1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return getSTI().getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasThumb2() const { 261 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 262 } 263 bool hasV6Ops() const { 264 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 265 } 266 bool hasV6T2Ops() const { 267 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 268 } 269 bool hasV6MOps() const { 270 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 271 } 272 bool hasV7Ops() const { 273 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 274 } 275 bool hasV8Ops() const { 276 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 277 } 278 bool hasV8MBaseline() const { 279 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 280 } 281 bool hasV8MMainline() const { 282 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 283 } 284 bool has8MSecExt() const { 285 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 286 } 287 bool hasARM() const { 288 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 289 } 290 bool hasDSP() const { 291 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 292 } 293 bool hasD16() const { 294 return getSTI().getFeatureBits()[ARM::FeatureD16]; 295 } 296 bool hasV8_1aOps() const { 297 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 298 } 299 bool hasRAS() const { 300 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 301 } 302 303 void SwitchMode() { 304 MCSubtargetInfo &STI = copySTI(); 305 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 306 setAvailableFeatures(FB); 307 } 308 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 309 bool isMClass() const { 310 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 311 } 312 313 /// @name Auto-generated Match Functions 314 /// { 315 316 #define GET_ASSEMBLER_HEADER 317 #include "ARMGenAsmMatcher.inc" 318 319 /// } 320 321 OperandMatchResultTy parseITCondCode(OperandVector &); 322 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 323 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 324 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 325 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 326 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 327 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 328 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 329 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 330 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 331 int High); 332 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 333 return parsePKHImm(O, "lsl", 0, 31); 334 } 335 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 336 return parsePKHImm(O, "asr", 1, 32); 337 } 338 OperandMatchResultTy parseSetEndImm(OperandVector &); 339 OperandMatchResultTy parseShifterImm(OperandVector &); 340 OperandMatchResultTy parseRotImm(OperandVector &); 341 OperandMatchResultTy parseModImm(OperandVector &); 342 OperandMatchResultTy parseBitfield(OperandVector &); 343 OperandMatchResultTy parsePostIdxReg(OperandVector &); 344 OperandMatchResultTy parseAM3Offset(OperandVector &); 345 OperandMatchResultTy parseFPImm(OperandVector &); 346 OperandMatchResultTy parseVectorList(OperandVector &); 347 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 348 SMLoc &EndLoc); 349 350 // Asm Match Converter Methods 351 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 352 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 353 354 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 355 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 356 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 357 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 358 359 public: 360 enum ARMMatchResultTy { 361 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 362 Match_RequiresNotITBlock, 363 Match_RequiresV6, 364 Match_RequiresThumb2, 365 Match_RequiresV8, 366 #define GET_OPERAND_DIAGNOSTIC_TYPES 367 #include "ARMGenAsmMatcher.inc" 368 369 }; 370 371 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 372 const MCInstrInfo &MII, const MCTargetOptions &Options) 373 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 374 MCAsmParserExtension::Initialize(Parser); 375 376 // Cache the MCRegisterInfo. 377 MRI = getContext().getRegisterInfo(); 378 379 // Initialize the set of available features. 380 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 381 382 // Not in an ITBlock to start with. 383 ITState.CurPosition = ~0U; 384 385 NextSymbolIsThumb = false; 386 } 387 388 // Implementation of the MCTargetAsmParser interface: 389 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 390 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 391 SMLoc NameLoc, OperandVector &Operands) override; 392 bool ParseDirective(AsmToken DirectiveID) override; 393 394 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 395 unsigned Kind) override; 396 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 397 398 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 399 OperandVector &Operands, MCStreamer &Out, 400 uint64_t &ErrorInfo, 401 bool MatchingInlineAsm) override; 402 void onLabelParsed(MCSymbol *Symbol) override; 403 }; 404 } // end anonymous namespace 405 406 namespace { 407 408 /// ARMOperand - Instances of this class represent a parsed ARM machine 409 /// operand. 