Home | History | Annotate | Download | only in X86
      1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a DAG pattern matching instruction selector for X86,
     11 // converting from a legalized dag to a X86 dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86MachineFunctionInfo.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/Instructions.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Type.h"
     26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     27 #include "llvm/CodeGen/MachineConstantPool.h"
     28 #include "llvm/CodeGen/MachineFunction.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/SelectionDAGISel.h"
     33 #include "llvm/Target/TargetMachine.h"
     34 #include "llvm/Target/TargetOptions.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/Statistic.h"
     41 using namespace llvm;
     42 
     43 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
     44 
     45 //===----------------------------------------------------------------------===//
     46 //                      Pattern Matcher Implementation
     47 //===----------------------------------------------------------------------===//
     48 
     49 namespace {
     50   /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
     51   /// SDValue's instead of register numbers for the leaves of the matched
     52   /// tree.
     53   struct X86ISelAddressMode {
     54     enum {
     55       RegBase,
     56       FrameIndexBase
     57     } BaseType;
     58 
     59     // This is really a union, discriminated by BaseType!
     60     SDValue Base_Reg;
     61     int Base_FrameIndex;
     62 
     63     unsigned Scale;
     64     SDValue IndexReg;
     65     int32_t Disp;
     66     SDValue Segment;
     67     const GlobalValue *GV;
     68     const Constant *CP;
     69     const BlockAddress *BlockAddr;
     70     const char *ES;
     71     int JT;
     72     unsigned Align;    // CP alignment.
     73     unsigned char SymbolFlags;  // X86II::MO_*
     74 
     75     X86ISelAddressMode()
     76       : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
     77         Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
     78         SymbolFlags(X86II::MO_NO_FLAG) {
     79     }
     80 
     81     bool hasSymbolicDisplacement() const {
     82       return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
     83     }
     84 
     85     bool hasBaseOrIndexReg() const {
     86       return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
     87     }
     88 
     89     /// isRIPRelative - Return true if this addressing mode is already RIP
     90     /// relative.
     91     bool isRIPRelative() const {
     92       if (BaseType != RegBase) return false;
     93       if (RegisterSDNode *RegNode =
     94             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
     95         return RegNode->getReg() == X86::RIP;
     96       return false;
     97     }
     98 
     99     void setBaseReg(SDValue Reg) {
    100       BaseType = RegBase;
    101       Base_Reg = Reg;
    102     }
    103 
    104     void dump() {
    105       dbgs() << "X86ISelAddressMode " << this << '\n';
    106       dbgs() << "Base_Reg ";
    107       if (Base_Reg.getNode() != 0)
    108         Base_Reg.getNode()->dump();
    109       else
    110         dbgs() << "nul";
    111       dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
    112              << " Scale" << Scale << '\n'
    113              << "IndexReg ";
    114       if (IndexReg.getNode() != 0)
    115         IndexReg.getNode()->dump();
    116       else
    117         dbgs() << "nul";
    118       dbgs() << " Disp " << Disp << '\n'
    119              << "GV ";
    120       if (GV)
    121         GV->dump();
    122       else
    123         dbgs() << "nul";
    124       dbgs() << " CP ";
    125       if (CP)
    126         CP->dump();
    127       else
    128         dbgs() << "nul";
    129       dbgs() << '\n'
    130              << "ES ";
    131       if (ES)
    132         dbgs() << ES;
    133       else
    134         dbgs() << "nul";
    135       dbgs() << " JT" << JT << " Align" << Align << '\n';
    136     }
    137   };
    138 }
    139 
    140 namespace {
    141   //===--------------------------------------------------------------------===//
    142   /// ISel - X86 specific code to select X86 machine instructions for
    143   /// SelectionDAG operations.
    144   ///
    145   class X86DAGToDAGISel : public SelectionDAGISel {
    146     /// X86Lowering - This object fully describes how to lower LLVM code to an
    147     /// X86-specific SelectionDAG.
    148     const X86TargetLowering &X86Lowering;
    149 
    150     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    151     /// make the right decision when generating code for different targets.
    152     const X86Subtarget *Subtarget;
    153 
    154     /// OptForSize - If true, selector should try to optimize for code size
    155     /// instead of performance.
    156     bool OptForSize;
    157 
    158   public:
    159     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
    160       : SelectionDAGISel(tm, OptLevel),
    161         X86Lowering(*tm.getTargetLowering()),
    162         Subtarget(&tm.getSubtarget<X86Subtarget>()),
    163         OptForSize(false) {}
    164 
    165     virtual const char *getPassName() const {
    166       return "X86 DAG->DAG Instruction Selection";
    167     }
    168 
    169     virtual void EmitFunctionEntryCode();
    170 
    171     virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
    172 
    173     virtual void PreprocessISelDAG();
    174 
    175     inline bool immSext8(SDNode *N) const {
    176       return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
    177     }
    178 
    179     // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
    180     // sign extended field.
    181     inline bool i64immSExt32(SDNode *N) const {
    182       uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
    183       return (int64_t)v == (int32_t)v;
    184     }
    185 
    186 // Include the pieces autogenerated from the target description.
    187 #include "X86GenDAGISel.inc"
    188 
    189   private:
    190     SDNode *Select(SDNode *N);
    191     SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    192     SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
    193     SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
    194 
    195     bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
    196     bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
    197     bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
    198     bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
    199     bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    200                                  unsigned Depth);
    201     bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
    202     bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
    203                     SDValue &Scale, SDValue &Index, SDValue &Disp,
    204                     SDValue &Segment);
    205     bool SelectLEAAddr(SDValue N, SDValue &Base,
    206                        SDValue &Scale, SDValue &Index, SDValue &Disp,
    207                        SDValue &Segment);
    208     bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
    209                            SDValue &Scale, SDValue &Index, SDValue &Disp,
    210                            SDValue &Segment);
    211     bool SelectScalarSSELoad(SDNode *Root, SDValue N,
    212                              SDValue &Base, SDValue &Scale,
    213                              SDValue &Index, SDValue &Disp,
    214                              SDValue &Segment,
    215                              SDValue &NodeWithChain);
    216 
    217     bool TryFoldLoad(SDNode *P, SDValue N,
    218                      SDValue &Base, SDValue &Scale,
    219                      SDValue &Index, SDValue &Disp,
    220                      SDValue &Segment);
    221 
    222     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    223     /// inline asm expressions.
    224     virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    225                                               char ConstraintCode,
    226                                               std::vector<SDValue> &OutOps);
    227 
    228     void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
    229 
    230     inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
    231                                    SDValue &Scale, SDValue &Index,
    232                                    SDValue &Disp, SDValue &Segment) {
    233       Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
    234         CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
    235         AM.Base_Reg;
    236       Scale = getI8Imm(AM.Scale);
    237       Index = AM.IndexReg;
    238       // These are 32-bit even in 64-bit mode since RIP relative offset
    239       // is 32-bit.
    240       if (AM.GV)
    241         Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
    242                                               MVT::i32, AM.Disp,
    243                                               AM.SymbolFlags);
    244       else if (AM.CP)
    245         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
    246                                              AM.Align, AM.Disp, AM.SymbolFlags);
    247       else if (AM.ES)
    248         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
    249       else if (AM.JT != -1)
    250         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
    251       else if (AM.BlockAddr)
    252         Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
    253                                        true, AM.SymbolFlags);
    254       else
    255         Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
    256 
    257       if (AM.Segment.getNode())
    258         Segment = AM.Segment;
    259       else
    260         Segment = CurDAG->getRegister(0, MVT::i32);
    261     }
    262 
    263     /// getI8Imm - Return a target constant with the specified value, of type
    264     /// i8.
    265     inline SDValue getI8Imm(unsigned Imm) {
    266       return CurDAG->getTargetConstant(Imm, MVT::i8);
    267     }
    268 
    269     /// getI32Imm - Return a target constant with the specified value, of type
    270     /// i32.
    271     inline SDValue getI32Imm(unsigned Imm) {
    272       return CurDAG->getTargetConstant(Imm, MVT::i32);
    273     }
    274 
    275     /// getGlobalBaseReg - Return an SDNode that returns the value of
    276     /// the global base register. Output instructions required to
    277     /// initialize the global base register, if necessary.
    278     ///
    279     SDNode *getGlobalBaseReg();
    280 
    281     /// getTargetMachine - Return a reference to the TargetMachine, casted
    282     /// to the target-specific type.
    283     const X86TargetMachine &getTargetMachine() {
    284       return static_cast<const X86TargetMachine &>(TM);
    285     }
    286 
    287     /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
    288     /// to the target-specific type.
    289     const X86InstrInfo *getInstrInfo() {
    290       return getTargetMachine().getInstrInfo();
    291     }
    292   };
    293 }
    294 
    295 
    296 bool
    297 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
    298   if (OptLevel == CodeGenOpt::None) return false;
    299 
    300   if (!N.hasOneUse())
    301     return false;
    302 
    303   if (N.getOpcode() != ISD::LOAD)
    304     return true;
    305 
    306   // If N is a load, do additional profitability checks.
    307   if (U == Root) {
    308     switch (U->getOpcode()) {
    309     default: break;
    310     case X86ISD::ADD:
    311     case X86ISD::SUB:
    312     case X86ISD::AND:
    313     case X86ISD::XOR:
    314     case X86ISD::OR:
    315     case ISD::ADD:
    316     case ISD::ADDC:
    317     case ISD::ADDE:
    318     case ISD::AND:
    319     case ISD::OR:
    320     case ISD::XOR: {
    321       SDValue Op1 = U->getOperand(1);
    322 
    323       // If the other operand is a 8-bit immediate we should fold the immediate
    324       // instead. This reduces code size.
    325       // e.g.
    326       // movl 4(%esp), %eax
    327       // addl $4, %eax
    328       // vs.
