Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
      6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/globals.h"
     10 #include "src/mips/assembler-mips.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 // Give alias names to registers for calling conventions.
     16 const Register kReturnRegister0 = {Register::kCode_v0};
     17 const Register kReturnRegister1 = {Register::kCode_v1};
     18 const Register kReturnRegister2 = {Register::kCode_a0};
     19 const Register kJSFunctionRegister = {Register::kCode_a1};
     20 const Register kContextRegister = {Register::kCpRegister};
     21 const Register kAllocateSizeRegister = {Register::kCode_a0};
     22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
     23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t4};
     24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t5};
     25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t6};
     26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
     27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
     28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
     29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
     30 
     31 // Forward declaration.
     32 class JumpTarget;
     33 
     34 // Reserved Register Usage Summary.
     35 //
     36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
     37 //
     38 // The programmer should know that the MacroAssembler may clobber these three,
     39 // but won't touch other registers except in special cases.
     40 //
     41 // Per the MIPS ABI, register t9 must be used for indirect function call
     42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
     43 // trying to update gp register for position-independent-code. Whenever
     44 // MIPS generated code calls C code, it must be via t9 register.
     45 
     46 
     47 // Flags used for LeaveExitFrame function.
     48 enum LeaveExitFrameMode {
     49   EMIT_RETURN = true,
     50   NO_EMIT_RETURN = false
     51 };
     52 
     53 // Flags used for AllocateHeapNumber
     54 enum TaggingMode {
     55   // Tag the result.
     56   TAG_RESULT,
     57   // Don't tag
     58   DONT_TAG_RESULT
     59 };
     60 
     61 // Flags used for the ObjectToDoubleFPURegister function.
     62 enum ObjectToDoubleFlags {
     63   // No special flags.
     64   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
     65   // Object is known to be a non smi.
     66   OBJECT_NOT_SMI = 1 << 0,
     67   // Don't load NaNs or infinities, branch to the non number case instead.
     68   AVOID_NANS_AND_INFINITIES = 1 << 1
     69 };
     70 
     71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
     72 enum BranchDelaySlot {
     73   USE_DELAY_SLOT,
     74   PROTECT
     75 };
     76 
     77 // Flags used for the li macro-assembler function.
     78 enum LiFlags {
     79   // If the constant value can be represented in just 16 bits, then
     80   // optimize the li to use a single instruction, rather than lui/ori pair.
     81   OPTIMIZE_SIZE = 0,
     82   // Always use 2 instructions (lui/ori pair), even if the constant could
     83   // be loaded with just one, so that this value is patchable later.
     84   CONSTANT_SIZE = 1
     85 };
     86 
     87 
     88 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     89 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     90 enum PointersToHereCheck {
     91   kPointersToHereMaybeInteresting,
     92   kPointersToHereAreAlwaysInteresting
     93 };
     94 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
     95 
     96 Register GetRegisterThatIsNotOneOf(Register reg1,
     97                                    Register reg2 = no_reg,
     98                                    Register reg3 = no_reg,
     99                                    Register reg4 = no_reg,
    100                                    Register reg5 = no_reg,
    101                                    Register reg6 = no_reg);
    102 
    103 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
    104                 Register reg4 = no_reg, Register reg5 = no_reg,
    105                 Register reg6 = no_reg, Register reg7 = no_reg,
    106                 Register reg8 = no_reg, Register reg9 = no_reg,
    107                 Register reg10 = no_reg);
    108 
    109 
    110 // -----------------------------------------------------------------------------
    111 // Static helper functions.
    112 
    113 inline MemOperand ContextMemOperand(Register context, int index) {
    114   return MemOperand(context, Context::SlotOffset(index));
    115 }
    116 
    117 
    118 inline MemOperand NativeContextMemOperand() {
    119   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
    120 }
    121 
    122 
    123 // Generate a MemOperand for loading a field from an object.
    124 inline MemOperand FieldMemOperand(Register object, int offset) {
    125   return MemOperand(object, offset - kHeapObjectTag);
    126 }
    127 
    128 
    129 // Generate a MemOperand for storing arguments 5..N on the stack
    130 // when calling CallCFunction().
    131 inline MemOperand CFunctionArgumentOperand(int index) {
    132   DCHECK(index > kCArgSlotCount);
    133   // Argument 5 takes the slot just past the four Arg-slots.
    134   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
    135   return MemOperand(sp, offset);
    136 }
    137 
    138 
    139 // MacroAssembler implements a collection of frequently used macros.
    140 class MacroAssembler: public Assembler {
    141  public:
    142   MacroAssembler(Isolate* isolate, void* buffer, int size,
    143                  CodeObjectRequired create_code_object);
    144 
    145   // Arguments macros.
    146 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
    147 #define COND_ARGS cond, r1, r2
    148 
    149   // Cases when relocation is not needed.
    150 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
    151   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
    152   inline void Name(BranchDelaySlot bd, target_type target) { \
    153     Name(target, bd); \
    154   } \
    155   void Name(target_type target, \
    156             COND_TYPED_ARGS, \
    157             BranchDelaySlot bd = PROTECT); \
    158   inline void Name(BranchDelaySlot bd, \
    159                    target_type target, \
    160                    COND_TYPED_ARGS) { \
    161     Name(target, COND_ARGS, bd); \
    162   }
    163 
    164 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
    165   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
    166   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
    167 
    168   DECLARE_BRANCH_PROTOTYPES(Branch)
    169   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
    170   DECLARE_BRANCH_PROTOTYPES(BranchShort)
    171 
    172 #undef DECLARE_BRANCH_PROTOTYPES
    173 #undef COND_TYPED_ARGS
    174 #undef COND_ARGS
    175 
    176 
    177   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    178 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
    179   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
    180 
    181   void Jump(Register target, COND_ARGS);
    182   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
    183   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
    184   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
    185   static int CallSize(Register target, COND_ARGS);
    186   void Call(Register target, COND_ARGS);
    187   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
    188   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
    189   int CallSize(Handle<Code> code,
    190                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    191                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    192                COND_ARGS);
    193   void Call(Handle<Code> code,
    194             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    195             TypeFeedbackId ast_id = TypeFeedbackId::None(),
    196             COND_ARGS);
    197   void Ret(COND_ARGS);
    198   inline void Ret(BranchDelaySlot bd, Condition cond = al,
    199     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
    200     Ret(cond, rs, rt, bd);
    201   }
    202 
    203   bool IsNear(Label* L, Condition cond, int rs_reg);
    204 
    205   void Branch(Label* L,
    206               Condition cond,
    207               Register rs,
    208               Heap::RootListIndex index,
    209               BranchDelaySlot bdslot = PROTECT);
    210 
    211 // Number of instructions needed for calculation of switch table entry address
    212 #ifdef _MIPS_ARCH_MIPS32R6
    213   static const int kSwitchTablePrologueSize = 5;
    214 #else
    215   static const int kSwitchTablePrologueSize = 10;
    216 #endif
    217   // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
    218   // functor/function with 'Label *func(size_t index)' declaration.
    219   template <typename Func>
    220   void GenerateSwitchTable(Register index, size_t case_count,
    221                            Func GetLabelFunction);
    222 #undef COND_ARGS
    223 
    224   // Emit code that loads |parameter_index|'th parameter from the stack to
    225   // the register according to the CallInterfaceDescriptor definition.
    226   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
    227   // below the caller's sp.
    228   template <class Descriptor>
    229   void LoadParameterFromStack(
    230       Register reg, typename Descriptor::ParameterIndices parameter_index,
    231       int sp_to_ra_offset_in_words = 0) {
    232     DCHECK(Descriptor::kPassLastArgsOnStack);
    233     UNIMPLEMENTED();
    234   }
    235 
    236   // Emit code to discard a non-negative number of pointer-sized elements
    237   // from the stack, clobbering only the sp register.
    238   void Drop(int count,
    239             Condition cond = cc_always,
    240             Register reg = no_reg,
    241             const Operand& op = Operand(no_reg));
    242 
    243   // Trivial case of DropAndRet that utilizes the delay slot and only emits
    244   // 2 instructions.
    245   void DropAndRet(int drop);
    246 
    247   void DropAndRet(int drop,
    248                   Condition cond,
    249                   Register reg,
    250                   const Operand& op);
    251 
    252   // Swap two registers.  If the scratch register is omitted then a slightly
    253   // less efficient form using xor instead of mov is emitted.
