Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPC.h"
     17 #include "PPCCCState.h"
     18 #include "PPCCallingConv.h"
     19 #include "PPCFrameLowering.h"
     20 #include "PPCInstrInfo.h"
     21 #include "PPCMachineFunctionInfo.h"
     22 #include "PPCPerfectShuffle.h"
     23 #include "PPCRegisterInfo.h"
     24 #include "PPCSubtarget.h"
     25 #include "PPCTargetMachine.h"
     26 #include "llvm/ADT/APFloat.h"
     27 #include "llvm/ADT/APInt.h"
     28 #include "llvm/ADT/ArrayRef.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/None.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/ADT/SmallSet.h"
     34 #include "llvm/ADT/SmallVector.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/ADT/StringRef.h"
     37 #include "llvm/ADT/StringSwitch.h"
     38 #include "llvm/CodeGen/CallingConvLower.h"
     39 #include "llvm/CodeGen/ISDOpcodes.h"
     40 #include "llvm/CodeGen/MachineBasicBlock.h"
     41 #include "llvm/CodeGen/MachineFrameInfo.h"
     42 #include "llvm/CodeGen/MachineFunction.h"
     43 #include "llvm/CodeGen/MachineInstr.h"
     44 #include "llvm/CodeGen/MachineInstrBuilder.h"
     45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     46 #include "llvm/CodeGen/MachineLoopInfo.h"
     47 #include "llvm/CodeGen/MachineMemOperand.h"
     48 #include "llvm/CodeGen/MachineOperand.h"
     49 #include "llvm/CodeGen/MachineRegisterInfo.h"
     50 #include "llvm/CodeGen/RuntimeLibcalls.h"
     51 #include "llvm/CodeGen/SelectionDAG.h"
     52 #include "llvm/CodeGen/SelectionDAGNodes.h"
     53 #include "llvm/CodeGen/TargetInstrInfo.h"
     54 #include "llvm/CodeGen/TargetLowering.h"
     55 #include "llvm/CodeGen/TargetRegisterInfo.h"
     56 #include "llvm/CodeGen/ValueTypes.h"
     57 #include "llvm/IR/CallSite.h"
     58 #include "llvm/IR/CallingConv.h"
     59 #include "llvm/IR/Constant.h"
     60 #include "llvm/IR/Constants.h"
     61 #include "llvm/IR/DataLayout.h"
     62 #include "llvm/IR/DebugLoc.h"
     63 #include "llvm/IR/DerivedTypes.h"
     64 #include "llvm/IR/Function.h"
     65 #include "llvm/IR/GlobalValue.h"
     66 #include "llvm/IR/IRBuilder.h"
     67 #include "llvm/IR/Instructions.h"
     68 #include "llvm/IR/Intrinsics.h"
     69 #include "llvm/IR/Module.h"
     70 #include "llvm/IR/Type.h"
     71 #include "llvm/IR/Use.h"
     72 #include "llvm/IR/Value.h"
     73 #include "llvm/MC/MCExpr.h"
     74 #include "llvm/MC/MCRegisterInfo.h"
     75 #include "llvm/Support/AtomicOrdering.h"
     76 #include "llvm/Support/BranchProbability.h"
     77 #include "llvm/Support/Casting.h"
     78 #include "llvm/Support/CodeGen.h"
     79 #include "llvm/Support/CommandLine.h"
     80 #include "llvm/Support/Compiler.h"
     81 #include "llvm/Support/Debug.h"
     82 #include "llvm/Support/ErrorHandling.h"
     83 #include "llvm/Support/Format.h"
     84 #include "llvm/Support/KnownBits.h"
     85 #include "llvm/Support/MachineValueType.h"
     86 #include "llvm/Support/MathExtras.h"
     87 #include "llvm/Support/raw_ostream.h"
     88 #include "llvm/Target/TargetMachine.h"
     89 #include "llvm/Target/TargetOptions.h"
     90 #include <algorithm>
     91 #include <cassert>
     92 #include <cstdint>
     93 #include <iterator>
     94 #include <list>
     95 #include <utility>
     96 #include <vector>
     97 
     98 using namespace llvm;
     99 
    100 #define DEBUG_TYPE "ppc-lowering"
    101 
    102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
    103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
    104 
    105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
    106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
    107 
    108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
    109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
    110 
    111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
    112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
    113 
    114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
    115 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
    116 
    117 STATISTIC(NumTailCalls, "Number of tail calls");
    118 STATISTIC(NumSiblingCalls, "Number of sibling calls");
    119 
    120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
    121 
    122 // FIXME: Remove this once the bug has been fixed!
    123 extern cl::opt<bool> ANDIGlueBug;
    124 
    125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
    126                                      const PPCSubtarget &STI)
    127     : TargetLowering(TM), Subtarget(STI) {
    128   // Use _setjmp/_longjmp instead of setjmp/longjmp.
    129   setUseUnderscoreSetJmp(true);
    130   setUseUnderscoreLongJmp(true);
    131 
    132   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
    133   // arguments are at least 4/8 bytes aligned.
    134   bool isPPC64 = Subtarget.isPPC64();
    135   setMinStackArgumentAlignment(isPPC64 ? 8:4);
    136 
    137   // Set up the register classes.
    138   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
    139   if (!useSoftFloat()) {
    140     if (hasSPE()) {
    141       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
    142       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
    143     } else {
    144       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
    145       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
    146     }
    147   }
    148 
    149   // Match BITREVERSE to customized fast code sequence in the td file.
    150   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    151   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
    152 
    153   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
    154   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
    155 
    156   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
    157   for (MVT VT : MVT::integer_valuetypes()) {
    158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
    160   }
    161 
    162   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    163 
    164   // PowerPC has pre-inc load and store's.
    165   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
    166   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
    167   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
    168   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
    169   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
    170   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
    171   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
    172   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
    173   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
    174   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
    175   if (!Subtarget.hasSPE()) {
    176     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
    177     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
    178     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
    179     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
    180   }
    181 
    182   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
    183   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
    184   for (MVT VT : ScalarIntVTs) {
    185     setOperationAction(ISD::ADDC, VT, Legal);
    186     setOperationAction(ISD::ADDE, VT, Legal);
    187     setOperationAction(ISD::SUBC, VT, Legal);
    188     setOperationAction(ISD::SUBE, VT, Legal);
    189   }
    190 
    191   if (Subtarget.useCRBits()) {
    192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    193 
    194     if (isPPC64 || Subtarget.hasFPCVT()) {
    195       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
    196       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
    197                          isPPC64 ? MVT::i64 : MVT::i32);
    198       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
    199       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
    200                         isPPC64 ? MVT::i64 : MVT::i32);
    201     } else {
    202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
    203       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    204     }
    205 
    206     // PowerPC does not support direct load/store of condition registers.
    207     setOperationAction(ISD::LOAD, MVT::i1, Custom);
    208     setOperationAction(ISD::STORE, MVT::i1, Custom);
    209 
    210     // FIXME: Remove this once the ANDI glue bug is fixed:
    211     if (ANDIGlueBug)
    212       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
    213 
    214     for (MVT VT : MVT::integer_valuetypes()) {
    215       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    216       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    217       setTruncStoreAction(VT, MVT::i1, Expand);
    218     }
    219 
    220     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
    221   }
    222 
    223   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
    224   // PPC (the libcall is not available).
    225   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
    226   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
    227 
    228   // We do not currently implement these libm ops for PowerPC.
    229   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    230   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    231   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    232   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    233   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    234   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    235 
    236   // PowerPC has no SREM/UREM instructions unless we are on P9
    237   // On P9 we may use a hardware instruction to compute the remainder.
    238   // The instructions are not legalized directly because in the cases where the
    239   // result of both the remainder and the division is required it is more
    240   // efficient to compute the remainder from the result of the division rather
    241   // than use the remainder instruction.
    242   if (Subtarget.isISA3_0()) {
    243     setOperationAction(ISD::SREM, MVT::i32, Custom);
    244     setOperationAction(ISD::UREM, MVT::i32, Custom);
    245     setOperationAction(ISD::SREM, MVT::i64, Custom);
    246     setOperationAction(ISD::UREM, MVT::i64, Custom);
    247   } else {
    248     setOperationAction(ISD::SREM, MVT::i32, Expand);
    249     setOperationAction(ISD::UREM, MVT::i32, Expand);
    250     setOperationAction(ISD::SREM, MVT::i64, Expand);
    251     setOperationAction(ISD::UREM, MVT::i64, Expand);
    252   }
    253 
    254   if (Subtarget.hasP9Vector()) {
    255     setOperationAction(ISD::ABS, MVT::v4i32, Legal);
    256     setOperationAction(ISD::ABS, MVT::v8i16, Legal);
    257     setOperationAction(ISD::ABS, MVT::v16i8, Legal);
    258   }
    259 
    260   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    261   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    262   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    263   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    264   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    265   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    266   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    267   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    268   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    269 
    270   // We don't support sin/cos/sqrt/fmod/pow
    271   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    272   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    273   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    274   setOperationAction(ISD::FREM , MVT::f64, Expand);
    275   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    276   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    277   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    278   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    279   setOperationAction(ISD::FREM , MVT::f32, Expand);
    280   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    281   if (Subtarget.hasSPE()) {
    282     setOperationAction(ISD::FMA  , MVT::f64, Expand);
    283     setOperationAction(ISD::FMA  , MVT::f32, Expand);
    284   } else {
    285     setOperationAction(ISD::FMA  , MVT::f64, Legal);
    286     setOperationAction(ISD::FMA  , MVT::f32, Legal);
    287   }
    288 
    289   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    290 
    291   // If we're enabling GP optimizations, use hardware square root
    292   if (!Subtarget.hasFSQRT() &&
    293       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
    294         Subtarget.hasFRE()))
    295     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    296 
    297   if (!Subtarget.hasFSQRT() &&
    298       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
    299         Subtarget.hasFRES()))
    300     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    301 
    302   if (Subtarget.hasFCPSGN()) {
    303     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    304     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
    305   } else {
    306     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    307     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    308   }
    309 
    310   if (Subtarget.hasFPRND()) {
    311     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    312     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    313     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    314     setOperationAction(ISD::FROUND, MVT::f64, Legal);
    315 
    316     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    317     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    318     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    319     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    320   }
    321 
    322   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
    323   // to speed up scalar BSWAP64.
    324   // CTPOP or CTTZ were introduced in P8/P9 respectively
    325   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    326   if (Subtarget.isISA3_0()) {
    327     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
    328     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
    329     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
    330   } else {
    331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    332     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    333     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    334   }
    335 
    336   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
    337     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    338     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    339   } else {
    340     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    341     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    342   }
    343 
    344   // PowerPC does not have ROTR
    345   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    346   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    347 
    348   if (!Subtarget.useCRBits()) {
    349     // PowerPC does not have Select
    350     setOperationAction(ISD::SELECT, MVT::i32, Expand);
    351     setOperationAction(ISD::SELECT, MVT::i64, Expand);
    352     setOperationAction(ISD::SELECT, MVT::f32, Expand);
    353     setOperationAction(ISD::SELECT, MVT::f64, Expand);
    354   }
    355 
    356   // PowerPC wants to turn select_cc of FP into fsel when possible.
    357   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    358   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    359 
    360   // PowerPC wants to optimize integer setcc a bit
    361   if (!Subtarget.useCRBits())
    362     setOperationAction(ISD::SETCC, MVT::i32, Custom);
    363 
    364   // PowerPC does not have BRCOND which requires SetCC
    365   if (!Subtarget.useCRBits())
    366     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    367 
    368   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    369 
    370   if (Subtarget.hasSPE()) {
    371     // SPE has built-in conversions
    372     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
    373     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
    374     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
    375   } else {
    376     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    377     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    378 
    379     // PowerPC does not have [U|S]INT_TO_FP
    380     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    381     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    382   }
    383 
    384   if (Subtarget.hasDirectMove() && isPPC64) {
    385     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
    386     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
    387     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
    388     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
    389   } else {
    390     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    391     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    392     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    393     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    394   }
    395 
    396   // We cannot sextinreg(i1).  Expand to shifts.
    397   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    398 
    399   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    400   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    401   // support continuation, user-level threading, and etc.. As a result, no
    402   // other SjLj exception interfaces are implemented and please don't build
    403   // your own exception handling based on them.
    404   // LLVM/Clang supports zero-cost DWARF exception handling.
    405   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    406   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    407 
    408   // We want to legalize GlobalAddress and ConstantPool nodes into the
    409   // appropriate instructions to materialize the address.
    410   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    411   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    412   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    413   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    414   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    415   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    416   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    417   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    418   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    419   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    420 
    421   // TRAP is legal.
    422   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    423 
    424   // TRAMPOLINE is custom lowered.
    425   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    426   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    427 
    428   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    429   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    430 
    431   if (Subtarget.isSVR4ABI()) {
    432     if (isPPC64) {
    433       // VAARG always uses double-word chunks, so promote anything smaller.
    434       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    435       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    436       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    437       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    438       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    439       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    440       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    441       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    442       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    443     } else {
    444       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    445       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    446       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    447     }
    448   } else
    449     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    450 
    451   if (Subtarget.isSVR4ABI() && !isPPC64)
    452     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    453     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    454   else
    455     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    456 
    457   // Use the default implementation.
    458   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    459   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    460   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    461   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    462   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    463   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
    464   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
    465   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
    466   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
    467 
    468   // We want to custom lower some of our intrinsics.
    469   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    470 
    471   // To handle counter-based loop conditions.
    472   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    473 
    474   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
    475   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
    476   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
    477   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
    478 
    479   // Comparisons that require checking two conditions.
    480   if (Subtarget.hasSPE()) {
    481     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
    482     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
    483     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
    484     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
    485   }
    486   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    487   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    488   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    489   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    490   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    491   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    492   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    493   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    494   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    495   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    496   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    497   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    498 
    499   if (Subtarget.has64BitSupport()) {
    500     // They also have instructions for converting between i64 and fp.
    501     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    502     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    503     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    504     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    505     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    506     // We cannot do this with Promote because i64 is not a legal type.
    507     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    508 
    509     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
    510       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    511   } else {
    512     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    513     if (Subtarget.hasSPE())
    514       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
    515     else
    516       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    517   }
    518 
    519   // With the instructions enabled under FPCVT, we can do everything.
    520   if (Subtarget.hasFPCVT()) {
    521     if (Subtarget.has64BitSupport()) {
    522       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    523       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    524       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    525       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    526     }
    527 
    528     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    529     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    530     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    531     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    532   }
    533 
    534   if (Subtarget.use64BitRegs()) {
    535     // 64-bit PowerPC implementations can support i64 types directly
    536     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    537     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    538     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    539     // 64-bit PowerPC wants to expand i128 shifts itself.
    540     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    541     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    542     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    543   } else {
    544     // 32-bit PowerPC wants to expand i64 shifts itself.
    545     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    546     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    547     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    548   }
    549 
    550   if (Subtarget.hasAltivec()) {
    551     // First set operation action for all vector types to expand. Then we
    552     // will selectively turn on ones that can be effectively codegen'd.
    553     for (MVT VT : MVT::vector_valuetypes()) {
    554       // add/sub are legal for all supported vector VT's.
    555       setOperationAction(ISD::ADD, VT, Legal);
    556       setOperationAction(ISD::SUB, VT, Legal);
    557 
    558       // Vector instructions introduced in P8
    559       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
    560         setOperationAction(ISD::CTPOP, VT, Legal);
    561         setOperationAction(ISD::CTLZ, VT, Legal);
    562       }
    563       else {
    564         setOperationAction(ISD::CTPOP, VT, Expand);
    565         setOperationAction(ISD::CTLZ, VT, Expand);
    566       }
    567 
    568       // Vector instructions introduced in P9
    569       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
    570         setOperationAction(ISD::CTTZ, VT, Legal);
    571       else
    572         setOperationAction(ISD::CTTZ, VT, Expand);
    573 
    574       // We promote all shuffles to v16i8.
    575       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    576       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    577 
    578       // We promote all non-typed operations to v4i32.
    579       setOperationAction(ISD::AND   , VT, Promote);
    580       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    581       setOperationAction(ISD::OR    , VT, Promote);
    582       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    583       setOperationAction(ISD::XOR   , VT, Promote);
    584       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    585       setOperationAction(ISD::LOAD  , VT, Promote);
    586       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    587       setOperationAction(ISD::SELECT, VT, Promote);
    588       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    589       setOperationAction(ISD::SELECT_CC, VT, Promote);
    590       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
    591       setOperationAction(ISD::STORE, VT, Promote);
    592       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    593 
    594       // No other operations are legal.
    595       setOperationAction(ISD::MUL , VT, Expand);
    596       setOperationAction(ISD::SDIV, VT, Expand);
    597       setOperationAction(ISD::SREM, VT, Expand);
    598       setOperationAction(ISD::UDIV, VT, Expand);
    599       setOperationAction(ISD::UREM, VT, Expand);
    600       setOperationAction(ISD::FDIV, VT, Expand);
    601       setOperationAction(ISD::FREM, VT, Expand);
    602       setOperationAction(ISD::FNEG, VT, Expand);
    603       setOperationAction(ISD::FSQRT, VT, Expand);
    604       setOperationAction(ISD::FLOG, VT, Expand);
    605       setOperationAction(ISD::FLOG10, VT, Expand);
    606       setOperationAction(ISD::FLOG2, VT, Expand);
    607       setOperationAction(ISD::FEXP, VT, Expand);
    608       setOperationAction(ISD::FEXP2, VT, Expand);
    609       setOperationAction(ISD::FSIN, VT, Expand);
    610       setOperationAction(ISD::FCOS, VT, Expand);
    611       setOperationAction(ISD::FABS, VT, Expand);
    612       setOperationAction(ISD::FFLOOR, VT, Expand);
    613       setOperationAction(ISD::FCEIL,  VT, Expand);
    614       setOperationAction(ISD::FTRUNC, VT, Expand);
    615       setOperationAction(ISD::FRINT,  VT, Expand);
    616       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    617       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    618       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    619       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    620       setOperationAction(ISD::MULHU, VT, Expand);
    621       setOperationAction(ISD::MULHS, VT, Expand);
    622       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    623       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    624       setOperationAction(ISD::UDIVREM, VT, Expand);
    625       setOperationAction(ISD::SDIVREM, VT, Expand);
    626       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    627       setOperationAction(ISD::FPOW, VT, Expand);
    628       setOperationAction(ISD::BSWAP, VT, Expand);
    629       setOperationAction(ISD::VSELECT, VT, Expand);
    630       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    631       setOperationAction(ISD::ROTL, VT, Expand);
    632       setOperationAction(ISD::ROTR, VT, Expand);
    633 
    634       for (MVT InnerVT : MVT::vector_valuetypes()) {
    635         setTruncStoreAction(VT, InnerVT, Expand);
    636         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    637         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    638         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    639       }
    640     }
    641 
    642     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    643     // with merges, splats, etc.
    644     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    645 
    646     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    647     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    648     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    649     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    650     setOperationAction(ISD::SELECT, MVT::v4i32,
    651                        Subtarget.useCRBits() ? Legal : Expand);
    652     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    653     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    654     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    655     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    656     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    657     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    658     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    659     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    660     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    661 
    662     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    663     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    664     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    665     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    666 
    667     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    668     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    669 
    670     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
    671       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    672       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    673     }
    674 
    675     if (Subtarget.hasP8Altivec())
    676       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
    677     else
    678       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    679 
    680     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    681     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    682 
    683     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    684     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    685 
    686     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    687     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    688     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    689     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    690 
    691     // Altivec does not contain unordered floating-point compare instructions
    692     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    693     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    694     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    695     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    696 
    697     if (Subtarget.hasVSX()) {
    698       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    699       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    700       if (Subtarget.hasP8Vector()) {
    701         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    702         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
    703       }
    704       if (Subtarget.hasDirectMove() && isPPC64) {
    705         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
    706         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
    707         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
    708         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
    709         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
    710         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
    711         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
    712         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    713       }
    714       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    715 
    716       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    717       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    718       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    719       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    720       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    721 
    722       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    723 
    724       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
    725       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    726 
    727       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    728       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    729 
    730       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
    731       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
    732       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
    733       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    734       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
    735 
    736       // Share the Altivec comparison restrictions.
    737       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
    738       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
    739       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
    740       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
    741 
    742       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
    743       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
    744 
    745       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
    746 
    747       if (Subtarget.hasP8Vector())
    748         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
    749 
    750       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
    751 
    752       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
    753       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
    754       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
    755 
    756       if (Subtarget.hasP8Altivec()) {
    757         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
    758         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
    759         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
    760 
    761         // 128 bit shifts can be accomplished via 3 instructions for SHL and
    762         // SRL, but not for SRA because of the instructions available:
    763         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
    764         // doing
    765         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
    766         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
    767         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
    768 
    769         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
    770       }
    771       else {
    772         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
    773         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
    774         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
    775 
    776         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
    777 
    778         // VSX v2i64 only supports non-arithmetic operations.
    779         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
    780         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
    781       }
    782 
    783       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    784       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
    785       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    786       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
    787 
    788       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
    789 
    790       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    791       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    792       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    793       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    794 
    795       // Vector operation legalization checks the result type of
    796       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
    797       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    798       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
    799       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    800       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    801 
    802       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
    803       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
    804       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
    805       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
    806 
    807       if (Subtarget.hasDirectMove())
    808         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
    809       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
    810 
    811       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    812     }
    813 
    814     if (Subtarget.hasP8Altivec()) {
    815       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
    816       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
    817     }
    818 
    819     if (Subtarget.hasP9Vector()) {
    820       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
    821       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
    822 
    823       // 128 bit shifts can be accomplished via 3 instructions for SHL and
    824       // SRL, but not for SRA because of the instructions available:
    825       // VS{RL} and VS{RL}O.
    826       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
    827       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
    828       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
    829 
    830       if (EnableQuadPrecision) {
    831         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
    832         setOperationAction(ISD::FADD, MVT::f128, Legal);
    833         setOperationAction(ISD::FSUB, MVT::f128, Legal);
    834         setOperationAction(ISD::FDIV, MVT::f128, Legal);
    835         setOperationAction(ISD::FMUL, MVT::f128, Legal);
    836         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
    837         // No extending loads to f128 on PPC.
    838         for (MVT FPT : MVT::fp_valuetypes())
    839           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
    840         setOperationAction(ISD::FMA, MVT::f128, Legal);
    841         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
    842         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
    843         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
    844         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
    845         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
    846         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
    847 
    848         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
    849         setOperationAction(ISD::FRINT, MVT::f128, Legal);
    850         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
    851         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
    852         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
    853         setOperationAction(ISD::FROUND, MVT::f128, Legal);
    854 
    855         setOperationAction(ISD::SELECT, MVT::f128, Expand);
    856         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
    857         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
    858         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    859         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    860         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
    861         // No implementation for these ops for PowerPC.
    862         setOperationAction(ISD::FSIN , MVT::f128, Expand);
    863         setOperationAction(ISD::FCOS , MVT::f128, Expand);
    864         setOperationAction(ISD::FPOW, MVT::f128, Expand);
    865         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
    866         setOperationAction(ISD::FREM, MVT::f128, Expand);
    867       }
    868 
    869     }
    870 
    871     if (Subtarget.hasP9Altivec()) {
    872       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
    873       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
    874     }
    875   }
    876 
    877   if (Subtarget.hasQPX()) {
    878     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
    879     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
    880     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
    881     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
    882 
    883     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
    884     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
    885 
    886     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
    887     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
    888 
    889     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
    890     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
    891 
    892     if (!Subtarget.useCRBits())
    893       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
    894     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
    895 
    896     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
    897     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
    898     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
    899     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
    900     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
    901     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
    902     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
    903 
    904     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
    905     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
    906 
    907     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
    908     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
    909     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
    910 
    911     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
    912     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
    913     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
    914     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
    915     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
    916     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
    917     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
    918     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
    919     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
    920     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
    921 
    922     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
    923     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
    924 
    925     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
    926     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
    927 
    928     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
    929 
    930     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    931     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    932     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    933     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
    934 
    935     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
    936     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
    937 
    938     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
    939     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
    940 
    941     if (!Subtarget.useCRBits())
    942       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
    943     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    944 
    945     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
    946     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
    947     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
    948     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
    949     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
    950     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    951     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    952 
    953     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
    954     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
    955 
    956     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
    957     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
    958     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
    959     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
    960     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
    961     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
    962     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
    963     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
    964     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
    965     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
    966 
    967     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    968     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    969 
    970     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
    971     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
    972 
    973     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
    974 
    975     setOperationAction(ISD::AND , MVT::v4i1, Legal);
    976     setOperationAction(ISD::OR , MVT::v4i1, Legal);
    977     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
    978 
    979     if (!Subtarget.useCRBits())
    980       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
    981     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
    982 
    983     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
    984     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
    985 
    986     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
    987     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
    988     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
    989     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
    990     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
    991     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
    992     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
    993 
    994     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
    995     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
    996 
    997     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
    998 
    999     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
   1000     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
   1001     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
   1002     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
   1003 
   1004     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
   1005     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
   1006     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
   1007     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
   1008 
   1009     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
   1010     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
   1011 
   1012     // These need to set FE_INEXACT, and so cannot be vectorized here.
   1013     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
   1014     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
   1015 
   1016     if (TM.Options.UnsafeFPMath) {
   1017       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
   1018       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
   1019 
   1020       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
   1021       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
   1022     } else {
   1023       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
   1024       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
   1025 
   1026       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
   1027       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
   1028     }
   1029   }
   1030 
   1031   if (Subtarget.has64BitSupport())
   1032     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
   1033 
   1034   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
   1035 
   1036   if (!isPPC64) {
   1037     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
   1038     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
   1039   }
   1040 
   1041   setBooleanContents(ZeroOrOneBooleanContent);
   1042 
   1043   if (Subtarget.hasAltivec()) {
   1044     // Altivec instructions set fields to all zeros or all ones.
   1045     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
   1046   }
   1047 
   1048   if (!isPPC64) {
   1049     // These libcalls are not available in 32-bit.
   1050     setLibcallName(RTLIB::SHL_I128, nullptr);
   1051     setLibcallName(RTLIB::SRL_I128, nullptr);
   1052     setLibcallName(RTLIB::SRA_I128, nullptr);
   1053   }
   1054 
   1055   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
   1056 
   1057   // We have target-specific dag combine patterns for the following nodes:
   1058   setTargetDAGCombine(ISD::SHL);
   1059   setTargetDAGCombine(ISD::SRA);
   1060   setTargetDAGCombine(ISD::SRL);
   1061   setTargetDAGCombine(ISD::SINT_TO_FP);
   1062   setTargetDAGCombine(ISD::BUILD_VECTOR);
   1063   if (Subtarget.hasFPCVT())
   1064     setTargetDAGCombine(ISD::UINT_TO_FP);
   1065   setTargetDAGCombine(ISD::LOAD);
   1066   setTargetDAGCombine(ISD::STORE);
   1067   setTargetDAGCombine(ISD::BR_CC);
   1068   if (Subtarget.useCRBits())
   1069     setTargetDAGCombine(ISD::BRCOND);
   1070   setTargetDAGCombine(ISD::BSWAP);
   1071   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
   1072   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
   1073   setTargetDAGCombine(ISD::INTRINSIC_VOID);
   1074 
   1075   setTargetDAGCombine(ISD::SIGN_EXTEND);
   1076   setTargetDAGCombine(ISD::ZERO_EXTEND);
   1077   setTargetDAGCombine(ISD::ANY_EXTEND);
   1078 
   1079   if (Subtarget.useCRBits()) {
   1080     setTargetDAGCombine(ISD::TRUNCATE);
   1081     setTargetDAGCombine(ISD::SETCC);
   1082     setTargetDAGCombine(ISD::SELECT_CC);
   1083   }
   1084 
   1085   // Use reciprocal estimates.
   1086   if (TM.Options.UnsafeFPMath) {
   1087     setTargetDAGCombine(ISD::FDIV);
   1088     setTargetDAGCombine(ISD::FSQRT);
   1089   }
   1090 
   1091   // Darwin long double math library functions have $LDBL128 appended.
   1092   if (Subtarget.isDarwin()) {
   1093     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
   1094     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
   1095     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
   1096     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
   1097     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
   1098     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
   1099     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
   1100     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
   1101     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
   1102     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
   1103   }
   1104 
   1105   if (EnableQuadPrecision) {
   1106     setLibcallName(RTLIB::LOG_F128, "logf128");
   1107     setLibcallName(RTLIB::LOG2_F128, "log2f128");
   1108     setLibcallName(RTLIB::LOG10_F128, "log10f128");
   1109     setLibcallName(RTLIB::EXP_F128, "expf128");
   1110     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
   1111     setLibcallName(RTLIB::SIN_F128, "sinf128");
   1112     setLibcallName(RTLIB::COS_F128, "cosf128");
   1113     setLibcallName(RTLIB::POW_F128, "powf128");
   1114     setLibcallName(RTLIB::FMIN_F128, "fminf128");
   1115     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
   1116     setLibcallName(RTLIB::POWI_F128, "__powikf2");
   1117     setLibcallName(RTLIB::REM_F128, "fmodf128");
   1118   }
   1119 
   1120   // With 32 condition bits, we don't need to sink (and duplicate) compares
   1121   // aggressively in CodeGenPrep.
   1122   if (Subtarget.useCRBits()) {
   1123     setHasMultipleConditionRegisters();
   1124     setJumpIsExpensive();
   1125   }
   1126 
   1127   setMinFunctionAlignment(2);
   1128   if (Subtarget.isDarwin())
   1129     setPrefFunctionAlignment(4);
   1130 
   1131   switch (Subtarget.getDarwinDirective()) {
   1132   default: break;
   1133   case PPC::DIR_970:
   1134   case PPC::DIR_A2:
   1135   case PPC::DIR_E500:
   1136   case PPC::DIR_E500mc:
   1137   case PPC::DIR_E5500:
   1138   case PPC::DIR_PWR4:
   1139   case PPC::DIR_PWR5:
   1140   case PPC::DIR_PWR5X:
   1141   case PPC::DIR_PWR6:
   1142   case PPC::DIR_PWR6X:
   1143   case PPC::DIR_PWR7:
   1144   case PPC::DIR_PWR8:
   1145   case PPC::DIR_PWR9:
   1146     setPrefFunctionAlignment(4);
   1147     setPrefLoopAlignment(4);
   1148     break;
   1149   }
   1150 
   1151   if (Subtarget.enableMachineScheduler())
   1152     setSchedulingPreference(Sched::Source);
   1153   else
   1154     setSchedulingPreference(Sched::Hybrid);
   1155 
   1156   computeRegisterProperties(STI.getRegisterInfo());
   1157 
   1158   // The Freescale cores do better with aggressive inlining of memcpy and
   1159   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
   1160   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
   1161       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
   1162     MaxStoresPerMemset = 32;
   1163     MaxStoresPerMemsetOptSize = 16;
   1164     MaxStoresPerMemcpy = 32;
   1165     MaxStoresPerMemcpyOptSize = 8;
   1166     MaxStoresPerMemmove = 32;
   1167     MaxStoresPerMemmoveOptSize = 8;
   1168   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
   1169     // The A2 also benefits from (very) aggressive inlining of memcpy and
   1170     // friends. The overhead of a the function call, even when warm, can be
   1171     // over one hundred cycles.
   1172     MaxStoresPerMemset = 128;
   1173     MaxStoresPerMemcpy = 128;
   1174     MaxStoresPerMemmove = 128;
   1175     MaxLoadsPerMemcmp = 128;
   1176   } else {
   1177     MaxLoadsPerMemcmp = 8;
   1178     MaxLoadsPerMemcmpOptSize = 4;
   1179   }
   1180 }
   1181 
   1182 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
   1183 /// the desired ByVal argument alignment.
   1184 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
   1185                              unsigned MaxMaxAlign) {
   1186   if (MaxAlign == MaxMaxAlign)
   1187     return;
   1188   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
   1189     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
   1190       MaxAlign = 32;
   1191     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
   1192       MaxAlign = 16;
   1193   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1194     unsigned EltAlign = 0;
   1195     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
   1196     if (EltAlign > MaxAlign)
   1197       MaxAlign = EltAlign;
   1198   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1199     for (auto *EltTy : STy->elements()) {
   1200       unsigned EltAlign = 0;
   1201       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
   1202       if (EltAlign > MaxAlign)
   1203         MaxAlign = EltAlign;
   1204       if (MaxAlign == MaxMaxAlign)
   1205         break;
   1206     }
   1207   }
   1208 }
   1209 
   1210 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1211 /// function arguments in the caller parameter area.
   1212 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
   1213                                                   const DataLayout &DL) const {
   1214   // Darwin passes everything on 4 byte boundary.
   1215   if (Subtarget.isDarwin())
   1216     return 4;
   1217 
   1218   // 16byte and wider vectors are passed on 16byte boundary.
   1219   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
   1220   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
   1221   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
   1222     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
   1223   return Align;
   1224 }
   1225 
   1226 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
   1227                                                           CallingConv:: ID CC,
   1228                                                           EVT VT) const {
   1229   if (Subtarget.hasSPE() && VT == MVT::f64)
   1230     return 2;
   1231   return PPCTargetLowering::getNumRegisters(Context, VT);
   1232 }
   1233 
   1234 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
   1235                                                      CallingConv:: ID CC,
   1236                                                      EVT VT) const {
   1237   if (Subtarget.hasSPE() && VT == MVT::f64)
   1238     return MVT::i32;
   1239   return PPCTargetLowering::getRegisterType(Context, VT);
   1240 }
   1241 
   1242 bool PPCTargetLowering::useSoftFloat() const {
   1243   return Subtarget.useSoftFloat();
   1244 }
   1245 
   1246 bool PPCTargetLowering::hasSPE() const {
   1247   return Subtarget.hasSPE();
   1248 }
   1249 
   1250 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1251   switch ((PPCISD::NodeType)Opcode) {
   1252   case PPCISD::FIRST_NUMBER:    break;
   1253   case PPCISD::FSEL:            return "PPCISD::FSEL";
   1254   case PPCISD::FCFID:           return "PPCISD::FCFID";
   1255   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
   1256   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
   1257   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
   1258   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
   1259   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
   1260   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
   1261   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
   1262   case PPCISD::FP_TO_UINT_IN_VSR:
   1263                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
   1264   case PPCISD::FP_TO_SINT_IN_VSR:
   1265                                 return "PPCISD::FP_TO_SINT_IN_VSR";
   1266   case PPCISD::FRE:             return "PPCISD::FRE";
   1267   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
   1268   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
   1269   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
   1270   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
   1271   case PPCISD::VPERM:           return "PPCISD::VPERM";
   1272   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
   1273   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
   1274   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
   1275   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
   1276   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
   1277   case PPCISD::CMPB:            return "PPCISD::CMPB";
   1278   case PPCISD::Hi:              return "PPCISD::Hi";
   1279   case PPCISD::Lo:              return "PPCISD::Lo";
   1280   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
   1281   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
   1282   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
   1283   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
   1284   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
   1285   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
   1286   case PPCISD::SRL:             return "PPCISD::SRL";
   1287   case PPCISD::SRA:             return "PPCISD::SRA";
   1288   case PPCISD::SHL:             return "PPCISD::SHL";
   1289   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
   1290   case PPCISD::CALL:            return "PPCISD::CALL";
   1291   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
   1292   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
   1293   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
   1294   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
   1295   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
   1296   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
   1297   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
   1298   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
   1299   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
   1300   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
   1301   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
   1302   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
   1303   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
   1304   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
   1305   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
   1306   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
   1307   case PPCISD::VCMP:            return "PPCISD::VCMP";
   1308   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
   1309   case PPCISD::LBRX:            return "PPCISD::LBRX";
   1310   case PPCISD::STBRX:           return "PPCISD::STBRX";
   1311   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
   1312   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
   1313   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
   1314   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
   1315   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
   1316   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
   1317   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
   1318   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
   1319   case PPCISD::ST_VSR_SCAL_INT:
   1320                                 return "PPCISD::ST_VSR_SCAL_INT";
   1321   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
   1322   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
   1323   case PPCISD::BDZ:             return "PPCISD::BDZ";
   1324   case PPCISD::MFFS:            return "PPCISD::MFFS";
   1325   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
   1326   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
   1327   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
   1328   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
   1329   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
   1330   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
   1331   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
   1332   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
   1333   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
   1334   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
   1335   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
   1336   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
   1337   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
   1338   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
   1339   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
   1340   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
   1341   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
   1342   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
   1343   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
   1344   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
   1345   case PPCISD::SC:              return "PPCISD::SC";
   1346   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
   1347   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
   1348   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
   1349   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
   1350   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
   1351   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
   1352   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
   1353   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
   1354   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
   1355   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
   1356   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
   1357   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
   1358   }
   1359   return nullptr;
   1360 }
   1361 
   1362 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
   1363                                           EVT VT) const {
   1364   if (!VT.isVector())
   1365     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
   1366 
   1367   if (Subtarget.hasQPX())
   1368     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
   1369 
   1370   return VT.changeVectorElementTypeToInteger();
   1371 }
   1372 
   1373 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   1374   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
   1375   return true;
   1376 }
   1377 
   1378 //===----------------------------------------------------------------------===//
   1379 // Node matching predicates, for use by the tblgen matching code.
   1380 //===----------------------------------------------------------------------===//
   1381 
   1382 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
   1383 static bool isFloatingPointZero(SDValue Op) {
   1384   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   1385     return CFP->getValueAPF().isZero();
   1386   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   1387     // Maybe this has already been legalized into the constant pool?
   1388     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
   1389       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   1390         return CFP->getValueAPF().isZero();
   1391   }
   1392   return false;
   1393 }
   1394 
   1395 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
   1396 /// true if Op is undef or if it matches the specified value.
   1397 static bool isConstantOrUndef(int Op, int Val) {
   1398   return Op < 0 || Op == Val;
   1399 }
   1400 
   1401 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
   1402 /// VPKUHUM instruction.
   1403 /// The ShuffleKind distinguishes between big-endian operations with
   1404 /// two different inputs (0), either-endian operations with two identical
   1405 /// inputs (1), and little-endian operations with two different inputs (2).
   1406 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1407 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1408                                SelectionDAG &DAG) {
   1409   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1410   if (ShuffleKind == 0) {
   1411     if (IsLE)
   1412       return false;
   1413     for (unsigned i = 0; i != 16; ++i)
   1414       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
   1415         return false;
   1416   } else if (ShuffleKind == 2) {
   1417     if (!IsLE)
   1418       return false;
   1419     for (unsigned i = 0; i != 16; ++i)
   1420       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
   1421         return false;
   1422   } else if (ShuffleKind == 1) {
   1423     unsigned j = IsLE ? 0 : 1;
   1424     for (unsigned i = 0; i != 8; ++i)
   1425       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
   1426           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
   1427         return false;
   1428   }
   1429   return true;
   1430 }
   1431 
   1432 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
   1433 /// VPKUWUM instruction.
   1434 /// The ShuffleKind distinguishes between big-endian operations with
   1435 /// two different inputs (0), either-endian operations with two identical
   1436 /// inputs (1), and little-endian operations with two different inputs (2).
   1437 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1438 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1439                                SelectionDAG &DAG) {
   1440   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1441   if (ShuffleKind == 0) {
   1442     if (IsLE)
   1443       return false;
   1444     for (unsigned i = 0; i != 16; i += 2)
   1445       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
   1446           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
   1447         return false;
   1448   } else if (ShuffleKind == 2) {
   1449     if (!IsLE)
   1450       return false;
   1451     for (unsigned i = 0; i != 16; i += 2)
   1452       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1453           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
   1454         return false;
   1455   } else if (ShuffleKind == 1) {
   1456     unsigned j = IsLE ? 0 : 2;
   1457     for (unsigned i = 0; i != 8; i += 2)
   1458       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1459           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1460           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1461           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
   1462         return false;
   1463   }
   1464   return true;
   1465 }
   1466 
   1467 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
   1468 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
   1469 /// current subtarget.
   1470 ///
   1471 /// The ShuffleKind distinguishes between big-endian operations with
   1472 /// two different inputs (0), either-endian operations with two identical
   1473 /// inputs (1), and little-endian operations with two different inputs (2).
   1474 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1475 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1476                                SelectionDAG &DAG) {
   1477   const PPCSubtarget& Subtarget =
   1478     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
   1479   if (!Subtarget.hasP8Vector())
   1480     return false;
   1481 
   1482   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1483   if (ShuffleKind == 0) {
   1484     if (IsLE)
   1485       return false;
   1486     for (unsigned i = 0; i != 16; i += 4)
   1487       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
   1488           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
   1489           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
   1490           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
   1491         return false;
   1492   } else if (ShuffleKind == 2) {
   1493     if (!IsLE)
   1494       return false;
   1495     for (unsigned i = 0; i != 16; i += 4)
   1496       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1497           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
   1498           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
   1499           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
   1500         return false;
   1501   } else if (ShuffleKind == 1) {
   1502     unsigned j = IsLE ? 0 : 4;
   1503     for (unsigned i = 0; i != 8; i += 4)
   1504       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1505           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1506           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
   1507           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
   1508           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1509           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
   1510           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
   1511           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
   1512         return false;
   1513   }
   1514   return true;
   1515 }
   1516 
   1517 /// isVMerge - Common function, used to match vmrg* shuffles.
   1518 ///
   1519 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
   1520                      unsigned LHSStart, unsigned RHSStart) {
   1521   if (N->getValueType(0) != MVT::v16i8)
   1522     return false;
   1523   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
   1524          "Unsupported merge size!");
   1525 
   1526   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
   1527     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
   1528       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
   1529                              LHSStart+j+i*UnitSize) ||
   1530           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
   1531                              RHSStart+j+i*UnitSize))
   1532         return false;
   1533     }
   1534   return true;
   1535 }
   1536 
   1537 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
   1538 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
   1539 /// The ShuffleKind distinguishes between big-endian merges with two
   1540 /// different inputs (0), either-endian merges with two identical inputs (1),
   1541 /// and little-endian merges with two different inputs (2).  For the latter,
   1542 /// the input operands are swapped (see PPCInstrAltivec.td).
   1543 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1544                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1545   if (DAG.getDataLayout().isLittleEndian()) {
   1546     if (ShuffleKind == 1) // unary
   1547       return isVMerge(N, UnitSize, 0, 0);
   1548     else if (ShuffleKind == 2) // swapped
   1549       return isVMerge(N, UnitSize, 0, 16);
   1550     else
   1551       return false;
   1552   } else {
   1553     if (ShuffleKind == 1) // unary
   1554       return isVMerge(N, UnitSize, 8, 8);
   1555     else if (ShuffleKind == 0) // normal
   1556       return isVMerge(N, UnitSize, 8, 24);
   1557     else
   1558       return false;
   1559   }
   1560 }
   1561 
   1562 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
   1563 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
   1564 /// The ShuffleKind distinguishes between big-endian merges with two
   1565 /// different inputs (0), either-endian merges with two identical inputs (1),
   1566 /// and little-endian merges with two different inputs (2).  For the latter,
   1567 /// the input operands are swapped (see PPCInstrAltivec.td).
   1568 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1569                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1570   if (DAG.getDataLayout().isLittleEndian()) {
   1571     if (ShuffleKind == 1) // unary
   1572       return isVMerge(N, UnitSize, 8, 8);
   1573     else if (ShuffleKind == 2) // swapped
   1574       return isVMerge(N, UnitSize, 8, 24);
   1575     else
   1576       return false;
   1577   } else {
   1578     if (ShuffleKind == 1) // unary
   1579       return isVMerge(N, UnitSize, 0, 0);
   1580     else if (ShuffleKind == 0) // normal
   1581       return isVMerge(N, UnitSize, 0, 16);
   1582     else
   1583       return false;
   1584   }
   1585 }
   1586 
   1587 /**
   1588  * Common function used to match vmrgew and vmrgow shuffles
   1589  *
   1590  * The indexOffset determines whether to look for even or odd words in
   1591  * the shuffle mask. This is based on the of the endianness of the target
   1592  * machine.
   1593  *   - Little Endian:
   1594  *     - Use offset of 0 to check for odd elements
   1595  *     - Use offset of 4 to check for even elements
   1596  *   - Big Endian:
   1597  *     - Use offset of 0 to check for even elements
   1598  *     - Use offset of 4 to check for odd elements
   1599  * A detailed description of the vector element ordering for little endian and
   1600  * big endian can be found at
   1601  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
   1602  * Targeting your applications - what little endian and big endian IBM XL C/C++
   1603  * compiler differences mean to you
   1604  *
   1605  * The mask to the shuffle vector instruction specifies the indices of the
   1606  * elements from the two input vectors to place in the result. The elements are
   1607  * numbered in array-access order, starting with the first vector. These vectors
   1608  * are always of type v16i8, thus each vector will contain 16 elements of size
   1609  * 8. More info on the shuffle vector can be found in the
   1610  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
   1611  * Language Reference.
   1612  *
   1613  * The RHSStartValue indicates whether the same input vectors are used (unary)
   1614  * or two different input vectors are used, based on the following:
   1615  *   - If the instruction uses the same vector for both inputs, the range of the
   1616  *     indices will be 0 to 15. In this case, the RHSStart value passed should
   1617  *     be 0.
   1618  *   - If the instruction has two different vectors then the range of the
   1619  *     indices will be 0 to 31. In this case, the RHSStart value passed should
   1620  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
   1621  *     to 31 specify elements in the second vector).
   1622  *
   1623  * \param[in] N The shuffle vector SD Node to analyze
   1624  * \param[in] IndexOffset Specifies whether to look for even or odd elements
   1625  * \param[in] RHSStartValue Specifies the starting index for the righthand input
   1626  * vector to the shuffle_vector instruction
   1627  * \return true iff this shuffle vector represents an even or odd word merge
   1628  */
   1629 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
   1630                      unsigned RHSStartValue) {
   1631   if (N->getValueType(0) != MVT::v16i8)
   1632     return false;
   1633 
   1634   for (unsigned i = 0; i < 2; ++i)
   1635     for (unsigned j = 0; j < 4; ++j)
   1636       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
   1637                              i*RHSStartValue+j+IndexOffset) ||
   1638           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
   1639                              i*RHSStartValue+j+IndexOffset+8))
   1640         return false;
   1641   return true;
   1642 }
   1643 
   1644 /**
   1645  * Determine if the specified shuffle mask is suitable for the vmrgew or
   1646  * vmrgow instructions.
   1647  *
   1648  * \param[in] N The shuffle vector SD Node to analyze
   1649  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
   1650  * \param[in] ShuffleKind Identify the type of merge:
   1651  *   - 0 = big-endian merge with two different inputs;
   1652  *   - 1 = either-endian merge with two identical inputs;
   1653  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
   1654  *     little-endian merges).
   1655  * \param[in] DAG The current SelectionDAG
   1656  * \return true iff this shuffle mask
   1657  */
   1658 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
   1659                               unsigned ShuffleKind, SelectionDAG &DAG) {
   1660   if (DAG.getDataLayout().isLittleEndian()) {
   1661     unsigned indexOffset = CheckEven ? 4 : 0;
   1662     if (ShuffleKind == 1) // Unary
   1663       return isVMerge(N, indexOffset, 0);
   1664     else if (ShuffleKind == 2) // swapped
   1665       return isVMerge(N, indexOffset, 16);
   1666     else
   1667       return false;
   1668   }
   1669   else {
   1670     unsigned indexOffset = CheckEven ? 0 : 4;
   1671     if (ShuffleKind == 1) // Unary
   1672       return isVMerge(N, indexOffset, 0);
   1673     else if (ShuffleKind == 0) // Normal
   1674       return isVMerge(N, indexOffset, 16);
   1675     else
   1676       return false;
   1677   }
   1678   return false;
   1679 }
   1680 
   1681 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
   1682 /// amount, otherwise return -1.
   1683 /// The ShuffleKind distinguishes between big-endian operations with two
   1684 /// different inputs (0), either-endian operations with two identical inputs
   1685 /// (1), and little-endian operations with two different inputs (2).  For the
   1686 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
   1687 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
   1688                              SelectionDAG &DAG) {
   1689   if (N->getValueType(0) != MVT::v16i8)
   1690     return -1;
   1691 
   1692   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1693 
   1694   // Find the first non-undef value in the shuffle mask.
   1695   unsigned i;
   1696   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
   1697     /*search*/;
   1698 
   1699   if (i == 16) return -1;  // all undef.
   1700 
   1701   // Otherwise, check to see if the rest of the elements are consecutively
   1702   // numbered from this value.
   1703   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1704   if (ShiftAmt < i) return -1;
   1705 
   1706   ShiftAmt -= i;
   1707   bool isLE = DAG.getDataLayout().isLittleEndian();
   1708 
   1709   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
   1710     // Check the rest of the elements to see if they are consecutive.
   1711     for (++i; i != 16; ++i)
   1712       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1713         return -1;
   1714   } else if (ShuffleKind == 1) {
   1715     // Check the rest of the elements to see if they are consecutive.
   1716     for (++i; i != 16; ++i)
   1717       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
   1718         return -1;
   1719   } else
   1720     return -1;
   1721 
   1722   if (isLE)
   1723     ShiftAmt = 16 - ShiftAmt;
   1724 
   1725   return ShiftAmt;
   1726 }
   1727 
   1728 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
   1729 /// specifies a splat of a single element that is suitable for input to
   1730 /// VSPLTB/VSPLTH/VSPLTW.
   1731 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
   1732   assert(N->getValueType(0) == MVT::v16i8 &&
   1733          (EltSize == 1 || EltSize == 2 || EltSize == 4));
   1734 
   1735   // The consecutive indices need to specify an element, not part of two
   1736   // different elements.  So abandon ship early if this isn't the case.
   1737   if (N->getMaskElt(0) % EltSize != 0)
   1738     return false;
   1739 
   1740   // This is a splat operation if each element of the permute is the same, and
   1741   // if the value doesn't reference the second vector.
   1742   unsigned ElementBase = N->getMaskElt(0);
   1743 
   1744   // FIXME: Handle UNDEF elements too!
   1745   if (ElementBase >= 16)
   1746     return false;
   1747 
   1748   // Check that the indices are consecutive, in the case of a multi-byte element
   1749   // splatted with a v16i8 mask.
   1750   for (unsigned i = 1; i != EltSize; ++i)
   1751     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
   1752       return false;
   1753 
   1754   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
   1755     if (N->getMaskElt(i) < 0) continue;
   1756     for (unsigned j = 0; j != EltSize; ++j)
   1757       if (N->getMaskElt(i+j) != N->getMaskElt(j))
   1758         return false;
   1759   }
   1760   return true;
   1761 }
   1762 
   1763 /// Check that the mask is shuffling N byte elements. Within each N byte
   1764 /// element of the mask, the indices could be either in increasing or
   1765 /// decreasing order as long as they are consecutive.
   1766 /// \param[in] N the shuffle vector SD Node to analyze
   1767 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
   1768 /// Word/DoubleWord/QuadWord).
   1769 /// \param[in] StepLen the delta indices number among the N byte element, if
   1770 /// the mask is in increasing/decreasing order then it is 1/-1.
   1771 /// \return true iff the mask is shuffling N byte elements.
   1772 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
   1773                                    int StepLen) {
   1774   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
   1775          "Unexpected element width.");
   1776   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
   1777 
   1778   unsigned NumOfElem = 16 / Width;
   1779   unsigned MaskVal[16]; //  Width is never greater than 16
   1780   for (unsigned i = 0; i < NumOfElem; ++i) {
   1781     MaskVal[0] = N->getMaskElt(i * Width);
   1782     if ((StepLen == 1) && (MaskVal[0] % Width)) {
   1783       return false;
   1784     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
   1785       return false;
   1786     }
   1787 
   1788     for (unsigned int j = 1; j < Width; ++j) {
   1789       MaskVal[j] = N->getMaskElt(i * Width + j);
   1790       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
   1791         return false;
   1792       }
   1793     }
   1794   }
   1795 
   1796   return true;
   1797 }
   1798 
   1799 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
   1800                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
   1801   if (!isNByteElemShuffleMask(N, 4, 1))
   1802     return false;
   1803 
   1804   // Now we look at mask elements 0,4,8,12
   1805   unsigned M0 = N->getMaskElt(0) / 4;
   1806   unsigned M1 = N->getMaskElt(4) / 4;
   1807   unsigned M2 = N->getMaskElt(8) / 4;
   1808   unsigned M3 = N->getMaskElt(12) / 4;
   1809   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
   1810   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
   1811 
   1812   // Below, let H and L be arbitrary elements of the shuffle mask
   1813   // where H is in the range [4,7] and L is in the range [0,3].
   1814   // H, 1, 2, 3 or L, 5, 6, 7
   1815   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
   1816       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
   1817     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
   1818     InsertAtByte = IsLE ? 12 : 0;
   1819     Swap = M0 < 4;
   1820     return true;
   1821   }
   1822   // 0, H, 2, 3 or 4, L, 6, 7
   1823   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
   1824       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
   1825     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
   1826     InsertAtByte = IsLE ? 8 : 4;
   1827     Swap = M1 < 4;
   1828     return true;
   1829   }
   1830   // 0, 1, H, 3 or 4, 5, L, 7
   1831   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
   1832       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
   1833     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
   1834     InsertAtByte = IsLE ? 4 : 8;
   1835     Swap = M2 < 4;
   1836     return true;
   1837   }
   1838   // 0, 1, 2, H or 4, 5, 6, L
   1839   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
   1840       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
   1841     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
   1842     InsertAtByte = IsLE ? 0 : 12;
   1843     Swap = M3 < 4;
   1844     return true;
   1845   }
   1846 
   1847   // If both vector operands for the shuffle are the same vector, the mask will
   1848   // contain only elements from the first one and the second one will be undef.
   1849   if (N->getOperand(1).isUndef()) {
   1850     ShiftElts = 0;
   1851     Swap = true;
   1852     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
   1853     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
   1854       InsertAtByte = IsLE ? 12 : 0;
   1855       return true;
   1856     }
   1857     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
   1858       InsertAtByte = IsLE ? 8 : 4;
   1859       return true;
   1860     }
   1861     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
   1862       InsertAtByte = IsLE ? 4 : 8;
   1863       return true;
   1864     }
   1865     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
   1866       InsertAtByte = IsLE ? 0 : 12;
   1867       return true;
   1868     }
   1869   }
   1870 
   1871   return false;
   1872 }
   1873 
   1874 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
   1875                                bool &Swap, bool IsLE) {
   1876   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
   1877   // Ensure each byte index of the word is consecutive.
   1878   if (!isNByteElemShuffleMask(N, 4, 1))
   1879     return false;
   1880 
   1881   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
   1882   unsigned M0 = N->getMaskElt(0) / 4;
   1883   unsigned M1 = N->getMaskElt(4) / 4;
   1884   unsigned M2 = N->getMaskElt(8) / 4;
   1885   unsigned M3 = N->getMaskElt(12) / 4;
   1886 
   1887   // If both vector operands for the shuffle are the same vector, the mask will
   1888   // contain only elements from the first one and the second one will be undef.
   1889   if (N->getOperand(1).isUndef()) {
   1890     assert(M0 < 4 && "Indexing into an undef vector?");
   1891     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
   1892       return false;
   1893 
   1894     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
   1895     Swap = false;
   1896     return true;
   1897   }
   1898 
   1899   // Ensure each word index of the ShuffleVector Mask is consecutive.
   1900   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
   1901     return false;
   1902 
   1903   if (IsLE) {
   1904     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
   1905       // Input vectors don't need to be swapped if the leading element
   1906       // of the result is one of the 3 left elements of the second vector
   1907       // (or if there is no shift to be done at all).
   1908       Swap = false;
   1909       ShiftElts = (8 - M0) % 8;
   1910     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
   1911       // Input vectors need to be swapped if the leading element
   1912       // of the result is one of the 3 left elements of the first vector
   1913       // (or if we're shifting by 4 - thereby simply swapping the vectors).
   1914       Swap = true;
   1915       ShiftElts = (4 - M0) % 4;
   1916     }
   1917 
   1918     return true;
   1919   } else {                                          // BE
   1920     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
   1921       // Input vectors don't need to be swapped if the leading element
   1922       // of the result is one of the 4 elements of the first vector.
   1923       Swap = false;
   1924       ShiftElts = M0;
   1925     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
   1926       // Input vectors need to be swapped if the leading element
   1927       // of the result is one of the 4 elements of the right vector.
   1928       Swap = true;
   1929       ShiftElts = M0 - 4;
   1930     }
   1931 
   1932     return true;
   1933   }
   1934 }
   1935 
   1936 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
   1937   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
   1938 
   1939   if (!isNByteElemShuffleMask(N, Width, -1))
   1940     return false;
   1941 
   1942   for (int i = 0; i < 16; i += Width)
   1943     if (N->getMaskElt(i) != i + Width - 1)
   1944       return false;
   1945 
   1946   return true;
   1947 }
   1948 
   1949 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
   1950   return isXXBRShuffleMaskHelper(N, 2);
   1951 }
   1952 
   1953 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
   1954   return isXXBRShuffleMaskHelper(N, 4);
   1955 }
   1956 
   1957 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
   1958   return isXXBRShuffleMaskHelper(N, 8);
   1959 }
   1960 
   1961 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
   1962   return isXXBRShuffleMaskHelper(N, 16);
   1963 }
   1964 
   1965 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
   1966 /// if the inputs to the instruction should be swapped and set \p DM to the
   1967 /// value for the immediate.
   1968 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
   1969 /// AND element 0 of the result comes from the first input (LE) or second input
   1970 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
   1971 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
   1972 /// mask.
   1973 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
   1974                                bool &Swap, bool IsLE) {
   1975   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
   1976 
   1977   // Ensure each byte index of the double word is consecutive.
   1978   if (!isNByteElemShuffleMask(N, 8, 1))
   1979     return false;
   1980 
   1981   unsigned M0 = N->getMaskElt(0) / 8;
   1982   unsigned M1 = N->getMaskElt(8) / 8;
   1983   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
   1984 
   1985   // If both vector operands for the shuffle are the same vector, the mask will
   1986   // contain only elements from the first one and the second one will be undef.