    329       // movl $4, %eax
    330       // addl 4(%esp), %eax
    331       // The former is 2 bytes shorter. In case where the increment is 1, then
    332       // the saving can be 4 bytes (by using incl %eax).
    333       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
    334         if (Imm->getAPIntValue().isSignedIntN(8))
    335           return false;
    336 
    337       // If the other operand is a TLS address, we should fold it instead.
    338       // This produces
    339       // movl    %gs:0, %eax
    340       // leal    i@NTPOFF(%eax), %eax
    341       // instead of
    342       // movl    $i@NTPOFF, %eax
    343       // addl    %gs:0, %eax
    344       // if the block also has an access to a second TLS address this will save
    345       // a load.
    346       // FIXME: This is probably also true for non TLS addresses.
    347       if (Op1.getOpcode() == X86ISD::Wrapper) {
    348         SDValue Val = Op1.getOperand(0);
    349         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
    350           return false;
    351       }
    352     }
    353     }
    354   }
    355 
    356   return true;
    357 }
    358 
    359 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
    360 /// load's chain operand and move load below the call's chain operand.
    361 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
    362                                   SDValue Call, SDValue OrigChain) {
    363   SmallVector<SDValue, 8> Ops;
    364   SDValue Chain = OrigChain.getOperand(0);
    365   if (Chain.getNode() == Load.getNode())
    366     Ops.push_back(Load.getOperand(0));
    367   else {
    368     assert(Chain.getOpcode() == ISD::TokenFactor &&
    369            "Unexpected chain operand");
    370     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
    371       if (Chain.getOperand(i).getNode() == Load.getNode())
    372         Ops.push_back(Load.getOperand(0));
    373       else
    374         Ops.push_back(Chain.getOperand(i));
    375     SDValue NewChain =
    376       CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
    377                       MVT::Other, &Ops[0], Ops.size());
    378     Ops.clear();
    379     Ops.push_back(NewChain);
    380   }
    381   for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
    382     Ops.push_back(OrigChain.getOperand(i));
    383   CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
    384   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
    385                              Load.getOperand(1), Load.getOperand(2));
    386   Ops.clear();
    387   Ops.push_back(SDValue(Load.getNode(), 1));
    388   for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
    389     Ops.push_back(Call.getOperand(i));
    390   CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
    391 }
    392 
    393 /// isCalleeLoad - Return true if call address is a load and it can be
    394 /// moved below CALLSEQ_START and the chains leading up to the call.
    395 /// Return the CALLSEQ_START by reference as a second output.
    396 /// In the case of a tail call, there isn't a callseq node between the call
    397 /// chain and the load.
    398 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
    399   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
    400     return false;
    401   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
    402   if (!LD ||
    403       LD->isVolatile() ||
    404       LD->getAddressingMode() != ISD::UNINDEXED ||
    405       LD->getExtensionType() != ISD::NON_EXTLOAD)
    406     return false;
    407 
    408   // Now let's find the callseq_start.
    409   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
    410     if (!Chain.hasOneUse())
    411       return false;
    412     Chain = Chain.getOperand(0);
    413   }
    414 
    415   if (!Chain.getNumOperands())
    416     return false;
    417   if (Chain.getOperand(0).getNode() == Callee.getNode())
    418     return true;
    419   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
    420       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
    421       Callee.getValue(1).hasOneUse())
    422     return true;
    423   return false;
    424 }
    425 
    426 void X86DAGToDAGISel::PreprocessISelDAG() {
    427   // OptForSize is used in pattern predicates that isel is matching.
    428   OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
    429 
    430   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
    431        E = CurDAG->allnodes_end(); I != E; ) {
    432     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
    433 
    434     if (OptLevel != CodeGenOpt::None &&
    435         (N->getOpcode() == X86ISD::CALL ||
    436          N->getOpcode() == X86ISD::TC_RETURN)) {
    437       /// Also try moving call address load from outside callseq_start to just
    438       /// before the call to allow it to be folded.
    439       ///
    440       ///     [Load chain]
    441       ///         ^
    442       ///         |
    443       ///       [Load]
    444       ///       ^    ^
    445       ///       |    |
    446       ///      /      \--
    447       ///     /          |
    448       ///[CALLSEQ_START] |
    449       ///     ^          |
    450       ///     |          |
    451       /// [LOAD/C2Reg]   |
    452       ///     |          |
    453       ///      \        /
    454       ///       \      /
    455       ///       [CALL]
    456       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
    457       SDValue Chain = N->getOperand(0);
    458       SDValue Load  = N->getOperand(1);
    459       if (!isCalleeLoad(Load, Chain, HasCallSeq))
    460         continue;
    461       MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
    462       ++NumLoadMoved;
    463       continue;
    464     }
    465 
    466     // Lower fpround and fpextend nodes that target the FP stack to be store and
    467     // load to the stack.  This is a gross hack.  We would like to simply mark
    468     // these as being illegal, but when we do that, legalize produces these when
    469     // it expands calls, then expands these in the same legalize pass.  We would
    470     // like dag combine to be able to hack on these between the call expansion
    471     // and the node legalization.  As such this pass basically does "really
    472     // late" legalization of these inline with the X86 isel pass.
    473     // FIXME: This should only happen when not compiled with -O0.
    474     if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
    475       continue;
    476 
    477     EVT SrcVT = N->getOperand(0).getValueType();
    478     EVT DstVT = N->getValueType(0);
    479 
    480     // If any of the sources are vectors, no fp stack involved.
    481     if (SrcVT.isVector() || DstVT.isVector())
    482       continue;
    483 
    484     // If the source and destination are SSE registers, then this is a legal
    485     // conversion that should not be lowered.
    486     bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
    487     bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
    488     if (SrcIsSSE && DstIsSSE)
    489       continue;
    490 
    491     if (!SrcIsSSE && !DstIsSSE) {
    492       // If this is an FPStack extension, it is a noop.
    493       if (N->getOpcode() == ISD::FP_EXTEND)
    494         continue;
    495       // If this is a value-preserving FPStack truncation, it is a noop.
    496       if (N->getConstantOperandVal(1))
    497         continue;
    498     }
    499 
    500     // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
    501     // FPStack has extload and truncstore.  SSE can fold direct loads into other
    502     // operations.  Based on this, decide what we want to do.
    503     EVT MemVT;
    504     if (N->getOpcode() == ISD::FP_ROUND)
    505       MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
    506     else
    507       MemVT = SrcIsSSE ? SrcVT : DstVT;
    508 
    509     SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
    510     DebugLoc dl = N->getDebugLoc();
    511 
    512     // FIXME: optimize the case where the src/dest is a load or store?
    513     SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
    514                                           N->getOperand(0),
    515                                           MemTmp, MachinePointerInfo(), MemVT,
    516                                           false, false, 0);
    517     SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
    518                                         MachinePointerInfo(),
    519                                         MemVT, false, false, 0);
    520 
    521     // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
    522     // extload we created.  This will cause general havok on the dag because
    523     // anything below the conversion could be folded into other existing nodes.
    524     // To avoid invalidating 'I', back it up to the convert node.
    525     --I;
    526     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
    527 
    528     // Now that we did that, the node is dead.  Increment the iterator to the
    529     // next node to process, then delete N.
    530     ++I;
    531     CurDAG->DeleteNode(N);
    532   }
    533 }
    534 
    535 
    536 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
    537 /// the main function.
    538 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
    539                                              MachineFrameInfo *MFI) {
    540   const TargetInstrInfo *TII = TM.getInstrInfo();
    541   if (Subtarget->isTargetCygMing()) {
    542     unsigned CallOp =
    543       Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
    544     BuildMI(BB, DebugLoc(),
    545             TII->get(CallOp)).addExternalSymbol("__main");
    546   }
    547 }
    548 
    549 void X86DAGToDAGISel::EmitFunctionEntryCode() {
    550   // If this is main, emit special code for main.
    551   if (const Function *Fn = MF->getFunction())
    552     if (Fn->hasExternalLinkage() && Fn->getName() == "main")
    553       EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
    554 }
    555 
    556 static bool isDispSafeForFrameIndex(int64_t Val) {
    557   // On 64-bit platforms, we can run into an issue where a frame index
    558   // includes a displacement that, when added to the explicit displacement,
    559   // will overflow the displacement field. Assuming that the frame index
    560   // displacement fits into a 31-bit integer  (which is only slightly more
    561   // aggressive than the current fundamental assumption that it fits into
    562   // a 32-bit integer), a 31-bit disp should always be safe.
    563   return isInt<31>(Val);
    564 }
    565 
    566 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
    567                                             X86ISelAddressMode &AM) {
    568   int64_t Val = AM.Disp + Offset;
    569   CodeModel::Model M = TM.getCodeModel();
    570   if (Subtarget->is64Bit()) {
    571     if (!X86::isOffsetSuitableForCodeModel(Val, M,
    572                                            AM.hasSymbolicDisplacement()))
    573       return true;
    574     // In addition to the checks required for a register base, check that
    575     // we do not try to use an unsafe Disp with a frame index.
    576     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
    577         !isDispSafeForFrameIndex(Val))
    578       return true;
    579   }
    580   AM.Disp = Val;
    581   return false;
    582 
    583 }
    584 
    585 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
    586   SDValue Address = N->getOperand(1);
    587 
    588   // load gs:0 -> GS segment register.
    589   // load fs:0 -> FS segment register.
    590   //
    591   // This optimization is valid because the GNU TLS model defines that
    592   // gs:0 (or fs:0 on X86-64) contains its own address.