    254   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
    255 
    256   void Call(Label* target);
    257 
    258   inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
    259   inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
    260 
    261   inline void Move(Register dst, Register src) {
    262     if (!dst.is(src)) {
    263       mov(dst, src);
    264     }
    265   }
    266 
    267   inline void Move_d(FPURegister dst, FPURegister src) {
    268     if (!dst.is(src)) {
    269       mov_d(dst, src);
    270     }
    271   }
    272 
    273   inline void Move_s(FPURegister dst, FPURegister src) {
    274     if (!dst.is(src)) {
    275       mov_s(dst, src);
    276     }
    277   }
    278 
    279   inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
    280 
    281   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
    282     mfc1(dst_low, src);
    283     Mfhc1(dst_high, src);
    284   }
    285 
    286   inline void FmoveHigh(Register dst_high, FPURegister src) {
    287     Mfhc1(dst_high, src);
    288   }
    289 
    290   inline void FmoveHigh(FPURegister dst, Register src_high) {
    291     Mthc1(src_high, dst);
    292   }
    293 
    294   inline void FmoveLow(Register dst_low, FPURegister src) {
    295     mfc1(dst_low, src);
    296   }
    297 
    298   void FmoveLow(FPURegister dst, Register src_low);
    299 
    300   inline void Move(FPURegister dst, Register src_low, Register src_high) {
    301     mtc1(src_low, dst);
    302     Mthc1(src_high, dst);
    303   }
    304 
    305   void Move(FPURegister dst, float imm);
    306   void Move(FPURegister dst, double imm);
    307 
    308   // Conditional move.
    309   void Movz(Register rd, Register rs, Register rt);
    310   void Movn(Register rd, Register rs, Register rt);
    311   void Movt(Register rd, Register rs, uint16_t cc = 0);
    312   void Movf(Register rd, Register rs, uint16_t cc = 0);
    313 
    314   void Clz(Register rd, Register rs);
    315 
    316   // Jump unconditionally to given label.
    317   // We NEED a nop in the branch delay slot, as it used by v8, for example in
    318   // CodeGenerator::ProcessDeferred().
    319   // Currently the branch delay slot is filled by the MacroAssembler.
    320   // Use rather b(Label) for code generation.
    321   void jmp(Label* L) {
    322     Branch(L);
    323   }
    324 
    325   void Load(Register dst, const MemOperand& src, Representation r);
    326   void Store(Register src, const MemOperand& dst, Representation r);
    327 
    328   void PushRoot(Heap::RootListIndex index) {
    329     LoadRoot(at, index);
    330     Push(at);
    331   }
    332 
    333   // Compare the object in a register to a value and jump if they are equal.
    334   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    335     LoadRoot(at, index);
    336     Branch(if_equal, eq, with, Operand(at));
    337   }
    338 
    339   // Compare the object in a register to a value and jump if they are not equal.
    340   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    341                      Label* if_not_equal) {
    342     LoadRoot(at, index);
    343     Branch(if_not_equal, ne, with, Operand(at));
    344   }
    345 
    346   // Load an object from the root table.
    347   void LoadRoot(Register destination,
    348                 Heap::RootListIndex index);
    349   void LoadRoot(Register destination,
    350                 Heap::RootListIndex index,
    351                 Condition cond, Register src1, const Operand& src2);
    352 
    353   // Store an object to the root table.
    354   void StoreRoot(Register source,
    355                  Heap::RootListIndex index);
    356   void StoreRoot(Register source,
    357                  Heap::RootListIndex index,
    358                  Condition cond, Register src1, const Operand& src2);
    359 
    360   // ---------------------------------------------------------------------------
    361   // GC Support
    362 
    363   void IncrementalMarkingRecordWriteHelper(Register object,
    364                                            Register value,
    365                                            Register address);
    366 
    367   enum RememberedSetFinalAction {
    368     kReturnAtEnd,
    369     kFallThroughAtEnd
    370   };
    371 
    372 
    373   // Record in the remembered set the fact that we have a pointer to new space
    374   // at the address pointed to by the addr register.  Only works if addr is not
    375   // in new space.
    376   void RememberedSetHelper(Register object,  // Used for debug code.
    377                            Register addr,
    378                            Register scratch,
    379                            SaveFPRegsMode save_fp,
    380                            RememberedSetFinalAction and_then);
    381 
    382   void CheckPageFlag(Register object,
    383                      Register scratch,
    384                      int mask,
    385                      Condition cc,
    386                      Label* condition_met);
    387 
    388   // Check if object is in new space.  Jumps if the object is not in new space.
    389   // The register scratch can be object itself, but it will be clobbered.
    390   void JumpIfNotInNewSpace(Register object,
    391                            Register scratch,
    392                            Label* branch) {
    393     InNewSpace(object, scratch, eq, branch);
    394   }
    395 
    396   // Check if object is in new space.  Jumps if the object is in new space.
    397   // The register scratch can be object itself, but scratch will be clobbered.
    398   void JumpIfInNewSpace(Register object,
    399                         Register scratch,
    400                         Label* branch) {
    401     InNewSpace(object, scratch, ne, branch);
    402   }
    403 
    404   // Check if an object has a given incremental marking color.
    405   void HasColor(Register object,
    406                 Register scratch0,
    407                 Register scratch1,
    408                 Label* has_color,
    409                 int first_bit,
    410                 int second_bit);
    411 
    412   void JumpIfBlack(Register object,
    413                    Register scratch0,
    414                    Register scratch1,
    415                    Label* on_black);
    416 
    417   // Checks the color of an object.  If the object is white we jump to the
    418   // incremental marker.
    419   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    420                    Register scratch3, Label* value_is_white);
    421 
    422   // Notify the garbage collector that we wrote a pointer into an object.
    423   // |object| is the object being stored into, |value| is the object being
    424   // stored.  value and scratch registers are clobbered by the operation.
    425   // The offset is the offset from the start of the object, not the offset from
    426   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    427   void RecordWriteField(
    428       Register object,
    429       int offset,
    430       Register value,
    431       Register scratch,
    432       RAStatus ra_status,
    433       SaveFPRegsMode save_fp,
    434       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    435       SmiCheck smi_check = INLINE_SMI_CHECK,
    436       PointersToHereCheck pointers_to_here_check_for_value =
    437           kPointersToHereMaybeInteresting);
    438 
    439   // As above, but the offset has the tag presubtracted.  For use with
    440   // MemOperand(reg, off).
    441   inline void RecordWriteContextSlot(
    442       Register context,
    443       int offset,
    444       Register value,
    445       Register scratch,
    446       RAStatus ra_status,
    447       SaveFPRegsMode save_fp,
    448       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    449       SmiCheck smi_check = INLINE_SMI_CHECK,
    450       PointersToHereCheck pointers_to_here_check_for_value =
    451           kPointersToHereMaybeInteresting) {
    452     RecordWriteField(context,
    453                      offset + kHeapObjectTag,
    454                      value,
    455                      scratch,
    456                      ra_status,
    457                      save_fp,
    458                      remembered_set_action,
    459                      smi_check,
    460                      pointers_to_here_check_for_value);
    461   }
    462 
    463   // Notify the garbage collector that we wrote a code entry into a
    464   // JSFunction. Only scratch is clobbered by the operation.
    465   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
    466                                  Register scratch);
    467 
    468   void RecordWriteForMap(
    469       Register object,
    470       Register map,
    471       Register dst,
    472       RAStatus ra_status,
    473       SaveFPRegsMode save_fp);
    474 
    475   // For a given |object| notify the garbage collector that the slot |address|
    476   // has been written.  |value| is the object being stored. The value and
    477   // address registers are clobbered by the operation.
    478   void RecordWrite(
    479       Register object,
    480       Register address,
    481       Register value,
    482       RAStatus ra_status,
    483       SaveFPRegsMode save_fp,
    484       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    485       SmiCheck smi_check = INLINE_SMI_CHECK,
    486       PointersToHereCheck pointers_to_here_check_for_value =
    487           kPointersToHereMaybeInteresting);
    488 
    489 
    490   // ---------------------------------------------------------------------------
    491   // Inline caching support.
    492 
    493   void GetNumberHash(Register reg0, Register scratch);
    494 
    495   inline void MarkCode(NopMarkerTypes type) {
    496     nop(type);
    497   }
    498 
    499   // Check if the given instruction is a 'type' marker.
    500   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
    501   // nop(type)). These instructions are generated to mark special location in
    502   // the code, like some special IC code.