   1987   if (N->getOperand(1).isUndef()) {
   1988     if ((M0 | M1) < 2) {
   1989       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
   1990       Swap = false;
   1991       return true;
   1992     } else
   1993       return false;
   1994   }
   1995 
   1996   if (IsLE) {
   1997     if (M0 > 1 && M1 < 2) {
   1998       Swap = false;
   1999     } else if (M0 < 2 && M1 > 1) {
   2000       M0 = (M0 + 2) % 4;
   2001       M1 = (M1 + 2) % 4;
   2002       Swap = true;
   2003     } else
   2004       return false;
   2005 
   2006     // Note: if control flow comes here that means Swap is already set above
   2007     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
   2008     return true;
   2009   } else { // BE
   2010     if (M0 < 2 && M1 > 1) {
   2011       Swap = false;
   2012     } else if (M0 > 1 && M1 < 2) {
   2013       M0 = (M0 + 2) % 4;
   2014       M1 = (M1 + 2) % 4;
   2015       Swap = true;
   2016     } else
   2017       return false;
   2018 
   2019     // Note: if control flow comes here that means Swap is already set above
   2020     DM = (M0 << 1) + (M1 & 1);
   2021     return true;
   2022   }
   2023 }
   2024 
   2025 
   2026 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
   2027 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
   2028 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
   2029                                 SelectionDAG &DAG) {
   2030   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   2031   assert(isSplatShuffleMask(SVOp, EltSize));
   2032   if (DAG.getDataLayout().isLittleEndian())
   2033     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
   2034   else
   2035     return SVOp->getMaskElt(0) / EltSize;
   2036 }
   2037 
   2038 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
   2039 /// by using a vspltis[bhw] instruction of the specified element size, return
   2040 /// the constant being splatted.  The ByteSize field indicates the number of
   2041 /// bytes of each element [124] -> [bhw].
   2042 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
   2043   SDValue OpVal(nullptr, 0);
   2044 
   2045   // If ByteSize of the splat is bigger than the element size of the
   2046   // build_vector, then we have a case where we are checking for a splat where
   2047   // multiple elements of the buildvector are folded together into a single
   2048   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
   2049   unsigned EltSize = 16/N->getNumOperands();
   2050   if (EltSize < ByteSize) {
   2051     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
   2052     SDValue UniquedVals[4];
   2053     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
   2054 
   2055     // See if all of the elements in the buildvector agree across.
   2056     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   2057       if (N->getOperand(i).isUndef()) continue;
   2058       // If the element isn't a constant, bail fully out.
   2059       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
   2060 
   2061       if (!UniquedVals[i&(Multiple-1)].getNode())
   2062         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
   2063       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
   2064         return SDValue();  // no match.
   2065     }
   2066 
   2067     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
   2068     // either constant or undef values that are identical for each chunk.  See
   2069     // if these chunks can form into a larger vspltis*.
   2070 
   2071     // Check to see if all of the leading entries are either 0 or -1.  If
   2072     // neither, then this won't fit into the immediate field.
   2073     bool LeadingZero = true;
   2074     bool LeadingOnes = true;
   2075     for (unsigned i = 0; i != Multiple-1; ++i) {
   2076       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
   2077 
   2078       LeadingZero &= isNullConstant(UniquedVals[i]);
   2079       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
   2080     }
   2081     // Finally, check the least significant entry.
   2082     if (LeadingZero) {
   2083       if (!UniquedVals[Multiple-1].getNode())
   2084         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
   2085       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
   2086       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
   2087         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   2088     }
   2089     if (LeadingOnes) {
   2090       if (!UniquedVals[Multiple-1].getNode())
   2091         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
   2092       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
   2093       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
   2094         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   2095     }
   2096 
   2097     return SDValue();
   2098   }
   2099 
   2100   // Check to see if this buildvec has a single non-undef value in its elements.
   2101   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   2102     if (N->getOperand(i).isUndef()) continue;
   2103     if (!OpVal.getNode())
   2104       OpVal = N->getOperand(i);
   2105     else if (OpVal != N->getOperand(i))
   2106       return SDValue();
   2107   }
   2108 
   2109   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
   2110 
   2111   unsigned ValSizeInBytes = EltSize;
   2112   uint64_t Value = 0;
   2113   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
   2114     Value = CN->getZExtValue();
   2115   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
   2116     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
   2117     Value = FloatToBits(CN->getValueAPF().convertToFloat());
   2118   }
   2119 
   2120   // If the splat value is larger than the element value, then we can never do
   2121   // this splat.  The only case that we could fit the replicated bits into our
   2122   // immediate field for would be zero, and we prefer to use vxor for it.
   2123   if (ValSizeInBytes < ByteSize) return SDValue();
   2124 
   2125   // If the element value is larger than the splat value, check if it consists
   2126   // of a repeated bit pattern of size ByteSize.
   2127   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
   2128     return SDValue();
   2129 
   2130   // Properly sign extend the value.
   2131   int MaskVal = SignExtend32(Value, ByteSize * 8);
   2132 
   2133   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
   2134   if (MaskVal == 0) return SDValue();
   2135 
   2136   // Finally, if this value fits in a 5 bit sext field, return it
   2137   if (SignExtend32<5>(MaskVal) == MaskVal)
   2138     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
   2139   return SDValue();
   2140 }
   2141 
   2142 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
   2143 /// amount, otherwise return -1.
   2144 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
   2145   EVT VT = N->getValueType(0);
   2146   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
   2147     return -1;
   2148 
   2149   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   2150 
   2151   // Find the first non-undef value in the shuffle mask.
   2152   unsigned i;
   2153   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
   2154     /*search*/;
   2155 
   2156   if (i == 4) return -1;  // all undef.
   2157 
   2158   // Otherwise, check to see if the rest of the elements are consecutively
   2159   // numbered from this value.
   2160   unsigned ShiftAmt = SVOp->getMaskElt(i);
   2161   if (ShiftAmt < i) return -1;
   2162   ShiftAmt -= i;
   2163 
   2164   // Check the rest of the elements to see if they are consecutive.
   2165   for (++i; i != 4; ++i)
   2166     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   2167       return -1;
   2168 
   2169   return ShiftAmt;
   2170 }
   2171 
   2172 //===----------------------------------------------------------------------===//
   2173 //  Addressing Mode Selection
   2174 //===----------------------------------------------------------------------===//
   2175 
   2176 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
   2177 /// or 64-bit immediate, and if the value can be accurately represented as a
   2178 /// sign extension from a 16-bit value.  If so, this returns true and the
   2179 /// immediate.
   2180 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
   2181   if (!isa<ConstantSDNode>(N))
   2182     return false;
   2183 
   2184   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
   2185   if (N->getValueType(0) == MVT::i32)
   2186     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
   2187   else
   2188     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
   2189 }
   2190 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
   2191   return isIntS16Immediate(Op.getNode(), Imm);
   2192 }
   2193 
   2194 /// SelectAddressRegReg - Given the specified addressed, check to see if it
   2195 /// can be represented as an indexed [r+r] operation.  Returns false if it
   2196 /// can be more efficiently represented with [r+imm].
   2197 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
   2198                                             SDValue &Index,
   2199                                             SelectionDAG &DAG) const {
   2200   int16_t imm = 0;
   2201   if (N.getOpcode() == ISD::ADD) {
   2202     if (isIntS16Immediate(N.getOperand(1), imm))
   2203       return false;    // r+i
   2204     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   2205       return false;    // r+i
   2206 
   2207     Base = N.getOperand(0);
   2208     Index = N.getOperand(1);
   2209     return true;
   2210   } else if (N.getOpcode() == ISD::OR) {
   2211     if (isIntS16Immediate(N.getOperand(1), imm))
   2212       return false;    // r+i can fold it if we can.
   2213 
   2214     // If this is an or of disjoint bitfields, we can codegen this as an add
   2215     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   2216     // disjoint.
   2217     KnownBits LHSKnown, RHSKnown;
   2218     DAG.computeKnownBits(N.getOperand(0), LHSKnown);
   2219 
   2220     if (LHSKnown.Zero.getBoolValue()) {
   2221       DAG.computeKnownBits(N.getOperand(1), RHSKnown);
   2222       // If all of the bits are known zero on the LHS or RHS, the add won't
   2223       // carry.
   2224       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
   2225         Base = N.getOperand(0);
   2226         Index = N.getOperand(1);
   2227         return true;
   2228       }
   2229     }
   2230   }
   2231 
   2232   return false;
   2233 }
   2234 
   2235 // If we happen to be doing an i64 load or store into a stack slot that has
   2236 // less than a 4-byte alignment, then the frame-index elimination may need to
   2237 // use an indexed load or store instruction (because the offset may not be a
   2238 // multiple of 4). The extra register needed to hold the offset comes from the
   2239 // register scavenger, and it is possible that the scavenger will need to use
   2240 // an emergency spill slot. As a result, we need to make sure that a spill slot
   2241 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   2242 // stack slot.
   2243 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   2244   // FIXME: This does not handle the LWA case.
   2245   if (VT != MVT::i64)
   2246     return;
   2247 
   2248   // NOTE: We'll exclude negative FIs here, which come from argument
   2249   // lowering, because there are no known test cases triggering this problem
   2250   // using packed structures (or similar). We can remove this exclusion if
   2251   // we find such a test case. The reason why this is so test-case driven is
   2252   // because this entire 'fixup' is only to prevent crashes (from the
   2253   // register scavenger) on not-really-valid inputs. For example, if we have:
   2254   //   %a = alloca i1
   2255   //   %b = bitcast i1* %a to i64*
   2256   //   store i64* a, i64 b
   2257   // then the store should really be marked as 'align 1', but is not. If it
   2258   // were marked as 'align 1' then the indexed form would have been
   2259   // instruction-selected initially, and the problem this 'fixup' is preventing
   2260   // won't happen regardless.
   2261   if (FrameIdx < 0)
   2262     return;
   2263 
   2264   MachineFunction &MF = DAG.getMachineFunction();
   2265   MachineFrameInfo &MFI = MF.getFrameInfo();
   2266 
   2267   unsigned Align = MFI.getObjectAlignment(FrameIdx);
   2268   if (Align >= 4)
   2269     return;
   2270 
   2271   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2272   FuncInfo->setHasNonRISpills();
   2273 }
   2274 
   2275 /// Returns true if the address N can be represented by a base register plus
   2276 /// a signed 16-bit displacement [r+imm], and if it is not better
   2277 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
   2278 /// displacements that are multiples of that value.
   2279 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   2280                                             SDValue &Base,
   2281                                             SelectionDAG &DAG,
   2282                                             unsigned Alignment) const {
   2283   // FIXME dl should come from parent load or store, not from address
   2284   SDLoc dl(N);
   2285   // If this can be more profitably realized as r+r, fail.
   2286   if (SelectAddressRegReg(N, Disp, Base, DAG))
   2287     return false;
   2288 
   2289   if (N.getOpcode() == ISD::ADD) {
   2290     int16_t imm = 0;
   2291     if (isIntS16Immediate(N.getOperand(1), imm) &&
   2292         (!Alignment || (imm % Alignment) == 0)) {
   2293       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   2294       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   2295         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   2296         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   2297       } else {
   2298         Base = N.getOperand(0);
   2299       }
   2300       return true; // [r+i]
   2301     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   2302       // Match LOAD (ADD (X, Lo(G))).
   2303       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   2304              && "Cannot handle constant offsets yet!");
   2305       Disp = N.getOperand(1).getOperand(0);  // The global address.
   2306       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   2307              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   2308              Disp.getOpcode() == ISD::TargetConstantPool ||
   2309              Disp.getOpcode() == ISD::TargetJumpTable);
   2310       Base = N.getOperand(0);
   2311       return true;  // [&g+r]
   2312     }
   2313   } else if (N.getOpcode() == ISD::OR) {
   2314     int16_t imm = 0;
   2315     if (isIntS16Immediate(N.getOperand(1), imm) &&
   2316         (!Alignment || (imm % Alignment) == 0)) {
   2317       // If this is an or of disjoint bitfields, we can codegen this as an add
   2318       // (for better address arithmetic) if the LHS and RHS of the OR are
   2319       // provably disjoint.
   2320       KnownBits LHSKnown;
   2321       DAG.computeKnownBits(N.getOperand(0), LHSKnown);
   2322 
   2323       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   2324         // If all of the bits are known zero on the LHS or RHS, the add won't
   2325         // carry.
   2326         if (FrameIndexSDNode *FI =
   2327               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   2328           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   2329           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   2330         } else {
   2331           Base = N.getOperand(0);
   2332         }
   2333         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   2334         return true;
   2335       }
   2336     }
   2337   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   2338     // Loading from a constant address.
   2339 
   2340     // If this address fits entirely in a 16-bit sext immediate field, codegen
   2341     // this as "d, 0"
   2342     int16_t Imm;
   2343     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
   2344       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
   2345       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   2346                              CN->getValueType(0));
   2347       return true;
   2348     }
   2349 
   2350     // Handle 32-bit sext immediates with LIS + addr mode.
   2351     if ((CN->getValueType(0) == MVT::i32 ||
   2352          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   2353         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
   2354       int Addr = (int)CN->getZExtValue();
   2355 
   2356       // Otherwise, break this down into an LIS + disp.
   2357       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
   2358 
   2359       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
   2360                                    MVT::i32);
   2361       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   2362       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   2363       return true;
   2364     }
   2365   }
   2366 
   2367   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
   2368   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   2369     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   2370     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   2371   } else
   2372     Base = N;
   2373   return true;      // [r+0]
   2374 }
   2375 
   2376 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   2377 /// represented as an indexed [r+r] operation.
   2378 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   2379                                                 SDValue &Index,
   2380                                                 SelectionDAG &DAG) const {
   2381   // Check to see if we can easily represent this as an [r+r] address.  This
   2382   // will fail if it thinks that the address is more profitably represented as
   2383   // reg+imm, e.g. where imm = 0.
   2384   if (SelectAddressRegReg(N, Base, Index, DAG))
   2385     return true;
   2386 
   2387   // If the address is the result of an add, we will utilize the fact that the
   2388   // address calculation includes an implicit add.  However, we can reduce
   2389   // register pressure if we do not materialize a constant just for use as the
   2390   // index register.  We only get rid of the add if it is not an add of a
   2391   // value and a 16-bit signed constant and both have a single use.
   2392   int16_t imm = 0;
   2393   if (N.getOpcode() == ISD::ADD &&
   2394       (!isIntS16Immediate(N.getOperand(1), imm) ||
   2395        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
   2396     Base = N.getOperand(0);
   2397     Index = N.getOperand(1);
   2398     return true;
   2399   }
   2400 
   2401   // Otherwise, do it the hard way, using R0 as the base register.
   2402   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   2403                          N.getValueType());
   2404   Index = N;
   2405   return true;
   2406 }
   2407 
   2408 /// getPreIndexedAddressParts - returns true by value, base pointer and
   2409 /// offset pointer and addressing mode by reference if the node's address
   2410 /// can be legally represented as pre-indexed load / store address.
   2411 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   2412                                                   SDValue &Offset,
   2413                                                   ISD::MemIndexedMode &AM,
   2414                                                   SelectionDAG &DAG) const {
   2415   if (DisablePPCPreinc) return false;
   2416 
   2417   bool isLoad = true;
   2418   SDValue Ptr;
   2419   EVT VT;
   2420   unsigned Alignment;
   2421   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   2422     Ptr = LD->getBasePtr();
   2423     VT = LD->getMemoryVT();
   2424     Alignment = LD->getAlignment();
   2425   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   2426     Ptr = ST->getBasePtr();
   2427     VT  = ST->getMemoryVT();
   2428     Alignment = ST->getAlignment();
   2429     isLoad = false;
   2430   } else
   2431     return false;
   2432 
   2433   // PowerPC doesn't have preinc load/store instructions for vectors (except
   2434   // for QPX, which does have preinc r+r forms).
   2435   if (VT.isVector()) {
   2436     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
   2437       return false;
   2438     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
   2439       AM = ISD::PRE_INC;
   2440       return true;
   2441     }
   2442   }
   2443 
   2444   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   2445     // Common code will reject creating a pre-inc form if the base pointer
   2446     // is a frame index, or if N is a store and the base pointer is either
   2447     // the same as or a predecessor of the value being stored.  Check for
   2448     // those situations here, and try with swapped Base/Offset instead.
   2449     bool Swap = false;
   2450 
   2451     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   2452       Swap = true;
   2453     else if (!isLoad) {
   2454       SDValue Val = cast<StoreSDNode>(N)->getValue();
   2455       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   2456         Swap = true;
   2457     }
   2458 
   2459     if (Swap)
   2460       std::swap(Base, Offset);
   2461 
   2462     AM = ISD::PRE_INC;
   2463     return true;
   2464   }
   2465 
   2466   // LDU/STU can only handle immediates that are a multiple of 4.
   2467   if (VT != MVT::i64) {
   2468     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
   2469       return false;
   2470   } else {
   2471     // LDU/STU need an address with at least 4-byte alignment.
   2472     if (Alignment < 4)
   2473       return false;
   2474 
   2475     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
   2476       return false;
   2477   }
   2478 
   2479   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   2480     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   2481     // sext i32 to i64 when addr mode is r+i.
   2482     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   2483         LD->getExtensionType() == ISD::SEXTLOAD &&
   2484         isa<ConstantSDNode>(Offset))
   2485       return false;
   2486   }
   2487 
   2488   AM = ISD::PRE_INC;
   2489   return true;
   2490 }
   2491 
   2492 //===----------------------------------------------------------------------===//
   2493 //  LowerOperation implementation
   2494 //===----------------------------------------------------------------------===//
   2495 
   2496 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
   2497 /// and LoOpFlags to the target MO flags.
   2498 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
   2499                                unsigned &HiOpFlags, unsigned &LoOpFlags,
   2500                                const GlobalValue *GV = nullptr) {
   2501   HiOpFlags = PPCII::MO_HA;
   2502   LoOpFlags = PPCII::MO_LO;
   2503 
   2504   // Don't use the pic base if not in PIC relocation model.
   2505   if (IsPIC) {
   2506     HiOpFlags |= PPCII::MO_PIC_FLAG;
   2507     LoOpFlags |= PPCII::MO_PIC_FLAG;
   2508   }
   2509 
   2510   // If this is a reference to a global value that requires a non-lazy-ptr, make
   2511   // sure that instruction lowering adds it.
   2512   if (GV && Subtarget.hasLazyResolverStub(GV)) {
   2513     HiOpFlags |= PPCII::MO_NLP_FLAG;
   2514     LoOpFlags |= PPCII::MO_NLP_FLAG;
   2515 
   2516     if (GV->hasHiddenVisibility()) {
   2517       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   2518       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   2519     }
   2520   }
   2521 }
   2522 
   2523 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   2524                              SelectionDAG &DAG) {
   2525   SDLoc DL(HiPart);
   2526   EVT PtrVT = HiPart.getValueType();
   2527   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
   2528 
   2529   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   2530   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   2531 
   2532   // With PIC, the first instruction is actually "GR+hi(&G)".
   2533   if (isPIC)
   2534     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   2535                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   2536 
   2537   // Generate non-pic code that has direct accesses to the constant pool.
   2538   // The address of the global is just (hi(&g)+lo(&g)).
   2539   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   2540 }
   2541 
   2542 static void setUsesTOCBasePtr(MachineFunction &MF) {
   2543   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2544   FuncInfo->setUsesTOCBasePtr();
   2545 }
   2546 
   2547 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
   2548   setUsesTOCBasePtr(DAG.getMachineFunction());
   2549 }
   2550 
   2551 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
   2552                            SDValue GA) {
   2553   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2554   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
   2555                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
   2556 
   2557   SDValue Ops[] = { GA, Reg };
   2558   return DAG.getMemIntrinsicNode(
   2559       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
   2560       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
   2561       MachineMemOperand::MOLoad);
   2562 }
   2563 
   2564 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   2565                                              SelectionDAG &DAG) const {
   2566   EVT PtrVT = Op.getValueType();
   2567   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2568   const Constant *C = CP->getConstVal();
   2569 
   2570   // 64-bit SVR4 ABI code is always position-independent.
   2571   // The actual address of the GlobalValue is stored in the TOC.
   2572   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2573     setUsesTOCBasePtr(DAG);
   2574     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   2575     return getTOCEntry(DAG, SDLoc(CP), true, GA);
   2576   }
   2577 
   2578   unsigned MOHiFlag, MOLoFlag;
   2579   bool IsPIC = isPositionIndependent();
   2580   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
   2581 
   2582   if (IsPIC && Subtarget.isSVR4ABI()) {
   2583     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
   2584                                            PPCII::MO_PIC_FLAG);
   2585     return getTOCEntry(DAG, SDLoc(CP), false, GA);
   2586   }
   2587 
   2588   SDValue CPIHi =
   2589     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   2590   SDValue CPILo =
   2591     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   2592   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
   2593 }
   2594 
   2595 // For 64-bit PowerPC, prefer the more compact relative encodings.
   2596 // This trades 32 bits per jump table entry for one or two instructions
   2597 // on the jump site.
   2598 unsigned PPCTargetLowering::getJumpTableEncoding() const {
   2599   if (isJumpTableRelative())
   2600     return MachineJumpTableInfo::EK_LabelDifference32;
   2601 
   2602   return TargetLowering::getJumpTableEncoding();
   2603 }
   2604 
   2605 bool PPCTargetLowering::isJumpTableRelative() const {
   2606   if (Subtarget.isPPC64())
   2607     return true;
   2608   return TargetLowering::isJumpTableRelative();
   2609 }
   2610 
   2611 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
   2612                                                     SelectionDAG &DAG) const {
   2613   if (!Subtarget.isPPC64())
   2614     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
   2615 
   2616   switch (getTargetMachine().getCodeModel()) {
   2617   case CodeModel::Small:
   2618   case CodeModel::Medium:
   2619     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
   2620   default:
   2621     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
   2622                        getPointerTy(DAG.getDataLayout()));
   2623   }
   2624 }
   2625 
   2626 const MCExpr *
   2627 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   2628                                                 unsigned JTI,
   2629                                                 MCContext &Ctx) const {
   2630   if (!Subtarget.isPPC64())
   2631     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   2632 
   2633   switch (getTargetMachine().getCodeModel()) {
   2634   case CodeModel::Small:
   2635   case CodeModel::Medium:
   2636     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   2637   default:
   2638     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
   2639   }
   2640 }
   2641 
   2642 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   2643   EVT PtrVT = Op.getValueType();
   2644   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   2645 
   2646   // 64-bit SVR4 ABI code is always position-independent.
   2647   // The actual address of the GlobalValue is stored in the TOC.
   2648   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2649     setUsesTOCBasePtr(DAG);
   2650     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2651     return getTOCEntry(DAG, SDLoc(JT), true, GA);
   2652   }
   2653 
   2654   unsigned MOHiFlag, MOLoFlag;
   2655   bool IsPIC = isPositionIndependent();
   2656   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
   2657 
   2658   if (IsPIC && Subtarget.isSVR4ABI()) {
   2659     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
   2660                                         PPCII::MO_PIC_FLAG);
   2661     return getTOCEntry(DAG, SDLoc(GA), false, GA);
   2662   }
   2663 
   2664   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   2665   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   2666   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
   2667 }
   2668 
   2669 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   2670                                              SelectionDAG &DAG) const {
   2671   EVT PtrVT = Op.getValueType();
   2672   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
   2673   const BlockAddress *BA = BASDN->getBlockAddress();
   2674 
   2675   // 64-bit SVR4 ABI code is always position-independent.
   2676   // The actual BlockAddress is stored in the TOC.
   2677   if (Subtarget.isSVR4ABI() && isPositionIndependent()) {
   2678     if (Subtarget.isPPC64())
   2679       setUsesTOCBasePtr(DAG);
   2680     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
   2681     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
   2682   }
   2683 
   2684   unsigned MOHiFlag, MOLoFlag;
   2685   bool IsPIC = isPositionIndependent();
   2686   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
   2687   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   2688   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   2689   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
   2690 }
   2691 
   2692 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   2693                                               SelectionDAG &DAG) const {
   2694   // FIXME: TLS addresses currently use medium model code sequences,
   2695   // which is the most useful form.  Eventually support for small and
   2696   // large models could be added if users need it, at the cost of
   2697   // additional complexity.
   2698   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2699   if (DAG.getTarget().useEmulatedTLS())
   2700     return LowerToTLSEmulatedModel(GA, DAG);
   2701 
   2702   SDLoc dl(GA);
   2703   const GlobalValue *GV = GA->getGlobal();
   2704   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2705   bool is64bit = Subtarget.isPPC64();
   2706   const Module *M = DAG.getMachineFunction().getFunction().getParent();
   2707   PICLevel::Level picLevel = M->getPICLevel();
   2708 
   2709   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   2710 
   2711   if (Model == TLSModel::LocalExec) {
   2712     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2713                                                PPCII::MO_TPREL_HA);
   2714     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2715                                                PPCII::MO_TPREL_LO);
   2716     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
   2717                              : DAG.getRegister(PPC::R2, MVT::i32);
   2718 
   2719     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   2720     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   2721   }
   2722 
   2723   if (Model == TLSModel::InitialExec) {
   2724     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2725     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2726                                                 PPCII::MO_TLS);
   2727     SDValue GOTPtr;
   2728     if (is64bit) {
   2729       setUsesTOCBasePtr(DAG);
   2730       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2731       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   2732                            PtrVT, GOTReg, TGA);
   2733     } else
   2734       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
   2735     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   2736                                    PtrVT, TGA, GOTPtr);
   2737     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   2738   }
   2739 
   2740   if (Model == TLSModel::GeneralDynamic) {
   2741     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2742     SDValue GOTPtr;
   2743     if (is64bit) {
   2744       setUsesTOCBasePtr(DAG);
   2745       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2746       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   2747                                    GOTReg, TGA);
   2748     } else {
   2749       if (picLevel == PICLevel::SmallPIC)
   2750         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2751       else
   2752         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2753     }
   2754     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
   2755                        GOTPtr, TGA, TGA);
   2756   }
   2757 
   2758   if (Model == TLSModel::LocalDynamic) {
   2759     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2760     SDValue GOTPtr;
   2761     if (is64bit) {
   2762       setUsesTOCBasePtr(DAG);
   2763       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2764       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   2765                            GOTReg, TGA);
   2766     } else {
   2767       if (picLevel == PICLevel::SmallPIC)
   2768         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2769       else
   2770         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2771     }
   2772     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
   2773                                   PtrVT, GOTPtr, TGA, TGA);
   2774     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
   2775                                       PtrVT, TLSAddr, TGA);
   2776     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   2777   }
   2778 
   2779   llvm_unreachable("Unknown TLS model!");
   2780 }
   2781 
   2782 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   2783                                               SelectionDAG &DAG) const {
   2784   EVT PtrVT = Op.getValueType();
   2785   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   2786   SDLoc DL(GSDN);
   2787   const GlobalValue *GV = GSDN->getGlobal();
   2788 
   2789   // 64-bit SVR4 ABI code is always position-independent.
   2790   // The actual address of the GlobalValue is stored in the TOC.
   2791   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2792     setUsesTOCBasePtr(DAG);
   2793     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   2794     return getTOCEntry(DAG, DL, true, GA);
   2795   }
   2796 
   2797   unsigned MOHiFlag, MOLoFlag;
   2798   bool IsPIC = isPositionIndependent();
   2799   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
   2800 
   2801   if (IsPIC && Subtarget.isSVR4ABI()) {
   2802     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
   2803                                             GSDN->getOffset(),
   2804                                             PPCII::MO_PIC_FLAG);
   2805     return getTOCEntry(DAG, DL, false, GA);
   2806   }
   2807 
   2808   SDValue GAHi =
   2809     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   2810   SDValue GALo =
   2811     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   2812 
   2813   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
   2814 
   2815   // If the global reference is actually to a non-lazy-pointer, we have to do an
   2816   // extra load to get the address of the global.
   2817   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   2818     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
   2819   return Ptr;
   2820 }
   2821 
   2822 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   2823   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2824   SDLoc dl(Op);
   2825 
   2826   if (Op.getValueType() == MVT::v2i64) {
   2827     // When the operands themselves are v2i64 values, we need to do something
   2828     // special because VSX has no underlying comparison operations for these.
   2829     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
   2830       // Equality can be handled by casting to the legal type for Altivec
   2831       // comparisons, everything else needs to be expanded.
   2832       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   2833         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   2834                  DAG.getSetCC(dl, MVT::v4i32,
   2835                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
   2836                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
   2837                    CC));
   2838       }
   2839 
   2840       return SDValue();
   2841     }
   2842 
   2843     // We handle most of these in the usual way.
   2844     return Op;
   2845   }
   2846 
   2847   // If we're comparing for equality to zero, expose the fact that this is
   2848   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
   2849   // fold the new nodes.
   2850   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
   2851     return V;
   2852 
   2853   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2854     // Leave comparisons against 0 and -1 alone for now, since they're usually
   2855     // optimized.  FIXME: revisit this when we can custom lower all setcc
   2856     // optimizations.
   2857     if (C->isAllOnesValue() || C->isNullValue())
   2858       return SDValue();
   2859   }
   2860 
   2861   // If we have an integer seteq/setne, turn it into a compare against zero
   2862   // by xor'ing the rhs with the lhs, which is faster than setting a
   2863   // condition register, reading it back out, and masking the correct bit.  The
   2864   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   2865   // the result to other bit-twiddling opportunities.
   2866   EVT LHSVT = Op.getOperand(0).getValueType();
   2867   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   2868     EVT VT = Op.getValueType();
   2869     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   2870                                 Op.getOperand(1));
   2871     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
   2872   }
   2873   return SDValue();
   2874 }
   2875 
   2876 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   2877   SDNode *Node = Op.getNode();
   2878   EVT VT = Node->getValueType(0);
   2879   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2880   SDValue InChain = Node->getOperand(0);
   2881   SDValue VAListPtr = Node->getOperand(1);
   2882   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2883   SDLoc dl(Node);
   2884 
   2885   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   2886 
   2887   // gpr_index
   2888   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2889                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
   2890   InChain = GprIndex.getValue(1);
   2891 
   2892   if (VT == MVT::i64) {
   2893     // Check if GprIndex is even
   2894     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   2895                                  DAG.getConstant(1, dl, MVT::i32));
   2896     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   2897                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
   2898     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   2899                                           DAG.getConstant(1, dl, MVT::i32));
   2900     // Align GprIndex to be even if it isn't
   2901     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   2902                            GprIndex);
   2903   }
   2904 
   2905   // fpr index is 1 byte after gpr
   2906   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2907                                DAG.getConstant(1, dl, MVT::i32));
   2908 
   2909   // fpr
   2910   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2911                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
   2912   InChain = FprIndex.getValue(1);
   2913 
   2914   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2915                                        DAG.getConstant(8, dl, MVT::i32));
   2916 
   2917   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2918                                         DAG.getConstant(4, dl, MVT::i32));
   2919 
   2920   // areas
   2921   SDValue OverflowArea =
   2922       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
   2923   InChain = OverflowArea.getValue(1);
   2924 
   2925   SDValue RegSaveArea =
   2926       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
   2927   InChain = RegSaveArea.getValue(1);
   2928 
   2929   // select overflow_area if index > 8
   2930   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   2931                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
   2932 
   2933   // adjustment constant gpr_index * 4/8
   2934   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   2935                                     VT.isInteger() ? GprIndex : FprIndex,
   2936                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
   2937                                                     MVT::i32));
   2938 
   2939   // OurReg = RegSaveArea + RegConstant
   2940   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   2941                                RegConstant);
   2942 
   2943   // Floating types are 32 bytes into RegSaveArea
   2944   if (VT.isFloatingPoint())
   2945     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   2946                          DAG.getConstant(32, dl, MVT::i32));
   2947 
   2948   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   2949   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   2950                                    VT.isInteger() ? GprIndex : FprIndex,
   2951                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
   2952                                                    MVT::i32));
   2953 
   2954   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   2955                               VT.isInteger() ? VAListPtr : FprPtr,
   2956                               MachinePointerInfo(SV), MVT::i8);
   2957 
   2958   // determine if we should load from reg_save_area or overflow_area
   2959   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   2960 
   2961   // increase overflow_area by 4/8 if gpr/fpr > 8
   2962   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   2963                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   2964                                           dl, MVT::i32));
   2965 
   2966   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   2967                              OverflowAreaPlusN);
   2968 
   2969   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
   2970                               MachinePointerInfo(), MVT::i32);
   2971 
   2972   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
   2973 }
   2974 
   2975 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
   2976   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   2977 
   2978   // We have to copy the entire va_list struct:
   2979   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   2980   return DAG.getMemcpy(Op.getOperand(0), Op,
   2981                        Op.getOperand(1), Op.getOperand(2),
   2982                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
   2983                        false, MachinePointerInfo(), MachinePointerInfo());
   2984 }
   2985 
   2986 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   2987                                                   SelectionDAG &DAG) const {
   2988   return Op.getOperand(0);
   2989 }
   2990 
   2991 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   2992                                                 SelectionDAG &DAG) const {
   2993   SDValue Chain = Op.getOperand(0);
   2994   SDValue Trmp = Op.getOperand(1); // trampoline
   2995   SDValue FPtr = Op.getOperand(2); // nested function
   2996   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   2997   SDLoc dl(Op);
   2998 
   2999   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3000   bool isPPC64 = (PtrVT == MVT::i64);
   3001   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
   3002 
   3003   TargetLowering::ArgListTy Args;
   3004   TargetLowering::ArgListEntry Entry;
   3005 
   3006   Entry.Ty = IntPtrTy;
   3007   Entry.Node = Trmp; Args.push_back(Entry);
   3008 
   3009   // TrampSize == (isPPC64 ? 48 : 40);
   3010   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
   3011                                isPPC64 ? MVT::i64 : MVT::i32);
   3012   Args.push_back(Entry);
   3013 
   3014   Entry.Node = FPtr; Args.push_back(Entry);
   3015   Entry.Node = Nest; Args.push_back(Entry);
   3016 
   3017   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   3018   TargetLowering::CallLoweringInfo CLI(DAG);
   3019   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
   3020       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
   3021       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
   3022 
   3023   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   3024   return CallResult.second;
   3025 }
   3026 
   3027 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   3028   MachineFunction &MF = DAG.getMachineFunction();
   3029   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3030   EVT PtrVT = getPointerTy(MF.getDataLayout());
   3031 
   3032   SDLoc dl(Op);
   3033 
   3034   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   3035     // vastart just stores the address of the VarArgsFrameIndex slot into the
   3036     // memory location argument.
   3037     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3038     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   3039     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   3040                         MachinePointerInfo(SV));
   3041   }
   3042 
   3043   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   3044   // We suppose the given va_list is already allocated.
   3045   //
   3046   // typedef struct {
   3047   //  char gpr;     /* index into the array of 8 GPRs
   3048   //                 * stored in the register save area
   3049   //                 * gpr=0 corresponds to r3,
   3050   //                 * gpr=1 to r4, etc.
   3051   //                 */
   3052   //  char fpr;     /* index into the array of 8 FPRs
   3053   //                 * stored in the register save area
   3054   //                 * fpr=0 corresponds to f1,
   3055   //                 * fpr=1 to f2, etc.
   3056   //                 */
   3057   //  char *overflow_arg_area;
   3058   //                /* location on stack that holds
   3059   //                 * the next overflow argument
   3060   //                 */
   3061   //  char *reg_save_area;
   3062   //               /* where r3:r10 and f1:f8 (if saved)
   3063   //                * are stored
   3064   //                */
   3065   // } va_list[1];
   3066 
   3067   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
   3068   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
   3069   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   3070                                             PtrVT);
   3071   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   3072                                  PtrVT);
   3073 
   3074   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   3075   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
   3076 
   3077   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   3078   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
   3079 
   3080   uint64_t FPROffset = 1;
   3081   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
   3082 
   3083   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   3084 
   3085   // Store first byte : number of int regs
   3086   SDValue firstStore =
   3087       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
   3088                         MachinePointerInfo(SV), MVT::i8);
   3089   uint64_t nextOffset = FPROffset;
   3090   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   3091                                   ConstFPROffset);
   3092 
   3093   // Store second byte : number of float regs
   3094   SDValue secondStore =
   3095       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   3096                         MachinePointerInfo(SV, nextOffset), MVT::i8);
   3097   nextOffset += StackOffset;
   3098   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   3099 
   3100   // Store second word : arguments given on stack
   3101   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   3102                                     MachinePointerInfo(SV, nextOffset));
   3103   nextOffset += FrameOffset;
   3104   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   3105 
   3106   // Store third word : arguments given in registers
   3107   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   3108                       MachinePointerInfo(SV, nextOffset));
   3109 }
   3110 
   3111 #include "PPCGenCallingConv.inc"
   3112 
   3113 // Function whose sole purpose is to kill compiler warnings
   3114 // stemming from unused functions included from PPCGenCallingConv.inc.
   3115 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
   3116   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
   3117 }
   3118 
   3119 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   3120                                       CCValAssign::LocInfo &LocInfo,
   3121                                       ISD::ArgFlagsTy &ArgFlags,
   3122                                       CCState &State) {
   3123   return true;
   3124 }
   3125 
   3126 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   3127                                              MVT &LocVT,
   3128                                              CCValAssign::LocInfo &LocInfo,
   3129                                              ISD::ArgFlagsTy &ArgFlags,
   3130                                              CCState &State) {
   3131   static const MCPhysReg ArgRegs[] = {
   3132     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3133     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3134   };
   3135   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   3136 
   3137   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   3138 
   3139   // Skip one register if the first unallocated register has an even register
   3140   // number and there are still argument registers available which have not been
   3141   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   3142   // need to skip a register if RegNum is odd.
   3143   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   3144     State.AllocateReg(ArgRegs[RegNum]);
   3145   }
   3146 
   3147   // Always return false here, as this function only makes sure that the first
   3148   // unallocated register has an odd register number and does not actually
   3149   // allocate a register for the current argument.
   3150   return false;
   3151 }
   3152 
   3153 bool
   3154 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
   3155                                                   MVT &LocVT,
   3156                                                   CCValAssign::LocInfo &LocInfo,
   3157                                                   ISD::ArgFlagsTy &ArgFlags,
   3158                                                   CCState &State) {
   3159   static const MCPhysReg ArgRegs[] = {
   3160     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3161     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3162   };
   3163   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   3164 
   3165   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   3166   int RegsLeft = NumArgRegs - RegNum;
   3167 
   3168   // Skip if there is not enough registers left for long double type (4 gpr regs
   3169   // in soft float mode) and put long double argument on the stack.
   3170   if (RegNum != NumArgRegs && RegsLeft < 4) {
   3171     for (int i = 0; i < RegsLeft; i++) {
   3172       State.AllocateReg(ArgRegs[RegNum + i]);
   3173     }
   3174   }
   3175 
   3176   return false;
   3177 }
   3178 
   3179 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   3180                                                MVT &LocVT,
   3181                                                CCValAssign::LocInfo &LocInfo,
   3182                                                ISD::ArgFlagsTy &ArgFlags,
   3183                                                CCState &State) {
   3184   static const MCPhysReg ArgRegs[] = {
   3185     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   3186     PPC::F8
   3187   };
   3188 
   3189   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   3190 
   3191   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   3192 
   3193   // If there is only one Floating-point register left we need to put both f64
   3194   // values of a split ppc_fp128 value on the stack.
   3195   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   3196     State.AllocateReg(ArgRegs[RegNum]);
   3197   }
   3198 
   3199   // Always return false here, as this function only makes sure that the two f64
   3200   // values a ppc_fp128 value is split into are both passed in registers or both
   3201   // passed on the stack and does not actually allocate a register for the
   3202   // current argument.
   3203   return false;
   3204 }
   3205 
   3206 /// FPR - The set of FP registers that should be allocated for arguments,
   3207 /// on Darwin.
   3208 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
   3209                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
   3210                                 PPC::F11, PPC::F12, PPC::F13};
   3211 
   3212 /// QFPR - The set of QPX registers that should be allocated for arguments.
   3213 static const MCPhysReg QFPR[] = {
   3214     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
   3215     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
   3216 
   3217 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   3218 /// the stack.
   3219 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   3220                                        unsigned PtrByteSize) {
   3221   unsigned ArgSize = ArgVT.getStoreSize();
   3222   if (Flags.isByVal())
   3223     ArgSize = Flags.getByValSize();
   3224 
   3225   // Round up to multiples of the pointer size, except for array members,
   3226   // which are always packed.
   3227   if (!Flags.isInConsecutiveRegs())
   3228     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3229 
   3230   return ArgSize;
   3231 }
   3232 
   3233 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
   3234 /// on the stack.
   3235 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
   3236                                             ISD::ArgFlagsTy Flags,
   3237                                             unsigned PtrByteSize) {
   3238   unsigned Align = PtrByteSize;
   3239 
   3240   // Altivec parameters are padded to a 16 byte boundary.
   3241   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   3242       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   3243       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   3244       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
   3245     Align = 16;
   3246   // QPX vector types stored in double-precision are padded to a 32 byte
   3247   // boundary.
   3248   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
   3249     Align = 32;
   3250 
   3251   // ByVal parameters are aligned as requested.
   3252   if (Flags.isByVal()) {
   3253     unsigned BVAlign = Flags.getByValAlign();
   3254     if (BVAlign > PtrByteSize) {
   3255       if (BVAlign % PtrByteSize != 0)
   3256           llvm_unreachable(
   3257             "ByVal alignment is not a multiple of the pointer size");
   3258 
   3259       Align = BVAlign;
   3260     }
   3261   }
   3262 
   3263   // Array members are always packed to their original alignment.
   3264   if (Flags.isInConsecutiveRegs()) {
   3265     // If the array member was split into multiple registers, the first
   3266     // needs to be aligned to the size of the full type.  (Except for
   3267     // ppcf128, which is only aligned as its f64 components.)
   3268     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
   3269       Align = OrigVT.getStoreSize();
   3270     else
   3271       Align = ArgVT.getStoreSize();
   3272   }
   3273 
   3274   return Align;
   3275 }
   3276 
   3277 /// CalculateStackSlotUsed - Return whether this argument will use its
   3278 /// stack slot (instead of being passed in registers).  ArgOffset,
   3279 /// AvailableFPRs, and AvailableVRs must hold the current argument
   3280 /// position, and will be updated to account for this argument.
   3281 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
   3282                                    ISD::ArgFlagsTy Flags,
   3283                                    unsigned PtrByteSize,
   3284                                    unsigned LinkageSize,
   3285                                    unsigned ParamAreaSize,
   3286                                    unsigned &ArgOffset,
   3287                                    unsigned &AvailableFPRs,
   3288                                    unsigned &AvailableVRs, bool HasQPX) {
   3289   bool UseMemory = false;
   3290 
   3291   // Respect alignment of argument on the stack.
   3292   unsigned Align =
   3293     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   3294   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   3295   // If there's no space left in the argument save area, we must
   3296   // use memory (this check also catches zero-sized arguments).
   3297   if (ArgOffset >= LinkageSize + ParamAreaSize)
   3298     UseMemory = true;
   3299 
   3300   // Allocate argument on the stack.
   3301   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   3302   if (Flags.isInConsecutiveRegsLast())
   3303     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3304   // If we overran the argument save area, we must use memory
   3305   // (this check catches arguments passed partially in memory)
   3306   if (ArgOffset > LinkageSize + ParamAreaSize)
   3307     UseMemory = true;
   3308 
   3309   // However, if the argument is actually passed in an FPR or a VR,
   3310   // we don't use memory after all.
   3311   if (!Flags.isByVal()) {
   3312     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
   3313         // QPX registers overlap with the scalar FP registers.
   3314         (HasQPX && (ArgVT == MVT::v4f32 ||
   3315                     ArgVT == MVT::v4f64 ||
   3316                     ArgVT == MVT::v4i1)))
   3317       if (AvailableFPRs > 0) {
   3318         --AvailableFPRs;
   3319         return false;
   3320       }
   3321     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   3322         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   3323         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   3324         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
   3325       if (AvailableVRs > 0) {
   3326         --AvailableVRs;
   3327         return false;
   3328       }
   3329   }
   3330 
   3331   return UseMemory;
   3332 }
   3333 
   3334 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
   3335 /// ensure minimum alignment required for target.
   3336 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
   3337                                      unsigned NumBytes) {
   3338   unsigned TargetAlign = Lowering->getStackAlignment();
   3339   unsigned AlignMask = TargetAlign - 1;
   3340   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   3341   return NumBytes;
   3342 }
   3343 
   3344 SDValue PPCTargetLowering::LowerFormalArguments(
   3345     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3346     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3347     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3348   if (Subtarget.isSVR4ABI()) {
   3349     if (Subtarget.isPPC64())
   3350       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   3351                                          dl, DAG, InVals);
   3352     else
   3353       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   3354                                          dl, DAG, InVals);
   3355   } else {
   3356     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   3357                                        dl, DAG, InVals);
   3358   }
   3359 }
   3360 
   3361 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
   3362     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3363     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3364     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3365 
   3366   // 32-bit SVR4 ABI Stack Frame Layout:
   3367   //              +-----------------------------------+
   3368   //        +-->  |            Back chain             |
   3369   //        |     +-----------------------------------+
   3370   //        |     | Floating-point register save area |
   3371   //        |     +-----------------------------------+
   3372   //        |     |    General register save area     |
   3373   //        |     +-----------------------------------+
   3374   //        |     |          CR save word             |
   3375   //        |     +-----------------------------------+
   3376   //        |     |         VRSAVE save word          |
   3377   //        |     +-----------------------------------+
   3378   //        |     |         Alignment padding         |
   3379   //        |     +-----------------------------------+
   3380   //        |     |     Vector register save area     |
   3381   //        |     +-----------------------------------+
   3382   //        |     |       Local variable space        |
   3383   //        |     +-----------------------------------+
   3384   //        |     |        Parameter list area        |
   3385   //        |     +-----------------------------------+
   3386   //        |     |           LR save word            |
   3387   //        |     +-----------------------------------+
   3388   // SP-->  +---  |            Back chain             |
   3389   //              +-----------------------------------+
   3390   //
   3391   // Specifications:
   3392   //   System V Application Binary Interface PowerPC Processor Supplement
   3393   //   AltiVec Technology Programming Interface Manual
   3394 
   3395   MachineFunction &MF = DAG.getMachineFunction();
   3396   MachineFrameInfo &MFI = MF.getFrameInfo();
   3397   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3398 
   3399   EVT PtrVT = getPointerTy(MF.getDataLayout());
   3400   // Potential tail calls could cause overwriting of argument stack slots.
   3401   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3402                        (CallConv == CallingConv::Fast));
   3403   unsigned PtrByteSize = 4;
   3404 
   3405   // Assign locations to all of the incoming arguments.
   3406   SmallVector<CCValAssign, 16> ArgLocs;
   3407   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   3408                  *DAG.getContext());
   3409 
   3410   // Reserve space for the linkage area on the stack.
   3411   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3412   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
   3413   if (useSoftFloat() || hasSPE())
   3414     CCInfo.PreAnalyzeFormalArguments(Ins);
   3415 
   3416   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   3417   CCInfo.clearWasPPCF128();
   3418 
   3419   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3420     CCValAssign &VA = ArgLocs[i];
   3421 
   3422     // Arguments stored in registers.
   3423     if (VA.isRegLoc()) {
   3424       const TargetRegisterClass *RC;
   3425       EVT ValVT = VA.getValVT();
   3426 
   3427       switch (ValVT.getSimpleVT().SimpleTy) {
   3428         default:
   3429           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   3430         case MVT::i1:
   3431         case MVT::i32:
   3432           RC = &PPC::GPRCRegClass;
   3433           break;
   3434         case MVT::f32:
   3435           if (Subtarget.hasP8Vector())
   3436             RC = &PPC::VSSRCRegClass;
   3437           else if (Subtarget.hasSPE())
   3438             RC = &PPC::SPE4RCRegClass;
   3439           else
   3440             RC = &PPC::F4RCRegClass;
   3441           break;
   3442         case MVT::f64:
   3443           if (Subtarget.hasVSX())
   3444             RC = &PPC::VSFRCRegClass;
   3445           else if (Subtarget.hasSPE())
   3446             RC = &PPC::SPERCRegClass;
   3447           else
   3448             RC = &PPC::F8RCRegClass;
   3449           break;
   3450         case MVT::v16i8:
   3451         case MVT::v8i16:
   3452         case MVT::v4i32:
   3453           RC = &PPC::VRRCRegClass;
   3454           break;
   3455         case MVT::v4f32:
   3456           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
   3457           break;
   3458         case MVT::v2f64:
   3459         case MVT::v2i64:
   3460           RC = &PPC::VRRCRegClass;
   3461           break;
   3462         case MVT::v4f64:
   3463           RC = &PPC::QFRCRegClass;
   3464           break;
   3465         case MVT::v4i1:
   3466           RC = &PPC::QBRCRegClass;
   3467           break;
   3468       }
   3469 
   3470       // Transform the arguments stored in physical registers into virtual ones.
   3471       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3472       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
   3473                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
   3474 
   3475       if (ValVT == MVT::i1)
   3476         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
   3477 
   3478       InVals.push_back(ArgValue);
   3479     } else {
   3480       // Argument stored in memory.
   3481       assert(VA.isMemLoc());
   3482 
   3483       unsigned ArgSize = VA.getLocVT().getStoreSize();
   3484       int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   3485                                      isImmutable);
   3486 
   3487       // Create load nodes to retrieve arguments from the stack.
   3488       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3489       InVals.push_back(
   3490           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
   3491     }
   3492   }
   3493 
   3494   // Assign locations to all of the incoming aggregate by value arguments.
   3495   // Aggregates passed by value are stored in the local variable space of the
   3496   // caller's stack frame, right above the parameter list area.
   3497   SmallVector<CCValAssign, 16> ByValArgLocs;
   3498   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   3499                       ByValArgLocs, *DAG.getContext());
   3500 
   3501   // Reserve stack space for the allocations in CCInfo.
   3502   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   3503 
   3504   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   3505 
   3506   // Area that is at least reserved in the caller of this function.
   3507   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   3508   MinReservedArea = std::max(MinReservedArea, LinkageSize);
   3509 
   3510   // Set the size that is at least reserved in caller of this function.  Tail
   3511   // call optimized function's reserved stack space needs to be aligned so that
   3512   // taking the difference between two stack areas will result in an aligned
   3513   // stack.
   3514   MinReservedArea =
   3515       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3516   FuncInfo->setMinReservedArea(MinReservedArea);
   3517 
   3518   SmallVector<SDValue, 8> MemOps;
   3519 
   3520   // If the function takes variable number of arguments, make a frame index for
   3521   // the start of the first vararg value... for expansion of llvm.va_start.
   3522   if (isVarArg) {
   3523     static const MCPhysReg GPArgRegs[] = {
   3524       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3525       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3526     };
   3527     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   3528 
   3529     static const MCPhysReg FPArgRegs[] = {
   3530       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   3531       PPC::F8
   3532     };
   3533     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   3534 
   3535     if (useSoftFloat() || hasSPE())
   3536        NumFPArgRegs = 0;
   3537 
   3538     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
   3539     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
   3540 
   3541     // Make room for NumGPArgRegs and NumFPArgRegs.
   3542     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   3543                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
   3544 
   3545     FuncInfo->setVarArgsStackOffset(
   3546       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
   3547                             CCInfo.getNextStackOffset(), true));
   3548 
   3549     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
   3550     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3551 
   3552     // The fixed integer arguments of a variadic function are stored to the
   3553     // VarArgsFrameIndex on the stack so that they may be loaded by
   3554     // dereferencing the result of va_next.
   3555     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   3556       // Get an existing live-in vreg, or add a new one.
   3557       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   3558       if (!VReg)
   3559         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   3560 
   3561       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3562       SDValue Store =
   3563           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
   3564       MemOps.push_back(Store);
   3565       // Increment the address by four for the next argument to store
   3566       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   3567       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3568     }
   3569 
   3570     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   3571     // is set.
   3572     // The double arguments are stored to the VarArgsFrameIndex
   3573     // on the stack.
   3574     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   3575       // Get an existing live-in vreg, or add a new one.
   3576       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   3577       if (!VReg)
   3578         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   3579 
   3580       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   3581       SDValue Store =
   3582           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
   3583       MemOps.push_back(Store);
   3584       // Increment the address by eight for the next argument to store
   3585       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
   3586                                          PtrVT);
   3587       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3588     }
   3589   }
   3590 
   3591   if (!MemOps.empty())
   3592     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3593 
   3594   return Chain;
   3595 }
   3596 
   3597 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3598 // value to MVT::i64 and then truncate to the correct register size.
   3599 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
   3600                                              EVT ObjectVT, SelectionDAG &DAG,
   3601                                              SDValue ArgVal,
   3602                                              const SDLoc &dl) const {
   3603   if (Flags.isSExt())
   3604     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   3605                          DAG.getValueType(ObjectVT));
   3606   else if (Flags.isZExt())
   3607     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   3608                          DAG.getValueType(ObjectVT));
   3609 
   3610   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
   3611 }
   3612 
   3613 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
   3614     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   3615     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   3616     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   3617   // TODO: add description of PPC stack frame format, or at least some docs.
   3618   //
   3619   bool isELFv2ABI = Subtarget.isELFv2ABI();
   3620   bool isLittleEndian = Subtarget.isLittleEndian();
   3621   MachineFunction &MF = DAG.getMachineFunction();
   3622   MachineFrameInfo &MFI = MF.getFrameInfo();
   3623   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3624 
   3625   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   3626          "fastcc not supported on varargs functions");
   3627 
   3628   EVT PtrVT = getPointerTy(MF.getDataLayout());
   3629   // Potential tail calls could cause overwriting of argument stack slots.
   3630   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3631                        (CallConv == CallingConv::Fast));
   3632   unsigned PtrByteSize = 8;
   3633   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3634 
   3635   static const MCPhysReg GPR[] = {
   3636     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3637     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3638   };
   3639   static const MCPhysReg VR[] = {
   3640     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3641     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3642   };
   3643 
   3644   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   3645   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
   3646   const unsigned Num_VR_Regs  = array_lengthof(VR);
   3647   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
   3648 
   3649   // Do a first pass over the arguments to determine whether the ABI
   3650   // guarantees that our caller has allocated the parameter save area
   3651   // on its stack frame.  In the ELFv1 ABI, this is always the case;
   3652   // in the ELFv2 ABI, it is true if this is a vararg function or if
   3653   // any parameter is located in a stack slot.
   3654 
   3655   bool HasParameterArea = !isELFv2ABI || isVarArg;
   3656   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
   3657   unsigned NumBytes = LinkageSize;
   3658   unsigned AvailableFPRs = Num_FPR_Regs;
   3659   unsigned AvailableVRs = Num_VR_Regs;
   3660   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   3661     if (Ins[i].Flags.isNest())
   3662       continue;
   3663 
   3664     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
   3665                                PtrByteSize, LinkageSize, ParamAreaSize,
   3666                                NumBytes, AvailableFPRs, AvailableVRs,
   3667                                Subtarget.hasQPX()))
   3668       HasParameterArea = true;
   3669   }
   3670 
   3671   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3672   // entry to a function on PPC, the arguments start after the linkage area,
   3673   // although the first ones are often in registers.
   3674 
   3675   unsigned ArgOffset = LinkageSize;
   3676   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3677   unsigned &QFPR_idx = FPR_idx;
   3678   SmallVector<SDValue, 8> MemOps;
   3679   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
   3680   unsigned CurArgIdx = 0;
   3681   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3682     SDValue ArgVal;
   3683     bool needsLoad = false;
   3684     EVT ObjectVT = Ins[ArgNo].VT;
   3685     EVT OrigVT = Ins[ArgNo].ArgVT;
   3686     unsigned ObjSize = ObjectVT.getStoreSize();
   3687     unsigned ArgSize = ObjSize;
   3688     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3689     if (Ins[ArgNo].isOrigArg()) {
   3690       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3691       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3692     }
   3693     // We re-align the argument offset for each argument, except when using the
   3694     // fast calling convention, when we need to make sure we do that only when
   3695     // we'll actually use a stack slot.
   3696     unsigned CurArgOffset, Align;
   3697     auto ComputeArgOffset = [&]() {
   3698       /* Respect alignment of argument on the stack.  */
   3699       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
   3700       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   3701       CurArgOffset = ArgOffset;
   3702     };
   3703 
   3704     if (CallConv != CallingConv::Fast) {
   3705       ComputeArgOffset();
   3706 
   3707       /* Compute GPR index associated with argument offset.  */
   3708       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3709       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
   3710     }
   3711 
   3712     // FIXME the codegen can be much improved in some cases.
   3713     // We do not have to keep everything in memory.
   3714     if (Flags.isByVal()) {
   3715       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3716 
   3717       if (CallConv == CallingConv::Fast)
   3718         ComputeArgOffset();
   3719 
   3720       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3721       ObjSize = Flags.getByValSize();
   3722       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3723       // Empty aggregate parameters do not take up registers.  Examples:
   3724       //   struct { } a;
   3725       //   union  { } b;
   3726       //   int c[0];
   3727       // etc.  However, we have to provide a place-holder in InVals, so
   3728       // pretend we have an 8-byte item at the current address for that
   3729       // purpose.
   3730       if (!ObjSize) {
   3731         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
   3732         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3733         InVals.push_back(FIN);
   3734         continue;
   3735       }
   3736 
   3737       // Create a stack object covering all stack doublewords occupied
   3738       // by the argument.  If the argument is (fully or partially) on
   3739       // the stack, or if the argument is fully in registers but the
   3740       // caller has allocated the parameter save anyway, we can refer
   3741       // directly to the caller's stack frame.  Otherwise, create a
   3742       // local copy in our own frame.
   3743       int FI;
   3744       if (HasParameterArea ||
   3745           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
   3746         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
   3747       else
   3748         FI = MFI.CreateStackObject(ArgSize, Align, false);
   3749       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3750 
   3751       // Handle aggregates smaller than 8 bytes.
   3752       if (ObjSize < PtrByteSize) {
   3753         // The value of the object is its address, which differs from the
   3754         // address of the enclosing doubleword on big-endian systems.
   3755         SDValue Arg = FIN;
   3756         if (!isLittleEndian) {
   3757           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
   3758           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
   3759         }
   3760         InVals.push_back(Arg);
   3761 
   3762         if (GPR_idx != Num_GPR_Regs) {
   3763           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3764           FuncInfo->addLiveInAttr(VReg, Flags);
   3765           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3766           SDValue Store;
   3767 
   3768           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   3769             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   3770                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   3771             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
   3772                                       MachinePointerInfo(&*FuncArg), ObjType);
   3773           } else {
   3774             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   3775             // store the whole register as-is to the parameter save area
   3776             // slot.
   3777             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3778                                  MachinePointerInfo(&*FuncArg));
   3779           }
   3780 
   3781           MemOps.push_back(Store);
   3782         }
   3783         // Whether we copied from a register or not, advance the offset
   3784         // into the parameter save area by a full doubleword.
   3785         ArgOffset += PtrByteSize;
   3786         continue;
   3787       }
   3788 
   3789       // The value of the object is its address, which is the address of
   3790       // its first stack doubleword.
   3791       InVals.push_back(FIN);
   3792 
   3793       // Store whatever pieces of the object are in registers to memory.