    593   // For more information see http://people.redhat.com/drepper/tls.pdf
    594   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
    595     if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
    596         Subtarget->isTargetELF())
    597       switch (N->getPointerInfo().getAddrSpace()) {
    598       case 256:
    599         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
    600         return false;
    601       case 257:
    602         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
    603         return false;
    604       }
    605 
    606   return true;
    607 }
    608 
    609 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
    610 /// into an addressing mode.  These wrap things that will resolve down into a
    611 /// symbol reference.  If no match is possible, this returns true, otherwise it
    612 /// returns false.
    613 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
    614   // If the addressing mode already has a symbol as the displacement, we can
    615   // never match another symbol.
    616   if (AM.hasSymbolicDisplacement())
    617     return true;
    618 
    619   SDValue N0 = N.getOperand(0);
    620   CodeModel::Model M = TM.getCodeModel();
    621 
    622   // Handle X86-64 rip-relative addresses.  We check this before checking direct
    623   // folding because RIP is preferable to non-RIP accesses.
    624   if (Subtarget->is64Bit() &&
    625       // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
    626       // they cannot be folded into immediate fields.
    627       // FIXME: This can be improved for kernel and other models?
    628       (M == CodeModel::Small || M == CodeModel::Kernel) &&
    629       // Base and index reg must be 0 in order to use %rip as base and lowering
    630       // must allow RIP.
    631       !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
    632     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    633       X86ISelAddressMode Backup = AM;
    634       AM.GV = G->getGlobal();
    635       AM.SymbolFlags = G->getTargetFlags();
    636       if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
    637         AM = Backup;
    638         return true;
    639       }
    640     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    641       X86ISelAddressMode Backup = AM;
    642       AM.CP = CP->getConstVal();
    643       AM.Align = CP->getAlignment();
    644       AM.SymbolFlags = CP->getTargetFlags();
    645       if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
    646         AM = Backup;
    647         return true;
    648       }
    649     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    650       AM.ES = S->getSymbol();
    651       AM.SymbolFlags = S->getTargetFlags();
    652     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    653       AM.JT = J->getIndex();
    654       AM.SymbolFlags = J->getTargetFlags();
    655     } else {
    656       AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
    657       AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    658     }
    659 
    660     if (N.getOpcode() == X86ISD::WrapperRIP)
    661       AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
    662     return false;
    663   }
    664 
    665   // Handle the case when globals fit in our immediate field: This is true for
    666   // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
    667   // mode, this results in a non-RIP-relative computation.
    668   if (!Subtarget->is64Bit() ||
    669       ((M == CodeModel::Small || M == CodeModel::Kernel) &&
    670        TM.getRelocationModel() == Reloc::Static)) {
    671     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
    672       AM.GV = G->getGlobal();
    673       AM.Disp += G->getOffset();
    674       AM.SymbolFlags = G->getTargetFlags();
    675     } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
    676       AM.CP = CP->getConstVal();
    677       AM.Align = CP->getAlignment();
    678       AM.Disp += CP->getOffset();
    679       AM.SymbolFlags = CP->getTargetFlags();
    680     } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
    681       AM.ES = S->getSymbol();
    682       AM.SymbolFlags = S->getTargetFlags();
    683     } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
    684       AM.JT = J->getIndex();
    685       AM.SymbolFlags = J->getTargetFlags();
    686     } else {
    687       AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
    688       AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
    689     }
    690     return false;
    691   }
    692 
    693   return true;
    694 }
    695 
    696 /// MatchAddress - Add the specified node to the specified addressing mode,
    697 /// returning true if it cannot be done.  This just pattern matches for the
    698 /// addressing mode.
    699 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
    700   if (MatchAddressRecursively(N, AM, 0))
    701     return true;
    702 
    703   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
    704   // a smaller encoding and avoids a scaled-index.
    705   if (AM.Scale == 2 &&
    706       AM.BaseType == X86ISelAddressMode::RegBase &&
    707       AM.Base_Reg.getNode() == 0) {
    708     AM.Base_Reg = AM.IndexReg;
    709     AM.Scale = 1;
    710   }
    711 
    712   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
    713   // because it has a smaller encoding.
    714   // TODO: Which other code models can use this?
    715   if (TM.getCodeModel() == CodeModel::Small &&
    716       Subtarget->is64Bit() &&
    717       AM.Scale == 1 &&
    718       AM.BaseType == X86ISelAddressMode::RegBase &&
    719       AM.Base_Reg.getNode() == 0 &&
    720       AM.IndexReg.getNode() == 0 &&
    721       AM.SymbolFlags == X86II::MO_NO_FLAG &&
    722       AM.hasSymbolicDisplacement())
    723     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
    724 
    725   return false;
    726 }
    727 
    728 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
    729                                               unsigned Depth) {
    730   DebugLoc dl = N.getDebugLoc();
    731   DEBUG({
    732       dbgs() << "MatchAddress: ";
    733       AM.dump();
    734     });
    735   // Limit recursion.
    736   if (Depth > 5)
    737     return MatchAddressBase(N, AM);
    738 
    739   // If this is already a %rip relative address, we can only merge immediates
    740   // into it.  Instead of handling this in every case, we handle it here.
    741   // RIP relative addressing: %rip + 32-bit displacement!
    742   if (AM.isRIPRelative()) {
    743     // FIXME: JumpTable and ExternalSymbol address currently don't like
    744     // displacements.  It isn't very important, but this should be fixed for
    745     // consistency.
    746     if (!AM.ES && AM.JT != -1) return true;
    747 
    748     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
    749       if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
    750         return false;
    751     return true;
    752   }
    753 
    754   switch (N.getOpcode()) {
    755   default: break;
    756   case ISD::Constant: {
    757     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
    758     if (!FoldOffsetIntoAddress(Val, AM))
    759       return false;
    760     break;
    761   }
    762 
    763   case X86ISD::Wrapper:
    764   case X86ISD::WrapperRIP:
    765     if (!MatchWrapper(N, AM))
    766       return false;
    767     break;
    768 
    769   case ISD::LOAD:
    770     if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
    771       return false;
    772     break;
    773 
    774   case ISD::FrameIndex:
    775     if (AM.BaseType == X86ISelAddressMode::RegBase &&
    776         AM.Base_Reg.getNode() == 0 &&
    777         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
    778       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
    779       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
    780       return false;
    781     }
    782     break;
    783 
    784   case ISD::SHL:
    785     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
    786       break;
    787 
    788     if (ConstantSDNode
    789           *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
    790       unsigned Val = CN->getZExtValue();
    791       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
    792       // that the base operand remains free for further matching. If
    793       // the base doesn't end up getting used, a post-processing step
    794       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
    795       if (Val == 1 || Val == 2 || Val == 3) {
    796         AM.Scale = 1 << Val;
    797         SDValue ShVal = N.getNode()->getOperand(0);
    798 
    799         // Okay, we know that we have a scale by now.  However, if the scaled
    800         // value is an add of something and a constant, we can fold the
    801         // constant into the disp field here.
    802         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
    803           AM.IndexReg = ShVal.getNode()->getOperand(0);
    804           ConstantSDNode *AddVal =
    805             cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
    806           uint64_t Disp = AddVal->getSExtValue() << Val;
    807           if (!FoldOffsetIntoAddress(Disp, AM))
    808             return false;
    809         }
    810 
    811         AM.IndexReg = ShVal;
    812         return false;
    813       }
    814     break;
    815     }
    816 
    817   case ISD::SMUL_LOHI:
    818   case ISD::UMUL_LOHI:
    819     // A mul_lohi where we need the low part can be folded as a plain multiply.
    820     if (N.getResNo() != 0) break;
    821     // FALL THROUGH
    822   case ISD::MUL:
    823   case X86ISD::MUL_IMM:
    824     // X*[3,5,9] -> X+X*[2,4,8]
    825     if (AM.BaseType == X86ISelAddressMode::RegBase &&
    826         AM.Base_Reg.getNode() == 0 &&
    827         AM.IndexReg.getNode() == 0) {
    828       if (ConstantSDNode
    829             *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
    830         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
    831             CN->getZExtValue() == 9) {
    832           AM.Scale = unsigned(CN->getZExtValue())-1;
    833 
    834           SDValue MulVal = N.getNode()->getOperand(0);
    835           SDValue Reg;
    836 
    837           // Okay, we know that we have a scale by now.  However, if the scaled
    838           // value is an add of something and a constant, we can fold the
    839           // constant into the disp field here.
    840           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
    841               isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
    842             Reg = MulVal.getNode()->getOperand(0);
    843             ConstantSDNode *AddVal =
    844               cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
    845             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
    846             if (FoldOffsetIntoAddress(Disp, AM))
    847               Reg = N.getNode()->getOperand(0);
    848           } else {
    849             Reg = N.getNode()->getOperand(0);
    850           }
    851 
    852           AM.IndexReg = AM.Base_Reg = Reg;
    853           return false;
    854         }
    855     }
    856     break;
    857 
    858   case ISD::SUB: {
    859     // Given A-B, if A can be completely folded into the address and
    860     // the index field with the index field unused, use -B as the index.
    861     // This is a win if a has multiple parts that can be folded into
    862     // the address. Also, this saves a mov if the base register has
    863     // other uses, since it avoids a two-address sub instruction, however
    864     // it costs an additional mov if the index register has other uses.
    865 
    866     // Add an artificial use to this node so that we can keep track of
    867     // it if it gets CSE'd with a different node.
    868     HandleSDNode Handle(N);
    869 
    870     // Test if the LHS of the sub can be folded.
    871     X86ISelAddressMode Backup = AM;
    872     if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
    873       AM = Backup;
    874       break;
    875     }
    876     // Test if the index field is free for use.
    877     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
    878       AM = Backup;
    879       break;
    880     }
    881 
    882     int Cost = 0;
    883     SDValue RHS = Handle.getValue().getNode()->getOperand(1);
    884     // If the RHS involves a register with multiple uses, this
    885     // transformation incurs an extra mov, due to the neg instruction
    886     // clobbering its operand.