    503   static inline bool IsMarkedCode(Instr instr, int type) {
    504     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    505     return IsNop(instr, type);
    506   }
    507 
    508 
    509   static inline int GetCodeMarker(Instr instr) {
    510     uint32_t opcode = ((instr & kOpcodeMask));
    511     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
    512     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
    513     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
    514 
    515     // Return <n> if we have a sll zero_reg, zero_reg, n
    516     // else return -1.
    517     bool sllzz = (opcode == SLL &&
    518                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
    519                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
    520     int type =
    521         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
    522     DCHECK((type == -1) ||
    523            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    524     return type;
    525   }
    526 
    527 
    528 
    529   // ---------------------------------------------------------------------------
    530   // Allocation support.
    531 
    532   // Allocate an object in new space or old space. The object_size is
    533   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    534   // is passed. If the space is exhausted control continues at the gc_required
    535   // label. The allocated object is returned in result. If the flag
    536   // tag_allocated_object is true the result is tagged as as a heap object.
    537   // All registers are clobbered also when control continues at the gc_required
    538   // label.
    539   void Allocate(int object_size,
    540                 Register result,
    541                 Register scratch1,
    542                 Register scratch2,
    543                 Label* gc_required,
    544                 AllocationFlags flags);
    545 
    546   void Allocate(Register object_size, Register result, Register result_new,
    547                 Register scratch, Label* gc_required, AllocationFlags flags);
    548 
    549   // FastAllocate is right now only used for folded allocations. It just
    550   // increments the top pointer without checking against limit. This can only
    551   // be done if it was proved earlier that the allocation will succeed.
    552   void FastAllocate(int object_size, Register result, Register scratch1,
    553                     Register scratch2, AllocationFlags flags);
    554 
    555   void FastAllocate(Register object_size, Register result, Register result_new,
    556                     Register scratch, AllocationFlags flags);
    557 
    558   // Allocates a heap number or jumps to the gc_required label if the young
    559   // space is full and a scavenge is needed. All registers are clobbered also
    560   // when control continues at the gc_required label.
    561   void AllocateHeapNumber(Register result,
    562                           Register scratch1,
    563                           Register scratch2,
    564                           Register heap_number_map,
    565                           Label* gc_required,
    566                           MutableMode mode = IMMUTABLE);
    567   void AllocateHeapNumberWithValue(Register result,
    568                                    FPURegister value,
    569                                    Register scratch1,
    570                                    Register scratch2,
    571                                    Label* gc_required);
    572 
    573   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    574   // and {value}.
    575   void AllocateJSValue(Register result, Register constructor, Register value,
    576                        Register scratch1, Register scratch2,
    577                        Label* gc_required);
    578 
    579   // ---------------------------------------------------------------------------
    580   // Instruction macros.
    581 
    582 #define DEFINE_INSTRUCTION(instr)                                              \
    583   void instr(Register rd, Register rs, const Operand& rt);                     \
    584   void instr(Register rd, Register rs, Register rt) {                          \
    585     instr(rd, rs, Operand(rt));                                                \
    586   }                                                                            \
    587   void instr(Register rs, Register rt, int32_t j) {                            \
    588     instr(rs, rt, Operand(j));                                                 \
    589   }
    590 
    591 #define DEFINE_INSTRUCTION2(instr)                                             \
    592   void instr(Register rs, const Operand& rt);                                  \
    593   void instr(Register rs, Register rt) {                                       \
    594     instr(rs, Operand(rt));                                                    \
    595   }                                                                            \
    596   void instr(Register rs, int32_t j) {                                         \
    597     instr(rs, Operand(j));                                                     \
    598   }
    599 
    600 #define DEFINE_INSTRUCTION3(instr)                                             \
    601   void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt);  \
    602   void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) {       \
    603     instr(rd_hi, rd_lo, rs, Operand(rt));                                      \
    604   }                                                                            \
    605   void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) {         \
    606     instr(rd_hi, rd_lo, rs, Operand(j));                                       \
    607   }
    608 
    609   DEFINE_INSTRUCTION(Addu);
    610   DEFINE_INSTRUCTION(Subu);
    611   DEFINE_INSTRUCTION(Mul);
    612   DEFINE_INSTRUCTION(Div);
    613   DEFINE_INSTRUCTION(Divu);
    614   DEFINE_INSTRUCTION(Mod);
    615   DEFINE_INSTRUCTION(Modu);
    616   DEFINE_INSTRUCTION(Mulh);
    617   DEFINE_INSTRUCTION2(Mult);
    618   DEFINE_INSTRUCTION(Mulhu);
    619   DEFINE_INSTRUCTION2(Multu);
    620   DEFINE_INSTRUCTION2(Div);
    621   DEFINE_INSTRUCTION2(Divu);
    622 
    623   DEFINE_INSTRUCTION3(Div);
    624   DEFINE_INSTRUCTION3(Mul);
    625   DEFINE_INSTRUCTION3(Mulu);
    626 
    627   DEFINE_INSTRUCTION(And);
    628   DEFINE_INSTRUCTION(Or);
    629   DEFINE_INSTRUCTION(Xor);
    630   DEFINE_INSTRUCTION(Nor);
    631   DEFINE_INSTRUCTION2(Neg);
    632 
    633   DEFINE_INSTRUCTION(Slt);
    634   DEFINE_INSTRUCTION(Sltu);
    635 
    636   // MIPS32 R2 instruction macro.
    637   DEFINE_INSTRUCTION(Ror);
    638 
    639 #undef DEFINE_INSTRUCTION
    640 #undef DEFINE_INSTRUCTION2
    641 #undef DEFINE_INSTRUCTION3
    642 
    643   // Load Scaled Address instructions. Parameter sa (shift argument) must be
    644   // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
    645   // may be clobbered.
    646   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
    647            Register scratch = at);
    648 
    649   void Pref(int32_t hint, const MemOperand& rs);
    650 
    651 
    652   // ---------------------------------------------------------------------------
    653   // Pseudo-instructions.
    654 
    655   // Change endianness
    656   void ByteSwapSigned(Register dest, Register src, int operand_size);
    657   void ByteSwapUnsigned(Register dest, Register src, int operand_size);
    658 
    659   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
    660 
    661   void Ulh(Register rd, const MemOperand& rs);
    662   void Ulhu(Register rd, const MemOperand& rs);
    663   void Ush(Register rd, const MemOperand& rs, Register scratch);
    664 
    665   void Ulw(Register rd, const MemOperand& rs);
    666   void Usw(Register rd, const MemOperand& rs);
    667 
    668   void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
    669   void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
    670 
    671   void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
    672   void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
    673 
    674   // Load int32 in the rd register.
    675   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
    676   inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
    677     li(rd, Operand(j), mode);
    678   }
    679   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
    680 
    681   // Push multiple registers on the stack.
    682   // Registers are saved in numerical order, with higher numbered registers
    683   // saved in higher memory addresses.
    684   void MultiPush(RegList regs);
    685   void MultiPushReversed(RegList regs);
    686 
    687   void MultiPushFPU(RegList regs);
    688   void MultiPushReversedFPU(RegList regs);
    689 
    690   void push(Register src) {
    691     Addu(sp, sp, Operand(-kPointerSize));
    692     sw(src, MemOperand(sp, 0));
    693   }
    694   void Push(Register src) { push(src); }
    695 
    696   // Push a handle.
    697   void Push(Handle<Object> handle);
    698   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    699 
    700   // Push two registers. Pushes leftmost register first (to highest address).
    701   void Push(Register src1, Register src2) {
    702     Subu(sp, sp, Operand(2 * kPointerSize));
    703     sw(src1, MemOperand(sp, 1 * kPointerSize));
    704     sw(src2, MemOperand(sp, 0 * kPointerSize));
    705   }
    706 
    707   // Push three registers. Pushes leftmost register first (to highest address).
    708   void Push(Register src1, Register src2, Register src3) {
    709     Subu(sp, sp, Operand(3 * kPointerSize));
    710     sw(src1, MemOperand(sp, 2 * kPointerSize));
    711     sw(src2, MemOperand(sp, 1 * kPointerSize));
    712     sw(src3, MemOperand(sp, 0 * kPointerSize));
    713   }
    714 
    715   // Push four registers. Pushes leftmost register first (to highest address).
    716   void Push(Register src1, Register src2, Register src3, Register src4) {
    717     Subu(sp, sp, Operand(4 * kPointerSize));
    718     sw(src1, MemOperand(sp, 3 * kPointerSize));
    719     sw(src2, MemOperand(sp, 2 * kPointerSize));
    720     sw(src3, MemOperand(sp, 1 * kPointerSize));
    721     sw(src4, MemOperand(sp, 0 * kPointerSize));
    722   }
    723 
    724   // Push five registers. Pushes leftmost register first (to highest address).