   3794       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3795         if (GPR_idx == Num_GPR_Regs)
   3796           break;
   3797 
   3798         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3799         FuncInfo->addLiveInAttr(VReg, Flags);
   3800         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3801         SDValue Addr = FIN;
   3802         if (j) {
   3803           SDValue Off = DAG.getConstant(j, dl, PtrVT);
   3804           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
   3805         }
   3806         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
   3807                                      MachinePointerInfo(&*FuncArg, j));
   3808         MemOps.push_back(Store);
   3809         ++GPR_idx;
   3810       }
   3811       ArgOffset += ArgSize;
   3812       continue;
   3813     }
   3814 
   3815     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3816     default: llvm_unreachable("Unhandled argument type!");
   3817     case MVT::i1:
   3818     case MVT::i32:
   3819     case MVT::i64:
   3820       if (Flags.isNest()) {
   3821         // The 'nest' parameter, if any, is passed in R11.
   3822         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
   3823         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3824 
   3825         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3826           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3827 
   3828         break;
   3829       }
   3830 
   3831       // These can be scalar arguments or elements of an integer array type
   3832       // passed directly.  Clang may use those instead of "byval" aggregate
   3833       // types to avoid forcing arguments to memory unnecessarily.
   3834       if (GPR_idx != Num_GPR_Regs) {
   3835         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3836         FuncInfo->addLiveInAttr(VReg, Flags);
   3837         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3838 
   3839         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3840           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3841           // value to MVT::i64 and then truncate to the correct register size.
   3842           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3843       } else {
   3844         if (CallConv == CallingConv::Fast)
   3845           ComputeArgOffset();
   3846 
   3847         needsLoad = true;
   3848         ArgSize = PtrByteSize;
   3849       }
   3850       if (CallConv != CallingConv::Fast || needsLoad)
   3851         ArgOffset += 8;
   3852       break;
   3853 
   3854     case MVT::f32:
   3855     case MVT::f64:
   3856       // These can be scalar arguments or elements of a float array type
   3857       // passed directly.  The latter are used to implement ELFv2 homogenous
   3858       // float aggregates.
   3859       if (FPR_idx != Num_FPR_Regs) {
   3860         unsigned VReg;
   3861 
   3862         if (ObjectVT == MVT::f32)
   3863           VReg = MF.addLiveIn(FPR[FPR_idx],
   3864                               Subtarget.hasP8Vector()
   3865                                   ? &PPC::VSSRCRegClass
   3866                                   : &PPC::F4RCRegClass);
   3867         else
   3868           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
   3869                                                 ? &PPC::VSFRCRegClass
   3870                                                 : &PPC::F8RCRegClass);
   3871 
   3872         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3873         ++FPR_idx;
   3874       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
   3875         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   3876         // once we support fp <-> gpr moves.
   3877 
   3878         // This can only ever happen in the presence of f32 array types,
   3879         // since otherwise we never run out of FPRs before running out
   3880         // of GPRs.
   3881         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3882         FuncInfo->addLiveInAttr(VReg, Flags);
   3883         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3884 
   3885         if (ObjectVT == MVT::f32) {
   3886           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
   3887             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
   3888                                  DAG.getConstant(32, dl, MVT::i32));
   3889           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   3890         }
   3891 
   3892         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
   3893       } else {
   3894         if (CallConv == CallingConv::Fast)
   3895           ComputeArgOffset();
   3896 
   3897         needsLoad = true;
   3898       }
   3899 
   3900       // When passing an array of floats, the array occupies consecutive
   3901       // space in the argument area; only round up to the next doubleword
   3902       // at the end of the array.  Otherwise, each float takes 8 bytes.
   3903       if (CallConv != CallingConv::Fast || needsLoad) {
   3904         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
   3905         ArgOffset += ArgSize;
   3906         if (Flags.isInConsecutiveRegsLast())
   3907           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3908       }
   3909       break;
   3910     case MVT::v4f32:
   3911     case MVT::v4i32:
   3912     case MVT::v8i16:
   3913     case MVT::v16i8:
   3914     case MVT::v2f64:
   3915     case MVT::v2i64:
   3916     case MVT::v1i128:
   3917     case MVT::f128:
   3918       if (!Subtarget.hasQPX()) {
   3919         // These can be scalar arguments or elements of a vector array type
   3920         // passed directly.  The latter are used to implement ELFv2 homogenous
   3921         // vector aggregates.
   3922         if (VR_idx != Num_VR_Regs) {
   3923           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3924           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3925           ++VR_idx;
   3926         } else {
   3927           if (CallConv == CallingConv::Fast)
   3928             ComputeArgOffset();
   3929           needsLoad = true;
   3930         }
   3931         if (CallConv != CallingConv::Fast || needsLoad)
   3932           ArgOffset += 16;
   3933         break;
   3934       } // not QPX
   3935 
   3936       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
   3937              "Invalid QPX parameter type");
   3938       LLVM_FALLTHROUGH;
   3939 
   3940     case MVT::v4f64:
   3941     case MVT::v4i1:
   3942       // QPX vectors are treated like their scalar floating-point subregisters
   3943       // (except that they're larger).
   3944       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
   3945       if (QFPR_idx != Num_QFPR_Regs) {
   3946         const TargetRegisterClass *RC;
   3947         switch (ObjectVT.getSimpleVT().SimpleTy) {
   3948         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
   3949         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
   3950         default:         RC = &PPC::QBRCRegClass; break;
   3951         }
   3952 
   3953         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
   3954         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3955         ++QFPR_idx;
   3956       } else {
   3957         if (CallConv == CallingConv::Fast)
   3958           ComputeArgOffset();
   3959         needsLoad = true;
   3960       }
   3961       if (CallConv != CallingConv::Fast || needsLoad)
   3962         ArgOffset += Sz;
   3963       break;
   3964     }
   3965 
   3966     // We need to load the argument to a virtual register if we determined
   3967     // above that we ran out of physical registers of the appropriate type.
   3968     if (needsLoad) {
   3969       if (ObjSize < ArgSize && !isLittleEndian)
   3970         CurArgOffset += ArgSize - ObjSize;
   3971       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
   3972       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3973       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
   3974     }
   3975 
   3976     InVals.push_back(ArgVal);
   3977   }
   3978 
   3979   // Area that is at least reserved in the caller of this function.
   3980   unsigned MinReservedArea;
   3981   if (HasParameterArea)
   3982     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
   3983   else
   3984     MinReservedArea = LinkageSize;
   3985 
   3986   // Set the size that is at least reserved in caller of this function.  Tail
   3987   // call optimized functions' reserved stack space needs to be aligned so that
   3988   // taking the difference between two stack areas will result in an aligned
   3989   // stack.
   3990   MinReservedArea =
   3991       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3992   FuncInfo->setMinReservedArea(MinReservedArea);
   3993 
   3994   // If the function takes variable number of arguments, make a frame index for
   3995   // the start of the first vararg value... for expansion of llvm.va_start.
   3996   if (isVarArg) {
   3997     int Depth = ArgOffset;
   3998 
   3999     FuncInfo->setVarArgsFrameIndex(
   4000       MFI.CreateFixedObject(PtrByteSize, Depth, true));
   4001     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   4002 
   4003     // If this function is vararg, store any remaining integer argument regs
   4004     // to their spots on the stack so that they may be loaded by dereferencing
   4005     // the result of va_next.
   4006     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   4007          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
   4008       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   4009       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   4010       SDValue Store =
   4011           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
   4012       MemOps.push_back(Store);
   4013       // Increment the address by four for the next argument to store
   4014       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
   4015       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   4016     }
   4017   }
   4018 
   4019   if (!MemOps.empty())
   4020     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   4021 
   4022   return Chain;
   4023 }
   4024 
   4025 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
   4026     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   4027     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   4028     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   4029   // TODO: add description of PPC stack frame format, or at least some docs.
   4030   //
   4031   MachineFunction &MF = DAG.getMachineFunction();
   4032   MachineFrameInfo &MFI = MF.getFrameInfo();
   4033   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   4034 
   4035   EVT PtrVT = getPointerTy(MF.getDataLayout());
   4036   bool isPPC64 = PtrVT == MVT::i64;
   4037   // Potential tail calls could cause overwriting of argument stack slots.
   4038   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   4039                        (CallConv == CallingConv::Fast));
   4040   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   4041   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   4042   unsigned ArgOffset = LinkageSize;
   4043   // Area that is at least reserved in caller of this function.
   4044   unsigned MinReservedArea = ArgOffset;
   4045 
   4046   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   4047     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   4048     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   4049   };
   4050   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   4051     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4052     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4053   };
   4054   static const MCPhysReg VR[] = {
   4055     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4056     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4057   };
   4058 
   4059   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   4060   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
   4061   const unsigned Num_VR_Regs  = array_lengthof( VR);
   4062 
   4063   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4064 
   4065   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   4066 
   4067   // In 32-bit non-varargs functions, the stack space for vectors is after the
   4068   // stack space for non-vectors.  We do not use this space unless we have
   4069   // too many vectors to fit in registers, something that only occurs in
   4070   // constructed examples:), but we have to walk the arglist to figure
   4071   // that out...for the pathological case, compute VecArgOffset as the
   4072   // start of the vector parameter area.  Computing VecArgOffset is the
   4073   // entire point of the following loop.
   4074   unsigned VecArgOffset = ArgOffset;
   4075   if (!isVarArg && !isPPC64) {
   4076     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   4077          ++ArgNo) {
   4078       EVT ObjectVT = Ins[ArgNo].VT;
   4079       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   4080 
   4081       if (Flags.isByVal()) {
   4082         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   4083         unsigned ObjSize = Flags.getByValSize();
   4084         unsigned ArgSize =
   4085                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   4086         VecArgOffset += ArgSize;
   4087         continue;
   4088       }
   4089 
   4090       switch(ObjectVT.getSimpleVT().SimpleTy) {
   4091       default: llvm_unreachable("Unhandled argument type!");
   4092       case MVT::i1:
   4093       case MVT::i32:
   4094       case MVT::f32:
   4095         VecArgOffset += 4;
   4096         break;
   4097       case MVT::i64:  // PPC64
   4098       case MVT::f64:
   4099         // FIXME: We are guaranteed to be !isPPC64 at this point.
   4100         // Does MVT::i64 apply?
   4101         VecArgOffset += 8;
   4102         break;
   4103       case MVT::v4f32:
   4104       case MVT::v4i32:
   4105       case MVT::v8i16:
   4106       case MVT::v16i8:
   4107         // Nothing to do, we're only looking at Nonvector args here.
   4108         break;
   4109       }
   4110     }
   4111   }
   4112   // We've found where the vector parameter area in memory is.  Skip the
   4113   // first 12 parameters; these don't use that memory.
   4114   VecArgOffset = ((VecArgOffset+15)/16)*16;
   4115   VecArgOffset += 12*16;
   4116 
   4117   // Add DAG nodes to load the arguments or copy them out of registers.  On
   4118   // entry to a function on PPC, the arguments start after the linkage area,
   4119   // although the first ones are often in registers.
   4120 
   4121   SmallVector<SDValue, 8> MemOps;
   4122   unsigned nAltivecParamsAtEnd = 0;
   4123   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
   4124   unsigned CurArgIdx = 0;
   4125   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   4126     SDValue ArgVal;
   4127     bool needsLoad = false;
   4128     EVT ObjectVT = Ins[ArgNo].VT;
   4129     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   4130     unsigned ArgSize = ObjSize;
   4131     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   4132     if (Ins[ArgNo].isOrigArg()) {
   4133       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   4134       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   4135     }
   4136     unsigned CurArgOffset = ArgOffset;
   4137 
   4138     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   4139     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   4140         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   4141       if (isVarArg || isPPC64) {
   4142         MinReservedArea = ((MinReservedArea+15)/16)*16;
   4143         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   4144                                                   Flags,
   4145                                                   PtrByteSize);
   4146       } else  nAltivecParamsAtEnd++;
   4147     } else
   4148       // Calculate min reserved area.
   4149       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   4150                                                 Flags,
   4151                                                 PtrByteSize);
   4152 
   4153     // FIXME the codegen can be much improved in some cases.
   4154     // We do not have to keep everything in memory.
   4155     if (Flags.isByVal()) {
   4156       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   4157 
   4158       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   4159       ObjSize = Flags.getByValSize();
   4160       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   4161       // Objects of size 1 and 2 are right justified, everything else is
   4162       // left justified.  This means the memory address is adjusted forwards.
   4163       if (ObjSize==1 || ObjSize==2) {
   4164         CurArgOffset = CurArgOffset + (4 - ObjSize);
   4165       }
   4166       // The value of the object is its address.
   4167       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
   4168       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   4169       InVals.push_back(FIN);
   4170       if (ObjSize==1 || ObjSize==2) {
   4171         if (GPR_idx != Num_GPR_Regs) {
   4172           unsigned VReg;
   4173           if (isPPC64)
   4174             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   4175           else
   4176             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   4177           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   4178           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   4179           SDValue Store =
   4180               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   4181                                 MachinePointerInfo(&*FuncArg), ObjType);
   4182           MemOps.push_back(Store);
   4183           ++GPR_idx;
   4184         }
   4185 
   4186         ArgOffset += PtrByteSize;
   4187 
   4188         continue;
   4189       }
   4190       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   4191         // Store whatever pieces of the object are in registers
   4192         // to memory.  ArgOffset will be the address of the beginning
   4193         // of the object.
   4194         if (GPR_idx != Num_GPR_Regs) {
   4195           unsigned VReg;
   4196           if (isPPC64)
   4197             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   4198           else
   4199             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   4200           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
   4201           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   4202           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   4203           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   4204                                        MachinePointerInfo(&*FuncArg, j));
   4205           MemOps.push_back(Store);
   4206           ++GPR_idx;
   4207           ArgOffset += PtrByteSize;
   4208         } else {
   4209           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   4210           break;
   4211         }
   4212       }
   4213       continue;
   4214     }
   4215 
   4216     switch (ObjectVT.getSimpleVT().SimpleTy) {
   4217     default: llvm_unreachable("Unhandled argument type!");
   4218     case MVT::i1:
   4219     case MVT::i32:
   4220       if (!isPPC64) {
   4221         if (GPR_idx != Num_GPR_Regs) {
   4222           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   4223           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   4224 
   4225           if (ObjectVT == MVT::i1)
   4226             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
   4227 
   4228           ++GPR_idx;
   4229         } else {
   4230           needsLoad = true;
   4231           ArgSize = PtrByteSize;
   4232         }
   4233         // All int arguments reserve stack space in the Darwin ABI.
   4234         ArgOffset += PtrByteSize;
   4235         break;
   4236       }
   4237       LLVM_FALLTHROUGH;
   4238     case MVT::i64:  // PPC64
   4239       if (GPR_idx != Num_GPR_Regs) {
   4240         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   4241         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   4242 
   4243         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   4244           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   4245           // value to MVT::i64 and then truncate to the correct register size.
   4246           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   4247 
   4248         ++GPR_idx;
   4249       } else {
   4250         needsLoad = true;
   4251         ArgSize = PtrByteSize;
   4252       }
   4253       // All int arguments reserve stack space in the Darwin ABI.
   4254       ArgOffset += 8;
   4255       break;
   4256 
   4257     case MVT::f32:
   4258     case MVT::f64:
   4259       // Every 4 bytes of argument space consumes one of the GPRs available for
   4260       // argument passing.
   4261       if (GPR_idx != Num_GPR_Regs) {
   4262         ++GPR_idx;
   4263         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   4264           ++GPR_idx;
   4265       }
   4266       if (FPR_idx != Num_FPR_Regs) {
   4267         unsigned VReg;
   4268 
   4269         if (ObjectVT == MVT::f32)
   4270           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   4271         else
   4272           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   4273 
   4274         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   4275         ++FPR_idx;
   4276       } else {
   4277         needsLoad = true;
   4278       }
   4279 
   4280       // All FP arguments reserve stack space in the Darwin ABI.
   4281       ArgOffset += isPPC64 ? 8 : ObjSize;
   4282       break;
   4283     case MVT::v4f32:
   4284     case MVT::v4i32:
   4285     case MVT::v8i16:
   4286     case MVT::v16i8:
   4287       // Note that vector arguments in registers don't reserve stack space,
   4288       // except in varargs functions.
   4289       if (VR_idx != Num_VR_Regs) {
   4290         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   4291         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   4292         if (isVarArg) {
   4293           while ((ArgOffset % 16) != 0) {
   4294             ArgOffset += PtrByteSize;
   4295             if (GPR_idx != Num_GPR_Regs)
   4296               GPR_idx++;
   4297           }
   4298           ArgOffset += 16;
   4299           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   4300         }
   4301         ++VR_idx;
   4302       } else {
   4303         if (!isVarArg && !isPPC64) {
   4304           // Vectors go after all the nonvectors.
   4305           CurArgOffset = VecArgOffset;
   4306           VecArgOffset += 16;
   4307         } else {
   4308           // Vectors are aligned.
   4309           ArgOffset = ((ArgOffset+15)/16)*16;
   4310           CurArgOffset = ArgOffset;
   4311           ArgOffset += 16;
   4312         }
   4313         needsLoad = true;
   4314       }
   4315       break;
   4316     }
   4317 
   4318     // We need to load the argument to a virtual register if we determined above
   4319     // that we ran out of physical registers of the appropriate type.
   4320     if (needsLoad) {
   4321       int FI = MFI.CreateFixedObject(ObjSize,
   4322                                      CurArgOffset + (ArgSize - ObjSize),
   4323                                      isImmutable);
   4324       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   4325       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
   4326     }
   4327 
   4328     InVals.push_back(ArgVal);
   4329   }
   4330 
   4331   // Allow for Altivec parameters at the end, if needed.
   4332   if (nAltivecParamsAtEnd) {
   4333     MinReservedArea = ((MinReservedArea+15)/16)*16;
   4334     MinReservedArea += 16*nAltivecParamsAtEnd;
   4335   }
   4336 
   4337   // Area that is at least reserved in the caller of this function.
   4338   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
   4339 
   4340   // Set the size that is at least reserved in caller of this function.  Tail
   4341   // call optimized functions' reserved stack space needs to be aligned so that
   4342   // taking the difference between two stack areas will result in an aligned
   4343   // stack.
   4344   MinReservedArea =
   4345       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   4346   FuncInfo->setMinReservedArea(MinReservedArea);
   4347 
   4348   // If the function takes variable number of arguments, make a frame index for
   4349   // the start of the first vararg value... for expansion of llvm.va_start.
   4350   if (isVarArg) {
   4351     int Depth = ArgOffset;
   4352 
   4353     FuncInfo->setVarArgsFrameIndex(
   4354       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
   4355                             Depth, true));
   4356     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   4357 
   4358     // If this function is vararg, store any remaining integer argument regs
   4359     // to their spots on the stack so that they may be loaded by dereferencing
   4360     // the result of va_next.
   4361     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   4362       unsigned VReg;
   4363 
   4364       if (isPPC64)
   4365         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   4366       else
   4367         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   4368 
   4369       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   4370       SDValue Store =
   4371           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
   4372       MemOps.push_back(Store);
   4373       // Increment the address by four for the next argument to store
   4374       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   4375       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   4376     }
   4377   }
   4378 
   4379   if (!MemOps.empty())
   4380     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   4381 
   4382   return Chain;
   4383 }
   4384 
   4385 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   4386 /// adjusted to accommodate the arguments for the tailcall.
   4387 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   4388                                    unsigned ParamSize) {
   4389 
   4390   if (!isTailCall) return 0;
   4391 
   4392   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   4393   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   4394   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   4395   // Remember only if the new adjustment is bigger.
   4396   if (SPDiff < FI->getTailCallSPDelta())
   4397     FI->setTailCallSPDelta(SPDiff);
   4398 
   4399   return SPDiff;
   4400 }
   4401 
   4402 static bool isFunctionGlobalAddress(SDValue Callee);
   4403 
   4404 static bool
   4405 callsShareTOCBase(const Function *Caller, SDValue Callee,
   4406                     const TargetMachine &TM) {
   4407   // If !G, Callee can be an external symbol.
   4408   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   4409   if (!G)
   4410     return false;
   4411 
   4412   // The medium and large code models are expected to provide a sufficiently
   4413   // large TOC to provide all data addressing needs of a module with a
   4414   // single TOC. Since each module will be addressed with a single TOC then we
   4415   // only need to check that caller and callee don't cross dso boundaries.
   4416   if (CodeModel::Medium == TM.getCodeModel() ||
   4417       CodeModel::Large == TM.getCodeModel())
   4418     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
   4419 
   4420   // Otherwise we need to ensure callee and caller are in the same section,
   4421   // since the linker may allocate multiple TOCs, and we don't know which
   4422   // sections will belong to the same TOC base.
   4423 
   4424   const GlobalValue *GV = G->getGlobal();
   4425   if (!GV->isStrongDefinitionForLinker())
   4426     return false;
   4427 
   4428   // Any explicitly-specified sections and section prefixes must also match.
   4429   // Also, if we're using -ffunction-sections, then each function is always in
   4430   // a different section (the same is true for COMDAT functions).
   4431   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
   4432       GV->getSection() != Caller->getSection())
   4433     return false;
   4434   if (const auto *F = dyn_cast<Function>(GV)) {
   4435     if (F->getSectionPrefix() != Caller->getSectionPrefix())
   4436       return false;
   4437   }
   4438 
   4439   // If the callee might be interposed, then we can't assume the ultimate call
   4440   // target will be in the same section. Even in cases where we can assume that
   4441   // interposition won't happen, in any case where the linker might insert a
   4442   // stub to allow for interposition, we must generate code as though
   4443   // interposition might occur. To understand why this matters, consider a
   4444   // situation where: a -> b -> c where the arrows indicate calls. b and c are
   4445   // in the same section, but a is in a different module (i.e. has a different
   4446   // TOC base pointer). If the linker allows for interposition between b and c,
   4447   // then it will generate a stub for the call edge between b and c which will
   4448   // save the TOC pointer into the designated stack slot allocated by b. If we
   4449   // return true here, and therefore allow a tail call between b and c, that
   4450   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
   4451   // pointer into the stack slot allocated by a (where the a -> b stub saved
   4452   // a's TOC base pointer). If we're not considering a tail call, but rather,
   4453   // whether a nop is needed after the call instruction in b, because the linker
   4454   // will insert a stub, it might complain about a missing nop if we omit it
   4455   // (although many don't complain in this case).
   4456   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
   4457     return false;
   4458 
   4459   return true;
   4460 }
   4461 
   4462 static bool
   4463 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
   4464                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
   4465   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
   4466 
   4467   const unsigned PtrByteSize = 8;
   4468   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   4469 
   4470   static const MCPhysReg GPR[] = {
   4471     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4472     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4473   };
   4474   static const MCPhysReg VR[] = {
   4475     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4476     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4477   };
   4478 
   4479   const unsigned NumGPRs = array_lengthof(GPR);
   4480   const unsigned NumFPRs = 13;
   4481   const unsigned NumVRs = array_lengthof(VR);
   4482   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
   4483 
   4484   unsigned NumBytes = LinkageSize;
   4485   unsigned AvailableFPRs = NumFPRs;
   4486   unsigned AvailableVRs = NumVRs;
   4487 
   4488   for (const ISD::OutputArg& Param : Outs) {
   4489     if (Param.Flags.isNest()) continue;
   4490 
   4491     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
   4492                                PtrByteSize, LinkageSize, ParamAreaSize,
   4493                                NumBytes, AvailableFPRs, AvailableVRs,
   4494                                Subtarget.hasQPX()))
   4495       return true;
   4496   }
   4497   return false;
   4498 }
   4499 
   4500 static bool
   4501 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
   4502   if (CS.arg_size() != CallerFn->arg_size())
   4503     return false;
   4504 
   4505   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
   4506   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
   4507   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
   4508 
   4509   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
   4510     const Value* CalleeArg = *CalleeArgIter;
   4511     const Value* CallerArg = &(*CallerArgIter);
   4512     if (CalleeArg == CallerArg)
   4513       continue;
   4514 
   4515     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
   4516     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
   4517     //      }
   4518     // 1st argument of callee is undef and has the same type as caller.
   4519     if (CalleeArg->getType() == CallerArg->getType() &&
   4520         isa<UndefValue>(CalleeArg))
   4521       continue;
   4522 
   4523     return false;
   4524   }
   4525 
   4526   return true;
   4527 }
   4528 
   4529 // Returns true if TCO is possible between the callers and callees
   4530 // calling conventions.
   4531 static bool
   4532 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
   4533                                     CallingConv::ID CalleeCC) {
   4534   // Tail calls are possible with fastcc and ccc.
   4535   auto isTailCallableCC  = [] (CallingConv::ID CC){
   4536       return  CC == CallingConv::C || CC == CallingConv::Fast;
   4537   };
   4538   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
   4539     return false;
   4540 
   4541   // We can safely tail call both fastcc and ccc callees from a c calling
   4542   // convention caller. If the caller is fastcc, we may have less stack space
   4543   // than a non-fastcc caller with the same signature so disable tail-calls in
   4544   // that case.
   4545   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
   4546 }
   4547 
   4548 bool
   4549 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
   4550                                     SDValue Callee,
   4551                                     CallingConv::ID CalleeCC,
   4552                                     ImmutableCallSite CS,
   4553                                     bool isVarArg,
   4554                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4555                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4556                                     SelectionDAG& DAG) const {
   4557   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
   4558 
   4559   if (DisableSCO && !TailCallOpt) return false;
   4560 
   4561   // Variadic argument functions are not supported.
   4562   if (isVarArg) return false;
   4563 
   4564   auto &Caller = DAG.getMachineFunction().getFunction();
   4565   // Check that the calling conventions are compatible for tco.
   4566   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
   4567     return false;
   4568 
   4569   // Caller contains any byval parameter is not supported.
   4570   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
   4571     return false;
   4572 
   4573   // Callee contains any byval parameter is not supported, too.
   4574   // Note: This is a quick work around, because in some cases, e.g.
   4575   // caller's stack size > callee's stack size, we are still able to apply
   4576   // sibling call optimization. For example, gcc is able to do SCO for caller1
   4577   // in the following example, but not for caller2.
   4578   //   struct test {
   4579   //     long int a;
   4580   //     char ary[56];
   4581   //   } gTest;
   4582   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
   4583   //     b->a = v.a;
   4584   //     return 0;
   4585   //   }
   4586   //   void caller1(struct test a, struct test c, struct test *b) {
   4587   //     callee(gTest, b); }
   4588   //   void caller2(struct test *b) { callee(gTest, b); }
   4589   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
   4590     return false;
   4591 
   4592   // If callee and caller use different calling conventions, we cannot pass
   4593   // parameters on stack since offsets for the parameter area may be different.
   4594   if (Caller.getCallingConv() != CalleeCC &&
   4595       needStackSlotPassParameters(Subtarget, Outs))
   4596     return false;
   4597 
   4598   // No TCO/SCO on indirect call because Caller have to restore its TOC
   4599   if (!isFunctionGlobalAddress(Callee) &&
   4600       !isa<ExternalSymbolSDNode>(Callee))
   4601     return false;
   4602 
   4603   // If the caller and callee potentially have different TOC bases then we
   4604   // cannot tail call since we need to restore the TOC pointer after the call.
   4605   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
   4606   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
   4607     return false;
   4608 
   4609   // TCO allows altering callee ABI, so we don't have to check further.
   4610   if (CalleeCC == CallingConv::Fast && TailCallOpt)
   4611     return true;
   4612 
   4613   if (DisableSCO) return false;
   4614 
   4615   // If callee use the same argument list that caller is using, then we can
   4616   // apply SCO on this case. If it is not, then we need to check if callee needs
   4617   // stack for passing arguments.
   4618   if (!hasSameArgumentList(&Caller, CS) &&
   4619       needStackSlotPassParameters(Subtarget, Outs)) {
   4620     return false;
   4621   }
   4622 
   4623   return true;
   4624 }
   4625 
   4626 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   4627 /// for tail call optimization. Targets which want to do tail call
   4628 /// optimization should implement this function.
   4629 bool
   4630 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   4631                                                      CallingConv::ID CalleeCC,
   4632                                                      bool isVarArg,
   4633                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   4634                                                      SelectionDAG& DAG) const {
   4635   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   4636     return false;
   4637 
   4638   // Variable argument functions are not supported.
   4639   if (isVarArg)
   4640     return false;
   4641 
   4642   MachineFunction &MF = DAG.getMachineFunction();
   4643   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
   4644   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   4645     // Functions containing by val parameters are not supported.
   4646     for (unsigned i = 0; i != Ins.size(); i++) {
   4647        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   4648        if (Flags.isByVal()) return false;
   4649     }
   4650 
   4651     // Non-PIC/GOT tail calls are supported.
   4652     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   4653       return true;
   4654 
   4655     // At the moment we can only do local tail calls (in same module, hidden
   4656     // or protected) if we are generating PIC.
   4657     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4658       return G->getGlobal()->hasHiddenVisibility()
   4659           || G->getGlobal()->hasProtectedVisibility();
   4660   }
   4661 
   4662   return false;
   4663 }
   4664 
   4665 /// isCallCompatibleAddress - Return the immediate to use if the specified
   4666 /// 32-bit value is representable in the immediate field of a BxA instruction.
   4667 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   4668   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   4669   if (!C) return nullptr;
   4670 
   4671   int Addr = C->getZExtValue();
   4672   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   4673       SignExtend32<26>(Addr) != Addr)
   4674     return nullptr;  // Top 6 bits have to be sext of immediate.
   4675 
   4676   return DAG
   4677       .getConstant(
   4678           (int)C->getZExtValue() >> 2, SDLoc(Op),
   4679           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
   4680       .getNode();
   4681 }
   4682 
   4683 namespace {
   4684 
   4685 struct TailCallArgumentInfo {
   4686   SDValue Arg;
   4687   SDValue FrameIdxOp;
   4688   int FrameIdx = 0;
   4689 
   4690   TailCallArgumentInfo() = default;
   4691 };
   4692 
   4693 } // end anonymous namespace
   4694 
   4695 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   4696 static void StoreTailCallArgumentsToStackSlot(
   4697     SelectionDAG &DAG, SDValue Chain,
   4698     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   4699     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
   4700   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   4701     SDValue Arg = TailCallArgs[i].Arg;
   4702     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   4703     int FI = TailCallArgs[i].FrameIdx;
   4704     // Store relative to framepointer.
   4705     MemOpChains.push_back(DAG.getStore(
   4706         Chain, dl, Arg, FIN,
   4707         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
   4708   }
   4709 }
   4710 
   4711 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   4712 /// the appropriate stack slot for the tail call optimized function call.
   4713 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
   4714                                              SDValue OldRetAddr, SDValue OldFP,
   4715                                              int SPDiff, const SDLoc &dl) {
   4716   if (SPDiff) {
   4717     // Calculate the new stack slot for the return address.
   4718     MachineFunction &MF = DAG.getMachineFunction();
   4719     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
   4720     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
   4721     bool isPPC64 = Subtarget.isPPC64();
   4722     int SlotSize = isPPC64 ? 8 : 4;
   4723     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
   4724     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
   4725                                                          NewRetAddrLoc, true);
   4726     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   4727     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   4728     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   4729                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
   4730 
   4731     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   4732     // slot as the FP is never overwritten.
   4733     if (Subtarget.isDarwinABI()) {
   4734       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
   4735       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
   4736                                                          true);
   4737       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   4738       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   4739                            MachinePointerInfo::getFixedStack(
   4740                                DAG.getMachineFunction(), NewFPIdx));
   4741     }
   4742   }
   4743   return Chain;
   4744 }
   4745 
   4746 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   4747 /// the position of the argument.
   4748 static void
   4749 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   4750                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   4751                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   4752   int Offset = ArgOffset + SPDiff;
   4753   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
   4754   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
   4755   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   4756   SDValue FIN = DAG.getFrameIndex(FI, VT);
   4757   TailCallArgumentInfo Info;
   4758   Info.Arg = Arg;
   4759   Info.FrameIdxOp = FIN;
   4760   Info.FrameIdx = FI;
   4761   TailCallArguments.push_back(Info);
   4762 }
   4763 
   4764 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   4765 /// stack slot. Returns the chain as result and the loaded frame pointers in
   4766 /// LROpOut/FPOpout. Used when tail calling.
   4767 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
   4768     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
   4769     SDValue &FPOpOut, const SDLoc &dl) const {
   4770   if (SPDiff) {
   4771     // Load the LR and FP stack slot for later adjusting.
   4772     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
   4773     LROpOut = getReturnAddrFrameIndex(DAG);
   4774     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
   4775     Chain = SDValue(LROpOut.getNode(), 1);
   4776 
   4777     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   4778     // slot as the FP is never overwritten.
   4779     if (Subtarget.isDarwinABI()) {
   4780       FPOpOut = getFramePointerFrameIndex(DAG);
   4781       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
   4782       Chain = SDValue(FPOpOut.getNode(), 1);
   4783     }
   4784   }
   4785   return Chain;
   4786 }
   4787 
   4788 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   4789 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   4790 /// specified by the specific parameter attribute. The copy will be passed as
   4791 /// a byval function parameter.
   4792 /// Sometimes what we are copying is the end of a larger object, the part that
   4793 /// does not fit in registers.
   4794 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
   4795                                          SDValue Chain, ISD::ArgFlagsTy Flags,
   4796                                          SelectionDAG &DAG, const SDLoc &dl) {
   4797   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
   4798   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   4799                        false, false, false, MachinePointerInfo(),
   4800                        MachinePointerInfo());
   4801 }
   4802 
   4803 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   4804 /// tail calls.
   4805 static void LowerMemOpCallTo(
   4806     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
   4807     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
   4808     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   4809     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
   4810   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4811   if (!isTailCall) {
   4812     if (isVector) {
   4813       SDValue StackPtr;
   4814       if (isPPC64)
   4815         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4816       else
   4817         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4818       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4819                            DAG.getConstant(ArgOffset, dl, PtrVT));
   4820     }
   4821     MemOpChains.push_back(
   4822         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
   4823     // Calculate and remember argument location.
   4824   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   4825                                   TailCallArguments);
   4826 }
   4827 
   4828 static void
   4829 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   4830                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
   4831                 SDValue FPOp,
   4832                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   4833   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   4834   // might overwrite each other in case of tail call optimization.
   4835   SmallVector<SDValue, 8> MemOpChains2;
   4836   // Do not flag preceding copytoreg stuff together with the following stuff.
   4837   InFlag = SDValue();
   4838   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   4839                                     MemOpChains2, dl);
   4840   if (!MemOpChains2.empty())
   4841     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
   4842 
   4843   // Store the return address to the appropriate stack slot.
   4844   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
   4845 
   4846   // Emit callseq_end just before tailcall node.
   4847   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4848                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   4849   InFlag = Chain.getValue(1);
   4850 }
   4851 
   4852 // Is this global address that of a function that can be called by name? (as
   4853 // opposed to something that must hold a descriptor for an indirect call).
   4854 static bool isFunctionGlobalAddress(SDValue Callee) {
   4855   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   4856     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
   4857         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
   4858       return false;
   4859 
   4860     return G->getGlobal()->getValueType()->isFunctionTy();
   4861   }
   4862 
   4863   return false;
   4864 }
   4865 
   4866 static unsigned
   4867 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
   4868             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
   4869             bool isPatchPoint, bool hasNest,
   4870             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
   4871             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   4872             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
   4873   bool isPPC64 = Subtarget.isPPC64();
   4874   bool isSVR4ABI = Subtarget.isSVR4ABI();
   4875   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4876 
   4877   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4878   NodeTys.push_back(MVT::Other);   // Returns a chain
   4879   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   4880 
   4881   unsigned CallOpc = PPCISD::CALL;
   4882 
   4883   bool needIndirectCall = true;
   4884   if (!isSVR4ABI || !isPPC64)
   4885     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   4886       // If this is an absolute destination address, use the munged value.
   4887       Callee = SDValue(Dest, 0);
   4888       needIndirectCall = false;
   4889     }
   4890 
   4891   // PC-relative references to external symbols should go through $stub, unless
   4892   // we're building with the leopard linker or later, which automatically
   4893   // synthesizes these stubs.
   4894   const TargetMachine &TM = DAG.getTarget();
   4895   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
   4896   const GlobalValue *GV = nullptr;
   4897   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4898     GV = G->getGlobal();
   4899   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
   4900   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
   4901 
   4902   if (isFunctionGlobalAddress(Callee)) {
   4903     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
   4904     // A call to a TLS address is actually an indirect call to a
   4905     // thread-specific pointer.
   4906     unsigned OpFlags = 0;
   4907     if (UsePlt)
   4908       OpFlags = PPCII::MO_PLT;
   4909 
   4910     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   4911     // every direct call is) turn it into a TargetGlobalAddress /
   4912     // TargetExternalSymbol node so that legalize doesn't hack it.
   4913     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   4914                                         Callee.getValueType(), 0, OpFlags);
   4915     needIndirectCall = false;
   4916   }
   4917 
   4918   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   4919     unsigned char OpFlags = 0;
   4920 
   4921     if (UsePlt)
   4922       OpFlags = PPCII::MO_PLT;
   4923 
   4924     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   4925                                          OpFlags);
   4926     needIndirectCall = false;
   4927   }
   4928 
   4929   if (isPatchPoint) {
   4930     // We'll form an invalid direct call when lowering a patchpoint; the full
   4931     // sequence for an indirect call is complicated, and many of the
   4932     // instructions introduced might have side effects (and, thus, can't be
   4933     // removed later). The call itself will be removed as soon as the
   4934     // argument/return lowering is complete, so the fact that it has the wrong
   4935     // kind of operands should not really matter.
   4936     needIndirectCall = false;
   4937   }
   4938 
   4939   if (needIndirectCall) {
   4940     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   4941     // to do the call, we can't use PPCISD::CALL.
   4942     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   4943 
   4944     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
   4945       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   4946       // entry point, but to the function descriptor (the function entry point
   4947       // address is part of the function descriptor though).
   4948       // The function descriptor is a three doubleword structure with the
   4949       // following fields: function entry point, TOC base address and
   4950       // environment pointer.
   4951       // Thus for a call through a function pointer, the following actions need
   4952       // to be performed:
   4953       //   1. Save the TOC of the caller in the TOC save area of its stack
   4954       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   4955       //   2. Load the address of the function entry point from the function
   4956       //      descriptor.
   4957       //   3. Load the TOC of the callee from the function descriptor into r2.
   4958       //   4. Load the environment pointer from the function descriptor into
   4959       //      r11.
   4960       //   5. Branch to the function entry point address.
   4961       //   6. On return of the callee, the TOC of the caller needs to be
   4962       //      restored (this is done in FinishCall()).
   4963       //
   4964       // The loads are scheduled at the beginning of the call sequence, and the
   4965       // register copies are flagged together to ensure that no other
   4966       // operations can be scheduled in between. E.g. without flagging the
   4967       // copies together, a TOC access in the caller could be scheduled between
   4968       // the assignment of the callee TOC and the branch to the callee, which
   4969       // results in the TOC access going through the TOC of the callee instead
   4970       // of going through the TOC of the caller, which leads to incorrect code.
   4971 
   4972       // Load the address of the function entry point from the function
   4973       // descriptor.
   4974       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
   4975       if (LDChain.getValueType() == MVT::Glue)
   4976         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
   4977 
   4978       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
   4979                           ? (MachineMemOperand::MODereferenceable |
   4980                              MachineMemOperand::MOInvariant)
   4981                           : MachineMemOperand::MONone;
   4982 
   4983       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
   4984       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
   4985                                         /* Alignment = */ 8, MMOFlags);
   4986 
   4987       // Load environment pointer into r11.
   4988       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
   4989       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   4990       SDValue LoadEnvPtr =
   4991           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
   4992                       /* Alignment = */ 8, MMOFlags);
   4993 
   4994       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
   4995       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
   4996       SDValue TOCPtr =
   4997           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
   4998                       /* Alignment = */ 8, MMOFlags);
   4999 
   5000       setUsesTOCBasePtr(DAG);
   5001       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
   5002                                         InFlag);
   5003       Chain = TOCVal.getValue(0);
   5004       InFlag = TOCVal.getValue(1);
   5005 
   5006       // If the function call has an explicit 'nest' parameter, it takes the
   5007       // place of the environment pointer.
   5008       if (!hasNest) {
   5009         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   5010                                           InFlag);
   5011 
   5012         Chain = EnvVal.getValue(0);
   5013         InFlag = EnvVal.getValue(1);
   5014       }
   5015 
   5016       MTCTROps[0] = Chain;
   5017       MTCTROps[1] = LoadFuncPtr;
   5018       MTCTROps[2] = InFlag;
   5019     }
   5020 
   5021     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
   5022                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   5023     InFlag = Chain.getValue(1);
   5024 
   5025     NodeTys.clear();
   5026     NodeTys.push_back(MVT::Other);
   5027     NodeTys.push_back(MVT::Glue);
   5028     Ops.push_back(Chain);
   5029     CallOpc = PPCISD::BCTRL;
   5030     Callee.setNode(nullptr);
   5031     // Add use of X11 (holding environment pointer)
   5032     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
   5033       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   5034     // Add CTR register as callee so a bctr can be emitted later.
   5035     if (isTailCall)
   5036       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   5037   }
   5038 
   5039   // If this is a direct call, pass the chain and the callee.
   5040   if (Callee.getNode()) {
   5041     Ops.push_back(Chain);
   5042     Ops.push_back(Callee);
   5043   }
   5044   // If this is a tail call add stack pointer delta.
   5045   if (isTailCall)
   5046     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
   5047 
   5048   // Add argument registers to the end of the list so that they are known live
   5049   // into the call.
   5050   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   5051     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   5052                                   RegsToPass[i].second.getValueType()));
   5053 
   5054   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
   5055   // into the call.
   5056   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
   5057     setUsesTOCBasePtr(DAG);
   5058     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
   5059   }
   5060 
   5061   return CallOpc;
   5062 }
   5063 
   5064 SDValue PPCTargetLowering::LowerCallResult(
   5065     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
   5066     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   5067     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   5068   SmallVector<CCValAssign, 16> RVLocs;
   5069   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   5070                     *DAG.getContext());
   5071 
   5072   CCRetInfo.AnalyzeCallResult(
   5073       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
   5074                ? RetCC_PPC_Cold
   5075                : RetCC_PPC);
   5076 
   5077   // Copy all of the result registers out of their specified physreg.
   5078   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   5079     CCValAssign &VA = RVLocs[i];
   5080     assert(VA.isRegLoc() && "Can only return in registers!");
   5081 
   5082     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   5083                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   5084     Chain = Val.getValue(1);
   5085     InFlag = Val.getValue(2);
   5086 
   5087     switch (VA.getLocInfo()) {
   5088     default: llvm_unreachable("Unknown loc info!");
   5089     case CCValAssign::Full: break;
   5090     case CCValAssign::AExt:
   5091       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   5092       break;
   5093     case CCValAssign::ZExt:
   5094       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   5095                         DAG.getValueType(VA.getValVT()));
   5096       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   5097       break;
   5098     case CCValAssign::SExt:
   5099       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   5100                         DAG.getValueType(VA.getValVT()));
   5101       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   5102       break;
   5103     }
   5104 
   5105     InVals.push_back(Val);
   5106   }
   5107 
   5108   return Chain;
   5109 }
   5110 
   5111 SDValue PPCTargetLowering::FinishCall(
   5112     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
   5113     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
   5114     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
   5115     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
   5116     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
   5117     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
   5118   std::vector<EVT> NodeTys;
   5119   SmallVector<SDValue, 8> Ops;
   5120   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
   5121                                  SPDiff, isTailCall, isPatchPoint, hasNest,
   5122                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
   5123 
   5124   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   5125   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
   5126     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   5127 
   5128   // When performing tail call optimization the callee pops its arguments off
   5129   // the stack. Account for this here so these bytes can be pushed back on in
   5130   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   5131   int BytesCalleePops =
   5132     (CallConv == CallingConv::Fast &&
   5133      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   5134 
   5135   // Add a register mask operand representing the call-preserved registers.
   5136   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   5137   const uint32_t *Mask =
   5138       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
   5139   assert(Mask && "Missing call preserved mask for calling convention");
   5140   Ops.push_back(DAG.getRegisterMask(Mask));
   5141 
   5142   if (InFlag.getNode())
   5143     Ops.push_back(InFlag);
   5144 
   5145   // Emit tail call.
   5146   if (isTailCall) {
   5147     assert(((Callee.getOpcode() == ISD::Register &&
   5148              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   5149             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   5150             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   5151             isa<ConstantSDNode>(Callee)) &&
   5152     "Expecting an global address, external symbol, absolute value or register");
   5153 
   5154     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
   5155     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
   5156   }
   5157 
   5158   // Add a NOP immediately after the branch instruction when using the 64-bit
   5159   // SVR4 ABI. At link time, if caller and callee are in a different module and
   5160   // thus have a different TOC, the call will be replaced with a call to a stub
   5161   // function which saves the current TOC, loads the TOC of the callee and
   5162   // branches to the callee. The NOP will be replaced with a load instruction
   5163   // which restores the TOC of the caller from the TOC save slot of the current
   5164   // stack frame. If caller and callee belong to the same module (and have the
   5165   // same TOC), the NOP will remain unchanged.
   5166 
   5167   MachineFunction &MF = DAG.getMachineFunction();
   5168   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
   5169       !isPatchPoint) {
   5170     if (CallOpc == PPCISD::BCTRL) {
   5171       // This is a call through a function pointer.
   5172       // Restore the caller TOC from the save area into R2.
   5173       // See PrepareCall() for more information about calls through function
   5174       // pointers in the 64-bit SVR4 ABI.
   5175       // We are using a target-specific load with r2 hard coded, because the
   5176       // result of a target-independent load would never go directly into r2,
   5177       // since r2 is a reserved register (which prevents the register allocator
   5178       // from allocating it), resulting in an additional register being
   5179       // allocated and an unnecessary move instruction being generated.
   5180       CallOpc = PPCISD::BCTRL_LOAD_TOC;
   5181 
   5182       EVT PtrVT = getPointerTy(DAG.getDataLayout());
   5183       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
   5184       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   5185       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   5186       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
   5187 
   5188       // The address needs to go after the chain input but before the flag (or
   5189       // any other variadic arguments).
   5190       Ops.insert(std::next(Ops.begin()), AddTOC);
   5191     } else if (CallOpc == PPCISD::CALL &&
   5192       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
   5193       // Otherwise insert NOP for non-local calls.
   5194       CallOpc = PPCISD::CALL_NOP;
   5195     }
   5196   }
   5197 
   5198   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   5199   InFlag = Chain.getValue(1);
   5200 
   5201   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   5202                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
   5203                              InFlag, dl);
   5204   if (!Ins.empty())
   5205     InFlag = Chain.getValue(1);
   5206 
   5207   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   5208                          Ins, dl, DAG, InVals);
   5209 }
   5210 
   5211 SDValue
   5212 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   5213                              SmallVectorImpl<SDValue> &InVals) const {
   5214   SelectionDAG &DAG                     = CLI.DAG;
   5215   SDLoc &dl                             = CLI.DL;
   5216   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   5217   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   5218   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   5219   SDValue Chain                         = CLI.Chain;
   5220   SDValue Callee                        = CLI.Callee;
   5221   bool &isTailCall                      = CLI.IsTailCall;
   5222   CallingConv::ID CallConv              = CLI.CallConv;
   5223   bool isVarArg                         = CLI.IsVarArg;
   5224   bool isPatchPoint                     = CLI.IsPatchPoint;
   5225   ImmutableCallSite CS                  = CLI.CS;
   5226 
   5227   if (isTailCall) {
   5228     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
   5229       isTailCall = false;
   5230     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
   5231       isTailCall =
   5232         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
   5233                                                  isVarArg, Outs, Ins, DAG);
   5234     else
   5235       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   5236                                                      Ins, DAG);
   5237     if (isTailCall) {
   5238       ++NumTailCalls;
   5239       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   5240         ++NumSiblingCalls;
   5241 
   5242       assert(isa<GlobalAddressSDNode>(Callee) &&
   5243              "Callee should be an llvm::Function object.");
   5244       LLVM_DEBUG(
   5245           const GlobalValue *GV =
   5246               cast<GlobalAddressSDNode>(Callee)->getGlobal();
   5247           const unsigned Width =
   5248               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
   5249           dbgs() << "TCO caller: "
   5250                  << left_justify(DAG.getMachineFunction().getName(), Width)
   5251                  << ", callee linkage: " << GV->getVisibility() << ", "
   5252                  << GV->getLinkage() << "\n");
   5253     }
   5254   }
   5255 
   5256   if (!isTailCall && CS && CS.isMustTailCall())
   5257     report_fatal_error("failed to perform tail call elimination on a call "
   5258                        "site marked musttail");
   5259 
   5260   // When long calls (i.e. indirect calls) are always used, calls are always
   5261   // made via function pointer. If we have a function name, first translate it
   5262   // into a pointer.
   5263   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
   5264       !isTailCall)
   5265     Callee = LowerGlobalAddress(Callee, DAG);
   5266 
   5267   if (Subtarget.isSVR4ABI()) {
   5268     if (Subtarget.isPPC64())
   5269       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   5270                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
   5271                               dl, DAG, InVals, CS);
   5272     else
   5273       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   5274                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
   5275                               dl, DAG, InVals, CS);
   5276   }
   5277 
   5278   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   5279                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
   5280                           dl, DAG, InVals, CS);
   5281 }
   5282 
   5283 SDValue PPCTargetLowering::LowerCall_32SVR4(
   5284     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   5285     bool isTailCall, bool isPatchPoint,
   5286     const SmallVectorImpl<ISD::OutputArg> &Outs,
   5287     const SmallVectorImpl<SDValue> &OutVals,
   5288     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   5289     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   5290     ImmutableCallSite CS) const {
   5291   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   5292   // of the 32-bit SVR4 ABI stack frame layout.
   5293 
   5294   assert((CallConv == CallingConv::C ||
   5295           CallConv == CallingConv::Cold ||
   5296           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   5297 
   5298   unsigned PtrByteSize = 4;
   5299 
   5300   MachineFunction &MF = DAG.getMachineFunction();
   5301 
   5302   // Mark this function as potentially containing a function that contains a
   5303   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5304   // and restoring the callers stack pointer in this functions epilog. This is
   5305   // done because by tail calling the called function might overwrite the value
   5306   // in this function's (MF) stack pointer stack slot 0(SP).
   5307   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5308       CallConv == CallingConv::Fast)
   5309     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5310 
   5311   // Count how many bytes are to be pushed on the stack, including the linkage
   5312   // area, parameter list area and the part of the local variable space which
   5313   // contains copies of aggregates which are passed by value.
   5314 
   5315   // Assign locations to all of the outgoing arguments.
   5316   SmallVector<CCValAssign, 16> ArgLocs;
   5317   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
   5318 
   5319   // Reserve space for the linkage area on the stack.
   5320   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
   5321                        PtrByteSize);
   5322   if (useSoftFloat())
   5323     CCInfo.PreAnalyzeCallOperands(Outs);
   5324 
   5325   if (isVarArg) {
   5326     // Handle fixed and variable vector arguments differently.
   5327     // Fixed vector arguments go into registers as long as registers are
   5328     // available. Variable vector arguments always go into memory.
   5329     unsigned NumArgs = Outs.size();
   5330 
   5331     for (unsigned i = 0; i != NumArgs; ++i) {
   5332       MVT ArgVT = Outs[i].VT;
   5333       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   5334       bool Result;
   5335 
   5336       if (Outs[i].IsFixed) {
   5337         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   5338                                CCInfo);
   5339       } else {
   5340         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   5341                                       ArgFlags, CCInfo);
   5342       }
   5343 
   5344       if (Result) {
   5345 #ifndef NDEBUG
   5346         errs() << "Call operand #" << i << " has unhandled type "
   5347              << EVT(ArgVT).getEVTString() << "\n";
   5348 #endif
   5349         llvm_unreachable(nullptr);
   5350       }
   5351     }
   5352   } else {
   5353     // All arguments are treated the same.
   5354     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   5355   }
   5356   CCInfo.clearWasPPCF128();
   5357 
   5358   // Assign locations to all of the outgoing aggregate by value arguments.
   5359   SmallVector<CCValAssign, 16> ByValArgLocs;
   5360   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
   5361 
   5362   // Reserve stack space for the allocations in CCInfo.
   5363   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   5364 
   5365   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   5366 
   5367   // Size of the linkage area, parameter list area and the part of the local
   5368   // space variable where copies of aggregates which are passed by value are
   5369   // stored.
   5370   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   5371 
   5372   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5373   // call optimization.
   5374   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5375 
   5376   // Adjust the stack pointer for the new arguments...
   5377   // These operations are automatically eliminated by the prolog/epilog pass
   5378   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
   5379   SDValue CallSeqStart = Chain;
   5380 
   5381   // Load the return address and frame pointer so it can be moved somewhere else
   5382   // later.
   5383   SDValue LROp, FPOp;
   5384   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
   5385 
   5386   // Set up a copy of the stack pointer for use loading and storing any
   5387   // arguments that may not fit in the registers available for argument
   5388   // passing.
   5389   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   5390 
   5391   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5392   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5393   SmallVector<SDValue, 8> MemOpChains;
   5394 
   5395   bool seenFloatArg = false;
   5396   // Walk the register/memloc assignments, inserting copies/loads.
   5397   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   5398        i != e;
   5399        ++i) {
   5400     CCValAssign &VA = ArgLocs[i];
   5401     SDValue Arg = OutVals[i];
   5402     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5403 
   5404     if (Flags.isByVal()) {
   5405       // Argument is an aggregate which is passed by value, thus we need to
   5406       // create a copy of it in the local variable space of the current stack
   5407       // frame (which is the stack frame of the caller) and pass the address of
   5408       // this copy to the callee.
   5409       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   5410       CCValAssign &ByValVA = ByValArgLocs[j++];
   5411       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   5412 
   5413       // Memory reserved in the local variable space of the callers stack frame.
   5414       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   5415 
   5416       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   5417       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   5418                            StackPtr, PtrOff);
   5419 
   5420       // Create a copy of the argument in the local area of the current
   5421       // stack frame.
   5422       SDValue MemcpyCall =
   5423         CreateCopyOfByValArgument(Arg, PtrOff,
   5424                                   CallSeqStart.getNode()->getOperand(0),
   5425                                   Flags, DAG, dl);
   5426 
   5427       // This must go outside the CALLSEQ_START..END.
   5428       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
   5429                                                      SDLoc(MemcpyCall));
   5430       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   5431                              NewCallSeqStart.getNode());
   5432       Chain = CallSeqStart = NewCallSeqStart;
   5433 
   5434       // Pass the address of the aggregate copy on the stack either in a
   5435       // physical register or in the parameter list area of the current stack
   5436       // frame to the callee.
   5437       Arg = PtrOff;
   5438     }
   5439 
   5440     if (VA.isRegLoc()) {
   5441       if (Arg.getValueType() == MVT::i1)
   5442         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
   5443 
   5444       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   5445       // Put argument in a physical register.
   5446       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   5447     } else {
   5448       // Put argument in the parameter list area of the current stack frame.
   5449       assert(VA.isMemLoc());
   5450       unsigned LocMemOffset = VA.getLocMemOffset();
   5451 
   5452       if (!isTailCall) {
   5453         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   5454         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   5455                              StackPtr, PtrOff);
   5456 
   5457         MemOpChains.push_back(
   5458             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
   5459       } else {
   5460         // Calculate and remember argument location.
   5461         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   5462                                  TailCallArguments);
   5463       }
   5464     }
   5465   }
   5466 
   5467   if (!MemOpChains.empty())
   5468     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5469 
   5470   // Build a sequence of copy-to-reg nodes chained together with token chain
   5471   // and flag operands which copy the outgoing args into the appropriate regs.
   5472   SDValue InFlag;
   5473   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5474     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5475                              RegsToPass[i].second, InFlag);
   5476     InFlag = Chain.getValue(1);
   5477   }
   5478 
   5479   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   5480   // registers.
   5481   if (isVarArg) {
   5482     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   5483     SDValue Ops[] = { Chain, InFlag };
   5484 
   5485     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   5486                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
   5487 
   5488     InFlag = Chain.getValue(1);
   5489   }
   5490 
   5491   if (isTailCall)
   5492     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
   5493                     TailCallArguments);
   5494 
   5495   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
   5496                     /* unused except on PPC64 ELFv1 */ false, DAG,
   5497                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   5498                     NumBytes, Ins, InVals, CS);
   5499 }
   5500 
   5501 // Copy an argument into memory, being careful to do this outside the
   5502 // call sequence for the call to which the argument belongs.
   5503 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
   5504     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
   5505     SelectionDAG &DAG, const SDLoc &dl) const {
   5506   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   5507                         CallSeqStart.getNode()->getOperand(0),
   5508                         Flags, DAG, dl);
   5509   // The MEMCPY must go outside the CALLSEQ_START..END.
   5510   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
   5511   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
   5512                                                  SDLoc(MemcpyCall));
   5513   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   5514                          NewCallSeqStart.getNode());
   5515   return NewCallSeqStart;
   5516 }
   5517 
   5518 SDValue PPCTargetLowering::LowerCall_64SVR4(
   5519     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   5520     bool isTailCall, bool isPatchPoint,
   5521     const SmallVectorImpl<ISD::OutputArg> &Outs,
   5522     const SmallVectorImpl<SDValue> &OutVals,
   5523     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   5524     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   5525     ImmutableCallSite CS) const {
   5526   bool isELFv2ABI = Subtarget.isELFv2ABI();
   5527   bool isLittleEndian = Subtarget.isLittleEndian();
   5528   unsigned NumOps = Outs.size();
   5529   bool hasNest = false;
   5530   bool IsSibCall = false;
   5531 
   5532   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   5533   unsigned PtrByteSize = 8;
   5534 
   5535   MachineFunction &MF = DAG.getMachineFunction();
   5536 
   5537   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
   5538     IsSibCall = true;
   5539 
   5540   // Mark this function as potentially containing a function that contains a
   5541   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5542   // and restoring the callers stack pointer in this functions epilog. This is
   5543   // done because by tail calling the called function might overwrite the value
   5544   // in this function's (MF) stack pointer stack slot 0(SP).