    887     if (!RHS.getNode()->hasOneUse() ||
    888         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
    889         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
    890         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
    891         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
    892          RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
    893       ++Cost;
    894     // If the base is a register with multiple uses, this
    895     // transformation may save a mov.
    896     if ((AM.BaseType == X86ISelAddressMode::RegBase &&
    897          AM.Base_Reg.getNode() &&
    898          !AM.Base_Reg.getNode()->hasOneUse()) ||
    899         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
    900       --Cost;
    901     // If the folded LHS was interesting, this transformation saves
    902     // address arithmetic.
    903     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
    904         ((AM.Disp != 0) && (Backup.Disp == 0)) +
    905         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
    906       --Cost;
    907     // If it doesn't look like it may be an overall win, don't do it.
    908     if (Cost >= 0) {
    909       AM = Backup;
    910       break;
    911     }
    912 
    913     // Ok, the transformation is legal and appears profitable. Go for it.
    914     SDValue Zero = CurDAG->getConstant(0, N.getValueType());
    915     SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
    916     AM.IndexReg = Neg;
    917     AM.Scale = 1;
    918 
    919     // Insert the new nodes into the topological ordering.
    920     if (Zero.getNode()->getNodeId() == -1 ||
    921         Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
    922       CurDAG->RepositionNode(N.getNode(), Zero.getNode());
    923       Zero.getNode()->setNodeId(N.getNode()->getNodeId());
    924     }
    925     if (Neg.getNode()->getNodeId() == -1 ||
    926         Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
    927       CurDAG->RepositionNode(N.getNode(), Neg.getNode());
    928       Neg.getNode()->setNodeId(N.getNode()->getNodeId());
    929     }
    930     return false;
    931   }
    932 
    933   case ISD::ADD: {
    934     // Add an artificial use to this node so that we can keep track of
    935     // it if it gets CSE'd with a different node.
    936     HandleSDNode Handle(N);
    937 
    938     X86ISelAddressMode Backup = AM;
    939     if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
    940         !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
    941       return false;
    942     AM = Backup;
    943 
    944     // Try again after commuting the operands.
    945     if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
    946         !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
    947       return false;
    948     AM = Backup;
    949 
    950     // If we couldn't fold both operands into the address at the same time,
    951     // see if we can just put each operand into a register and fold at least
    952     // the add.
    953     if (AM.BaseType == X86ISelAddressMode::RegBase &&
    954         !AM.Base_Reg.getNode() &&
    955         !AM.IndexReg.getNode()) {
    956       N = Handle.getValue();
    957       AM.Base_Reg = N.getOperand(0);
    958       AM.IndexReg = N.getOperand(1);
    959       AM.Scale = 1;
    960       return false;
    961     }
    962     N = Handle.getValue();
    963     break;
    964   }
    965 
    966   case ISD::OR:
    967     // Handle "X | C" as "X + C" iff X is known to have C bits clear.
    968     if (CurDAG->isBaseWithConstantOffset(N)) {
    969       X86ISelAddressMode Backup = AM;
    970       ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
    971 
    972       // Start with the LHS as an addr mode.
    973       if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
    974           !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
    975         return false;
    976       AM = Backup;
    977     }
    978     break;
    979 
    980   case ISD::AND: {
    981     // Perform some heroic transforms on an and of a constant-count shift
    982     // with a constant to enable use of the scaled offset field.
    983 
    984     SDValue Shift = N.getOperand(0);
    985     if (Shift.getNumOperands() != 2) break;
    986 
    987     // Scale must not be used already.
    988     if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
    989 
    990     SDValue X = Shift.getOperand(0);
    991     ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
    992     ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
    993     if (!C1 || !C2) break;
    994 
    995     // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
    996     // allows us to convert the shift and and into an h-register extract and
    997     // a scaled index.
    998     if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
    999       unsigned ScaleLog = 8 - C1->getZExtValue();
   1000       if (ScaleLog > 0 && ScaleLog < 4 &&
   1001           C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
   1002         SDValue Eight = CurDAG->getConstant(8, MVT::i8);
   1003         SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
   1004         SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
   1005                                       X, Eight);
   1006         SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
   1007                                       Srl, Mask);
   1008         SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
   1009         SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
   1010                                       And, ShlCount);
   1011 
   1012         // Insert the new nodes into the topological ordering.
   1013         if (Eight.getNode()->getNodeId() == -1 ||
   1014             Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1015           CurDAG->RepositionNode(X.getNode(), Eight.getNode());
   1016           Eight.getNode()->setNodeId(X.getNode()->getNodeId());
   1017         }
   1018         if (Mask.getNode()->getNodeId() == -1 ||
   1019             Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1020           CurDAG->RepositionNode(X.getNode(), Mask.getNode());
   1021           Mask.getNode()->setNodeId(X.getNode()->getNodeId());
   1022         }
   1023         if (Srl.getNode()->getNodeId() == -1 ||
   1024             Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
   1025           CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
   1026           Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
   1027         }
   1028         if (And.getNode()->getNodeId() == -1 ||
   1029             And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
   1030           CurDAG->RepositionNode(N.getNode(), And.getNode());
   1031           And.getNode()->setNodeId(N.getNode()->getNodeId());
   1032         }
   1033         if (ShlCount.getNode()->getNodeId() == -1 ||
   1034             ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1035           CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
   1036           ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
   1037         }
   1038         if (Shl.getNode()->getNodeId() == -1 ||
   1039             Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
   1040           CurDAG->RepositionNode(N.getNode(), Shl.getNode());
   1041           Shl.getNode()->setNodeId(N.getNode()->getNodeId());
   1042         }
   1043         CurDAG->ReplaceAllUsesWith(N, Shl);
   1044         AM.IndexReg = And;
   1045         AM.Scale = (1 << ScaleLog);
   1046         return false;
   1047       }
   1048     }
   1049 
   1050     // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
   1051     // allows us to fold the shift into this addressing mode.
   1052     if (Shift.getOpcode() != ISD::SHL) break;
   1053 
   1054     // Not likely to be profitable if either the AND or SHIFT node has more
   1055     // than one use (unless all uses are for address computation). Besides,
   1056     // isel mechanism requires their node ids to be reused.
   1057     if (!N.hasOneUse() || !Shift.hasOneUse())
   1058       break;
   1059 
   1060     // Verify that the shift amount is something we can fold.
   1061     unsigned ShiftCst = C1->getZExtValue();
   1062     if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
   1063       break;
   1064 
   1065     // Get the new AND mask, this folds to a constant.
   1066     SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
   1067                                          SDValue(C2, 0), SDValue(C1, 0));
   1068     SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
   1069                                      NewANDMask);
   1070     SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
   1071                                        NewAND, SDValue(C1, 0));
   1072 
   1073     // Insert the new nodes into the topological ordering.
   1074     if (C1->getNodeId() > X.getNode()->getNodeId()) {
   1075       CurDAG->RepositionNode(X.getNode(), C1);
   1076       C1->setNodeId(X.getNode()->getNodeId());
   1077     }
   1078     if (NewANDMask.getNode()->getNodeId() == -1 ||
   1079         NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
   1080       CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
   1081       NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
   1082     }
   1083     if (NewAND.getNode()->getNodeId() == -1 ||
   1084         NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
   1085       CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
   1086       NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
   1087     }
   1088     if (NewSHIFT.getNode()->getNodeId() == -1 ||
   1089         NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
   1090       CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
   1091       NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
   1092     }
   1093 
   1094     CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
   1095 
   1096     AM.Scale = 1 << ShiftCst;
   1097     AM.IndexReg = NewAND;
   1098     return false;
   1099   }
   1100   }
   1101 
   1102   return MatchAddressBase(N, AM);
   1103 }
   1104 
   1105 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
   1106 /// specified addressing mode without any further recursion.
   1107 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
   1108   // Is the base register already occupied?
   1109   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
   1110     // If so, check to see if the scale index register is set.
   1111     if (AM.IndexReg.getNode() == 0) {
   1112       AM.IndexReg = N;
   1113       AM.Scale = 1;
   1114       return false;
   1115     }
   1116 
   1117     // Otherwise, we cannot select it.
   1118     return true;
   1119   }
   1120 
   1121   // Default, generate it as a register.
   1122   AM.BaseType = X86ISelAddressMode::RegBase;
   1123   AM.Base_Reg = N;
   1124   return false;
   1125 }
   1126 
   1127 /// SelectAddr - returns true if it is able pattern match an addressing mode.
   1128 /// It returns the operands which make up the maximal addressing mode it can
   1129 /// match by reference.
   1130 ///
   1131 /// Parent is the parent node of the addr operand that is being matched.  It
   1132 /// is always a load, store, atomic node, or null.  It is only null when
   1133 /// checking memory operands for inline asm nodes.
   1134 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
   1135                                  SDValue &Scale, SDValue &Index,
   1136                                  SDValue &Disp, SDValue &Segment) {
   1137   X86ISelAddressMode AM;
   1138 
   1139   if (Parent &&
   1140       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
   1141       // that are not a MemSDNode, and thus don't have proper addrspace info.
   1142       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
   1143       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
   1144       Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
   1145     unsigned AddrSpace =
   1146       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
   1147     // AddrSpace 256 -> GS, 257 -> FS.
   1148     if (AddrSpace == 256)
   1149       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
   1150     if (AddrSpace == 257)
   1151       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
   1152   }
   1153 
   1154   if (MatchAddress(N, AM))
   1155     return false;
   1156 
   1157   EVT VT = N.getValueType();
   1158   if (AM.BaseType == X86ISelAddressMode::RegBase) {
   1159     if (!AM.Base_Reg.getNode())
   1160       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1161   }
   1162 
   1163   if (!AM.IndexReg.getNode())
   1164     AM.IndexReg = CurDAG->getRegister(0, VT);
   1165 
   1166   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1167   return true;
   1168 }
   1169 
   1170 /// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
   1171 /// match a load whose top elements are either undef or zeros.  The load flavor
   1172 /// is derived from the type of N, which is either v4f32 or v2f64.
