zap these, but
   3110   // it doesn't have DominatorTree information, so it may miss cases.
   3111   if (Value *V = SimplifyInstruction(PN, TD, DT))
   3112     if (LI->replacementPreservesLCSSAForm(PN, V))
   3113       return getSCEV(V);
   3114 
   3115   // If it's not a loop phi, we can't handle it yet.
   3116   return getUnknown(PN);
   3117 }
   3118 
   3119 /// createNodeForGEP - Expand GEP instructions into add and multiply
   3120 /// operations. This allows them to be analyzed by regular SCEV code.
   3121 ///
   3122 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   3123 
   3124   // Don't blindly transfer the inbounds flag from the GEP instruction to the
   3125   // Add expression, because the Instruction may be guarded by control flow
   3126   // and the no-overflow bits may not be valid for the expression in any
   3127   // context.
   3128   bool isInBounds = GEP->isInBounds();
   3129 
   3130   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
   3131   Value *Base = GEP->getOperand(0);
   3132   // Don't attempt to analyze GEPs over unsized objects.
   3133   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
   3134     return getUnknown(GEP);
   3135   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
   3136   gep_type_iterator GTI = gep_type_begin(GEP);
   3137   for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
   3138                                       E = GEP->op_end();
   3139        I != E; ++I) {
   3140     Value *Index = *I;
   3141     // Compute the (potentially symbolic) offset in bytes for this index.
   3142     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
   3143       // For a struct, add the member offset.
   3144       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
   3145       const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
   3146 
   3147       // Add the field offset to the running total offset.
   3148       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   3149     } else {
   3150       // For an array, add the element offset, explicitly scaled.
   3151       const SCEV *ElementSize = getSizeOfExpr(*GTI);
   3152       const SCEV *IndexS = getSCEV(Index);
   3153       // Getelementptr indices are signed.
   3154       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
   3155 
   3156       // Multiply the index by the element size to compute the element offset.
   3157       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
   3158                                            isInBounds ? SCEV::FlagNSW :
   3159                                            SCEV::FlagAnyWrap);
   3160 
   3161       // Add the element offset to the running total offset.
   3162       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   3163     }
   3164   }
   3165 
   3166   // Get the SCEV for the GEP base.
   3167   const SCEV *BaseS = getSCEV(Base);
   3168 
   3169   // Add the total offset from all the GEP indices to the base.
   3170   return getAddExpr(BaseS, TotalOffset,
   3171                     isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
   3172 }
   3173 
   3174 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
   3175 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
   3176 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
   3177 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
   3178 uint32_t
   3179 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   3180   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3181     return C->getValue()->getValue().countTrailingZeros();
   3182 
   3183   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   3184     return std::min(GetMinTrailingZeros(T->getOperand()),
   3185                     (uint32_t)getTypeSizeInBits(T->getType()));
   3186 
   3187   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3188     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3189     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3190              getTypeSizeInBits(E->getType()) : OpRes;
   3191   }
   3192 
   3193   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   3194     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3195     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3196              getTypeSizeInBits(E->getType()) : OpRes;
   3197   }
   3198 
   3199   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   3200     // The result is the min of all operands results.
   3201     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3202     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3203       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3204     return MinOpRes;
   3205   }
   3206 
   3207   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   3208     // The result is the sum of all operands results.
   3209     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   3210     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   3211     for (unsigned i = 1, e = M->getNumOperands();
   3212          SumOpRes != BitWidth && i != e; ++i)
   3213       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   3214                           BitWidth);
   3215     return SumOpRes;
   3216   }
   3217 
   3218   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   3219     // The result is the min of all operands results.
   3220     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3221     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3222       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3223     return MinOpRes;
   3224   }
   3225 
   3226   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   3227     // The result is the min of all operands results.
   3228     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3229     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3230       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3231     return MinOpRes;
   3232   }
   3233 
   3234   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   3235     // The result is the min of all operands results.
   3236     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3237     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3238       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3239     return MinOpRes;
   3240   }
   3241 
   3242   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3243     // For a SCEVUnknown, ask ValueTracking.
   3244     unsigned BitWidth = getTypeSizeInBits(U->getType());
   3245     APInt Mask = APInt::getAllOnesValue(BitWidth);
   3246     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3247     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
   3248     return Zeros.countTrailingOnes();
   3249   }
   3250 
   3251   // SCEVUDivExpr
   3252   return 0;
   3253 }
   3254 
   3255 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
   3256 ///
   3257 ConstantRange
   3258 ScalarEvolution::getUnsignedRange(const SCEV *S) {
   3259   // See if we've computed this range already.
   3260   DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
   3261   if (I != UnsignedRanges.end())
   3262     return I->second;
   3263 
   3264   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3265     return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
   3266 
   3267   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3268   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3269 
   3270   // If the value has known zeros, the maximum unsigned value will have those
   3271   // known zeros as well.
   3272   uint32_t TZ = GetMinTrailingZeros(S);
   3273   if (TZ != 0)
   3274     ConservativeResult =
   3275       ConstantRange(APInt::getMinValue(BitWidth),
   3276                     APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   3277 
   3278   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3279     ConstantRange X = getUnsignedRange(Add->getOperand(0));
   3280     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3281       X = X.add(getUnsignedRange(Add->getOperand(i)));
   3282     return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
   3283   }
   3284 
   3285   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3286     ConstantRange X = getUnsignedRange(Mul->getOperand(0));
   3287     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3288       X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
   3289     return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
   3290   }
   3291 
   3292   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3293     ConstantRange X = getUnsignedRange(SMax->getOperand(0));
   3294     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3295       X = X.smax(getUnsignedRange(SMax->getOperand(i)));
   3296     return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
   3297   }
   3298 
   3299   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3300     ConstantRange X = getUnsignedRange(UMax->getOperand(0));
   3301     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3302       X = X.umax(getUnsignedRange(UMax->getOperand(i)));
   3303     return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
   3304   }
   3305 
   3306   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3307     ConstantRange X = getUnsignedRange(UDiv->getLHS());
   3308     ConstantRange Y = getUnsignedRange(UDiv->getRHS());
   3309     return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3310   }
   3311 
   3312   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3313     ConstantRange X = getUnsignedRange(ZExt->getOperand());
   3314     return setUnsignedRange(ZExt,
   3315       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3316   }
   3317 
   3318   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3319     ConstantRange X = getUnsignedRange(SExt->getOperand());
   3320     return setUnsignedRange(SExt,
   3321       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3322   }
   3323 
   3324   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3325     ConstantRange X = getUnsignedRange(Trunc->getOperand());
   3326     return setUnsignedRange(Trunc,
   3327       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3328   }
   3329 
   3330   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3331     // If there's no unsigned wrap, the value will never be less than its
   3332     // initial value.
   3333     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
   3334       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   3335         if (!C->getValue()->isZero())
   3336           ConservativeResult =
   3337             ConservativeResult.intersectWith(
   3338               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
   3339 
   3340     // TODO: non-affine addrec
   3341     if (AddRec->isAffine()) {
   3342       Type *Ty = AddRec->getType();
   3343       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3344       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3345           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3346         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3347 
   3348         const SCEV *Start = AddRec->getStart();
   3349         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3350 
   3351         ConstantRange StartRange = getUnsignedRange(Start);
   3352         ConstantRange StepRange = getSignedRange(Step);
   3353         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3354         ConstantRange EndRange =
   3355           StartRange.add(MaxBECountRange.multiply(StepRange));
   3356 
   3357         // Check for overflow. This must be done with ConstantRange arithmetic
   3358         // because we could be called from within the ScalarEvolution overflow
   3359         // checking code.
   3360         ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
   3361         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3362         ConstantRange ExtMaxBECountRange =
   3363           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3364         ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
   3365         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3366             ExtEndRange)
   3367           return setUnsignedRange(AddRec, ConservativeResult);
   3368 
   3369         APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
   3370                                    EndRange.getUnsignedMin());
   3371         APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
   3372                                    EndRange.getUnsignedMax());
   3373         if (Min.isMinValue() && Max.isMaxValue())
   3374           return setUnsignedRange(AddRec, ConservativeResult);
   3375         return setUnsignedRange(AddRec,
   3376           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3377       }
   3378     }
   3379 
   3380     return setUnsignedRange(AddRec, ConservativeResult);
   3381   }
   3382 
   3383   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3384     // For a SCEVUnknown, ask ValueTracking.
   3385     APInt Mask = APInt::getAllOnesValue(BitWidth);
   3386     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3387     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
   3388     if (Ones == ~Zeros + 1)
   3389       return setUnsignedRange(U, ConservativeResult);
   3390     return setUnsignedRange(U,
   3391       ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
   3392   }
   3393 
   3394   return setUnsignedRange(S, ConservativeResult);
   3395 }
   3396 
   3397 /// getSignedRange - Determine the signed range for a particular SCEV.
   3398 ///
   3399 ConstantRange
   3400 ScalarEvolution::getSignedRange(const SCEV *S) {
   3401   // See if we've computed this range already.
   3402   DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
   3403   if (I != SignedRanges.end())
   3404     return I->second;
   3405 
   3406   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3407     return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
   3408 
   3409   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3410   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3411 
   3412   // If the value has known zeros, the maximum signed value will have those
   3413   // known zeros as well.
   3414   uint32_t TZ = GetMinTrailingZeros(S);
   3415   if (TZ != 0)
   3416     ConservativeResult =
   3417       ConstantRange(APInt::getSignedMinValue(BitWidth),
   3418                     APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   3419 
   3420   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3421     ConstantRange X = getSignedRange(Add->getOperand(0));
   3422     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3423       X = X.add(getSignedRange(Add->getOperand(i)));
   3424     return setSignedRange(Add, ConservativeResult.intersectWith(X));
   3425   }
   3426 
   3427   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3428     ConstantRange X = getSignedRange(Mul->getOperand(0));
   3429     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3430       X = X.multiply(getSignedRange(Mul->getOperand(i)));
   3431     return setSignedRange(Mul, ConservativeResult.intersectWith(X));
   3432   }
   3433 
   3434   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3435     ConstantRange X = getSignedRange(SMax->getOperand(0));
   3436     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3437       X = X.smax(getSignedRange(SMax->getOperand(i)));
   3438     return setSignedRange(SMax, ConservativeResult.intersectWith(X));
   3439   }
   3440 
   3441   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3442     ConstantRange X = getSignedRange(UMax->getOperand(0));
   3443     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3444       X = X.umax(getSignedRange(UMax->getOperand(i)));
   3445     return setSignedRange(UMax, ConservativeResult.intersectWith(X));
   3446   }
   3447 
   3448   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3449     ConstantRange X = getSignedRange(UDiv->getLHS());
   3450     ConstantRange Y = getSignedRange(UDiv->getRHS());
   3451     return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3452   }
   3453 
   3454   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3455     ConstantRange X = getSignedRange(ZExt->getOperand());
   3456     return setSignedRange(ZExt,
   3457       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3458   }
   3459 
   3460   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3461     ConstantRange X = getSignedRange(SExt->getOperand());
   3462     return setSignedRange(SExt,
   3463       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3464   }
   3465 
   3466   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3467     ConstantRange X = getSignedRange(Trunc->getOperand());
   3468     return setSignedRange(Trunc,
   3469       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3470   }
   3471 
   3472   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3473     // If there's no signed wrap, and all the operands have the same sign or
   3474     // zero, the value won't ever change sign.
   3475     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
   3476       bool AllNonNeg = true;
   3477       bool AllNonPos = true;
   3478       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   3479         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   3480         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   3481       }
   3482       if (AllNonNeg)
   3483         ConservativeResult = ConservativeResult.intersectWith(
   3484           ConstantRange(APInt(BitWidth, 0),
   3485                         APInt::getSignedMinValue(BitWidth)));
   3486       else if (AllNonPos)
   3487         ConservativeResult = ConservativeResult.intersectWith(
   3488           ConstantRange(APInt::getSignedMinValue(BitWidth),
   3489                         APInt(BitWidth, 1)));
   3490     }
   3491 
   3492     // TODO: non-affine addrec
   3493     if (AddRec->isAffine()) {
   3494       Type *Ty = AddRec->getType();
   3495       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3496       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3497           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3498         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3499 
   3500         const SCEV *Start = AddRec->getStart();
   3501         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3502 
   3503         ConstantRange StartRange = getSignedRange(Start);
   3504         ConstantRange StepRange = getSignedRange(Step);
   3505         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3506         ConstantRange EndRange =
   3507           StartRange.add(MaxBECountRange.multiply(StepRange));
   3508 
   3509         // Check for overflow. This must be done with ConstantRange arithmetic
   3510         // because we could be called from within the ScalarEvolution overflow
   3511         // checking code.
   3512         ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
   3513         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3514         ConstantRange ExtMaxBECountRange =
   3515           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3516         ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
   3517         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3518             ExtEndRange)
   3519           return setSignedRange(AddRec, ConservativeResult);
   3520 
   3521         APInt Min = APIntOps::smin(StartRange.getSignedMin(),
   3522                                    EndRange.getSignedMin());
   3523         APInt Max = APIntOps::smax(StartRange.getSignedMax(),
   3524                                    EndRange.getSignedMax());
   3525         if (Min.isMinSignedValue() && Max.isMaxSignedValue())
   3526           return setSignedRange(AddRec, ConservativeResult);
   3527         return setSignedRange(AddRec,
   3528           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3529       }
   3530     }
   3531 
   3532     return setSignedRange(AddRec, ConservativeResult);
   3533   }
   3534 
   3535   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3536     // For a SCEVUnknown, ask ValueTracking.
   3537     if (!U->getValue()->getType()->isIntegerTy() && !TD)
   3538       return setSignedRange(U, ConservativeResult);
   3539     unsigned NS = ComputeNumSignBits(U->getValue(), TD);
   3540     if (NS == 1)
   3541       return setSignedRange(U, ConservativeResult);
   3542     return setSignedRange(U, ConservativeResult.intersectWith(
   3543       ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   3544                     APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
   3545   }
   3546 
   3547   return setSignedRange(S, ConservativeResult);
   3548 }
   3549 
   3550 /// createSCEV - We know that there is no SCEV for the specified value.
   3551 /// Analyze the expression.
   3552 ///
   3553 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   3554   if (!isSCEVable(V->getType()))
   3555     return getUnknown(V);
   3556 
   3557   unsigned Opcode = Instruction::UserOp1;
   3558   if (Instruction *I = dyn_cast<Instruction>(V)) {
   3559     Opcode = I->getOpcode();
   3560 
   3561     // Don't attempt to analyze instructions in blocks that aren't
   3562     // reachable. Such instructions don't matter, and they aren't required
   3563     // to obey basic rules for definitions dominating uses which this
   3564     // analysis depends on.
   3565     if (!DT->isReachableFromEntry(I->getParent()))
   3566       return getUnknown(V);
   3567   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   3568     Opcode = CE->getOpcode();
   3569   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   3570     return getConstant(CI);
   3571   else if (isa<ConstantPointerNull>(V))
   3572     return getConstant(V->getType(), 0);
   3573   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   3574     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
   3575   else
   3576     return getUnknown(V);
   3577 
   3578   Operator *U = cast<Operator>(V);
   3579   switch (Opcode) {
   3580   case Instruction::Add: {
   3581     // The simple thing to do would be to just call getSCEV on both operands
   3582     // and call getAddExpr with the result. However if we're looking at a
   3583     // bunch of things all added together, this can be quite inefficient,
   3584     // because it leads to N-1 getAddExpr calls for N ultimate operands.
   3585     // Instead, gather up all the operands and make a single getAddExpr call.
   3586     // LLVM IR canonical form means we need only traverse the left operands.
   3587     SmallVector<const SCEV *, 4> AddOps;
   3588     AddOps.push_back(getSCEV(U->getOperand(1)));
   3589     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
   3590       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
   3591       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
   3592         break;
   3593       U = cast<Operator>(Op);
   3594       const SCEV *Op1 = getSCEV(U->getOperand(1));
   3595       if (Opcode == Instruction::Sub)
   3596         AddOps.push_back(getNegativeSCEV(Op1));
   3597       else
   3598         AddOps.push_back(Op1);
   3599     }
   3600     AddOps.push_back(getSCEV(U->getOperand(0)));
   3601     SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3602     OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
   3603     if (OBO->hasNoSignedWrap())
   3604       setFlags(Flags, SCEV::FlagNSW);
   3605     if (OBO->hasNoUnsignedWrap())
   3606       setFlags(Flags, SCEV::FlagNUW);
   3607     return getAddExpr(AddOps, Flags);
   3608   }
   3609   case Instruction::Mul: {
   3610     // See the Add code above.