   5545   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5546       CallConv == CallingConv::Fast)
   5547     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5548 
   5549   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   5550          "fastcc not supported on varargs functions");
   5551 
   5552   // Count how many bytes are to be pushed on the stack, including the linkage
   5553   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
   5554   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
   5555   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
   5556   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   5557   unsigned NumBytes = LinkageSize;
   5558   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   5559   unsigned &QFPR_idx = FPR_idx;
   5560 
   5561   static const MCPhysReg GPR[] = {
   5562     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   5563     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   5564   };
   5565   static const MCPhysReg VR[] = {
   5566     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   5567     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   5568   };
   5569 
   5570   const unsigned NumGPRs = array_lengthof(GPR);
   5571   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
   5572   const unsigned NumVRs  = array_lengthof(VR);
   5573   const unsigned NumQFPRs = NumFPRs;
   5574 
   5575   // On ELFv2, we can avoid allocating the parameter area if all the arguments
   5576   // can be passed to the callee in registers.
   5577   // For the fast calling convention, there is another check below.
   5578   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
   5579   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
   5580   if (!HasParameterArea) {
   5581     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
   5582     unsigned AvailableFPRs = NumFPRs;
   5583     unsigned AvailableVRs = NumVRs;
   5584     unsigned NumBytesTmp = NumBytes;
   5585     for (unsigned i = 0; i != NumOps; ++i) {
   5586       if (Outs[i].Flags.isNest()) continue;
   5587       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
   5588                                 PtrByteSize, LinkageSize, ParamAreaSize,
   5589                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
   5590                                 Subtarget.hasQPX()))
   5591         HasParameterArea = true;
   5592     }
   5593   }
   5594 
   5595   // When using the fast calling convention, we don't provide backing for
   5596   // arguments that will be in registers.
   5597   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
   5598 
   5599   // Avoid allocating parameter area for fastcc functions if all the arguments
   5600   // can be passed in the registers.
   5601   if (CallConv == CallingConv::Fast)
   5602     HasParameterArea = false;
   5603 
   5604   // Add up all the space actually used.
   5605   for (unsigned i = 0; i != NumOps; ++i) {
   5606     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5607     EVT ArgVT = Outs[i].VT;
   5608     EVT OrigVT = Outs[i].ArgVT;
   5609 
   5610     if (Flags.isNest())
   5611       continue;
   5612 
   5613     if (CallConv == CallingConv::Fast) {
   5614       if (Flags.isByVal()) {
   5615         NumGPRsUsed += (Flags.getByValSize()+7)/8;
   5616         if (NumGPRsUsed > NumGPRs)
   5617           HasParameterArea = true;
   5618       } else {
   5619         switch (ArgVT.getSimpleVT().SimpleTy) {
   5620         default: llvm_unreachable("Unexpected ValueType for argument!");
   5621         case MVT::i1:
   5622         case MVT::i32:
   5623         case MVT::i64:
   5624           if (++NumGPRsUsed <= NumGPRs)
   5625             continue;
   5626           break;
   5627         case MVT::v4i32:
   5628         case MVT::v8i16:
   5629         case MVT::v16i8:
   5630         case MVT::v2f64:
   5631         case MVT::v2i64:
   5632         case MVT::v1i128:
   5633         case MVT::f128:
   5634           if (++NumVRsUsed <= NumVRs)
   5635             continue;
   5636           break;
   5637         case MVT::v4f32:
   5638           // When using QPX, this is handled like a FP register, otherwise, it
   5639           // is an Altivec register.
   5640           if (Subtarget.hasQPX()) {
   5641             if (++NumFPRsUsed <= NumFPRs)
   5642               continue;
   5643           } else {
   5644             if (++NumVRsUsed <= NumVRs)
   5645               continue;
   5646           }
   5647           break;
   5648         case MVT::f32:
   5649         case MVT::f64:
   5650         case MVT::v4f64: // QPX
   5651         case MVT::v4i1:  // QPX
   5652           if (++NumFPRsUsed <= NumFPRs)
   5653             continue;
   5654           break;
   5655         }
   5656         HasParameterArea = true;
   5657       }
   5658     }
   5659 
   5660     /* Respect alignment of argument on the stack.  */
   5661     unsigned Align =
   5662       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   5663     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
   5664 
   5665     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   5666     if (Flags.isInConsecutiveRegsLast())
   5667       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   5668   }
   5669 
   5670   unsigned NumBytesActuallyUsed = NumBytes;
   5671 
   5672   // In the old ELFv1 ABI,
   5673   // the prolog code of the callee may store up to 8 GPR argument registers to
   5674   // the stack, allowing va_start to index over them in memory if its varargs.
   5675   // Because we cannot tell if this is needed on the caller side, we have to
   5676   // conservatively assume that it is needed.  As such, make sure we have at
   5677   // least enough stack space for the caller to store the 8 GPRs.
   5678   // In the ELFv2 ABI, we allocate the parameter area iff a callee
   5679   // really requires memory operands, e.g. a vararg function.
   5680   if (HasParameterArea)
   5681     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   5682   else
   5683     NumBytes = LinkageSize;
   5684 
   5685   // Tail call needs the stack to be aligned.
   5686   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5687       CallConv == CallingConv::Fast)
   5688     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   5689 
   5690   int SPDiff = 0;
   5691 
   5692   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5693   // call optimization.
   5694   if (!IsSibCall)
   5695     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5696 
   5697   // To protect arguments on the stack from being clobbered in a tail call,
   5698   // force all the loads to happen before doing any other lowering.
   5699   if (isTailCall)
   5700     Chain = DAG.getStackArgumentTokenFactor(Chain);
   5701 
   5702   // Adjust the stack pointer for the new arguments...
   5703   // These operations are automatically eliminated by the prolog/epilog pass
   5704   if (!IsSibCall)
   5705     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
   5706   SDValue CallSeqStart = Chain;
   5707 
   5708   // Load the return address and frame pointer so it can be move somewhere else
   5709   // later.
   5710   SDValue LROp, FPOp;
   5711   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
   5712 
   5713   // Set up a copy of the stack pointer for use loading and storing any
   5714   // arguments that may not fit in the registers available for argument
   5715   // passing.
   5716   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   5717 
   5718   // Figure out which arguments are going to go in registers, and which in
   5719   // memory.  Also, if this is a vararg function, floating point operations
   5720   // must be stored to our stack, and loaded into integer regs as well, if
   5721   // any integer regs are available for argument passing.
   5722   unsigned ArgOffset = LinkageSize;
   5723 
   5724   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5725   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5726 
   5727   SmallVector<SDValue, 8> MemOpChains;
   5728   for (unsigned i = 0; i != NumOps; ++i) {
   5729     SDValue Arg = OutVals[i];
   5730     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5731     EVT ArgVT = Outs[i].VT;
   5732     EVT OrigVT = Outs[i].ArgVT;
   5733 
   5734     // PtrOff will be used to store the current argument to the stack if a
   5735     // register cannot be found for it.
   5736     SDValue PtrOff;
   5737 
   5738     // We re-align the argument offset for each argument, except when using the
   5739     // fast calling convention, when we need to make sure we do that only when
   5740     // we'll actually use a stack slot.
   5741     auto ComputePtrOff = [&]() {
   5742       /* Respect alignment of argument on the stack.  */
   5743       unsigned Align =
   5744         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   5745       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   5746 
   5747       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   5748 
   5749       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5750     };
   5751 
   5752     if (CallConv != CallingConv::Fast) {
   5753       ComputePtrOff();
   5754 
   5755       /* Compute GPR index associated with argument offset.  */
   5756       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   5757       GPR_idx = std::min(GPR_idx, NumGPRs);
   5758     }
   5759 
   5760     // Promote integers to 64-bit values.
   5761     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
   5762       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   5763       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   5764       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   5765     }
   5766 
   5767     // FIXME memcpy is used way more than necessary.  Correctness first.
   5768     // Note: "by value" is code for passing a structure by value, not
   5769     // basic types.
   5770     if (Flags.isByVal()) {
   5771       // Note: Size includes alignment padding, so
   5772       //   struct x { short a; char b; }
   5773       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   5774       // These are the proper values we need for right-justifying the
   5775       // aggregate in a parameter register.
   5776       unsigned Size = Flags.getByValSize();
   5777 
   5778       // An empty aggregate parameter takes up no storage and no
   5779       // registers.
   5780       if (Size == 0)
   5781         continue;
   5782 
   5783       if (CallConv == CallingConv::Fast)
   5784         ComputePtrOff();
   5785 
   5786       // All aggregates smaller than 8 bytes must be passed right-justified.
   5787       if (Size==1 || Size==2 || Size==4) {
   5788         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   5789         if (GPR_idx != NumGPRs) {
   5790           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   5791                                         MachinePointerInfo(), VT);
   5792           MemOpChains.push_back(Load.getValue(1));
   5793           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5794 
   5795           ArgOffset += PtrByteSize;
   5796           continue;
   5797         }
   5798       }
   5799 
   5800       if (GPR_idx == NumGPRs && Size < 8) {
   5801         SDValue AddPtr = PtrOff;
   5802         if (!isLittleEndian) {
   5803           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   5804                                           PtrOff.getValueType());
   5805           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5806         }
   5807         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5808                                                           CallSeqStart,
   5809                                                           Flags, DAG, dl);
   5810         ArgOffset += PtrByteSize;
   5811         continue;
   5812       }
   5813       // Copy entire object into memory.  There are cases where gcc-generated
   5814       // code assumes it is there, even if it could be put entirely into
   5815       // registers.  (This is not what the doc says.)
   5816 
   5817       // FIXME: The above statement is likely due to a misunderstanding of the
   5818       // documents.  All arguments must be copied into the parameter area BY
   5819       // THE CALLEE in the event that the callee takes the address of any
   5820       // formal argument.  That has not yet been implemented.  However, it is
   5821       // reasonable to use the stack area as a staging area for the register
   5822       // load.
   5823 
   5824       // Skip this for small aggregates, as we will use the same slot for a
   5825       // right-justified copy, below.
   5826       if (Size >= 8)
   5827         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5828                                                           CallSeqStart,
   5829                                                           Flags, DAG, dl);
   5830 
   5831       // When a register is available, pass a small aggregate right-justified.
   5832       if (Size < 8 && GPR_idx != NumGPRs) {
   5833         // The easiest way to get this right-justified in a register
   5834         // is to copy the structure into the rightmost portion of a
   5835         // local variable slot, then load the whole slot into the
   5836         // register.
   5837         // FIXME: The memcpy seems to produce pretty awful code for
   5838         // small aggregates, particularly for packed ones.
   5839         // FIXME: It would be preferable to use the slot in the
   5840         // parameter save area instead of a new local variable.
   5841         SDValue AddPtr = PtrOff;
   5842         if (!isLittleEndian) {
   5843           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
   5844           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5845         }
   5846         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5847                                                           CallSeqStart,
   5848                                                           Flags, DAG, dl);
   5849 
   5850         // Load the slot into the register.
   5851         SDValue Load =
   5852             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
   5853         MemOpChains.push_back(Load.getValue(1));
   5854         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5855 
   5856         // Done with this argument.
   5857         ArgOffset += PtrByteSize;
   5858         continue;
   5859       }
   5860 
   5861       // For aggregates larger than PtrByteSize, copy the pieces of the
   5862       // object that fit into registers from the parameter save area.
   5863       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5864         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5865         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5866         if (GPR_idx != NumGPRs) {
   5867           SDValue Load =
   5868               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
   5869           MemOpChains.push_back(Load.getValue(1));
   5870           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5871           ArgOffset += PtrByteSize;
   5872         } else {
   5873           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5874           break;
   5875         }
   5876       }
   5877       continue;
   5878     }
   5879 
   5880     switch (Arg.getSimpleValueType().SimpleTy) {
   5881     default: llvm_unreachable("Unexpected ValueType for argument!");
   5882     case MVT::i1:
   5883     case MVT::i32:
   5884     case MVT::i64:
   5885       if (Flags.isNest()) {
   5886         // The 'nest' parameter, if any, is passed in R11.
   5887         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
   5888         hasNest = true;
   5889         break;
   5890       }
   5891 
   5892       // These can be scalar arguments or elements of an integer array type
   5893       // passed directly.  Clang may use those instead of "byval" aggregate
   5894       // types to avoid forcing arguments to memory unnecessarily.
   5895       if (GPR_idx != NumGPRs) {
   5896         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5897       } else {
   5898         if (CallConv == CallingConv::Fast)
   5899           ComputePtrOff();
   5900 
   5901         assert(HasParameterArea &&
   5902                "Parameter area must exist to pass an argument in memory.");
   5903         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5904                          true, isTailCall, false, MemOpChains,
   5905                          TailCallArguments, dl);
   5906         if (CallConv == CallingConv::Fast)
   5907           ArgOffset += PtrByteSize;
   5908       }
   5909       if (CallConv != CallingConv::Fast)
   5910         ArgOffset += PtrByteSize;
   5911       break;
   5912     case MVT::f32:
   5913     case MVT::f64: {
   5914       // These can be scalar arguments or elements of a float array type
   5915       // passed directly.  The latter are used to implement ELFv2 homogenous
   5916       // float aggregates.
   5917 
   5918       // Named arguments go into FPRs first, and once they overflow, the
   5919       // remaining arguments go into GPRs and then the parameter save area.
   5920       // Unnamed arguments for vararg functions always go to GPRs and
   5921       // then the parameter save area.  For now, put all arguments to vararg
   5922       // routines always in both locations (FPR *and* GPR or stack slot).
   5923       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
   5924       bool NeededLoad = false;
   5925 
   5926       // First load the argument into the next available FPR.
   5927       if (FPR_idx != NumFPRs)
   5928         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5929 
   5930       // Next, load the argument into GPR or stack slot if needed.
   5931       if (!NeedGPROrStack)
   5932         ;
   5933       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
   5934         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   5935         // once we support fp <-> gpr moves.
   5936 
   5937         // In the non-vararg case, this can only ever happen in the
   5938         // presence of f32 array types, since otherwise we never run
   5939         // out of FPRs before running out of GPRs.
   5940         SDValue ArgVal;
   5941 
   5942         // Double values are always passed in a single GPR.
   5943         if (Arg.getValueType() != MVT::f32) {
   5944           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   5945 
   5946         // Non-array float values are extended and passed in a GPR.
   5947         } else if (!Flags.isInConsecutiveRegs()) {
   5948           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5949           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5950 
   5951         // If we have an array of floats, we collect every odd element
   5952         // together with its predecessor into one GPR.
   5953         } else if (ArgOffset % PtrByteSize != 0) {
   5954           SDValue Lo, Hi;
   5955           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
   5956           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5957           if (!isLittleEndian)
   5958             std::swap(Lo, Hi);
   5959           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   5960 
   5961         // The final element, if even, goes into the first half of a GPR.
   5962         } else if (Flags.isInConsecutiveRegsLast()) {
   5963           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5964           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5965           if (!isLittleEndian)
   5966             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
   5967                                  DAG.getConstant(32, dl, MVT::i32));
   5968 
   5969         // Non-final even elements are skipped; they will be handled
   5970         // together the with subsequent argument on the next go-around.
   5971         } else
   5972           ArgVal = SDValue();
   5973 
   5974         if (ArgVal.getNode())
   5975           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
   5976       } else {
   5977         if (CallConv == CallingConv::Fast)
   5978           ComputePtrOff();
   5979 
   5980         // Single-precision floating-point values are mapped to the
   5981         // second (rightmost) word of the stack doubleword.
   5982         if (Arg.getValueType() == MVT::f32 &&
   5983             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
   5984           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5985           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5986         }
   5987 
   5988         assert(HasParameterArea &&
   5989                "Parameter area must exist to pass an argument in memory.");
   5990         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5991                          true, isTailCall, false, MemOpChains,
   5992                          TailCallArguments, dl);
   5993 
   5994         NeededLoad = true;
   5995       }
   5996       // When passing an array of floats, the array occupies consecutive
   5997       // space in the argument area; only round up to the next doubleword
   5998       // at the end of the array.  Otherwise, each float takes 8 bytes.
   5999       if (CallConv != CallingConv::Fast || NeededLoad) {
   6000         ArgOffset += (Arg.getValueType() == MVT::f32 &&
   6001                       Flags.isInConsecutiveRegs()) ? 4 : 8;
   6002         if (Flags.isInConsecutiveRegsLast())
   6003           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   6004       }
   6005       break;
   6006     }
   6007     case MVT::v4f32:
   6008     case MVT::v4i32:
   6009     case MVT::v8i16:
   6010     case MVT::v16i8:
   6011     case MVT::v2f64:
   6012     case MVT::v2i64:
   6013     case MVT::v1i128:
   6014     case MVT::f128:
   6015       if (!Subtarget.hasQPX()) {
   6016       // These can be scalar arguments or elements of a vector array type
   6017       // passed directly.  The latter are used to implement ELFv2 homogenous
   6018       // vector aggregates.
   6019 
   6020       // For a varargs call, named arguments go into VRs or on the stack as
   6021       // usual; unnamed arguments always go to the stack or the corresponding
   6022       // GPRs when within range.  For now, we always put the value in both
   6023       // locations (or even all three).
   6024       if (isVarArg) {
   6025         assert(HasParameterArea &&
   6026                "Parameter area must exist if we have a varargs call.");
   6027         // We could elide this store in the case where the object fits
   6028         // entirely in R registers.  Maybe later.
   6029         SDValue Store =
   6030             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
   6031         MemOpChains.push_back(Store);
   6032         if (VR_idx != NumVRs) {
   6033           SDValue Load =
   6034               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
   6035           MemOpChains.push_back(Load.getValue(1));
   6036           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   6037         }
   6038         ArgOffset += 16;
   6039         for (unsigned i=0; i<16; i+=PtrByteSize) {
   6040           if (GPR_idx == NumGPRs)
   6041             break;
   6042           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   6043                                    DAG.getConstant(i, dl, PtrVT));
   6044           SDValue Load =
   6045               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
   6046           MemOpChains.push_back(Load.getValue(1));
   6047           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6048         }
   6049         break;
   6050       }
   6051 
   6052       // Non-varargs Altivec params go into VRs or on the stack.
   6053       if (VR_idx != NumVRs) {
   6054         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   6055       } else {
   6056         if (CallConv == CallingConv::Fast)
   6057           ComputePtrOff();
   6058 
   6059         assert(HasParameterArea &&
   6060                "Parameter area must exist to pass an argument in memory.");
   6061         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   6062                          true, isTailCall, true, MemOpChains,
   6063                          TailCallArguments, dl);
   6064         if (CallConv == CallingConv::Fast)
   6065           ArgOffset += 16;
   6066       }
   6067 
   6068       if (CallConv != CallingConv::Fast)
   6069         ArgOffset += 16;
   6070       break;
   6071       } // not QPX
   6072 
   6073       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
   6074              "Invalid QPX parameter type");
   6075 
   6076       LLVM_FALLTHROUGH;
   6077     case MVT::v4f64:
   6078     case MVT::v4i1: {
   6079       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
   6080       if (isVarArg) {
   6081         assert(HasParameterArea &&
   6082                "Parameter area must exist if we have a varargs call.");
   6083         // We could elide this store in the case where the object fits
   6084         // entirely in R registers.  Maybe later.
   6085         SDValue Store =
   6086             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
   6087         MemOpChains.push_back(Store);
   6088         if (QFPR_idx != NumQFPRs) {
   6089           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
   6090                                      PtrOff, MachinePointerInfo());
   6091           MemOpChains.push_back(Load.getValue(1));
   6092           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
   6093         }
   6094         ArgOffset += (IsF32 ? 16 : 32);
   6095         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
   6096           if (GPR_idx == NumGPRs)
   6097             break;
   6098           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   6099                                    DAG.getConstant(i, dl, PtrVT));
   6100           SDValue Load =
   6101               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
   6102           MemOpChains.push_back(Load.getValue(1));
   6103           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6104         }
   6105         break;
   6106       }
   6107 
   6108       // Non-varargs QPX params go into registers or on the stack.
   6109       if (QFPR_idx != NumQFPRs) {
   6110         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
   6111       } else {
   6112         if (CallConv == CallingConv::Fast)
   6113           ComputePtrOff();
   6114 
   6115         assert(HasParameterArea &&
   6116                "Parameter area must exist to pass an argument in memory.");
   6117         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   6118                          true, isTailCall, true, MemOpChains,
   6119                          TailCallArguments, dl);
   6120         if (CallConv == CallingConv::Fast)
   6121           ArgOffset += (IsF32 ? 16 : 32);
   6122       }
   6123 
   6124       if (CallConv != CallingConv::Fast)
   6125         ArgOffset += (IsF32 ? 16 : 32);
   6126       break;
   6127       }
   6128     }
   6129   }
   6130 
   6131   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
   6132          "mismatch in size of parameter area");
   6133   (void)NumBytesActuallyUsed;
   6134 
   6135   if (!MemOpChains.empty())
   6136     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   6137 
   6138   // Check if this is an indirect call (MTCTR/BCTRL).
   6139   // See PrepareCall() for more information about calls through function
   6140   // pointers in the 64-bit SVR4 ABI.
   6141   if (!isTailCall && !isPatchPoint &&
   6142       !isFunctionGlobalAddress(Callee) &&
   6143       !isa<ExternalSymbolSDNode>(Callee)) {
   6144     // Load r2 into a virtual register and store it to the TOC save area.
   6145     setUsesTOCBasePtr(DAG);
   6146     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   6147     // TOC save area offset.
   6148     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   6149     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   6150     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   6151     Chain = DAG.getStore(
   6152         Val.getValue(1), dl, Val, AddPtr,
   6153         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
   6154     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
   6155     // This does not mean the MTCTR instruction must use R12; it's easier
   6156     // to model this as an extra parameter, so do that.
   6157     if (isELFv2ABI && !isPatchPoint)
   6158       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   6159   }
   6160 
   6161   // Build a sequence of copy-to-reg nodes chained together with token chain
   6162   // and flag operands which copy the outgoing args into the appropriate regs.
   6163   SDValue InFlag;
   6164   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   6165     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   6166                              RegsToPass[i].second, InFlag);
   6167     InFlag = Chain.getValue(1);
   6168   }
   6169 
   6170   if (isTailCall && !IsSibCall)
   6171     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
   6172                     TailCallArguments);
   6173 
   6174   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
   6175                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
   6176                     SPDiff, NumBytes, Ins, InVals, CS);
   6177 }
   6178 
   6179 SDValue PPCTargetLowering::LowerCall_Darwin(
   6180     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   6181     bool isTailCall, bool isPatchPoint,
   6182     const SmallVectorImpl<ISD::OutputArg> &Outs,
   6183     const SmallVectorImpl<SDValue> &OutVals,
   6184     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   6185     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
   6186     ImmutableCallSite CS) const {
   6187   unsigned NumOps = Outs.size();
   6188 
   6189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6190   bool isPPC64 = PtrVT == MVT::i64;
   6191   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   6192 
   6193   MachineFunction &MF = DAG.getMachineFunction();
   6194 
   6195   // Mark this function as potentially containing a function that contains a
   6196   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   6197   // and restoring the callers stack pointer in this functions epilog. This is
   6198   // done because by tail calling the called function might overwrite the value
   6199   // in this function's (MF) stack pointer stack slot 0(SP).
   6200   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   6201       CallConv == CallingConv::Fast)
   6202     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   6203 
   6204   // Count how many bytes are to be pushed on the stack, including the linkage
   6205   // area, and parameter passing area.  We start with 24/48 bytes, which is
   6206   // prereserved space for [SP][CR][LR][3 x unused].
   6207   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   6208   unsigned NumBytes = LinkageSize;
   6209 
   6210   // Add up all the space actually used.
   6211   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   6212   // they all go in registers, but we must reserve stack space for them for
   6213   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   6214   // assigned stack space in order, with padding so Altivec parameters are
   6215   // 16-byte aligned.
   6216   unsigned nAltivecParamsAtEnd = 0;
   6217   for (unsigned i = 0; i != NumOps; ++i) {
   6218     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   6219     EVT ArgVT = Outs[i].VT;
   6220     // Varargs Altivec parameters are padded to a 16 byte boundary.
   6221     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   6222         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   6223         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
   6224       if (!isVarArg && !isPPC64) {
   6225         // Non-varargs Altivec parameters go after all the non-Altivec
   6226         // parameters; handle those later so we know how much padding we need.
   6227         nAltivecParamsAtEnd++;
   6228         continue;
   6229       }
   6230       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   6231       NumBytes = ((NumBytes+15)/16)*16;
   6232     }
   6233     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   6234   }
   6235 
   6236   // Allow for Altivec parameters at the end, if needed.
   6237   if (nAltivecParamsAtEnd) {
   6238     NumBytes = ((NumBytes+15)/16)*16;
   6239     NumBytes += 16*nAltivecParamsAtEnd;
   6240   }
   6241 
   6242   // The prolog code of the callee may store up to 8 GPR argument registers to
   6243   // the stack, allowing va_start to index over them in memory if its varargs.
   6244   // Because we cannot tell if this is needed on the caller side, we have to
   6245   // conservatively assume that it is needed.  As such, make sure we have at
   6246   // least enough stack space for the caller to store the 8 GPRs.
   6247   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   6248 
   6249   // Tail call needs the stack to be aligned.
   6250   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   6251       CallConv == CallingConv::Fast)
   6252     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   6253 
   6254   // Calculate by how many bytes the stack has to be adjusted in case of tail
   6255   // call optimization.
   6256   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   6257 
   6258   // To protect arguments on the stack from being clobbered in a tail call,
   6259   // force all the loads to happen before doing any other lowering.
   6260   if (isTailCall)
   6261     Chain = DAG.getStackArgumentTokenFactor(Chain);
   6262 
   6263   // Adjust the stack pointer for the new arguments...
   6264   // These operations are automatically eliminated by the prolog/epilog pass
   6265   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
   6266   SDValue CallSeqStart = Chain;
   6267 
   6268   // Load the return address and frame pointer so it can be move somewhere else
   6269   // later.
   6270   SDValue LROp, FPOp;
   6271   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
   6272 
   6273   // Set up a copy of the stack pointer for use loading and storing any
   6274   // arguments that may not fit in the registers available for argument
   6275   // passing.
   6276   SDValue StackPtr;
   6277   if (isPPC64)
   6278     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   6279   else
   6280     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   6281 
   6282   // Figure out which arguments are going to go in registers, and which in
   6283   // memory.  Also, if this is a vararg function, floating point operations
   6284   // must be stored to our stack, and loaded into integer regs as well, if
   6285   // any integer regs are available for argument passing.
   6286   unsigned ArgOffset = LinkageSize;
   6287   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   6288 
   6289   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   6290     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   6291     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   6292   };
   6293   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   6294     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   6295     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   6296   };
   6297   static const MCPhysReg VR[] = {
   6298     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   6299     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   6300   };
   6301   const unsigned NumGPRs = array_lengthof(GPR_32);
   6302   const unsigned NumFPRs = 13;
   6303   const unsigned NumVRs  = array_lengthof(VR);
   6304 
   6305   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   6306 
   6307   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   6308   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   6309 
   6310   SmallVector<SDValue, 8> MemOpChains;
   6311   for (unsigned i = 0; i != NumOps; ++i) {
   6312     SDValue Arg = OutVals[i];
   6313     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   6314 
   6315     // PtrOff will be used to store the current argument to the stack if a
   6316     // register cannot be found for it.
   6317     SDValue PtrOff;
   6318 
   6319     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   6320 
   6321     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   6322 
   6323     // On PPC64, promote integers to 64-bit values.
   6324     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   6325       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   6326       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   6327       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   6328     }
   6329 
   6330     // FIXME memcpy is used way more than necessary.  Correctness first.
   6331     // Note: "by value" is code for passing a structure by value, not
   6332     // basic types.
   6333     if (Flags.isByVal()) {
   6334       unsigned Size = Flags.getByValSize();
   6335       // Very small objects are passed right-justified.  Everything else is
   6336       // passed left-justified.
   6337       if (Size==1 || Size==2) {
   6338         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   6339         if (GPR_idx != NumGPRs) {
   6340           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   6341                                         MachinePointerInfo(), VT);
   6342           MemOpChains.push_back(Load.getValue(1));
   6343           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6344 
   6345           ArgOffset += PtrByteSize;
   6346         } else {
   6347           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   6348                                           PtrOff.getValueType());
   6349           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   6350           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   6351                                                             CallSeqStart,
   6352                                                             Flags, DAG, dl);
   6353           ArgOffset += PtrByteSize;
   6354         }
   6355         continue;
   6356       }
   6357       // Copy entire object into memory.  There are cases where gcc-generated
   6358       // code assumes it is there, even if it could be put entirely into
   6359       // registers.  (This is not what the doc says.)
   6360       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   6361                                                         CallSeqStart,
   6362                                                         Flags, DAG, dl);
   6363 
   6364       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   6365       // copy the pieces of the object that fit into registers from the
   6366       // parameter save area.
   6367       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   6368         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   6369         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   6370         if (GPR_idx != NumGPRs) {
   6371           SDValue Load =
   6372               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
   6373           MemOpChains.push_back(Load.getValue(1));
   6374           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6375           ArgOffset += PtrByteSize;
   6376         } else {
   6377           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   6378           break;
   6379         }
   6380       }
   6381       continue;
   6382     }
   6383 
   6384     switch (Arg.getSimpleValueType().SimpleTy) {
   6385     default: llvm_unreachable("Unexpected ValueType for argument!");
   6386     case MVT::i1:
   6387     case MVT::i32:
   6388     case MVT::i64:
   6389       if (GPR_idx != NumGPRs) {
   6390         if (Arg.getValueType() == MVT::i1)
   6391           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
   6392 
   6393         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   6394       } else {
   6395         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   6396                          isPPC64, isTailCall, false, MemOpChains,
   6397                          TailCallArguments, dl);
   6398       }
   6399       ArgOffset += PtrByteSize;
   6400       break;
   6401     case MVT::f32:
   6402     case MVT::f64:
   6403       if (FPR_idx != NumFPRs) {
   6404         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   6405 
   6406         if (isVarArg) {
   6407           SDValue Store =
   6408               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
   6409           MemOpChains.push_back(Store);
   6410 
   6411           // Float varargs are always shadowed in available integer registers
   6412           if (GPR_idx != NumGPRs) {
   6413             SDValue Load =
   6414                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
   6415             MemOpChains.push_back(Load.getValue(1));
   6416             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6417           }
   6418           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   6419             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   6420             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   6421             SDValue Load =
   6422                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
   6423             MemOpChains.push_back(Load.getValue(1));
   6424             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6425           }
   6426         } else {
   6427           // If we have any FPRs remaining, we may also have GPRs remaining.
   6428           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   6429           // GPRs.
   6430           if (GPR_idx != NumGPRs)
   6431             ++GPR_idx;
   6432           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   6433               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   6434             ++GPR_idx;
   6435         }
   6436       } else
   6437         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   6438                          isPPC64, isTailCall, false, MemOpChains,
   6439                          TailCallArguments, dl);
   6440       if (isPPC64)
   6441         ArgOffset += 8;
   6442       else
   6443         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   6444       break;
   6445     case MVT::v4f32:
   6446     case MVT::v4i32:
   6447     case MVT::v8i16:
   6448     case MVT::v16i8:
   6449       if (isVarArg) {
   6450         // These go aligned on the stack, or in the corresponding R registers
   6451         // when within range.  The Darwin PPC ABI doc claims they also go in
   6452         // V registers; in fact gcc does this only for arguments that are
   6453         // prototyped, not for those that match the ...  We do it for all
   6454         // arguments, seems to work.
   6455         while (ArgOffset % 16 !=0) {
   6456           ArgOffset += PtrByteSize;
   6457           if (GPR_idx != NumGPRs)
   6458             GPR_idx++;
   6459         }
   6460         // We could elide this store in the case where the object fits
   6461         // entirely in R registers.  Maybe later.
   6462         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   6463                              DAG.getConstant(ArgOffset, dl, PtrVT));
   6464         SDValue Store =
   6465             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
   6466         MemOpChains.push_back(Store);
   6467         if (VR_idx != NumVRs) {
   6468           SDValue Load =
   6469               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
   6470           MemOpChains.push_back(Load.getValue(1));
   6471           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   6472         }
   6473         ArgOffset += 16;
   6474         for (unsigned i=0; i<16; i+=PtrByteSize) {
   6475           if (GPR_idx == NumGPRs)
   6476             break;
   6477           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   6478                                    DAG.getConstant(i, dl, PtrVT));
   6479           SDValue Load =
   6480               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
   6481           MemOpChains.push_back(Load.getValue(1));
   6482           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   6483         }
   6484         break;
   6485       }
   6486 
   6487       // Non-varargs Altivec params generally go in registers, but have
   6488       // stack space allocated at the end.
   6489       if (VR_idx != NumVRs) {
   6490         // Doesn't have GPR space allocated.
   6491         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   6492       } else if (nAltivecParamsAtEnd==0) {
   6493         // We are emitting Altivec params in order.
   6494         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   6495                          isPPC64, isTailCall, true, MemOpChains,
   6496                          TailCallArguments, dl);
   6497         ArgOffset += 16;
   6498       }
   6499       break;
   6500     }
   6501   }
   6502   // If all Altivec parameters fit in registers, as they usually do,
   6503   // they get stack space following the non-Altivec parameters.  We
   6504   // don't track this here because nobody below needs it.
   6505   // If there are more Altivec parameters than fit in registers emit
   6506   // the stores here.
   6507   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   6508     unsigned j = 0;
   6509     // Offset is aligned; skip 1st 12 params which go in V registers.
   6510     ArgOffset = ((ArgOffset+15)/16)*16;
   6511     ArgOffset += 12*16;
   6512     for (unsigned i = 0; i != NumOps; ++i) {
   6513       SDValue Arg = OutVals[i];
   6514       EVT ArgType = Outs[i].VT;
   6515       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   6516           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   6517         if (++j > NumVRs) {
   6518           SDValue PtrOff;
   6519           // We are emitting Altivec params in order.
   6520           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   6521                            isPPC64, isTailCall, true, MemOpChains,
   6522                            TailCallArguments, dl);
   6523           ArgOffset += 16;
   6524         }
   6525       }
   6526     }
   6527   }
   6528 
   6529   if (!MemOpChains.empty())
   6530     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   6531 
   6532   // On Darwin, R12 must contain the address of an indirect callee.  This does
   6533   // not mean the MTCTR instruction must use R12; it's easier to model this as
   6534   // an extra parameter, so do that.
   6535   if (!isTailCall &&
   6536       !isFunctionGlobalAddress(Callee) &&
   6537       !isa<ExternalSymbolSDNode>(Callee) &&
   6538       !isBLACompatibleAddress(Callee, DAG))
   6539     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   6540                                                    PPC::R12), Callee));
   6541 
   6542   // Build a sequence of copy-to-reg nodes chained together with token chain
   6543   // and flag operands which copy the outgoing args into the appropriate regs.
   6544   SDValue InFlag;
   6545   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   6546     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   6547                              RegsToPass[i].second, InFlag);
   6548     InFlag = Chain.getValue(1);
   6549   }
   6550 
   6551   if (isTailCall)
   6552     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
   6553                     TailCallArguments);
   6554 
   6555   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
   6556                     /* unused except on PPC64 ELFv1 */ false, DAG,
   6557                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   6558                     NumBytes, Ins, InVals, CS);
   6559 }
   6560 
   6561 bool
   6562 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   6563                                   MachineFunction &MF, bool isVarArg,
   6564                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   6565                                   LLVMContext &Context) const {
   6566   SmallVector<CCValAssign, 16> RVLocs;
   6567   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   6568   return CCInfo.CheckReturn(
   6569       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
   6570                 ? RetCC_PPC_Cold
   6571                 : RetCC_PPC);
   6572 }
   6573 
   6574 SDValue
   6575 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   6576                                bool isVarArg,
   6577                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   6578                                const SmallVectorImpl<SDValue> &OutVals,
   6579                                const SDLoc &dl, SelectionDAG &DAG) const {
   6580   SmallVector<CCValAssign, 16> RVLocs;
   6581   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   6582                  *DAG.getContext());
   6583   CCInfo.AnalyzeReturn(Outs,
   6584                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
   6585                            ? RetCC_PPC_Cold
   6586                            : RetCC_PPC);
   6587 
   6588   SDValue Flag;
   6589   SmallVector<SDValue, 4> RetOps(1, Chain);
   6590 
   6591   // Copy the result values into the output registers.
   6592   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   6593     CCValAssign &VA = RVLocs[i];
   6594     assert(VA.isRegLoc() && "Can only return in registers!");
   6595 
   6596     SDValue Arg = OutVals[i];
   6597 
   6598     switch (VA.getLocInfo()) {
   6599     default: llvm_unreachable("Unknown loc info!");
   6600     case CCValAssign::Full: break;
   6601     case CCValAssign::AExt:
   6602       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   6603       break;
   6604     case CCValAssign::ZExt:
   6605       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   6606       break;
   6607     case CCValAssign::SExt:
   6608       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   6609       break;
   6610     }
   6611 
   6612     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   6613     Flag = Chain.getValue(1);
   6614     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   6615   }
   6616 
   6617   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   6618   const MCPhysReg *I =
   6619     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
   6620   if (I) {
   6621     for (; *I; ++I) {
   6622 
   6623       if (PPC::G8RCRegClass.contains(*I))
   6624         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
   6625       else if (PPC::F8RCRegClass.contains(*I))
   6626         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
   6627       else if (PPC::CRRCRegClass.contains(*I))
   6628         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
   6629       else if (PPC::VRRCRegClass.contains(*I))
   6630         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
   6631       else
   6632         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   6633     }
   6634   }
   6635 
   6636   RetOps[0] = Chain;  // Update chain.
   6637 
   6638   // Add the flag if we have it.
   6639   if (Flag.getNode())
   6640     RetOps.push_back(Flag);
   6641 
   6642   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
   6643 }
   6644 
   6645 SDValue
   6646 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
   6647                                                 SelectionDAG &DAG) const {
   6648   SDLoc dl(Op);
   6649 
   6650   // Get the correct type for integers.
   6651   EVT IntVT = Op.getValueType();
   6652 
   6653   // Get the inputs.
   6654   SDValue Chain = Op.getOperand(0);
   6655   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   6656   // Build a DYNAREAOFFSET node.
   6657   SDValue Ops[2] = {Chain, FPSIdx};
   6658   SDVTList VTs = DAG.getVTList(IntVT);
   6659   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
   6660 }
   6661 
   6662 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
   6663                                              SelectionDAG &DAG) const {
   6664   // When we pop the dynamic allocation we need to restore the SP link.
   6665   SDLoc dl(Op);
   6666 
   6667   // Get the correct type for pointers.
   6668   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6669 
   6670   // Construct the stack pointer operand.
   6671   bool isPPC64 = Subtarget.isPPC64();
   6672   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   6673   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   6674 
   6675   // Get the operands for the STACKRESTORE.
   6676   SDValue Chain = Op.getOperand(0);
   6677   SDValue SaveSP = Op.getOperand(1);
   6678 
   6679   // Load the old link SP.
   6680   SDValue LoadLinkSP =
   6681       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
   6682 
   6683   // Restore the stack pointer.
   6684   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   6685 
   6686   // Store the old link SP.
   6687   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
   6688 }
   6689 
   6690 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
   6691   MachineFunction &MF = DAG.getMachineFunction();
   6692   bool isPPC64 = Subtarget.isPPC64();
   6693   EVT PtrVT = getPointerTy(MF.getDataLayout());
   6694 
   6695   // Get current frame pointer save index.  The users of this index will be
   6696   // primarily DYNALLOC instructions.
   6697   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   6698   int RASI = FI->getReturnAddrSaveIndex();
   6699 
   6700   // If the frame pointer save index hasn't been defined yet.
   6701   if (!RASI) {
   6702     // Find out what the fix offset of the frame pointer save area.
   6703     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
   6704     // Allocate the frame index for frame pointer save area.
   6705     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
   6706     // Save the result.
   6707     FI->setReturnAddrSaveIndex(RASI);
   6708   }
   6709   return DAG.getFrameIndex(RASI, PtrVT);
   6710 }
   6711 
   6712 SDValue
   6713 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   6714   MachineFunction &MF = DAG.getMachineFunction();
   6715   bool isPPC64 = Subtarget.isPPC64();
   6716   EVT PtrVT = getPointerTy(MF.getDataLayout());
   6717 
   6718   // Get current frame pointer save index.  The users of this index will be
   6719   // primarily DYNALLOC instructions.
   6720   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   6721   int FPSI = FI->getFramePointerSaveIndex();
   6722 
   6723   // If the frame pointer save index hasn't been defined yet.
   6724   if (!FPSI) {
   6725     // Find out what the fix offset of the frame pointer save area.
   6726     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
   6727     // Allocate the frame index for frame pointer save area.
   6728     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   6729     // Save the result.
   6730     FI->setFramePointerSaveIndex(FPSI);
   6731   }
   6732   return DAG.getFrameIndex(FPSI, PtrVT);
   6733 }
   6734 
   6735 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   6736                                                    SelectionDAG &DAG) const {
   6737   // Get the inputs.
   6738   SDValue Chain = Op.getOperand(0);
   6739   SDValue Size  = Op.getOperand(1);
   6740   SDLoc dl(Op);
   6741 
   6742   // Get the correct type for pointers.
   6743   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6744   // Negate the size.
   6745   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   6746                                 DAG.getConstant(0, dl, PtrVT), Size);
   6747   // Construct a node for the frame pointer save index.
   6748   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   6749   // Build a DYNALLOC node.
   6750   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   6751   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   6752   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
   6753 }
   6754 
   6755 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
   6756                                                      SelectionDAG &DAG) const {
   6757   MachineFunction &MF = DAG.getMachineFunction();
   6758 
   6759   bool isPPC64 = Subtarget.isPPC64();
   6760   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6761 
   6762   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
   6763   return DAG.getFrameIndex(FI, PtrVT);
   6764 }
   6765 
   6766 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   6767                                                SelectionDAG &DAG) const {
   6768   SDLoc DL(Op);
   6769   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   6770                      DAG.getVTList(MVT::i32, MVT::Other),
   6771                      Op.getOperand(0), Op.getOperand(1));
   6772 }
   6773 
   6774 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   6775                                                 SelectionDAG &DAG) const {
   6776   SDLoc DL(Op);
   6777   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   6778                      Op.getOperand(0), Op.getOperand(1));
   6779 }
   6780 
   6781 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   6782   if (Op.getValueType().isVector())
   6783     return LowerVectorLoad(Op, DAG);
   6784 
   6785   assert(Op.getValueType() == MVT::i1 &&
   6786          "Custom lowering only for i1 loads");
   6787 
   6788   // First, load 8 bits into 32 bits, then truncate to 1 bit.
   6789 
   6790   SDLoc dl(Op);
   6791   LoadSDNode *LD = cast<LoadSDNode>(Op);
   6792 
   6793   SDValue Chain = LD->getChain();
   6794   SDValue BasePtr = LD->getBasePtr();
   6795   MachineMemOperand *MMO = LD->getMemOperand();
   6796 
   6797   SDValue NewLD =
   6798       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
   6799                      BasePtr, MVT::i8, MMO);
   6800   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
   6801 
   6802   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
   6803   return DAG.getMergeValues(Ops, dl);
   6804 }
   6805 
   6806 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   6807   if (Op.getOperand(1).getValueType().isVector())
   6808     return LowerVectorStore(Op, DAG);
   6809 
   6810   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
   6811          "Custom lowering only for i1 stores");
   6812 
   6813   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
   6814 
   6815   SDLoc dl(Op);
   6816   StoreSDNode *ST = cast<StoreSDNode>(Op);
   6817 
   6818   SDValue Chain = ST->getChain();
   6819   SDValue BasePtr = ST->getBasePtr();
   6820   SDValue Value = ST->getValue();
   6821   MachineMemOperand *MMO = ST->getMemOperand();
   6822 
   6823   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
   6824                       Value);
   6825   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
   6826 }
   6827 
   6828 // FIXME: Remove this once the ANDI glue bug is fixed:
   6829 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   6830   assert(Op.getValueType() == MVT::i1 &&
   6831          "Custom lowering only for i1 results");
   6832 
   6833   SDLoc DL(Op);
   6834   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
   6835                      Op.getOperand(0));
   6836 }
   6837 
   6838 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   6839 /// possible.
   6840 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   6841   // Not FP? Not a fsel.
   6842   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   6843       !Op.getOperand(2).getValueType().isFloatingPoint())
   6844     return Op;
   6845 
   6846   // We might be able to do better than this under some circumstances, but in
   6847   // general, fsel-based lowering of select is a finite-math-only optimization.
   6848   // For more information, see section F.3 of the 2.06 ISA specification.
   6849   if (!DAG.getTarget().Options.NoInfsFPMath ||
   6850       !DAG.getTarget().Options.NoNaNsFPMath)
   6851     return Op;
   6852   // TODO: Propagate flags from the select rather than global settings.
   6853   SDNodeFlags Flags;
   6854   Flags.setNoInfs(true);
   6855   Flags.setNoNaNs(true);
   6856 
   6857   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   6858 
   6859   EVT ResVT = Op.getValueType();
   6860   EVT CmpVT = Op.getOperand(0).getValueType();
   6861   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   6862   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   6863   SDLoc dl(Op);
   6864 
   6865   // If the RHS of the comparison is a 0.0, we don't need to do the
   6866   // subtraction at all.
   6867   SDValue Sel1;
   6868   if (isFloatingPointZero(RHS))
   6869     switch (CC) {
   6870     default: break;       // SETUO etc aren't handled by fsel.
   6871     case ISD::SETNE:
   6872       std::swap(TV, FV);
   6873       LLVM_FALLTHROUGH;
   6874     case ISD::SETEQ:
   6875       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6876         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6877       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   6878       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6879         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   6880       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6881                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
   6882     case ISD::SETULT:
   6883     case ISD::SETLT:
   6884       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   6885       LLVM_FALLTHROUGH;
   6886     case ISD::SETOGE:
   6887     case ISD::SETGE:
   6888       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6889         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6890       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   6891     case ISD::SETUGT:
   6892     case ISD::SETGT:
   6893       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   6894       LLVM_FALLTHROUGH;
   6895     case ISD::SETOLE:
   6896     case ISD::SETLE:
   6897       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6898         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6899       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6900                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   6901     }
   6902 
   6903   SDValue Cmp;
   6904   switch (CC) {
   6905   default: break;       // SETUO etc aren't handled by fsel.
   6906   case ISD::SETNE:
   6907     std::swap(TV, FV);
   6908     LLVM_FALLTHROUGH;
   6909   case ISD::SETEQ:
   6910     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
   6911     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6912       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6913     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6914     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6915       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   6916     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6917                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
   6918   case ISD::SETULT:
   6919   case ISD::SETLT:
   6920     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
   6921     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6922       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6923     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   6924   case ISD::SETOGE:
   6925   case ISD::SETGE:
   6926     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
   6927     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6928       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6929     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6930   case ISD::SETUGT:
   6931   case ISD::SETGT:
   6932     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
   6933     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6934       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6935     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   6936   case ISD::SETOLE:
   6937   case ISD::SETLE:
   6938     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
   6939     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6940       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6941     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6942   }
   6943   return Op;
   6944 }
   6945 
   6946 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
   6947                                                SelectionDAG &DAG,
   6948                                                const SDLoc &dl) const {
   6949   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   6950   SDValue Src = Op.getOperand(0);
   6951   if (Src.getValueType() == MVT::f32)
   6952     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   6953 
   6954   SDValue Tmp;
   6955   switch (Op.getSimpleValueType().SimpleTy) {
   6956   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   6957   case MVT::i32:
   6958     Tmp = DAG.getNode(
   6959         Op.getOpcode() == ISD::FP_TO_SINT
   6960             ? PPCISD::FCTIWZ
   6961             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   6962         dl, MVT::f64, Src);
   6963     break;
   6964   case MVT::i64:
   6965     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   6966            "i64 FP_TO_UINT is supported only with FPCVT");
   6967     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   6968                                                         PPCISD::FCTIDUZ,
   6969                       dl, MVT::f64, Src);
   6970     break;
   6971   }
   6972 
   6973   // Convert the FP value to an int value through memory.
   6974   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
   6975     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
   6976   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
   6977   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
   6978   MachinePointerInfo MPI =
   6979       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
   6980 
   6981   // Emit a store to the stack slot.
   6982   SDValue Chain;
   6983   if (i32Stack) {
   6984     MachineFunction &MF = DAG.getMachineFunction();
   6985     MachineMemOperand *MMO =
   6986       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
   6987     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
   6988     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   6989               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
   6990   } else
   6991     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
   6992 
   6993   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   6994   // add in a bias on big endian.
   6995   if (Op.getValueType() == MVT::i32 && !i32Stack) {
   6996     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   6997                         DAG.getConstant(4, dl, FIPtr.getValueType()));
   6998     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
   6999   }
   7000 
   7001   RLI.Chain = Chain;
   7002   RLI.Ptr = FIPtr;
   7003   RLI.MPI = MPI;
   7004 }
   7005 
   7006 /// Custom lowers floating point to integer conversions to use
   7007 /// the direct move instructions available in ISA 2.07 to avoid the
   7008 /// need for load/store combinations.
   7009 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
   7010                                                     SelectionDAG &DAG,
   7011                                                     const SDLoc &dl) const {
   7012   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   7013   SDValue Src = Op.getOperand(0);
   7014 
   7015   if (Src.getValueType() == MVT::f32)
   7016     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   7017 
   7018   SDValue Tmp;
   7019   switch (Op.getSimpleValueType().SimpleTy) {
   7020   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   7021   case MVT::i32:
   7022     Tmp = DAG.getNode(
   7023         Op.getOpcode() == ISD::FP_TO_SINT
   7024             ? PPCISD::FCTIWZ
   7025             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   7026         dl, MVT::f64, Src);
   7027     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
   7028     break;
   7029   case MVT::i64:
   7030     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   7031            "i64 FP_TO_UINT is supported only with FPCVT");
   7032     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   7033                                                         PPCISD::FCTIDUZ,
   7034                       dl, MVT::f64, Src);
   7035     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
   7036     break;
   7037   }
   7038   return Tmp;
   7039 }
   7040 
   7041 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   7042                                           const SDLoc &dl) const {
   7043 
   7044   // FP to INT conversions are legal for f128.
   7045   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
   7046     return Op;
   7047 
   7048   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
   7049   // PPC (the libcall is not available).
   7050   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
   7051     if (Op.getValueType() == MVT::i32) {
   7052       if (Op.getOpcode() == ISD::FP_TO_SINT) {
   7053         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   7054                                  MVT::f64, Op.getOperand(0),
   7055                                  DAG.getIntPtrConstant(0, dl));
   7056         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   7057                                  MVT::f64, Op.getOperand(0),
   7058                                  DAG.getIntPtrConstant(1, dl));
   7059 
   7060         // Add the two halves of the long double in round-to-zero mode.
   7061         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
   7062 
   7063         // Now use a smaller FP_TO_SINT.
   7064         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
   7065       }
   7066       if (Op.getOpcode() == ISD::FP_TO_UINT) {
   7067         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
   7068         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
   7069         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
   7070         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
   7071         // FIXME: generated code sucks.
   7072         // TODO: Are there fast-math-flags to propagate to this FSUB?
   7073         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
   7074                                    Op.getOperand(0), Tmp);
   7075         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
   7076         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
   7077                            DAG.getConstant(0x80000000, dl, MVT::i32));
   7078         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
   7079                                     Op.getOperand(0));
   7080         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
   7081                                ISD::SETGE);
   7082       }
   7083     }
   7084 
   7085     return SDValue();
   7086   }
   7087 
   7088   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
   7089     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
   7090 
   7091   ReuseLoadInfo RLI;
   7092   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   7093 
   7094   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
   7095                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
   7096 }
   7097 
   7098 // We're trying to insert a regular store, S, and then a load, L. If the
   7099 // incoming value, O, is a load, we might just be able to have our load use the
   7100 // address used by O. However, we don't know if anything else will store to
   7101 // that address before we can load from it. To prevent this situation, we need
   7102 // to insert our load, L, into the chain as a peer of O. To do this, we give L
   7103 // the same chain operand as O, we create a token factor from the chain results
   7104 // of O and L, and we replace all uses of O's chain result with that token
   7105 // factor (see spliceIntoChain below for this last part).
   7106 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
   7107                                             ReuseLoadInfo &RLI,
   7108                                             SelectionDAG &DAG,
   7109                                             ISD::LoadExtType ET) const {
   7110   SDLoc dl(Op);
   7111   if (ET == ISD::NON_EXTLOAD &&
   7112       (Op.getOpcode() == ISD::FP_TO_UINT ||
   7113        Op.getOpcode() == ISD::FP_TO_SINT) &&
   7114       isOperationLegalOrCustom(Op.getOpcode(),
   7115                                Op.getOperand(0).getValueType())) {
   7116 
   7117     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   7118     return true;
   7119   }
   7120 
   7121   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
   7122   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
   7123       LD->isNonTemporal())
   7124     return false;
   7125   if (LD->getMemoryVT() != MemVT)
   7126     return false;
   7127 
   7128   RLI.Ptr = LD->getBasePtr();
   7129   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
   7130     assert(LD->getAddressingMode() == ISD::PRE_INC &&
   7131            "Non-pre-inc AM on PPC?");
   7132     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
   7133                           LD->getOffset());
   7134   }
   7135 
   7136   RLI.Chain = LD->getChain();
   7137   RLI.MPI = LD->getPointerInfo();
   7138   RLI.IsDereferenceable = LD->isDereferenceable();
   7139   RLI.IsInvariant = LD->isInvariant();
   7140   RLI.Alignment = LD->getAlignment();
   7141   RLI.AAInfo = LD->getAAInfo();
   7142   RLI.Ranges = LD->getRanges();
   7143 
   7144   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
   7145   return true;
   7146 }
   7147 
   7148 // Given the head of the old chain, ResChain, insert a token factor containing
   7149 // it and NewResChain, and make users of ResChain now be users of that token
   7150 // factor.
   7151 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
   7152 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
   7153                                         SDValue NewResChain,
   7154                                         SelectionDAG &DAG) const {
   7155   if (!ResChain)
   7156     return;
   7157 
   7158   SDLoc dl(NewResChain);
   7159 
   7160   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   7161                            NewResChain, DAG.getUNDEF(MVT::Other));
   7162   assert(TF.getNode() != NewResChain.getNode() &&
   7163          "A new TF really is required here");
   7164 
   7165   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
   7166   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
   7167 }
   7168 
   7169 /// Analyze profitability of direct move
   7170 /// prefer float load to int load plus direct move
   7171 /// when there is no integer use of int load
   7172 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
   7173   SDNode *Origin = Op.getOperand(0).getNode();
   7174   if (Origin->getOpcode() != ISD::LOAD)
   7175     return true;
   7176 
   7177   // If there is no LXSIBZX/LXSIHZX, like Power8,
   7178   // prefer direct move if the memory size is 1 or 2 bytes.
   7179   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
   7180   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
   7181     return true;
   7182 
   7183   for (SDNode::use_iterator UI = Origin->use_begin(),
   7184                             UE = Origin->use_end();
   7185        UI != UE; ++UI) {
   7186 
   7187     // Only look at the users of the loaded value.
   7188     if (UI.getUse().get().getResNo() != 0)
   7189       continue;
   7190 
   7191     if (UI->getOpcode() != ISD::SINT_TO_FP &&
   7192         UI->getOpcode() != ISD::UINT_TO_FP)
   7193       return true;
   7194   }
   7195 
   7196   return false;
   7197 }
   7198 
   7199 /// Custom lowers integer to floating point conversions to use
   7200 /// the direct move instructions available in ISA 2.07 to avoid the
   7201 /// need for load/store combinations.
   7202 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
   7203                                                     SelectionDAG &DAG,
   7204                                                     const SDLoc &dl) const {
   7205   assert((Op.getValueType() == MVT::f32 ||
   7206           Op.getValueType() == MVT::f64) &&
   7207          "Invalid floating point type as target of conversion");
   7208   assert(Subtarget.hasFPCVT() &&
   7209          "Int to FP conversions with direct moves require FPCVT");
   7210   SDValue FP;
   7211   SDValue Src = Op.getOperand(0);
   7212   bool SinglePrec = Op.getValueType() == MVT::f32;
   7213   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
   7214   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
   7215   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
   7216                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
   7217 
   7218   if (WordInt) {
   7219     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
   7220                      dl, MVT::f64, Src);
   7221     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   7222   }
   7223   else {
   7224     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
   7225     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   7226   }
   7227 
   7228   return FP;
   7229 }
   7230 
   7231 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
   7232                                           SelectionDAG &DAG) const {
   7233   SDLoc dl(Op);
   7234 
   7235   // Conversions to f128 are legal.
   7236   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
   7237     return Op;
   7238 
   7239   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
   7240     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
   7241       return SDValue();
   7242 
   7243     SDValue Value = Op.getOperand(0);
   7244     // The values are now known to be -1 (false) or 1 (true). To convert this
   7245     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   7246     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   7247     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   7248 
   7249     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
   7250 
   7251     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   7252 
   7253     if (Op.getValueType() != MVT::v4f64)
   7254       Value = DAG.getNode(ISD::FP_ROUND, dl,
   7255                           Op.getValueType(), Value,
   7256                           DAG.getIntPtrConstant(1, dl));
   7257     return Value;
   7258   }
   7259 
   7260   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   7261   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   7262     return SDValue();
   7263 
   7264   if (Op.getOperand(0).getValueType() == MVT::i1)
   7265     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
   7266                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
   7267                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
   7268 
   7269   // If we have direct moves, we can do all the conversion, skip the store/load
   7270   // however, without FPCVT we can't do most conversions.
   7271   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
   7272       Subtarget.isPPC64() && Subtarget.hasFPCVT())
   7273     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
   7274 
   7275   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   7276          "UINT_TO_FP is supported only with FPCVT");
   7277 
   7278   // If we have FCFIDS, then use it when converting to single-precision.
   7279   // Otherwise, convert to double-precision and then round.
   7280   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   7281                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   7282                                                             : PPCISD::FCFIDS)
   7283                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   7284                                                             : PPCISD::FCFID);
   7285   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   7286                   ? MVT::f32
   7287                   : MVT::f64;
   7288 
   7289   if (Op.getOperand(0).getValueType() == MVT::i64) {
   7290     SDValue SINT = Op.getOperand(0);
   7291     // When converting to single-precision, we actually need to convert
   7292     // to double-precision first and then round to single-precision.
   7293     // To avoid double-rounding effects during that operation, we have
   7294     // to prepare the input operand.  Bits that might be truncated when
   7295     // converting to double-precision are replaced by a bit that won't
   7296     // be lost at this stage, but is below the single-precision rounding
   7297     // position.
   7298     //
   7299     // However, if -enable-unsafe-fp-math is in effect, accept double
   7300     // rounding to avoid the extra overhead.