    725   void Push(Register src1, Register src2, Register src3, Register src4,
    726             Register src5) {
    727     Subu(sp, sp, Operand(5 * kPointerSize));
    728     sw(src1, MemOperand(sp, 4 * kPointerSize));
    729     sw(src2, MemOperand(sp, 3 * kPointerSize));
    730     sw(src3, MemOperand(sp, 2 * kPointerSize));
    731     sw(src4, MemOperand(sp, 1 * kPointerSize));
    732     sw(src5, MemOperand(sp, 0 * kPointerSize));
    733   }
    734 
    735   void Push(Register src, Condition cond, Register tst1, Register tst2) {
    736     // Since we don't have conditional execution we use a Branch.
    737     Branch(3, cond, tst1, Operand(tst2));
    738     Subu(sp, sp, Operand(kPointerSize));
    739     sw(src, MemOperand(sp, 0));
    740   }
    741 
    742   // Pops multiple values from the stack and load them in the
    743   // registers specified in regs. Pop order is the opposite as in MultiPush.
    744   void MultiPop(RegList regs);
    745   void MultiPopReversed(RegList regs);
    746 
    747   void MultiPopFPU(RegList regs);
    748   void MultiPopReversedFPU(RegList regs);
    749 
    750   void pop(Register dst) {
    751     lw(dst, MemOperand(sp, 0));
    752     Addu(sp, sp, Operand(kPointerSize));
    753   }
    754   void Pop(Register dst) { pop(dst); }
    755 
    756   // Pop two registers. Pops rightmost register first (from lower address).
    757   void Pop(Register src1, Register src2) {
    758     DCHECK(!src1.is(src2));
    759     lw(src2, MemOperand(sp, 0 * kPointerSize));
    760     lw(src1, MemOperand(sp, 1 * kPointerSize));
    761     Addu(sp, sp, 2 * kPointerSize);
    762   }
    763 
    764   // Pop three registers. Pops rightmost register first (from lower address).
    765   void Pop(Register src1, Register src2, Register src3) {
    766     lw(src3, MemOperand(sp, 0 * kPointerSize));
    767     lw(src2, MemOperand(sp, 1 * kPointerSize));
    768     lw(src1, MemOperand(sp, 2 * kPointerSize));
    769     Addu(sp, sp, 3 * kPointerSize);
    770   }
    771 
    772   void Pop(uint32_t count = 1) {
    773     Addu(sp, sp, Operand(count * kPointerSize));
    774   }
    775 
    776   // Push a fixed frame, consisting of ra, fp.
    777   void PushCommonFrame(Register marker_reg = no_reg);
    778 
    779   // Push a standard frame, consisting of ra, fp, context and JS function.
    780   void PushStandardFrame(Register function_reg);
    781 
    782   void PopCommonFrame(Register marker_reg = no_reg);
    783 
    784   // Push and pop the registers that can hold pointers, as defined by the
    785   // RegList constant kSafepointSavedRegisters.
    786   void PushSafepointRegisters();
    787   void PopSafepointRegisters();
    788   // Store value in register src in the safepoint stack slot for
    789   // register dst.
    790   void StoreToSafepointRegisterSlot(Register src, Register dst);
    791   // Load the value of the src register from its safepoint stack slot
    792   // into register dst.
    793   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    794 
    795   // MIPS32 R2 instruction macro.
    796   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
    797   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
    798   void Seb(Register rd, Register rt);
    799   void Seh(Register rd, Register rt);
    800   void Neg_s(FPURegister fd, FPURegister fs);
    801   void Neg_d(FPURegister fd, FPURegister fs);
    802 
    803   // MIPS32 R6 instruction macros.
    804   void Bovc(Register rt, Register rs, Label* L);
    805   void Bnvc(Register rt, Register rs, Label* L);
    806 
    807   // Int64Lowering instructions
    808   void AddPair(Register dst_low, Register dst_high, Register left_low,
    809                Register left_high, Register right_low, Register right_high);
    810 
    811   void SubPair(Register dst_low, Register dst_high, Register left_low,
    812                Register left_high, Register right_low, Register right_high);
    813 
    814   void ShlPair(Register dst_low, Register dst_high, Register src_low,
    815                Register src_high, Register shift);
    816 
    817   void ShlPair(Register dst_low, Register dst_high, Register src_low,
    818                Register src_high, uint32_t shift);
    819 
    820   void ShrPair(Register dst_low, Register dst_high, Register src_low,
    821                Register src_high, Register shift);
    822 
    823   void ShrPair(Register dst_low, Register dst_high, Register src_low,
    824                Register src_high, uint32_t shift);
    825 
    826   void SarPair(Register dst_low, Register dst_high, Register src_low,
    827                Register src_high, Register shift);
    828 
    829   void SarPair(Register dst_low, Register dst_high, Register src_low,
    830                Register src_high, uint32_t shift);
    831 
    832   // ---------------------------------------------------------------------------
    833   // FPU macros. These do not handle special cases like NaN or +- inf.
    834 
    835   // Convert unsigned word to double.
    836   void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
    837 
    838   // Convert single to unsigned word.
    839   void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
    840   void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
    841 
    842   // Convert double to unsigned word.
    843   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
    844   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
    845 
    846   void Trunc_w_d(FPURegister fd, FPURegister fs);
    847   void Round_w_d(FPURegister fd, FPURegister fs);
    848   void Floor_w_d(FPURegister fd, FPURegister fs);
    849   void Ceil_w_d(FPURegister fd, FPURegister fs);
    850 
    851   // FP32 mode: Move the general purpose register into
    852   // the high part of the double-register pair.
    853   // FP64 mode: Move the general-purpose register into
    854   // the higher 32 bits of the 64-bit coprocessor register,
    855   // while leaving the low bits unchanged.
    856   void Mthc1(Register rt, FPURegister fs);
    857 
    858   // FP32 mode: move the high part of the double-register pair into
    859   // general purpose register.
    860   // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
    861   // general-purpose register.
    862   void Mfhc1(Register rt, FPURegister fs);
    863 
    864   void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
    865               FPURegister scratch);
    866   void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
    867               FPURegister scratch);
    868   void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
    869               FPURegister scratch);
    870   void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
    871               FPURegister scratch);
    872 
    873   // Wrapper functions for the different cmp/branch types.
    874   inline void BranchF32(Label* target, Label* nan, Condition cc,
    875                         FPURegister cmp1, FPURegister cmp2,
    876                         BranchDelaySlot bd = PROTECT) {
    877     BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
    878   }
    879 
    880   inline void BranchF64(Label* target, Label* nan, Condition cc,
    881                         FPURegister cmp1, FPURegister cmp2,
    882                         BranchDelaySlot bd = PROTECT) {
    883     BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
    884   }
    885 
    886   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
    887   inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
    888                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
    889     BranchF64(target, nan, cc, cmp1, cmp2, bd);
    890   }
    891 
    892   inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
    893                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
    894     BranchF32(target, nan, cc, cmp1, cmp2, bd);
    895   }
    896 
    897   // Alias functions for backward compatibility.
    898   inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
    899                       FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
    900     BranchF64(target, nan, cc, cmp1, cmp2, bd);
    901   }
    902 
    903   inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
    904                       Condition cc, FPURegister cmp1, FPURegister cmp2) {
    905     BranchF64(bd, target, nan, cc, cmp1, cmp2);
    906   }
    907 
    908   // Truncates a double using a specific rounding mode, and writes the value
    909   // to the result register.
    910   // The except_flag will contain any exceptions caused by the instruction.
    911   // If check_inexact is kDontCheckForInexactConversion, then the inexact
    912   // exception is masked.
    913   void EmitFPUTruncate(FPURoundingMode rounding_mode,
    914                        Register result,
    915                        DoubleRegister double_input,
    916                        Register scratch,
    917                        DoubleRegister double_scratch,
    918                        Register except_flag,
    919                        CheckForInexactConversion check_inexact
    920                            = kDontCheckForInexactConversion);
    921 
    922   // Performs a truncating conversion of a floating point number as used by
    923   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
    924   // succeeds, otherwise falls through if result is saturated. On return
    925   // 'result' either holds answer, or is clobbered on fall through.
    926   //
    927   // Only public for the test code in test-code-stubs-arm.cc.
    928   void TryInlineTruncateDoubleToI(Register result,
    929                                   DoubleRegister input,
    930                                   Label* done);
    931 
    932   // Performs a truncating conversion of a floating point number as used by
    933   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
    934   // Exits with 'result' holding the answer.