   3611     SmallVector<const SCEV *, 4> MulOps;
   3612     MulOps.push_back(getSCEV(U->getOperand(1)));
   3613     for (Value *Op = U->getOperand(0);
   3614          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
   3615          Op = U->getOperand(0)) {
   3616       U = cast<Operator>(Op);
   3617       MulOps.push_back(getSCEV(U->getOperand(1)));
   3618     }
   3619     MulOps.push_back(getSCEV(U->getOperand(0)));
   3620     return getMulExpr(MulOps);
   3621   }
   3622   case Instruction::UDiv:
   3623     return getUDivExpr(getSCEV(U->getOperand(0)),
   3624                        getSCEV(U->getOperand(1)));
   3625   case Instruction::Sub:
   3626     return getMinusSCEV(getSCEV(U->getOperand(0)),
   3627                         getSCEV(U->getOperand(1)));
   3628   case Instruction::And:
   3629     // For an expression like x&255 that merely masks off the high bits,
   3630     // use zext(trunc(x)) as the SCEV expression.
   3631     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3632       if (CI->isNullValue())
   3633         return getSCEV(U->getOperand(1));
   3634       if (CI->isAllOnesValue())
   3635         return getSCEV(U->getOperand(0));
   3636       const APInt &A = CI->getValue();
   3637 
   3638       // Instcombine's ShrinkDemandedConstant may strip bits out of
   3639       // constants, obscuring what would otherwise be a low-bits mask.
   3640       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
   3641       // knew about to reconstruct a low-bits mask value.
   3642       unsigned LZ = A.countLeadingZeros();
   3643       unsigned BitWidth = A.getBitWidth();
   3644       APInt AllOnes = APInt::getAllOnesValue(BitWidth);
   3645       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   3646       ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
   3647 
   3648       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
   3649 
   3650       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
   3651         return
   3652           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
   3653                                 IntegerType::get(getContext(), BitWidth - LZ)),
   3654                             U->getType());
   3655     }
   3656     break;
   3657 
   3658   case Instruction::Or:
   3659     // If the RHS of the Or is a constant, we may have something like:
   3660     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   3661     // optimizations will transparently handle this case.
   3662     //
   3663     // In order for this transformation to be safe, the LHS must be of the
   3664     // form X*(2^n) and the Or constant must be less than 2^n.
   3665     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3666       const SCEV *LHS = getSCEV(U->getOperand(0));
   3667       const APInt &CIVal = CI->getValue();
   3668       if (GetMinTrailingZeros(LHS) >=
   3669           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   3670         // Build a plain add SCEV.
   3671         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   3672         // If the LHS of the add was an addrec and it has no-wrap flags,
   3673         // transfer the no-wrap flags, since an or won't introduce a wrap.
   3674         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   3675           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   3676           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   3677             OldAR->getNoWrapFlags());
   3678         }
   3679         return S;
   3680       }
   3681     }
   3682     break;
   3683   case Instruction::Xor:
   3684     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3685       // If the RHS of the xor is a signbit, then this is just an add.
   3686       // Instcombine turns add of signbit into xor as a strength reduction step.
   3687       if (CI->getValue().isSignBit())
   3688         return getAddExpr(getSCEV(U->getOperand(0)),
   3689                           getSCEV(U->getOperand(1)));
   3690 
   3691       // If the RHS of xor is -1, then this is a not operation.
   3692       if (CI->isAllOnesValue())
   3693         return getNotSCEV(getSCEV(U->getOperand(0)));
   3694 
   3695       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   3696       // This is a variant of the check for xor with -1, and it handles
   3697       // the case where instcombine has trimmed non-demanded bits out
   3698       // of an xor with -1.
   3699       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
   3700         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
   3701           if (BO->getOpcode() == Instruction::And &&
   3702               LCI->getValue() == CI->getValue())
   3703             if (const SCEVZeroExtendExpr *Z =
   3704                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
   3705               Type *UTy = U->getType();
   3706               const SCEV *Z0 = Z->getOperand();
   3707               Type *Z0Ty = Z0->getType();
   3708               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   3709 
   3710               // If C is a low-bits mask, the zero extend is serving to
   3711               // mask off the high bits. Complement the operand and
   3712               // re-apply the zext.
   3713               if (APIntOps::isMask(Z0TySize, CI->getValue()))
   3714                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   3715 
   3716               // If C is a single bit, it may be in the sign-bit position
   3717               // before the zero-extend. In this case, represent the xor
   3718               // using an add, which is equivalent, and re-apply the zext.
   3719               APInt Trunc = CI->getValue().trunc(Z0TySize);
   3720               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   3721                   Trunc.isSignBit())
   3722                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   3723                                          UTy);
   3724             }
   3725     }
   3726     break;
   3727 
   3728   case Instruction::Shl:
   3729     // Turn shift left of a constant amount into a multiply.
   3730     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3731       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3732 
   3733       // If the shift count is not less than the bitwidth, the result of
   3734       // the shift is undefined. Don't try to analyze it, because the
   3735       // resolution chosen here may differ from the resolution chosen in
   3736       // other parts of the compiler.
   3737       if (SA->getValue().uge(BitWidth))
   3738         break;
   3739 
   3740       Constant *X = ConstantInt::get(getContext(),
   3741         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3742       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3743     }
   3744     break;
   3745 
   3746   case Instruction::LShr:
   3747     // Turn logical shift right of a constant into a unsigned divide.
   3748     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3749       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3750 
   3751       // If the shift count is not less than the bitwidth, the result of
   3752       // the shift is undefined. Don't try to analyze it, because the
   3753       // resolution chosen here may differ from the resolution chosen in
   3754       // other parts of the compiler.
   3755       if (SA->getValue().uge(BitWidth))
   3756         break;
   3757 
   3758       Constant *X = ConstantInt::get(getContext(),
   3759         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3760       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3761     }
   3762     break;
   3763 
   3764   case Instruction::AShr:
   3765     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   3766     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
   3767       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
   3768         if (L->getOpcode() == Instruction::Shl &&
   3769             L->getOperand(1) == U->getOperand(1)) {
   3770           uint64_t BitWidth = getTypeSizeInBits(U->getType());
   3771 
   3772           // If the shift count is not less than the bitwidth, the result of
   3773           // the shift is undefined. Don't try to analyze it, because the
   3774           // resolution chosen here may differ from the resolution chosen in
   3775           // other parts of the compiler.
   3776           if (CI->getValue().uge(BitWidth))
   3777             break;
   3778 
   3779           uint64_t Amt = BitWidth - CI->getZExtValue();
   3780           if (Amt == BitWidth)
   3781             return getSCEV(L->getOperand(0));       // shift by zero --> noop
   3782           return
   3783             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
   3784                                               IntegerType::get(getContext(),
   3785                                                                Amt)),
   3786                               U->getType());
   3787         }
   3788     break;
   3789 
   3790   case Instruction::Trunc:
   3791     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   3792 
   3793   case Instruction::ZExt:
   3794     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3795 
   3796   case Instruction::SExt:
   3797     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3798 
   3799   case Instruction::BitCast:
   3800     // BitCasts are no-op casts so we just eliminate the cast.
   3801     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   3802       return getSCEV(U->getOperand(0));
   3803     break;
   3804 
   3805   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   3806   // lead to pointer expressions which cannot safely be expanded to GEPs,
   3807   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   3808   // simplifying integer expressions.
   3809 
   3810   case Instruction::GetElementPtr:
   3811     return createNodeForGEP(cast<GEPOperator>(U));
   3812 
   3813   case Instruction::PHI:
   3814     return createNodeForPHI(cast<PHINode>(U));
   3815 
   3816   case Instruction::Select:
   3817     // This could be a smax or umax that was lowered earlier.
   3818     // Try to recover it.
   3819     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
   3820       Value *LHS = ICI->getOperand(0);
   3821       Value *RHS = ICI->getOperand(1);
   3822       switch (ICI->getPredicate()) {
   3823       case ICmpInst::ICMP_SLT:
   3824       case ICmpInst::ICMP_SLE:
   3825         std::swap(LHS, RHS);
   3826         // fall through
   3827       case ICmpInst::ICMP_SGT:
   3828       case ICmpInst::ICMP_SGE:
   3829         // a >s b ? a+x : b+x  ->  smax(a, b)+x
   3830         // a >s b ? b+x : a+x  ->  smin(a, b)+x
   3831         if (LHS->getType() == U->getType()) {
   3832           const SCEV *LS = getSCEV(LHS);
   3833           const SCEV *RS = getSCEV(RHS);
   3834           const SCEV *LA = getSCEV(U->getOperand(1));
   3835           const SCEV *RA = getSCEV(U->getOperand(2));
   3836           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3837           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3838           if (LDiff == RDiff)
   3839             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   3840           LDiff = getMinusSCEV(LA, RS);
   3841           RDiff = getMinusSCEV(RA, LS);
   3842           if (LDiff == RDiff)
   3843             return getAddExpr(getSMinExpr(LS, RS), LDiff);
   3844         }
   3845         break;
   3846       case ICmpInst::ICMP_ULT:
   3847       case ICmpInst::ICMP_ULE:
   3848         std::swap(LHS, RHS);
   3849         // fall through
   3850       case ICmpInst::ICMP_UGT:
   3851       case ICmpInst::ICMP_UGE:
   3852         // a >u b ? a+x : b+x  ->  umax(a, b)+x
   3853         // a >u b ? b+x : a+x  ->  umin(a, b)+x
   3854         if (LHS->getType() == U->getType()) {
   3855           const SCEV *LS = getSCEV(LHS);
   3856           const SCEV *RS = getSCEV(RHS);
   3857           const SCEV *LA = getSCEV(U->getOperand(1));
   3858           const SCEV *RA = getSCEV(U->getOperand(2));
   3859           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3860           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3861           if (LDiff == RDiff)
   3862             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   3863           LDiff = getMinusSCEV(LA, RS);
   3864           RDiff = getMinusSCEV(RA, LS);
   3865           if (LDiff == RDiff)
   3866             return getAddExpr(getUMinExpr(LS, RS), LDiff);
   3867         }
   3868         break;
   3869       case ICmpInst::ICMP_NE:
   3870         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   3871         if (LHS->getType() == U->getType() &&
   3872             isa<ConstantInt>(RHS) &&
   3873             cast<ConstantInt>(RHS)->isZero()) {
   3874           const SCEV *One = getConstant(LHS->getType(), 1);
   3875           const SCEV *LS = getSCEV(LHS);
   3876           const SCEV *LA = getSCEV(U->getOperand(1));
   3877           const SCEV *RA = getSCEV(U->getOperand(2));
   3878           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3879           const SCEV *RDiff = getMinusSCEV(RA, One);
   3880           if (LDiff == RDiff)
   3881             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3882         }
   3883         break;
   3884       case ICmpInst::ICMP_EQ:
   3885         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   3886         if (LHS->getType() == U->getType() &&
   3887             isa<ConstantInt>(RHS) &&
   3888             cast<ConstantInt>(RHS)->isZero()) {
   3889           const SCEV *One = getConstant(LHS->getType(), 1);
   3890           const SCEV *LS = getSCEV(LHS);
   3891           const SCEV *LA = getSCEV(U->getOperand(1));
   3892           const SCEV *RA = getSCEV(U->getOperand(2));
   3893           const SCEV *LDiff = getMinusSCEV(LA, One);
   3894           const SCEV *RDiff = getMinusSCEV(RA, LS);
   3895           if (LDiff == RDiff)
   3896             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3897         }
   3898         break;
   3899       default:
   3900         break;
   3901       }
   3902     }
   3903 
   3904   default: // We cannot analyze this expression.
   3905     break;
   3906   }
   3907 
   3908   return getUnknown(V);
   3909 }
   3910 
   3911 
   3912 
   3913 //===----------------------------------------------------------------------===//
   3914 //                   Iteration Count Computation Code
   3915 //
   3916 
   3917 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
   3918 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
   3919 /// or not constant. Will also return 0 if the maximum trip count is very large
   3920 /// (>= 2^32)
   3921 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
   3922                                                     BasicBlock *ExitBlock) {
   3923   const SCEVConstant *ExitCount =
   3924     dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
   3925   if (!ExitCount)
   3926     return 0;
   3927 
   3928   ConstantInt *ExitConst = ExitCount->getValue();
   3929 
   3930   // Guard against huge trip counts.
   3931   if (ExitConst->getValue().getActiveBits() > 32)
   3932     return 0;
   3933 
   3934   // In case of integer overflow, this returns 0, which is correct.
   3935   return ((unsigned)ExitConst->getZExtValue()) + 1;
   3936 }
   3937 
   3938 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
   3939 /// trip count of this loop as a normal unsigned value, if possible. This
   3940 /// means that the actual trip count is always a multiple of the returned
   3941 /// value (don't forget the trip count could very well be zero as well!).
   3942 ///
   3943 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   3944 /// multiple of a constant (which is also the case if the trip count is simply
   3945 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   3946 /// if the trip count is very large (>= 2^32).
   3947 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
   3948                                                        BasicBlock *ExitBlock) {
   3949   const SCEV *ExitCount = getExitCount(L, ExitBlock);
   3950   if (ExitCount == getCouldNotCompute())
   3951     return 1;
   3952 
   3953   // Get the trip count from the BE count by adding 1.
   3954   const SCEV *TCMul = getAddExpr(ExitCount,
   3955                                  getConstant(ExitCount->getType(), 1));
   3956   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   3957   // to factor simple cases.
   3958   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   3959     TCMul = Mul->getOperand(0);
   3960 
   3961   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   3962   if (!MulC)
   3963     return 1;
   3964 
   3965   ConstantInt *Result = MulC->getValue();
   3966 
   3967   // Guard against huge trip counts.
   3968   if (!Result || Result->getValue().getActiveBits() > 32)
   3969     return 1;
   3970 
   3971   return (unsigned)Result->getZExtValue();
   3972 }
   3973 
   3974 // getExitCount - Get the expression for the number of loop iterations for which
   3975 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return
   3976 // SCEVCouldNotCompute.
   3977 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   3978   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   3979 }
   3980 
   3981 /// getBackedgeTakenCount - If the specified loop has a predictable
   3982 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
   3983 /// object. The backedge-taken count is the number of times the loop header
   3984 /// will be branched to from within the loop. This is one less than the
   3985 /// trip count of the loop, since it doesn't count the first iteration,
   3986 /// when the header is branched to from outside the loop.
   3987 ///
   3988 /// Note that it is not valid to call this method on a loop without a
   3989 /// loop-invariant backedge-taken count (see
   3990 /// hasLoopInvariantBackedgeTakenCount).
   3991 ///
   3992 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   3993   return getBackedgeTakenInfo(L).getExact(this);
   3994 }
   3995 
   3996 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
   3997 /// return the least SCEV value that is known never to be less than the
   3998 /// actual backedge taken count.
   3999 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   4000   return getBackedgeTakenInfo(L).getMax(this);
   4001 }
   4002 
   4003 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
   4004 /// onto the given Worklist.
   4005 static void
   4006 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   4007   BasicBlock *Header = L->getHeader();
   4008 
   4009   // Push all Loop-header PHIs onto the Worklist stack.
   4010   for (BasicBlock::iterator I = Header->begin();
   4011        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   4012     Worklist.push_back(PN);
   4013 }
   4014 
   4015 const ScalarEvolution::BackedgeTakenInfo &
   4016 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   4017   // Initially insert an invalid entry for this loop. If the insertion
   4018   // succeeds, proceed to actually compute a backedge-taken count and
   4019   // update the value. The temporary CouldNotCompute value tells SCEV
   4020   // code elsewhere that it shouldn't attempt to request a new
   4021   // backedge-taken count, which could result in infinite recursion.
   4022   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   4023     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
   4024   if (!Pair.second)
   4025     return Pair.first->second;
   4026 
   4027   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
   4028   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   4029   // must be cleared in this scope.