   1173 ///
   1174 /// We also return:
   1175 ///   PatternChainNode: this is the matched node that has a chain input and
   1176 ///   output.
   1177 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
   1178                                           SDValue N, SDValue &Base,
   1179                                           SDValue &Scale, SDValue &Index,
   1180                                           SDValue &Disp, SDValue &Segment,
   1181                                           SDValue &PatternNodeWithChain) {
   1182   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   1183     PatternNodeWithChain = N.getOperand(0);
   1184     if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
   1185         PatternNodeWithChain.hasOneUse() &&
   1186         IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1187         IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1188       LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
   1189       if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1190         return false;
   1191       return true;
   1192     }
   1193   }
   1194 
   1195   // Also handle the case where we explicitly require zeros in the top
   1196   // elements.  This is a vector shuffle from the zero vector.
   1197   if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
   1198       // Check to see if the top elements are all zeros (or bitcast of zeros).
   1199       N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
   1200       N.getOperand(0).getNode()->hasOneUse() &&
   1201       ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
   1202       N.getOperand(0).getOperand(0).hasOneUse() &&
   1203       IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
   1204       IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
   1205     // Okay, this is a zero extending load.  Fold it.
   1206     LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
   1207     if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
   1208       return false;
   1209     PatternNodeWithChain = SDValue(LD, 0);
   1210     return true;
   1211   }
   1212   return false;
   1213 }
   1214 
   1215 
   1216 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
   1217 /// mode it matches can be cost effectively emitted as an LEA instruction.
   1218 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
   1219                                     SDValue &Base, SDValue &Scale,
   1220                                     SDValue &Index, SDValue &Disp,
   1221                                     SDValue &Segment) {
   1222   X86ISelAddressMode AM;
   1223 
   1224   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
   1225   // segments.
   1226   SDValue Copy = AM.Segment;
   1227   SDValue T = CurDAG->getRegister(0, MVT::i32);
   1228   AM.Segment = T;
   1229   if (MatchAddress(N, AM))
   1230     return false;
   1231   assert (T == AM.Segment);
   1232   AM.Segment = Copy;
   1233 
   1234   EVT VT = N.getValueType();
   1235   unsigned Complexity = 0;
   1236   if (AM.BaseType == X86ISelAddressMode::RegBase)
   1237     if (AM.Base_Reg.getNode())
   1238       Complexity = 1;
   1239     else
   1240       AM.Base_Reg = CurDAG->getRegister(0, VT);
   1241   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
   1242     Complexity = 4;
   1243 
   1244   if (AM.IndexReg.getNode())
   1245     Complexity++;
   1246   else
   1247     AM.IndexReg = CurDAG->getRegister(0, VT);
   1248 
   1249   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
   1250   // a simple shift.
   1251   if (AM.Scale > 1)
   1252     Complexity++;
   1253 
   1254   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
   1255   // to a LEA. This is determined with some expermentation but is by no means
   1256   // optimal (especially for code size consideration). LEA is nice because of
   1257   // its three-address nature. Tweak the cost function again when we can run
   1258   // convertToThreeAddress() at register allocation time.
   1259   if (AM.hasSymbolicDisplacement()) {
   1260     // For X86-64, we should always use lea to materialize RIP relative
   1261     // addresses.
   1262     if (Subtarget->is64Bit())
   1263       Complexity = 4;
   1264     else
   1265       Complexity += 2;
   1266   }
   1267 
   1268   if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
   1269     Complexity++;
   1270 
   1271   // If it isn't worth using an LEA, reject it.
   1272   if (Complexity <= 2)
   1273     return false;
   1274 
   1275   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1276   return true;
   1277 }
   1278 
   1279 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
   1280 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
   1281                                         SDValue &Scale, SDValue &Index,
   1282                                         SDValue &Disp, SDValue &Segment) {
   1283   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
   1284   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
   1285 
   1286   X86ISelAddressMode AM;
   1287   AM.GV = GA->getGlobal();
   1288   AM.Disp += GA->getOffset();
   1289   AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
   1290   AM.SymbolFlags = GA->getTargetFlags();
   1291 
   1292   if (N.getValueType() == MVT::i32) {
   1293     AM.Scale = 1;
   1294     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
   1295   } else {
   1296     AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
   1297   }
   1298 
   1299   getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
   1300   return true;
   1301 }
   1302 
   1303 
   1304 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
   1305                                   SDValue &Base, SDValue &Scale,
   1306                                   SDValue &Index, SDValue &Disp,
   1307                                   SDValue &Segment) {
   1308   if (!ISD::isNON_EXTLoad(N.getNode()) ||
   1309       !IsProfitableToFold(N, P, P) ||
   1310       !IsLegalToFold(N, P, P, OptLevel))
   1311     return false;
   1312 
   1313   return SelectAddr(N.getNode(),
   1314                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
   1315 }
   1316 
   1317 /// getGlobalBaseReg - Return an SDNode that returns the value of
   1318 /// the global base register. Output instructions required to
   1319 /// initialize the global base register, if necessary.
   1320 ///
   1321 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
   1322   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
   1323   return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
   1324 }
   1325 
   1326 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   1327   SDValue Chain = Node->getOperand(0);
   1328   SDValue In1 = Node->getOperand(1);
   1329   SDValue In2L = Node->getOperand(2);
   1330   SDValue In2H = Node->getOperand(3);
   1331   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1332   if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1333     return NULL;
   1334   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1335   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1336   const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
   1337   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
   1338                                            MVT::i32, MVT::i32, MVT::Other, Ops,
   1339                                            array_lengthof(Ops));
   1340   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   1341   return ResNode;
   1342 }
   1343 
   1344 // FIXME: Figure out some way to unify this with the 'or' and other code
   1345 // below.
   1346 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
   1347   if (Node->hasAnyUseOfValue(0))
   1348     return 0;
   1349 
   1350   // Optimize common patterns for __sync_add_and_fetch and
   1351   // __sync_sub_and_fetch where the result is not used. This allows us
   1352   // to use "lock" version of add, sub, inc, dec instructions.
   1353   // FIXME: Do not use special instructions but instead add the "lock"
   1354   // prefix to the target node somehow. The extra information will then be
   1355   // transferred to machine instruction and it denotes the prefix.
   1356   SDValue Chain = Node->getOperand(0);
   1357   SDValue Ptr = Node->getOperand(1);
   1358   SDValue Val = Node->getOperand(2);
   1359   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1360   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1361     return 0;
   1362 
   1363   bool isInc = false, isDec = false, isSub = false, isCN = false;
   1364   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
   1365   if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
   1366     isCN = true;
   1367     int64_t CNVal = CN->getSExtValue();
   1368     if (CNVal == 1)
   1369       isInc = true;
   1370     else if (CNVal == -1)
   1371       isDec = true;
   1372     else if (CNVal >= 0)
   1373       Val = CurDAG->getTargetConstant(CNVal, NVT);
   1374     else {
   1375       isSub = true;
   1376       Val = CurDAG->getTargetConstant(-CNVal, NVT);
   1377     }
   1378   } else if (Val.hasOneUse() &&
   1379              Val.getOpcode() == ISD::SUB &&
   1380              X86::isZeroNode(Val.getOperand(0))) {
   1381     isSub = true;
   1382     Val = Val.getOperand(1);
   1383   }
   1384 
   1385   DebugLoc dl = Node->getDebugLoc();
   1386   unsigned Opc = 0;
   1387   switch (NVT.getSimpleVT().SimpleTy) {
   1388   default: return 0;
   1389   case MVT::i8:
   1390     if (isInc)
   1391       Opc = X86::LOCK_INC8m;
   1392     else if (isDec)
   1393       Opc = X86::LOCK_DEC8m;
   1394     else if (isSub) {
   1395       if (isCN)
   1396         Opc = X86::LOCK_SUB8mi;
   1397       else
   1398         Opc = X86::LOCK_SUB8mr;
   1399     } else {
   1400       if (isCN)
   1401         Opc = X86::LOCK_ADD8mi;
   1402       else
   1403         Opc = X86::LOCK_ADD8mr;
   1404     }
   1405     break;
   1406   case MVT::i16:
   1407     if (isInc)
   1408       Opc = X86::LOCK_INC16m;
   1409     else if (isDec)
   1410       Opc = X86::LOCK_DEC16m;
   1411     else if (isSub) {
   1412       if (isCN) {
   1413         if (immSext8(Val.getNode()))
   1414           Opc = X86::LOCK_SUB16mi8;
   1415         else
   1416           Opc = X86::LOCK_SUB16mi;
   1417       } else
   1418         Opc = X86::LOCK_SUB16mr;
   1419     } else {
   1420       if (isCN) {
   1421         if (immSext8(Val.getNode()))
   1422           Opc = X86::LOCK_ADD16mi8;
   1423         else
   1424           Opc = X86::LOCK_ADD16mi;
   1425       } else