   7301     if (Op.getValueType() == MVT::f32 &&
   7302         !Subtarget.hasFPCVT() &&
   7303         !DAG.getTarget().Options.UnsafeFPMath) {
   7304 
   7305       // Twiddle input to make sure the low 11 bits are zero.  (If this
   7306       // is the case, we are guaranteed the value will fit into the 53 bit
   7307       // mantissa of an IEEE double-precision value without rounding.)
   7308       // If any of those low 11 bits were not zero originally, make sure
   7309       // bit 12 (value 2048) is set instead, so that the final rounding
   7310       // to single-precision gets the correct result.
   7311       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   7312                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
   7313       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   7314                           Round, DAG.getConstant(2047, dl, MVT::i64));
   7315       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   7316       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   7317                           Round, DAG.getConstant(-2048, dl, MVT::i64));
   7318 
   7319       // However, we cannot use that value unconditionally: if the magnitude
   7320       // of the input value is small, the bit-twiddling we did above might
   7321       // end up visibly changing the output.  Fortunately, in that case, we
   7322       // don't need to twiddle bits since the original input will convert
   7323       // exactly to double-precision floating-point already.  Therefore,
   7324       // construct a conditional to use the original value if the top 11
   7325       // bits are all sign-bit copies, and use the rounded value computed
   7326       // above otherwise.
   7327       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   7328                                  SINT, DAG.getConstant(53, dl, MVT::i32));
   7329       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   7330                          Cond, DAG.getConstant(1, dl, MVT::i64));
   7331       Cond = DAG.getSetCC(dl, MVT::i32,
   7332                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
   7333 
   7334       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   7335     }
   7336 
   7337     ReuseLoadInfo RLI;
   7338     SDValue Bits;
   7339 
   7340     MachineFunction &MF = DAG.getMachineFunction();
   7341     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
   7342       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
   7343                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
   7344       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   7345     } else if (Subtarget.hasLFIWAX() &&
   7346                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
   7347       MachineMemOperand *MMO =
   7348         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   7349                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   7350       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   7351       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
   7352                                      DAG.getVTList(MVT::f64, MVT::Other),
   7353                                      Ops, MVT::i32, MMO);
   7354       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   7355     } else if (Subtarget.hasFPCVT() &&
   7356                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
   7357       MachineMemOperand *MMO =
   7358         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   7359                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   7360       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   7361       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
   7362                                      DAG.getVTList(MVT::f64, MVT::Other),
   7363                                      Ops, MVT::i32, MMO);
   7364       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   7365     } else if (((Subtarget.hasLFIWAX() &&
   7366                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
   7367                 (Subtarget.hasFPCVT() &&
   7368                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
   7369                SINT.getOperand(0).getValueType() == MVT::i32) {
   7370       MachineFrameInfo &MFI = MF.getFrameInfo();
   7371       EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7372 
   7373       int FrameIdx = MFI.CreateStackObject(4, 4, false);
   7374       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7375 
   7376       SDValue Store =
   7377           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
   7378                        MachinePointerInfo::getFixedStack(
   7379                            DAG.getMachineFunction(), FrameIdx));
   7380 
   7381       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   7382              "Expected an i32 store");
   7383 
   7384       RLI.Ptr = FIdx;
   7385       RLI.Chain = Store;
   7386       RLI.MPI =
   7387           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7388       RLI.Alignment = 4;
   7389 
   7390       MachineMemOperand *MMO =
   7391         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   7392                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   7393       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   7394       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
   7395                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
   7396                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
   7397                                      Ops, MVT::i32, MMO);
   7398     } else
   7399       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   7400 
   7401     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
   7402 
   7403     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   7404       FP = DAG.getNode(ISD::FP_ROUND, dl,
   7405                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
   7406     return FP;
   7407   }
   7408 
   7409   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   7410          "Unhandled INT_TO_FP type in custom expander!");
   7411   // Since we only generate this in 64-bit mode, we can take advantage of
   7412   // 64-bit registers.  In particular, sign extend the input value into the
   7413   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   7414   // then lfd it and fcfid it.
   7415   MachineFunction &MF = DAG.getMachineFunction();
   7416   MachineFrameInfo &MFI = MF.getFrameInfo();
   7417   EVT PtrVT = getPointerTy(MF.getDataLayout());
   7418 
   7419   SDValue Ld;
   7420   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
   7421     ReuseLoadInfo RLI;
   7422     bool ReusingLoad;
   7423     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
   7424                                             DAG))) {
   7425       int FrameIdx = MFI.CreateStackObject(4, 4, false);
   7426       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7427 
   7428       SDValue Store =
   7429           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   7430                        MachinePointerInfo::getFixedStack(
   7431                            DAG.getMachineFunction(), FrameIdx));
   7432 
   7433       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   7434              "Expected an i32 store");
   7435 
   7436       RLI.Ptr = FIdx;
   7437       RLI.Chain = Store;
   7438       RLI.MPI =
   7439           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7440       RLI.Alignment = 4;
   7441     }
   7442 
   7443     MachineMemOperand *MMO =
   7444       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   7445                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   7446     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   7447     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
   7448                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
   7449                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
   7450                                  Ops, MVT::i32, MMO);
   7451     if (ReusingLoad)
   7452       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
   7453   } else {
   7454     assert(Subtarget.isPPC64() &&
   7455            "i32->FP without LFIWAX supported only on PPC64");
   7456 
   7457     int FrameIdx = MFI.CreateStackObject(8, 8, false);
   7458     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7459 
   7460     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
   7461                                 Op.getOperand(0));
   7462 
   7463     // STD the extended value into the stack slot.
   7464     SDValue Store = DAG.getStore(
   7465         DAG.getEntryNode(), dl, Ext64, FIdx,
   7466         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
   7467 
   7468     // Load the value as a double.
   7469     Ld = DAG.getLoad(
   7470         MVT::f64, dl, Store, FIdx,
   7471         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
   7472   }
   7473 
   7474   // FCFID it and return it.
   7475   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
   7476   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   7477     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
   7478                      DAG.getIntPtrConstant(0, dl));
   7479   return FP;
   7480 }
   7481 
   7482 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   7483                                             SelectionDAG &DAG) const {
   7484   SDLoc dl(Op);
   7485   /*
   7486    The rounding mode is in bits 30:31 of FPSR, and has the following
   7487    settings:
   7488      00 Round to nearest
   7489      01 Round to 0
   7490      10 Round to +inf
   7491      11 Round to -inf
   7492 
   7493   FLT_ROUNDS, on the other hand, expects the following:
   7494     -1 Undefined
   7495      0 Round to 0
   7496      1 Round to nearest
   7497      2 Round to +inf
   7498      3 Round to -inf
   7499 
   7500   To perform the conversion, we do:
   7501     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   7502   */
   7503 
   7504   MachineFunction &MF = DAG.getMachineFunction();
   7505   EVT VT = Op.getValueType();
   7506   EVT PtrVT = getPointerTy(MF.getDataLayout());
   7507 
   7508   // Save FP Control Word to register
   7509   EVT NodeTys[] = {
   7510     MVT::f64,    // return register
   7511     MVT::Glue    // unused in this context
   7512   };
   7513   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
   7514 
   7515   // Save FP register to stack slot
   7516   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
   7517   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   7518   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
   7519                                MachinePointerInfo());
   7520 
   7521   // Load FP Control Word from low 32 bits of stack slot.
   7522   SDValue Four = DAG.getConstant(4, dl, PtrVT);
   7523   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   7524   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
   7525 
   7526   // Transform as necessary
   7527   SDValue CWD1 =
   7528     DAG.getNode(ISD::AND, dl, MVT::i32,
   7529                 CWD, DAG.getConstant(3, dl, MVT::i32));
   7530   SDValue CWD2 =
   7531     DAG.getNode(ISD::SRL, dl, MVT::i32,
   7532                 DAG.getNode(ISD::AND, dl, MVT::i32,
   7533                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   7534                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
   7535                             DAG.getConstant(3, dl, MVT::i32)),
   7536                 DAG.getConstant(1, dl, MVT::i32));
   7537 
   7538   SDValue RetVal =
   7539     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   7540 
   7541   return DAG.getNode((VT.getSizeInBits() < 16 ?
   7542                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   7543 }
   7544 
   7545 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   7546   EVT VT = Op.getValueType();
   7547   unsigned BitWidth = VT.getSizeInBits();
   7548   SDLoc dl(Op);
   7549   assert(Op.getNumOperands() == 3 &&
   7550          VT == Op.getOperand(1).getValueType() &&
   7551          "Unexpected SHL!");
   7552 
   7553   // Expand into a bunch of logical ops.  Note that these ops
   7554   // depend on the PPC behavior for oversized shift amounts.
   7555   SDValue Lo = Op.getOperand(0);
   7556   SDValue Hi = Op.getOperand(1);
   7557   SDValue Amt = Op.getOperand(2);
   7558   EVT AmtVT = Amt.getValueType();
   7559 
   7560   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   7561                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   7562   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   7563   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   7564   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   7565   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   7566                              DAG.getConstant(-BitWidth, dl, AmtVT));
   7567   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   7568   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   7569   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   7570   SDValue OutOps[] = { OutLo, OutHi };
   7571   return DAG.getMergeValues(OutOps, dl);
   7572 }
   7573 
   7574 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   7575   EVT VT = Op.getValueType();
   7576   SDLoc dl(Op);
   7577   unsigned BitWidth = VT.getSizeInBits();
   7578   assert(Op.getNumOperands() == 3 &&
   7579          VT == Op.getOperand(1).getValueType() &&
   7580          "Unexpected SRL!");
   7581 
   7582   // Expand into a bunch of logical ops.  Note that these ops
   7583   // depend on the PPC behavior for oversized shift amounts.
   7584   SDValue Lo = Op.getOperand(0);
   7585   SDValue Hi = Op.getOperand(1);
   7586   SDValue Amt = Op.getOperand(2);
   7587   EVT AmtVT = Amt.getValueType();
   7588 
   7589   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   7590                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   7591   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   7592   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   7593   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   7594   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   7595                              DAG.getConstant(-BitWidth, dl, AmtVT));
   7596   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   7597   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   7598   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   7599   SDValue OutOps[] = { OutLo, OutHi };
   7600   return DAG.getMergeValues(OutOps, dl);
   7601 }
   7602 
   7603 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   7604   SDLoc dl(Op);
   7605   EVT VT = Op.getValueType();
   7606   unsigned BitWidth = VT.getSizeInBits();
   7607   assert(Op.getNumOperands() == 3 &&
   7608          VT == Op.getOperand(1).getValueType() &&
   7609          "Unexpected SRA!");
   7610 
   7611   // Expand into a bunch of logical ops, followed by a select_cc.
   7612   SDValue Lo = Op.getOperand(0);
   7613   SDValue Hi = Op.getOperand(1);
   7614   SDValue Amt = Op.getOperand(2);
   7615   EVT AmtVT = Amt.getValueType();
   7616 
   7617   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   7618                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   7619   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   7620   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   7621   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   7622   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   7623                              DAG.getConstant(-BitWidth, dl, AmtVT));
   7624   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   7625   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   7626   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
   7627                                   Tmp4, Tmp6, ISD::SETLE);
   7628   SDValue OutOps[] = { OutLo, OutHi };
   7629   return DAG.getMergeValues(OutOps, dl);
   7630 }
   7631 
   7632 //===----------------------------------------------------------------------===//
   7633 // Vector related lowering.
   7634 //
   7635 
   7636 /// BuildSplatI - Build a canonical splati of Val with an element size of
   7637 /// SplatSize.  Cast the result to VT.
   7638 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   7639                            SelectionDAG &DAG, const SDLoc &dl) {
   7640   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   7641 
   7642   static const MVT VTys[] = { // canonical VT to use for each size.
   7643     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   7644   };
   7645 
   7646   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   7647 
   7648   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   7649   if (Val == -1)
   7650     SplatSize = 1;
   7651 
   7652   EVT CanonicalVT = VTys[SplatSize-1];
   7653 
   7654   // Build a canonical splat for this value.
   7655   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
   7656 }
   7657 
   7658 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
   7659 /// specified intrinsic ID.
   7660 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
   7661                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
   7662   if (DestVT == MVT::Other) DestVT = Op.getValueType();
   7663   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   7664                      DAG.getConstant(IID, dl, MVT::i32), Op);
   7665 }
   7666 
   7667 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   7668 /// specified intrinsic ID.
   7669 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   7670                                 SelectionDAG &DAG, const SDLoc &dl,
   7671                                 EVT DestVT = MVT::Other) {
   7672   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   7673   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   7674                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
   7675 }
   7676 
   7677 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   7678 /// specified intrinsic ID.
   7679 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   7680                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
   7681                                 EVT DestVT = MVT::Other) {
   7682   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   7683   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   7684                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
   7685 }
   7686 
   7687 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   7688 /// amount.  The result has the specified value type.
   7689 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
   7690                            SelectionDAG &DAG, const SDLoc &dl) {
   7691   // Force LHS/RHS to be the right type.
   7692   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   7693   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   7694 
   7695   int Ops[16];
   7696   for (unsigned i = 0; i != 16; ++i)
   7697     Ops[i] = i + Amt;
   7698   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   7699   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   7700 }
   7701 
   7702 /// Do we have an efficient pattern in a .td file for this node?
   7703 ///
   7704 /// \param V - pointer to the BuildVectorSDNode being matched
   7705 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
   7706 ///
   7707 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
   7708 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
   7709 /// the opposite is true (expansion is beneficial) are:
   7710 /// - The node builds a vector out of integers that are not 32 or 64-bits
   7711 /// - The node builds a vector out of constants
   7712 /// - The node is a "load-and-splat"
   7713 /// In all other cases, we will choose to keep the BUILD_VECTOR.
   7714 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
   7715                                             bool HasDirectMove,
   7716                                             bool HasP8Vector) {
   7717   EVT VecVT = V->getValueType(0);
   7718   bool RightType = VecVT == MVT::v2f64 ||
   7719     (HasP8Vector && VecVT == MVT::v4f32) ||
   7720     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
   7721   if (!RightType)
   7722     return false;
   7723 
   7724   bool IsSplat = true;
   7725   bool IsLoad = false;
   7726   SDValue Op0 = V->getOperand(0);
   7727 
   7728   // This function is called in a block that confirms the node is not a constant
   7729   // splat. So a constant BUILD_VECTOR here means the vector is built out of
   7730   // different constants.
   7731   if (V->isConstant())
   7732     return false;
   7733   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
   7734     if (V->getOperand(i).isUndef())
   7735       return false;
   7736     // We want to expand nodes that represent load-and-splat even if the
   7737     // loaded value is a floating point truncation or conversion to int.
   7738     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
   7739         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
   7740          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
   7741         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
   7742          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
   7743         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
   7744          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
   7745       IsLoad = true;
   7746     // If the operands are different or the input is not a load and has more
   7747     // uses than just this BV node, then it isn't a splat.
   7748     if (V->getOperand(i) != Op0 ||
   7749         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
   7750       IsSplat = false;
   7751   }
   7752   return !(IsSplat && IsLoad);
   7753 }
   7754 
   7755 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
   7756 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
   7757 
   7758   SDLoc dl(Op);
   7759   SDValue Op0 = Op->getOperand(0);
   7760 
   7761   if (!EnableQuadPrecision ||
   7762       (Op.getValueType() != MVT::f128 ) ||
   7763       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
   7764       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
   7765       (Op0.getOperand(1).getValueType() != MVT::i64))
   7766     return SDValue();
   7767 
   7768   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
   7769                      Op0.getOperand(1));
   7770 }
   7771 
   7772 // If this is a case we can't handle, return null and let the default
   7773 // expansion code take care of it.  If we CAN select this case, and if it
   7774 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   7775 // this case more efficiently than a constant pool load, lower it to the
   7776 // sequence of ops that should be used.
   7777 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   7778                                              SelectionDAG &DAG) const {
   7779   SDLoc dl(Op);
   7780   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   7781   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   7782 
   7783   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
   7784     // We first build an i32 vector, load it into a QPX register,
   7785     // then convert it to a floating-point vector and compare it
   7786     // to a zero vector to get the boolean result.
   7787     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   7788     int FrameIdx = MFI.CreateStackObject(16, 16, false);
   7789     MachinePointerInfo PtrInfo =
   7790         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7791     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7792     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7793 
   7794     assert(BVN->getNumOperands() == 4 &&
   7795       "BUILD_VECTOR for v4i1 does not have 4 operands");
   7796 
   7797     bool IsConst = true;
   7798     for (unsigned i = 0; i < 4; ++i) {
   7799       if (BVN->getOperand(i).isUndef()) continue;
   7800       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
   7801         IsConst = false;
   7802         break;
   7803       }
   7804     }
   7805 
   7806     if (IsConst) {
   7807       Constant *One =
   7808         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
   7809       Constant *NegOne =
   7810         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
   7811 
   7812       Constant *CV[4];
   7813       for (unsigned i = 0; i < 4; ++i) {
   7814         if (BVN->getOperand(i).isUndef())
   7815           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
   7816         else if (isNullConstant(BVN->getOperand(i)))
   7817           CV[i] = NegOne;
   7818         else
   7819           CV[i] = One;
   7820       }
   7821 
   7822       Constant *CP = ConstantVector::get(CV);
   7823       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
   7824                                           16 /* alignment */);
   7825 
   7826       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
   7827       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
   7828       return DAG.getMemIntrinsicNode(
   7829           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
   7830           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   7831     }
   7832 
   7833     SmallVector<SDValue, 4> Stores;
   7834     for (unsigned i = 0; i < 4; ++i) {
   7835       if (BVN->getOperand(i).isUndef()) continue;
   7836 
   7837       unsigned Offset = 4*i;
   7838       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   7839       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7840 
   7841       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
   7842       if (StoreSize > 4) {
   7843         Stores.push_back(
   7844             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
   7845                               PtrInfo.getWithOffset(Offset), MVT::i32));
   7846       } else {
   7847         SDValue StoreValue = BVN->getOperand(i);
   7848         if (StoreSize < 4)
   7849           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
   7850 
   7851         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
   7852                                       PtrInfo.getWithOffset(Offset)));
   7853       }
   7854     }
   7855 
   7856     SDValue StoreChain;
   7857     if (!Stores.empty())
   7858       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   7859     else
   7860       StoreChain = DAG.getEntryNode();
   7861 
   7862     // Now load from v4i32 into the QPX register; this will extend it to
   7863     // v4i64 but not yet convert it to a floating point. Nevertheless, this
   7864     // is typed as v4f64 because the QPX register integer states are not
   7865     // explicitly represented.
   7866 
   7867     SDValue Ops[] = {StoreChain,
   7868                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
   7869                      FIdx};
   7870     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
   7871 
   7872     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
   7873       dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7874     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7875       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
   7876       LoadedVect);
   7877 
   7878     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
   7879 
   7880     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
   7881   }
   7882 
   7883   // All other QPX vectors are handled by generic code.
   7884   if (Subtarget.hasQPX())
   7885     return SDValue();
   7886 
   7887   // Check if this is a splat of a constant value.
   7888   APInt APSplatBits, APSplatUndef;
   7889   unsigned SplatBitSize;
   7890   bool HasAnyUndefs;
   7891   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   7892                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
   7893       SplatBitSize > 32) {
   7894     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
   7895     // lowered to VSX instructions under certain conditions.
   7896     // Without VSX, there is no pattern more efficient than expanding the node.
   7897     if (Subtarget.hasVSX() &&
   7898         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
   7899                                         Subtarget.hasP8Vector()))
   7900       return Op;
   7901     return SDValue();
   7902   }
   7903 
   7904   unsigned SplatBits = APSplatBits.getZExtValue();
   7905   unsigned SplatUndef = APSplatUndef.getZExtValue();
   7906   unsigned SplatSize = SplatBitSize / 8;
   7907 
   7908   // First, handle single instruction cases.
   7909 
   7910   // All zeros?
   7911   if (SplatBits == 0) {
   7912     // Canonicalize all zero vectors to be v4i32.
   7913     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   7914       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
   7915       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   7916     }
   7917     return Op;
   7918   }
   7919 
   7920   // We have XXSPLTIB for constant splats one byte wide
   7921   if (Subtarget.hasP9Vector() && SplatSize == 1) {
   7922     // This is a splat of 1-byte elements with some elements potentially undef.
   7923     // Rather than trying to match undef in the SDAG patterns, ensure that all
   7924     // elements are the same constant.
   7925     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
   7926       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
   7927                                                        dl, MVT::i32));
   7928       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
   7929       if (Op.getValueType() != MVT::v16i8)
   7930         return DAG.getBitcast(Op.getValueType(), NewBV);
   7931       return NewBV;
   7932     }
   7933 
   7934     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
   7935     // detect that constant splats like v8i16: 0xABAB are really just splats
   7936     // of a 1-byte constant. In this case, we need to convert the node to a
   7937     // splat of v16i8 and a bitcast.
   7938     if (Op.getValueType() != MVT::v16i8)
   7939       return DAG.getBitcast(Op.getValueType(),
   7940                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
   7941 
   7942     return Op;
   7943   }
   7944 
   7945   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   7946   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   7947                     (32-SplatBitSize));
   7948   if (SextVal >= -16 && SextVal <= 15)
   7949     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   7950 
   7951   // Two instruction sequences.
   7952 
   7953   // If this value is in the range [-32,30] and is even, use:
   7954   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   7955   // If this value is in the range [17,31] and is odd, use:
   7956   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   7957   // If this value is in the range [-31,-17] and is odd, use:
   7958   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   7959   // Note the last two are three-instruction sequences.
   7960   if (SextVal >= -32 && SextVal <= 31) {
   7961     // To avoid having these optimizations undone by constant folding,
   7962     // we convert to a pseudo that will be expanded later into one of
   7963     // the above forms.
   7964     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
   7965     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
   7966               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
   7967     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
   7968     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   7969     if (VT == Op.getValueType())
   7970       return RetVal;
   7971     else
   7972       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
   7973   }
   7974 
   7975   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   7976   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   7977   // for fneg/fabs.
   7978   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   7979     // Make -1 and vspltisw -1:
   7980     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   7981 
   7982     // Make the VSLW intrinsic, computing 0x8000_0000.
   7983     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   7984                                    OnesV, DAG, dl);
   7985 
   7986     // xor by OnesV to invert it.
   7987     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   7988     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7989   }
   7990 
   7991   // Check to see if this is a wide variety of vsplti*, binop self cases.
   7992   static const signed char SplatCsts[] = {
   7993     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   7994     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   7995   };
   7996 
   7997   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   7998     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   7999     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   8000     int i = SplatCsts[idx];
   8001 
   8002     // Figure out what shift amount will be used by altivec if shifted by i in
   8003     // this splat size.
   8004     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   8005 
   8006     // vsplti + shl self.
   8007     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   8008       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   8009       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   8010         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   8011         Intrinsic::ppc_altivec_vslw
   8012       };
   8013       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   8014       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   8015     }
   8016 
   8017     // vsplti + srl self.
   8018     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   8019       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   8020       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   8021         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   8022         Intrinsic::ppc_altivec_vsrw
   8023       };
   8024       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   8025       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   8026     }
   8027 
   8028     // vsplti + sra self.
   8029     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   8030       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   8031       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   8032         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   8033         Intrinsic::ppc_altivec_vsraw
   8034       };
   8035       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   8036       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   8037     }
   8038 
   8039     // vsplti + rol self.
   8040     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   8041                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   8042       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   8043       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   8044         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   8045         Intrinsic::ppc_altivec_vrlw
   8046       };
   8047       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   8048       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   8049     }
   8050 
   8051     // t = vsplti c, result = vsldoi t, t, 1
   8052     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   8053       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   8054       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
   8055       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   8056     }
   8057     // t = vsplti c, result = vsldoi t, t, 2
   8058     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   8059       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   8060       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
   8061       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   8062     }
   8063     // t = vsplti c, result = vsldoi t, t, 3
   8064     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   8065       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   8066       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
   8067       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   8068     }
   8069   }
   8070 
   8071   return SDValue();
   8072 }
   8073 
   8074 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   8075 /// the specified operations to build the shuffle.
   8076 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   8077                                       SDValue RHS, SelectionDAG &DAG,
   8078                                       const SDLoc &dl) {
   8079   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   8080   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   8081   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   8082 
   8083   enum {
   8084     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   8085     OP_VMRGHW,
   8086     OP_VMRGLW,
   8087     OP_VSPLTISW0,
   8088     OP_VSPLTISW1,
   8089     OP_VSPLTISW2,
   8090     OP_VSPLTISW3,
   8091     OP_VSLDOI4,
   8092     OP_VSLDOI8,
   8093     OP_VSLDOI12
   8094   };
   8095 
   8096   if (OpNum == OP_COPY) {
   8097     if (LHSID == (1*9+2)*9+3) return LHS;
   8098     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   8099     return RHS;
   8100   }
   8101 
   8102   SDValue OpLHS, OpRHS;
   8103   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   8104   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   8105 
   8106   int ShufIdxs[16];
   8107   switch (OpNum) {
   8108   default: llvm_unreachable("Unknown i32 permute!");
   8109   case OP_VMRGHW:
   8110     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   8111     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   8112     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   8113     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   8114     break;
   8115   case OP_VMRGLW:
   8116     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   8117     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   8118     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   8119     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   8120     break;
   8121   case OP_VSPLTISW0:
   8122     for (unsigned i = 0; i != 16; ++i)
   8123       ShufIdxs[i] = (i&3)+0;
   8124     break;
   8125   case OP_VSPLTISW1:
   8126     for (unsigned i = 0; i != 16; ++i)
   8127       ShufIdxs[i] = (i&3)+4;
   8128     break;
   8129   case OP_VSPLTISW2:
   8130     for (unsigned i = 0; i != 16; ++i)
   8131       ShufIdxs[i] = (i&3)+8;
   8132     break;
   8133   case OP_VSPLTISW3:
   8134     for (unsigned i = 0; i != 16; ++i)
   8135       ShufIdxs[i] = (i&3)+12;
   8136     break;
   8137   case OP_VSLDOI4:
   8138     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   8139   case OP_VSLDOI8:
   8140     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   8141   case OP_VSLDOI12:
   8142     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   8143   }
   8144   EVT VT = OpLHS.getValueType();
   8145   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   8146   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   8147   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   8148   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   8149 }
   8150 
   8151 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
   8152 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
   8153 /// SDValue.
   8154 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
   8155                                            SelectionDAG &DAG) const {
   8156   const unsigned BytesInVector = 16;
   8157   bool IsLE = Subtarget.isLittleEndian();
   8158   SDLoc dl(N);
   8159   SDValue V1 = N->getOperand(0);
   8160   SDValue V2 = N->getOperand(1);
   8161   unsigned ShiftElts = 0, InsertAtByte = 0;
   8162   bool Swap = false;
   8163 
   8164   // Shifts required to get the byte we want at element 7.
   8165   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
   8166                                    0, 15, 14, 13, 12, 11, 10, 9};
   8167   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
   8168                                 1, 2,  3,  4,  5,  6,  7,  8};
   8169 
   8170   ArrayRef<int> Mask = N->getMask();
   8171   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
   8172 
   8173   // For each mask element, find out if we're just inserting something
   8174   // from V2 into V1 or vice versa.
   8175   // Possible permutations inserting an element from V2 into V1:
   8176   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
   8177   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
   8178   //   ...
   8179   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
   8180   // Inserting from V1 into V2 will be similar, except mask range will be
   8181   // [16,31].
   8182 
   8183   bool FoundCandidate = false;
   8184   // If both vector operands for the shuffle are the same vector, the mask
   8185   // will contain only elements from the first one and the second one will be
   8186   // undef.
   8187   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
   8188   // Go through the mask of half-words to find an element that's being moved
   8189   // from one vector to the other.
   8190   for (unsigned i = 0; i < BytesInVector; ++i) {
   8191     unsigned CurrentElement = Mask[i];
   8192     // If 2nd operand is undefined, we should only look for element 7 in the
   8193     // Mask.
   8194     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
   8195       continue;
   8196 
   8197     bool OtherElementsInOrder = true;
   8198     // Examine the other elements in the Mask to see if they're in original
   8199     // order.
   8200     for (unsigned j = 0; j < BytesInVector; ++j) {
   8201       if (j == i)
   8202         continue;
   8203       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
   8204       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
   8205       // in which we always assume we're always picking from the 1st operand.
   8206       int MaskOffset =
   8207           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
   8208       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
   8209         OtherElementsInOrder = false;
   8210         break;
   8211       }
   8212     }
   8213     // If other elements are in original order, we record the number of shifts
   8214     // we need to get the element we want into element 7. Also record which byte
   8215     // in the vector we should insert into.
   8216     if (OtherElementsInOrder) {
   8217       // If 2nd operand is undefined, we assume no shifts and no swapping.
   8218       if (V2.isUndef()) {
   8219         ShiftElts = 0;
   8220         Swap = false;
   8221       } else {
   8222         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
   8223         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
   8224                          : BigEndianShifts[CurrentElement & 0xF];
   8225         Swap = CurrentElement < BytesInVector;
   8226       }
   8227       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
   8228       FoundCandidate = true;
   8229       break;
   8230     }
   8231   }
   8232 
   8233   if (!FoundCandidate)
   8234     return SDValue();
   8235 
   8236   // Candidate found, construct the proper SDAG sequence with VINSERTB,
   8237   // optionally with VECSHL if shift is required.
   8238   if (Swap)
   8239     std::swap(V1, V2);
   8240   if (V2.isUndef())
   8241     V2 = V1;
   8242   if (ShiftElts) {
   8243     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
   8244                               DAG.getConstant(ShiftElts, dl, MVT::i32));
   8245     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
   8246                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
   8247   }
   8248   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
   8249                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
   8250 }
   8251 
   8252 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
   8253 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
   8254 /// SDValue.
   8255 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
   8256                                            SelectionDAG &DAG) const {
   8257   const unsigned NumHalfWords = 8;
   8258   const unsigned BytesInVector = NumHalfWords * 2;
   8259   // Check that the shuffle is on half-words.
   8260   if (!isNByteElemShuffleMask(N, 2, 1))
   8261     return SDValue();
   8262 
   8263   bool IsLE = Subtarget.isLittleEndian();
   8264   SDLoc dl(N);
   8265   SDValue V1 = N->getOperand(0);
   8266   SDValue V2 = N->getOperand(1);
   8267   unsigned ShiftElts = 0, InsertAtByte = 0;
   8268   bool Swap = false;
   8269 
   8270   // Shifts required to get the half-word we want at element 3.
   8271   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
   8272   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
   8273 
   8274   uint32_t Mask = 0;
   8275   uint32_t OriginalOrderLow = 0x1234567;
   8276   uint32_t OriginalOrderHigh = 0x89ABCDEF;
   8277   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
   8278   // 32-bit space, only need 4-bit nibbles per element.
   8279   for (unsigned i = 0; i < NumHalfWords; ++i) {
   8280     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
   8281     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
   8282   }
   8283 
   8284   // For each mask element, find out if we're just inserting something
   8285   // from V2 into V1 or vice versa.  Possible permutations inserting an element
   8286   // from V2 into V1:
   8287   //   X, 1, 2, 3, 4, 5, 6, 7
   8288   //   0, X, 2, 3, 4, 5, 6, 7
   8289   //   0, 1, X, 3, 4, 5, 6, 7
   8290   //   0, 1, 2, X, 4, 5, 6, 7
   8291   //   0, 1, 2, 3, X, 5, 6, 7
   8292   //   0, 1, 2, 3, 4, X, 6, 7
   8293   //   0, 1, 2, 3, 4, 5, X, 7
   8294   //   0, 1, 2, 3, 4, 5, 6, X
   8295   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
   8296 
   8297   bool FoundCandidate = false;
   8298   // Go through the mask of half-words to find an element that's being moved
   8299   // from one vector to the other.
   8300   for (unsigned i = 0; i < NumHalfWords; ++i) {
   8301     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
   8302     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
   8303     uint32_t MaskOtherElts = ~(0xF << MaskShift);
   8304     uint32_t TargetOrder = 0x0;
   8305 
   8306     // If both vector operands for the shuffle are the same vector, the mask
   8307     // will contain only elements from the first one and the second one will be
   8308     // undef.
   8309     if (V2.isUndef()) {
   8310       ShiftElts = 0;
   8311       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
   8312       TargetOrder = OriginalOrderLow;
   8313       Swap = false;
   8314       // Skip if not the correct element or mask of other elements don't equal
   8315       // to our expected order.
   8316       if (MaskOneElt == VINSERTHSrcElem &&
   8317           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
   8318         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
   8319         FoundCandidate = true;
   8320         break;
   8321       }
   8322     } else { // If both operands are defined.
   8323       // Target order is [8,15] if the current mask is between [0,7].
   8324       TargetOrder =
   8325           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
   8326       // Skip if mask of other elements don't equal our expected order.
   8327       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
   8328         // We only need the last 3 bits for the number of shifts.
   8329         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
   8330                          : BigEndianShifts[MaskOneElt & 0x7];
   8331         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
   8332         Swap = MaskOneElt < NumHalfWords;
   8333         FoundCandidate = true;
   8334         break;
   8335       }
   8336     }
   8337   }
   8338 
   8339   if (!FoundCandidate)
   8340     return SDValue();
   8341 
   8342   // Candidate found, construct the proper SDAG sequence with VINSERTH,
   8343   // optionally with VECSHL if shift is required.
   8344   if (Swap)
   8345     std::swap(V1, V2);
   8346   if (V2.isUndef())
   8347     V2 = V1;
   8348   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   8349   if (ShiftElts) {
   8350     // Double ShiftElts because we're left shifting on v16i8 type.
   8351     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
   8352                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
   8353     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
   8354     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
   8355                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
   8356     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
   8357   }
   8358   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
   8359   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
   8360                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
   8361   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
   8362 }
   8363 
   8364 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   8365 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   8366 /// return the code it can be lowered into.  Worst case, it can always be
   8367 /// lowered into a vperm.
   8368 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   8369                                                SelectionDAG &DAG) const {
   8370   SDLoc dl(Op);
   8371   SDValue V1 = Op.getOperand(0);
   8372   SDValue V2 = Op.getOperand(1);
   8373   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   8374   EVT VT = Op.getValueType();
   8375   bool isLittleEndian = Subtarget.isLittleEndian();
   8376 
   8377   unsigned ShiftElts, InsertAtByte;
   8378   bool Swap = false;
   8379   if (Subtarget.hasP9Vector() &&
   8380       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
   8381                            isLittleEndian)) {
   8382     if (Swap)
   8383       std::swap(V1, V2);
   8384     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   8385     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
   8386     if (ShiftElts) {
   8387       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
   8388                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
   8389       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
   8390                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
   8391       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
   8392     }
   8393     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
   8394                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
   8395     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
   8396   }
   8397 
   8398   if (Subtarget.hasP9Altivec()) {
   8399     SDValue NewISDNode;
   8400     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
   8401       return NewISDNode;
   8402 
   8403     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
   8404       return NewISDNode;
   8405   }
   8406 
   8407   if (Subtarget.hasVSX() &&
   8408       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
   8409     if (Swap)
   8410       std::swap(V1, V2);
   8411     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   8412     SDValue Conv2 =
   8413         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
   8414 
   8415     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
   8416                               DAG.getConstant(ShiftElts, dl, MVT::i32));
   8417     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
   8418   }
   8419 
   8420   if (Subtarget.hasVSX() &&
   8421     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
   8422     if (Swap)
   8423       std::swap(V1, V2);
   8424     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
   8425     SDValue Conv2 =
   8426         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
   8427 
   8428     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
   8429                               DAG.getConstant(ShiftElts, dl, MVT::i32));
   8430     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
   8431   }
   8432 
   8433   if (Subtarget.hasP9Vector()) {
   8434      if (PPC::isXXBRHShuffleMask(SVOp)) {
   8435       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   8436       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
   8437       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
   8438     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
   8439       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   8440       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
   8441       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
   8442     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
   8443       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
   8444       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
   8445       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
   8446     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
   8447       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
   8448       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
   8449       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
   8450     }
   8451   }
   8452 
   8453   if (Subtarget.hasVSX()) {
   8454     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
   8455       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
   8456 
   8457       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
   8458       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
   8459                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
   8460       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
   8461     }
   8462 
   8463     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
   8464     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
   8465       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   8466       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
   8467       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
   8468     }
   8469   }
   8470 
   8471   if (Subtarget.hasQPX()) {
   8472     if (VT.getVectorNumElements() != 4)
   8473       return SDValue();
   8474 
   8475     if (V2.isUndef()) V2 = V1;
   8476 
   8477     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
   8478     if (AlignIdx != -1) {
   8479       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
   8480                          DAG.getConstant(AlignIdx, dl, MVT::i32));
   8481     } else if (SVOp->isSplat()) {
   8482       int SplatIdx = SVOp->getSplatIndex();
   8483       if (SplatIdx >= 4) {
   8484         std::swap(V1, V2);
   8485         SplatIdx -= 4;
   8486       }
   8487 
   8488       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
   8489                          DAG.getConstant(SplatIdx, dl, MVT::i32));
   8490     }
   8491 
   8492     // Lower this into a qvgpci/qvfperm pair.
   8493 
   8494     // Compute the qvgpci literal
   8495     unsigned idx = 0;
   8496     for (unsigned i = 0; i < 4; ++i) {
   8497       int m = SVOp->getMaskElt(i);
   8498       unsigned mm = m >= 0 ? (unsigned) m : i;
   8499       idx |= mm << (3-i)*3;
   8500     }
   8501 
   8502     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
   8503                              DAG.getConstant(idx, dl, MVT::i32));
   8504     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
   8505   }
   8506 
   8507   // Cases that are handled by instructions that take permute immediates
   8508   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   8509   // selected by the instruction selector.
   8510   if (V2.isUndef()) {
   8511     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   8512         PPC::isSplatShuffleMask(SVOp, 2) ||
   8513         PPC::isSplatShuffleMask(SVOp, 4) ||
   8514         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
   8515         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
   8516         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
   8517         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
   8518         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
   8519         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
   8520         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
   8521         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
   8522         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
   8523         (Subtarget.hasP8Altivec() && (
   8524          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
   8525          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
   8526          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
   8527       return Op;
   8528     }
   8529   }
   8530 
   8531   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   8532   // and produce a fixed permutation.  If any of these match, do not lower to
   8533   // VPERM.
   8534   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
   8535   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   8536       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   8537       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
   8538       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   8539       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   8540       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   8541       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   8542       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   8543       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   8544       (Subtarget.hasP8Altivec() && (
   8545        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   8546        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
   8547        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
   8548     return Op;
   8549 
   8550   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   8551   // perfect shuffle table to emit an optimal matching sequence.
   8552   ArrayRef<int> PermMask = SVOp->getMask();
   8553 
   8554   unsigned PFIndexes[4];
   8555   bool isFourElementShuffle = true;
   8556   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   8557     unsigned EltNo = 8;   // Start out undef.
   8558     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   8559       if (PermMask[i*4+j] < 0)
   8560         continue;   // Undef, ignore it.
   8561 
   8562       unsigned ByteSource = PermMask[i*4+j];
   8563       if ((ByteSource & 3) != j) {
   8564         isFourElementShuffle = false;
   8565         break;
   8566       }
   8567 
   8568       if (EltNo == 8) {
   8569         EltNo = ByteSource/4;
   8570       } else if (EltNo != ByteSource/4) {
   8571         isFourElementShuffle = false;
   8572         break;
   8573       }
   8574     }
   8575     PFIndexes[i] = EltNo;
   8576   }
   8577 
   8578   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   8579   // perfect shuffle vector to determine if it is cost effective to do this as
   8580   // discrete instructions, or whether we should use a vperm.
   8581   // For now, we skip this for little endian until such time as we have a
   8582   // little-endian perfect shuffle table.
   8583   if (isFourElementShuffle && !isLittleEndian) {
   8584     // Compute the index in the perfect shuffle table.
   8585     unsigned PFTableIndex =
   8586       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   8587 
   8588     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   8589     unsigned Cost  = (PFEntry >> 30);
   8590 
   8591     // Determining when to avoid vperm is tricky.  Many things affect the cost
   8592     // of vperm, particularly how many times the perm mask needs to be computed.
   8593     // For example, if the perm mask can be hoisted out of a loop or is already
   8594     // used (perhaps because there are multiple permutes with the same shuffle
   8595     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   8596     // the loop requires an extra register.
   8597     //
   8598     // As a compromise, we only emit discrete instructions if the shuffle can be
   8599     // generated in 3 or fewer operations.  When we have loop information
   8600     // available, if this block is within a loop, we should avoid using vperm
   8601     // for 3-operation perms and use a constant pool load instead.
   8602     if (Cost < 3)
   8603       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   8604   }
   8605 
   8606   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   8607   // vector that will get spilled to the constant pool.
   8608   if (V2.isUndef()) V2 = V1;
   8609 
   8610   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   8611   // that it is in input element units, not in bytes.  Convert now.
   8612 
   8613   // For little endian, the order of the input vectors is reversed, and
   8614   // the permutation mask is complemented with respect to 31.  This is
   8615   // necessary to produce proper semantics with the big-endian-biased vperm
   8616   // instruction.
   8617   EVT EltVT = V1.getValueType().getVectorElementType();
   8618   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   8619 
   8620   SmallVector<SDValue, 16> ResultMask;
   8621   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   8622     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   8623 
   8624     for (unsigned j = 0; j != BytesPerElement; ++j)
   8625       if (isLittleEndian)
   8626         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
   8627                                              dl, MVT::i32));
   8628       else
   8629         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
   8630                                              MVT::i32));
   8631   }
   8632 
   8633   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
   8634   if (isLittleEndian)
   8635     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   8636                        V2, V1, VPermMask);
   8637   else
   8638     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   8639                        V1, V2, VPermMask);
   8640 }
   8641 
   8642 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
   8643 /// vector comparison.  If it is, return true and fill in Opc/isDot with
   8644 /// information about the intrinsic.
   8645 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
   8646                                  bool &isDot, const PPCSubtarget &Subtarget) {
   8647   unsigned IntrinsicID =
   8648       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   8649   CompareOpc = -1;
   8650   isDot = false;
   8651   switch (IntrinsicID) {
   8652   default:
   8653     return false;
   8654   // Comparison predicates.
   8655   case Intrinsic::ppc_altivec_vcmpbfp_p:
   8656     CompareOpc = 966;
   8657     isDot = true;
   8658     break;
   8659   case Intrinsic::ppc_altivec_vcmpeqfp_p:
   8660     CompareOpc = 198;
   8661     isDot = true;
   8662     break;
   8663   case Intrinsic::ppc_altivec_vcmpequb_p:
   8664     CompareOpc = 6;
   8665     isDot = true;
   8666     break;
   8667   case Intrinsic::ppc_altivec_vcmpequh_p:
   8668     CompareOpc = 70;
   8669     isDot = true;
   8670     break;
   8671   case Intrinsic::ppc_altivec_vcmpequw_p:
   8672     CompareOpc = 134;
   8673     isDot = true;
   8674     break;
   8675   case Intrinsic::ppc_altivec_vcmpequd_p:
   8676     if (Subtarget.hasP8Altivec()) {
   8677       CompareOpc = 199;
   8678       isDot = true;
   8679     } else
   8680       return false;
   8681     break;
   8682   case Intrinsic::ppc_altivec_vcmpneb_p:
   8683   case Intrinsic::ppc_altivec_vcmpneh_p:
   8684   case Intrinsic::ppc_altivec_vcmpnew_p:
   8685   case Intrinsic::ppc_altivec_vcmpnezb_p:
   8686   case Intrinsic::ppc_altivec_vcmpnezh_p:
   8687   case Intrinsic::ppc_altivec_vcmpnezw_p:
   8688     if (Subtarget.hasP9Altivec()) {
   8689       switch (IntrinsicID) {
   8690       default:
   8691         llvm_unreachable("Unknown comparison intrinsic.");
   8692       case Intrinsic::ppc_altivec_vcmpneb_p:
   8693         CompareOpc = 7;
   8694         break;
   8695       case Intrinsic::ppc_altivec_vcmpneh_p:
   8696         CompareOpc = 71;
   8697         break;
   8698       case Intrinsic::ppc_altivec_vcmpnew_p:
   8699         CompareOpc = 135;
   8700         break;
   8701       case Intrinsic::ppc_altivec_vcmpnezb_p:
   8702         CompareOpc = 263;
   8703         break;
   8704       case Intrinsic::ppc_altivec_vcmpnezh_p:
   8705         CompareOpc = 327;
   8706         break;
   8707       case Intrinsic::ppc_altivec_vcmpnezw_p:
   8708         CompareOpc = 391;
   8709         break;
   8710       }
   8711       isDot = true;
   8712     } else
   8713       return false;
   8714     break;
   8715   case Intrinsic::ppc_altivec_vcmpgefp_p:
   8716     CompareOpc = 454;
   8717     isDot = true;
   8718     break;
   8719   case Intrinsic::ppc_altivec_vcmpgtfp_p:
   8720     CompareOpc = 710;
   8721     isDot = true;
   8722     break;
   8723   case Intrinsic::ppc_altivec_vcmpgtsb_p:
   8724     CompareOpc = 774;
   8725     isDot = true;
   8726     break;
   8727   case Intrinsic::ppc_altivec_vcmpgtsh_p:
   8728     CompareOpc = 838;
   8729     isDot = true;
   8730     break;
   8731   case Intrinsic::ppc_altivec_vcmpgtsw_p:
   8732     CompareOpc = 902;
   8733     isDot = true;
   8734     break;
   8735   case Intrinsic::ppc_altivec_vcmpgtsd_p:
   8736     if (Subtarget.hasP8Altivec()) {
   8737       CompareOpc = 967;
   8738       isDot = true;
   8739     } else
   8740       return false;
   8741     break;
   8742   case Intrinsic::ppc_altivec_vcmpgtub_p:
   8743     CompareOpc = 518;
   8744     isDot = true;
   8745     break;
   8746   case Intrinsic::ppc_altivec_vcmpgtuh_p:
   8747     CompareOpc = 582;
   8748     isDot = true;
   8749     break;
   8750   case Intrinsic::ppc_altivec_vcmpgtuw_p:
   8751     CompareOpc = 646;
   8752     isDot = true;
   8753     break;
   8754   case Intrinsic::ppc_altivec_vcmpgtud_p:
   8755     if (Subtarget.hasP8Altivec()) {
   8756       CompareOpc = 711;
   8757       isDot = true;
   8758     } else
   8759       return false;
   8760     break;
   8761 
   8762   // VSX predicate comparisons use the same infrastructure
   8763   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
   8764   case Intrinsic::ppc_vsx_xvcmpgedp_p:
   8765   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
   8766   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
   8767   case Intrinsic::ppc_vsx_xvcmpgesp_p:
   8768   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
   8769     if (Subtarget.hasVSX()) {
   8770       switch (IntrinsicID) {
   8771       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
   8772         CompareOpc = 99;
   8773         break;
   8774       case Intrinsic::ppc_vsx_xvcmpgedp_p:
   8775         CompareOpc = 115;
   8776         break;
   8777       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
   8778         CompareOpc = 107;
   8779         break;
   8780       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
   8781         CompareOpc = 67;
   8782         break;
   8783       case Intrinsic::ppc_vsx_xvcmpgesp_p:
   8784         CompareOpc = 83;
   8785         break;
   8786       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
   8787         CompareOpc = 75;
   8788         break;
   8789       }
   8790       isDot = true;
   8791     } else
   8792       return false;
   8793     break;
   8794 
   8795   // Normal Comparisons.
   8796   case Intrinsic::ppc_altivec_vcmpbfp:
   8797     CompareOpc = 966;
   8798     break;
   8799   case Intrinsic::ppc_altivec_vcmpeqfp:
   8800     CompareOpc = 198;
   8801     break;
   8802   case Intrinsic::ppc_altivec_vcmpequb:
   8803     CompareOpc = 6;
   8804     break;
   8805   case Intrinsic::ppc_altivec_vcmpequh:
   8806     CompareOpc = 70;
   8807     break;
   8808   case Intrinsic::ppc_altivec_vcmpequw:
   8809     CompareOpc = 134;
   8810     break;
   8811   case Intrinsic::ppc_altivec_vcmpequd:
   8812     if (Subtarget.hasP8Altivec())
   8813       CompareOpc = 199;
   8814     else
   8815       return false;
   8816     break;
   8817   case Intrinsic::ppc_altivec_vcmpneb:
   8818   case Intrinsic::ppc_altivec_vcmpneh:
   8819   case Intrinsic::ppc_altivec_vcmpnew:
   8820   case Intrinsic::ppc_altivec_vcmpnezb:
   8821   case Intrinsic::ppc_altivec_vcmpnezh:
   8822   case Intrinsic::ppc_altivec_vcmpnezw:
   8823     if (Subtarget.hasP9Altivec())
   8824       switch (IntrinsicID) {
   8825       default:
   8826         llvm_unreachable("Unknown comparison intrinsic.");
   8827       case Intrinsic::ppc_altivec_vcmpneb:
   8828         CompareOpc = 7;
   8829         break;
   8830       case Intrinsic::ppc_altivec_vcmpneh:
   8831         CompareOpc = 71;
   8832         break;
   8833       case Intrinsic::ppc_altivec_vcmpnew:
   8834         CompareOpc = 135;
   8835         break;
   8836       case Intrinsic::ppc_altivec_vcmpnezb:
   8837         CompareOpc = 263;
   8838         break;
   8839       case Intrinsic::ppc_altivec_vcmpnezh:
   8840         CompareOpc = 327;
   8841         break;
   8842       case Intrinsic::ppc_altivec_vcmpnezw:
   8843         CompareOpc = 391;
   8844         break;
   8845       }
   8846     else
   8847       return false;
   8848     break;
   8849   case Intrinsic::ppc_altivec_vcmpgefp:
   8850     CompareOpc = 454;
   8851     break;
   8852   case Intrinsic::ppc_altivec_vcmpgtfp:
   8853     CompareOpc = 710;
   8854     break;
   8855   case Intrinsic::ppc_altivec_vcmpgtsb:
   8856     CompareOpc = 774;
   8857     break;
   8858   case Intrinsic::ppc_altivec_vcmpgtsh:
   8859     CompareOpc = 838;
   8860     break;
   8861   case Intrinsic::ppc_altivec_vcmpgtsw:
   8862     CompareOpc = 902;
   8863     break;
   8864   case Intrinsic::ppc_altivec_vcmpgtsd:
   8865     if (Subtarget.hasP8Altivec())
   8866       CompareOpc = 967;
   8867     else
   8868       return false;
   8869     break;
   8870   case Intrinsic::ppc_altivec_vcmpgtub:
   8871     CompareOpc = 518;
   8872     break;
   8873   case Intrinsic::ppc_altivec_vcmpgtuh:
   8874     CompareOpc = 582;
   8875     break;
   8876   case Intrinsic::ppc_altivec_vcmpgtuw:
   8877     CompareOpc = 646;
   8878     break;
   8879   case Intrinsic::ppc_altivec_vcmpgtud:
   8880     if (Subtarget.hasP8Altivec())
   8881       CompareOpc = 711;
   8882     else
   8883       return false;
   8884     break;
   8885   }
   8886   return true;
   8887 }
   8888 
   8889 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   8890 /// lower, do it, otherwise return null.
   8891 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   8892                                                    SelectionDAG &DAG) const {
   8893   unsigned IntrinsicID =
   8894     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   8895 
   8896   SDLoc dl(Op);
   8897 
   8898   if (IntrinsicID == Intrinsic::thread_pointer) {
   8899     // Reads the thread pointer register, used for __builtin_thread_pointer.
   8900     if (Subtarget.isPPC64())
   8901       return DAG.getRegister(PPC::X13, MVT::i64);
   8902     return DAG.getRegister(PPC::R2, MVT::i32);
   8903   }
   8904 
   8905   // We are looking for absolute values here.
   8906   // The idea is to try to fit one of two patterns:
   8907   //  max (a, (0-a))  OR  max ((0-a), a)
   8908   if (Subtarget.hasP9Vector() &&
   8909       (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
   8910        IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
   8911        IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
   8912     SDValue V1 = Op.getOperand(1);
   8913     SDValue V2 = Op.getOperand(2);
   8914     if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
   8915         (V1.getSimpleValueType() == MVT::v4i32 ||
   8916          V1.getSimpleValueType() == MVT::v8i16 ||
   8917          V1.getSimpleValueType() == MVT::v16i8)) {
   8918       if ( V1.getOpcode() == ISD::SUB &&
   8919            ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
   8920            V1.getOperand(1) == V2 ) {
   8921         // Generate the abs instruction with the operands
   8922         return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
   8923       }
   8924 
   8925       if ( V2.getOpcode() == ISD::SUB &&
   8926            ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
   8927            V2.getOperand(1) == V1 ) {
   8928         // Generate the abs instruction with the operands
   8929         return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
   8930       }
   8931     }
   8932   }
   8933 
   8934   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   8935   // opcode number of the comparison.
   8936   int CompareOpc;
   8937   bool isDot;
   8938   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
   8939     return SDValue();    // Don't custom lower most intrinsics.
   8940 
   8941   // If this is a non-dot comparison, make the VCMP node and we are done.
   8942   if (!isDot) {
   8943     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   8944                               Op.getOperand(1), Op.getOperand(2),
   8945                               DAG.getConstant(CompareOpc, dl, MVT::i32));
   8946     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   8947   }
   8948 
   8949   // Create the PPCISD altivec 'dot' comparison node.
   8950   SDValue Ops[] = {
   8951     Op.getOperand(2),  // LHS
   8952     Op.getOperand(3),  // RHS
   8953     DAG.getConstant(CompareOpc, dl, MVT::i32)
   8954   };
   8955   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   8956   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   8957 
   8958   // Now that we have the comparison, emit a copy from the CR to a GPR.
   8959   // This is flagged to the above dot comparison.
   8960   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
   8961                                 DAG.getRegister(PPC::CR6, MVT::i32),
   8962                                 CompNode.getValue(1));
   8963 
   8964   // Unpack the result based on how the target uses it.
   8965   unsigned BitNo;   // Bit # of CR6.
   8966   bool InvertBit;   // Invert result?
   8967   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   8968   default:  // Can't happen, don't crash on invalid number though.
   8969   case 0:   // Return the value of the EQ bit of CR6.
   8970     BitNo = 0; InvertBit = false;
   8971     break;
   8972   case 1:   // Return the inverted value of the EQ bit of CR6.
   8973     BitNo = 0; InvertBit = true;
   8974     break;
   8975   case 2:   // Return the value of the LT bit of CR6.
   8976     BitNo = 2; InvertBit = false;
   8977     break;
   8978   case 3:   // Return the inverted value of the LT bit of CR6.
   8979     BitNo = 2; InvertBit = true;
   8980     break;
   8981   }
   8982 
   8983   // Shift the bit into the low position.
   8984   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   8985                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
   8986   // Isolate the bit.
   8987   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   8988                       DAG.getConstant(1, dl, MVT::i32));
   8989 
   8990   // If we are supposed to, toggle the bit.
   8991   if (InvertBit)
   8992     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   8993                         DAG.getConstant(1, dl, MVT::i32));
   8994   return Flags;
   8995 }
   8996 
   8997 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
   8998                                                SelectionDAG &DAG) const {
   8999   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
   9000   // the beginning of the argument list.
   9001   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
   9002   SDLoc DL(Op);
   9003   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
   9004   case Intrinsic::ppc_cfence: {
   9005     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
   9006     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
   9007     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
   9008                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
   9009                                                   Op.getOperand(ArgStart + 1)),
   9010                                       Op.getOperand(0)),
   9011                    0);
   9012   }
   9013   default:
   9014     break;
   9015   }
   9016   return SDValue();
   9017 }
   9018 
   9019 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
   9020   // Check for a DIV with the same operands as this REM.
   9021   for (auto UI : Op.getOperand(1)->uses()) {
   9022     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
   9023         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
   9024       if (UI->getOperand(0) == Op.getOperand(0) &&
   9025           UI->getOperand(1) == Op.getOperand(1))
   9026         return SDValue();
   9027   }
   9028   return Op;
   9029 }
   9030 
   9031 // Lower scalar BSWAP64 to xxbrd.
   9032 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
   9033   SDLoc dl(Op);
   9034   // MTVSRDD
   9035   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
   9036                    Op.getOperand(0));
   9037   // XXBRD
   9038   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
   9039   // MFVSRD
   9040   int VectorIndex = 0;
   9041   if (Subtarget.isLittleEndian())
   9042     VectorIndex = 1;
   9043   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
   9044                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
   9045   return Op;
   9046 }
   9047 
   9048 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
   9049 // compared to a value that is atomically loaded (atomic loads zero-extend).
   9050 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
   9051                                                 SelectionDAG &DAG) const {
   9052   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
   9053          "Expecting an atomic compare-and-swap here.");
   9054   SDLoc dl(Op);
   9055   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
   9056   EVT MemVT = AtomicNode->getMemoryVT();
   9057   if (MemVT.getSizeInBits() >= 32)
   9058     return Op;
   9059 
   9060   SDValue CmpOp = Op.getOperand(2);
   9061   // If this is already correctly zero-extended, leave it alone.
   9062   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
   9063   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
   9064     return Op;
   9065 
   9066   // Clear the high bits of the compare operand.
   9067   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
   9068   SDValue NewCmpOp =
   9069     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
   9070                 DAG.getConstant(MaskVal, dl, MVT::i32));
   9071 
   9072   // Replace the existing compare operand with the properly zero-extended one.
   9073   SmallVector<SDValue, 4> Ops;
   9074   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
   9075     Ops.push_back(AtomicNode->getOperand(i));
   9076   Ops[2] = NewCmpOp;
   9077   MachineMemOperand *MMO = AtomicNode->getMemOperand();
   9078   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
   9079   auto NodeTy =
   9080     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
   9081   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
   9082 }
   9083 
   9084 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   9085                                                   SelectionDAG &DAG) const {
   9086   SDLoc dl(Op);
   9087   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
   9088   // instructions), but for smaller types, we need to first extend up to v2i32
   9089   // before doing going farther.
   9090   if (Op.getValueType() == MVT::v2i64) {
   9091     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   9092     if (ExtVT != MVT::v2i32) {
   9093       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
   9094       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
   9095                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
   9096                                         ExtVT.getVectorElementType(), 4)));
   9097       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
   9098       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
   9099                        DAG.getValueType(MVT::v2i32));
   9100     }
   9101 
   9102     return Op;
   9103   }
   9104 
   9105   return SDValue();
   9106 }
   9107 
   9108 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   9109                                                  SelectionDAG &DAG) const {
   9110   SDLoc dl(Op);
   9111   // Create a stack slot that is 16-byte aligned.
   9112   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   9113   int FrameIdx = MFI.CreateStackObject(16, 16, false);
   9114   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   9115   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   9116 
   9117   // Store the input value into Value#0 of the stack slot.