   4030   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
   4031 
   4032   if (Result.getExact(this) != getCouldNotCompute()) {
   4033     assert(isLoopInvariant(Result.getExact(this), L) &&
   4034            isLoopInvariant(Result.getMax(this), L) &&
   4035            "Computed backedge-taken count isn't loop invariant for loop!");
   4036     ++NumTripCountsComputed;
   4037   }
   4038   else if (Result.getMax(this) == getCouldNotCompute() &&
   4039            isa<PHINode>(L->getHeader()->begin())) {
   4040     // Only count loops that have phi nodes as not being computable.
   4041     ++NumTripCountsNotComputed;
   4042   }
   4043 
   4044   // Now that we know more about the trip count for this loop, forget any
   4045   // existing SCEV values for PHI nodes in this loop since they are only
   4046   // conservative estimates made without the benefit of trip count
   4047   // information. This is similar to the code in forgetLoop, except that
   4048   // it handles SCEVUnknown PHI nodes specially.
   4049   if (Result.hasAnyInfo()) {
   4050     SmallVector<Instruction *, 16> Worklist;
   4051     PushLoopPHIs(L, Worklist);
   4052 
   4053     SmallPtrSet<Instruction *, 8> Visited;
   4054     while (!Worklist.empty()) {
   4055       Instruction *I = Worklist.pop_back_val();
   4056       if (!Visited.insert(I)) continue;
   4057 
   4058       ValueExprMapType::iterator It =
   4059         ValueExprMap.find(static_cast<Value *>(I));
   4060       if (It != ValueExprMap.end()) {
   4061         const SCEV *Old = It->second;
   4062 
   4063         // SCEVUnknown for a PHI either means that it has an unrecognized
   4064         // structure, or it's a PHI that's in the progress of being computed
   4065         // by createNodeForPHI.  In the former case, additional loop trip
   4066         // count information isn't going to change anything. In the later
   4067         // case, createNodeForPHI will perform the necessary updates on its
   4068         // own when it gets to that point.
   4069         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   4070           forgetMemoizedResults(Old);
   4071           ValueExprMap.erase(It);
   4072         }
   4073         if (PHINode *PN = dyn_cast<PHINode>(I))
   4074           ConstantEvolutionLoopExitValue.erase(PN);
   4075       }
   4076 
   4077       PushDefUseChildren(I, Worklist);
   4078     }
   4079   }
   4080 
   4081   // Re-lookup the insert position, since the call to
   4082   // ComputeBackedgeTakenCount above could result in a
   4083   // recusive call to getBackedgeTakenInfo (on a different
   4084   // loop), which would invalidate the iterator computed
   4085   // earlier.
   4086   return BackedgeTakenCounts.find(L)->second = Result;
   4087 }
   4088 
   4089 /// forgetLoop - This method should be called by the client when it has
   4090 /// changed a loop in a way that may effect ScalarEvolution's ability to
   4091 /// compute a trip count, or if the loop is deleted.
   4092 void ScalarEvolution::forgetLoop(const Loop *L) {
   4093   // Drop any stored trip count value.
   4094   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
   4095     BackedgeTakenCounts.find(L);
   4096   if (BTCPos != BackedgeTakenCounts.end()) {
   4097     BTCPos->second.clear();
   4098     BackedgeTakenCounts.erase(BTCPos);
   4099   }
   4100 
   4101   // Drop information about expressions based on loop-header PHIs.
   4102   SmallVector<Instruction *, 16> Worklist;
   4103   PushLoopPHIs(L, Worklist);
   4104 
   4105   SmallPtrSet<Instruction *, 8> Visited;
   4106   while (!Worklist.empty()) {
   4107     Instruction *I = Worklist.pop_back_val();
   4108     if (!Visited.insert(I)) continue;
   4109 
   4110     ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
   4111     if (It != ValueExprMap.end()) {
   4112       forgetMemoizedResults(It->second);
   4113       ValueExprMap.erase(It);
   4114       if (PHINode *PN = dyn_cast<PHINode>(I))
   4115         ConstantEvolutionLoopExitValue.erase(PN);
   4116     }
   4117 
   4118     PushDefUseChildren(I, Worklist);
   4119   }
   4120 
   4121   // Forget all contained loops too, to avoid dangling entries in the
   4122   // ValuesAtScopes map.
   4123   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   4124     forgetLoop(*I);
   4125 }
   4126 
   4127 /// forgetValue - This method should be called by the client when it has
   4128 /// changed a value in a way that may effect its value, or which may
   4129 /// disconnect it from a def-use chain linking it to a loop.
   4130 void ScalarEvolution::forgetValue(Value *V) {
   4131   Instruction *I = dyn_cast<Instruction>(V);
   4132   if (!I) return;
   4133 
   4134   // Drop information about expressions based on loop-header PHIs.
   4135   SmallVector<Instruction *, 16> Worklist;
   4136   Worklist.push_back(I);
   4137 
   4138   SmallPtrSet<Instruction *, 8> Visited;
   4139   while (!Worklist.empty()) {
   4140     I = Worklist.pop_back_val();
   4141     if (!Visited.insert(I)) continue;
   4142 
   4143     ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
   4144     if (It != ValueExprMap.end()) {
   4145       forgetMemoizedResults(It->second);
   4146       ValueExprMap.erase(It);
   4147       if (PHINode *PN = dyn_cast<PHINode>(I))
   4148         ConstantEvolutionLoopExitValue.erase(PN);
   4149     }
   4150 
   4151     PushDefUseChildren(I, Worklist);
   4152   }
   4153 }
   4154 
   4155 /// getExact - Get the exact loop backedge taken count considering all loop
   4156 /// exits. If all exits are computable, this is the minimum computed count.
   4157 const SCEV *
   4158 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   4159   // If any exits were not computable, the loop is not computable.
   4160   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   4161 
   4162   // We need at least one computable exit.
   4163   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   4164   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   4165 
   4166   const SCEV *BECount = 0;
   4167   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4168        ENT != 0; ENT = ENT->getNextExit()) {
   4169 
   4170     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   4171 
   4172     if (!BECount)
   4173       BECount = ENT->ExactNotTaken;
   4174     else
   4175       BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
   4176   }
   4177   assert(BECount && "Invalid not taken count for loop exit");
   4178   return BECount;
   4179 }
   4180 
   4181 /// getExact - Get the exact not taken count for this loop exit.
   4182 const SCEV *
   4183 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   4184                                              ScalarEvolution *SE) const {
   4185   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4186        ENT != 0; ENT = ENT->getNextExit()) {
   4187 
   4188     if (ENT->ExitingBlock == ExitingBlock)
   4189       return ENT->ExactNotTaken;
   4190   }
   4191   return SE->getCouldNotCompute();
   4192 }
   4193 
   4194 /// getMax - Get the max backedge taken count for the loop.
   4195 const SCEV *
   4196 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   4197   return Max ? Max : SE->getCouldNotCompute();
   4198 }
   4199 
   4200 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   4201 /// computable exit into a persistent ExitNotTakenInfo array.
   4202 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   4203   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
   4204   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
   4205 
   4206   if (!Complete)
   4207     ExitNotTaken.setIncomplete();
   4208 
   4209   unsigned NumExits = ExitCounts.size();
   4210   if (NumExits == 0) return;
   4211 
   4212   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   4213   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   4214   if (NumExits == 1) return;
   4215 
   4216   // Handle the rare case of multiple computable exits.
   4217   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
   4218 
   4219   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   4220   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
   4221     PrevENT->setNextExit(ENT);
   4222     ENT->ExitingBlock = ExitCounts[i].first;
   4223     ENT->ExactNotTaken = ExitCounts[i].second;
   4224   }
   4225 }
   4226 
   4227 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
   4228 void ScalarEvolution::BackedgeTakenInfo::clear() {
   4229   ExitNotTaken.ExitingBlock = 0;
   4230   ExitNotTaken.ExactNotTaken = 0;
   4231   delete[] ExitNotTaken.getNextExit();
   4232 }
   4233 
   4234 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
   4235 /// of the specified loop will execute.
   4236 ScalarEvolution::BackedgeTakenInfo
   4237 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
   4238   SmallVector<BasicBlock *, 8> ExitingBlocks;
   4239   L->getExitingBlocks(ExitingBlocks);
   4240 
   4241   // Examine all exits and pick the most conservative values.
   4242   const SCEV *MaxBECount = getCouldNotCompute();
   4243   bool CouldComputeBECount = true;
   4244   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
   4245   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   4246     ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
   4247     if (EL.Exact == getCouldNotCompute())
   4248       // We couldn't compute an exact value for this exit, so
   4249       // we won't be able to compute an exact value for the loop.
   4250       CouldComputeBECount = false;
   4251     else
   4252       ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
   4253 
   4254     if (MaxBECount == getCouldNotCompute())
   4255       MaxBECount = EL.Max;
   4256     else if (EL.Max != getCouldNotCompute())
   4257       MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
   4258   }
   4259 
   4260   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   4261 }
   4262 
   4263 /// ComputeExitLimit - Compute the number of times the backedge of the specified
   4264 /// loop will execute if it exits via the specified block.
   4265 ScalarEvolution::ExitLimit
   4266 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
   4267 
   4268   // Okay, we've chosen an exiting block.  See what condition causes us to
   4269   // exit at this block.
   4270   //
   4271   // FIXME: we should be able to handle switch instructions (with a single exit)
   4272   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   4273   if (ExitBr == 0) return getCouldNotCompute();
   4274   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
   4275 
   4276   // At this point, we know we have a conditional branch that determines whether
   4277   // the loop is exited.  However, we don't know if the branch is executed each
   4278   // time through the loop.  If not, then the execution count of the branch will
   4279   // not be equal to the trip count of the loop.
   4280   //
   4281   // Currently we check for this by checking to see if the Exit branch goes to
   4282   // the loop header.  If so, we know it will always execute the same number of
   4283   // times as the loop.  We also handle the case where the exit block *is* the
   4284   // loop header.  This is common for un-rotated loops.
   4285   //
   4286   // If both of those tests fail, walk up the unique predecessor chain to the
   4287   // header, stopping if there is an edge that doesn't exit the loop. If the
   4288   // header is reached, the execution count of the branch will be equal to the
   4289   // trip count of the loop.
   4290   //
   4291   //  More extensive analysis could be done to handle more cases here.
   4292   //
   4293   if (ExitBr->getSuccessor(0) != L->getHeader() &&
   4294       ExitBr->getSuccessor(1) != L->getHeader() &&
   4295       ExitBr->getParent() != L->getHeader()) {
   4296     // The simple checks failed, try climbing the unique predecessor chain
   4297     // up to the header.
   4298     bool Ok = false;
   4299     for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
   4300       BasicBlock *Pred = BB->getUniquePredecessor();
   4301       if (!Pred)
   4302         return getCouldNotCompute();
   4303       TerminatorInst *PredTerm = Pred->getTerminator();
   4304       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
   4305         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
   4306         if (PredSucc == BB)
   4307           continue;
   4308         // If the predecessor has a successor that isn't BB and isn't
   4309         // outside the loop, assume the worst.
   4310         if (L->contains(PredSucc))
   4311           return getCouldNotCompute();
   4312       }
   4313       if (Pred == L->getHeader()) {
   4314         Ok = true;
   4315         break;
   4316       }
   4317       BB = Pred;
   4318     }
   4319     if (!Ok)
   4320       return getCouldNotCompute();
   4321   }
   4322 
   4323   // Proceed to the next level to examine the exit condition expression.
   4324   return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
   4325                                   ExitBr->getSuccessor(0),
   4326                                   ExitBr->getSuccessor(1));
   4327 }
   4328 
   4329 /// ComputeExitLimitFromCond - Compute the number of times the
   4330 /// backedge of the specified loop will execute if its exit condition
   4331 /// were a conditional branch of ExitCond, TBB, and FBB.
   4332 ScalarEvolution::ExitLimit
   4333 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
   4334                                           Value *ExitCond,
   4335                                           BasicBlock *TBB,
   4336                                           BasicBlock *FBB) {
   4337   // Check if the controlling expression for this loop is an And or Or.
   4338   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   4339     if (BO->getOpcode() == Instruction::And) {
   4340       // Recurse on the operands of the and.
   4341       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4342       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4343       const SCEV *BECount = getCouldNotCompute();
   4344       const SCEV *MaxBECount = getCouldNotCompute();
   4345       if (L->contains(TBB)) {
   4346         // Both conditions must be true for the loop to continue executing.
   4347         // Choose the less conservative count.
   4348         if (EL0.Exact == getCouldNotCompute() ||
   4349             EL1.Exact == getCouldNotCompute())
   4350           BECount = getCouldNotCompute();
   4351         else
   4352           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4353         if (EL0.Max == getCouldNotCompute())
   4354           MaxBECount = EL1.Max;
   4355         else if (EL1.Max == getCouldNotCompute())
   4356           MaxBECount = EL0.Max;
   4357         else
   4358           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4359       } else {
   4360         // Both conditions must be true at the same time for the loop to exit.
   4361         // For now, be conservative.
   4362         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   4363         if (EL0.Max == EL1.Max)
   4364           MaxBECount = EL0.Max;
   4365         if (EL0.Exact == EL1.Exact)
   4366           BECount = EL0.Exact;
   4367       }
   4368 
   4369       return ExitLimit(BECount, MaxBECount);
   4370     }
   4371     if (BO->getOpcode() == Instruction::Or) {
   4372       // Recurse on the operands of the or.
   4373       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4374       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4375       const SCEV *BECount = getCouldNotCompute();
   4376       const SCEV *MaxBECount = getCouldNotCompute();
   4377       if (L->contains(FBB)) {
   4378         // Both conditions must be false for the loop to continue executing.
   4379         // Choose the less conservative count.
   4380         if (EL0.Exact == getCouldNotCompute() ||
   4381             EL1.Exact == getCouldNotCompute())
   4382           BECount = getCouldNotCompute();
   4383         else
   4384           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4385         if (EL0.Max == getCouldNotCompute())
   4386           MaxBECount = EL1.Max;
   4387         else if (EL1.Max == getCouldNotCompute())
   4388           MaxBECount = EL0.Max;
   4389         else
   4390           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4391       } else {
   4392         // Both conditions must be false at the same time for the loop to exit.
   4393         // For now, be conservative.
   4394         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   4395         if (EL0.Max == EL1.Max)
   4396           MaxBECount = EL0.Max;
   4397         if (EL0.Exact == EL1.Exact)
   4398           BECount = EL0.Exact;
   4399       }
   4400 
   4401       return ExitLimit(BECount, MaxBECount);
   4402     }
   4403   }
   4404 
   4405   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   4406   // Proceed to the next level to examine the icmp.
   4407   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
   4408     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
   4409 
   4410   // Check for a constant condition. These are normally stripped out by
   4411   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   4412   // preserve the CFG and is temporarily leaving constant conditions
   4413   // in place.
   4414   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   4415     if (L->contains(FBB) == !CI->getZExtValue())
   4416       // The backedge is always taken.
   4417       return getCouldNotCompute();
   4418     else
   4419       // The backedge is never taken.
   4420       return getConstant(CI->getType(), 0);
   4421   }
   4422 
   4423   // If it's not an integer or pointer comparison then compute it the hard way.
   4424   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4425 }
   4426 
   4427 /// ComputeExitLimitFromICmp - Compute the number of times the
   4428 /// backedge of the specified loop will execute if its exit condition
   4429 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
   4430 ScalarEvolution::ExitLimit
   4431 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
   4432                                           ICmpInst *ExitCond,
   4433                                           BasicBlock *TBB,
   4434                                           BasicBlock *FBB) {
   4435 
   4436   // If the condition was exit on true, convert the condition to exit on false
   4437   ICmpInst::Predicate Cond;
   4438   if (!L->contains(FBB))
   4439     Cond = ExitCond->getPredicate();
   4440   else
   4441     Cond = ExitCond->getInversePredicate();
   4442 
   4443   // Handle common loops like: for (X = "string"; *X; ++X)
   4444   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   4445     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   4446       ExitLimit ItCnt =
   4447         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   4448       if (ItCnt.hasAnyInfo())
   4449         return ItCnt;
   4450     }
   4451 
   4452   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   4453   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   4454 
   4455   // Try to evaluate any dependencies out of the loop.
   4456   LHS = getSCEVAtScope(LHS, L);
   4457   RHS = getSCEVAtScope(RHS, L);
   4458 
   4459   // At this point, we would like to compute how many iterations of the
   4460   // loop the predicate will return true for these inputs.