    935   void TruncateDoubleToI(Register result, DoubleRegister double_input);
    936 
    937   // Performs a truncating conversion of a heap number as used by
    938   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
    939   // must be different registers. Exits with 'result' holding the answer.
    940   void TruncateHeapNumberToI(Register result, Register object);
    941 
    942   // Converts the smi or heap number in object to an int32 using the rules
    943   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
    944   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
    945   // different registers.
    946   void TruncateNumberToI(Register object,
    947                          Register result,
    948                          Register heap_number_map,
    949                          Register scratch,
    950                          Label* not_int32);
    951 
    952   // Loads the number from object into dst register.
    953   // If |object| is neither smi nor heap number, |not_number| is jumped to
    954   // with |object| still intact.
    955   void LoadNumber(Register object,
    956                   FPURegister dst,
    957                   Register heap_number_map,
    958                   Register scratch,
    959                   Label* not_number);
    960 
    961   // Loads the number from object into double_dst in the double format.
    962   // Control will jump to not_int32 if the value cannot be exactly represented
    963   // by a 32-bit integer.
    964   // Floating point value in the 32-bit integer range that are not exact integer
    965   // won't be loaded.
    966   void LoadNumberAsInt32Double(Register object,
    967                                DoubleRegister double_dst,
    968                                Register heap_number_map,
    969                                Register scratch1,
    970                                Register scratch2,
    971                                FPURegister double_scratch,
    972                                Label* not_int32);
    973 
    974   // Loads the number from object into dst as a 32-bit integer.
    975   // Control will jump to not_int32 if the object cannot be exactly represented
    976   // by a 32-bit integer.
    977   // Floating point value in the 32-bit integer range that are not exact integer
    978   // won't be converted.
    979   void LoadNumberAsInt32(Register object,
    980                          Register dst,
    981                          Register heap_number_map,
    982                          Register scratch1,
    983                          Register scratch2,
    984                          FPURegister double_scratch0,
    985                          FPURegister double_scratch1,
    986                          Label* not_int32);
    987 
    988   // Enter exit frame.
    989   // argc - argument count to be dropped by LeaveExitFrame.
    990   // save_doubles - saves FPU registers on stack, currently disabled.
    991   // stack_space - extra stack space.
    992   void EnterExitFrame(bool save_doubles, int stack_space = 0,
    993                       StackFrame::Type frame_type = StackFrame::EXIT);
    994 
    995   // Leave the current exit frame.
    996   void LeaveExitFrame(bool save_doubles, Register arg_count,
    997                       bool restore_context, bool do_return = NO_EMIT_RETURN,
    998                       bool argument_count_is_length = false);
    999 
   1000   // Get the actual activation frame alignment for target environment.
   1001   static int ActivationFrameAlignment();
   1002 
   1003   // Make sure the stack is aligned. Only emits code in debug mode.
   1004   void AssertStackIsAligned();
   1005 
   1006   void LoadContext(Register dst, int context_chain_length);
   1007 
   1008   // Load the global object from the current context.
   1009   void LoadGlobalObject(Register dst) {
   1010     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
   1011   }
   1012 
   1013   // Load the global proxy from the current context.
   1014   void LoadGlobalProxy(Register dst) {
   1015     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
   1016   }
   1017 
   1018   void LoadNativeContextSlot(int index, Register dst);
   1019 
   1020   // Load the initial map from the global function. The registers
   1021   // function and map can be the same, function is then overwritten.
   1022   void LoadGlobalFunctionInitialMap(Register function,
   1023                                     Register map,
   1024                                     Register scratch);
   1025 
   1026   void InitializeRootRegister() {
   1027     ExternalReference roots_array_start =
   1028         ExternalReference::roots_array_start(isolate());
   1029     li(kRootRegister, Operand(roots_array_start));
   1030   }
   1031 
   1032   // -------------------------------------------------------------------------
   1033   // JavaScript invokes.
   1034 
   1035   // Removes current frame and its arguments from the stack preserving
   1036   // the arguments and a return address pushed to the stack for the next call.
   1037   // Both |callee_args_count| and |caller_args_count_reg| do not include
   1038   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
   1039   // is trashed.
   1040   void PrepareForTailCall(const ParameterCount& callee_args_count,
   1041                           Register caller_args_count_reg, Register scratch0,
   1042                           Register scratch1);
   1043 
   1044   // Invoke the JavaScript function code by either calling or jumping.
   1045   void InvokeFunctionCode(Register function, Register new_target,
   1046                           const ParameterCount& expected,
   1047                           const ParameterCount& actual, InvokeFlag flag,
   1048                           const CallWrapper& call_wrapper);
   1049 
   1050   // On function call, call into the debugger if necessary.
   1051   void CheckDebugHook(Register fun, Register new_target,
   1052                       const ParameterCount& expected,
   1053                       const ParameterCount& actual);
   1054 
   1055   // Invoke the JavaScript function in the given register. Changes the
   1056   // current context to the context in the function before invoking.
   1057   void InvokeFunction(Register function,
   1058                       Register new_target,
   1059                       const ParameterCount& actual,
   1060                       InvokeFlag flag,
   1061                       const CallWrapper& call_wrapper);
   1062 
   1063   void InvokeFunction(Register function,
   1064                       const ParameterCount& expected,
   1065                       const ParameterCount& actual,
   1066                       InvokeFlag flag,
   1067                       const CallWrapper& call_wrapper);
   1068 
   1069   void InvokeFunction(Handle<JSFunction> function,
   1070                       const ParameterCount& expected,
   1071                       const ParameterCount& actual,
   1072                       InvokeFlag flag,
   1073                       const CallWrapper& call_wrapper);
   1074 
   1075   void IsObjectJSStringType(Register object,
   1076                             Register scratch,
   1077                             Label* fail);
   1078 
   1079   void IsObjectNameType(Register object,
   1080                         Register scratch,
   1081                         Label* fail);
   1082 
   1083   // Frame restart support.
   1084   void MaybeDropFrames();
   1085 
   1086   // Exception handling.
   1087 
   1088   // Push a new stack handler and link into stack handler chain.
   1089   void PushStackHandler();
   1090 
   1091   // Unlink the stack handler on top of the stack from the stack handler chain.
   1092   // Must preserve the result register.
   1093   void PopStackHandler();
   1094 
   1095   // Initialize fields with filler values.  Fields starting at |current_address|
   1096   // not including |end_address| are overwritten with the value in |filler|.  At
   1097   // the end the loop, |current_address| takes the value of |end_address|.
   1098   void InitializeFieldsWithFiller(Register current_address,
   1099                                   Register end_address, Register filler);
   1100 
   1101   // -------------------------------------------------------------------------
   1102   // Support functions.
   1103 
   1104   // Machine code version of Map::GetConstructor().
   1105   // |temp| holds |result|'s map when done, and |temp2| its instance type.
   1106   void GetMapConstructor(Register result, Register map, Register temp,
   1107                          Register temp2);
   1108 
   1109   void GetObjectType(Register function,
   1110                      Register map,
   1111                      Register type_reg);
   1112 
   1113   void GetInstanceType(Register object_map, Register object_instance_type) {
   1114     lbu(object_instance_type,
   1115         FieldMemOperand(object_map, Map::kInstanceTypeOffset));
   1116   }
   1117 
   1118   // Compare an object's map with the specified map and its transitioned
   1119   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
   1120   // "branch_to" if the result of the comparison is "cond". If multiple map
   1121   // compares are required, the compare sequences branches to early_success.
   1122   void CompareMapAndBranch(Register obj,
   1123                            Register scratch,
   1124                            Handle<Map> map,
   1125                            Label* early_success,
   1126                            Condition cond,
   1127                            Label* branch_to);
   1128 
   1129   // As above, but the map of the object is already loaded into the register
   1130   // which is preserved by the code generated.
   1131   void CompareMapAndBranch(Register obj_map,
   1132                            Handle<Map> map,
   1133                            Label* early_success,
   1134                            Condition cond,
   1135                            Label* branch_to);
   1136 
   1137   // Check if the map of an object is equal to a specified map and branch to
   1138   // label if not. Skip the smi check if not required (object is known to be a
   1139   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
   1140   // against maps that are ElementsKind transition maps of the specificed map.