   9118   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   9119                                MachinePointerInfo());
   9120   // Load it out.
   9121   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
   9122 }
   9123 
   9124 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
   9125                                                   SelectionDAG &DAG) const {
   9126   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
   9127          "Should only be called for ISD::INSERT_VECTOR_ELT");
   9128 
   9129   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   9130   // We have legal lowering for constant indices but not for variable ones.
   9131   if (!C)
   9132     return SDValue();
   9133 
   9134   EVT VT = Op.getValueType();
   9135   SDLoc dl(Op);
   9136   SDValue V1 = Op.getOperand(0);
   9137   SDValue V2 = Op.getOperand(1);
   9138   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
   9139   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
   9140     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
   9141     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
   9142     unsigned InsertAtElement = C->getZExtValue();
   9143     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
   9144     if (Subtarget.isLittleEndian()) {
   9145       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
   9146     }
   9147     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
   9148                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
   9149   }
   9150   return Op;
   9151 }
   9152 
   9153 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   9154                                                    SelectionDAG &DAG) const {
   9155   SDLoc dl(Op);
   9156   SDNode *N = Op.getNode();
   9157 
   9158   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
   9159          "Unknown extract_vector_elt type");
   9160 
   9161   SDValue Value = N->getOperand(0);
   9162 
   9163   // The first part of this is like the store lowering except that we don't
   9164   // need to track the chain.
   9165 
   9166   // The values are now known to be -1 (false) or 1 (true). To convert this
   9167   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   9168   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   9169   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   9170 
   9171   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   9172   // understand how to form the extending load.
   9173   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
   9174 
   9175   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   9176 
   9177   // Now convert to an integer and store.
   9178   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   9179     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
   9180     Value);
   9181 
   9182   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   9183   int FrameIdx = MFI.CreateStackObject(16, 16, false);
   9184   MachinePointerInfo PtrInfo =
   9185       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   9186   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   9187   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   9188 
   9189   SDValue StoreChain = DAG.getEntryNode();
   9190   SDValue Ops[] = {StoreChain,
   9191                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
   9192                    Value, FIdx};
   9193   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
   9194 
   9195   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   9196     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   9197 
   9198   // Extract the value requested.
   9199   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   9200   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   9201   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   9202 
   9203   SDValue IntVal =
   9204       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
   9205 
   9206   if (!Subtarget.useCRBits())
   9207     return IntVal;
   9208 
   9209   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
   9210 }
   9211 
   9212 /// Lowering for QPX v4i1 loads
   9213 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
   9214                                            SelectionDAG &DAG) const {
   9215   SDLoc dl(Op);
   9216   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
   9217   SDValue LoadChain = LN->getChain();
   9218   SDValue BasePtr = LN->getBasePtr();
   9219 
   9220   if (Op.getValueType() == MVT::v4f64 ||
   9221       Op.getValueType() == MVT::v4f32) {
   9222     EVT MemVT = LN->getMemoryVT();
   9223     unsigned Alignment = LN->getAlignment();
   9224 
   9225     // If this load is properly aligned, then it is legal.
   9226     if (Alignment >= MemVT.getStoreSize())
   9227       return Op;
   9228 
   9229     EVT ScalarVT = Op.getValueType().getScalarType(),
   9230         ScalarMemVT = MemVT.getScalarType();
   9231     unsigned Stride = ScalarMemVT.getStoreSize();
   9232 
   9233     SDValue Vals[4], LoadChains[4];
   9234     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   9235       SDValue Load;
   9236       if (ScalarVT != ScalarMemVT)
   9237         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
   9238                               BasePtr,
   9239                               LN->getPointerInfo().getWithOffset(Idx * Stride),
   9240                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
   9241                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
   9242       else
   9243         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
   9244                            LN->getPointerInfo().getWithOffset(Idx * Stride),
   9245                            MinAlign(Alignment, Idx * Stride),
   9246                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
   9247 
   9248       if (Idx == 0 && LN->isIndexed()) {
   9249         assert(LN->getAddressingMode() == ISD::PRE_INC &&
   9250                "Unknown addressing mode on vector load");
   9251         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
   9252                                   LN->getAddressingMode());
   9253       }
   9254 
   9255       Vals[Idx] = Load;
   9256       LoadChains[Idx] = Load.getValue(1);
   9257 
   9258       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   9259                             DAG.getConstant(Stride, dl,
   9260                                             BasePtr.getValueType()));
   9261     }
   9262 
   9263     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   9264     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
   9265 
   9266     if (LN->isIndexed()) {
   9267       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
   9268       return DAG.getMergeValues(RetOps, dl);
   9269     }
   9270 
   9271     SDValue RetOps[] = { Value, TF };
   9272     return DAG.getMergeValues(RetOps, dl);
   9273   }
   9274 
   9275   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
   9276   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
   9277 
   9278   // To lower v4i1 from a byte array, we load the byte elements of the
   9279   // vector and then reuse the BUILD_VECTOR logic.
   9280 
   9281   SDValue VectElmts[4], VectElmtChains[4];
   9282   for (unsigned i = 0; i < 4; ++i) {
   9283     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
   9284     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   9285 
   9286     VectElmts[i] = DAG.getExtLoad(
   9287         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
   9288         LN->getPointerInfo().getWithOffset(i), MVT::i8,
   9289         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
   9290     VectElmtChains[i] = VectElmts[i].getValue(1);
   9291   }
   9292 
   9293   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
   9294   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
   9295 
   9296   SDValue RVals[] = { Value, LoadChain };
   9297   return DAG.getMergeValues(RVals, dl);
   9298 }
   9299 
   9300 /// Lowering for QPX v4i1 stores
   9301 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
   9302                                             SelectionDAG &DAG) const {
   9303   SDLoc dl(Op);
   9304   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
   9305   SDValue StoreChain = SN->getChain();
   9306   SDValue BasePtr = SN->getBasePtr();
   9307   SDValue Value = SN->getValue();
   9308 
   9309   if (Value.getValueType() == MVT::v4f64 ||
   9310       Value.getValueType() == MVT::v4f32) {
   9311     EVT MemVT = SN->getMemoryVT();
   9312     unsigned Alignment = SN->getAlignment();
   9313 
   9314     // If this store is properly aligned, then it is legal.
   9315     if (Alignment >= MemVT.getStoreSize())
   9316       return Op;
   9317 
   9318     EVT ScalarVT = Value.getValueType().getScalarType(),
   9319         ScalarMemVT = MemVT.getScalarType();
   9320     unsigned Stride = ScalarMemVT.getStoreSize();
   9321 
   9322     SDValue Stores[4];
   9323     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   9324       SDValue Ex = DAG.getNode(
   9325           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
   9326           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
   9327       SDValue Store;
   9328       if (ScalarVT != ScalarMemVT)
   9329         Store =
   9330             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
   9331                               SN->getPointerInfo().getWithOffset(Idx * Stride),
   9332                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
   9333                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
   9334       else
   9335         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
   9336                              SN->getPointerInfo().getWithOffset(Idx * Stride),
   9337                              MinAlign(Alignment, Idx * Stride),
   9338                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
   9339 
   9340       if (Idx == 0 && SN->isIndexed()) {
   9341         assert(SN->getAddressingMode() == ISD::PRE_INC &&
   9342                "Unknown addressing mode on vector store");
   9343         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
   9344                                     SN->getAddressingMode());
   9345       }
   9346 
   9347       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   9348                             DAG.getConstant(Stride, dl,
   9349                                             BasePtr.getValueType()));
   9350       Stores[Idx] = Store;
   9351     }
   9352 
   9353     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   9354 
   9355     if (SN->isIndexed()) {
   9356       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
   9357       return DAG.getMergeValues(RetOps, dl);
   9358     }
   9359 
   9360     return TF;
   9361   }
   9362 
   9363   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
   9364   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
   9365 
   9366   // The values are now known to be -1 (false) or 1 (true). To convert this
   9367   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   9368   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   9369   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   9370 
   9371   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   9372   // understand how to form the extending load.
   9373   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
   9374 
   9375   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   9376 
   9377   // Now convert to an integer and store.
   9378   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   9379     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
   9380     Value);
   9381 
   9382   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   9383   int FrameIdx = MFI.CreateStackObject(16, 16, false);
   9384   MachinePointerInfo PtrInfo =
   9385       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   9386   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   9387   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   9388 
   9389   SDValue Ops[] = {StoreChain,
   9390                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
   9391                    Value, FIdx};
   9392   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
   9393 
   9394   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   9395     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   9396 
   9397   // Move data into the byte array.
   9398   SDValue Loads[4], LoadChains[4];
   9399   for (unsigned i = 0; i < 4; ++i) {
   9400     unsigned Offset = 4*i;
   9401     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   9402     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   9403 
   9404     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   9405                            PtrInfo.getWithOffset(Offset));
   9406     LoadChains[i] = Loads[i].getValue(1);
   9407   }
   9408 
   9409   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   9410 
   9411   SDValue Stores[4];
   9412   for (unsigned i = 0; i < 4; ++i) {
   9413     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
   9414     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   9415 
   9416     Stores[i] = DAG.getTruncStore(
   9417         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
   9418         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
   9419         SN->getAAInfo());
   9420   }
   9421 
   9422   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   9423 
   9424   return StoreChain;
   9425 }
   9426 
   9427 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   9428   SDLoc dl(Op);
   9429   if (Op.getValueType() == MVT::v4i32) {
   9430     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   9431 
   9432     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   9433     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   9434 
   9435     SDValue RHSSwap =   // = vrlw RHS, 16
   9436       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   9437 
   9438     // Shrinkify inputs to v8i16.
   9439     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   9440     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   9441     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   9442 
   9443     // Low parts multiplied together, generating 32-bit results (we ignore the
   9444     // top parts).
   9445     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   9446                                         LHS, RHS, DAG, dl, MVT::v4i32);
   9447 
   9448     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   9449                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   9450     // Shift the high parts up 16 bits.
   9451     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   9452                               Neg16, DAG, dl);
   9453     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   9454   } else if (Op.getValueType() == MVT::v8i16) {
   9455     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   9456 
   9457     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   9458 
   9459     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   9460                             LHS, RHS, Zero, DAG, dl);
   9461   } else if (Op.getValueType() == MVT::v16i8) {
   9462     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   9463     bool isLittleEndian = Subtarget.isLittleEndian();
   9464 
   9465     // Multiply the even 8-bit parts, producing 16-bit sums.
   9466     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   9467                                            LHS, RHS, DAG, dl, MVT::v8i16);
   9468     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   9469 
   9470     // Multiply the odd 8-bit parts, producing 16-bit sums.
   9471     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   9472                                           LHS, RHS, DAG, dl, MVT::v8i16);
   9473     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   9474 
   9475     // Merge the results together.  Because vmuleub and vmuloub are
   9476     // instructions with a big-endian bias, we must reverse the
   9477     // element numbering and reverse the meaning of "odd" and "even"
   9478     // when generating little endian code.
   9479     int Ops[16];
   9480     for (unsigned i = 0; i != 8; ++i) {
   9481       if (isLittleEndian) {
   9482         Ops[i*2  ] = 2*i;
   9483         Ops[i*2+1] = 2*i+16;
   9484       } else {
   9485         Ops[i*2  ] = 2*i+1;
   9486         Ops[i*2+1] = 2*i+1+16;
   9487       }
   9488     }
   9489     if (isLittleEndian)
   9490       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
   9491     else
   9492       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   9493   } else {
   9494     llvm_unreachable("Unknown mul to lower!");
   9495   }
   9496 }
   9497 
   9498 /// LowerOperation - Provide custom lowering hooks for some operations.
   9499 ///
   9500 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   9501   switch (Op.getOpcode()) {
   9502   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   9503   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   9504   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   9505   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   9506   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   9507   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   9508   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   9509   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   9510   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   9511 
   9512   // Variable argument lowering.
   9513   case ISD::VASTART:            return LowerVASTART(Op, DAG);
   9514   case ISD::VAARG:              return LowerVAARG(Op, DAG);
   9515   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
   9516 
   9517   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
   9518   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   9519   case ISD::GET_DYNAMIC_AREA_OFFSET:
   9520     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
   9521 
   9522   // Exception handling lowering.
   9523   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
   9524   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   9525   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   9526 
   9527   case ISD::LOAD:               return LowerLOAD(Op, DAG);
   9528   case ISD::STORE:              return LowerSTORE(Op, DAG);
   9529   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
   9530   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   9531   case ISD::FP_TO_UINT:
   9532   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
   9533   case ISD::UINT_TO_FP:
   9534   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
   9535   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   9536 
   9537   // Lower 64-bit shifts.
   9538   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   9539   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   9540   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   9541 
   9542   // Vector-related lowering.
   9543   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   9544   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   9545   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   9546   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   9547   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
   9548   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   9549   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
   9550   case ISD::MUL:                return LowerMUL(Op, DAG);
   9551 
   9552   // For counter-based loop handling.
   9553   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
   9554 
   9555   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
   9556 
   9557   // Frame & Return address.
   9558   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   9559   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   9560 
   9561   case ISD::INTRINSIC_VOID:
   9562     return LowerINTRINSIC_VOID(Op, DAG);
   9563   case ISD::SREM:
   9564   case ISD::UREM:
   9565     return LowerREM(Op, DAG);
   9566   case ISD::BSWAP:
   9567     return LowerBSWAP(Op, DAG);
   9568   case ISD::ATOMIC_CMP_SWAP:
   9569     return LowerATOMIC_CMP_SWAP(Op, DAG);
   9570   }
   9571 }
   9572 
   9573 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   9574                                            SmallVectorImpl<SDValue>&Results,
   9575                                            SelectionDAG &DAG) const {
   9576   SDLoc dl(N);
   9577   switch (N->getOpcode()) {
   9578   default:
   9579     llvm_unreachable("Do not know how to custom type legalize this operation!");
   9580   case ISD::READCYCLECOUNTER: {
   9581     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   9582     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
   9583 
   9584     Results.push_back(RTB);
   9585     Results.push_back(RTB.getValue(1));
   9586     Results.push_back(RTB.getValue(2));
   9587     break;
   9588   }
   9589   case ISD::INTRINSIC_W_CHAIN: {
   9590     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
   9591         Intrinsic::ppc_is_decremented_ctr_nonzero)
   9592       break;
   9593 
   9594     assert(N->getValueType(0) == MVT::i1 &&
   9595            "Unexpected result type for CTR decrement intrinsic");
   9596     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   9597                                  N->getValueType(0));
   9598     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
   9599     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
   9600                                  N->getOperand(1));
   9601 
   9602     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
   9603     Results.push_back(NewInt.getValue(1));
   9604     break;
   9605   }
   9606   case ISD::VAARG: {
   9607     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
   9608       return;
   9609 
   9610     EVT VT = N->getValueType(0);
   9611 
   9612     if (VT == MVT::i64) {
   9613       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
   9614 
   9615       Results.push_back(NewNode);
   9616       Results.push_back(NewNode.getValue(1));
   9617     }
   9618     return;
   9619   }
   9620   case ISD::FP_TO_SINT:
   9621   case ISD::FP_TO_UINT:
   9622     // LowerFP_TO_INT() can only handle f32 and f64.
   9623     if (N->getOperand(0).getValueType() == MVT::ppcf128)
   9624       return;
   9625     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   9626     return;
   9627   }
   9628 }
   9629 
   9630 //===----------------------------------------------------------------------===//
   9631 //  Other Lowering Code
   9632 //===----------------------------------------------------------------------===//
   9633 
   9634 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
   9635   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   9636   Function *Func = Intrinsic::getDeclaration(M, Id);
   9637   return Builder.CreateCall(Func, {});
   9638 }
   9639 
   9640 // The mappings for emitLeading/TrailingFence is taken from
   9641 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   9642 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   9643                                                  Instruction *Inst,
   9644                                                  AtomicOrdering Ord) const {
   9645   if (Ord == AtomicOrdering::SequentiallyConsistent)
   9646     return callIntrinsic(Builder, Intrinsic::ppc_sync);
   9647   if (isReleaseOrStronger(Ord))
   9648     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   9649   return nullptr;
   9650 }
   9651 
   9652 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   9653                                                   Instruction *Inst,
   9654                                                   AtomicOrdering Ord) const {
   9655   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
   9656     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
   9657     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
   9658     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
   9659     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
   9660       return Builder.CreateCall(
   9661           Intrinsic::getDeclaration(
   9662               Builder.GetInsertBlock()->getParent()->getParent(),
   9663               Intrinsic::ppc_cfence, {Inst->getType()}),
   9664           {Inst});
   9665     // FIXME: Can use isync for rmw operation.
   9666     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   9667   }
   9668   return nullptr;
   9669 }
   9670 
   9671 MachineBasicBlock *
   9672 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
   9673                                     unsigned AtomicSize,
   9674                                     unsigned BinOpcode,
   9675                                     unsigned CmpOpcode,
   9676                                     unsigned CmpPred) const {
   9677   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   9678   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   9679 
   9680   auto LoadMnemonic = PPC::LDARX;
   9681   auto StoreMnemonic = PPC::STDCX;
   9682   switch (AtomicSize) {
   9683   default:
   9684     llvm_unreachable("Unexpected size of atomic entity");
   9685   case 1:
   9686     LoadMnemonic = PPC::LBARX;
   9687     StoreMnemonic = PPC::STBCX;
   9688     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   9689     break;
   9690   case 2:
   9691     LoadMnemonic = PPC::LHARX;
   9692     StoreMnemonic = PPC::STHCX;
   9693     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   9694     break;
   9695   case 4:
   9696     LoadMnemonic = PPC::LWARX;
   9697     StoreMnemonic = PPC::STWCX;
   9698     break;
   9699   case 8:
   9700     LoadMnemonic = PPC::LDARX;
   9701     StoreMnemonic = PPC::STDCX;
   9702     break;
   9703   }
   9704 
   9705   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   9706   MachineFunction *F = BB->getParent();
   9707   MachineFunction::iterator It = ++BB->getIterator();
   9708 
   9709   unsigned dest = MI.getOperand(0).getReg();
   9710   unsigned ptrA = MI.getOperand(1).getReg();
   9711   unsigned ptrB = MI.getOperand(2).getReg();
   9712   unsigned incr = MI.getOperand(3).getReg();
   9713   DebugLoc dl = MI.getDebugLoc();
   9714 
   9715   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9716   MachineBasicBlock *loop2MBB =
   9717     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
   9718   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9719   F->insert(It, loopMBB);
   9720   if (CmpOpcode)
   9721     F->insert(It, loop2MBB);
   9722   F->insert(It, exitMBB);
   9723   exitMBB->splice(exitMBB->begin(), BB,
   9724                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9725   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   9726 
   9727   MachineRegisterInfo &RegInfo = F->getRegInfo();
   9728   unsigned TmpReg = (!BinOpcode) ? incr :
   9729     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
   9730                                            : &PPC::GPRCRegClass);
   9731 
   9732   //  thisMBB:
   9733   //   ...
   9734   //   fallthrough --> loopMBB
   9735   BB->addSuccessor(loopMBB);
   9736 
   9737   //  loopMBB:
   9738   //   l[wd]arx dest, ptr
   9739   //   add r0, dest, incr
   9740   //   st[wd]cx. r0, ptr
   9741   //   bne- loopMBB
   9742   //   fallthrough --> exitMBB
   9743 
   9744   // For max/min...
   9745   //  loopMBB:
   9746   //   l[wd]arx dest, ptr
   9747   //   cmpl?[wd] incr, dest
   9748   //   bgt exitMBB
   9749   //  loop2MBB:
   9750   //   st[wd]cx. dest, ptr
   9751   //   bne- loopMBB
   9752   //   fallthrough --> exitMBB
   9753 
   9754   BB = loopMBB;
   9755   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   9756     .addReg(ptrA).addReg(ptrB);
   9757   if (BinOpcode)
   9758     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   9759   if (CmpOpcode) {
   9760     // Signed comparisons of byte or halfword values must be sign-extended.
   9761     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
   9762       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
   9763       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
   9764               ExtReg).addReg(dest);
   9765       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
   9766         .addReg(incr).addReg(ExtReg);
   9767     } else
   9768       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
   9769         .addReg(incr).addReg(dest);
   9770 
   9771     BuildMI(BB, dl, TII->get(PPC::BCC))
   9772       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
   9773     BB->addSuccessor(loop2MBB);
   9774     BB->addSuccessor(exitMBB);
   9775     BB = loop2MBB;
   9776   }
   9777   BuildMI(BB, dl, TII->get(StoreMnemonic))
   9778     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   9779   BuildMI(BB, dl, TII->get(PPC::BCC))
   9780     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   9781   BB->addSuccessor(loopMBB);
   9782   BB->addSuccessor(exitMBB);
   9783 
   9784   //  exitMBB:
   9785   //   ...
   9786   BB = exitMBB;
   9787   return BB;
   9788 }
   9789 
   9790 MachineBasicBlock *
   9791 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
   9792                                             MachineBasicBlock *BB,
   9793                                             bool is8bit, // operation
   9794                                             unsigned BinOpcode,
   9795                                             unsigned CmpOpcode,
   9796                                             unsigned CmpPred) const {
   9797   // If we support part-word atomic mnemonics, just use them
   9798   if (Subtarget.hasPartwordAtomics())
   9799     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
   9800                             CmpOpcode, CmpPred);
   9801 
   9802   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   9803   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   9804   // In 64 bit mode we have to use 64 bits for addresses, even though the
   9805   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   9806   // registers without caring whether they're 32 or 64, but here we're
   9807   // doing actual arithmetic on the addresses.
   9808   bool is64bit = Subtarget.isPPC64();
   9809   bool isLittleEndian = Subtarget.isLittleEndian();
   9810   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   9811 
   9812   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   9813   MachineFunction *F = BB->getParent();
   9814   MachineFunction::iterator It = ++BB->getIterator();
   9815 
   9816   unsigned dest = MI.getOperand(0).getReg();
   9817   unsigned ptrA = MI.getOperand(1).getReg();
   9818   unsigned ptrB = MI.getOperand(2).getReg();
   9819   unsigned incr = MI.getOperand(3).getReg();
   9820   DebugLoc dl = MI.getDebugLoc();
   9821 
   9822   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9823   MachineBasicBlock *loop2MBB =
   9824     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
   9825   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   9826   F->insert(It, loopMBB);
   9827   if (CmpOpcode)
   9828     F->insert(It, loop2MBB);
   9829   F->insert(It, exitMBB);
   9830   exitMBB->splice(exitMBB->begin(), BB,
   9831                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   9832   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   9833 
   9834   MachineRegisterInfo &RegInfo = F->getRegInfo();
   9835   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   9836                                           : &PPC::GPRCRegClass;
   9837   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   9838   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   9839   unsigned ShiftReg =
   9840     isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
   9841   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   9842   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   9843   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   9844   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   9845   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   9846   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   9847   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   9848   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   9849   unsigned Ptr1Reg;
   9850   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   9851 
   9852   //  thisMBB:
   9853   //   ...
   9854   //   fallthrough --> loopMBB
   9855   BB->addSuccessor(loopMBB);
   9856 
   9857   // The 4-byte load must be aligned, while a char or short may be
   9858   // anywhere in the word.  Hence all this nasty bookkeeping code.
   9859   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   9860   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   9861   //   xori shift, shift1, 24 [16]
   9862   //   rlwinm ptr, ptr1, 0, 0, 29
   9863   //   slw incr2, incr, shift
   9864   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   9865   //   slw mask, mask2, shift
   9866   //  loopMBB:
   9867   //   lwarx tmpDest, ptr
   9868   //   add tmp, tmpDest, incr2
   9869   //   andc tmp2, tmpDest, mask
   9870   //   and tmp3, tmp, mask
   9871   //   or tmp4, tmp3, tmp2
   9872   //   stwcx. tmp4, ptr
   9873   //   bne- loopMBB
   9874   //   fallthrough --> exitMBB
   9875   //   srw dest, tmpDest, shift
   9876   if (ptrA != ZeroReg) {
   9877     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   9878     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   9879       .addReg(ptrA).addReg(ptrB);
   9880   } else {
   9881     Ptr1Reg = ptrB;
   9882   }
   9883   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   9884       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   9885   if (!isLittleEndian)
   9886     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   9887         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   9888   if (is64bit)
   9889     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   9890       .addReg(Ptr1Reg).addImm(0).addImm(61);
   9891   else
   9892     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   9893       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   9894   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   9895       .addReg(incr).addReg(ShiftReg);
   9896   if (is8bit)
   9897     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   9898   else {
   9899     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   9900     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   9901   }
   9902   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   9903       .addReg(Mask2Reg).addReg(ShiftReg);
   9904 
   9905   BB = loopMBB;
   9906   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   9907     .addReg(ZeroReg).addReg(PtrReg);
   9908   if (BinOpcode)
   9909     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   9910       .addReg(Incr2Reg).addReg(TmpDestReg);
   9911   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   9912     .addReg(TmpDestReg).addReg(MaskReg);
   9913   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   9914     .addReg(TmpReg).addReg(MaskReg);
   9915   if (CmpOpcode) {
   9916     // For unsigned comparisons, we can directly compare the shifted values.
   9917     // For signed comparisons we shift and sign extend.
   9918     unsigned SReg = RegInfo.createVirtualRegister(RC);
   9919     BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
   9920       .addReg(TmpDestReg).addReg(MaskReg);
   9921     unsigned ValueReg = SReg;
   9922     unsigned CmpReg = Incr2Reg;
   9923     if (CmpOpcode == PPC::CMPW) {
   9924       ValueReg = RegInfo.createVirtualRegister(RC);
   9925       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
   9926         .addReg(SReg).addReg(ShiftReg);
   9927       unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
   9928       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
   9929         .addReg(ValueReg);
   9930       ValueReg = ValueSReg;
   9931       CmpReg = incr;
   9932     }
   9933     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
   9934       .addReg(CmpReg).addReg(ValueReg);
   9935     BuildMI(BB, dl, TII->get(PPC::BCC))
   9936       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
   9937     BB->addSuccessor(loop2MBB);
   9938     BB->addSuccessor(exitMBB);
   9939     BB = loop2MBB;
   9940   }
   9941   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   9942     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   9943   BuildMI(BB, dl, TII->get(PPC::STWCX))
   9944     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   9945   BuildMI(BB, dl, TII->get(PPC::BCC))
   9946     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   9947   BB->addSuccessor(loopMBB);
   9948   BB->addSuccessor(exitMBB);
   9949 
   9950   //  exitMBB:
   9951   //   ...
   9952   BB = exitMBB;
   9953   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   9954     .addReg(ShiftReg);
   9955   return BB;
   9956 }
   9957 
   9958 llvm::MachineBasicBlock *
   9959 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
   9960                                     MachineBasicBlock *MBB) const {
   9961   DebugLoc DL = MI.getDebugLoc();
   9962   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   9963   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   9964 
   9965   MachineFunction *MF = MBB->getParent();
   9966   MachineRegisterInfo &MRI = MF->getRegInfo();
   9967 
   9968   const BasicBlock *BB = MBB->getBasicBlock();
   9969   MachineFunction::iterator I = ++MBB->getIterator();
   9970 
   9971   // Memory Reference
   9972   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
   9973   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
   9974 
   9975   unsigned DstReg = MI.getOperand(0).getReg();
   9976   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   9977   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
   9978   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   9979   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   9980 
   9981   MVT PVT = getPointerTy(MF->getDataLayout());
   9982   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   9983          "Invalid Pointer Size!");
   9984   // For v = setjmp(buf), we generate
   9985   //
   9986   // thisMBB:
   9987   //  SjLjSetup mainMBB
   9988   //  bl mainMBB
   9989   //  v_restore = 1
   9990   //  b sinkMBB
   9991   //
   9992   // mainMBB:
   9993   //  buf[LabelOffset] = LR
   9994   //  v_main = 0
   9995   //
   9996   // sinkMBB:
   9997   //  v = phi(main, restore)
   9998   //
   9999 
   10000   MachineBasicBlock *thisMBB = MBB;
   10001   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   10002   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   10003   MF->insert(I, mainMBB);
   10004   MF->insert(I, sinkMBB);
   10005 
   10006   MachineInstrBuilder MIB;
   10007 
   10008   // Transfer the remainder of BB and its successor edges to sinkMBB.
   10009   sinkMBB->splice(sinkMBB->begin(), MBB,
   10010                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   10011   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   10012 
   10013   // Note that the structure of the jmp_buf used here is not compatible
   10014   // with that used by libc, and is not designed to be. Specifically, it
   10015   // stores only those 'reserved' registers that LLVM does not otherwise
   10016   // understand how to spill. Also, by convention, by the time this
   10017   // intrinsic is called, Clang has already stored the frame address in the
   10018   // first slot of the buffer and stack address in the third. Following the
   10019   // X86 target code, we'll store the jump address in the second slot. We also
   10020   // need to save the TOC pointer (R2) to handle jumps between shared
   10021   // libraries, and that will be stored in the fourth slot. The thread
   10022   // identifier (R13) is not affected.
   10023 
   10024   // thisMBB:
   10025   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   10026   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   10027   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   10028 
   10029   // Prepare IP either in reg.
   10030   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   10031   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
   10032   unsigned BufReg = MI.getOperand(1).getReg();
   10033 
   10034   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
   10035     setUsesTOCBasePtr(*MBB->getParent());
   10036     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
   10037             .addReg(PPC::X2)
   10038             .addImm(TOCOffset)
   10039             .addReg(BufReg);
   10040     MIB.setMemRefs(MMOBegin, MMOEnd);
   10041   }
   10042 
   10043   // Naked functions never have a base pointer, and so we use r1. For all
   10044   // other functions, this decision must be delayed until during PEI.
   10045   unsigned BaseReg;
   10046   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
   10047     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
   10048   else
   10049     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
   10050 
   10051   MIB = BuildMI(*thisMBB, MI, DL,
   10052                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
   10053             .addReg(BaseReg)
   10054             .addImm(BPOffset)
   10055             .addReg(BufReg);
   10056   MIB.setMemRefs(MMOBegin, MMOEnd);
   10057 
   10058   // Setup
   10059   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
   10060   MIB.addRegMask(TRI->getNoPreservedMask());
   10061 
   10062   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
   10063 
   10064   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
   10065           .addMBB(mainMBB);
   10066   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
   10067 
   10068   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
   10069   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
   10070 
   10071   // mainMBB:
   10072   //  mainDstReg = 0
   10073   MIB =
   10074       BuildMI(mainMBB, DL,
   10075               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
   10076 
   10077   // Store IP
   10078   if (Subtarget.isPPC64()) {
   10079     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
   10080             .addReg(LabelReg)
   10081             .addImm(LabelOffset)
   10082             .addReg(BufReg);
   10083   } else {
   10084     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
   10085             .addReg(LabelReg)
   10086             .addImm(LabelOffset)
   10087             .addReg(BufReg);
   10088   }
   10089 
   10090   MIB.setMemRefs(MMOBegin, MMOEnd);
   10091 
   10092   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
   10093   mainMBB->addSuccessor(sinkMBB);
   10094 
   10095   // sinkMBB:
   10096   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   10097           TII->get(PPC::PHI), DstReg)
   10098     .addReg(mainDstReg).addMBB(mainMBB)
   10099     .addReg(restoreDstReg).addMBB(thisMBB);
   10100 
   10101   MI.eraseFromParent();
   10102   return sinkMBB;
   10103 }
   10104 
   10105 MachineBasicBlock *
   10106 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
   10107                                      MachineBasicBlock *MBB) const {
   10108   DebugLoc DL = MI.getDebugLoc();
   10109   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   10110 
   10111   MachineFunction *MF = MBB->getParent();
   10112   MachineRegisterInfo &MRI = MF->getRegInfo();
   10113 
   10114   // Memory Reference
   10115   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
   10116   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
   10117 
   10118   MVT PVT = getPointerTy(MF->getDataLayout());
   10119   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   10120          "Invalid Pointer Size!");
   10121 
   10122   const TargetRegisterClass *RC =
   10123     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   10124   unsigned Tmp = MRI.createVirtualRegister(RC);
   10125   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   10126   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
   10127   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
   10128   unsigned BP =
   10129       (PVT == MVT::i64)
   10130           ? PPC::X30
   10131           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
   10132                                                               : PPC::R30);
   10133 
   10134   MachineInstrBuilder MIB;
   10135 
   10136   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   10137   const int64_t SPOffset    = 2 * PVT.getStoreSize();
   10138   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   10139   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   10140 
   10141   unsigned BufReg = MI.getOperand(0).getReg();
   10142 
   10143   // Reload FP (the jumped-to function may not have had a
   10144   // frame pointer, and if so, then its r31 will be restored
   10145   // as necessary).
   10146   if (PVT == MVT::i64) {
   10147     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
   10148             .addImm(0)
   10149             .addReg(BufReg);
   10150   } else {
   10151     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
   10152             .addImm(0)
   10153             .addReg(BufReg);
   10154   }
   10155   MIB.setMemRefs(MMOBegin, MMOEnd);
   10156 
   10157   // Reload IP
   10158   if (PVT == MVT::i64) {
   10159     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
   10160             .addImm(LabelOffset)
   10161             .addReg(BufReg);
   10162   } else {
   10163     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
   10164             .addImm(LabelOffset)
   10165             .addReg(BufReg);
   10166   }
   10167   MIB.setMemRefs(MMOBegin, MMOEnd);
   10168 
   10169   // Reload SP
   10170   if (PVT == MVT::i64) {
   10171     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
   10172             .addImm(SPOffset)
   10173             .addReg(BufReg);
   10174   } else {
   10175     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
   10176             .addImm(SPOffset)
   10177             .addReg(BufReg);
   10178   }
   10179   MIB.setMemRefs(MMOBegin, MMOEnd);
   10180 
   10181   // Reload BP
   10182   if (PVT == MVT::i64) {
   10183     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
   10184             .addImm(BPOffset)
   10185             .addReg(BufReg);
   10186   } else {
   10187     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
   10188             .addImm(BPOffset)
   10189             .addReg(BufReg);
   10190   }
   10191   MIB.setMemRefs(MMOBegin, MMOEnd);
   10192 
   10193   // Reload TOC
   10194   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
   10195     setUsesTOCBasePtr(*MBB->getParent());
   10196     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
   10197             .addImm(TOCOffset)
   10198             .addReg(BufReg);
   10199 
   10200     MIB.setMemRefs(MMOBegin, MMOEnd);
   10201   }
   10202 
   10203   // Jump
   10204   BuildMI(*MBB, MI, DL,
   10205           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
   10206   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
   10207 
   10208   MI.eraseFromParent();
   10209   return MBB;
   10210 }
   10211 
   10212 MachineBasicBlock *
   10213 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   10214                                                MachineBasicBlock *BB) const {
   10215   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
   10216       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
   10217     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
   10218         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
   10219       // Call lowering should have added an r2 operand to indicate a dependence
   10220       // on the TOC base pointer value. It can't however, because there is no
   10221       // way to mark the dependence as implicit there, and so the stackmap code
   10222       // will confuse it with a regular operand. Instead, add the dependence
   10223       // here.
   10224       setUsesTOCBasePtr(*BB->getParent());
   10225       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
   10226     }
   10227 
   10228     return emitPatchPoint(MI, BB);
   10229   }
   10230 
   10231   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
   10232       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
   10233     return emitEHSjLjSetJmp(MI, BB);
   10234   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
   10235              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
   10236     return emitEHSjLjLongJmp(MI, BB);
   10237   }
   10238 
   10239   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   10240 
   10241   // To "insert" these instructions we actually have to insert their
   10242   // control-flow patterns.
   10243   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   10244   MachineFunction::iterator It = ++BB->getIterator();
   10245 
   10246   MachineFunction *F = BB->getParent();
   10247 
   10248   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
   10249        MI.getOpcode() == PPC::SELECT_CC_I8 ||
   10250        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
   10251     SmallVector<MachineOperand, 2> Cond;
   10252     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
   10253         MI.getOpcode() == PPC::SELECT_CC_I8)
   10254       Cond.push_back(MI.getOperand(4));
   10255     else
   10256       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
   10257     Cond.push_back(MI.getOperand(1));
   10258 
   10259     DebugLoc dl = MI.getDebugLoc();
   10260     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
   10261                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
   10262   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
   10263              MI.getOpcode() == PPC::SELECT_CC_I8 ||
   10264              MI.getOpcode() == PPC::SELECT_CC_F4 ||
   10265              MI.getOpcode() == PPC::SELECT_CC_F8 ||
   10266              MI.getOpcode() == PPC::SELECT_CC_F16 ||
   10267              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
   10268              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
   10269              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
   10270              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
   10271              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
   10272              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
   10273              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
   10274              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
   10275              MI.getOpcode() == PPC::SELECT_CC_SPE ||
   10276              MI.getOpcode() == PPC::SELECT_I4 ||
   10277              MI.getOpcode() == PPC::SELECT_I8 ||
   10278              MI.getOpcode() == PPC::SELECT_F4 ||
   10279              MI.getOpcode() == PPC::SELECT_F8 ||
   10280              MI.getOpcode() == PPC::SELECT_F16 ||
   10281              MI.getOpcode() == PPC::SELECT_QFRC ||
   10282              MI.getOpcode() == PPC::SELECT_QSRC ||
   10283              MI.getOpcode() == PPC::SELECT_QBRC ||
   10284              MI.getOpcode() == PPC::SELECT_SPE ||
   10285              MI.getOpcode() == PPC::SELECT_SPE4 ||
   10286              MI.getOpcode() == PPC::SELECT_VRRC ||
   10287              MI.getOpcode() == PPC::SELECT_VSFRC ||
   10288              MI.getOpcode() == PPC::SELECT_VSSRC ||
   10289              MI.getOpcode() == PPC::SELECT_VSRC) {
   10290     // The incoming instruction knows the destination vreg to set, the
   10291     // condition code register to branch on, the true/false values to
   10292     // select between, and a branch opcode to use.
   10293 
   10294     //  thisMBB:
   10295     //  ...
   10296     //   TrueVal = ...
   10297     //   cmpTY ccX, r1, r2
   10298     //   bCC copy1MBB
   10299     //   fallthrough --> copy0MBB
   10300     MachineBasicBlock *thisMBB = BB;
   10301     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   10302     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10303     DebugLoc dl = MI.getDebugLoc();
   10304     F->insert(It, copy0MBB);
   10305     F->insert(It, sinkMBB);
   10306 
   10307     // Transfer the remainder of BB and its successor edges to sinkMBB.
   10308     sinkMBB->splice(sinkMBB->begin(), BB,
   10309                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   10310     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   10311 
   10312     // Next, add the true and fallthrough blocks as its successors.
   10313     BB->addSuccessor(copy0MBB);
   10314     BB->addSuccessor(sinkMBB);
   10315 
   10316     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
   10317         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
   10318         MI.getOpcode() == PPC::SELECT_F16 ||
   10319         MI.getOpcode() == PPC::SELECT_SPE4 ||
   10320         MI.getOpcode() == PPC::SELECT_SPE ||
   10321         MI.getOpcode() == PPC::SELECT_QFRC ||
   10322         MI.getOpcode() == PPC::SELECT_QSRC ||
   10323         MI.getOpcode() == PPC::SELECT_QBRC ||
   10324         MI.getOpcode() == PPC::SELECT_VRRC ||
   10325         MI.getOpcode() == PPC::SELECT_VSFRC ||
   10326         MI.getOpcode() == PPC::SELECT_VSSRC ||
   10327         MI.getOpcode() == PPC::SELECT_VSRC) {
   10328       BuildMI(BB, dl, TII->get(PPC::BC))
   10329           .addReg(MI.getOperand(1).getReg())
   10330           .addMBB(sinkMBB);
   10331     } else {
   10332       unsigned SelectPred = MI.getOperand(4).getImm();
   10333       BuildMI(BB, dl, TII->get(PPC::BCC))
   10334           .addImm(SelectPred)
   10335           .addReg(MI.getOperand(1).getReg())
   10336           .addMBB(sinkMBB);
   10337     }
   10338 
   10339     //  copy0MBB:
   10340     //   %FalseValue = ...
   10341     //   # fallthrough to sinkMBB
   10342     BB = copy0MBB;
   10343 
   10344     // Update machine-CFG edges
   10345     BB->addSuccessor(sinkMBB);
   10346 
   10347     //  sinkMBB:
   10348     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   10349     //  ...
   10350     BB = sinkMBB;
   10351     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
   10352         .addReg(MI.getOperand(3).getReg())
   10353         .addMBB(copy0MBB)
   10354         .addReg(MI.getOperand(2).getReg())
   10355         .addMBB(thisMBB);
   10356   } else if (MI.getOpcode() == PPC::ReadTB) {
   10357     // To read the 64-bit time-base register on a 32-bit target, we read the
   10358     // two halves. Should the counter have wrapped while it was being read, we
   10359     // need to try again.
   10360     // ...
   10361     // readLoop:
   10362     // mfspr Rx,TBU # load from TBU
   10363     // mfspr Ry,TB  # load from TB
   10364     // mfspr Rz,TBU # load from TBU
   10365     // cmpw crX,Rx,Rz # check if 'old'='new'
   10366     // bne readLoop   # branch if they're not equal
   10367     // ...
   10368 
   10369     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10370     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10371     DebugLoc dl = MI.getDebugLoc();
   10372     F->insert(It, readMBB);
   10373     F->insert(It, sinkMBB);
   10374 
   10375     // Transfer the remainder of BB and its successor edges to sinkMBB.
   10376     sinkMBB->splice(sinkMBB->begin(), BB,
   10377                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   10378     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   10379 
   10380     BB->addSuccessor(readMBB);
   10381     BB = readMBB;
   10382 
   10383     MachineRegisterInfo &RegInfo = F->getRegInfo();
   10384     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
   10385     unsigned LoReg = MI.getOperand(0).getReg();
   10386     unsigned HiReg = MI.getOperand(1).getReg();
   10387 
   10388     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
   10389     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
   10390     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
   10391 
   10392     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   10393 
   10394     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
   10395       .addReg(HiReg).addReg(ReadAgainReg);
   10396     BuildMI(BB, dl, TII->get(PPC::BCC))
   10397       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
   10398 
   10399     BB->addSuccessor(readMBB);
   10400     BB->addSuccessor(sinkMBB);
   10401   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   10402     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   10403   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   10404     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   10405   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   10406     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
   10407   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   10408     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
   10409 
   10410   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   10411     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   10412   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   10413     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   10414   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   10415     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
   10416   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   10417     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
   10418 
   10419   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   10420     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   10421   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   10422     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   10423   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   10424     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
   10425   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   10426     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
   10427 
   10428   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   10429     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   10430   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   10431     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   10432   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   10433     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
   10434   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   10435     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
   10436 
   10437   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   10438     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
   10439   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   10440     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
   10441   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   10442     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
   10443   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   10444     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
   10445 
   10446   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   10447     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   10448   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   10449     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   10450   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   10451     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
   10452   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   10453     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
   10454 
   10455   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
   10456     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
   10457   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
   10458     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
   10459   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
   10460     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
   10461   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
   10462     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
   10463 
   10464   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
   10465     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
   10466   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
   10467     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
   10468   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
   10469     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
   10470   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
   10471     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
   10472 
   10473   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
   10474     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
   10475   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
   10476     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
   10477   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
   10478     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
   10479   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
   10480     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
   10481 
   10482   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
   10483     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
   10484   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
   10485     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
   10486   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
   10487     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
   10488   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
   10489     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
   10490 
   10491   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
   10492     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   10493   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
   10494     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   10495   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
   10496     BB = EmitAtomicBinary(MI, BB, 4, 0);
   10497   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
   10498     BB = EmitAtomicBinary(MI, BB, 8, 0);
   10499   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   10500            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
   10501            (Subtarget.hasPartwordAtomics() &&
   10502             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
   10503            (Subtarget.hasPartwordAtomics() &&
   10504             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
   10505     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   10506 
   10507     auto LoadMnemonic = PPC::LDARX;
   10508     auto StoreMnemonic = PPC::STDCX;
   10509     switch (MI.getOpcode()) {
   10510     default:
   10511       llvm_unreachable("Compare and swap of unknown size");
   10512     case PPC::ATOMIC_CMP_SWAP_I8:
   10513       LoadMnemonic = PPC::LBARX;
   10514       StoreMnemonic = PPC::STBCX;
   10515       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   10516       break;
   10517     case PPC::ATOMIC_CMP_SWAP_I16:
   10518       LoadMnemonic = PPC::LHARX;
   10519       StoreMnemonic = PPC::STHCX;
   10520       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   10521       break;
   10522     case PPC::ATOMIC_CMP_SWAP_I32:
   10523       LoadMnemonic = PPC::LWARX;
   10524       StoreMnemonic = PPC::STWCX;
   10525       break;
   10526     case PPC::ATOMIC_CMP_SWAP_I64:
   10527       LoadMnemonic = PPC::LDARX;
   10528       StoreMnemonic = PPC::STDCX;
   10529       break;
   10530     }
   10531     unsigned dest = MI.getOperand(0).getReg();
   10532     unsigned ptrA = MI.getOperand(1).getReg();
   10533     unsigned ptrB = MI.getOperand(2).getReg();
   10534     unsigned oldval = MI.getOperand(3).getReg();
   10535     unsigned newval = MI.getOperand(4).getReg();
   10536     DebugLoc dl = MI.getDebugLoc();
   10537 
   10538     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   10539     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   10540     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10541     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10542     F->insert(It, loop1MBB);
   10543     F->insert(It, loop2MBB);
   10544     F->insert(It, midMBB);
   10545     F->insert(It, exitMBB);
   10546     exitMBB->splice(exitMBB->begin(), BB,
   10547                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   10548     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   10549 
   10550     //  thisMBB:
   10551     //   ...
   10552     //   fallthrough --> loopMBB
   10553     BB->addSuccessor(loop1MBB);
   10554 
   10555     // loop1MBB:
   10556     //   l[bhwd]arx dest, ptr
   10557     //   cmp[wd] dest, oldval
   10558     //   bne- midMBB
   10559     // loop2MBB:
   10560     //   st[bhwd]cx. newval, ptr
   10561     //   bne- loopMBB
   10562     //   b exitBB
   10563     // midMBB:
   10564     //   st[bhwd]cx. dest, ptr
   10565     // exitBB:
   10566     BB = loop1MBB;
   10567     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   10568       .addReg(ptrA).addReg(ptrB);
   10569     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   10570       .addReg(oldval).addReg(dest);
   10571     BuildMI(BB, dl, TII->get(PPC::BCC))
   10572       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   10573     BB->addSuccessor(loop2MBB);
   10574     BB->addSuccessor(midMBB);
   10575 
   10576     BB = loop2MBB;
   10577     BuildMI(BB, dl, TII->get(StoreMnemonic))
   10578       .addReg(newval).addReg(ptrA).addReg(ptrB);
   10579     BuildMI(BB, dl, TII->get(PPC::BCC))
   10580       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   10581     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   10582     BB->addSuccessor(loop1MBB);
   10583     BB->addSuccessor(exitMBB);
   10584 
   10585     BB = midMBB;
   10586     BuildMI(BB, dl, TII->get(StoreMnemonic))
   10587       .addReg(dest).addReg(ptrA).addReg(ptrB);
   10588     BB->addSuccessor(exitMBB);
   10589 
   10590     //  exitMBB:
   10591     //   ...
   10592     BB = exitMBB;
   10593   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   10594              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   10595     // We must use 64-bit registers for addresses when targeting 64-bit,
   10596     // since we're actually doing arithmetic on them.  Other registers
   10597     // can be 32-bit.
   10598     bool is64bit = Subtarget.isPPC64();
   10599     bool isLittleEndian = Subtarget.isLittleEndian();
   10600     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   10601 
   10602     unsigned dest = MI.getOperand(0).getReg();
   10603     unsigned ptrA = MI.getOperand(1).getReg();
   10604     unsigned ptrB = MI.getOperand(2).getReg();
   10605     unsigned oldval = MI.getOperand(3).getReg();
   10606     unsigned newval = MI.getOperand(4).getReg();
   10607     DebugLoc dl = MI.getDebugLoc();
   10608 
   10609     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   10610     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   10611     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10612     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   10613     F->insert(It, loop1MBB);
   10614     F->insert(It, loop2MBB);
   10615     F->insert(It, midMBB);
   10616     F->insert(It, exitMBB);
   10617     exitMBB->splice(exitMBB->begin(), BB,
   10618                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   10619     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   10620 
   10621     MachineRegisterInfo &RegInfo = F->getRegInfo();
   10622     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   10623                                             : &PPC::GPRCRegClass;
   10624     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   10625     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   10626     unsigned ShiftReg =
   10627       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
   10628     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   10629     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   10630     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   10631     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   10632     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   10633     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   10634     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   10635     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   10636     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   10637     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   10638     unsigned Ptr1Reg;
   10639     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   10640     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   10641     //  thisMBB:
   10642     //   ...
   10643     //   fallthrough --> loopMBB
   10644     BB->addSuccessor(loop1MBB);
   10645 
   10646     // The 4-byte load must be aligned, while a char or short may be
   10647     // anywhere in the word.  Hence all this nasty bookkeeping code.
   10648     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   10649     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   10650     //   xori shift, shift1, 24 [16]
   10651     //   rlwinm ptr, ptr1, 0, 0, 29
   10652     //   slw newval2, newval, shift
   10653     //   slw oldval2, oldval,shift
   10654     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   10655     //   slw mask, mask2, shift
   10656     //   and newval3, newval2, mask
   10657     //   and oldval3, oldval2, mask
   10658     // loop1MBB:
   10659     //   lwarx tmpDest, ptr
   10660     //   and tmp, tmpDest, mask
   10661     //   cmpw tmp, oldval3
   10662     //   bne- midMBB
   10663     // loop2MBB:
   10664     //   andc tmp2, tmpDest, mask
   10665     //   or tmp4, tmp2, newval3
   10666     //   stwcx. tmp4, ptr
   10667     //   bne- loop1MBB
   10668     //   b exitBB
   10669     // midMBB:
   10670     //   stwcx. tmpDest, ptr
   10671     // exitBB:
   10672     //   srw dest, tmpDest, shift
   10673     if (ptrA != ZeroReg) {
   10674       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   10675       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   10676         .addReg(ptrA).addReg(ptrB);
   10677     } else {
   10678       Ptr1Reg = ptrB;
   10679     }
   10680     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   10681         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   10682     if (!isLittleEndian)
   10683       BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   10684           .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   10685     if (is64bit)
   10686       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   10687         .addReg(Ptr1Reg).addImm(0).addImm(61);
   10688     else
   10689       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   10690         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   10691     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   10692         .addReg(newval).addReg(ShiftReg);
   10693     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   10694         .addReg(oldval).addReg(ShiftReg);
   10695     if (is8bit)
   10696       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   10697     else {
   10698       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   10699       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   10700         .addReg(Mask3Reg).addImm(65535);
   10701     }
   10702     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   10703         .addReg(Mask2Reg).addReg(ShiftReg);
   10704     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   10705         .addReg(NewVal2Reg).addReg(MaskReg);
   10706     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   10707         .addReg(OldVal2Reg).addReg(MaskReg);
   10708 
   10709     BB = loop1MBB;
   10710     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   10711         .addReg(ZeroReg).addReg(PtrReg);
   10712     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   10713         .addReg(TmpDestReg).addReg(MaskReg);
   10714     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   10715         .addReg(TmpReg).addReg(OldVal3Reg);
   10716     BuildMI(BB, dl, TII->get(PPC::BCC))
   10717         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   10718     BB->addSuccessor(loop2MBB);
   10719     BB->addSuccessor(midMBB);
   10720 
   10721     BB = loop2MBB;
   10722     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   10723         .addReg(TmpDestReg).addReg(MaskReg);
   10724     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   10725         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   10726     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   10727         .addReg(ZeroReg).addReg(PtrReg);
   10728     BuildMI(BB, dl, TII->get(PPC::BCC))
   10729       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   10730     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   10731     BB->addSuccessor(loop1MBB);
   10732     BB->addSuccessor(exitMBB);
   10733 
   10734     BB = midMBB;
   10735     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   10736       .addReg(ZeroReg).addReg(PtrReg);
   10737     BB->addSuccessor(exitMBB);
   10738 
   10739     //  exitMBB:
   10740     //   ...
   10741     BB = exitMBB;
   10742     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   10743       .addReg(ShiftReg);
   10744   } else if (MI.getOpcode() == PPC::FADDrtz) {
   10745     // This pseudo performs an FADD with rounding mode temporarily forced
   10746     // to round-to-zero.  We emit this via custom inserter since the FPSCR
   10747     // is not modeled at the SelectionDAG level.
   10748     unsigned Dest = MI.getOperand(0).getReg();
   10749     unsigned Src1 = MI.getOperand(1).getReg();
   10750     unsigned Src2 = MI.getOperand(2).getReg();
   10751     DebugLoc dl = MI.getDebugLoc();
   10752 
   10753     MachineRegisterInfo &RegInfo = F->getRegInfo();
   10754     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
   10755 
   10756     // Save FPSCR value.
   10757     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
   10758 
   10759     // Set rounding mode to round-to-zero.
   10760     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
   10761     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
   10762 
   10763     // Perform addition.
   10764     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
   10765 
   10766     // Restore FPSCR value.
   10767     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
   10768   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   10769              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
   10770              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   10771              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
   10772     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   10773                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
   10774                           ? PPC::ANDIo8
   10775                           : PPC::ANDIo;
   10776     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   10777                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
   10778 
   10779     MachineRegisterInfo &RegInfo = F->getRegInfo();
   10780     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
   10781                                                   &PPC::GPRCRegClass :
   10782                                                   &PPC::G8RCRegClass);
   10783 
   10784     DebugLoc dl = MI.getDebugLoc();
   10785     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
   10786         .addReg(MI.getOperand(1).getReg())
   10787         .addImm(1);
   10788     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
   10789             MI.getOperand(0).getReg())
   10790         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
   10791   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
   10792     DebugLoc Dl = MI.getDebugLoc();
   10793     MachineRegisterInfo &RegInfo = F->getRegInfo();
   10794     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   10795     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
   10796     return BB;
   10797   } else {
   10798     llvm_unreachable("Unexpected instr type to insert");
   10799   }
   10800 
   10801   MI.eraseFromParent(); // The pseudo instruction is gone now.
   10802   return BB;
   10803 }
   10804 
   10805 //===----------------------------------------------------------------------===//
   10806 // Target Optimization Hooks
   10807 //===----------------------------------------------------------------------===//
   10808 
   10809 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
   10810   // For the estimates, convergence is quadratic, so we essentially double the
   10811   // number of digits correct after every iteration. For both FRE and FRSQRTE,
   10812   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
   10813   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
   10814   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
   10815   if (VT.getScalarType() == MVT::f64)
   10816     RefinementSteps++;
   10817   return RefinementSteps;
   10818 }
   10819 
   10820 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
   10821                                            int Enabled, int &RefinementSteps,
   10822                                            bool &UseOneConstNR,
   10823                                            bool Reciprocal) const {
   10824   EVT VT = Operand.getValueType();
   10825   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
   10826       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
   10827       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   10828       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   10829       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   10830       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   10831     if (RefinementSteps == ReciprocalEstimate::Unspecified)
   10832       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
   10833 
   10834     UseOneConstNR = true;
   10835     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
   10836   }
   10837   return SDValue();
   10838 }
   10839 
   10840 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
   10841                                             int Enabled,
   10842                                             int &RefinementSteps) const {
   10843   EVT VT = Operand.getValueType();
   10844   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
   10845       (VT == MVT::f64 && Subtarget.hasFRE()) ||
   10846       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   10847       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   10848       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   10849       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   10850     if (RefinementSteps == ReciprocalEstimate::Unspecified)
   10851       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
   10852     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
   10853   }
   10854   return SDValue();
   10855 }
   10856 
   10857 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
   10858   // Note: This functionality is used only when unsafe-fp-math is enabled, and
   10859   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
   10860   // enabled for division), this functionality is redundant with the default
   10861   // combiner logic (once the division -> reciprocal/multiply transformation
   10862   // has taken place). As a result, this matters more for older cores than for
   10863   // newer ones.
   10864 
   10865   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
   10866   // reciprocal if there are two or more FDIVs (for embedded cores with only
   10867   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
   10868   switch (Subtarget.getDarwinDirective()) {
   10869   default:
   10870     return 3;
   10871   case PPC::DIR_440:
   10872   case PPC::DIR_A2:
   10873   case PPC::DIR_E500:
   10874   case PPC::DIR_E500mc:
   10875   case PPC::DIR_E5500:
   10876     return 2;
   10877   }
   10878 }
   10879 
   10880 // isConsecutiveLSLoc needs to work even if all adds have not yet been
   10881 // collapsed, and so we need to look through chains of them.
   10882 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
   10883                                      int64_t& Offset, SelectionDAG &DAG) {
   10884   if (DAG.isBaseWithConstantOffset(Loc)) {
   10885     Base = Loc.getOperand(0);
   10886     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
   10887 
   10888     // The base might itself be a base plus an offset, and if so, accumulate
   10889     // that as well.
   10890     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
   10891   }
   10892 }
   10893 
   10894 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
   10895                             unsigned Bytes, int Dist,
   10896                             SelectionDAG &DAG) {
   10897   if (VT.getSizeInBits() / 8 != Bytes)
   10898     return false;
   10899 
   10900   SDValue BaseLoc = Base->getBasePtr();
   10901   if (Loc.getOpcode() == ISD::FrameIndex) {
   10902     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   10903       return false;
   10904     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   10905     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   10906     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   10907     int FS  = MFI.getObjectSize(FI);
   10908     int BFS = MFI.getObjectSize(BFI);
   10909     if (FS != BFS || FS != (int)Bytes) return false;
   10910     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
   10911   }
   10912 
   10913   SDValue Base1 = Loc, Base2 = BaseLoc;
   10914   int64_t Offset1 = 0, Offset2 = 0;
   10915   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
   10916   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
   10917   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
   10918     return true;
   10919 
   10920   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10921   const GlobalValue *GV1 = nullptr;
   10922   const GlobalValue *GV2 = nullptr;
   10923   Offset1 = 0;
   10924   Offset2 = 0;
   10925   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   10926   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   10927   if (isGA1 && isGA2 && GV1 == GV2)
   10928     return Offset1 == (Offset2 + Dist*Bytes);
   10929   return false;
   10930 }
   10931 
   10932 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
   10933 // not enforce equality of the chain operands.