   4461   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   4462     // If there is a loop-invariant, force it into the RHS.
   4463     std::swap(LHS, RHS);
   4464     Cond = ICmpInst::getSwappedPredicate(Cond);
   4465   }
   4466 
   4467   // Simplify the operands before analyzing them.
   4468   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   4469 
   4470   // If we have a comparison of a chrec against a constant, try to use value
   4471   // ranges to answer this query.
   4472   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   4473     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   4474       if (AddRec->getLoop() == L) {
   4475         // Form the constant range.
   4476         ConstantRange CompRange(
   4477             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
   4478 
   4479         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   4480         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   4481       }
   4482 
   4483   switch (Cond) {
   4484   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   4485     // Convert to: while (X-Y != 0)
   4486     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
   4487     if (EL.hasAnyInfo()) return EL;
   4488     break;
   4489   }
   4490   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   4491     // Convert to: while (X-Y == 0)
   4492     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
   4493     if (EL.hasAnyInfo()) return EL;
   4494     break;
   4495   }
   4496   case ICmpInst::ICMP_SLT: {
   4497     ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
   4498     if (EL.hasAnyInfo()) return EL;
   4499     break;
   4500   }
   4501   case ICmpInst::ICMP_SGT: {
   4502     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4503                                              getNotSCEV(RHS), L, true);
   4504     if (EL.hasAnyInfo()) return EL;
   4505     break;
   4506   }
   4507   case ICmpInst::ICMP_ULT: {
   4508     ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
   4509     if (EL.hasAnyInfo()) return EL;
   4510     break;
   4511   }
   4512   case ICmpInst::ICMP_UGT: {
   4513     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4514                                              getNotSCEV(RHS), L, false);
   4515     if (EL.hasAnyInfo()) return EL;
   4516     break;
   4517   }
   4518   default:
   4519 #if 0
   4520     dbgs() << "ComputeBackedgeTakenCount ";
   4521     if (ExitCond->getOperand(0)->getType()->isUnsigned())
   4522       dbgs() << "[unsigned] ";
   4523     dbgs() << *LHS << "   "
   4524          << Instruction::getOpcodeName(Instruction::ICmp)
   4525          << "   " << *RHS << "\n";
   4526 #endif
   4527     break;
   4528   }
   4529   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4530 }
   4531 
   4532 static ConstantInt *
   4533 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   4534                                 ScalarEvolution &SE) {
   4535   const SCEV *InVal = SE.getConstant(C);
   4536   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   4537   assert(isa<SCEVConstant>(Val) &&
   4538          "Evaluation of SCEV at constant didn't fold correctly?");
   4539   return cast<SCEVConstant>(Val)->getValue();
   4540 }
   4541 
   4542 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
   4543 /// and a GEP expression (missing the pointer index) indexing into it, return
   4544 /// the addressed element of the initializer or null if the index expression is
   4545 /// invalid.
   4546 static Constant *
   4547 GetAddressedElementFromGlobal(GlobalVariable *GV,
   4548                               const std::vector<ConstantInt*> &Indices) {
   4549   Constant *Init = GV->getInitializer();
   4550   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   4551     uint64_t Idx = Indices[i]->getZExtValue();
   4552     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
   4553       assert(Idx < CS->getNumOperands() && "Bad struct index!");
   4554       Init = cast<Constant>(CS->getOperand(Idx));
   4555     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
   4556       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
   4557       Init = cast<Constant>(CA->getOperand(Idx));
   4558     } else if (isa<ConstantAggregateZero>(Init)) {
   4559       if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
   4560         assert(Idx < STy->getNumElements() && "Bad struct index!");
   4561         Init = Constant::getNullValue(STy->getElementType(Idx));
   4562       } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
   4563         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
   4564         Init = Constant::getNullValue(ATy->getElementType());
   4565       } else {
   4566         llvm_unreachable("Unknown constant aggregate type!");
   4567       }
   4568       return 0;
   4569     } else {
   4570       return 0; // Unknown initializer type
   4571     }
   4572   }
   4573   return Init;
   4574 }
   4575 
   4576 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
   4577 /// 'icmp op load X, cst', try to see if we can compute the backedge
   4578 /// execution count.
   4579 ScalarEvolution::ExitLimit
   4580 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
   4581   LoadInst *LI,
   4582   Constant *RHS,
   4583   const Loop *L,
   4584   ICmpInst::Predicate predicate) {
   4585 
   4586   if (LI->isVolatile()) return getCouldNotCompute();
   4587 
   4588   // Check to see if the loaded pointer is a getelementptr of a global.
   4589   // TODO: Use SCEV instead of manually grubbing with GEPs.
   4590   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   4591   if (!GEP) return getCouldNotCompute();
   4592 
   4593   // Make sure that it is really a constant global we are gepping, with an
   4594   // initializer, and make sure the first IDX is really 0.
   4595   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   4596   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   4597       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   4598       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   4599     return getCouldNotCompute();
   4600 
   4601   // Okay, we allow one non-constant index into the GEP instruction.
   4602   Value *VarIdx = 0;
   4603   std::vector<ConstantInt*> Indexes;
   4604   unsigned VarIdxNum = 0;
   4605   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   4606     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   4607       Indexes.push_back(CI);
   4608     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   4609       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   4610       VarIdx = GEP->getOperand(i);
   4611       VarIdxNum = i-2;
   4612       Indexes.push_back(0);
   4613     }
   4614 
   4615   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   4616   // Check to see if X is a loop variant variable value now.
   4617   const SCEV *Idx = getSCEV(VarIdx);
   4618   Idx = getSCEVAtScope(Idx, L);
   4619 
   4620   // We can only recognize very limited forms of loop index expressions, in
   4621   // particular, only affine AddRec's like {C1,+,C2}.
   4622   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   4623   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   4624       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   4625       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   4626     return getCouldNotCompute();
   4627 
   4628   unsigned MaxSteps = MaxBruteForceIterations;
   4629   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   4630     ConstantInt *ItCst = ConstantInt::get(
   4631                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   4632     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   4633 
   4634     // Form the GEP offset.
   4635     Indexes[VarIdxNum] = Val;
   4636 
   4637     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
   4638     if (Result == 0) break;  // Cannot compute!
   4639 
   4640     // Evaluate the condition for this iteration.
   4641     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   4642     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   4643     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   4644 #if 0
   4645       dbgs() << "\n***\n*** Computed loop count " << *ItCst
   4646              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
   4647              << "***\n";
   4648 #endif
   4649       ++NumArrayLenItCounts;
   4650       return getConstant(ItCst);   // Found terminating iteration!
   4651     }
   4652   }
   4653   return getCouldNotCompute();
   4654 }
   4655 
   4656 
   4657 /// CanConstantFold - Return true if we can constant fold an instruction of the
   4658 /// specified type, assuming that all operands were constants.
   4659 static bool CanConstantFold(const Instruction *I) {
   4660   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   4661       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
   4662     return true;
   4663 
   4664   if (const CallInst *CI = dyn_cast<CallInst>(I))
   4665     if (const Function *F = CI->getCalledFunction())
   4666       return canConstantFoldCallTo(F);
   4667   return false;
   4668 }
   4669 
   4670 /// Determine whether this instruction can constant evolve within this loop
   4671 /// assuming its operands can all constant evolve.
   4672 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   4673   // An instruction outside of the loop can't be derived from a loop PHI.
   4674   if (!L->contains(I)) return false;
   4675 
   4676   if (isa<PHINode>(I)) {
   4677     if (L->getHeader() == I->getParent())
   4678       return true;
   4679     else
   4680       // We don't currently keep track of the control flow needed to evaluate
   4681       // PHIs, so we cannot handle PHIs inside of loops.
   4682       return false;
   4683   }
   4684 
   4685   // If we won't be able to constant fold this expression even if the operands
   4686   // are constants, bail early.
   4687   return CanConstantFold(I);
   4688 }
   4689 
   4690 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   4691 /// recursing through each instruction operand until reaching a loop header phi.
   4692 static PHINode *
   4693 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   4694                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   4695 
   4696   // Otherwise, we can evaluate this instruction if all of its operands are
   4697   // constant or derived from a PHI node themselves.
   4698   PHINode *PHI = 0;
   4699   for (Instruction::op_iterator OpI = UseInst->op_begin(),
   4700          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
   4701 
   4702     if (isa<Constant>(*OpI)) continue;
   4703 
   4704     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
   4705     if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
   4706 
   4707     PHINode *P = dyn_cast<PHINode>(OpInst);
   4708     if (!P)
   4709       // If this operand is already visited, reuse the prior result.
   4710       // We may have P != PHI if this is the deepest point at which the
   4711       // inconsistent paths meet.
   4712       P = PHIMap.lookup(OpInst);
   4713     if (!P) {
   4714       // Recurse and memoize the results, whether a phi is found or not.
   4715       // This recursive call invalidates pointers into PHIMap.
   4716       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   4717       PHIMap[OpInst] = P;
   4718     }
   4719     if (P == 0) return 0;        // Not evolving from PHI
   4720     if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
   4721     PHI = P;
   4722   }
   4723   // This is a expression evolving from a constant PHI!
   4724   return PHI;
   4725 }
   4726 
   4727 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   4728 /// in the loop that V is derived from.  We allow arbitrary operations along the
   4729 /// way, but the operands of an operation must either be constants or a value
   4730 /// derived from a constant PHI.  If this expression does not fit with these
   4731 /// constraints, return null.
   4732 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   4733   Instruction *I = dyn_cast<Instruction>(V);
   4734   if (I == 0 || !canConstantEvolve(I, L)) return 0;
   4735 
   4736   if (PHINode *PN = dyn_cast<PHINode>(I)) {
   4737     return PN;
   4738   }
   4739 
   4740   // Record non-constant instructions contained by the loop.
   4741   DenseMap<Instruction *, PHINode *> PHIMap;
   4742   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   4743 }
   4744 
   4745 /// EvaluateExpression - Given an expression that passes the
   4746 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   4747 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   4748 /// reason, return null.
   4749 static Constant *EvaluateExpression(Value *V, const Loop *L,
   4750                                     DenseMap<Instruction *, Constant *> &Vals,
   4751                                     const TargetData *TD) {
   4752   // Convenient constant check, but redundant for recursive calls.
   4753   if (Constant *C = dyn_cast<Constant>(V)) return C;
   4754 
   4755   Instruction *I = cast<Instruction>(V);
   4756   if (Constant *C = Vals.lookup(I)) return C;
   4757 
   4758   assert(!isa<PHINode>(I) && "loop header phis should be mapped to constant");
   4759   assert(canConstantEvolve(I, L) && "cannot evaluate expression in this loop");
   4760   (void)L;
   4761 
   4762   std::vector<Constant*> Operands(I->getNumOperands());
   4763 
   4764   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   4765     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   4766     if (!Operand) {
   4767       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   4768       if (!Operands[i]) return 0;
   4769       continue;
   4770     }
   4771     Constant *C = EvaluateExpression(Operand, L, Vals, TD);
   4772     Vals[Operand] = C;
   4773     if (!C) return 0;
   4774     Operands[i] = C;
   4775   }
   4776 
   4777   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   4778     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   4779                                            Operands[1], TD);
   4780   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
   4781 }
   4782 
   4783 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   4784 /// in the header of its containing loop, we know the loop executes a
   4785 /// constant number of times, and the PHI node is just a recurrence
   4786 /// involving constants, fold it.
   4787 Constant *
   4788 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   4789                                                    const APInt &BEs,
   4790                                                    const Loop *L) {
   4791   DenseMap<PHINode*, Constant*>::const_iterator I =
   4792     ConstantEvolutionLoopExitValue.find(PN);
   4793   if (I != ConstantEvolutionLoopExitValue.end())
   4794     return I->second;
   4795 
   4796   if (BEs.ugt(MaxBruteForceIterations))
   4797     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
   4798 
   4799   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   4800 
   4801   // FIXME: Nick's fix for PR11034 will seed constants for multiple header phis.
   4802   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4803 
   4804   // Since the loop is canonicalized, the PHI node must have two entries.  One
   4805   // entry must be a constant (coming in from outside of the loop), and the
   4806   // second must be derived from the same PHI.
   4807   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4808   Constant *StartCST =
   4809     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
   4810   if (StartCST == 0)
   4811     return RetVal = 0;  // Must be a constant.
   4812   CurrentIterVals[PN] = StartCST;
   4813 
   4814   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
   4815   if (getConstantEvolvingPHI(BEValue, L) != PN &&
   4816       !isa<Constant>(BEValue))
   4817     return RetVal = 0;  // Not derived from same PHI.
   4818 
   4819   // Execute the loop symbolically to determine the exit value.
   4820   if (BEs.getActiveBits() >= 32)
   4821     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
   4822 
   4823   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   4824   unsigned IterationNum = 0;
   4825   for (; ; ++IterationNum) {
   4826     if (IterationNum == NumIterations)
   4827       return RetVal = CurrentIterVals[PN];  // Got exit value!
   4828 
   4829     // Compute the value of the PHI node for the next iteration.
   4830     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   4831     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
   4832     if (NextPHI == CurrentIterVals[PN])
   4833       return RetVal = NextPHI;  // Stopped evolving!
   4834     if (NextPHI == 0)
   4835       return 0;        // Couldn't evaluate!
   4836     DenseMap<Instruction *, Constant *> NextIterVals;
   4837     NextIterVals[PN] = NextPHI;
   4838     CurrentIterVals.swap(NextIterVals);
   4839   }
   4840 }
   4841 
   4842 /// ComputeExitCountExhaustively - If the loop is known to execute a
   4843 /// constant number of times (the condition evolves only from constants),
   4844 /// try to evaluate a few iterations of the loop until we get the exit
   4845 /// condition gets a value of ExitWhen (true or false).  If we cannot
   4846 /// evaluate the trip count of the loop, return getCouldNotCompute().
   4847 const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
   4848                                                            Value *Cond,
   4849                                                            bool ExitWhen) {
   4850   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   4851   if (PN == 0) return getCouldNotCompute();
   4852 
   4853   // If the loop is canonicalized, the PHI will have exactly two entries.
   4854   // That's the only form we support here.
   4855   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   4856 
   4857   // One entry must be a constant (coming in from outside of the loop), and the
   4858   // second must be derived from the same PHI.
   4859   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4860   Constant *StartCST =
   4861     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
   4862   if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
   4863 
   4864   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
   4865   if (getConstantEvolvingPHI(BEValue, L) != PN &&
   4866       !isa<Constant>(BEValue))
   4867     return getCouldNotCompute();  // Not derived from same PHI.
   4868 
   4869   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   4870   // the loop symbolically to determine when the condition gets a value of
   4871   // "ExitWhen".
   4872   unsigned IterationNum = 0;
   4873   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   4874   for (Constant *PHIVal = StartCST;
   4875        IterationNum != MaxIterations; ++IterationNum) {
   4876     DenseMap<Instruction *, Constant *> PHIValMap;
   4877     PHIValMap[PN] = PHIVal;
   4878     ConstantInt *CondVal =
   4879       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, PHIValMap, TD));
   4880 
   4881     // Couldn't symbolically evaluate.
   4882     if (!CondVal) return getCouldNotCompute();
   4883 
   4884     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   4885       ++NumBruteForceTripCountsComputed;
   4886       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   4887     }
   4888 
   4889     // Compute the value of the PHI node for the next iteration.
   4890     Constant *NextPHI = EvaluateExpression(BEValue, L, PHIValMap, TD);
   4891     if (NextPHI == 0 || NextPHI == PHIVal)
   4892       return getCouldNotCompute();// Couldn't evaluate or not making progress...
   4893     PHIVal = NextPHI;
   4894   }
   4895 
   4896   // Too many iterations were needed to evaluate.
   4897   return getCouldNotCompute();
   4898 }
   4899 
   4900 /// getSCEVAtScope - Return a SCEV expression for the specified value
   4901 /// at the specified scope in the program.  The L value specifies a loop
   4902 /// nest to evaluate the expression at, where null is the top-level or a
   4903 /// specified loop is immediately inside of the loop.
   4904 ///
   4905 /// This method can be used to compute the exit value for a variable defined
   4906 /// in a loop by querying what the value will hold in the parent loop.