   1426         Opc = X86::LOCK_ADD16mr;
   1427     }
   1428     break;
   1429   case MVT::i32:
   1430     if (isInc)
   1431       Opc = X86::LOCK_INC32m;
   1432     else if (isDec)
   1433       Opc = X86::LOCK_DEC32m;
   1434     else if (isSub) {
   1435       if (isCN) {
   1436         if (immSext8(Val.getNode()))
   1437           Opc = X86::LOCK_SUB32mi8;
   1438         else
   1439           Opc = X86::LOCK_SUB32mi;
   1440       } else
   1441         Opc = X86::LOCK_SUB32mr;
   1442     } else {
   1443       if (isCN) {
   1444         if (immSext8(Val.getNode()))
   1445           Opc = X86::LOCK_ADD32mi8;
   1446         else
   1447           Opc = X86::LOCK_ADD32mi;
   1448       } else
   1449         Opc = X86::LOCK_ADD32mr;
   1450     }
   1451     break;
   1452   case MVT::i64:
   1453     if (isInc)
   1454       Opc = X86::LOCK_INC64m;
   1455     else if (isDec)
   1456       Opc = X86::LOCK_DEC64m;
   1457     else if (isSub) {
   1458       Opc = X86::LOCK_SUB64mr;
   1459       if (isCN) {
   1460         if (immSext8(Val.getNode()))
   1461           Opc = X86::LOCK_SUB64mi8;
   1462         else if (i64immSExt32(Val.getNode()))
   1463           Opc = X86::LOCK_SUB64mi32;
   1464       }
   1465     } else {
   1466       Opc = X86::LOCK_ADD64mr;
   1467       if (isCN) {
   1468         if (immSext8(Val.getNode()))
   1469           Opc = X86::LOCK_ADD64mi8;
   1470         else if (i64immSExt32(Val.getNode()))
   1471           Opc = X86::LOCK_ADD64mi32;
   1472       }
   1473     }
   1474     break;
   1475   }
   1476 
   1477   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
   1478                                                  dl, NVT), 0);
   1479   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1480   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1481   if (isInc || isDec) {
   1482     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
   1483     SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
   1484     cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1485     SDValue RetVals[] = { Undef, Ret };
   1486     return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1487   } else {
   1488     SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
   1489     SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
   1490     cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1491     SDValue RetVals[] = { Undef, Ret };
   1492     return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1493   }
   1494 }
   1495 
   1496 enum AtomicOpc {
   1497   OR,
   1498   AND,
   1499   XOR,
   1500   AtomicOpcEnd
   1501 };
   1502 
   1503 enum AtomicSz {
   1504   ConstantI8,
   1505   I8,
   1506   SextConstantI16,
   1507   ConstantI16,
   1508   I16,
   1509   SextConstantI32,
   1510   ConstantI32,
   1511   I32,
   1512   SextConstantI64,
   1513   ConstantI64,
   1514   I64,
   1515   AtomicSzEnd
   1516 };
   1517 
   1518 static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
   1519   {
   1520     X86::LOCK_OR8mi,
   1521     X86::LOCK_OR8mr,
   1522     X86::LOCK_OR16mi8,
   1523     X86::LOCK_OR16mi,
   1524     X86::LOCK_OR16mr,
   1525     X86::LOCK_OR32mi8,
   1526     X86::LOCK_OR32mi,
   1527     X86::LOCK_OR32mr,
   1528     X86::LOCK_OR64mi8,
   1529     X86::LOCK_OR64mi32,
   1530     X86::LOCK_OR64mr
   1531   },
   1532   {
   1533     X86::LOCK_AND8mi,
   1534     X86::LOCK_AND8mr,
   1535     X86::LOCK_AND16mi8,
   1536     X86::LOCK_AND16mi,
   1537     X86::LOCK_AND16mr,
   1538     X86::LOCK_AND32mi8,
   1539     X86::LOCK_AND32mi,
   1540     X86::LOCK_AND32mr,
   1541     X86::LOCK_AND64mi8,
   1542     X86::LOCK_AND64mi32,
   1543     X86::LOCK_AND64mr
   1544   },
   1545   {
   1546     X86::LOCK_XOR8mi,
   1547     X86::LOCK_XOR8mr,
   1548     X86::LOCK_XOR16mi8,
   1549     X86::LOCK_XOR16mi,
   1550     X86::LOCK_XOR16mr,
   1551     X86::LOCK_XOR32mi8,
   1552     X86::LOCK_XOR32mi,
   1553     X86::LOCK_XOR32mr,
   1554     X86::LOCK_XOR64mi8,
   1555     X86::LOCK_XOR64mi32,
   1556     X86::LOCK_XOR64mr
   1557   }
   1558 };
   1559 
   1560 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
   1561   if (Node->hasAnyUseOfValue(0))
   1562     return 0;
   1563 
   1564   // Optimize common patterns for __sync_or_and_fetch and similar arith
   1565   // operations where the result is not used. This allows us to use the "lock"
   1566   // version of the arithmetic instruction.
   1567   // FIXME: Same as for 'add' and 'sub', try to merge those down here.
   1568   SDValue Chain = Node->getOperand(0);
   1569   SDValue Ptr = Node->getOperand(1);
   1570   SDValue Val = Node->getOperand(2);
   1571   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1572   if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
   1573     return 0;
   1574 
   1575   // Which index into the table.
   1576   enum AtomicOpc Op;
   1577   switch (Node->getOpcode()) {
   1578     case ISD::ATOMIC_LOAD_OR:
   1579       Op = OR;
   1580       break;
   1581     case ISD::ATOMIC_LOAD_AND:
   1582       Op = AND;
   1583       break;
   1584     case ISD::ATOMIC_LOAD_XOR:
   1585       Op = XOR;
   1586       break;
   1587     default:
   1588       return 0;
   1589   }
   1590 
   1591   bool isCN = false;
   1592   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
   1593   if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
   1594     isCN = true;
   1595     Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
   1596   }
   1597 
   1598   unsigned Opc = 0;
   1599   switch (NVT.getSimpleVT().SimpleTy) {
   1600     default: return 0;
   1601     case MVT::i8:
   1602       if (isCN)
   1603         Opc = AtomicOpcTbl[Op][ConstantI8];
   1604       else
   1605         Opc = AtomicOpcTbl[Op][I8];
   1606       break;
   1607     case MVT::i16:
   1608       if (isCN) {
   1609         if (immSext8(Val.getNode()))
   1610           Opc = AtomicOpcTbl[Op][SextConstantI16];
   1611         else
   1612           Opc = AtomicOpcTbl[Op][ConstantI16];
   1613       } else
   1614         Opc = AtomicOpcTbl[Op][I16];
   1615       break;
   1616     case MVT::i32:
   1617       if (isCN) {
   1618         if (immSext8(Val.getNode()))
   1619           Opc = AtomicOpcTbl[Op][SextConstantI32];
   1620         else
   1621           Opc = AtomicOpcTbl[Op][ConstantI32];
   1622       } else
   1623         Opc = AtomicOpcTbl[Op][I32];
   1624       break;
   1625     case MVT::i64:
   1626       Opc = AtomicOpcTbl[Op][I64];
   1627       if (isCN) {
   1628         if (immSext8(Val.getNode()))
   1629           Opc = AtomicOpcTbl[Op][SextConstantI64];
   1630         else if (i64immSExt32(Val.getNode()))
   1631           Opc = AtomicOpcTbl[Op][ConstantI64];
   1632       }
   1633       break;
   1634   }
   1635 
   1636   assert(Opc != 0 && "Invalid arith lock transform!");
   1637 
   1638   DebugLoc dl = Node->getDebugLoc();
   1639   SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
   1640                                                  dl, NVT), 0);
   1641   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1642   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   1643   SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
   1644   SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
   1645   cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
   1646   SDValue RetVals[] = { Undef, Ret };
   1647   return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
   1648 }
   1649 
   1650 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
   1651 /// any uses which require the SF or OF bits to be accurate.
   1652 static bool HasNoSignedComparisonUses(SDNode *N) {
   1653   // Examine each user of the node.
   1654   for (SDNode::use_iterator UI = N->use_begin(),
   1655          UE = N->use_end(); UI != UE; ++UI) {
   1656     // Only examine CopyToReg uses.
   1657     if (UI->getOpcode() != ISD::CopyToReg)
   1658       return false;
   1659     // Only examine CopyToReg uses that copy to EFLAGS.
   1660     if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
   1661           X86::EFLAGS)
   1662       return false;
   1663     // Examine each user of the CopyToReg use.
   1664     for (SDNode::use_iterator FlagUI = UI->use_begin(),
   1665            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
   1666       // Only examine the Flag result.
   1667       if (FlagUI.getUse().getResNo() != 1) continue;
   1668       // Anything unusual: assume conservatively.
   1669       if (!FlagUI->isMachineOpcode()) return false;
   1670       // Examine the opcode of the user.
   1671       switch (FlagUI->getMachineOpcode()) {
   1672       // These comparisons don't treat the most significant bit specially.
   1673       case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
   1674       case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
   1675       case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
   1676       case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
   1677       case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
   1678       case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
   1679       case X86::CMOVA16rr: case X86::CMOVA16rm:
   1680       case X86::CMOVA32rr: case X86::CMOVA32rm:
   1681       case X86::CMOVA64rr: case X86::CMOVA64rm:
   1682       case X86::CMOVAE16rr: case X86::CMOVAE16rm:
   1683       case X86::CMOVAE32rr: case X86::CMOVAE32rm:
   1684       case X86::CMOVAE64rr: case X86::CMOVAE64rm:
   1685       case X86::CMOVB16rr: case X86::CMOVB16rm:
   1686       case X86::CMOVB32rr: case X86::CMOVB32rm:
   1687       case X86::CMOVB64rr: case X86::CMOVB64rm:
   1688       case X86::CMOVBE16rr: case X86::CMOVBE16rm:
   1689       case X86::CMOVBE32rr: case X86::CMOVBE32rm:
   1690       case X86::CMOVBE64rr: case X86::CMOVBE64rm:
   1691       case X86::CMOVE16rr: case X86::CMOVE16rm:
   1692       case X86::CMOVE32rr: case X86::CMOVE32rm:
   1693       case X86::CMOVE64rr: case X86::CMOVE64rm:
   1694       case X86::CMOVNE16rr: case X86::CMOVNE16rm:
   1695       case X86::CMOVNE32rr: case X86::CMOVNE32rm:
   1696       case X86::CMOVNE64rr: case X86::CMOVNE64rm:
   1697       case X86::CMOVNP16rr: case X86::CMOVNP16rm:
   1698       case X86::CMOVNP32rr: case X86::CMOVNP32rm:
   1699       case X86::CMOVNP64rr: case X86::CMOVNP64rm:
   1700       case X86::CMOVP16rr: case X86::CMOVP16rm:
   1701       case X86::CMOVP32rr: case X86::CMOVP32rm:
   1702       case X86::CMOVP64rr: case X86::CMOVP64rm:
   1703         continue;
   1704       // Anything else: assume conservatively.