   10934 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
   10935                             unsigned Bytes, int Dist,
   10936                             SelectionDAG &DAG) {
   10937   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
   10938     EVT VT = LS->getMemoryVT();
   10939     SDValue Loc = LS->getBasePtr();
   10940     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
   10941   }
   10942 
   10943   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
   10944     EVT VT;
   10945     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10946     default: return false;
   10947     case Intrinsic::ppc_qpx_qvlfd:
   10948     case Intrinsic::ppc_qpx_qvlfda:
   10949       VT = MVT::v4f64;
   10950       break;
   10951     case Intrinsic::ppc_qpx_qvlfs:
   10952     case Intrinsic::ppc_qpx_qvlfsa:
   10953       VT = MVT::v4f32;
   10954       break;
   10955     case Intrinsic::ppc_qpx_qvlfcd:
   10956     case Intrinsic::ppc_qpx_qvlfcda:
   10957       VT = MVT::v2f64;
   10958       break;
   10959     case Intrinsic::ppc_qpx_qvlfcs:
   10960     case Intrinsic::ppc_qpx_qvlfcsa:
   10961       VT = MVT::v2f32;
   10962       break;
   10963     case Intrinsic::ppc_qpx_qvlfiwa:
   10964     case Intrinsic::ppc_qpx_qvlfiwz:
   10965     case Intrinsic::ppc_altivec_lvx:
   10966     case Intrinsic::ppc_altivec_lvxl:
   10967     case Intrinsic::ppc_vsx_lxvw4x:
   10968     case Intrinsic::ppc_vsx_lxvw4x_be:
   10969       VT = MVT::v4i32;
   10970       break;
   10971     case Intrinsic::ppc_vsx_lxvd2x:
   10972     case Intrinsic::ppc_vsx_lxvd2x_be:
   10973       VT = MVT::v2f64;
   10974       break;
   10975     case Intrinsic::ppc_altivec_lvebx:
   10976       VT = MVT::i8;
   10977       break;
   10978     case Intrinsic::ppc_altivec_lvehx:
   10979       VT = MVT::i16;
   10980       break;
   10981     case Intrinsic::ppc_altivec_lvewx:
   10982       VT = MVT::i32;
   10983       break;
   10984     }
   10985 
   10986     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
   10987   }
   10988 
   10989   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
   10990     EVT VT;
   10991     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10992     default: return false;
   10993     case Intrinsic::ppc_qpx_qvstfd:
   10994     case Intrinsic::ppc_qpx_qvstfda:
   10995       VT = MVT::v4f64;
   10996       break;
   10997     case Intrinsic::ppc_qpx_qvstfs:
   10998     case Intrinsic::ppc_qpx_qvstfsa:
   10999       VT = MVT::v4f32;
   11000       break;
   11001     case Intrinsic::ppc_qpx_qvstfcd:
   11002     case Intrinsic::ppc_qpx_qvstfcda:
   11003       VT = MVT::v2f64;
   11004       break;
   11005     case Intrinsic::ppc_qpx_qvstfcs:
   11006     case Intrinsic::ppc_qpx_qvstfcsa:
   11007       VT = MVT::v2f32;
   11008       break;
   11009     case Intrinsic::ppc_qpx_qvstfiw:
   11010     case Intrinsic::ppc_qpx_qvstfiwa:
   11011     case Intrinsic::ppc_altivec_stvx:
   11012     case Intrinsic::ppc_altivec_stvxl:
   11013     case Intrinsic::ppc_vsx_stxvw4x:
   11014       VT = MVT::v4i32;
   11015       break;
   11016     case Intrinsic::ppc_vsx_stxvd2x:
   11017       VT = MVT::v2f64;
   11018       break;
   11019     case Intrinsic::ppc_vsx_stxvw4x_be:
   11020       VT = MVT::v4i32;
   11021       break;
   11022     case Intrinsic::ppc_vsx_stxvd2x_be:
   11023       VT = MVT::v2f64;
   11024       break;
   11025     case Intrinsic::ppc_altivec_stvebx:
   11026       VT = MVT::i8;
   11027       break;
   11028     case Intrinsic::ppc_altivec_stvehx:
   11029       VT = MVT::i16;
   11030       break;
   11031     case Intrinsic::ppc_altivec_stvewx:
   11032       VT = MVT::i32;
   11033       break;
   11034     }
   11035 
   11036     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
   11037   }
   11038 
   11039   return false;
   11040 }
   11041 
   11042 // Return true is there is a nearyby consecutive load to the one provided
   11043 // (regardless of alignment). We search up and down the chain, looking though
   11044 // token factors and other loads (but nothing else). As a result, a true result
   11045 // indicates that it is safe to create a new consecutive load adjacent to the
   11046 // load provided.
   11047 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
   11048   SDValue Chain = LD->getChain();
   11049   EVT VT = LD->getMemoryVT();
   11050 
   11051   SmallSet<SDNode *, 16> LoadRoots;
   11052   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
   11053   SmallSet<SDNode *, 16> Visited;
   11054 
   11055   // First, search up the chain, branching to follow all token-factor operands.
   11056   // If we find a consecutive load, then we're done, otherwise, record all
   11057   // nodes just above the top-level loads and token factors.
   11058   while (!Queue.empty()) {
   11059     SDNode *ChainNext = Queue.pop_back_val();
   11060     if (!Visited.insert(ChainNext).second)
   11061       continue;
   11062 
   11063     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
   11064       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   11065         return true;
   11066 
   11067       if (!Visited.count(ChainLD->getChain().getNode()))
   11068         Queue.push_back(ChainLD->getChain().getNode());
   11069     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
   11070       for (const SDUse &O : ChainNext->ops())
   11071         if (!Visited.count(O.getNode()))
   11072           Queue.push_back(O.getNode());
   11073     } else
   11074       LoadRoots.insert(ChainNext);
   11075   }
   11076 
   11077   // Second, search down the chain, starting from the top-level nodes recorded
   11078   // in the first phase. These top-level nodes are the nodes just above all
   11079   // loads and token factors. Starting with their uses, recursively look though
   11080   // all loads (just the chain uses) and token factors to find a consecutive
   11081   // load.
   11082   Visited.clear();
   11083   Queue.clear();
   11084 
   11085   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
   11086        IE = LoadRoots.end(); I != IE; ++I) {
   11087     Queue.push_back(*I);
   11088 
   11089     while (!Queue.empty()) {
   11090       SDNode *LoadRoot = Queue.pop_back_val();
   11091       if (!Visited.insert(LoadRoot).second)
   11092         continue;
   11093 
   11094       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
   11095         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   11096           return true;
   11097 
   11098       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
   11099            UE = LoadRoot->use_end(); UI != UE; ++UI)
   11100         if (((isa<MemSDNode>(*UI) &&
   11101             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
   11102             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
   11103           Queue.push_back(*UI);
   11104     }
   11105   }
   11106 
   11107   return false;
   11108 }
   11109 
   11110 /// This function is called when we have proved that a SETCC node can be replaced
   11111 /// by subtraction (and other supporting instructions) so that the result of
   11112 /// comparison is kept in a GPR instead of CR. This function is purely for
   11113 /// codegen purposes and has some flags to guide the codegen process.
   11114 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
   11115                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
   11116   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
   11117 
   11118   // Zero extend the operands to the largest legal integer. Originally, they
   11119   // must be of a strictly smaller size.
   11120   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
   11121                          DAG.getConstant(Size, DL, MVT::i32));
   11122   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
   11123                          DAG.getConstant(Size, DL, MVT::i32));
   11124 
   11125   // Swap if needed. Depends on the condition code.
   11126   if (Swap)
   11127     std::swap(Op0, Op1);
   11128 
   11129   // Subtract extended integers.
   11130   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
   11131 
   11132   // Move the sign bit to the least significant position and zero out the rest.
   11133   // Now the least significant bit carries the result of original comparison.
   11134   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
   11135                              DAG.getConstant(Size - 1, DL, MVT::i32));
   11136   auto Final = Shifted;
   11137 
   11138   // Complement the result if needed. Based on the condition code.
   11139   if (Complement)
   11140     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
   11141                         DAG.getConstant(1, DL, MVT::i64));
   11142 
   11143   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
   11144 }
   11145 
   11146 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
   11147                                                   DAGCombinerInfo &DCI) const {
   11148   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
   11149 
   11150   SelectionDAG &DAG = DCI.DAG;
   11151   SDLoc DL(N);
   11152 
   11153   // Size of integers being compared has a critical role in the following
   11154   // analysis, so we prefer to do this when all types are legal.
   11155   if (!DCI.isAfterLegalizeDAG())
   11156     return SDValue();
   11157 
   11158   // If all users of SETCC extend its value to a legal integer type
   11159   // then we replace SETCC with a subtraction
   11160   for (SDNode::use_iterator UI = N->use_begin(),
   11161        UE = N->use_end(); UI != UE; ++UI) {
   11162     if (UI->getOpcode() != ISD::ZERO_EXTEND)
   11163       return SDValue();
   11164   }
   11165 
   11166   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   11167   auto OpSize = N->getOperand(0).getValueSizeInBits();
   11168 
   11169   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
   11170 
   11171   if (OpSize < Size) {
   11172     switch (CC) {
   11173     default: break;
   11174     case ISD::SETULT:
   11175       return generateEquivalentSub(N, Size, false, false, DL, DAG);
   11176     case ISD::SETULE:
   11177       return generateEquivalentSub(N, Size, true, true, DL, DAG);
   11178     case ISD::SETUGT:
   11179       return generateEquivalentSub(N, Size, false, true, DL, DAG);
   11180     case ISD::SETUGE:
   11181       return generateEquivalentSub(N, Size, true, false, DL, DAG);
   11182     }
   11183   }
   11184 
   11185   return SDValue();
   11186 }
   11187 
   11188 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
   11189                                                   DAGCombinerInfo &DCI) const {
   11190   SelectionDAG &DAG = DCI.DAG;
   11191   SDLoc dl(N);
   11192 
   11193   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
   11194   // If we're tracking CR bits, we need to be careful that we don't have:
   11195   //   trunc(binary-ops(zext(x), zext(y)))
   11196   // or
   11197   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
   11198   // such that we're unnecessarily moving things into GPRs when it would be
   11199   // better to keep them in CR bits.
   11200 
   11201   // Note that trunc here can be an actual i1 trunc, or can be the effective
   11202   // truncation that comes from a setcc or select_cc.
   11203   if (N->getOpcode() == ISD::TRUNCATE &&
   11204       N->getValueType(0) != MVT::i1)
   11205     return SDValue();
   11206 
   11207   if (N->getOperand(0).getValueType() != MVT::i32 &&
   11208       N->getOperand(0).getValueType() != MVT::i64)
   11209     return SDValue();
   11210 
   11211   if (N->getOpcode() == ISD::SETCC ||
   11212       N->getOpcode() == ISD::SELECT_CC) {
   11213     // If we're looking at a comparison, then we need to make sure that the
   11214     // high bits (all except for the first) don't matter the result.
   11215     ISD::CondCode CC =
   11216       cast<CondCodeSDNode>(N->getOperand(
   11217         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
   11218     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
   11219 
   11220     if (ISD::isSignedIntSetCC(CC)) {
   11221       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
   11222           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
   11223         return SDValue();
   11224     } else if (ISD::isUnsignedIntSetCC(CC)) {
   11225       if (!DAG.MaskedValueIsZero(N->getOperand(0),
   11226                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
   11227           !DAG.MaskedValueIsZero(N->getOperand(1),
   11228                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
   11229         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
   11230                                              : SDValue());
   11231     } else {
   11232       // This is neither a signed nor an unsigned comparison, just make sure
   11233       // that the high bits are equal.
   11234       KnownBits Op1Known, Op2Known;
   11235       DAG.computeKnownBits(N->getOperand(0), Op1Known);
   11236       DAG.computeKnownBits(N->getOperand(1), Op2Known);
   11237 
   11238       // We don't really care about what is known about the first bit (if
   11239       // anything), so clear it in all masks prior to comparing them.
   11240       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
   11241       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
   11242 
   11243       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
   11244         return SDValue();
   11245     }
   11246   }
   11247 
   11248   // We now know that the higher-order bits are irrelevant, we just need to
   11249   // make sure that all of the intermediate operations are bit operations, and
   11250   // all inputs are extensions.
   11251   if (N->getOperand(0).getOpcode() != ISD::AND &&
   11252       N->getOperand(0).getOpcode() != ISD::OR  &&
   11253       N->getOperand(0).getOpcode() != ISD::XOR &&
   11254       N->getOperand(0).getOpcode() != ISD::SELECT &&
   11255       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
   11256       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
   11257       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
   11258       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
   11259       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
   11260     return SDValue();
   11261 
   11262   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
   11263       N->getOperand(1).getOpcode() != ISD::AND &&
   11264       N->getOperand(1).getOpcode() != ISD::OR  &&
   11265       N->getOperand(1).getOpcode() != ISD::XOR &&
   11266       N->getOperand(1).getOpcode() != ISD::SELECT &&
   11267       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
   11268       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
   11269       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
   11270       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
   11271       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
   11272     return SDValue();
   11273 
   11274   SmallVector<SDValue, 4> Inputs;
   11275   SmallVector<SDValue, 8> BinOps, PromOps;
   11276   SmallPtrSet<SDNode *, 16> Visited;
   11277 
   11278   for (unsigned i = 0; i < 2; ++i) {
   11279     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   11280           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   11281           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   11282           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   11283         isa<ConstantSDNode>(N->getOperand(i)))
   11284       Inputs.push_back(N->getOperand(i));
   11285     else
   11286       BinOps.push_back(N->getOperand(i));
   11287 
   11288     if (N->getOpcode() == ISD::TRUNCATE)
   11289       break;
   11290   }
   11291 
   11292   // Visit all inputs, collect all binary operations (and, or, xor and
   11293   // select) that are all fed by extensions.
   11294   while (!BinOps.empty()) {
   11295     SDValue BinOp = BinOps.back();
   11296     BinOps.pop_back();
   11297 
   11298     if (!Visited.insert(BinOp.getNode()).second)
   11299       continue;
   11300 
   11301     PromOps.push_back(BinOp);
   11302 
   11303     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   11304       // The condition of the select is not promoted.
   11305       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   11306         continue;
   11307       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   11308         continue;
   11309 
   11310       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   11311             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   11312             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   11313            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   11314           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   11315         Inputs.push_back(BinOp.getOperand(i));
   11316       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   11317                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   11318                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   11319                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   11320                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
   11321                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   11322                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   11323                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   11324                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
   11325         BinOps.push_back(BinOp.getOperand(i));
   11326       } else {
   11327         // We have an input that is not an extension or another binary
   11328         // operation; we'll abort this transformation.
   11329         return SDValue();
   11330       }
   11331     }
   11332   }
   11333 
   11334   // Make sure that this is a self-contained cluster of operations (which
   11335   // is not quite the same thing as saying that everything has only one
   11336   // use).
   11337   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   11338     if (isa<ConstantSDNode>(Inputs[i]))
   11339       continue;
   11340 
   11341     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   11342                               UE = Inputs[i].getNode()->use_end();
   11343          UI != UE; ++UI) {
   11344       SDNode *User = *UI;
   11345       if (User != N && !Visited.count(User))
   11346         return SDValue();
   11347 
   11348       // Make sure that we're not going to promote the non-output-value
   11349       // operand(s) or SELECT or SELECT_CC.
   11350       // FIXME: Although we could sometimes handle this, and it does occur in
   11351       // practice that one of the condition inputs to the select is also one of
   11352       // the outputs, we currently can't deal with this.
   11353       if (User->getOpcode() == ISD::SELECT) {
   11354         if (User->getOperand(0) == Inputs[i])
   11355           return SDValue();
   11356       } else if (User->getOpcode() == ISD::SELECT_CC) {
   11357         if (User->getOperand(0) == Inputs[i] ||
   11358             User->getOperand(1) == Inputs[i])
   11359           return SDValue();
   11360       }
   11361     }
   11362   }
   11363 
   11364   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   11365     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   11366                               UE = PromOps[i].getNode()->use_end();
   11367          UI != UE; ++UI) {
   11368       SDNode *User = *UI;
   11369       if (User != N && !Visited.count(User))
   11370         return SDValue();
   11371 
   11372       // Make sure that we're not going to promote the non-output-value
   11373       // operand(s) or SELECT or SELECT_CC.
   11374       // FIXME: Although we could sometimes handle this, and it does occur in
   11375       // practice that one of the condition inputs to the select is also one of
   11376       // the outputs, we currently can't deal with this.
   11377       if (User->getOpcode() == ISD::SELECT) {
   11378         if (User->getOperand(0) == PromOps[i])
   11379           return SDValue();
   11380       } else if (User->getOpcode() == ISD::SELECT_CC) {
   11381         if (User->getOperand(0) == PromOps[i] ||
   11382             User->getOperand(1) == PromOps[i])
   11383           return SDValue();
   11384       }
   11385     }
   11386   }
   11387 
   11388   // Replace all inputs with the extension operand.
   11389   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   11390     // Constants may have users outside the cluster of to-be-promoted nodes,
   11391     // and so we need to replace those as we do the promotions.
   11392     if (isa<ConstantSDNode>(Inputs[i]))
   11393       continue;
   11394     else
   11395       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
   11396   }
   11397 
   11398   std::list<HandleSDNode> PromOpHandles;
   11399   for (auto &PromOp : PromOps)
   11400     PromOpHandles.emplace_back(PromOp);
   11401 
   11402   // Replace all operations (these are all the same, but have a different
   11403   // (i1) return type). DAG.getNode will validate that the types of
   11404   // a binary operator match, so go through the list in reverse so that
   11405   // we've likely promoted both operands first. Any intermediate truncations or
   11406   // extensions disappear.
   11407   while (!PromOpHandles.empty()) {
   11408     SDValue PromOp = PromOpHandles.back().getValue();
   11409     PromOpHandles.pop_back();
   11410 
   11411     if (PromOp.getOpcode() == ISD::TRUNCATE ||
   11412         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
   11413         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
   11414         PromOp.getOpcode() == ISD::ANY_EXTEND) {
   11415       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
   11416           PromOp.getOperand(0).getValueType() != MVT::i1) {
   11417         // The operand is not yet ready (see comment below).
   11418         PromOpHandles.emplace_front(PromOp);
   11419         continue;
   11420       }
   11421 
   11422       SDValue RepValue = PromOp.getOperand(0);
   11423       if (isa<ConstantSDNode>(RepValue))
   11424         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
   11425 
   11426       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
   11427       continue;
   11428     }
   11429 
   11430     unsigned C;
   11431     switch (PromOp.getOpcode()) {
   11432     default:             C = 0; break;
   11433     case ISD::SELECT:    C = 1; break;
   11434     case ISD::SELECT_CC: C = 2; break;
   11435     }
   11436 
   11437     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   11438          PromOp.getOperand(C).getValueType() != MVT::i1) ||
   11439         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   11440          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
   11441       // The to-be-promoted operands of this node have not yet been
   11442       // promoted (this should be rare because we're going through the
   11443       // list backward, but if one of the operands has several users in
   11444       // this cluster of to-be-promoted nodes, it is possible).
   11445       PromOpHandles.emplace_front(PromOp);
   11446       continue;
   11447     }
   11448 
   11449     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   11450                                 PromOp.getNode()->op_end());
   11451 
   11452     // If there are any constant inputs, make sure they're replaced now.
   11453     for (unsigned i = 0; i < 2; ++i)
   11454       if (isa<ConstantSDNode>(Ops[C+i]))
   11455         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
   11456 
   11457     DAG.ReplaceAllUsesOfValueWith(PromOp,
   11458       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
   11459   }
   11460 
   11461   // Now we're left with the initial truncation itself.
   11462   if (N->getOpcode() == ISD::TRUNCATE)
   11463     return N->getOperand(0);
   11464 
   11465   // Otherwise, this is a comparison. The operands to be compared have just
   11466   // changed type (to i1), but everything else is the same.
   11467   return SDValue(N, 0);
   11468 }
   11469 
   11470 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
   11471                                                   DAGCombinerInfo &DCI) const {
   11472   SelectionDAG &DAG = DCI.DAG;
   11473   SDLoc dl(N);
   11474 
   11475   // If we're tracking CR bits, we need to be careful that we don't have:
   11476   //   zext(binary-ops(trunc(x), trunc(y)))
   11477   // or
   11478   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
   11479   // such that we're unnecessarily moving things into CR bits that can more
   11480   // efficiently stay in GPRs. Note that if we're not certain that the high
   11481   // bits are set as required by the final extension, we still may need to do
   11482   // some masking to get the proper behavior.
   11483 
   11484   // This same functionality is important on PPC64 when dealing with
   11485   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
   11486   // the return values of functions. Because it is so similar, it is handled
   11487   // here as well.
   11488 
   11489   if (N->getValueType(0) != MVT::i32 &&
   11490       N->getValueType(0) != MVT::i64)
   11491     return SDValue();
   11492 
   11493   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
   11494         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
   11495     return SDValue();
   11496 
   11497   if (N->getOperand(0).getOpcode() != ISD::AND &&
   11498       N->getOperand(0).getOpcode() != ISD::OR  &&
   11499       N->getOperand(0).getOpcode() != ISD::XOR &&
   11500       N->getOperand(0).getOpcode() != ISD::SELECT &&
   11501       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
   11502     return SDValue();
   11503 
   11504   SmallVector<SDValue, 4> Inputs;
   11505   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
   11506   SmallPtrSet<SDNode *, 16> Visited;
   11507 
   11508   // Visit all inputs, collect all binary operations (and, or, xor and
   11509   // select) that are all fed by truncations.
   11510   while (!BinOps.empty()) {
   11511     SDValue BinOp = BinOps.back();
   11512     BinOps.pop_back();
   11513 
   11514     if (!Visited.insert(BinOp.getNode()).second)
   11515       continue;
   11516 
   11517     PromOps.push_back(BinOp);
   11518 
   11519     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   11520       // The condition of the select is not promoted.
   11521       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   11522         continue;
   11523       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   11524         continue;
   11525 
   11526       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   11527           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   11528         Inputs.push_back(BinOp.getOperand(i));
   11529       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   11530                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   11531                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   11532                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   11533                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
   11534         BinOps.push_back(BinOp.getOperand(i));
   11535       } else {
   11536         // We have an input that is not a truncation or another binary
   11537         // operation; we'll abort this transformation.
   11538         return SDValue();
   11539       }
   11540     }
   11541   }
   11542 
   11543   // The operands of a select that must be truncated when the select is
   11544   // promoted because the operand is actually part of the to-be-promoted set.
   11545   DenseMap<SDNode *, EVT> SelectTruncOp[2];
   11546 
   11547   // Make sure that this is a self-contained cluster of operations (which
   11548   // is not quite the same thing as saying that everything has only one
   11549   // use).
   11550   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   11551     if (isa<ConstantSDNode>(Inputs[i]))
   11552       continue;
   11553 
   11554     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   11555                               UE = Inputs[i].getNode()->use_end();
   11556          UI != UE; ++UI) {
   11557       SDNode *User = *UI;
   11558       if (User != N && !Visited.count(User))
   11559         return SDValue();
   11560 
   11561       // If we're going to promote the non-output-value operand(s) or SELECT or
   11562       // SELECT_CC, record them for truncation.
   11563       if (User->getOpcode() == ISD::SELECT) {
   11564         if (User->getOperand(0) == Inputs[i])
   11565           SelectTruncOp[0].insert(std::make_pair(User,
   11566                                     User->getOperand(0).getValueType()));
   11567       } else if (User->getOpcode() == ISD::SELECT_CC) {
   11568         if (User->getOperand(0) == Inputs[i])
   11569           SelectTruncOp[0].insert(std::make_pair(User,
   11570                                     User->getOperand(0).getValueType()));
   11571         if (User->getOperand(1) == Inputs[i])
   11572           SelectTruncOp[1].insert(std::make_pair(User,
   11573                                     User->getOperand(1).getValueType()));
   11574       }
   11575     }
   11576   }
   11577 
   11578   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   11579     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   11580                               UE = PromOps[i].getNode()->use_end();
   11581          UI != UE; ++UI) {
   11582       SDNode *User = *UI;
   11583       if (User != N && !Visited.count(User))
   11584         return SDValue();
   11585 
   11586       // If we're going to promote the non-output-value operand(s) or SELECT or
   11587       // SELECT_CC, record them for truncation.
   11588       if (User->getOpcode() == ISD::SELECT) {
   11589         if (User->getOperand(0) == PromOps[i])
   11590           SelectTruncOp[0].insert(std::make_pair(User,
   11591                                     User->getOperand(0).getValueType()));
   11592       } else if (User->getOpcode() == ISD::SELECT_CC) {
   11593         if (User->getOperand(0) == PromOps[i])
   11594           SelectTruncOp[0].insert(std::make_pair(User,
   11595                                     User->getOperand(0).getValueType()));
   11596         if (User->getOperand(1) == PromOps[i])
   11597           SelectTruncOp[1].insert(std::make_pair(User,
   11598                                     User->getOperand(1).getValueType()));
   11599       }
   11600     }
   11601   }
   11602 
   11603   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
   11604   bool ReallyNeedsExt = false;
   11605   if (N->getOpcode() != ISD::ANY_EXTEND) {
   11606     // If all of the inputs are not already sign/zero extended, then
   11607     // we'll still need to do that at the end.
   11608     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   11609       if (isa<ConstantSDNode>(Inputs[i]))
   11610         continue;
   11611 
   11612       unsigned OpBits =
   11613         Inputs[i].getOperand(0).getValueSizeInBits();
   11614       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
   11615 
   11616       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
   11617            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
   11618                                   APInt::getHighBitsSet(OpBits,
   11619                                                         OpBits-PromBits))) ||
   11620           (N->getOpcode() == ISD::SIGN_EXTEND &&
   11621            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
   11622              (OpBits-(PromBits-1)))) {
   11623         ReallyNeedsExt = true;
   11624         break;
   11625       }
   11626     }
   11627   }
   11628 
   11629   // Replace all inputs, either with the truncation operand, or a
   11630   // truncation or extension to the final output type.
   11631   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   11632     // Constant inputs need to be replaced with the to-be-promoted nodes that
   11633     // use them because they might have users outside of the cluster of
   11634     // promoted nodes.
   11635     if (isa<ConstantSDNode>(Inputs[i]))
   11636       continue;
   11637 
   11638     SDValue InSrc = Inputs[i].getOperand(0);
   11639     if (Inputs[i].getValueType() == N->getValueType(0))
   11640       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
   11641     else if (N->getOpcode() == ISD::SIGN_EXTEND)
   11642       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   11643         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
   11644     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   11645       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   11646         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
   11647     else
   11648       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   11649         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
   11650   }
   11651 
   11652   std::list<HandleSDNode> PromOpHandles;
   11653   for (auto &PromOp : PromOps)
   11654     PromOpHandles.emplace_back(PromOp);
   11655 
   11656   // Replace all operations (these are all the same, but have a different
   11657   // (promoted) return type). DAG.getNode will validate that the types of
   11658   // a binary operator match, so go through the list in reverse so that
   11659   // we've likely promoted both operands first.
   11660   while (!PromOpHandles.empty()) {
   11661     SDValue PromOp = PromOpHandles.back().getValue();
   11662     PromOpHandles.pop_back();
   11663 
   11664     unsigned C;
   11665     switch (PromOp.getOpcode()) {
   11666     default:             C = 0; break;
   11667     case ISD::SELECT:    C = 1; break;
   11668     case ISD::SELECT_CC: C = 2; break;
   11669     }
   11670 
   11671     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   11672          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
   11673         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   11674          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
   11675       // The to-be-promoted operands of this node have not yet been
   11676       // promoted (this should be rare because we're going through the
   11677       // list backward, but if one of the operands has several users in
   11678       // this cluster of to-be-promoted nodes, it is possible).
   11679       PromOpHandles.emplace_front(PromOp);
   11680       continue;
   11681     }
   11682 
   11683     // For SELECT and SELECT_CC nodes, we do a similar check for any
   11684     // to-be-promoted comparison inputs.
   11685     if (PromOp.getOpcode() == ISD::SELECT ||
   11686         PromOp.getOpcode() == ISD::SELECT_CC) {
   11687       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
   11688            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
   11689           (SelectTruncOp[1].count(PromOp.getNode()) &&
   11690            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
   11691         PromOpHandles.emplace_front(PromOp);
   11692         continue;
   11693       }
   11694     }
   11695 
   11696     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   11697                                 PromOp.getNode()->op_end());
   11698 
   11699     // If this node has constant inputs, then they'll need to be promoted here.
   11700     for (unsigned i = 0; i < 2; ++i) {
   11701       if (!isa<ConstantSDNode>(Ops[C+i]))
   11702         continue;
   11703       if (Ops[C+i].getValueType() == N->getValueType(0))
   11704         continue;
   11705 
   11706       if (N->getOpcode() == ISD::SIGN_EXTEND)
   11707         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   11708       else if (N->getOpcode() == ISD::ZERO_EXTEND)
   11709         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   11710       else
   11711         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   11712     }
   11713 
   11714     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
   11715     // truncate them again to the original value type.
   11716     if (PromOp.getOpcode() == ISD::SELECT ||
   11717         PromOp.getOpcode() == ISD::SELECT_CC) {
   11718       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
   11719       if (SI0 != SelectTruncOp[0].end())
   11720         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
   11721       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
   11722       if (SI1 != SelectTruncOp[1].end())
   11723         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
   11724     }
   11725 
   11726     DAG.ReplaceAllUsesOfValueWith(PromOp,
   11727       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
   11728   }
   11729 
   11730   // Now we're left with the initial extension itself.
   11731   if (!ReallyNeedsExt)
   11732     return N->getOperand(0);
   11733 
   11734   // To zero extend, just mask off everything except for the first bit (in the
   11735   // i1 case).
   11736   if (N->getOpcode() == ISD::ZERO_EXTEND)
   11737     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
   11738                        DAG.getConstant(APInt::getLowBitsSet(
   11739                                          N->getValueSizeInBits(0), PromBits),
   11740                                        dl, N->getValueType(0)));
   11741 
   11742   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
   11743          "Invalid extension type");
   11744   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
   11745   SDValue ShiftCst =
   11746       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
   11747   return DAG.getNode(
   11748       ISD::SRA, dl, N->getValueType(0),
   11749       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
   11750       ShiftCst);
   11751 }
   11752 
   11753 // Is this an extending load from an f32 to an f64?
   11754 static bool isFPExtLoad(SDValue Op) {
   11755   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
   11756     return LD->getExtensionType() == ISD::EXTLOAD &&
   11757       Op.getValueType() == MVT::f64;
   11758   return false;
   11759 }
   11760 
   11761 /// Reduces the number of fp-to-int conversion when building a vector.
   11762 ///
   11763 /// If this vector is built out of floating to integer conversions,
   11764 /// transform it to a vector built out of floating point values followed by a
   11765 /// single floating to integer conversion of the vector.
   11766 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
   11767 /// becomes (fptosi (build_vector ($A, $B, ...)))
   11768 SDValue PPCTargetLowering::
   11769 combineElementTruncationToVectorTruncation(SDNode *N,
   11770                                            DAGCombinerInfo &DCI) const {
   11771   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
   11772          "Should be called with a BUILD_VECTOR node");
   11773 
   11774   SelectionDAG &DAG = DCI.DAG;
   11775   SDLoc dl(N);
   11776 
   11777   SDValue FirstInput = N->getOperand(0);
   11778   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
   11779          "The input operand must be an fp-to-int conversion.");
   11780 
   11781   // This combine happens after legalization so the fp_to_[su]i nodes are
   11782   // already converted to PPCSISD nodes.
   11783   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
   11784   if (FirstConversion == PPCISD::FCTIDZ ||
   11785       FirstConversion == PPCISD::FCTIDUZ ||
   11786       FirstConversion == PPCISD::FCTIWZ ||
   11787       FirstConversion == PPCISD::FCTIWUZ) {
   11788     bool IsSplat = true;
   11789     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
   11790       FirstConversion == PPCISD::FCTIWUZ;
   11791     EVT SrcVT = FirstInput.getOperand(0).getValueType();
   11792     SmallVector<SDValue, 4> Ops;
   11793     EVT TargetVT = N->getValueType(0);
   11794     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
   11795       SDValue NextOp = N->getOperand(i);
   11796       if (NextOp.getOpcode() != PPCISD::MFVSR)
   11797         return SDValue();
   11798       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
   11799       if (NextConversion != FirstConversion)
   11800         return SDValue();
   11801       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
   11802       // This is not valid if the input was originally double precision. It is
   11803       // also not profitable to do unless this is an extending load in which
   11804       // case doing this combine will allow us to combine consecutive loads.
   11805       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
   11806         return SDValue();
   11807       if (N->getOperand(i) != FirstInput)
   11808         IsSplat = false;
   11809     }
   11810 
   11811     // If this is a splat, we leave it as-is since there will be only a single
   11812     // fp-to-int conversion followed by a splat of the integer. This is better
   11813     // for 32-bit and smaller ints and neutral for 64-bit ints.
   11814     if (IsSplat)
   11815       return SDValue();
   11816 
   11817     // Now that we know we have the right type of node, get its operands
   11818     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
   11819       SDValue In = N->getOperand(i).getOperand(0);
   11820       if (Is32Bit) {
   11821         // For 32-bit values, we need to add an FP_ROUND node (if we made it
   11822         // here, we know that all inputs are extending loads so this is safe).
   11823         if (In.isUndef())
   11824           Ops.push_back(DAG.getUNDEF(SrcVT));
   11825         else {
   11826           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
   11827                                       MVT::f32, In.getOperand(0),
   11828                                       DAG.getIntPtrConstant(1, dl));
   11829           Ops.push_back(Trunc);
   11830         }
   11831       } else
   11832         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
   11833     }
   11834 
   11835     unsigned Opcode;
   11836     if (FirstConversion == PPCISD::FCTIDZ ||
   11837         FirstConversion == PPCISD::FCTIWZ)
   11838       Opcode = ISD::FP_TO_SINT;
   11839     else
   11840       Opcode = ISD::FP_TO_UINT;
   11841 
   11842     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
   11843     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
   11844     return DAG.getNode(Opcode, dl, TargetVT, BV);
   11845   }
   11846   return SDValue();
   11847 }
   11848 
   11849 /// Reduce the number of loads when building a vector.
   11850 ///
   11851 /// Building a vector out of multiple loads can be converted to a load
   11852 /// of the vector type if the loads are consecutive. If the loads are
   11853 /// consecutive but in descending order, a shuffle is added at the end
   11854 /// to reorder the vector.
   11855 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
   11856   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
   11857          "Should be called with a BUILD_VECTOR node");
   11858 
   11859   SDLoc dl(N);
   11860   bool InputsAreConsecutiveLoads = true;
   11861   bool InputsAreReverseConsecutive = true;
   11862   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
   11863   SDValue FirstInput = N->getOperand(0);
   11864   bool IsRoundOfExtLoad = false;
   11865 
   11866   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
   11867       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
   11868     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
   11869     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
   11870   }
   11871   // Not a build vector of (possibly fp_rounded) loads.
   11872   if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
   11873     return SDValue();
   11874 
   11875   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
   11876     // If any inputs are fp_round(extload), they all must be.
   11877     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
   11878       return SDValue();
   11879 
   11880     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
   11881       N->getOperand(i);
   11882     if (NextInput.getOpcode() != ISD::LOAD)
   11883       return SDValue();
   11884 
   11885     SDValue PreviousInput =
   11886       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
   11887     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
   11888     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
   11889 
   11890     // If any inputs are fp_round(extload), they all must be.
   11891     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
   11892       return SDValue();
   11893 
   11894     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
   11895       InputsAreConsecutiveLoads = false;
   11896     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
   11897       InputsAreReverseConsecutive = false;
   11898 
   11899     // Exit early if the loads are neither consecutive nor reverse consecutive.
   11900     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
   11901       return SDValue();
   11902   }
   11903 
   11904   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
   11905          "The loads cannot be both consecutive and reverse consecutive.");
   11906 
   11907   SDValue FirstLoadOp =
   11908     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
   11909   SDValue LastLoadOp =
   11910     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
   11911                        N->getOperand(N->getNumOperands()-1);
   11912 
   11913   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
   11914   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
   11915   if (InputsAreConsecutiveLoads) {
   11916     assert(LD1 && "Input needs to be a LoadSDNode.");
   11917     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
   11918                        LD1->getBasePtr(), LD1->getPointerInfo(),
   11919                        LD1->getAlignment());
   11920   }
   11921   if (InputsAreReverseConsecutive) {
   11922     assert(LDL && "Input needs to be a LoadSDNode.");
   11923     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
   11924                                LDL->getBasePtr(), LDL->getPointerInfo(),
   11925                                LDL->getAlignment());
   11926     SmallVector<int, 16> Ops;
   11927     for (int i = N->getNumOperands() - 1; i >= 0; i--)
   11928       Ops.push_back(i);
   11929 
   11930     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
   11931                                 DAG.getUNDEF(N->getValueType(0)), Ops);
   11932   }
   11933   return SDValue();
   11934 }
   11935 
   11936 // This function adds the required vector_shuffle needed to get
   11937 // the elements of the vector extract in the correct position
   11938 // as specified by the CorrectElems encoding.
   11939 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
   11940                                       SDValue Input, uint64_t Elems,
   11941                                       uint64_t CorrectElems) {
   11942   SDLoc dl(N);
   11943 
   11944   unsigned NumElems = Input.getValueType().getVectorNumElements();
   11945   SmallVector<int, 16> ShuffleMask(NumElems, -1);
   11946 
   11947   // Knowing the element indices being extracted from the original
   11948   // vector and the order in which they're being inserted, just put
   11949   // them at element indices required for the instruction.
   11950   for (unsigned i = 0; i < N->getNumOperands(); i++) {
   11951     if (DAG.getDataLayout().isLittleEndian())
   11952       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
   11953     else
   11954       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
   11955     CorrectElems = CorrectElems >> 8;
   11956     Elems = Elems >> 8;
   11957   }
   11958 
   11959   SDValue Shuffle =
   11960       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
   11961                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
   11962 
   11963   EVT Ty = N->getValueType(0);
   11964   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
   11965   return BV;
   11966 }
   11967 
   11968 // Look for build vector patterns where input operands come from sign
   11969 // extended vector_extract elements of specific indices. If the correct indices
   11970 // aren't used, add a vector shuffle to fix up the indices and create a new
   11971 // PPCISD:SExtVElems node which selects the vector sign extend instructions
   11972 // during instruction selection.
   11973 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
   11974   // This array encodes the indices that the vector sign extend instructions
   11975   // extract from when extending from one type to another for both BE and LE.
   11976   // The right nibble of each byte corresponds to the LE incides.
   11977   // and the left nibble of each byte corresponds to the BE incides.
   11978   // For example: 0x3074B8FC  byte->word
   11979   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
   11980   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
   11981   // For example: 0x000070F8  byte->double word
   11982   // For LE: the allowed indices are: 0x0,0x8
   11983   // For BE: the allowed indices are: 0x7,0xF
   11984   uint64_t TargetElems[] = {
   11985       0x3074B8FC, // b->w
   11986       0x000070F8, // b->d
   11987       0x10325476, // h->w
   11988       0x00003074, // h->d
   11989       0x00001032, // w->d
   11990   };
   11991 
   11992   uint64_t Elems = 0;
   11993   int Index;
   11994   SDValue Input;
   11995 
   11996   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
   11997     if (!Op)
   11998       return false;
   11999     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
   12000         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
   12001       return false;
   12002 
   12003     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
   12004     // of the right width.
   12005     SDValue Extract = Op.getOperand(0);
   12006     if (Extract.getOpcode() == ISD::ANY_EXTEND)
   12007       Extract = Extract.getOperand(0);
   12008     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   12009       return false;
   12010 
   12011     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
   12012     if (!ExtOp)
   12013       return false;
   12014 
   12015     Index = ExtOp->getZExtValue();
   12016     if (Input && Input != Extract.getOperand(0))
   12017       return false;
   12018 
   12019     if (!Input)
   12020       Input = Extract.getOperand(0);
   12021 
   12022     Elems = Elems << 8;
   12023     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
   12024     Elems |= Index;
   12025 
   12026     return true;
   12027   };
   12028 
   12029   // If the build vector operands aren't sign extended vector extracts,
   12030   // of the same input vector, then return.
   12031   for (unsigned i = 0; i < N->getNumOperands(); i++) {
   12032     if (!isSExtOfVecExtract(N->getOperand(i))) {
   12033       return SDValue();
   12034     }
   12035   }
   12036 
   12037   // If the vector extract indicies are not correct, add the appropriate
   12038   // vector_shuffle.
   12039   int TgtElemArrayIdx;
   12040   int InputSize = Input.getValueType().getScalarSizeInBits();
   12041   int OutputSize = N->getValueType(0).getScalarSizeInBits();
   12042   if (InputSize + OutputSize == 40)
   12043     TgtElemArrayIdx = 0;
   12044   else if (InputSize + OutputSize == 72)
   12045     TgtElemArrayIdx = 1;
   12046   else if (InputSize + OutputSize == 48)
   12047     TgtElemArrayIdx = 2;
   12048   else if (InputSize + OutputSize == 80)
   12049     TgtElemArrayIdx = 3;
   12050   else if (InputSize + OutputSize == 96)
   12051     TgtElemArrayIdx = 4;
   12052   else
   12053     return SDValue();
   12054 
   12055   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
   12056   CorrectElems = DAG.getDataLayout().isLittleEndian()
   12057                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
   12058                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
   12059   if (Elems != CorrectElems) {
   12060     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
   12061   }
   12062 
   12063   // Regular lowering will catch cases where a shuffle is not needed.
   12064   return SDValue();
   12065 }
   12066 
   12067 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
   12068                                                  DAGCombinerInfo &DCI) const {
   12069   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
   12070          "Should be called with a BUILD_VECTOR node");
   12071 
   12072   SelectionDAG &DAG = DCI.DAG;
   12073   SDLoc dl(N);
   12074 
   12075   if (!Subtarget.hasVSX())
   12076     return SDValue();
   12077 
   12078   // The target independent DAG combiner will leave a build_vector of
   12079   // float-to-int conversions intact. We can generate MUCH better code for
   12080   // a float-to-int conversion of a vector of floats.
   12081   SDValue FirstInput = N->getOperand(0);
   12082   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
   12083     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
   12084     if (Reduced)
   12085       return Reduced;
   12086   }
   12087 
   12088   // If we're building a vector out of consecutive loads, just load that
   12089   // vector type.
   12090   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
   12091   if (Reduced)
   12092     return Reduced;
   12093 
   12094   // If we're building a vector out of extended elements from another vector
   12095   // we have P9 vector integer extend instructions. The code assumes legal
   12096   // input types (i.e. it can't handle things like v4i16) so do not run before
   12097   // legalization.
   12098   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
   12099     Reduced = combineBVOfVecSExt(N, DAG);
   12100     if (Reduced)
   12101       return Reduced;
   12102   }
   12103 
   12104 
   12105   if (N->getValueType(0) != MVT::v2f64)
   12106     return SDValue();
   12107 
   12108   // Looking for:
   12109   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
   12110   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
   12111       FirstInput.getOpcode() != ISD::UINT_TO_FP)
   12112     return SDValue();
   12113   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
   12114       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
   12115     return SDValue();
   12116   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
   12117     return SDValue();
   12118 
   12119   SDValue Ext1 = FirstInput.getOperand(0);
   12120   SDValue Ext2 = N->getOperand(1).getOperand(0);
   12121   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   12122      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   12123     return SDValue();
   12124 
   12125   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
   12126   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
   12127   if (!Ext1Op || !Ext2Op)
   12128     return SDValue();
   12129   if (Ext1.getValueType() != MVT::i32 ||
   12130       Ext2.getValueType() != MVT::i32)
   12131   if (Ext1.getOperand(0) != Ext2.getOperand(0))
   12132     return SDValue();
   12133 
   12134   int FirstElem = Ext1Op->getZExtValue();
   12135   int SecondElem = Ext2Op->getZExtValue();
   12136   int SubvecIdx;
   12137   if (FirstElem == 0 && SecondElem == 1)
   12138     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
   12139   else if (FirstElem == 2 && SecondElem == 3)
   12140     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
   12141   else
   12142     return SDValue();
   12143 
   12144   SDValue SrcVec = Ext1.getOperand(0);
   12145   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
   12146     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
   12147   return DAG.getNode(NodeType, dl, MVT::v2f64,
   12148                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
   12149 }
   12150 
   12151 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
   12152                                               DAGCombinerInfo &DCI) const {
   12153   assert((N->getOpcode() == ISD::SINT_TO_FP ||
   12154           N->getOpcode() == ISD::UINT_TO_FP) &&
   12155          "Need an int -> FP conversion node here");
   12156 
   12157   if (useSoftFloat() || !Subtarget.has64BitSupport())
   12158     return SDValue();
   12159 
   12160   SelectionDAG &DAG = DCI.DAG;
   12161   SDLoc dl(N);
   12162   SDValue Op(N, 0);
   12163 
   12164   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
   12165   // from the hardware.
   12166   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   12167     return SDValue();
   12168   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
   12169       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
   12170     return SDValue();
   12171 
   12172   SDValue FirstOperand(Op.getOperand(0));
   12173   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
   12174     (FirstOperand.getValueType() == MVT::i8 ||
   12175      FirstOperand.getValueType() == MVT::i16);
   12176   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
   12177     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
   12178     bool DstDouble = Op.getValueType() == MVT::f64;
   12179     unsigned ConvOp = Signed ?
   12180       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
   12181       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
   12182     SDValue WidthConst =
   12183       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
   12184                             dl, false);
   12185     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
   12186     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
   12187     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
   12188                                          DAG.getVTList(MVT::f64, MVT::Other),
   12189                                          Ops, MVT::i8, LDN->getMemOperand());
   12190 
   12191     // For signed conversion, we need to sign-extend the value in the VSR
   12192     if (Signed) {
   12193       SDValue ExtOps[] = { Ld, WidthConst };
   12194       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
   12195       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
   12196     } else
   12197       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
   12198   }
   12199 
   12200 
   12201   // For i32 intermediate values, unfortunately, the conversion functions
   12202   // leave the upper 32 bits of the value are undefined. Within the set of
   12203   // scalar instructions, we have no method for zero- or sign-extending the
   12204   // value. Thus, we cannot handle i32 intermediate values here.
   12205   if (Op.getOperand(0).getValueType() == MVT::i32)
   12206     return SDValue();
   12207 
   12208   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   12209          "UINT_TO_FP is supported only with FPCVT");
   12210 
   12211   // If we have FCFIDS, then use it when converting to single-precision.
   12212   // Otherwise, convert to double-precision and then round.
   12213   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   12214                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   12215                                                             : PPCISD::FCFIDS)
   12216                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   12217                                                             : PPCISD::FCFID);
   12218   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   12219                   ? MVT::f32
   12220                   : MVT::f64;
   12221 
   12222   // If we're converting from a float, to an int, and back to a float again,
   12223   // then we don't need the store/load pair at all.
   12224   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
   12225        Subtarget.hasFPCVT()) ||
   12226       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
   12227     SDValue Src = Op.getOperand(0).getOperand(0);
   12228     if (Src.getValueType() == MVT::f32) {
   12229       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   12230       DCI.AddToWorklist(Src.getNode());
   12231     } else if (Src.getValueType() != MVT::f64) {
   12232       // Make sure that we don't pick up a ppc_fp128 source value.
   12233       return SDValue();
   12234     }
   12235 
   12236     unsigned FCTOp =
   12237       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   12238                                                         PPCISD::FCTIDUZ;
   12239 
   12240     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
   12241     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
   12242 
   12243     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
   12244       FP = DAG.getNode(ISD::FP_ROUND, dl,
   12245                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
   12246       DCI.AddToWorklist(FP.getNode());
   12247     }
   12248 
   12249     return FP;
   12250   }
   12251 
   12252   return SDValue();
   12253 }
   12254 
   12255 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
   12256 // builtins) into loads with swaps.
   12257 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
   12258                                               DAGCombinerInfo &DCI) const {
   12259   SelectionDAG &DAG = DCI.DAG;
   12260   SDLoc dl(N);
   12261   SDValue Chain;
   12262   SDValue Base;
   12263   MachineMemOperand *MMO;
   12264 
   12265   switch (N->getOpcode()) {
   12266   default:
   12267     llvm_unreachable("Unexpected opcode for little endian VSX load");
   12268   case ISD::LOAD: {
   12269     LoadSDNode *LD = cast<LoadSDNode>(N);
   12270     Chain = LD->getChain();
   12271     Base = LD->getBasePtr();
   12272     MMO = LD->getMemOperand();
   12273     // If the MMO suggests this isn't a load of a full vector, leave
   12274     // things alone.  For a built-in, we have to make the change for
   12275     // correctness, so if there is a size problem that will be a bug.
   12276     if (MMO->getSize() < 16)
   12277       return SDValue();
   12278     break;
   12279   }
   12280   case ISD::INTRINSIC_W_CHAIN: {
   12281     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   12282     Chain = Intrin->getChain();
   12283     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
   12284     // us what we want. Get operand 2 instead.
   12285     Base = Intrin->getOperand(2);
   12286     MMO = Intrin->getMemOperand();
   12287     break;
   12288   }
   12289   }
   12290 
   12291   MVT VecTy = N->getValueType(0).getSimpleVT();
   12292 
   12293   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
   12294   // aligned and the type is a vector with elements up to 4 bytes
   12295   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
   12296       && VecTy.getScalarSizeInBits() <= 32 ) {
   12297     return SDValue();
   12298   }
   12299 
   12300   SDValue LoadOps[] = { Chain, Base };
   12301   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
   12302                                          DAG.getVTList(MVT::v2f64, MVT::Other),
   12303                                          LoadOps, MVT::v2f64, MMO);
   12304 
   12305   DCI.AddToWorklist(Load.getNode());
   12306   Chain = Load.getValue(1);
   12307   SDValue Swap = DAG.getNode(
   12308       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
   12309   DCI.AddToWorklist(Swap.getNode());
   12310 
   12311   // Add a bitcast if the resulting load type doesn't match v2f64.
   12312   if (VecTy != MVT::v2f64) {
   12313     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
   12314     DCI.AddToWorklist(N.getNode());
   12315     // Package {bitcast value, swap's chain} to match Load's shape.
   12316     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
   12317                        N, Swap.getValue(1));
   12318   }
   12319 
   12320   return Swap;
   12321 }
   12322 
   12323 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
   12324 // builtins) into stores with swaps.
   12325 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
   12326                                                DAGCombinerInfo &DCI) const {
   12327   SelectionDAG &DAG = DCI.DAG;
   12328   SDLoc dl(N);
   12329   SDValue Chain;
   12330   SDValue Base;
   12331   unsigned SrcOpnd;
   12332   MachineMemOperand *MMO;
   12333 
   12334   switch (N->getOpcode()) {
   12335   default:
   12336     llvm_unreachable("Unexpected opcode for little endian VSX store");
   12337   case ISD::STORE: {
   12338     StoreSDNode *ST = cast<StoreSDNode>(N);
   12339     Chain = ST->getChain();
   12340     Base = ST->getBasePtr();
   12341     MMO = ST->getMemOperand();
   12342     SrcOpnd = 1;
   12343     // If the MMO suggests this isn't a store of a full vector, leave
   12344     // things alone.  For a built-in, we have to make the change for
   12345     // correctness, so if there is a size problem that will be a bug.
   12346     if (MMO->getSize() < 16)
   12347       return SDValue();
   12348     break;
   12349   }
   12350   case ISD::INTRINSIC_VOID: {
   12351     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   12352     Chain = Intrin->getChain();
   12353     // Intrin->getBasePtr() oddly does not get what we want.
   12354     Base = Intrin->getOperand(3);
   12355     MMO = Intrin->getMemOperand();
   12356     SrcOpnd = 2;
   12357     break;
   12358   }
   12359   }
   12360 
   12361   SDValue Src = N->getOperand(SrcOpnd);
   12362   MVT VecTy = Src.getValueType().getSimpleVT();
   12363 
   12364   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
   12365   // aligned and the type is a vector with elements up to 4 bytes
   12366   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
   12367       && VecTy.getScalarSizeInBits() <= 32 ) {
   12368     return SDValue();
   12369   }
   12370 
   12371   // All stores are done as v2f64 and possible bit cast.
   12372   if (VecTy != MVT::v2f64) {
   12373     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
   12374     DCI.AddToWorklist(Src.getNode());
   12375   }
   12376 
   12377   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
   12378                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
   12379   DCI.AddToWorklist(Swap.getNode());
   12380   Chain = Swap.getValue(1);
   12381   SDValue StoreOps[] = { Chain, Swap, Base };
   12382   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
   12383                                           DAG.getVTList(MVT::Other),
   12384                                           StoreOps, VecTy, MMO);
   12385   DCI.AddToWorklist(Store.getNode());
   12386   return Store;
   12387 }
   12388 
   12389 // Handle DAG combine for STORE (FP_TO_INT F).
   12390 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
   12391                                                DAGCombinerInfo &DCI) const {
   12392 
   12393   SelectionDAG &DAG = DCI.DAG;
   12394   SDLoc dl(N);
   12395   unsigned Opcode = N->getOperand(1).getOpcode();
   12396 
   12397   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
   12398          && "Not a FP_TO_INT Instruction!");
   12399 
   12400   SDValue Val = N->getOperand(1).getOperand(0);
   12401   EVT Op1VT = N->getOperand(1).getValueType();
   12402   EVT ResVT = Val.getValueType();
   12403 
   12404   // Floating point types smaller than 32 bits are not legal on Power.
   12405   if (ResVT.getScalarSizeInBits() < 32)
   12406     return SDValue();
   12407 
   12408   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
   12409   bool ValidTypeForStoreFltAsInt =
   12410         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
   12411          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
   12412 
   12413   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
   12414       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
   12415     return SDValue();
   12416 
   12417   // Extend f32 values to f64
   12418   if (ResVT.getScalarSizeInBits() == 32) {
   12419     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   12420     DCI.AddToWorklist(Val.getNode());
   12421   }
   12422 
   12423   // Set signed or unsigned conversion opcode.
   12424   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
   12425                           PPCISD::FP_TO_SINT_IN_VSR :
   12426                           PPCISD::FP_TO_UINT_IN_VSR;
   12427 
   12428   Val = DAG.getNode(ConvOpcode,
   12429                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
   12430   DCI.AddToWorklist(Val.getNode());
   12431 
   12432   // Set number of bytes being converted.
   12433   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
   12434   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
   12435                     DAG.getIntPtrConstant(ByteSize, dl, false),
   12436                     DAG.getValueType(Op1VT) };
   12437 
   12438   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
   12439           DAG.getVTList(MVT::Other), Ops,
   12440           cast<StoreSDNode>(N)->getMemoryVT(),
   12441           cast<StoreSDNode>(N)->getMemOperand());
   12442 
   12443   DCI.AddToWorklist(Val.getNode());
   12444   return Val;
   12445 }
   12446 
   12447 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   12448                                              DAGCombinerInfo &DCI) const {
   12449   SelectionDAG &DAG = DCI.DAG;
   12450   SDLoc dl(N);
   12451   switch (N->getOpcode()) {
   12452   default: break;
   12453   case ISD::SHL:
   12454     return combineSHL(N, DCI);
   12455   case ISD::SRA:
   12456     return combineSRA(N, DCI);
   12457   case ISD::SRL:
   12458     return combineSRL(N, DCI);
   12459   case PPCISD::SHL:
   12460     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
   12461         return N->getOperand(0);
   12462     break;
   12463   case PPCISD::SRL:
   12464     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
   12465         return N->getOperand(0);
   12466     break;
   12467   case PPCISD::SRA:
   12468     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   12469       if (C->isNullValue() ||   //  0 >>s V -> 0.
   12470           C->isAllOnesValue())    // -1 >>s V -> -1.
   12471         return N->getOperand(0);
   12472     }
   12473     break;
   12474   case ISD::SIGN_EXTEND:
   12475   case ISD::ZERO_EXTEND:
   12476   case ISD::ANY_EXTEND:
   12477     return DAGCombineExtBoolTrunc(N, DCI);
   12478   case ISD::TRUNCATE:
   12479   case ISD::SETCC:
   12480   case ISD::SELECT_CC:
   12481     return DAGCombineTruncBoolExt(N, DCI);
   12482   case ISD::SINT_TO_FP:
   12483   case ISD::UINT_TO_FP:
   12484     return combineFPToIntToFP(N, DCI);
   12485   case ISD::STORE: {
   12486 
   12487     EVT Op1VT = N->getOperand(1).getValueType();
   12488     unsigned Opcode = N->getOperand(1).getOpcode();
   12489 
   12490     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
   12491       SDValue Val= combineStoreFPToInt(N, DCI);
   12492       if (Val)
   12493         return Val;
   12494     }
   12495 
   12496     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   12497     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
   12498         N->getOperand(1).getNode()->hasOneUse() &&
   12499         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
   12500          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
   12501 
   12502       // STBRX can only handle simple types.
   12503       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
   12504       if (mVT.isExtended())
   12505         break;
   12506 
   12507       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   12508       // Do an any-extend to 32-bits if this is a half-word input.
   12509       if (BSwapOp.getValueType() == MVT::i16)
   12510         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   12511 
   12512       // If the type of BSWAP operand is wider than stored memory width
   12513       // it need to be shifted to the right side before STBRX.
   12514       if (Op1VT.bitsGT(mVT)) {
   12515         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
   12516         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
   12517                               DAG.getConstant(Shift, dl, MVT::i32));
   12518         // Need to truncate if this is a bswap of i64 stored as i32/i16.
   12519         if (Op1VT == MVT::i64)
   12520           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
   12521       }
   12522 
   12523       SDValue Ops[] = {
   12524         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
   12525       };
   12526       return
   12527         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   12528                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
   12529                                 cast<StoreSDNode>(N)->getMemOperand());
   12530     }
   12531 
   12532     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
   12533     // So it can increase the chance of CSE constant construction.
   12534     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
   12535         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
   12536       // Need to sign-extended to 64-bits to handle negative values.
   12537       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
   12538       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
   12539                                     MemVT.getSizeInBits());
   12540       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
   12541 
   12542       // DAG.getTruncStore() can't be used here because it doesn't accept
   12543       // the general (base + offset) addressing mode.
   12544       // So we use UpdateNodeOperands and setTruncatingStore instead.
   12545       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
   12546                              N->getOperand(3));
   12547       cast<StoreSDNode>(N)->setTruncatingStore(true);
   12548       return SDValue(N, 0);
   12549     }
   12550 
   12551     // For little endian, VSX stores require generating xxswapd/lxvd2x.