   4907 ///
   4908 /// In the case that a relevant loop exit value cannot be computed, the
   4909 /// original value V is returned.
   4910 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   4911   // Check to see if we've folded this expression at this loop before.
   4912   std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
   4913   std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
   4914     Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
   4915   if (!Pair.second)
   4916     return Pair.first->second ? Pair.first->second : V;
   4917 
   4918   // Otherwise compute it.
   4919   const SCEV *C = computeSCEVAtScope(V, L);
   4920   ValuesAtScopes[V][L] = C;
   4921   return C;
   4922 }
   4923 
   4924 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   4925   if (isa<SCEVConstant>(V)) return V;
   4926 
   4927   // If this instruction is evolved from a constant-evolving PHI, compute the
   4928   // exit value from the loop without using SCEVs.
   4929   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   4930     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   4931       const Loop *LI = (*this->LI)[I->getParent()];
   4932       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   4933         if (PHINode *PN = dyn_cast<PHINode>(I))
   4934           if (PN->getParent() == LI->getHeader()) {
   4935             // Okay, there is no closed form solution for the PHI node.  Check
   4936             // to see if the loop that contains it has a known backedge-taken
   4937             // count.  If so, we may be able to force computation of the exit
   4938             // value.
   4939             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   4940             if (const SCEVConstant *BTCC =
   4941                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   4942               // Okay, we know how many times the containing loop executes.  If
   4943               // this is a constant evolving PHI node, get the final value at
   4944               // the specified iteration number.
   4945               Constant *RV = getConstantEvolutionLoopExitValue(PN,
   4946                                                    BTCC->getValue()->getValue(),
   4947                                                                LI);
   4948               if (RV) return getSCEV(RV);
   4949             }
   4950           }
   4951 
   4952       // Okay, this is an expression that we cannot symbolically evaluate
   4953       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   4954       // the arguments into constants, and if so, try to constant propagate the
   4955       // result.  This is particularly useful for computing loop exit values.
   4956       if (CanConstantFold(I)) {
   4957         SmallVector<Constant *, 4> Operands;
   4958         bool MadeImprovement = false;
   4959         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   4960           Value *Op = I->getOperand(i);
   4961           if (Constant *C = dyn_cast<Constant>(Op)) {
   4962             Operands.push_back(C);
   4963             continue;
   4964           }
   4965 
   4966           // If any of the operands is non-constant and if they are
   4967           // non-integer and non-pointer, don't even try to analyze them
   4968           // with scev techniques.
   4969           if (!isSCEVable(Op->getType()))
   4970             return V;
   4971 
   4972           const SCEV *OrigV = getSCEV(Op);
   4973           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   4974           MadeImprovement |= OrigV != OpV;
   4975 
   4976           Constant *C = 0;
   4977           if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
   4978             C = SC->getValue();
   4979           if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
   4980             C = dyn_cast<Constant>(SU->getValue());
   4981           if (!C) return V;
   4982           if (C->getType() != Op->getType())
   4983             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4984                                                               Op->getType(),
   4985                                                               false),
   4986                                       C, Op->getType());
   4987           Operands.push_back(C);
   4988         }
   4989 
   4990         // Check to see if getSCEVAtScope actually made an improvement.
   4991         if (MadeImprovement) {
   4992           Constant *C = 0;
   4993           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   4994             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
   4995                                                 Operands[0], Operands[1], TD);
   4996           else
   4997             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
   4998                                          Operands, TD);
   4999           if (!C) return V;
   5000           return getSCEV(C);
   5001         }
   5002       }
   5003     }
   5004 
   5005     // This is some other type of SCEVUnknown, just return it.
   5006     return V;
   5007   }
   5008 
   5009   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   5010     // Avoid performing the look-up in the common case where the specified
   5011     // expression has no loop-variant portions.
   5012     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   5013       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5014       if (OpAtScope != Comm->getOperand(i)) {
   5015         // Okay, at least one of these operands is loop variant but might be
   5016         // foldable.  Build a new instance of the folded commutative expression.
   5017         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   5018                                             Comm->op_begin()+i);
   5019         NewOps.push_back(OpAtScope);
   5020 
   5021         for (++i; i != e; ++i) {
   5022           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5023           NewOps.push_back(OpAtScope);
   5024         }
   5025         if (isa<SCEVAddExpr>(Comm))
   5026           return getAddExpr(NewOps);
   5027         if (isa<SCEVMulExpr>(Comm))
   5028           return getMulExpr(NewOps);
   5029         if (isa<SCEVSMaxExpr>(Comm))
   5030           return getSMaxExpr(NewOps);
   5031         if (isa<SCEVUMaxExpr>(Comm))
   5032           return getUMaxExpr(NewOps);
   5033         llvm_unreachable("Unknown commutative SCEV type!");
   5034       }
   5035     }
   5036     // If we got here, all operands are loop invariant.
   5037     return Comm;
   5038   }
   5039 
   5040   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   5041     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   5042     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   5043     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   5044       return Div;   // must be loop invariant
   5045     return getUDivExpr(LHS, RHS);
   5046   }
   5047 
   5048   // If this is a loop recurrence for a loop that does not contain L, then we
   5049   // are dealing with the final value computed by the loop.
   5050   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   5051     // First, attempt to evaluate each operand.
   5052     // Avoid performing the look-up in the common case where the specified
   5053     // expression has no loop-variant portions.
   5054     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   5055       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   5056       if (OpAtScope == AddRec->getOperand(i))
   5057         continue;
   5058 
   5059       // Okay, at least one of these operands is loop variant but might be
   5060       // foldable.  Build a new instance of the folded commutative expression.
   5061       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   5062                                           AddRec->op_begin()+i);
   5063       NewOps.push_back(OpAtScope);
   5064       for (++i; i != e; ++i)
   5065         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   5066 
   5067       const SCEV *FoldedRec =
   5068         getAddRecExpr(NewOps, AddRec->getLoop(),
   5069                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   5070       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   5071       // The addrec may be folded to a nonrecurrence, for example, if the
   5072       // induction variable is multiplied by zero after constant folding. Go
   5073       // ahead and return the folded value.
   5074       if (!AddRec)
   5075         return FoldedRec;
   5076       break;
   5077     }
   5078 
   5079     // If the scope is outside the addrec's loop, evaluate it by using the
   5080     // loop exit value of the addrec.
   5081     if (!AddRec->getLoop()->contains(L)) {
   5082       // To evaluate this recurrence, we need to know how many times the AddRec
   5083       // loop iterates.  Compute this now.
   5084       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   5085       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   5086 
   5087       // Then, evaluate the AddRec.
   5088       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   5089     }
   5090 
   5091     return AddRec;
   5092   }
   5093 
   5094   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   5095     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5096     if (Op == Cast->getOperand())
   5097       return Cast;  // must be loop invariant
   5098     return getZeroExtendExpr(Op, Cast->getType());
   5099   }
   5100 
   5101   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   5102     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5103     if (Op == Cast->getOperand())
   5104       return Cast;  // must be loop invariant
   5105     return getSignExtendExpr(Op, Cast->getType());
   5106   }
   5107 
   5108   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   5109     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5110     if (Op == Cast->getOperand())
   5111       return Cast;  // must be loop invariant
   5112     return getTruncateExpr(Op, Cast->getType());
   5113   }
   5114 
   5115   llvm_unreachable("Unknown SCEV type!");
   5116   return 0;
   5117 }
   5118 
   5119 /// getSCEVAtScope - This is a convenience function which does
   5120 /// getSCEVAtScope(getSCEV(V), L).
   5121 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   5122   return getSCEVAtScope(getSCEV(V), L);
   5123 }
   5124 
   5125 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
   5126 /// following equation:
   5127 ///
   5128 ///     A * X = B (mod N)
   5129 ///
   5130 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   5131 /// A and B isn't important.
   5132 ///
   5133 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   5134 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   5135                                                ScalarEvolution &SE) {
   5136   uint32_t BW = A.getBitWidth();
   5137   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   5138   assert(A != 0 && "A must be non-zero.");
   5139 
   5140   // 1. D = gcd(A, N)
   5141   //
   5142   // The gcd of A and N may have only one prime factor: 2. The number of
   5143   // trailing zeros in A is its multiplicity
   5144   uint32_t Mult2 = A.countTrailingZeros();
   5145   // D = 2^Mult2
   5146 
   5147   // 2. Check if B is divisible by D.
   5148   //
   5149   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   5150   // is not less than multiplicity of this prime factor for D.
   5151   if (B.countTrailingZeros() < Mult2)
   5152     return SE.getCouldNotCompute();
   5153 
   5154   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   5155   // modulo (N / D).
   5156   //
   5157   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   5158   // bit width during computations.
   5159   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   5160   APInt Mod(BW + 1, 0);
   5161   Mod.setBit(BW - Mult2);  // Mod = N / D
   5162   APInt I = AD.multiplicativeInverse(Mod);
   5163 
   5164   // 4. Compute the minimum unsigned root of the equation:
   5165   // I * (B / D) mod (N / D)
   5166   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   5167 
   5168   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   5169   // bits.
   5170   return SE.getConstant(Result.trunc(BW));
   5171 }
   5172 
   5173 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
   5174 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
   5175 /// might be the same) or two SCEVCouldNotCompute objects.
   5176 ///
   5177 static std::pair<const SCEV *,const SCEV *>
   5178 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   5179   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   5180   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   5181   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   5182   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   5183 
   5184   // We currently can only solve this if the coefficients are constants.
   5185   if (!LC || !MC || !NC) {
   5186     const SCEV *CNC = SE.getCouldNotCompute();
   5187     return std::make_pair(CNC, CNC);
   5188   }
   5189 
   5190   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
   5191   const APInt &L = LC->getValue()->getValue();
   5192   const APInt &M = MC->getValue()->getValue();
   5193   const APInt &N = NC->getValue()->getValue();
   5194   APInt Two(BitWidth, 2);
   5195   APInt Four(BitWidth, 4);
   5196 
   5197   {
   5198     using namespace APIntOps;
   5199     const APInt& C = L;
   5200     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   5201     // The B coefficient is M-N/2
   5202     APInt B(M);
   5203     B -= sdiv(N,Two);
   5204 
   5205     // The A coefficient is N/2
   5206     APInt A(N.sdiv(Two));
   5207 
   5208     // Compute the B^2-4ac term.
   5209     APInt SqrtTerm(B);
   5210     SqrtTerm *= B;
   5211     SqrtTerm -= Four * (A * C);
   5212 
   5213     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   5214     // integer value or else APInt::sqrt() will assert.
   5215     APInt SqrtVal(SqrtTerm.sqrt());
   5216 
   5217     // Compute the two solutions for the quadratic formula.
   5218     // The divisions must be performed as signed divisions.
   5219     APInt NegB(-B);
   5220     APInt TwoA(A << 1);
   5221     if (TwoA.isMinValue()) {
   5222       const SCEV *CNC = SE.getCouldNotCompute();
   5223       return std::make_pair(CNC, CNC);
   5224     }
   5225 
   5226     LLVMContext &Context = SE.getContext();
   5227 
   5228     ConstantInt *Solution1 =
   5229       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   5230     ConstantInt *Solution2 =
   5231       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   5232 
   5233     return std::make_pair(SE.getConstant(Solution1),
   5234                           SE.getConstant(Solution2));
   5235   } // end APIntOps namespace
   5236 }
   5237 
   5238 /// HowFarToZero - Return the number of times a backedge comparing the specified
   5239 /// value to zero will execute.  If not computable, return CouldNotCompute.
   5240 ///
   5241 /// This is only used for loops with a "x != y" exit test. The exit condition is
   5242 /// now expressed as a single expression, V = x-y. So the exit test is
   5243 /// effectively V != 0.  We know and take advantage of the fact that this
   5244 /// expression only being used in a comparison by zero context.
   5245 ScalarEvolution::ExitLimit
   5246 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
   5247   // If the value is a constant
   5248   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5249     // If the value is already zero, the branch will execute zero times.
   5250     if (C->getValue()->isZero()) return C;
   5251     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5252   }
   5253 
   5254   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   5255   if (!AddRec || AddRec->getLoop() != L)
   5256     return getCouldNotCompute();
   5257 
   5258   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   5259   // the quadratic equation to solve it.
   5260   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   5261     std::pair<const SCEV *,const SCEV *> Roots =
   5262       SolveQuadraticEquation(AddRec, *this);
   5263     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   5264     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   5265     if (R1 && R2) {
   5266 #if 0
   5267       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
   5268              << "  sol#2: " << *R2 << "\n";
   5269 #endif
   5270       // Pick the smallest positive root value.
   5271       if (ConstantInt *CB =
   5272           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
   5273                                                       R1->getValue(),
   5274                                                       R2->getValue()))) {
   5275         if (CB->getZExtValue() == false)
   5276           std::swap(R1, R2);   // R1 is the minimum root now.
   5277 
   5278         // We can only use this value if the chrec ends up with an exact zero
   5279         // value at this index.  When solving for "X*X != 5", for example, we
   5280         // should not accept a root of 2.
   5281         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   5282         if (Val->isZero())
   5283           return R1;  // We found a quadratic root!
   5284       }
   5285     }
   5286     return getCouldNotCompute();
   5287   }
   5288 
   5289   // Otherwise we can only handle this if it is affine.
   5290   if (!AddRec->isAffine())
   5291     return getCouldNotCompute();
   5292 
   5293   // If this is an affine expression, the execution count of this branch is
   5294   // the minimum unsigned root of the following equation:
   5295   //
   5296   //     Start + Step*N = 0 (mod 2^BW)
   5297   //
   5298   // equivalent to:
   5299   //
   5300   //             Step*N = -Start (mod 2^BW)
   5301   //
   5302   // where BW is the common bit width of Start and Step.
   5303 
   5304   // Get the initial value for the loop.
   5305   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   5306   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   5307 
   5308   // For now we handle only constant steps.
   5309   //
   5310   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   5311   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   5312   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   5313   // We have not yet seen any such cases.
   5314   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   5315   if (StepC == 0)
   5316     return getCouldNotCompute();
   5317 
   5318   // For positive steps (counting up until unsigned overflow):
   5319   //   N = -Start/Step (as unsigned)
   5320   // For negative steps (counting down to zero):
   5321   //   N = Start/-Step
   5322   // First compute the unsigned distance from zero in the direction of Step.
   5323   bool CountDown = StepC->getValue()->getValue().isNegative();
   5324   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   5325 
   5326   // Handle unitary steps, which cannot wraparound.
   5327   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   5328   //   N = Distance (as unsigned)
   5329   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   5330     ConstantRange CR = getUnsignedRange(Start);
   5331     const SCEV *MaxBECount;
   5332     if (!CountDown && CR.getUnsignedMin().isMinValue())
   5333       // When counting up, the worst starting value is 1, not 0.
   5334       MaxBECount = CR.getUnsignedMax().isMinValue()
   5335         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   5336         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   5337     else
   5338       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   5339                                          : -CR.getUnsignedMin());
   5340     return ExitLimit(Distance, MaxBECount);
   5341   }
   5342 
   5343   // If the recurrence is known not to wraparound, unsigned divide computes the
   5344   // back edge count. We know that the value will either become zero (and thus
   5345   // the loop terminates), that the loop will terminate through some other exit
   5346   // condition first, or that the loop has undefined behavior.  This means
   5347   // we can't "miss" the exit value, even with nonunit stride.
   5348   //
   5349   // FIXME: Prove that loops always exhibits *acceptable* undefined
   5350   // behavior. Loops must exhibit defined behavior until a wrapped value is
   5351   // actually used. So the trip count computed by udiv could be smaller than the
   5352   // number of well-defined iterations.
   5353   if (AddRec->getNoWrapFlags(SCEV::FlagNW))
   5354     // FIXME: We really want an "isexact" bit for udiv.
   5355     return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   5356 
   5357   // Then, try to solve the above equation provided that Start is constant.
   5358   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
   5359     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
   5360                                         -StartC->getValue()->getValue(),
   5361                                         *this);
   5362   return getCouldNotCompute();
   5363 }
   5364 
   5365 /// HowFarToNonZero - Return the number of times a backedge checking the
   5366 /// specified value for nonzero will execute.  If not computable, return
   5367 /// CouldNotCompute
   5368 ScalarEvolution::ExitLimit
   5369 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
   5370   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   5371   // handle them yet except for the trivial case.  This could be expanded in the
   5372   // future as needed.