   1705       default: return false;
   1706       }
   1707     }
   1708   }
   1709   return true;
   1710 }
   1711 
   1712 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
   1713   EVT NVT = Node->getValueType(0);
   1714   unsigned Opc, MOpc;
   1715   unsigned Opcode = Node->getOpcode();
   1716   DebugLoc dl = Node->getDebugLoc();
   1717 
   1718   DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
   1719 
   1720   if (Node->isMachineOpcode()) {
   1721     DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
   1722     return NULL;   // Already selected.
   1723   }
   1724 
   1725   switch (Opcode) {
   1726   default: break;
   1727   case X86ISD::GlobalBaseReg:
   1728     return getGlobalBaseReg();
   1729 
   1730   case X86ISD::ATOMOR64_DAG:
   1731     return SelectAtomic64(Node, X86::ATOMOR6432);
   1732   case X86ISD::ATOMXOR64_DAG:
   1733     return SelectAtomic64(Node, X86::ATOMXOR6432);
   1734   case X86ISD::ATOMADD64_DAG:
   1735     return SelectAtomic64(Node, X86::ATOMADD6432);
   1736   case X86ISD::ATOMSUB64_DAG:
   1737     return SelectAtomic64(Node, X86::ATOMSUB6432);
   1738   case X86ISD::ATOMNAND64_DAG:
   1739     return SelectAtomic64(Node, X86::ATOMNAND6432);
   1740   case X86ISD::ATOMAND64_DAG:
   1741     return SelectAtomic64(Node, X86::ATOMAND6432);
   1742   case X86ISD::ATOMSWAP64_DAG:
   1743     return SelectAtomic64(Node, X86::ATOMSWAP6432);
   1744 
   1745   case ISD::ATOMIC_LOAD_ADD: {
   1746     SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
   1747     if (RetVal)
   1748       return RetVal;
   1749     break;
   1750   }
   1751   case ISD::ATOMIC_LOAD_XOR:
   1752   case ISD::ATOMIC_LOAD_AND:
   1753   case ISD::ATOMIC_LOAD_OR: {
   1754     SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
   1755     if (RetVal)
   1756       return RetVal;
   1757     break;
   1758   }
   1759   case ISD::AND:
   1760   case ISD::OR:
   1761   case ISD::XOR: {
   1762     // For operations of the form (x << C1) op C2, check if we can use a smaller
   1763     // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
   1764     SDValue N0 = Node->getOperand(0);
   1765     SDValue N1 = Node->getOperand(1);
   1766 
   1767     if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
   1768       break;
   1769 
   1770     // i8 is unshrinkable, i16 should be promoted to i32.
   1771     if (NVT != MVT::i32 && NVT != MVT::i64)
   1772       break;
   1773 
   1774     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
   1775     ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
   1776     if (!Cst || !ShlCst)
   1777       break;
   1778 
   1779     int64_t Val = Cst->getSExtValue();
   1780     uint64_t ShlVal = ShlCst->getZExtValue();
   1781 
   1782     // Make sure that we don't change the operation by removing bits.
   1783     // This only matters for OR and XOR, AND is unaffected.
   1784     if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
   1785       break;
   1786 
   1787     unsigned ShlOp, Op = 0;
   1788     EVT CstVT = NVT;
   1789 
   1790     // Check the minimum bitwidth for the new constant.
   1791     // TODO: AND32ri is the same as AND64ri32 with zext imm.
   1792     // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
   1793     // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
   1794     if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
   1795       CstVT = MVT::i8;
   1796     else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
   1797       CstVT = MVT::i32;
   1798 
   1799     // Bail if there is no smaller encoding.
   1800     if (NVT == CstVT)
   1801       break;
   1802 
   1803     switch (NVT.getSimpleVT().SimpleTy) {
   1804     default: llvm_unreachable("Unsupported VT!");
   1805     case MVT::i32:
   1806       assert(CstVT == MVT::i8);
   1807       ShlOp = X86::SHL32ri;
   1808 
   1809       switch (Opcode) {
   1810       case ISD::AND: Op = X86::AND32ri8; break;
   1811       case ISD::OR:  Op =  X86::OR32ri8; break;
   1812       case ISD::XOR: Op = X86::XOR32ri8; break;
   1813       }
   1814       break;
   1815     case MVT::i64:
   1816       assert(CstVT == MVT::i8 || CstVT == MVT::i32);
   1817       ShlOp = X86::SHL64ri;
   1818 
   1819       switch (Opcode) {
   1820       case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
   1821       case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
   1822       case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
   1823       }
   1824       break;
   1825     }
   1826 
   1827     // Emit the smaller op and the shift.
   1828     SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
   1829     SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
   1830     return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
   1831                                 getI8Imm(ShlVal));
   1832     break;
   1833   }
   1834   case X86ISD::UMUL: {
   1835     SDValue N0 = Node->getOperand(0);
   1836     SDValue N1 = Node->getOperand(1);
   1837 
   1838     unsigned LoReg;
   1839     switch (NVT.getSimpleVT().SimpleTy) {
   1840     default: llvm_unreachable("Unsupported VT!");
   1841     case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
   1842     case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
   1843     case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
   1844     case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
   1845     }
   1846 
   1847     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
   1848                                           N0, SDValue()).getValue(1);
   1849 
   1850     SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
   1851     SDValue Ops[] = {N1, InFlag};
   1852     SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
   1853 
   1854     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
   1855     ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
   1856     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
   1857     return NULL;
   1858   }
   1859 
   1860   case ISD::SMUL_LOHI:
   1861   case ISD::UMUL_LOHI: {
   1862     SDValue N0 = Node->getOperand(0);
   1863     SDValue N1 = Node->getOperand(1);
   1864 
   1865     bool isSigned = Opcode == ISD::SMUL_LOHI;
   1866     if (!isSigned) {
   1867       switch (NVT.getSimpleVT().SimpleTy) {
   1868       default: llvm_unreachable("Unsupported VT!");
   1869       case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
   1870       case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
   1871       case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
   1872       case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
   1873       }
   1874     } else {
   1875       switch (NVT.getSimpleVT().SimpleTy) {
   1876       default: llvm_unreachable("Unsupported VT!");
   1877       case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
   1878       case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
   1879       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
   1880       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
   1881       }
   1882     }
   1883 
   1884     unsigned LoReg, HiReg;
   1885     switch (NVT.getSimpleVT().SimpleTy) {
   1886     default: llvm_unreachable("Unsupported VT!");
   1887     case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
   1888     case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
   1889     case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
   1890     case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
   1891     }
   1892 
   1893     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   1894     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   1895     // Multiply is commmutative.
   1896     if (!foldedLoad) {
   1897       foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   1898       if (foldedLoad)
   1899         std::swap(N0, N1);
   1900     }
   1901 
   1902     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
   1903                                             N0, SDValue()).getValue(1);
   1904 
   1905     if (foldedLoad) {
   1906       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   1907                         InFlag };
   1908       SDNode *CNode =
   1909         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
   1910                                array_lengthof(Ops));
   1911       InFlag = SDValue(CNode, 1);
   1912 
   1913       // Update the chain.
   1914       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
   1915     } else {
   1916       SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
   1917       InFlag = SDValue(CNode, 0);
   1918     }
   1919 
   1920     // Prevent use of AH in a REX instruction by referencing AX instead.
   1921     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   1922         !SDValue(Node, 1).use_empty()) {
   1923       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   1924                                               X86::AX, MVT::i16, InFlag);
   1925       InFlag = Result.getValue(2);
   1926       // Get the low part if needed. Don't use getCopyFromReg for aliasing
   1927       // registers.
   1928       if (!SDValue(Node, 0).use_empty())
   1929         ReplaceUses(SDValue(Node, 1),
   1930           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   1931 
   1932       // Shift AX down 8 bits.
   1933       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   1934                                               Result,
   1935                                      CurDAG->getTargetConstant(8, MVT::i8)), 0);
   1936       // Then truncate it down to i8.
   1937       ReplaceUses(SDValue(Node, 1),
   1938         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   1939     }
   1940     // Copy the low half of the result, if it is needed.
   1941     if (!SDValue(Node, 0).use_empty()) {
   1942       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   1943                                                 LoReg, NVT, InFlag);
   1944       InFlag = Result.getValue(2);
   1945       ReplaceUses(SDValue(Node, 0), Result);
   1946       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   1947     }
   1948     // Copy the high half of the result, if it is needed.