   1141   void CheckMap(Register obj,
   1142                 Register scratch,
   1143                 Handle<Map> map,
   1144                 Label* fail,
   1145                 SmiCheckType smi_check_type);
   1146 
   1147 
   1148   void CheckMap(Register obj,
   1149                 Register scratch,
   1150                 Heap::RootListIndex index,
   1151                 Label* fail,
   1152                 SmiCheckType smi_check_type);
   1153 
   1154   // Check if the map of an object is equal to a specified weak map and branch
   1155   // to a specified target if equal. Skip the smi check if not required
   1156   // (object is known to be a heap object)
   1157   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
   1158                        Handle<WeakCell> cell, Handle<Code> success,
   1159                        SmiCheckType smi_check_type);
   1160 
   1161   // If the value is a NaN, canonicalize the value else, do nothing.
   1162   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
   1163 
   1164   // Get value of the weak cell.
   1165   void GetWeakValue(Register value, Handle<WeakCell> cell);
   1166 
   1167   // Load the value of the weak cell in the value register. Branch to the
   1168   // given miss label is the weak cell was cleared.
   1169   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
   1170 
   1171   // Load and check the instance type of an object for being a string.
   1172   // Loads the type into the second argument register.
   1173   // Returns a condition that will be enabled if the object was a string.
   1174   Condition IsObjectStringType(Register obj,
   1175                                Register type,
   1176                                Register result) {
   1177     lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
   1178     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
   1179     And(type, type, Operand(kIsNotStringMask));
   1180     DCHECK_EQ(0u, kStringTag);
   1181     return eq;
   1182   }
   1183 
   1184   // Get the number of least significant bits from a register.
   1185   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
   1186   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
   1187 
   1188   // Load the value of a number object into a FPU double register. If the
   1189   // object is not a number a jump to the label not_number is performed
   1190   // and the FPU double register is unchanged.
   1191   void ObjectToDoubleFPURegister(
   1192       Register object,
   1193       FPURegister value,
   1194       Register scratch1,
   1195       Register scratch2,
   1196       Register heap_number_map,
   1197       Label* not_number,
   1198       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
   1199 
   1200   // Load the value of a smi object into a FPU double register. The register
   1201   // scratch1 can be the same register as smi in which case smi will hold the
   1202   // untagged value afterwards.
   1203   void SmiToDoubleFPURegister(Register smi,
   1204                               FPURegister value,
   1205                               Register scratch1);
   1206 
   1207   // -------------------------------------------------------------------------
   1208   // Overflow handling functions.
   1209   // Usage: first call the appropriate arithmetic function, then call one of the
   1210   // jump functions with the overflow_dst register as the second parameter.
   1211 
   1212   inline void AddBranchOvf(Register dst, Register left, const Operand& right,
   1213                            Label* overflow_label, Register scratch = at) {
   1214     AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
   1215   }
   1216 
   1217   inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
   1218                              Label* no_overflow_label, Register scratch = at) {
   1219     AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
   1220   }
   1221 
   1222   void AddBranchOvf(Register dst, Register left, const Operand& right,
   1223                     Label* overflow_label, Label* no_overflow_label,
   1224                     Register scratch = at);
   1225 
   1226   void AddBranchOvf(Register dst, Register left, Register right,
   1227                     Label* overflow_label, Label* no_overflow_label,
   1228                     Register scratch = at);
   1229 
   1230 
   1231   inline void SubBranchOvf(Register dst, Register left, const Operand& right,
   1232                            Label* overflow_label, Register scratch = at) {
   1233     SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
   1234   }
   1235 
   1236   inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
   1237                              Label* no_overflow_label, Register scratch = at) {
   1238     SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
   1239   }
   1240 
   1241   void SubBranchOvf(Register dst, Register left, const Operand& right,
   1242                     Label* overflow_label, Label* no_overflow_label,
   1243                     Register scratch = at);
   1244 
   1245   void SubBranchOvf(Register dst, Register left, Register right,
   1246                     Label* overflow_label, Label* no_overflow_label,
   1247                     Register scratch = at);
   1248 
   1249   inline void MulBranchOvf(Register dst, Register left, const Operand& right,
   1250                            Label* overflow_label, Register scratch = at) {
   1251     MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
   1252   }
   1253 
   1254   inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
   1255                              Label* no_overflow_label, Register scratch = at) {
   1256     MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
   1257   }
   1258 
   1259   void MulBranchOvf(Register dst, Register left, const Operand& right,
   1260                     Label* overflow_label, Label* no_overflow_label,
   1261                     Register scratch = at);
   1262 
   1263   void MulBranchOvf(Register dst, Register left, Register right,
   1264                     Label* overflow_label, Label* no_overflow_label,
   1265                     Register scratch = at);
   1266 
   1267   // Perform a floating-point min or max operation with the
   1268   // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
   1269   // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
   1270   // handled in out-of-line code. The specific behaviour depends on supported
   1271   // instructions.
   1272   //
   1273   // These functions assume (and assert) that !src1.is(src2). It is permitted
   1274   // for the result to alias either input register.
   1275   void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
   1276                   Label* out_of_line);
   1277   void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
   1278                   Label* out_of_line);
   1279   void Float64Max(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
   1280                   Label* out_of_line);
   1281   void Float64Min(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
   1282                   Label* out_of_line);
   1283 
   1284   // Generate out-of-line cases for the macros above.
   1285   void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
   1286   void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
   1287   void Float64MaxOutOfLine(DoubleRegister dst, DoubleRegister src1,
   1288                            DoubleRegister src2);
   1289   void Float64MinOutOfLine(DoubleRegister dst, DoubleRegister src1,
   1290                            DoubleRegister src2);
   1291 
   1292   // -------------------------------------------------------------------------
   1293   // Runtime calls.
   1294 
   1295   // See comments at the beginning of CEntryStub::Generate.
   1296   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
   1297 
   1298   inline void PrepareCEntryFunction(const ExternalReference& ref) {
   1299     li(a1, Operand(ref));
   1300   }
   1301 
   1302 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
   1303 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
   1304 
   1305   // Call a code stub.
   1306   void CallStub(CodeStub* stub,
   1307                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1308                 COND_ARGS);
   1309 
   1310   // Tail call a code stub (jump).
   1311   void TailCallStub(CodeStub* stub, COND_ARGS);
   1312 
   1313 #undef COND_ARGS
   1314 
   1315   void CallJSExitStub(CodeStub* stub);
   1316 
   1317   // Call a runtime routine.
   1318   void CallRuntime(const Runtime::Function* f, int num_arguments,
   1319                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
   1320                    BranchDelaySlot bd = PROTECT);
   1321   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
   1322     const Runtime::Function* function = Runtime::FunctionForId(id);
   1323     CallRuntime(function, function->nargs, kSaveFPRegs);
   1324   }
   1325 
   1326   // Convenience function: Same as above, but takes the fid instead.
   1327   void CallRuntime(Runtime::FunctionId fid,
   1328                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
   1329                    BranchDelaySlot bd = PROTECT) {
   1330     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1331     CallRuntime(function, function->nargs, save_doubles, bd);
   1332   }
   1333 
   1334   // Convenience function: Same as above, but takes the fid instead.
   1335   void CallRuntime(Runtime::FunctionId id, int num_arguments,
   1336                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
   1337                    BranchDelaySlot bd = PROTECT) {
   1338     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles, bd);
   1339   }
   1340 
   1341   // Convenience function: call an external reference.
   1342   void CallExternalReference(const ExternalReference& ext,
   1343                              int num_arguments,
   1344                              BranchDelaySlot bd = PROTECT);
   1345 
   1346 
   1347   // Convenience function: tail call a runtime routine (jump).
   1348   void TailCallRuntime(Runtime::FunctionId fid);
   1349 
   1350   int CalculateStackPassedWords(int num_reg_arguments,
   1351                                 int num_double_arguments);
   1352 
   1353   // Before calling a C-function from generated code, align arguments on stack
   1354   // and add space for the four mips argument slots.
   1355   // After aligning the frame, non-register arguments must be stored on the
   1356   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
   1357   // The argument count assumes all arguments are word sized.
   1358   // Some compilers/platforms require the stack to be aligned when calling
   1359   // C++ code.
   1360   // Needs a scratch register to do some arithmetic. This register will be
   1361   // trashed.
   1362   void PrepareCallCFunction(int num_reg_arguments,
   1363                             int num_double_registers,
   1364                             Register scratch);
   1365   void PrepareCallCFunction(int num_reg_arguments,
   1366                             Register scratch);
   1367 
   1368   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
   1369   // Arguments 5..n are stored to stack using following:
   1370   //  sw(t0, CFunctionArgumentOperand(5));
   1371 
   1372   // Calls a C function and cleans up the space for arguments allocated
   1373   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1374   // garbage collection, since that might move the code and invalidate the
   1375   // return address (unless this is somehow accounted for by the called
   1376   // function).