   5373 
   5374   // If the value is a constant, check to see if it is known to be non-zero
   5375   // already.  If so, the backedge will execute zero times.
   5376   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5377     if (!C->getValue()->isNullValue())
   5378       return getConstant(C->getType(), 0);
   5379     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5380   }
   5381 
   5382   // We could implement others, but I really doubt anyone writes loops like
   5383   // this, and if they did, they would already be constant folded.
   5384   return getCouldNotCompute();
   5385 }
   5386 
   5387 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
   5388 /// (which may not be an immediate predecessor) which has exactly one
   5389 /// successor from which BB is reachable, or null if no such block is
   5390 /// found.
   5391 ///
   5392 std::pair<BasicBlock *, BasicBlock *>
   5393 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   5394   // If the block has a unique predecessor, then there is no path from the
   5395   // predecessor to the block that does not go through the direct edge
   5396   // from the predecessor to the block.
   5397   if (BasicBlock *Pred = BB->getSinglePredecessor())
   5398     return std::make_pair(Pred, BB);
   5399 
   5400   // A loop's header is defined to be a block that dominates the loop.
   5401   // If the header has a unique predecessor outside the loop, it must be
   5402   // a block that has exactly one successor that can reach the loop.
   5403   if (Loop *L = LI->getLoopFor(BB))
   5404     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
   5405 
   5406   return std::pair<BasicBlock *, BasicBlock *>();
   5407 }
   5408 
   5409 /// HasSameValue - SCEV structural equivalence is usually sufficient for
   5410 /// testing whether two expressions are equal, however for the purposes of
   5411 /// looking for a condition guarding a loop, it can be useful to be a little
   5412 /// more general, since a front-end may have replicated the controlling
   5413 /// expression.
   5414 ///
   5415 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   5416   // Quick check to see if they are the same SCEV.
   5417   if (A == B) return true;
   5418 
   5419   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   5420   // two different instructions with the same value. Check for this case.
   5421   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   5422     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   5423       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   5424         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   5425           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
   5426             return true;
   5427 
   5428   // Otherwise assume they may have a different value.
   5429   return false;
   5430 }
   5431 
   5432 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
   5433 /// predicate Pred. Return true iff any changes were made.
   5434 ///
   5435 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   5436                                            const SCEV *&LHS, const SCEV *&RHS) {
   5437   bool Changed = false;
   5438 
   5439   // Canonicalize a constant to the right side.
   5440   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   5441     // Check for both operands constant.
   5442     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   5443       if (ConstantExpr::getICmp(Pred,
   5444                                 LHSC->getValue(),
   5445                                 RHSC->getValue())->isNullValue())
   5446         goto trivially_false;
   5447       else
   5448         goto trivially_true;
   5449     }
   5450     // Otherwise swap the operands to put the constant on the right.
   5451     std::swap(LHS, RHS);
   5452     Pred = ICmpInst::getSwappedPredicate(Pred);
   5453     Changed = true;
   5454   }
   5455 
   5456   // If we're comparing an addrec with a value which is loop-invariant in the
   5457   // addrec's loop, put the addrec on the left. Also make a dominance check,
   5458   // as both operands could be addrecs loop-invariant in each other's loop.
   5459   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   5460     const Loop *L = AR->getLoop();
   5461     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   5462       std::swap(LHS, RHS);
   5463       Pred = ICmpInst::getSwappedPredicate(Pred);
   5464       Changed = true;
   5465     }
   5466   }
   5467 
   5468   // If there's a constant operand, canonicalize comparisons with boundary
   5469   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   5470   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   5471     const APInt &RA = RC->getValue()->getValue();
   5472     switch (Pred) {
   5473     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5474     case ICmpInst::ICMP_EQ:
   5475     case ICmpInst::ICMP_NE:
   5476       break;
   5477     case ICmpInst::ICMP_UGE:
   5478       if ((RA - 1).isMinValue()) {
   5479         Pred = ICmpInst::ICMP_NE;
   5480         RHS = getConstant(RA - 1);
   5481         Changed = true;
   5482         break;
   5483       }
   5484       if (RA.isMaxValue()) {
   5485         Pred = ICmpInst::ICMP_EQ;
   5486         Changed = true;
   5487         break;
   5488       }
   5489       if (RA.isMinValue()) goto trivially_true;
   5490 
   5491       Pred = ICmpInst::ICMP_UGT;
   5492       RHS = getConstant(RA - 1);
   5493       Changed = true;
   5494       break;
   5495     case ICmpInst::ICMP_ULE:
   5496       if ((RA + 1).isMaxValue()) {
   5497         Pred = ICmpInst::ICMP_NE;
   5498         RHS = getConstant(RA + 1);
   5499         Changed = true;
   5500         break;
   5501       }
   5502       if (RA.isMinValue()) {
   5503         Pred = ICmpInst::ICMP_EQ;
   5504         Changed = true;
   5505         break;
   5506       }
   5507       if (RA.isMaxValue()) goto trivially_true;
   5508 
   5509       Pred = ICmpInst::ICMP_ULT;
   5510       RHS = getConstant(RA + 1);
   5511       Changed = true;
   5512       break;
   5513     case ICmpInst::ICMP_SGE:
   5514       if ((RA - 1).isMinSignedValue()) {
   5515         Pred = ICmpInst::ICMP_NE;
   5516         RHS = getConstant(RA - 1);
   5517         Changed = true;
   5518         break;
   5519       }
   5520       if (RA.isMaxSignedValue()) {
   5521         Pred = ICmpInst::ICMP_EQ;
   5522         Changed = true;
   5523         break;
   5524       }
   5525       if (RA.isMinSignedValue()) goto trivially_true;
   5526 
   5527       Pred = ICmpInst::ICMP_SGT;
   5528       RHS = getConstant(RA - 1);
   5529       Changed = true;
   5530       break;
   5531     case ICmpInst::ICMP_SLE:
   5532       if ((RA + 1).isMaxSignedValue()) {
   5533         Pred = ICmpInst::ICMP_NE;
   5534         RHS = getConstant(RA + 1);
   5535         Changed = true;
   5536         break;
   5537       }
   5538       if (RA.isMinSignedValue()) {
   5539         Pred = ICmpInst::ICMP_EQ;
   5540         Changed = true;
   5541         break;
   5542       }
   5543       if (RA.isMaxSignedValue()) goto trivially_true;
   5544 
   5545       Pred = ICmpInst::ICMP_SLT;
   5546       RHS = getConstant(RA + 1);
   5547       Changed = true;
   5548       break;
   5549     case ICmpInst::ICMP_UGT:
   5550       if (RA.isMinValue()) {
   5551         Pred = ICmpInst::ICMP_NE;
   5552         Changed = true;
   5553         break;
   5554       }
   5555       if ((RA + 1).isMaxValue()) {
   5556         Pred = ICmpInst::ICMP_EQ;
   5557         RHS = getConstant(RA + 1);
   5558         Changed = true;
   5559         break;
   5560       }
   5561       if (RA.isMaxValue()) goto trivially_false;
   5562       break;
   5563     case ICmpInst::ICMP_ULT:
   5564       if (RA.isMaxValue()) {
   5565         Pred = ICmpInst::ICMP_NE;
   5566         Changed = true;
   5567         break;
   5568       }
   5569       if ((RA - 1).isMinValue()) {
   5570         Pred = ICmpInst::ICMP_EQ;
   5571         RHS = getConstant(RA - 1);
   5572         Changed = true;
   5573         break;
   5574       }
   5575       if (RA.isMinValue()) goto trivially_false;
   5576       break;
   5577     case ICmpInst::ICMP_SGT:
   5578       if (RA.isMinSignedValue()) {
   5579         Pred = ICmpInst::ICMP_NE;
   5580         Changed = true;
   5581         break;
   5582       }
   5583       if ((RA + 1).isMaxSignedValue()) {
   5584         Pred = ICmpInst::ICMP_EQ;
   5585         RHS = getConstant(RA + 1);
   5586         Changed = true;
   5587         break;
   5588       }
   5589       if (RA.isMaxSignedValue()) goto trivially_false;
   5590       break;
   5591     case ICmpInst::ICMP_SLT:
   5592       if (RA.isMaxSignedValue()) {
   5593         Pred = ICmpInst::ICMP_NE;
   5594         Changed = true;
   5595         break;
   5596       }
   5597       if ((RA - 1).isMinSignedValue()) {
   5598        Pred = ICmpInst::ICMP_EQ;
   5599        RHS = getConstant(RA - 1);
   5600         Changed = true;
   5601        break;
   5602       }
   5603       if (RA.isMinSignedValue()) goto trivially_false;
   5604       break;
   5605     }
   5606   }
   5607 
   5608   // Check for obvious equality.
   5609   if (HasSameValue(LHS, RHS)) {
   5610     if (ICmpInst::isTrueWhenEqual(Pred))
   5611       goto trivially_true;
   5612     if (ICmpInst::isFalseWhenEqual(Pred))
   5613       goto trivially_false;
   5614   }
   5615 
   5616   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   5617   // adding or subtracting 1 from one of the operands.
   5618   switch (Pred) {
   5619   case ICmpInst::ICMP_SLE:
   5620     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   5621       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5622                        SCEV::FlagNSW);
   5623       Pred = ICmpInst::ICMP_SLT;
   5624       Changed = true;
   5625     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   5626       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5627                        SCEV::FlagNSW);
   5628       Pred = ICmpInst::ICMP_SLT;
   5629       Changed = true;
   5630     }
   5631     break;
   5632   case ICmpInst::ICMP_SGE:
   5633     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   5634       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5635                        SCEV::FlagNSW);
   5636       Pred = ICmpInst::ICMP_SGT;
   5637       Changed = true;
   5638     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   5639       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5640                        SCEV::FlagNSW);
   5641       Pred = ICmpInst::ICMP_SGT;
   5642       Changed = true;
   5643     }
   5644     break;
   5645   case ICmpInst::ICMP_ULE:
   5646     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   5647       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5648                        SCEV::FlagNUW);
   5649       Pred = ICmpInst::ICMP_ULT;
   5650       Changed = true;
   5651     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   5652       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5653                        SCEV::FlagNUW);
   5654       Pred = ICmpInst::ICMP_ULT;
   5655       Changed = true;
   5656     }
   5657     break;
   5658   case ICmpInst::ICMP_UGE:
   5659     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   5660       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5661                        SCEV::FlagNUW);
   5662       Pred = ICmpInst::ICMP_UGT;
   5663       Changed = true;
   5664     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   5665       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5666                        SCEV::FlagNUW);
   5667       Pred = ICmpInst::ICMP_UGT;
   5668       Changed = true;
   5669     }
   5670     break;
   5671   default:
   5672     break;
   5673   }
   5674 
   5675   // TODO: More simplifications are possible here.
   5676 
   5677   return Changed;
   5678 
   5679 trivially_true:
   5680   // Return 0 == 0.
   5681   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5682   Pred = ICmpInst::ICMP_EQ;
   5683   return true;
   5684 
   5685 trivially_false:
   5686   // Return 0 != 0.
   5687   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5688   Pred = ICmpInst::ICMP_NE;
   5689   return true;
   5690 }
   5691 
   5692 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   5693   return getSignedRange(S).getSignedMax().isNegative();
   5694 }
   5695 
   5696 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   5697   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   5698 }
   5699 
   5700 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   5701   return !getSignedRange(S).getSignedMin().isNegative();
   5702 }
   5703 
   5704 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   5705   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   5706 }
   5707 
   5708 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   5709   return isKnownNegative(S) || isKnownPositive(S);
   5710 }
   5711 
   5712 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   5713                                        const SCEV *LHS, const SCEV *RHS) {
   5714   // Canonicalize the inputs first.
   5715   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   5716 
   5717   // If LHS or RHS is an addrec, check to see if the condition is true in
   5718   // every iteration of the loop.
   5719   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   5720     if (isLoopEntryGuardedByCond(
   5721           AR->getLoop(), Pred, AR->getStart(), RHS) &&
   5722         isLoopBackedgeGuardedByCond(
   5723           AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
   5724       return true;
   5725   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
   5726     if (isLoopEntryGuardedByCond(
   5727           AR->getLoop(), Pred, LHS, AR->getStart()) &&
   5728         isLoopBackedgeGuardedByCond(
   5729           AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
   5730       return true;
   5731 
   5732   // Otherwise see what can be done with known constant ranges.
   5733   return isKnownPredicateWithRanges(Pred, LHS, RHS);
   5734 }
   5735 
   5736 bool
   5737 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
   5738                                             const SCEV *LHS, const SCEV *RHS) {
   5739   if (HasSameValue(LHS, RHS))
   5740     return ICmpInst::isTrueWhenEqual(Pred);
   5741 
   5742   // This code is split out from isKnownPredicate because it is called from
   5743   // within isLoopEntryGuardedByCond.
   5744   switch (Pred) {
   5745   default:
   5746     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5747     break;
   5748   case ICmpInst::ICMP_SGT:
   5749     Pred = ICmpInst::ICMP_SLT;
   5750     std::swap(LHS, RHS);
   5751   case ICmpInst::ICMP_SLT: {
   5752     ConstantRange LHSRange = getSignedRange(LHS);
   5753     ConstantRange RHSRange = getSignedRange(RHS);
   5754     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
   5755       return true;
   5756     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
   5757       return false;
   5758     break;
   5759   }
   5760   case ICmpInst::ICMP_SGE:
   5761     Pred = ICmpInst::ICMP_SLE;
   5762     std::swap(LHS, RHS);
   5763   case ICmpInst::ICMP_SLE: {
   5764     ConstantRange LHSRange = getSignedRange(LHS);
   5765     ConstantRange RHSRange = getSignedRange(RHS);
   5766     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
   5767       return true;
   5768     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
   5769       return false;
   5770     break;
   5771   }
   5772   case ICmpInst::ICMP_UGT:
   5773     Pred = ICmpInst::ICMP_ULT;
   5774     std::swap(LHS, RHS);
   5775   case ICmpInst::ICMP_ULT: {
   5776     ConstantRange LHSRange = getUnsignedRange(LHS);
   5777     ConstantRange RHSRange = getUnsignedRange(RHS);
   5778     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
   5779       return true;
   5780     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
   5781       return false;
   5782     break;
   5783   }
   5784   case ICmpInst::ICMP_UGE:
   5785     Pred = ICmpInst::ICMP_ULE;
   5786     std::swap(LHS, RHS);
   5787   case ICmpInst::ICMP_ULE: {
   5788     ConstantRange LHSRange = getUnsignedRange(LHS);
   5789     ConstantRange RHSRange = getUnsignedRange(RHS);
   5790     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
   5791       return true;
   5792     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
   5793       return false;
   5794     break;
   5795   }
   5796   case ICmpInst::ICMP_NE: {
   5797     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
   5798       return true;
   5799     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
   5800       return true;
   5801 
   5802     const SCEV *Diff = getMinusSCEV(LHS, RHS);
   5803     if (isKnownNonZero(Diff))
   5804       return true;
   5805     break;
   5806   }
   5807   case ICmpInst::ICMP_EQ:
   5808     // The check at the top of the function catches the case where
   5809     // the values are known to be equal.
   5810     break;
   5811   }
   5812   return false;
   5813 }
   5814 
   5815 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   5816 /// protected by a conditional between LHS and RHS.  This is used to
   5817 /// to eliminate casts.
   5818 bool
   5819 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   5820                                              ICmpInst::Predicate Pred,
   5821                                              const SCEV *LHS, const SCEV *RHS) {
   5822   // Interpret a null as meaning no loop, where there is obviously no guard
   5823   // (interprocedural conditions notwithstanding).
   5824   if (!L) return true;
   5825 
   5826   BasicBlock *Latch = L->getLoopLatch();
   5827   if (!Latch)
   5828     return false;
   5829 
   5830   BranchInst *LoopContinuePredicate =
   5831     dyn_cast<BranchInst>(Latch->getTerminator());
   5832   if (!LoopContinuePredicate ||
   5833       LoopContinuePredicate->isUnconditional())
   5834     return false;
   5835 
   5836   return isImpliedCond(Pred, LHS, RHS,
   5837                        LoopContinuePredicate->getCondition(),
   5838                        LoopContinuePredicate->getSuccessor(0) != L->getHeader());
   5839 }
   5840 
   5841 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
   5842 /// by a conditional between LHS and RHS.  This is used to help avoid max
   5843 /// expressions in loop trip counts, and to eliminate casts.