   1949     if (!SDValue(Node, 1).use_empty()) {
   1950       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   1951                                               HiReg, NVT, InFlag);
   1952       InFlag = Result.getValue(2);
   1953       ReplaceUses(SDValue(Node, 1), Result);
   1954       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   1955     }
   1956 
   1957     return NULL;
   1958   }
   1959 
   1960   case ISD::SDIVREM:
   1961   case ISD::UDIVREM: {
   1962     SDValue N0 = Node->getOperand(0);
   1963     SDValue N1 = Node->getOperand(1);
   1964 
   1965     bool isSigned = Opcode == ISD::SDIVREM;
   1966     if (!isSigned) {
   1967       switch (NVT.getSimpleVT().SimpleTy) {
   1968       default: llvm_unreachable("Unsupported VT!");
   1969       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
   1970       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
   1971       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
   1972       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
   1973       }
   1974     } else {
   1975       switch (NVT.getSimpleVT().SimpleTy) {
   1976       default: llvm_unreachable("Unsupported VT!");
   1977       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
   1978       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
   1979       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
   1980       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
   1981       }
   1982     }
   1983 
   1984     unsigned LoReg, HiReg, ClrReg;
   1985     unsigned ClrOpcode, SExtOpcode;
   1986     switch (NVT.getSimpleVT().SimpleTy) {
   1987     default: llvm_unreachable("Unsupported VT!");
   1988     case MVT::i8:
   1989       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
   1990       ClrOpcode  = 0;
   1991       SExtOpcode = X86::CBW;
   1992       break;
   1993     case MVT::i16:
   1994       LoReg = X86::AX;  HiReg = X86::DX;
   1995       ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
   1996       SExtOpcode = X86::CWD;
   1997       break;
   1998     case MVT::i32:
   1999       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
   2000       ClrOpcode  = X86::MOV32r0;
   2001       SExtOpcode = X86::CDQ;
   2002       break;
   2003     case MVT::i64:
   2004       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
   2005       ClrOpcode  = X86::MOV64r0;
   2006       SExtOpcode = X86::CQO;
   2007       break;
   2008     }
   2009 
   2010     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
   2011     bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
   2012     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
   2013 
   2014     SDValue InFlag;
   2015     if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
   2016       // Special case for div8, just use a move with zero extension to AX to
   2017       // clear the upper 8 bits (AH).
   2018       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
   2019       if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
   2020         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
   2021         Move =
   2022           SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
   2023                                          MVT::Other, Ops,
   2024                                          array_lengthof(Ops)), 0);
   2025         Chain = Move.getValue(1);
   2026         ReplaceUses(N0.getValue(1), Chain);
   2027       } else {
   2028         Move =
   2029           SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
   2030         Chain = CurDAG->getEntryNode();
   2031       }
   2032       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
   2033       InFlag = Chain.getValue(1);
   2034     } else {
   2035       InFlag =
   2036         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
   2037                              LoReg, N0, SDValue()).getValue(1);
   2038       if (isSigned && !signBitIsZero) {
   2039         // Sign extend the low part into the high part.
   2040         InFlag =
   2041           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
   2042       } else {
   2043         // Zero out the high part, effectively zero extending the input.
   2044         SDValue ClrNode =
   2045           SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
   2046         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
   2047                                       ClrNode, InFlag).getValue(1);
   2048       }
   2049     }
   2050 
   2051     if (foldedLoad) {
   2052       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
   2053                         InFlag };
   2054       SDNode *CNode =
   2055         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
   2056                                array_lengthof(Ops));
   2057       InFlag = SDValue(CNode, 1);
   2058       // Update the chain.
   2059       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
   2060     } else {
   2061       InFlag =
   2062         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
   2063     }
   2064 
   2065     // Prevent use of AH in a REX instruction by referencing AX instead.
   2066     // Shift it down 8 bits.
   2067     if (HiReg == X86::AH && Subtarget->is64Bit() &&
   2068         !SDValue(Node, 1).use_empty()) {
   2069       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2070                                               X86::AX, MVT::i16, InFlag);
   2071       InFlag = Result.getValue(2);
   2072 
   2073       // If we also need AL (the quotient), get it by extracting a subreg from
   2074       // Result. The fast register allocator does not like multiple CopyFromReg
   2075       // nodes using aliasing registers.
   2076       if (!SDValue(Node, 0).use_empty())
   2077         ReplaceUses(SDValue(Node, 0),
   2078           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2079 
   2080       // Shift AX right by 8 bits instead of using AH.
   2081       Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
   2082                                          Result,
   2083                                          CurDAG->getTargetConstant(8, MVT::i8)),
   2084                        0);
   2085       ReplaceUses(SDValue(Node, 1),
   2086         CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
   2087     }
   2088     // Copy the division (low) result, if it is needed.
   2089     if (!SDValue(Node, 0).use_empty()) {
   2090       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2091                                                 LoReg, NVT, InFlag);
   2092       InFlag = Result.getValue(2);
   2093       ReplaceUses(SDValue(Node, 0), Result);
   2094       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2095     }
   2096     // Copy the remainder (high) result, if it is needed.
   2097     if (!SDValue(Node, 1).use_empty()) {
   2098       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2099                                               HiReg, NVT, InFlag);
   2100       InFlag = Result.getValue(2);
   2101       ReplaceUses(SDValue(Node, 1), Result);
   2102       DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
   2103     }
   2104     return NULL;
   2105   }
   2106 
   2107   case X86ISD::CMP: {
   2108     SDValue N0 = Node->getOperand(0);
   2109     SDValue N1 = Node->getOperand(1);
   2110 
   2111     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
   2112     // use a smaller encoding.
   2113     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
   2114         HasNoSignedComparisonUses(Node))
   2115       // Look past the truncate if CMP is the only use of it.
   2116       N0 = N0.getOperand(0);
   2117     if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
   2118         N0.getValueType() != MVT::i8 &&
   2119         X86::isZeroNode(N1)) {
   2120       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
   2121       if (!C) break;
   2122 
   2123       // For example, convert "testl %eax, $8" to "testb %al, $8"
   2124       if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
   2125           (!(C->getZExtValue() & 0x80) ||
   2126            HasNoSignedComparisonUses(Node))) {
   2127         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
   2128         SDValue Reg = N0.getNode()->getOperand(0);
   2129 
   2130         // On x86-32, only the ABCD registers have 8-bit subregisters.
   2131         if (!Subtarget->is64Bit()) {
   2132           TargetRegisterClass *TRC = 0;
   2133           switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2134           case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2135           case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2136           default: llvm_unreachable("Unsupported TEST operand type!");
   2137           }
   2138           SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2139           Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2140                                                Reg.getValueType(), Reg, RC), 0);
   2141         }
   2142 
   2143         // Extract the l-register.
   2144         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
   2145                                                         MVT::i8, Reg);
   2146 
   2147         // Emit a testb.
   2148         return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
   2149       }
   2150 
   2151       // For example, "testl %eax, $2048" to "testb %ah, $8".
   2152       if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
   2153           (!(C->getZExtValue() & 0x8000) ||
   2154            HasNoSignedComparisonUses(Node))) {
   2155         // Shift the immediate right by 8 bits.
   2156         SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
   2157                                                        MVT::i8);
   2158         SDValue Reg = N0.getNode()->getOperand(0);
   2159 
   2160         // Put the value in an ABCD register.
   2161         TargetRegisterClass *TRC = 0;
   2162         switch (N0.getValueType().getSimpleVT().SimpleTy) {
   2163         case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
   2164         case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
   2165         case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
   2166         default: llvm_unreachable("Unsupported TEST operand type!");
   2167         }
   2168         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
   2169         Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
   2170                                              Reg.getValueType(), Reg, RC), 0);
   2171 
   2172         // Extract the h-register.
   2173         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
   2174                                                         MVT::i8, Reg);
   2175 
   2176         // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
   2177         // target GR8_NOREX registers, so make sure the register class is
   2178         // forced.
   2179         return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
   2180                                       Subreg, ShiftedImm);
   2181       }
   2182 
   2183       // For example, "testl %eax, $32776" to "testw %ax, $32776".
   2184       if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
   2185           N0.getValueType() != MVT::i16 &&
   2186           (!(C->getZExtValue() & 0x8000) ||
   2187            HasNoSignedComparisonUses(Node))) {
   2188         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
   2189         SDValue Reg = N0.getNode()->getOperand(0);
   2190 
   2191         // Extract the 16-bit subregister.
   2192         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
   2193                                                         MVT::i16, Reg);
   2194 
   2195         // Emit a testw.
   2196         return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
   2197       }
   2198 
   2199       // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
   2200       if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
   2201           N0.getValueType() == MVT::i64 &&
   2202           (!(C->getZExtValue() & 0x80000000) ||
   2203            HasNoSignedComparisonUses(Node))) {
   2204         SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
   2205         SDValue Reg = N0.getNode()->getOperand(0);
   2206 
   2207         // Extract the 32-bit subregister.
   2208         SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
   2209                                                         MVT::i32, Reg);
   2210 
   2211         // Emit a testl.
   2212         return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
   2213       }
   2214     }
   2215     break;
   2216   }
   2217   }
   2218 
   2219   SDNode *ResNode = SelectCode(Node);
   2220 
   2221   DEBUG(dbgs() << "=> ";
   2222         if (ResNode == NULL || ResNode == Node)
   2223           Node->dump(CurDAG);
   2224         else
   2225           ResNode->dump(CurDAG);
   2226         dbgs() << '\n');
   2227 
   2228   return ResNode;
   2229 }
   2230 
   2231 bool X86DAGToDAGISel::
   2232 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   2233                              std::vector<SDValue> &OutOps) {
   2234   SDValue Op0, Op1, Op2, Op3, Op4;
   2235   switch (ConstraintCode) {
   2236   case 'o':   // offsetable        ??
   2237   case 'v':   // not offsetable    ??
   2238   default: return true;
   2239   case 'm':   // memory
   2240     if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
   2241       return true;
   2242     break;
   2243   }
   2244 
   2245   OutOps.push_back(Op0);
   2246   OutOps.push_back(Op1);
   2247   OutOps.push_back(Op2);
   2248   OutOps.push_back(Op3);
   2249   OutOps.push_back(Op4);
   2250   return false;
   2251 }
   2252 
   2253 /// createX86ISelDag - This pass converts a legalized DAG into a
   2254 /// X86-specific DAG, ready for instruction scheduling.
   2255 ///
   2256 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
   2257                                      llvm::CodeGenOpt::Level OptLevel) {
   2258   return new X86DAGToDAGISel(TM, OptLevel);
   2259 }
   2260