   1377   void CallCFunction(ExternalReference function, int num_arguments);
   1378   void CallCFunction(Register function, int num_arguments);
   1379   void CallCFunction(ExternalReference function,
   1380                      int num_reg_arguments,
   1381                      int num_double_arguments);
   1382   void CallCFunction(Register function,
   1383                      int num_reg_arguments,
   1384                      int num_double_arguments);
   1385   void MovFromFloatResult(DoubleRegister dst);
   1386   void MovFromFloatParameter(DoubleRegister dst);
   1387 
   1388   // There are two ways of passing double arguments on MIPS, depending on
   1389   // whether soft or hard floating point ABI is used. These functions
   1390   // abstract parameter passing for the three different ways we call
   1391   // C functions from generated code.
   1392   void MovToFloatParameter(DoubleRegister src);
   1393   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
   1394   void MovToFloatResult(DoubleRegister src);
   1395 
   1396   // Jump to the builtin routine.
   1397   void JumpToExternalReference(const ExternalReference& builtin,
   1398                                BranchDelaySlot bd = PROTECT,
   1399                                bool builtin_exit_frame = false);
   1400 
   1401   struct Unresolved {
   1402     int pc;
   1403     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
   1404     const char* name;
   1405   };
   1406 
   1407   Handle<Object> CodeObject() {
   1408     DCHECK(!code_object_.is_null());
   1409     return code_object_;
   1410   }
   1411 
   1412   // Emit code for a truncating division by a constant. The dividend register is
   1413   // unchanged and at gets clobbered. Dividend and result must be different.
   1414   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1415 
   1416   // -------------------------------------------------------------------------
   1417   // StatsCounter support.
   1418 
   1419   void SetCounter(StatsCounter* counter, int value,
   1420                   Register scratch1, Register scratch2);
   1421   void IncrementCounter(StatsCounter* counter, int value,
   1422                         Register scratch1, Register scratch2);
   1423   void DecrementCounter(StatsCounter* counter, int value,
   1424                         Register scratch1, Register scratch2);
   1425 
   1426 
   1427   // -------------------------------------------------------------------------
   1428   // Debugging.
   1429 
   1430   // Calls Abort(msg) if the condition cc is not satisfied.
   1431   // Use --debug_code to enable.
   1432   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
   1433   void AssertFastElements(Register elements);
   1434 
   1435   // Like Assert(), but always enabled.
   1436   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
   1437 
   1438   // Print a message to stdout and abort execution.
   1439   void Abort(BailoutReason msg);
   1440 
   1441   // Verify restrictions about code generated in stubs.
   1442   void set_generating_stub(bool value) { generating_stub_ = value; }
   1443   bool generating_stub() { return generating_stub_; }
   1444   void set_has_frame(bool value) { has_frame_ = value; }
   1445   bool has_frame() { return has_frame_; }
   1446   inline bool AllowThisStubCall(CodeStub* stub);
   1447 
   1448   // ---------------------------------------------------------------------------
   1449   // Number utilities.
   1450 
   1451   // Check whether the value of reg is a power of two and not zero. If not
   1452   // control continues at the label not_power_of_two. If reg is a power of two
   1453   // the register scratch contains the value of (reg - 1) when control falls
   1454   // through.
   1455   void JumpIfNotPowerOfTwoOrZero(Register reg,
   1456                                  Register scratch,
   1457                                  Label* not_power_of_two_or_zero);
   1458 
   1459   // -------------------------------------------------------------------------
   1460   // Smi utilities.
   1461 
   1462   void SmiTag(Register reg) {
   1463     Addu(reg, reg, reg);
   1464   }
   1465 
   1466   void SmiTag(Register dst, Register src) { Addu(dst, src, src); }
   1467 
   1468   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
   1469   void SmiTagCheckOverflow(Register reg, Register overflow);
   1470   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
   1471 
   1472   void BranchOnOverflow(Label* label, Register overflow_check,
   1473                         BranchDelaySlot bd = PROTECT) {
   1474     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
   1475   }
   1476 
   1477   void BranchOnNoOverflow(Label* label, Register overflow_check,
   1478                           BranchDelaySlot bd = PROTECT) {
   1479     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
   1480   }
   1481 
   1482 
   1483   // Try to convert int32 to smi. If the value is to large, preserve
   1484   // the original value and jump to not_a_smi. Destroys scratch and
   1485   // sets flags.
   1486   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
   1487     TrySmiTag(reg, reg, scratch, not_a_smi);
   1488   }
   1489   void TrySmiTag(Register dst,
   1490                  Register src,
   1491                  Register scratch,
   1492                  Label* not_a_smi) {
   1493     SmiTagCheckOverflow(at, src, scratch);
   1494     BranchOnOverflow(not_a_smi, scratch);
   1495     mov(dst, at);
   1496   }
   1497 
   1498   void SmiUntag(Register reg) {
   1499     sra(reg, reg, kSmiTagSize);
   1500   }
   1501 
   1502   void SmiUntag(Register dst, Register src) {
   1503     sra(dst, src, kSmiTagSize);
   1504   }
   1505 
   1506   // Test if the register contains a smi.
   1507   inline void SmiTst(Register value, Register scratch) {
   1508     And(scratch, value, Operand(kSmiTagMask));
   1509   }
   1510   inline void NonNegativeSmiTst(Register value, Register scratch) {
   1511     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
   1512   }
   1513 
   1514   // Untag the source value into destination and jump if source is a smi.
   1515   // Souce and destination can be the same register.
   1516   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1517 
   1518   // Jump the register contains a smi.
   1519   void JumpIfSmi(Register value,
   1520                  Label* smi_label,
   1521                  Register scratch = at,
   1522                  BranchDelaySlot bd = PROTECT);
   1523 
   1524   // Jump if the register contains a non-smi.
   1525   void JumpIfNotSmi(Register value,
   1526                     Label* not_smi_label,
   1527                     Register scratch = at,
   1528                     BranchDelaySlot bd = PROTECT);
   1529 
   1530   // Jump if either of the registers contain a non-smi.
   1531   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1532   // Jump if either of the registers contain a smi.
   1533   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1534 
   1535   // Abort execution if argument is a number, enabled via --debug-code.
   1536   void AssertNotNumber(Register object);
   1537 
   1538   // Abort execution if argument is a smi, enabled via --debug-code.
   1539   void AssertNotSmi(Register object);
   1540   void AssertSmi(Register object);
   1541 
   1542   // Abort execution if argument is not a string, enabled via --debug-code.
   1543   void AssertString(Register object);
   1544 
   1545   // Abort execution if argument is not a name, enabled via --debug-code.
   1546   void AssertName(Register object);
   1547 
   1548   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1549   void AssertFunction(Register object);
   1550 
   1551   // Abort execution if argument is not a JSBoundFunction,
   1552   // enabled via --debug-code.
   1553   void AssertBoundFunction(Register object);
   1554 
   1555   // Abort execution if argument is not a JSGeneratorObject,
   1556   // enabled via --debug-code.
   1557   void AssertGeneratorObject(Register object);
   1558 
   1559   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
   1560   void AssertReceiver(Register object);
   1561 
   1562   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1563   // via --debug-code.
   1564   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1565 
   1566   // Abort execution if reg is not the root value with the given index,
   1567   // enabled via --debug-code.
   1568   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1569 
   1570   // ---------------------------------------------------------------------------
   1571   // HeapNumber utilities.
   1572 
   1573   void JumpIfNotHeapNumber(Register object,
   1574                            Register heap_number_map,
   1575                            Register scratch,
   1576                            Label* on_not_heap_number);
   1577 
   1578   // -------------------------------------------------------------------------
   1579   // String utilities.
   1580 
   1581   // Checks if both instance types are sequential ASCII strings and jumps to
   1582   // label if either is not.
   1583   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1584       Register first_object_instance_type, Register second_object_instance_type,
   1585       Register scratch1, Register scratch2, Label* failure);
   1586 
   1587   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1588 
   1589   void EmitSeqStringSetCharCheck(Register string,
   1590                                  Register index,
   1591                                  Register value,
   1592                                  Register scratch,
   1593                                  uint32_t encoding_mask);
   1594 
   1595   // Checks if both objects are sequential one-byte strings and jumps to label
   1596   // if either is not. Assumes that neither object is a smi.