   5844 bool
   5845 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   5846                                           ICmpInst::Predicate Pred,
   5847                                           const SCEV *LHS, const SCEV *RHS) {
   5848   // Interpret a null as meaning no loop, where there is obviously no guard
   5849   // (interprocedural conditions notwithstanding).
   5850   if (!L) return false;
   5851 
   5852   // Starting at the loop predecessor, climb up the predecessor chain, as long
   5853   // as there are predecessors that can be found that have unique successors
   5854   // leading to the original header.
   5855   for (std::pair<BasicBlock *, BasicBlock *>
   5856          Pair(L->getLoopPredecessor(), L->getHeader());
   5857        Pair.first;
   5858        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   5859 
   5860     BranchInst *LoopEntryPredicate =
   5861       dyn_cast<BranchInst>(Pair.first->getTerminator());
   5862     if (!LoopEntryPredicate ||
   5863         LoopEntryPredicate->isUnconditional())
   5864       continue;
   5865 
   5866     if (isImpliedCond(Pred, LHS, RHS,
   5867                       LoopEntryPredicate->getCondition(),
   5868                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   5869       return true;
   5870   }
   5871 
   5872   return false;
   5873 }
   5874 
   5875 /// isImpliedCond - Test whether the condition described by Pred, LHS,
   5876 /// and RHS is true whenever the given Cond value evaluates to true.
   5877 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   5878                                     const SCEV *LHS, const SCEV *RHS,
   5879                                     Value *FoundCondValue,
   5880                                     bool Inverse) {
   5881   // Recursively handle And and Or conditions.
   5882   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   5883     if (BO->getOpcode() == Instruction::And) {
   5884       if (!Inverse)
   5885         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   5886                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   5887     } else if (BO->getOpcode() == Instruction::Or) {
   5888       if (Inverse)
   5889         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   5890                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   5891     }
   5892   }
   5893 
   5894   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   5895   if (!ICI) return false;
   5896 
   5897   // Bail if the ICmp's operands' types are wider than the needed type
   5898   // before attempting to call getSCEV on them. This avoids infinite
   5899   // recursion, since the analysis of widening casts can require loop
   5900   // exit condition information for overflow checking, which would
   5901   // lead back here.
   5902   if (getTypeSizeInBits(LHS->getType()) <
   5903       getTypeSizeInBits(ICI->getOperand(0)->getType()))
   5904     return false;
   5905 
   5906   // Now that we found a conditional branch that dominates the loop, check to
   5907   // see if it is the comparison we are looking for.
   5908   ICmpInst::Predicate FoundPred;
   5909   if (Inverse)
   5910     FoundPred = ICI->getInversePredicate();
   5911   else
   5912     FoundPred = ICI->getPredicate();
   5913 
   5914   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   5915   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   5916 
   5917   // Balance the types. The case where FoundLHS' type is wider than
   5918   // LHS' type is checked for above.
   5919   if (getTypeSizeInBits(LHS->getType()) >
   5920       getTypeSizeInBits(FoundLHS->getType())) {
   5921     if (CmpInst::isSigned(Pred)) {
   5922       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   5923       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   5924     } else {
   5925       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   5926       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   5927     }
   5928   }
   5929 
   5930   // Canonicalize the query to match the way instcombine will have
   5931   // canonicalized the comparison.
   5932   if (SimplifyICmpOperands(Pred, LHS, RHS))
   5933     if (LHS == RHS)
   5934       return CmpInst::isTrueWhenEqual(Pred);
   5935   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   5936     if (FoundLHS == FoundRHS)
   5937       return CmpInst::isFalseWhenEqual(Pred);
   5938 
   5939   // Check to see if we can make the LHS or RHS match.
   5940   if (LHS == FoundRHS || RHS == FoundLHS) {
   5941     if (isa<SCEVConstant>(RHS)) {
   5942       std::swap(FoundLHS, FoundRHS);
   5943       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   5944     } else {
   5945       std::swap(LHS, RHS);
   5946       Pred = ICmpInst::getSwappedPredicate(Pred);
   5947     }
   5948   }
   5949 
   5950   // Check whether the found predicate is the same as the desired predicate.
   5951   if (FoundPred == Pred)
   5952     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   5953 
   5954   // Check whether swapping the found predicate makes it the same as the
   5955   // desired predicate.
   5956   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   5957     if (isa<SCEVConstant>(RHS))
   5958       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   5959     else
   5960       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   5961                                    RHS, LHS, FoundLHS, FoundRHS);
   5962   }
   5963 
   5964   // Check whether the actual condition is beyond sufficient.
   5965   if (FoundPred == ICmpInst::ICMP_EQ)
   5966     if (ICmpInst::isTrueWhenEqual(Pred))
   5967       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   5968         return true;
   5969   if (Pred == ICmpInst::ICMP_NE)
   5970     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   5971       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   5972         return true;
   5973 
   5974   // Otherwise assume the worst.
   5975   return false;
   5976 }
   5977 
   5978 /// isImpliedCondOperands - Test whether the condition described by Pred,
   5979 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
   5980 /// and FoundRHS is true.
   5981 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   5982                                             const SCEV *LHS, const SCEV *RHS,
   5983                                             const SCEV *FoundLHS,
   5984                                             const SCEV *FoundRHS) {
   5985   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   5986                                      FoundLHS, FoundRHS) ||
   5987          // ~x < ~y --> x > y
   5988          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   5989                                      getNotSCEV(FoundRHS),
   5990                                      getNotSCEV(FoundLHS));
   5991 }
   5992 
   5993 /// isImpliedCondOperandsHelper - Test whether the condition described by
   5994 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
   5995 /// FoundLHS, and FoundRHS is true.
   5996 bool
   5997 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   5998                                              const SCEV *LHS, const SCEV *RHS,
   5999                                              const SCEV *FoundLHS,
   6000                                              const SCEV *FoundRHS) {
   6001   switch (Pred) {
   6002   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6003   case ICmpInst::ICMP_EQ:
   6004   case ICmpInst::ICMP_NE:
   6005     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   6006       return true;
   6007     break;
   6008   case ICmpInst::ICMP_SLT:
   6009   case ICmpInst::ICMP_SLE:
   6010     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   6011         isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   6012       return true;
   6013     break;
   6014   case ICmpInst::ICMP_SGT:
   6015   case ICmpInst::ICMP_SGE:
   6016     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   6017         isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   6018       return true;
   6019     break;
   6020   case ICmpInst::ICMP_ULT:
   6021   case ICmpInst::ICMP_ULE:
   6022     if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   6023         isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   6024       return true;
   6025     break;
   6026   case ICmpInst::ICMP_UGT:
   6027   case ICmpInst::ICMP_UGE:
   6028     if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   6029         isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   6030       return true;
   6031     break;
   6032   }
   6033 
   6034   return false;
   6035 }
   6036 
   6037 /// getBECount - Subtract the end and start values and divide by the step,
   6038 /// rounding up, to get the number of times the backedge is executed. Return
   6039 /// CouldNotCompute if an intermediate computation overflows.
   6040 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
   6041                                         const SCEV *End,
   6042                                         const SCEV *Step,
   6043                                         bool NoWrap) {
   6044   assert(!isKnownNegative(Step) &&
   6045          "This code doesn't handle negative strides yet!");
   6046 
   6047   Type *Ty = Start->getType();
   6048 
   6049   // When Start == End, we have an exact BECount == 0. Short-circuit this case
   6050   // here because SCEV may not be able to determine that the unsigned division
   6051   // after rounding is zero.
   6052   if (Start == End)
   6053     return getConstant(Ty, 0);
   6054 
   6055   const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
   6056   const SCEV *Diff = getMinusSCEV(End, Start);
   6057   const SCEV *RoundUp = getAddExpr(Step, NegOne);
   6058 
   6059   // Add an adjustment to the difference between End and Start so that
   6060   // the division will effectively round up.
   6061   const SCEV *Add = getAddExpr(Diff, RoundUp);
   6062 
   6063   if (!NoWrap) {
   6064     // Check Add for unsigned overflow.
   6065     // TODO: More sophisticated things could be done here.
   6066     Type *WideTy = IntegerType::get(getContext(),
   6067                                           getTypeSizeInBits(Ty) + 1);
   6068     const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
   6069     const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
   6070     const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
   6071     if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
   6072       return getCouldNotCompute();
   6073   }
   6074 
   6075   return getUDivExpr(Add, Step);
   6076 }
   6077 
   6078 /// HowManyLessThans - Return the number of times a backedge containing the
   6079 /// specified less-than comparison will execute.  If not computable, return
   6080 /// CouldNotCompute.
   6081 ScalarEvolution::ExitLimit
   6082 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
   6083                                   const Loop *L, bool isSigned) {
   6084   // Only handle:  "ADDREC < LoopInvariant".
   6085   if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
   6086 
   6087   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
   6088   if (!AddRec || AddRec->getLoop() != L)
   6089     return getCouldNotCompute();
   6090 
   6091   // Check to see if we have a flag which makes analysis easy.
   6092   bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
   6093                            AddRec->getNoWrapFlags(SCEV::FlagNUW);
   6094 
   6095   if (AddRec->isAffine()) {
   6096     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
   6097     const SCEV *Step = AddRec->getStepRecurrence(*this);
   6098 
   6099     if (Step->isZero())
   6100       return getCouldNotCompute();
   6101     if (Step->isOne()) {
   6102       // With unit stride, the iteration never steps past the limit value.
   6103     } else if (isKnownPositive(Step)) {
   6104       // Test whether a positive iteration can step past the limit
   6105       // value and past the maximum value for its type in a single step.
   6106       // Note that it's not sufficient to check NoWrap here, because even
   6107       // though the value after a wrap is undefined, it's not undefined
   6108       // behavior, so if wrap does occur, the loop could either terminate or
   6109       // loop infinitely, but in either case, the loop is guaranteed to
   6110       // iterate at least until the iteration where the wrapping occurs.
   6111       const SCEV *One = getConstant(Step->getType(), 1);
   6112       if (isSigned) {
   6113         APInt Max = APInt::getSignedMaxValue(BitWidth);
   6114         if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
   6115               .slt(getSignedRange(RHS).getSignedMax()))
   6116           return getCouldNotCompute();
   6117       } else {
   6118         APInt Max = APInt::getMaxValue(BitWidth);
   6119         if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
   6120               .ult(getUnsignedRange(RHS).getUnsignedMax()))
   6121           return getCouldNotCompute();
   6122       }
   6123     } else
   6124       // TODO: Handle negative strides here and below.
   6125       return getCouldNotCompute();
   6126 
   6127     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
   6128     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
   6129     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
   6130     // treat m-n as signed nor unsigned due to overflow possibility.
   6131 
   6132     // First, we get the value of the LHS in the first iteration: n
   6133     const SCEV *Start = AddRec->getOperand(0);
   6134 
   6135     // Determine the minimum constant start value.
   6136     const SCEV *MinStart = getConstant(isSigned ?
   6137       getSignedRange(Start).getSignedMin() :
   6138       getUnsignedRange(Start).getUnsignedMin());
   6139 
   6140     // If we know that the condition is true in order to enter the loop,
   6141     // then we know that it will run exactly (m-n)/s times. Otherwise, we
   6142     // only know that it will execute (max(m,n)-n)/s times. In both cases,
   6143     // the division must round up.
   6144     const SCEV *End = RHS;
   6145     if (!isLoopEntryGuardedByCond(L,
   6146                                   isSigned ? ICmpInst::ICMP_SLT :
   6147                                              ICmpInst::ICMP_ULT,
   6148                                   getMinusSCEV(Start, Step), RHS))
   6149       End = isSigned ? getSMaxExpr(RHS, Start)
   6150                      : getUMaxExpr(RHS, Start);
   6151 
   6152     // Determine the maximum constant end value.
   6153     const SCEV *MaxEnd = getConstant(isSigned ?
   6154       getSignedRange(End).getSignedMax() :
   6155       getUnsignedRange(End).getUnsignedMax());
   6156 
   6157     // If MaxEnd is within a step of the maximum integer value in its type,
   6158     // adjust it down to the minimum value which would produce the same effect.
   6159     // This allows the subsequent ceiling division of (N+(step-1))/step to
   6160     // compute the correct value.
   6161     const SCEV *StepMinusOne = getMinusSCEV(Step,
   6162                                             getConstant(Step->getType(), 1));
   6163     MaxEnd = isSigned ?
   6164       getSMinExpr(MaxEnd,
   6165                   getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
   6166                                StepMinusOne)) :
   6167       getUMinExpr(MaxEnd,
   6168                   getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
   6169                                StepMinusOne));
   6170 
   6171     // Finally, we subtract these two values and divide, rounding up, to get
   6172     // the number of times the backedge is executed.
   6173     const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
   6174 
   6175     // The maximum backedge count is similar, except using the minimum start
   6176     // value and the maximum end value.
   6177     // If we already have an exact constant BECount, use it instead.
   6178     const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
   6179       : getBECount(MinStart, MaxEnd, Step, NoWrap);
   6180 
   6181     // If the stride is nonconstant, and NoWrap == true, then
   6182     // getBECount(MinStart, MaxEnd) may not compute. This would result in an
   6183     // exact BECount and invalid MaxBECount, which should be avoided to catch
   6184     // more optimization opportunities.
   6185     if (isa<SCEVCouldNotCompute>(MaxBECount))
   6186       MaxBECount = BECount;
   6187 
   6188     return ExitLimit(BECount, MaxBECount);
   6189   }
   6190 
   6191   return getCouldNotCompute();
   6192 }
   6193 
   6194 /// getNumIterationsInRange - Return the number of iterations of this loop that
   6195 /// produce values in the specified constant range.  Another way of looking at
   6196 /// this is that it returns the first iteration number where the value is not in
   6197 /// the condition, thus computing the exit count. If the iteration count can't
   6198 /// be computed, an instance of SCEVCouldNotCompute is returned.
   6199 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
   6200                                                     ScalarEvolution &SE) const {
   6201   if (Range.isFullSet())  // Infinite loop.
   6202     return SE.getCouldNotCompute();
   6203 
   6204   // If the start is a non-zero constant, shift the range to simplify things.
   6205   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   6206     if (!SC->getValue()->isZero()) {
   6207       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   6208       Operands[0] = SE.getConstant(SC->getType(), 0);
   6209       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   6210                                              getNoWrapFlags(FlagNW));
   6211       if (const SCEVAddRecExpr *ShiftedAddRec =
   6212             dyn_cast<SCEVAddRecExpr>(Shifted))
   6213         return ShiftedAddRec->getNumIterationsInRange(
   6214                            Range.subtract(SC->getValue()->getValue()), SE);
   6215       // This is strange and shouldn't happen.
   6216       return SE.getCouldNotCompute();
   6217     }
   6218 
   6219   // The only time we can solve this is when we have all constant indices.
   6220   // Otherwise, we cannot determine the overflow conditions.
   6221   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   6222     if (!isa<SCEVConstant>(getOperand(i)))
   6223       return SE.getCouldNotCompute();
   6224 
   6225 
   6226   // Okay at this point we know that all elements of the chrec are constants and
   6227   // that the start element is zero.
   6228 
   6229   // First check to see if the range contains zero.  If not, the first
   6230   // iteration exits.
   6231   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   6232   if (!Range.contains(APInt(BitWidth, 0)))
   6233     return SE.getConstant(getType(), 0);
   6234 
   6235   if (isAffine()) {
   6236     // If this is an affine expression then we have this situation:
   6237     //   Solve {0,+,A} in Range  ===  Ax in Range
   6238 
   6239     // We know that zero is in the range.  If A is positive then we know that
   6240     // the upper value of the range must be the first possible exit value.
   6241     // If A is negative then the lower of the range is the last possible loop
   6242     // value.  Also note that we already checked for a full range.
   6243     APInt One(BitWidth,1);
   6244     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
   6245     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   6246 
   6247     // The exit value should be (End+A)/A.
   6248     APInt ExitVal = (End + A).udiv(A);
   6249     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   6250 
   6251     // Evaluate at the exit value.  If we really did fall out of the valid
   6252     // range, then we computed our trip count, otherwise wrap around or other
   6253     // things must have happened.