   12552     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
   12553     if (Op1VT.isSimple()) {
   12554       MVT StoreVT = Op1VT.getSimpleVT();
   12555       if (Subtarget.needsSwapsForVSXMemOps() &&
   12556           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
   12557            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
   12558         return expandVSXStoreForLE(N, DCI);
   12559     }
   12560     break;
   12561   }
   12562   case ISD::LOAD: {
   12563     LoadSDNode *LD = cast<LoadSDNode>(N);
   12564     EVT VT = LD->getValueType(0);
   12565 
   12566     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   12567     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
   12568     if (VT.isSimple()) {
   12569       MVT LoadVT = VT.getSimpleVT();
   12570       if (Subtarget.needsSwapsForVSXMemOps() &&
   12571           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
   12572            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
   12573         return expandVSXLoadForLE(N, DCI);
   12574     }
   12575 
   12576     // We sometimes end up with a 64-bit integer load, from which we extract
   12577     // two single-precision floating-point numbers. This happens with
   12578     // std::complex<float>, and other similar structures, because of the way we
   12579     // canonicalize structure copies. However, if we lack direct moves,
   12580     // then the final bitcasts from the extracted integer values to the
   12581     // floating-point numbers turn into store/load pairs. Even with direct moves,
   12582     // just loading the two floating-point numbers is likely better.
   12583     auto ReplaceTwoFloatLoad = [&]() {
   12584       if (VT != MVT::i64)
   12585         return false;
   12586 
   12587       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
   12588           LD->isVolatile())
   12589         return false;
   12590 
   12591       //  We're looking for a sequence like this:
   12592       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
   12593       //      t16: i64 = srl t13, Constant:i32<32>
   12594       //    t17: i32 = truncate t16
   12595       //  t18: f32 = bitcast t17
   12596       //    t19: i32 = truncate t13
   12597       //  t20: f32 = bitcast t19
   12598 
   12599       if (!LD->hasNUsesOfValue(2, 0))
   12600         return false;
   12601 
   12602       auto UI = LD->use_begin();
   12603       while (UI.getUse().getResNo() != 0) ++UI;
   12604       SDNode *Trunc = *UI++;
   12605       while (UI.getUse().getResNo() != 0) ++UI;
   12606       SDNode *RightShift = *UI;
   12607       if (Trunc->getOpcode() != ISD::TRUNCATE)
   12608         std::swap(Trunc, RightShift);
   12609 
   12610       if (Trunc->getOpcode() != ISD::TRUNCATE ||
   12611           Trunc->getValueType(0) != MVT::i32 ||
   12612           !Trunc->hasOneUse())
   12613         return false;
   12614       if (RightShift->getOpcode() != ISD::SRL ||
   12615           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
   12616           RightShift->getConstantOperandVal(1) != 32 ||
   12617           !RightShift->hasOneUse())
   12618         return false;
   12619 
   12620       SDNode *Trunc2 = *RightShift->use_begin();
   12621       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
   12622           Trunc2->getValueType(0) != MVT::i32 ||
   12623           !Trunc2->hasOneUse())
   12624         return false;
   12625 
   12626       SDNode *Bitcast = *Trunc->use_begin();
   12627       SDNode *Bitcast2 = *Trunc2->use_begin();
   12628 
   12629       if (Bitcast->getOpcode() != ISD::BITCAST ||
   12630           Bitcast->getValueType(0) != MVT::f32)
   12631         return false;
   12632       if (Bitcast2->getOpcode() != ISD::BITCAST ||
   12633           Bitcast2->getValueType(0) != MVT::f32)
   12634         return false;
   12635 
   12636       if (Subtarget.isLittleEndian())
   12637         std::swap(Bitcast, Bitcast2);
   12638 
   12639       // Bitcast has the second float (in memory-layout order) and Bitcast2
   12640       // has the first one.
   12641 
   12642       SDValue BasePtr = LD->getBasePtr();
   12643       if (LD->isIndexed()) {
   12644         assert(LD->getAddressingMode() == ISD::PRE_INC &&
   12645                "Non-pre-inc AM on PPC?");
   12646         BasePtr =
   12647           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   12648                       LD->getOffset());
   12649       }
   12650 
   12651       auto MMOFlags =
   12652           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
   12653       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
   12654                                       LD->getPointerInfo(), LD->getAlignment(),
   12655                                       MMOFlags, LD->getAAInfo());
   12656       SDValue AddPtr =
   12657         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
   12658                     BasePtr, DAG.getIntPtrConstant(4, dl));
   12659       SDValue FloatLoad2 = DAG.getLoad(
   12660           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
   12661           LD->getPointerInfo().getWithOffset(4),
   12662           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
   12663 
   12664       if (LD->isIndexed()) {
   12665         // Note that DAGCombine should re-form any pre-increment load(s) from
   12666         // what is produced here if that makes sense.
   12667         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
   12668       }
   12669 
   12670       DCI.CombineTo(Bitcast2, FloatLoad);
   12671       DCI.CombineTo(Bitcast, FloatLoad2);
   12672 
   12673       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
   12674                                     SDValue(FloatLoad2.getNode(), 1));
   12675       return true;
   12676     };
   12677 
   12678     if (ReplaceTwoFloatLoad())
   12679       return SDValue(N, 0);
   12680 
   12681     EVT MemVT = LD->getMemoryVT();
   12682     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
   12683     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
   12684     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
   12685     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
   12686     if (LD->isUnindexed() && VT.isVector() &&
   12687         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
   12688           // P8 and later hardware should just use LOAD.
   12689           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
   12690                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
   12691          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
   12692           LD->getAlignment() >= ScalarABIAlignment)) &&
   12693         LD->getAlignment() < ABIAlignment) {
   12694       // This is a type-legal unaligned Altivec or QPX load.
   12695       SDValue Chain = LD->getChain();
   12696       SDValue Ptr = LD->getBasePtr();
   12697       bool isLittleEndian = Subtarget.isLittleEndian();
   12698 
   12699       // This implements the loading of unaligned vectors as described in
   12700       // the venerable Apple Velocity Engine overview. Specifically:
   12701       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
   12702       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
   12703       //
   12704       // The general idea is to expand a sequence of one or more unaligned
   12705       // loads into an alignment-based permutation-control instruction (lvsl
   12706       // or lvsr), a series of regular vector loads (which always truncate
   12707       // their input address to an aligned address), and a series of
   12708       // permutations.  The results of these permutations are the requested
   12709       // loaded values.  The trick is that the last "extra" load is not taken
   12710       // from the address you might suspect (sizeof(vector) bytes after the
   12711       // last requested load), but rather sizeof(vector) - 1 bytes after the
   12712       // last requested vector. The point of this is to avoid a page fault if
   12713       // the base address happened to be aligned. This works because if the
   12714       // base address is aligned, then adding less than a full vector length
   12715       // will cause the last vector in the sequence to be (re)loaded.
   12716       // Otherwise, the next vector will be fetched as you might suspect was
   12717       // necessary.
   12718 
   12719       // We might be able to reuse the permutation generation from
   12720       // a different base address offset from this one by an aligned amount.
   12721       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
   12722       // optimization later.
   12723       Intrinsic::ID Intr, IntrLD, IntrPerm;
   12724       MVT PermCntlTy, PermTy, LDTy;
   12725       if (Subtarget.hasAltivec()) {
   12726         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
   12727                                  Intrinsic::ppc_altivec_lvsl;
   12728         IntrLD = Intrinsic::ppc_altivec_lvx;
   12729         IntrPerm = Intrinsic::ppc_altivec_vperm;
   12730         PermCntlTy = MVT::v16i8;
   12731         PermTy = MVT::v4i32;
   12732         LDTy = MVT::v4i32;
   12733       } else {
   12734         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
   12735                                        Intrinsic::ppc_qpx_qvlpcls;
   12736         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
   12737                                        Intrinsic::ppc_qpx_qvlfs;
   12738         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
   12739         PermCntlTy = MVT::v4f64;
   12740         PermTy = MVT::v4f64;
   12741         LDTy = MemVT.getSimpleVT();
   12742       }
   12743 
   12744       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
   12745 
   12746       // Create the new MMO for the new base load. It is like the original MMO,
   12747       // but represents an area in memory almost twice the vector size centered
   12748       // on the original address. If the address is unaligned, we might start
   12749       // reading up to (sizeof(vector)-1) bytes below the address of the
   12750       // original unaligned load.
   12751       MachineFunction &MF = DAG.getMachineFunction();
   12752       MachineMemOperand *BaseMMO =
   12753         MF.getMachineMemOperand(LD->getMemOperand(),
   12754                                 -(long)MemVT.getStoreSize()+1,
   12755                                 2*MemVT.getStoreSize()-1);
   12756 
   12757       // Create the new base load.
   12758       SDValue LDXIntID =
   12759           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
   12760       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
   12761       SDValue BaseLoad =
   12762         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   12763                                 DAG.getVTList(PermTy, MVT::Other),
   12764                                 BaseLoadOps, LDTy, BaseMMO);
   12765 
   12766       // Note that the value of IncOffset (which is provided to the next
   12767       // load's pointer info offset value, and thus used to calculate the
   12768       // alignment), and the value of IncValue (which is actually used to
   12769       // increment the pointer value) are different! This is because we
   12770       // require the next load to appear to be aligned, even though it
   12771       // is actually offset from the base pointer by a lesser amount.
   12772       int IncOffset = VT.getSizeInBits() / 8;
   12773       int IncValue = IncOffset;
   12774 
   12775       // Walk (both up and down) the chain looking for another load at the real
   12776       // (aligned) offset (the alignment of the other load does not matter in
   12777       // this case). If found, then do not use the offset reduction trick, as
   12778       // that will prevent the loads from being later combined (as they would
   12779       // otherwise be duplicates).
   12780       if (!findConsecutiveLoad(LD, DAG))
   12781         --IncValue;
   12782 
   12783       SDValue Increment =
   12784           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
   12785       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   12786 
   12787       MachineMemOperand *ExtraMMO =
   12788         MF.getMachineMemOperand(LD->getMemOperand(),
   12789                                 1, 2*MemVT.getStoreSize()-1);
   12790       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
   12791       SDValue ExtraLoad =
   12792         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   12793                                 DAG.getVTList(PermTy, MVT::Other),
   12794                                 ExtraLoadOps, LDTy, ExtraMMO);
   12795 
   12796       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   12797         BaseLoad.getValue(1), ExtraLoad.getValue(1));
   12798 
   12799       // Because vperm has a big-endian bias, we must reverse the order
   12800       // of the input vectors and complement the permute control vector
   12801       // when generating little endian code.  We have already handled the
   12802       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
   12803       // and ExtraLoad here.
   12804       SDValue Perm;
   12805       if (isLittleEndian)
   12806         Perm = BuildIntrinsicOp(IntrPerm,
   12807                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
   12808       else
   12809         Perm = BuildIntrinsicOp(IntrPerm,
   12810                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
   12811 
   12812       if (VT != PermTy)
   12813         Perm = Subtarget.hasAltivec() ?
   12814                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
   12815                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
   12816                                DAG.getTargetConstant(1, dl, MVT::i64));
   12817                                // second argument is 1 because this rounding
   12818                                // is always exact.
   12819 
   12820       // The output of the permutation is our loaded result, the TokenFactor is
   12821       // our new chain.
   12822       DCI.CombineTo(N, Perm, TF);
   12823       return SDValue(N, 0);
   12824     }
   12825     }
   12826     break;
   12827     case ISD::INTRINSIC_WO_CHAIN: {
   12828       bool isLittleEndian = Subtarget.isLittleEndian();
   12829       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   12830       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
   12831                                            : Intrinsic::ppc_altivec_lvsl);
   12832       if ((IID == Intr ||
   12833            IID == Intrinsic::ppc_qpx_qvlpcld  ||
   12834            IID == Intrinsic::ppc_qpx_qvlpcls) &&
   12835         N->getOperand(1)->getOpcode() == ISD::ADD) {
   12836         SDValue Add = N->getOperand(1);
   12837 
   12838         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
   12839                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
   12840 
   12841         if (DAG.MaskedValueIsZero(Add->getOperand(1),
   12842                                   APInt::getAllOnesValue(Bits /* alignment */)
   12843                                       .zext(Add.getScalarValueSizeInBits()))) {
   12844           SDNode *BasePtr = Add->getOperand(0).getNode();
   12845           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   12846                                     UE = BasePtr->use_end();
   12847                UI != UE; ++UI) {
   12848             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   12849                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
   12850               // We've found another LVSL/LVSR, and this address is an aligned
   12851               // multiple of that one. The results will be the same, so use the
   12852               // one we've just found instead.
   12853 
   12854               return SDValue(*UI, 0);
   12855             }
   12856           }
   12857         }
   12858 
   12859         if (isa<ConstantSDNode>(Add->getOperand(1))) {
   12860           SDNode *BasePtr = Add->getOperand(0).getNode();
   12861           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   12862                UE = BasePtr->use_end(); UI != UE; ++UI) {
   12863             if (UI->getOpcode() == ISD::ADD &&
   12864                 isa<ConstantSDNode>(UI->getOperand(1)) &&
   12865                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
   12866                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
   12867                 (1ULL << Bits) == 0) {
   12868               SDNode *OtherAdd = *UI;
   12869               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
   12870                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
   12871                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   12872                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
   12873                   return SDValue(*VI, 0);
   12874                 }
   12875               }
   12876             }
   12877           }
   12878         }
   12879       }
   12880     }
   12881 
   12882     break;
   12883   case ISD::INTRINSIC_W_CHAIN:
   12884     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   12885     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
   12886     if (Subtarget.needsSwapsForVSXMemOps()) {
   12887       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   12888       default:
   12889         break;
   12890       case Intrinsic::ppc_vsx_lxvw4x:
   12891       case Intrinsic::ppc_vsx_lxvd2x:
   12892         return expandVSXLoadForLE(N, DCI);
   12893       }
   12894     }
   12895     break;
   12896   case ISD::INTRINSIC_VOID:
   12897     // For little endian, VSX stores require generating xxswapd/stxvd2x.
   12898     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
   12899     if (Subtarget.needsSwapsForVSXMemOps()) {
   12900       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   12901       default:
   12902         break;
   12903       case Intrinsic::ppc_vsx_stxvw4x:
   12904       case Intrinsic::ppc_vsx_stxvd2x:
   12905         return expandVSXStoreForLE(N, DCI);
   12906       }
   12907     }
   12908     break;
   12909   case ISD::BSWAP:
   12910     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   12911     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   12912         N->getOperand(0).hasOneUse() &&
   12913         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
   12914          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   12915           N->getValueType(0) == MVT::i64))) {
   12916       SDValue Load = N->getOperand(0);
   12917       LoadSDNode *LD = cast<LoadSDNode>(Load);
   12918       // Create the byte-swapping load.
   12919       SDValue Ops[] = {
   12920         LD->getChain(),    // Chain
   12921         LD->getBasePtr(),  // Ptr
   12922         DAG.getValueType(N->getValueType(0)) // VT
   12923       };
   12924       SDValue BSLoad =
   12925         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   12926                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   12927                                               MVT::i64 : MVT::i32, MVT::Other),
   12928                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
   12929 
   12930       // If this is an i16 load, insert the truncate.
   12931       SDValue ResVal = BSLoad;
   12932       if (N->getValueType(0) == MVT::i16)
   12933         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   12934 
   12935       // First, combine the bswap away.  This makes the value produced by the
   12936       // load dead.
   12937       DCI.CombineTo(N, ResVal);
   12938 
   12939       // Next, combine the load away, we give it a bogus result value but a real
   12940       // chain result.  The result value is dead because the bswap is dead.
   12941       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   12942 
   12943       // Return N so it doesn't get rechecked!
   12944       return SDValue(N, 0);
   12945     }
   12946     break;
   12947   case PPCISD::VCMP:
   12948     // If a VCMPo node already exists with exactly the same operands as this
   12949     // node, use its result instead of this node (VCMPo computes both a CR6 and
   12950     // a normal output).
   12951     //
   12952     if (!N->getOperand(0).hasOneUse() &&
   12953         !N->getOperand(1).hasOneUse() &&
   12954         !N->getOperand(2).hasOneUse()) {
   12955 
   12956       // Scan all of the users of the LHS, looking for VCMPo's that match.
   12957       SDNode *VCMPoNode = nullptr;
   12958 
   12959       SDNode *LHSN = N->getOperand(0).getNode();
   12960       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   12961            UI != E; ++UI)
   12962         if (UI->getOpcode() == PPCISD::VCMPo &&
   12963             UI->getOperand(1) == N->getOperand(1) &&
   12964             UI->getOperand(2) == N->getOperand(2) &&
   12965             UI->getOperand(0) == N->getOperand(0)) {
   12966           VCMPoNode = *UI;
   12967           break;
   12968         }
   12969 
   12970       // If there is no VCMPo node, or if the flag value has a single use, don't
   12971       // transform this.
   12972       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   12973         break;
   12974 
   12975       // Look at the (necessarily single) use of the flag value.  If it has a
   12976       // chain, this transformation is more complex.  Note that multiple things
   12977       // could use the value result, which we should ignore.
   12978       SDNode *FlagUser = nullptr;
   12979       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   12980            FlagUser == nullptr; ++UI) {
   12981         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   12982         SDNode *User = *UI;
   12983         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   12984           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   12985             FlagUser = User;
   12986             break;
   12987           }
   12988         }
   12989       }
   12990 
   12991       // If the user is a MFOCRF instruction, we know this is safe.
   12992       // Otherwise we give up for right now.
   12993       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
   12994         return SDValue(VCMPoNode, 0);
   12995     }
   12996     break;
   12997   case ISD::BRCOND: {
   12998     SDValue Cond = N->getOperand(1);
   12999     SDValue Target = N->getOperand(2);
   13000 
   13001     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   13002         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
   13003           Intrinsic::ppc_is_decremented_ctr_nonzero) {
   13004 
   13005       // We now need to make the intrinsic dead (it cannot be instruction
   13006       // selected).
   13007       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
   13008       assert(Cond.getNode()->hasOneUse() &&
   13009              "Counter decrement has more than one use");
   13010 
   13011       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
   13012                          N->getOperand(0), Target);
   13013     }
   13014   }
   13015   break;
   13016   case ISD::BR_CC: {
   13017     // If this is a branch on an altivec predicate comparison, lower this so
   13018     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
   13019     // lowering is done pre-legalize, because the legalizer lowers the predicate
   13020     // compare down to code that is difficult to reassemble.
   13021     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   13022     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   13023 
   13024     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
   13025     // value. If so, pass-through the AND to get to the intrinsic.
   13026     if (LHS.getOpcode() == ISD::AND &&
   13027         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   13028         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
   13029           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   13030         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   13031         !isNullConstant(LHS.getOperand(1)))
   13032       LHS = LHS.getOperand(0);
   13033 
   13034     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   13035         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
   13036           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   13037         isa<ConstantSDNode>(RHS)) {
   13038       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   13039              "Counter decrement comparison is not EQ or NE");
   13040 
   13041       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   13042       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
   13043                     (CC == ISD::SETNE && !Val);
   13044 
   13045       // We now need to make the intrinsic dead (it cannot be instruction
   13046       // selected).
   13047       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
   13048       assert(LHS.getNode()->hasOneUse() &&
   13049              "Counter decrement has more than one use");
   13050 
   13051       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
   13052                          N->getOperand(0), N->getOperand(4));
   13053     }
   13054 
   13055     int CompareOpc;
   13056     bool isDot;
   13057 
   13058     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   13059         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   13060         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
   13061       assert(isDot && "Can't compare against a vector result!");
   13062 
   13063       // If this is a comparison against something other than 0/1, then we know
   13064       // that the condition is never/always true.
   13065       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   13066       if (Val != 0 && Val != 1) {
   13067         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   13068           return N->getOperand(0);
   13069         // Always !=, turn it into an unconditional branch.
   13070         return DAG.getNode(ISD::BR, dl, MVT::Other,
   13071                            N->getOperand(0), N->getOperand(4));
   13072       }
   13073 
   13074       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   13075 
   13076       // Create the PPCISD altivec 'dot' comparison node.
   13077       SDValue Ops[] = {
   13078         LHS.getOperand(2),  // LHS of compare
   13079         LHS.getOperand(3),  // RHS of compare
   13080         DAG.getConstant(CompareOpc, dl, MVT::i32)
   13081       };
   13082       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   13083       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   13084 
   13085       // Unpack the result based on how the target uses it.
   13086       PPC::Predicate CompOpc;
   13087       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   13088       default:  // Can't happen, don't crash on invalid number though.
   13089       case 0:   // Branch on the value of the EQ bit of CR6.
   13090         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   13091         break;
   13092       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   13093         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   13094         break;
   13095       case 2:   // Branch on the value of the LT bit of CR6.
   13096         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   13097         break;
   13098       case 3:   // Branch on the inverted value of the LT bit of CR6.
   13099         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   13100         break;
   13101       }
   13102 
   13103       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   13104                          DAG.getConstant(CompOpc, dl, MVT::i32),
   13105                          DAG.getRegister(PPC::CR6, MVT::i32),
   13106                          N->getOperand(4), CompNode.getValue(1));
   13107     }
   13108     break;
   13109   }
   13110   case ISD::BUILD_VECTOR:
   13111     return DAGCombineBuildVector(N, DCI);
   13112   }
   13113 
   13114   return SDValue();
   13115 }
   13116 
   13117 SDValue
   13118 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   13119                                  SelectionDAG &DAG,
   13120                                  SmallVectorImpl<SDNode *> &Created) const {
   13121   // fold (sdiv X, pow2)
   13122   EVT VT = N->getValueType(0);
   13123   if (VT == MVT::i64 && !Subtarget.isPPC64())
   13124     return SDValue();
   13125   if ((VT != MVT::i32 && VT != MVT::i64) ||
   13126       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
   13127     return SDValue();
   13128 
   13129   SDLoc DL(N);
   13130   SDValue N0 = N->getOperand(0);
   13131 
   13132   bool IsNegPow2 = (-Divisor).isPowerOf2();
   13133   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
   13134   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
   13135 
   13136   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
   13137   Created.push_back(Op.getNode());
   13138 
   13139   if (IsNegPow2) {
   13140     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
   13141     Created.push_back(Op.getNode());
   13142   }
   13143 
   13144   return Op;
   13145 }
   13146 
   13147 //===----------------------------------------------------------------------===//
   13148 // Inline Assembly Support
   13149 //===----------------------------------------------------------------------===//
   13150 
   13151 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   13152                                                       KnownBits &Known,
   13153                                                       const APInt &DemandedElts,
   13154                                                       const SelectionDAG &DAG,
   13155                                                       unsigned Depth) const {
   13156   Known.resetAll();
   13157   switch (Op.getOpcode()) {
   13158   default: break;
   13159   case PPCISD::LBRX: {
   13160     // lhbrx is known to have the top bits cleared out.
   13161     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   13162       Known.Zero = 0xFFFF0000;
   13163     break;
   13164   }
   13165   case ISD::INTRINSIC_WO_CHAIN: {
   13166     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   13167     default: break;
   13168     case Intrinsic::ppc_altivec_vcmpbfp_p:
   13169     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   13170     case Intrinsic::ppc_altivec_vcmpequb_p:
   13171     case Intrinsic::ppc_altivec_vcmpequh_p:
   13172     case Intrinsic::ppc_altivec_vcmpequw_p:
   13173     case Intrinsic::ppc_altivec_vcmpequd_p:
   13174     case Intrinsic::ppc_altivec_vcmpgefp_p:
   13175     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   13176     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   13177     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   13178     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   13179     case Intrinsic::ppc_altivec_vcmpgtsd_p:
   13180     case Intrinsic::ppc_altivec_vcmpgtub_p:
   13181     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   13182     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   13183     case Intrinsic::ppc_altivec_vcmpgtud_p:
   13184       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
   13185       break;
   13186     }
   13187   }
   13188   }
   13189 }
   13190 
   13191 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
   13192   switch (Subtarget.getDarwinDirective()) {
   13193   default: break;
   13194   case PPC::DIR_970:
   13195   case PPC::DIR_PWR4:
   13196   case PPC::DIR_PWR5:
   13197   case PPC::DIR_PWR5X:
   13198   case PPC::DIR_PWR6:
   13199   case PPC::DIR_PWR6X:
   13200   case PPC::DIR_PWR7:
   13201   case PPC::DIR_PWR8:
   13202   case PPC::DIR_PWR9: {
   13203     if (!ML)
   13204       break;
   13205 
   13206     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
   13207 
   13208     // For small loops (between 5 and 8 instructions), align to a 32-byte
   13209     // boundary so that the entire loop fits in one instruction-cache line.
   13210     uint64_t LoopSize = 0;
   13211     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
   13212       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
   13213         LoopSize += TII->getInstSizeInBytes(*J);
   13214         if (LoopSize > 32)
   13215           break;
   13216       }
   13217 
   13218     if (LoopSize > 16 && LoopSize <= 32)
   13219       return 5;
   13220 
   13221     break;
   13222   }
   13223   }
   13224 
   13225   return TargetLowering::getPrefLoopAlignment(ML);
   13226 }
   13227 
   13228 /// getConstraintType - Given a constraint, return the type of
   13229 /// constraint it is for this target.
   13230 PPCTargetLowering::ConstraintType
   13231 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
   13232   if (Constraint.size() == 1) {
   13233     switch (Constraint[0]) {
   13234     default: break;
   13235     case 'b':
   13236     case 'r':
   13237     case 'f':
   13238     case 'd':
   13239     case 'v':
   13240     case 'y':
   13241       return C_RegisterClass;
   13242     case 'Z':
   13243       // FIXME: While Z does indicate a memory constraint, it specifically
   13244       // indicates an r+r address (used in conjunction with the 'y' modifier
   13245       // in the replacement string). Currently, we're forcing the base
   13246       // register to be r0 in the asm printer (which is interpreted as zero)
   13247       // and forming the complete address in the second register. This is
   13248       // suboptimal.
   13249       return C_Memory;
   13250     }
   13251   } else if (Constraint == "wc") { // individual CR bits.
   13252     return C_RegisterClass;
   13253   } else if (Constraint == "wa" || Constraint == "wd" ||
   13254              Constraint == "wf" || Constraint == "ws") {
   13255     return C_RegisterClass; // VSX registers.
   13256   }
   13257   return TargetLowering::getConstraintType(Constraint);
   13258 }
   13259 
   13260 /// Examine constraint type and operand type and determine a weight value.
   13261 /// This object must already have been set up with the operand type
   13262 /// and the current alternative constraint selected.
   13263 TargetLowering::ConstraintWeight
   13264 PPCTargetLowering::getSingleConstraintMatchWeight(
   13265     AsmOperandInfo &info, const char *constraint) const {
   13266   ConstraintWeight weight = CW_Invalid;
   13267   Value *CallOperandVal = info.CallOperandVal;
   13268     // If we don't have a value, we can't do a match,
   13269     // but allow it at the lowest weight.
   13270   if (!CallOperandVal)
   13271     return CW_Default;
   13272   Type *type = CallOperandVal->getType();
   13273 
   13274   // Look at the constraint type.
   13275   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
   13276     return CW_Register; // an individual CR bit.
   13277   else if ((StringRef(constraint) == "wa" ||
   13278             StringRef(constraint) == "wd" ||
   13279             StringRef(constraint) == "wf") &&
   13280            type->isVectorTy())
   13281     return CW_Register;
   13282   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
   13283     return CW_Register;
   13284 
   13285   switch (*constraint) {
   13286   default:
   13287     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   13288     break;
   13289   case 'b':
   13290     if (type->isIntegerTy())
   13291       weight = CW_Register;
   13292     break;
   13293   case 'f':
   13294     if (type->isFloatTy())
   13295       weight = CW_Register;
   13296     break;
   13297   case 'd':
   13298     if (type->isDoubleTy())
   13299       weight = CW_Register;
   13300     break;
   13301   case 'v':
   13302     if (type->isVectorTy())
   13303       weight = CW_Register;
   13304     break;
   13305   case 'y':
   13306     weight = CW_Register;
   13307     break;
   13308   case 'Z':
   13309     weight = CW_Memory;
   13310     break;
   13311   }
   13312   return weight;
   13313 }
   13314 
   13315 std::pair<unsigned, const TargetRegisterClass *>
   13316 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   13317                                                 StringRef Constraint,
   13318                                                 MVT VT) const {
   13319   if (Constraint.size() == 1) {
   13320     // GCC RS6000 Constraint Letters
   13321     switch (Constraint[0]) {
   13322     case 'b':   // R1-R31
   13323       if (VT == MVT::i64 && Subtarget.isPPC64())
   13324         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
   13325       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
   13326     case 'r':   // R0-R31
   13327       if (VT == MVT::i64 && Subtarget.isPPC64())
   13328         return std::make_pair(0U, &PPC::G8RCRegClass);
   13329       return std::make_pair(0U, &PPC::GPRCRegClass);
   13330     // 'd' and 'f' constraints are both defined to be "the floating point
   13331     // registers", where one is for 32-bit and the other for 64-bit. We don't
   13332     // really care overly much here so just give them all the same reg classes.
   13333     case 'd':
   13334     case 'f':
   13335       if (Subtarget.hasSPE()) {
   13336         if (VT == MVT::f32 || VT == MVT::i32)
   13337           return std::make_pair(0U, &PPC::SPE4RCRegClass);
   13338         if (VT == MVT::f64 || VT == MVT::i64)
   13339           return std::make_pair(0U, &PPC::SPERCRegClass);
   13340       } else {
   13341         if (VT == MVT::f32 || VT == MVT::i32)
   13342           return std::make_pair(0U, &PPC::F4RCRegClass);
   13343         if (VT == MVT::f64 || VT == MVT::i64)
   13344           return std::make_pair(0U, &PPC::F8RCRegClass);
   13345         if (VT == MVT::v4f64 && Subtarget.hasQPX())
   13346           return std::make_pair(0U, &PPC::QFRCRegClass);
   13347         if (VT == MVT::v4f32 && Subtarget.hasQPX())
   13348           return std::make_pair(0U, &PPC::QSRCRegClass);
   13349       }
   13350       break;
   13351     case 'v':
   13352       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   13353         return std::make_pair(0U, &PPC::QFRCRegClass);
   13354       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   13355         return std::make_pair(0U, &PPC::QSRCRegClass);
   13356       if (Subtarget.hasAltivec())
   13357         return std::make_pair(0U, &PPC::VRRCRegClass);
   13358       break;
   13359     case 'y':   // crrc
   13360       return std::make_pair(0U, &PPC::CRRCRegClass);
   13361     }
   13362   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
   13363     // An individual CR bit.
   13364     return std::make_pair(0U, &PPC::CRBITRCRegClass);
   13365   } else if ((Constraint == "wa" || Constraint == "wd" ||
   13366              Constraint == "wf") && Subtarget.hasVSX()) {
   13367     return std::make_pair(0U, &PPC::VSRCRegClass);
   13368   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
   13369     if (VT == MVT::f32 && Subtarget.hasP8Vector())
   13370       return std::make_pair(0U, &PPC::VSSRCRegClass);
   13371     else
   13372       return std::make_pair(0U, &PPC::VSFRCRegClass);
   13373   }
   13374 
   13375   std::pair<unsigned, const TargetRegisterClass *> R =
   13376       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   13377 
   13378   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
   13379   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
   13380   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
   13381   // register.
   13382   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
   13383   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
   13384   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
   13385       PPC::GPRCRegClass.contains(R.first))
   13386     return std::make_pair(TRI->getMatchingSuperReg(R.first,
   13387                             PPC::sub_32, &PPC::G8RCRegClass),
   13388                           &PPC::G8RCRegClass);
   13389 
   13390   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
   13391   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
   13392     R.first = PPC::CR0;
   13393     R.second = &PPC::CRRCRegClass;
   13394   }
   13395 
   13396   return R;
   13397 }
   13398 
   13399 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   13400 /// vector.  If it is invalid, don't add anything to Ops.
   13401 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   13402                                                      std::string &Constraint,
   13403                                                      std::vector<SDValue>&Ops,
   13404                                                      SelectionDAG &DAG) const {
   13405   SDValue Result;
   13406 
   13407   // Only support length 1 constraints.
   13408   if (Constraint.length() > 1) return;
   13409 
   13410   char Letter = Constraint[0];
   13411   switch (Letter) {
   13412   default: break;
   13413   case 'I':
   13414   case 'J':
   13415   case 'K':
   13416   case 'L':
   13417   case 'M':
   13418   case 'N':
   13419   case 'O':
   13420   case 'P': {
   13421     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   13422     if (!CST) return; // Must be an immediate to match.
   13423     SDLoc dl(Op);
   13424     int64_t Value = CST->getSExtValue();
   13425     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
   13426                          // numbers are printed as such.
   13427     switch (Letter) {
   13428     default: llvm_unreachable("Unknown constraint letter!");
   13429     case 'I':  // "I" is a signed 16-bit constant.
   13430       if (isInt<16>(Value))
   13431         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13432       break;
   13433     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   13434       if (isShiftedUInt<16, 16>(Value))
   13435         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13436       break;
   13437     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   13438       if (isShiftedInt<16, 16>(Value))
   13439         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13440       break;
   13441     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   13442       if (isUInt<16>(Value))
   13443         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13444       break;
   13445     case 'M':  // "M" is a constant that is greater than 31.
   13446       if (Value > 31)
   13447         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13448       break;
   13449     case 'N':  // "N" is a positive constant that is an exact power of two.
   13450       if (Value > 0 && isPowerOf2_64(Value))
   13451         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13452       break;
   13453     case 'O':  // "O" is the constant zero.
   13454       if (Value == 0)
   13455         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13456       break;
   13457     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   13458       if (isInt<16>(-Value))
   13459         Result = DAG.getTargetConstant(Value, dl, TCVT);
   13460       break;
   13461     }
   13462     break;
   13463   }
   13464   }
   13465 
   13466   if (Result.getNode()) {
   13467     Ops.push_back(Result);
   13468     return;
   13469   }
   13470 
   13471   // Handle standard constraint letters.
   13472   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   13473 }
   13474 
   13475 // isLegalAddressingMode - Return true if the addressing mode represented
   13476 // by AM is legal for this target, for a load/store of the specified type.
   13477 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   13478                                               const AddrMode &AM, Type *Ty,
   13479                                               unsigned AS, Instruction *I) const {
   13480   // PPC does not allow r+i addressing modes for vectors!
   13481   if (Ty->isVectorTy() && AM.BaseOffs != 0)
   13482     return false;
   13483 
   13484   // PPC allows a sign-extended 16-bit immediate field.
   13485   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   13486     return false;
   13487 
   13488   // No global is ever allowed as a base.
   13489   if (AM.BaseGV)
   13490     return false;
   13491 
   13492   // PPC only support r+r,
   13493   switch (AM.Scale) {
   13494   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   13495     break;
   13496   case 1:
   13497     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   13498       return false;
   13499     // Otherwise we have r+r or r+i.
   13500     break;
   13501   case 2:
   13502     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   13503       return false;
   13504     // Allow 2*r as r+r.
   13505     break;
   13506   default:
   13507     // No other scales are supported.
   13508     return false;
   13509   }
   13510 
   13511   return true;
   13512 }
   13513 
   13514 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   13515                                            SelectionDAG &DAG) const {
   13516   MachineFunction &MF = DAG.getMachineFunction();
   13517   MachineFrameInfo &MFI = MF.getFrameInfo();
   13518   MFI.setReturnAddressIsTaken(true);
   13519 
   13520   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   13521     return SDValue();
   13522 
   13523   SDLoc dl(Op);
   13524   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   13525 
   13526   // Make sure the function does not optimize away the store of the RA to
   13527   // the stack.
   13528   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   13529   FuncInfo->setLRStoreRequired();
   13530   bool isPPC64 = Subtarget.isPPC64();
   13531   auto PtrVT = getPointerTy(MF.getDataLayout());
   13532 
   13533   if (Depth > 0) {
   13534     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   13535     SDValue Offset =
   13536         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
   13537                         isPPC64 ? MVT::i64 : MVT::i32);
   13538     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   13539                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
   13540                        MachinePointerInfo());
   13541   }
   13542 
   13543   // Just load the return address off the stack.
   13544   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   13545   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
   13546                      MachinePointerInfo());
   13547 }
   13548 
   13549 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   13550                                           SelectionDAG &DAG) const {
   13551   SDLoc dl(Op);
   13552   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   13553 
   13554   MachineFunction &MF = DAG.getMachineFunction();
   13555   MachineFrameInfo &MFI = MF.getFrameInfo();
   13556   MFI.setFrameAddressIsTaken(true);
   13557 
   13558   EVT PtrVT = getPointerTy(MF.getDataLayout());
   13559   bool isPPC64 = PtrVT == MVT::i64;
   13560 
   13561   // Naked functions never have a frame pointer, and so we use r1. For all
   13562   // other functions, this decision must be delayed until during PEI.
   13563   unsigned FrameReg;
   13564   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
   13565     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
   13566   else
   13567     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
   13568 
   13569   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   13570                                          PtrVT);
   13571   while (Depth--)
   13572     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   13573                             FrameAddr, MachinePointerInfo());
   13574   return FrameAddr;
   13575 }
   13576 
   13577 // FIXME? Maybe this could be a TableGen attribute on some registers and
   13578 // this table could be generated automatically from RegInfo.
   13579 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   13580                                               SelectionDAG &DAG) const {
   13581   bool isPPC64 = Subtarget.isPPC64();
   13582   bool isDarwinABI = Subtarget.isDarwinABI();
   13583 
   13584   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
   13585       (!isPPC64 && VT != MVT::i32))
   13586     report_fatal_error("Invalid register global variable type");
   13587 
   13588   bool is64Bit = isPPC64 && VT == MVT::i64;
   13589   unsigned Reg = StringSwitch<unsigned>(RegName)
   13590                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
   13591                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
   13592                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
   13593                                   (is64Bit ? PPC::X13 : PPC::R13))
   13594                    .Default(0);
   13595 
   13596   if (Reg)
   13597     return Reg;
   13598   report_fatal_error("Invalid register name global variable");
   13599 }
   13600 
   13601 bool
   13602 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   13603   // The PowerPC target isn't yet aware of offsets.
   13604   return false;
   13605 }
   13606 
   13607 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   13608                                            const CallInst &I,
   13609                                            MachineFunction &MF,
   13610                                            unsigned Intrinsic) const {
   13611   switch (Intrinsic) {
   13612   case Intrinsic::ppc_qpx_qvlfd:
   13613   case Intrinsic::ppc_qpx_qvlfs:
   13614   case Intrinsic::ppc_qpx_qvlfcd:
   13615   case Intrinsic::ppc_qpx_qvlfcs:
   13616   case Intrinsic::ppc_qpx_qvlfiwa:
   13617   case Intrinsic::ppc_qpx_qvlfiwz:
   13618   case Intrinsic::ppc_altivec_lvx:
   13619   case Intrinsic::ppc_altivec_lvxl:
   13620   case Intrinsic::ppc_altivec_lvebx:
   13621   case Intrinsic::ppc_altivec_lvehx:
   13622   case Intrinsic::ppc_altivec_lvewx:
   13623   case Intrinsic::ppc_vsx_lxvd2x:
   13624   case Intrinsic::ppc_vsx_lxvw4x: {
   13625     EVT VT;
   13626     switch (Intrinsic) {
   13627     case Intrinsic::ppc_altivec_lvebx:
   13628       VT = MVT::i8;
   13629       break;
   13630     case Intrinsic::ppc_altivec_lvehx:
   13631       VT = MVT::i16;
   13632       break;
   13633     case Intrinsic::ppc_altivec_lvewx:
   13634       VT = MVT::i32;
   13635       break;
   13636     case Intrinsic::ppc_vsx_lxvd2x:
   13637       VT = MVT::v2f64;
   13638       break;
   13639     case Intrinsic::ppc_qpx_qvlfd:
   13640       VT = MVT::v4f64;
   13641       break;
   13642     case Intrinsic::ppc_qpx_qvlfs:
   13643       VT = MVT::v4f32;
   13644       break;
   13645     case Intrinsic::ppc_qpx_qvlfcd:
   13646       VT = MVT::v2f64;
   13647       break;
   13648     case Intrinsic::ppc_qpx_qvlfcs:
   13649       VT = MVT::v2f32;
   13650       break;
   13651     default:
   13652       VT = MVT::v4i32;
   13653       break;
   13654     }
   13655 
   13656     Info.opc = ISD::INTRINSIC_W_CHAIN;
   13657     Info.memVT = VT;
   13658     Info.ptrVal = I.getArgOperand(0);
   13659     Info.offset = -VT.getStoreSize()+1;
   13660     Info.size = 2*VT.getStoreSize()-1;
   13661     Info.align = 1;
   13662     Info.flags = MachineMemOperand::MOLoad;
   13663     return true;
   13664   }
   13665   case Intrinsic::ppc_qpx_qvlfda:
   13666   case Intrinsic::ppc_qpx_qvlfsa:
   13667   case Intrinsic::ppc_qpx_qvlfcda:
   13668   case Intrinsic::ppc_qpx_qvlfcsa:
   13669   case Intrinsic::ppc_qpx_qvlfiwaa:
   13670   case Intrinsic::ppc_qpx_qvlfiwza: {
   13671     EVT VT;
   13672     switch (Intrinsic) {
   13673     case Intrinsic::ppc_qpx_qvlfda:
   13674       VT = MVT::v4f64;
   13675       break;
   13676     case Intrinsic::ppc_qpx_qvlfsa:
   13677       VT = MVT::v4f32;
   13678       break;
   13679     case Intrinsic::ppc_qpx_qvlfcda:
   13680       VT = MVT::v2f64;
   13681       break;
   13682     case Intrinsic::ppc_qpx_qvlfcsa:
   13683       VT = MVT::v2f32;
   13684       break;
   13685     default:
   13686       VT = MVT::v4i32;
   13687       break;
   13688     }
   13689 
   13690     Info.opc = ISD::INTRINSIC_W_CHAIN;
   13691     Info.memVT = VT;
   13692     Info.ptrVal = I.getArgOperand(0);
   13693     Info.offset = 0;
   13694     Info.size = VT.getStoreSize();
   13695     Info.align = 1;
   13696     Info.flags = MachineMemOperand::MOLoad;
   13697     return true;
   13698   }
   13699   case Intrinsic::ppc_qpx_qvstfd:
   13700   case Intrinsic::ppc_qpx_qvstfs:
   13701   case Intrinsic::ppc_qpx_qvstfcd:
   13702   case Intrinsic::ppc_qpx_qvstfcs:
   13703   case Intrinsic::ppc_qpx_qvstfiw:
   13704   case Intrinsic::ppc_altivec_stvx:
   13705   case Intrinsic::ppc_altivec_stvxl:
   13706   case Intrinsic::ppc_altivec_stvebx:
   13707   case Intrinsic::ppc_altivec_stvehx:
   13708   case Intrinsic::ppc_altivec_stvewx:
   13709   case Intrinsic::ppc_vsx_stxvd2x:
   13710   case Intrinsic::ppc_vsx_stxvw4x: {
   13711     EVT VT;
   13712     switch (Intrinsic) {
   13713     case Intrinsic::ppc_altivec_stvebx:
   13714       VT = MVT::i8;
   13715       break;
   13716     case Intrinsic::ppc_altivec_stvehx:
   13717       VT = MVT::i16;
   13718       break;
   13719     case Intrinsic::ppc_altivec_stvewx:
   13720       VT = MVT::i32;
   13721       break;
   13722     case Intrinsic::ppc_vsx_stxvd2x:
   13723       VT = MVT::v2f64;
   13724       break;
   13725     case Intrinsic::ppc_qpx_qvstfd:
   13726       VT = MVT::v4f64;
   13727       break;
   13728     case Intrinsic::ppc_qpx_qvstfs:
   13729       VT = MVT::v4f32;
   13730       break;
   13731     case Intrinsic::ppc_qpx_qvstfcd:
   13732       VT = MVT::v2f64;
   13733       break;
   13734     case Intrinsic::ppc_qpx_qvstfcs:
   13735       VT = MVT::v2f32;
   13736       break;
   13737     default:
   13738       VT = MVT::v4i32;
   13739       break;
   13740     }
   13741 
   13742     Info.opc = ISD::INTRINSIC_VOID;
   13743     Info.memVT = VT;
   13744     Info.ptrVal = I.getArgOperand(1);
   13745     Info.offset = -VT.getStoreSize()+1;
   13746     Info.size = 2*VT.getStoreSize()-1;
   13747     Info.align = 1;
   13748     Info.flags = MachineMemOperand::MOStore;
   13749     return true;
   13750   }
   13751   case Intrinsic::ppc_qpx_qvstfda:
   13752   case Intrinsic::ppc_qpx_qvstfsa:
   13753   case Intrinsic::ppc_qpx_qvstfcda:
   13754   case Intrinsic::ppc_qpx_qvstfcsa:
   13755   case Intrinsic::ppc_qpx_qvstfiwa: {
   13756     EVT VT;
   13757     switch (Intrinsic) {
   13758     case Intrinsic::ppc_qpx_qvstfda:
   13759       VT = MVT::v4f64;
   13760       break;
   13761     case Intrinsic::ppc_qpx_qvstfsa:
   13762       VT = MVT::v4f32;
   13763       break;
   13764     case Intrinsic::ppc_qpx_qvstfcda:
   13765       VT = MVT::v2f64;
   13766       break;
   13767     case Intrinsic::ppc_qpx_qvstfcsa:
   13768       VT = MVT::v2f32;
   13769       break;
   13770     default:
   13771       VT = MVT::v4i32;
   13772       break;
   13773     }
   13774 
   13775     Info.opc = ISD::INTRINSIC_VOID;
   13776     Info.memVT = VT;
   13777     Info.ptrVal = I.getArgOperand(1);
   13778     Info.offset = 0;
   13779     Info.size = VT.getStoreSize();
   13780     Info.align = 1;
   13781     Info.flags = MachineMemOperand::MOStore;
   13782     return true;
   13783   }
   13784   default:
   13785     break;
   13786   }
   13787 
   13788   return false;
   13789 }
   13790 
   13791 /// getOptimalMemOpType - Returns the target specific optimal type for load
   13792 /// and store operations as a result of memset, memcpy, and memmove
   13793 /// lowering. If DstAlign is zero that means it's safe to destination
   13794 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   13795 /// means there isn't a need to check it against alignment requirement,
   13796 /// probably because the source does not need to be loaded. If 'IsMemset' is
   13797 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   13798 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   13799 /// source is constant so it does not need to be loaded.
   13800 /// It returns EVT::Other if the type should be determined using generic
   13801 /// target-independent logic.
   13802 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   13803                                            unsigned DstAlign, unsigned SrcAlign,
   13804                                            bool IsMemset, bool ZeroMemset,
   13805                                            bool MemcpyStrSrc,
   13806                                            MachineFunction &MF) const {
   13807   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
   13808     const Function &F = MF.getFunction();
   13809     // When expanding a memset, require at least two QPX instructions to cover
   13810     // the cost of loading the value to be stored from the constant pool.
   13811     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
   13812        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
   13813         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
   13814       return MVT::v4f64;
   13815     }
   13816 
   13817     // We should use Altivec/VSX loads and stores when available. For unaligned
   13818     // addresses, unaligned VSX loads are only fast starting with the P8.
   13819     if (Subtarget.hasAltivec() && Size >= 16 &&
   13820         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
   13821          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
   13822       return MVT::v4i32;
   13823   }
   13824 
   13825   if (Subtarget.isPPC64()) {
   13826     return MVT::i64;
   13827   }
   13828 
   13829   return MVT::i32;
   13830 }
   13831 
   13832 /// Returns true if it is beneficial to convert a load of a constant
   13833 /// to just the constant itself.
   13834 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   13835                                                           Type *Ty) const {
   13836   assert(Ty->isIntegerTy());
   13837 
   13838   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   13839   return !(BitSize == 0 || BitSize > 64);
   13840 }
   13841 
   13842 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   13843   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   13844     return false;
   13845   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   13846   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   13847   return NumBits1 == 64 && NumBits2 == 32;
   13848 }
   13849 
   13850 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   13851   if (!VT1.isInteger() || !VT2.isInteger())
   13852     return false;
   13853   unsigned NumBits1 = VT1.getSizeInBits();
   13854   unsigned NumBits2 = VT2.getSizeInBits();
   13855   return NumBits1 == 64 && NumBits2 == 32;
   13856 }
   13857 
   13858 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   13859   // Generally speaking, zexts are not free, but they are free when they can be
   13860   // folded with other operations.
   13861   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
   13862     EVT MemVT = LD->getMemoryVT();
   13863     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
   13864          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
   13865         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
   13866          LD->getExtensionType() == ISD::ZEXTLOAD))
   13867       return true;
   13868   }
   13869 
   13870   // FIXME: Add other cases...
   13871   //  - 32-bit shifts with a zext to i64
   13872   //  - zext after ctlz, bswap, etc.
   13873   //  - zext after and by a constant mask
   13874 
   13875   return TargetLowering::isZExtFree(Val, VT2);
   13876 }
   13877 
   13878 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
   13879   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
   13880          "invalid fpext types");
   13881   // Extending to float128 is not free.
   13882   if (DestVT == MVT::f128)
   13883     return false;
   13884   return true;
   13885 }
   13886 
   13887 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   13888   return isInt<16>(Imm) || isUInt<16>(Imm);
   13889 }
   13890 
   13891 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   13892   return isInt<16>(Imm) || isUInt<16>(Imm);
   13893 }
   13894 
   13895 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   13896                                                        unsigned,
   13897                                                        unsigned,
   13898                                                        bool *Fast) const {
   13899   if (DisablePPCUnaligned)
   13900     return false;
   13901 
   13902   // PowerPC supports unaligned memory access for simple non-vector types.
   13903   // Although accessing unaligned addresses is not as efficient as accessing
   13904   // aligned addresses, it is generally more efficient than manual expansion,
   13905   // and generally only traps for software emulation when crossing page
   13906   // boundaries.
   13907 
   13908   if (!VT.isSimple())
   13909     return false;
   13910 
   13911   if (VT.getSimpleVT().isVector()) {
   13912     if (Subtarget.hasVSX()) {
   13913       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
   13914           VT != MVT::v4f32 && VT != MVT::v4i32)
   13915         return false;
   13916     } else {
   13917       return false;
   13918     }
   13919   }
   13920 
   13921   if (VT == MVT::ppcf128)
   13922     return false;
   13923 
   13924   if (Fast)
   13925     *Fast = true;
   13926 
   13927   return true;
   13928 }
   13929 
   13930 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   13931   VT = VT.getScalarType();
   13932 
   13933   if (!VT.isSimple())
   13934     return false;
   13935 
   13936   switch (VT.getSimpleVT().SimpleTy) {
   13937   case MVT::f32:
   13938   case MVT::f64:
   13939     return true;
   13940   case MVT::f128:
   13941     return (EnableQuadPrecision && Subtarget.hasP9Vector());
   13942   default:
   13943     break;
   13944   }
   13945 
   13946   return false;
   13947 }
   13948 
   13949 const MCPhysReg *
   13950 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
   13951   // LR is a callee-save register, but we must treat it as clobbered by any call
   13952   // site. Hence we include LR in the scratch registers, which are in turn added
   13953   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
   13954   // to CTR, which is used by any indirect call.
   13955   static const MCPhysReg ScratchRegs[] = {
   13956     PPC::X12, PPC::LR8, PPC::CTR8, 0
   13957   };
   13958 
   13959   return ScratchRegs;
   13960 }
   13961 
   13962 unsigned PPCTargetLowering::getExceptionPointerRegister(
   13963     const Constant *PersonalityFn) const {
   13964   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
   13965 }
   13966 
   13967 unsigned PPCTargetLowering::getExceptionSelectorRegister(
   13968     const Constant *PersonalityFn) const {
   13969   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
   13970 }
   13971 
   13972 bool
   13973 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
   13974                      EVT VT , unsigned DefinedValues) const {
   13975   if (VT == MVT::v2i64)
   13976     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
   13977 
   13978   if (Subtarget.hasVSX() || Subtarget.hasQPX())
   13979     return true;
   13980 
   13981   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
   13982 }
   13983 
   13984 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   13985   if (DisableILPPref || Subtarget.enableMachineScheduler())
   13986     return TargetLowering::getSchedulingPreference(N);
   13987 
   13988   return Sched::ILP;
   13989 }
   13990 
   13991 // Create a fast isel object.
   13992 FastISel *
   13993 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
   13994                                   const TargetLibraryInfo *LibInfo) const {
   13995   return PPC::createFastISel(FuncInfo, LibInfo);
   13996 }
   13997 
   13998 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
   13999   if (Subtarget.isDarwinABI()) return;
   14000   if (!Subtarget.isPPC64()) return;
   14001 
   14002   // Update IsSplitCSR in PPCFunctionInfo
   14003   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
   14004   PFI->setIsSplitCSR(true);
   14005 }
   14006 
   14007 void PPCTargetLowering::insertCopiesSplitCSR(
   14008   MachineBasicBlock *Entry,
   14009   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   14010   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   14011   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
   14012   if (!IStart)
   14013     return;
   14014 
   14015   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   14016   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
   14017   MachineBasicBlock::iterator MBBI = Entry->begin();
   14018   for (const MCPhysReg *I = IStart; *I; ++I) {
   14019     const TargetRegisterClass *RC = nullptr;
   14020     if (PPC::G8RCRegClass.contains(*I))
   14021       RC = &PPC::G8RCRegClass;
   14022     else if (PPC::F8RCRegClass.contains(*I))
   14023       RC = &PPC::F8RCRegClass;
   14024     else if (PPC::CRRCRegClass.contains(*I))
   14025       RC = &PPC::CRRCRegClass;
   14026     else if (PPC::VRRCRegClass.contains(*I))
   14027       RC = &PPC::VRRCRegClass;
   14028     else
   14029       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
   14030 
   14031     unsigned NewVR = MRI->createVirtualRegister(RC);
   14032     // Create copy from CSR to a virtual register.
   14033     // FIXME: this currently does not emit CFI pseudo-instructions, it works
   14034     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
   14035     // nounwind. If we want to generalize this later, we may need to emit
   14036     // CFI pseudo-instructions.
   14037     assert(Entry->getParent()->getFunction().hasFnAttribute(
   14038              Attribute::NoUnwind) &&
   14039            "Function should be nounwind in insertCopiesSplitCSR!");
   14040     Entry->addLiveIn(*I);
   14041     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
   14042       .addReg(*I);
   14043 
   14044     // Insert the copy-back instructions right before the terminator
   14045     for (auto *Exit : Exits)
   14046       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
   14047               TII->get(TargetOpcode::COPY), *I)
   14048         .addReg(NewVR);
   14049   }
   14050 }
   14051 
   14052 // Override to enable LOAD_STACK_GUARD lowering on Linux.
   14053 bool PPCTargetLowering::useLoadStackGuardNode() const {
   14054   if (!Subtarget.isTargetLinux())
   14055     return TargetLowering::useLoadStackGuardNode();
   14056   return true;
   14057 }
   14058 
   14059 // Override to disable global variable loading on Linux.
   14060 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
   14061   if (!Subtarget.isTargetLinux())
   14062     return TargetLowering::insertSSPDeclarations(M);
   14063 }
   14064 
   14065 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   14066   if (!VT.isSimple() || !Subtarget.hasVSX())
   14067     return false;
   14068 
   14069   switch(VT.getSimpleVT().SimpleTy) {
   14070   default:
   14071     // For FP types that are currently not supported by PPC backend, return
   14072     // false. Examples: f16, f80.
   14073     return false;
   14074   case MVT::f32:
   14075   case MVT::f64:
   14076   case MVT::ppcf128:
   14077     return Imm.isPosZero();
   14078   }
   14079 }
   14080 
   14081 // For vector shift operation op, fold
   14082 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
   14083 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
   14084                                   SelectionDAG &DAG) {
   14085   SDValue N0 = N->getOperand(0);
   14086   SDValue N1 = N->getOperand(1);
   14087   EVT VT = N0.getValueType();
   14088   unsigned OpSizeInBits = VT.getScalarSizeInBits();
   14089   unsigned Opcode = N->getOpcode();
   14090   unsigned TargetOpcode;
   14091 
   14092   switch (Opcode) {
   14093   default:
   14094     llvm_unreachable("Unexpected shift operation");
   14095   case ISD::SHL:
   14096     TargetOpcode = PPCISD::SHL;
   14097     break;
   14098   case ISD::SRL:
   14099     TargetOpcode = PPCISD::SRL;
   14100     break;
   14101   case ISD::SRA:
   14102     TargetOpcode = PPCISD::SRA;
   14103     break;
   14104   }
   14105 
   14106   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
   14107       N1->getOpcode() == ISD::AND)
   14108     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
   14109       if (Mask->getZExtValue() == OpSizeInBits - 1)
   14110         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
   14111 
   14112   return SDValue();
   14113 }
   14114 
   14115 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
   14116   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
   14117     return Value;
   14118 
   14119   return SDValue();
   14120 }
   14121 
   14122 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
   14123   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
   14124     return Value;
   14125 
   14126   return SDValue();
   14127 }
   14128 
   14129 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
   14130   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
   14131     return Value;
   14132 
   14133   return SDValue();
   14134 }
   14135 
   14136 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
   14137   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
   14138   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
   14139     return false;
   14140 
   14141   // If not a tail call then no need to proceed.
   14142   if (!CI->isTailCall())
   14143     return false;
   14144 
   14145   // If tail calls are disabled for the caller then we are done.
   14146   const Function *Caller = CI->getParent()->getParent();
   14147   auto Attr = Caller->getFnAttribute("disable-tail-calls");
   14148   if (Attr.getValueAsString() == "true")
   14149     return false;
   14150 
   14151   // If sibling calls have been disabled and tail-calls aren't guaranteed
   14152   // there is no reason to duplicate.
   14153   auto &TM = getTargetMachine();
   14154   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
   14155     return false;
   14156 
   14157   // Can't tail call a function called indirectly, or if it has variadic args.
   14158   const Function *Callee = CI->getCalledFunction();
   14159   if (!Callee || Callee->isVarArg())
   14160     return false;
   14161 
   14162   // Make sure the callee and caller calling conventions are eligible for tco.
   14163   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
   14164                                            CI->getCallingConv()))
   14165       return false;
   14166 
   14167   // If the function is local then we have a good chance at tail-calling it
   14168   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
   14169 }
   14170 
   14171 bool PPCTargetLowering::
   14172 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
   14173   const Value *Mask = AndI.getOperand(1);
   14174   // If the mask is suitable for andi. or andis. we should sink the and.
   14175   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
   14176     // Can't handle constants wider than 64-bits.
   14177     if (CI->getBitWidth() > 64)
   14178       return false;
   14179     int64_t ConstVal = CI->getZExtValue();
   14180     return isUInt<16>(ConstVal) ||
   14181       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
   14182   }
   14183 
   14184   // For non-constant masks, we can always use the record-form and.
   14185   return true;
   14186 }
   14187