   1597   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
   1598                                                     Register second,
   1599                                                     Register scratch1,
   1600                                                     Register scratch2,
   1601                                                     Label* failure);
   1602 
   1603   // Checks if both objects are sequential one-byte strings and jumps to label
   1604   // if either is not.
   1605   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1606                                              Register scratch1,
   1607                                              Register scratch2,
   1608                                              Label* not_flat_one_byte_strings);
   1609 
   1610   void ClampUint8(Register output_reg, Register input_reg);
   1611 
   1612   void ClampDoubleToUint8(Register result_reg,
   1613                           DoubleRegister input_reg,
   1614                           DoubleRegister temp_double_reg);
   1615 
   1616 
   1617   void LoadInstanceDescriptors(Register map, Register descriptors);
   1618   void EnumLength(Register dst, Register map);
   1619   void NumberOfOwnDescriptors(Register dst, Register map);
   1620   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1621                     AccessorComponent accessor);
   1622 
   1623   template<typename Field>
   1624   void DecodeField(Register dst, Register src) {
   1625     Ext(dst, src, Field::kShift, Field::kSize);
   1626   }
   1627 
   1628   template<typename Field>
   1629   void DecodeField(Register reg) {
   1630     DecodeField<Field>(reg, reg);
   1631   }
   1632 
   1633   template<typename Field>
   1634   void DecodeFieldToSmi(Register dst, Register src) {
   1635     static const int shift = Field::kShift;
   1636     static const int mask = Field::kMask >> shift << kSmiTagSize;
   1637     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
   1638     STATIC_ASSERT(kSmiTag == 0);
   1639     if (shift < kSmiTagSize) {
   1640       sll(dst, src, kSmiTagSize - shift);
   1641       And(dst, dst, Operand(mask));
   1642     } else if (shift > kSmiTagSize) {
   1643       srl(dst, src, shift - kSmiTagSize);
   1644       And(dst, dst, Operand(mask));
   1645     } else {
   1646       And(dst, src, Operand(mask));
   1647     }
   1648   }
   1649 
   1650   template<typename Field>
   1651   void DecodeFieldToSmi(Register reg) {
   1652     DecodeField<Field>(reg, reg);
   1653   }
   1654 
   1655   // Generates function and stub prologue code.
   1656   void StubPrologue(StackFrame::Type type);
   1657   void Prologue(bool code_pre_aging);
   1658 
   1659   // Load the type feedback vector from a JavaScript frame.
   1660   void EmitLoadFeedbackVector(Register vector);
   1661 
   1662   // Activation support.
   1663   void EnterFrame(StackFrame::Type type);
   1664   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
   1665   void LeaveFrame(StackFrame::Type type);
   1666 
   1667   void EnterBuiltinFrame(Register context, Register target, Register argc);
   1668   void LeaveBuiltinFrame(Register context, Register target, Register argc);
   1669 
   1670   // Expects object in a0 and returns map with validated enum cache
   1671   // in a0.  Assumes that any other register can be used as a scratch.
   1672   void CheckEnumCache(Label* call_runtime);
   1673 
   1674   // AllocationMemento support. Arrays may have an associated AllocationMemento
   1675   // object that can be checked for in order to pretransition to another type.
   1676   // On entry, receiver_reg should point to the array object. scratch_reg gets
   1677   // clobbered. If no info is present jump to no_memento_found, otherwise fall
   1678   // through.
   1679   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1680                                        Register scratch_reg,
   1681                                        Label* no_memento_found);
   1682 
   1683   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
   1684 
   1685  private:
   1686   void CallCFunctionHelper(Register function,
   1687                            int num_reg_arguments,
   1688                            int num_double_arguments);
   1689 
   1690   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
   1691   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
   1692   void BranchShortHelperR6(int32_t offset, Label* L);
   1693   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
   1694   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
   1695                            Register rs, const Operand& rt);
   1696   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
   1697                          const Operand& rt, BranchDelaySlot bdslot);
   1698   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
   1699                         const Operand& rt, BranchDelaySlot bdslot);
   1700 
   1701   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
   1702   void BranchAndLinkShortHelper(int16_t offset, Label* L,
   1703                                 BranchDelaySlot bdslot);
   1704   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
   1705   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
   1706   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
   1707                                   Register rs, const Operand& rt);
   1708   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
   1709                                 Register rs, const Operand& rt,
   1710                                 BranchDelaySlot bdslot);
   1711   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
   1712                                Register rs, const Operand& rt,
   1713                                BranchDelaySlot bdslot);
   1714   void BranchLong(Label* L, BranchDelaySlot bdslot);
   1715   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
   1716 
   1717   // Common implementation of BranchF functions for the different formats.
   1718   void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
   1719                      Condition cc, FPURegister cmp1, FPURegister cmp2,
   1720                      BranchDelaySlot bd = PROTECT);
   1721 
   1722   void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
   1723                     FPURegister cmp1, FPURegister cmp2,
   1724                     BranchDelaySlot bd = PROTECT);
   1725 
   1726   // Helper functions for generating invokes.
   1727   void InvokePrologue(const ParameterCount& expected,
   1728                       const ParameterCount& actual,
   1729                       Label* done,
   1730                       bool* definitely_mismatches,
   1731                       InvokeFlag flag,
   1732                       const CallWrapper& call_wrapper);
   1733 
   1734   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1735   void InNewSpace(Register object, Register scratch,
   1736                   Condition cond,  // ne for new space, eq otherwise.
   1737                   Label* branch);
   1738 
   1739   // Helper for finding the mark bits for an address.  Afterwards, the
   1740   // bitmap register points at the word with the mark bits and the mask
   1741   // the position of the first bit.  Leaves addr_reg unchanged.
   1742   inline void GetMarkBits(Register addr_reg,
   1743                           Register bitmap_reg,
   1744                           Register mask_reg);
   1745 
   1746   // Compute memory operands for safepoint stack slots.
   1747   static int SafepointRegisterStackIndex(int reg_code);
   1748   MemOperand SafepointRegisterSlot(Register reg);
   1749   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1750 
   1751   bool generating_stub_;
   1752   bool has_frame_;
   1753   bool has_double_zero_reg_set_;
   1754   // This handle will be patched with the code object on installation.
   1755   Handle<Object> code_object_;
   1756 
   1757   // Needs access to SafepointRegisterStackIndex for compiled frame
   1758   // traversal.
   1759   friend class StandardFrame;
   1760 };
   1761 
   1762 
   1763 // The code patcher is used to patch (typically) small parts of code e.g. for
   1764 // debugging and other types of instrumentation. When using the code patcher
   1765 // the exact number of bytes specified must be emitted. It is not legal to emit
   1766 // relocation information. If any of these constraints are violated it causes
   1767 // an assertion to fail.
   1768 class CodePatcher {
   1769  public:
   1770   enum FlushICache {
   1771     FLUSH,
   1772     DONT_FLUSH
   1773   };
   1774 
   1775   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1776               FlushICache flush_cache = FLUSH);
   1777   ~CodePatcher();
   1778 
   1779   // Macro assembler to emit code.
   1780   MacroAssembler* masm() { return &masm_; }
   1781 
   1782   // Emit an instruction directly.
   1783   void Emit(Instr instr);
   1784 
   1785   // Emit an address directly.
   1786   void Emit(Address addr);
   1787 
   1788   // Change the condition part of an instruction leaving the rest of the current
   1789   // instruction unchanged.
   1790   void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
   1791 
   1792  private:
   1793   byte* address_;  // The address of the code being patched.
   1794   int size_;  // Number of bytes of the expected patch size.
   1795   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1796   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1797 };
   1798 
   1799 template <typename Func>
   1800 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
   1801                                          Func GetLabelFunction) {
   1802   if (kArchVariant >= kMips32r6) {
   1803     BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
   1804     addiupc(at, 5);
   1805     Lsa(at, at, index, kPointerSizeLog2);
   1806     lw(at, MemOperand(at));
   1807   } else {
   1808     Label here;
   1809     BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
   1810     push(ra);
   1811     bal(&here);
   1812     sll(at, index, kPointerSizeLog2);  // Branch delay slot.
   1813     bind(&here);
   1814     addu(at, at, ra);
   1815     pop(ra);
   1816     lw(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
   1817   }
   1818   jr(at);
   1819   nop();  // Branch delay slot nop.
   1820   for (size_t index = 0; index < case_count; ++index) {
   1821     dd(GetLabelFunction(index));
   1822   }
   1823 }
   1824 
   1825 #define ACCESS_MASM(masm) masm->
   1826 
   1827 }  // namespace internal
   1828 }  // namespace v8
   1829 
   1830 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
   1831