   6254     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   6255     if (Range.contains(Val->getValue()))
   6256       return SE.getCouldNotCompute();  // Something strange happened
   6257 
   6258     // Ensure that the previous value is in the range.  This is a sanity check.
   6259     assert(Range.contains(
   6260            EvaluateConstantChrecAtConstant(this,
   6261            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   6262            "Linear scev computation is off in a bad way!");
   6263     return SE.getConstant(ExitValue);
   6264   } else if (isQuadratic()) {
   6265     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   6266     // quadratic equation to solve it.  To do this, we must frame our problem in
   6267     // terms of figuring out when zero is crossed, instead of when
   6268     // Range.getUpper() is crossed.
   6269     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   6270     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   6271     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   6272                                              // getNoWrapFlags(FlagNW)
   6273                                              FlagAnyWrap);
   6274 
   6275     // Next, solve the constructed addrec
   6276     std::pair<const SCEV *,const SCEV *> Roots =
   6277       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
   6278     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   6279     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   6280     if (R1) {
   6281       // Pick the smallest positive root value.
   6282       if (ConstantInt *CB =
   6283           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
   6284                          R1->getValue(), R2->getValue()))) {
   6285         if (CB->getZExtValue() == false)
   6286           std::swap(R1, R2);   // R1 is the minimum root now.
   6287 
   6288         // Make sure the root is not off by one.  The returned iteration should
   6289         // not be in the range, but the previous one should be.  When solving
   6290         // for "X*X < 5", for example, we should not return a root of 2.
   6291         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
   6292                                                              R1->getValue(),
   6293                                                              SE);
   6294         if (Range.contains(R1Val->getValue())) {
   6295           // The next iteration must be out of the range...
   6296           ConstantInt *NextVal =
   6297                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
   6298 
   6299           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6300           if (!Range.contains(R1Val->getValue()))
   6301             return SE.getConstant(NextVal);
   6302           return SE.getCouldNotCompute();  // Something strange happened
   6303         }
   6304 
   6305         // If R1 was not in the range, then it is a good return value.  Make
   6306         // sure that R1-1 WAS in the range though, just in case.
   6307         ConstantInt *NextVal =
   6308                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
   6309         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6310         if (Range.contains(R1Val->getValue()))
   6311           return R1;
   6312         return SE.getCouldNotCompute();  // Something strange happened
   6313       }
   6314     }
   6315   }
   6316 
   6317   return SE.getCouldNotCompute();
   6318 }
   6319 
   6320 
   6321 
   6322 //===----------------------------------------------------------------------===//
   6323 //                   SCEVCallbackVH Class Implementation
   6324 //===----------------------------------------------------------------------===//
   6325 
   6326 void ScalarEvolution::SCEVCallbackVH::deleted() {
   6327   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6328   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   6329     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6330   SE->ValueExprMap.erase(getValPtr());
   6331   // this now dangles!
   6332 }
   6333 
   6334 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   6335   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6336 
   6337   // Forget all the expressions associated with users of the old value,
   6338   // so that future queries will recompute the expressions using the new
   6339   // value.
   6340   Value *Old = getValPtr();
   6341   SmallVector<User *, 16> Worklist;
   6342   SmallPtrSet<User *, 8> Visited;
   6343   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
   6344        UI != UE; ++UI)
   6345     Worklist.push_back(*UI);
   6346   while (!Worklist.empty()) {
   6347     User *U = Worklist.pop_back_val();
   6348     // Deleting the Old value will cause this to dangle. Postpone
   6349     // that until everything else is done.
   6350     if (U == Old)
   6351       continue;
   6352     if (!Visited.insert(U))
   6353       continue;
   6354     if (PHINode *PN = dyn_cast<PHINode>(U))
   6355       SE->ConstantEvolutionLoopExitValue.erase(PN);
   6356     SE->ValueExprMap.erase(U);
   6357     for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
   6358          UI != UE; ++UI)
   6359       Worklist.push_back(*UI);
   6360   }
   6361   // Delete the Old value.
   6362   if (PHINode *PN = dyn_cast<PHINode>(Old))
   6363     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6364   SE->ValueExprMap.erase(Old);
   6365   // this now dangles!
   6366 }
   6367 
   6368 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   6369   : CallbackVH(V), SE(se) {}
   6370 
   6371 //===----------------------------------------------------------------------===//
   6372 //                   ScalarEvolution Class Implementation
   6373 //===----------------------------------------------------------------------===//
   6374 
   6375 ScalarEvolution::ScalarEvolution()
   6376   : FunctionPass(ID), FirstUnknown(0) {
   6377   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
   6378 }
   6379 
   6380 bool ScalarEvolution::runOnFunction(Function &F) {
   6381   this->F = &F;
   6382   LI = &getAnalysis<LoopInfo>();
   6383   TD = getAnalysisIfAvailable<TargetData>();
   6384   DT = &getAnalysis<DominatorTree>();
   6385   return false;
   6386 }
   6387 
   6388 void ScalarEvolution::releaseMemory() {
   6389   // Iterate through all the SCEVUnknown instances and call their
   6390   // destructors, so that they release their references to their values.
   6391   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
   6392     U->~SCEVUnknown();
   6393   FirstUnknown = 0;
   6394 
   6395   ValueExprMap.clear();
   6396 
   6397   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   6398   // that a loop had multiple computable exits.
   6399   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   6400          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
   6401        I != E; ++I) {
   6402     I->second.clear();
   6403   }
   6404 
   6405   BackedgeTakenCounts.clear();
   6406   ConstantEvolutionLoopExitValue.clear();
   6407   ValuesAtScopes.clear();
   6408   LoopDispositions.clear();
   6409   BlockDispositions.clear();
   6410   UnsignedRanges.clear();
   6411   SignedRanges.clear();
   6412   UniqueSCEVs.clear();
   6413   SCEVAllocator.Reset();
   6414 }
   6415 
   6416 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
   6417   AU.setPreservesAll();
   6418   AU.addRequiredTransitive<LoopInfo>();
   6419   AU.addRequiredTransitive<DominatorTree>();
   6420 }
   6421 
   6422 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   6423   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   6424 }
   6425 
   6426 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   6427                           const Loop *L) {
   6428   // Print all inner loops first
   6429   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   6430     PrintLoopInfo(OS, SE, *I);
   6431 
   6432   OS << "Loop ";
   6433   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6434   OS << ": ";
   6435 
   6436   SmallVector<BasicBlock *, 8> ExitBlocks;
   6437   L->getExitBlocks(ExitBlocks);
   6438   if (ExitBlocks.size() != 1)
   6439     OS << "<multiple exits> ";
   6440 
   6441   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   6442     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   6443   } else {
   6444     OS << "Unpredictable backedge-taken count. ";
   6445   }
   6446 
   6447   OS << "\n"
   6448         "Loop ";
   6449   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6450   OS << ": ";
   6451 
   6452   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   6453     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   6454   } else {
   6455     OS << "Unpredictable max backedge-taken count. ";
   6456   }
   6457 
   6458   OS << "\n";
   6459 }
   6460 
   6461 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
   6462   // ScalarEvolution's implementation of the print method is to print
   6463   // out SCEV values of all instructions that are interesting. Doing
   6464   // this potentially causes it to create new SCEV objects though,
   6465   // which technically conflicts with the const qualifier. This isn't
   6466   // observable from outside the class though, so casting away the
   6467   // const isn't dangerous.
   6468   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   6469 
   6470   OS << "Classifying expressions for: ";
   6471   WriteAsOperand(OS, F, /*PrintType=*/false);
   6472   OS << "\n";
   6473   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   6474     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
   6475       OS << *I << '\n';
   6476       OS << "  -->  ";
   6477       const SCEV *SV = SE.getSCEV(&*I);
   6478       SV->print(OS);
   6479 
   6480       const Loop *L = LI->getLoopFor((*I).getParent());
   6481 
   6482       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   6483       if (AtUse != SV) {
   6484         OS << "  -->  ";
   6485         AtUse->print(OS);
   6486       }
   6487 
   6488       if (L) {
   6489         OS << "\t\t" "Exits: ";
   6490         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   6491         if (!SE.isLoopInvariant(ExitValue, L)) {
   6492           OS << "<<Unknown>>";
   6493         } else {
   6494           OS << *ExitValue;
   6495         }
   6496       }
   6497 
   6498       OS << "\n";
   6499     }
   6500 
   6501   OS << "Determining loop execution counts for: ";
   6502   WriteAsOperand(OS, F, /*PrintType=*/false);
   6503   OS << "\n";
   6504   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
   6505     PrintLoopInfo(OS, &SE, *I);
   6506 }
   6507 
   6508 ScalarEvolution::LoopDisposition
   6509 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   6510   std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
   6511   std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
   6512     Values.insert(std::make_pair(L, LoopVariant));
   6513   if (!Pair.second)
   6514     return Pair.first->second;
   6515 
   6516   LoopDisposition D = computeLoopDisposition(S, L);
   6517   return LoopDispositions[S][L] = D;
   6518 }
   6519 
   6520 ScalarEvolution::LoopDisposition
   6521 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   6522   switch (S->getSCEVType()) {
   6523   case scConstant:
   6524     return LoopInvariant;
   6525   case scTruncate:
   6526   case scZeroExtend:
   6527   case scSignExtend:
   6528     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   6529   case scAddRecExpr: {
   6530     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6531 
   6532     // If L is the addrec's loop, it's computable.
   6533     if (AR->getLoop() == L)
   6534       return LoopComputable;
   6535 
   6536     // Add recurrences are never invariant in the function-body (null loop).
   6537     if (!L)
   6538       return LoopVariant;
   6539 
   6540     // This recurrence is variant w.r.t. L if L contains AR's loop.
   6541     if (L->contains(AR->getLoop()))
   6542       return LoopVariant;
   6543 
   6544     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   6545     if (AR->getLoop()->contains(L))
   6546       return LoopInvariant;
   6547 
   6548     // This recurrence is variant w.r.t. L if any of its operands
   6549     // are variant.
   6550     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   6551          I != E; ++I)
   6552       if (!isLoopInvariant(*I, L))
   6553         return LoopVariant;
   6554 
   6555     // Otherwise it's loop-invariant.
   6556     return LoopInvariant;
   6557   }
   6558   case scAddExpr:
   6559   case scMulExpr:
   6560   case scUMaxExpr:
   6561   case scSMaxExpr: {
   6562     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6563     bool HasVarying = false;
   6564     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6565          I != E; ++I) {
   6566       LoopDisposition D = getLoopDisposition(*I, L);
   6567       if (D == LoopVariant)
   6568         return LoopVariant;
   6569       if (D == LoopComputable)
   6570         HasVarying = true;
   6571     }
   6572     return HasVarying ? LoopComputable : LoopInvariant;
   6573   }
   6574   case scUDivExpr: {
   6575     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6576     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   6577     if (LD == LoopVariant)
   6578       return LoopVariant;
   6579     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   6580     if (RD == LoopVariant)
   6581       return LoopVariant;
   6582     return (LD == LoopInvariant && RD == LoopInvariant) ?
   6583            LoopInvariant : LoopComputable;
   6584   }
   6585   case scUnknown:
   6586     // All non-instruction values are loop invariant.  All instructions are loop
   6587     // invariant if they are not contained in the specified loop.
   6588     // Instructions are never considered invariant in the function body
   6589     // (null loop) because they are defined within the "loop".
   6590     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   6591       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   6592     return LoopInvariant;
   6593   case scCouldNotCompute:
   6594     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6595     return LoopVariant;
   6596   default: break;
   6597   }
   6598   llvm_unreachable("Unknown SCEV kind!");
   6599   return LoopVariant;
   6600 }
   6601 
   6602 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   6603   return getLoopDisposition(S, L) == LoopInvariant;
   6604 }
   6605 
   6606 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   6607   return getLoopDisposition(S, L) == LoopComputable;
   6608 }
   6609 
   6610 ScalarEvolution::BlockDisposition
   6611 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6612   std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
   6613   std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
   6614     Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
   6615   if (!Pair.second)
   6616     return Pair.first->second;
   6617 
   6618   BlockDisposition D = computeBlockDisposition(S, BB);
   6619   return BlockDispositions[S][BB] = D;
   6620 }
   6621 
   6622 ScalarEvolution::BlockDisposition
   6623 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6624   switch (S->getSCEVType()) {
   6625   case scConstant:
   6626     return ProperlyDominatesBlock;
   6627   case scTruncate:
   6628   case scZeroExtend:
   6629   case scSignExtend:
   6630     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   6631   case scAddRecExpr: {
   6632     // This uses a "dominates" query instead of "properly dominates" query
   6633     // to test for proper dominance too, because the instruction which
   6634     // produces the addrec's value is a PHI, and a PHI effectively properly
   6635     // dominates its entire containing block.
   6636     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6637     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
   6638       return DoesNotDominateBlock;
   6639   }
   6640   // FALL THROUGH into SCEVNAryExpr handling.
   6641   case scAddExpr:
   6642   case scMulExpr:
   6643   case scUMaxExpr:
   6644   case scSMaxExpr: {
   6645     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6646     bool Proper = true;
   6647     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6648          I != E; ++I) {
   6649       BlockDisposition D = getBlockDisposition(*I, BB);
   6650       if (D == DoesNotDominateBlock)
   6651         return DoesNotDominateBlock;
   6652       if (D == DominatesBlock)
   6653         Proper = false;
   6654     }
   6655     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   6656   }
   6657   case scUDivExpr: {
   6658     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6659     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   6660     BlockDisposition LD = getBlockDisposition(LHS, BB);
   6661     if (LD == DoesNotDominateBlock)
   6662       return DoesNotDominateBlock;
   6663     BlockDisposition RD = getBlockDisposition(RHS, BB);
   6664     if (RD == DoesNotDominateBlock)
   6665       return DoesNotDominateBlock;
   6666     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   6667       ProperlyDominatesBlock : DominatesBlock;
   6668   }
   6669   case scUnknown:
   6670     if (Instruction *I =
   6671           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   6672       if (I->getParent() == BB)
   6673         return DominatesBlock;
   6674       if (DT->properlyDominates(I->getParent(), BB))
   6675         return ProperlyDominatesBlock;
   6676       return DoesNotDominateBlock;
   6677     }
   6678     return ProperlyDominatesBlock;
   6679   case scCouldNotCompute:
   6680     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6681     return DoesNotDominateBlock;
   6682   default: break;
   6683   }
   6684   llvm_unreachable("Unknown SCEV kind!");
   6685   return DoesNotDominateBlock;
   6686 }
   6687 
   6688 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   6689   return getBlockDisposition(S, BB) >= DominatesBlock;
   6690 }
   6691 
   6692 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   6693   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   6694 }
   6695 
   6696 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   6697   switch (S->getSCEVType()) {
   6698   case scConstant:
   6699     return false;
   6700   case scTruncate:
   6701   case scZeroExtend:
   6702   case scSignExtend: {
   6703     const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
   6704     const SCEV *CastOp = Cast->getOperand();
   6705     return Op == CastOp || hasOperand(CastOp, Op);
   6706   }
   6707   case scAddRecExpr:
   6708   case scAddExpr:
   6709   case scMulExpr:
   6710   case scUMaxExpr:
   6711   case scSMaxExpr: {
   6712     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6713     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6714          I != E; ++I) {
   6715       const SCEV *NAryOp = *I;
   6716       if (NAryOp == Op || hasOperand(NAryOp, Op))
   6717         return true;
   6718     }
   6719     return false;
   6720   }
   6721   case scUDivExpr: {
   6722     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6723     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   6724     return LHS == Op || hasOperand(LHS, Op) ||
   6725            RHS == Op || hasOperand(RHS, Op);
   6726   }
   6727   case scUnknown:
   6728     return false;
   6729   case scCouldNotCompute:
   6730     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6731     return false;
   6732   default: break;
   6733   }
   6734   llvm_unreachable("Unknown SCEV kind!");
   6735   return false;
   6736 }
   6737 
   6738 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   6739   ValuesAtScopes.erase(S);
   6740   LoopDispositions.erase(S);
   6741   BlockDispositions.erase(S);
   6742   UnsignedRanges.erase(S);
   6743   SignedRanges.erase(S);
   6744 }
   6745