410 class ARMOperand : public MCParsedAsmOperand { 411 enum KindTy { 412 k_CondCode, 413 k_CCOut, 414 k_ITCondMask, 415 k_CoprocNum, 416 k_CoprocReg, 417 k_CoprocOption, 418 k_Immediate, 419 k_MemBarrierOpt, 420 k_InstSyncBarrierOpt, 421 k_Memory, 422 k_PostIndexRegister, 423 k_MSRMask, 424 k_BankedReg, 425 k_ProcIFlags, 426 k_VectorIndex, 427 k_Register, 428 k_RegisterList, 429 k_DPRRegisterList, 430 k_SPRRegisterList, 431 k_VectorList, 432 k_VectorListAllLanes, 433 k_VectorListIndexed, 434 k_ShiftedRegister, 435 k_ShiftedImmediate, 436 k_ShifterImmediate, 437 k_RotateImmediate, 438 k_ModifiedImmediate, 439 k_ConstantPoolImmediate, 440 k_BitfieldDescriptor, 441 k_Token, 442 } Kind; 443 444 SMLoc StartLoc, EndLoc, AlignmentLoc; 445 SmallVector<unsigned, 8> Registers; 446 447 struct CCOp { 448 ARMCC::CondCodes Val; 449 }; 450 451 struct CopOp { 452 unsigned Val; 453 }; 454 455 struct CoprocOptionOp { 456 unsigned Val; 457 }; 458 459 struct ITMaskOp { 460 unsigned Mask:4; 461 }; 462 463 struct MBOptOp { 464 ARM_MB::MemBOpt Val; 465 }; 466 467 struct ISBOptOp { 468 ARM_ISB::InstSyncBOpt Val; 469 }; 470 471 struct IFlagsOp { 472 ARM_PROC::IFlags Val; 473 }; 474 475 struct MMaskOp { 476 unsigned Val; 477 }; 478 479 struct BankedRegOp { 480 unsigned Val; 481 }; 482 483 struct TokOp { 484 const char *Data; 485 unsigned Length; 486 }; 487 488 struct RegOp { 489 unsigned RegNum; 490 }; 491 492 // A vector register list is a sequential list of 1 to 4 registers. 493 struct VectorListOp { 494 unsigned RegNum; 495 unsigned Count; 496 unsigned LaneIndex; 497 bool isDoubleSpaced; 498 }; 499 500 struct VectorIndexOp { 501 unsigned Val; 502 }; 503 504 struct ImmOp { 505 const MCExpr *Val; 506 }; 507 508 /// Combined record for all forms of ARM address expressions. 509 struct MemoryOp { 510 unsigned BaseRegNum; 511 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 512 // was specified. 513 const MCConstantExpr *OffsetImm; // Offset immediate value 514 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 515 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 516 unsigned ShiftImm; // shift for OffsetReg. 517 unsigned Alignment; // 0 = no alignment specified 518 // n = alignment in bytes (2, 4, 8, 16, or 32) 519 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 520 }; 521 522 struct PostIdxRegOp { 523 unsigned RegNum; 524 bool isAdd; 525 ARM_AM::ShiftOpc ShiftTy; 526 unsigned ShiftImm; 527 }; 528 529 struct ShifterImmOp { 530 bool isASR; 531 unsigned Imm; 532 }; 533 534 struct RegShiftedRegOp { 535 ARM_AM::ShiftOpc ShiftTy; 536 unsigned SrcReg; 537 unsigned ShiftReg; 538 unsigned ShiftImm; 539 }; 540 541 struct RegShiftedImmOp { 542 ARM_AM::ShiftOpc ShiftTy; 543 unsigned SrcReg; 544 unsigned ShiftImm; 545 }; 546 547 struct RotImmOp { 548 unsigned Imm; 549 }; 550 551 struct ModImmOp { 552 unsigned Bits; 553 unsigned Rot; 554 }; 555 556 struct BitfieldOp { 557 unsigned LSB; 558 unsigned Width; 559 }; 560 561 union { 562 struct CCOp CC; 563 struct CopOp Cop; 564 struct CoprocOptionOp CoprocOption; 565 struct MBOptOp MBOpt; 566 struct ISBOptOp ISBOpt; 567 struct ITMaskOp ITMask; 568 struct IFlagsOp IFlags; 569 struct MMaskOp MMask; 570 struct BankedRegOp BankedReg; 571 struct TokOp Tok; 572 struct RegOp Reg; 573 struct VectorListOp VectorList; 574 struct VectorIndexOp VectorIndex; 575 struct ImmOp Imm; 576 struct MemoryOp Memory; 577 struct PostIdxRegOp PostIdxReg; 578 struct ShifterImmOp ShifterImm; 579 struct RegShiftedRegOp RegShiftedReg; 580 struct RegShiftedImmOp RegShiftedImm; 581 struct RotImmOp RotImm; 582 struct ModImmOp ModImm; 583 struct BitfieldOp Bitfield; 584 }; 585 586 public: 587 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 588 589 /// getStartLoc - Get the location of the first token of this operand. 590 SMLoc getStartLoc() const override { return StartLoc; } 591 /// getEndLoc - Get the location of the last token of this operand. 592 SMLoc getEndLoc() const override { return EndLoc; } 593 /// getLocRange - Get the range between the first and last token of this 594 /// operand. 595 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 596 597 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 598 SMLoc getAlignmentLoc() const { 599 assert(Kind == k_Memory && "Invalid access!"); 600 return AlignmentLoc; 601 } 602 603 ARMCC::CondCodes getCondCode() const { 604 assert(Kind == k_CondCode && "Invalid access!"); 605 return CC.Val; 606 } 607 608 unsigned getCoproc() const { 609 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 610 return Cop.Val; 611 } 612 613 StringRef getToken() const { 614 assert(Kind == k_Token && "Invalid access!"); 615 return StringRef(Tok.Data, Tok.Length); 616 } 617 618 unsigned getReg() const override { 619 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 620 return Reg.RegNum; 621 } 622 623 const SmallVectorImpl<unsigned> &getRegList() const { 624 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 625 Kind == k_SPRRegisterList) && "Invalid access!"); 626 return Registers; 627 } 628 629 const MCExpr *getImm() const { 630 assert(isImm() && "Invalid access!"); 631 return Imm.Val; 632 } 633 634 const MCExpr *getConstantPoolImm() const { 635 assert(isConstantPoolImm() && "Invalid access!"); 636 return Imm.Val; 637 } 638 639 unsigned getVectorIndex() const { 640 assert(Kind == k_VectorIndex && "Invalid access!"); 641 return VectorIndex.Val; 642 } 643 644 ARM_MB::MemBOpt getMemBarrierOpt() const { 645 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 646 return MBOpt.Val; 647 } 648 649 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 650 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 651 return ISBOpt.Val; 652 } 653 654 ARM_PROC::IFlags getProcIFlags() const { 655 assert(Kind == k_ProcIFlags && "Invalid access!"); 656 return IFlags.Val; 657 } 658 659 unsigned getMSRMask() const { 660 assert(Kind == k_MSRMask && "Invalid access!"); 661 return MMask.Val; 662 } 663 664 unsigned getBankedReg() const { 665 assert(Kind == k_BankedReg && "Invalid access!"); 666 return BankedReg.Val; 667 } 668 669 bool isCoprocNum() const { return Kind == k_CoprocNum; } 670 bool isCoprocReg() const { return Kind == k_CoprocReg; } 671 bool isCoprocOption() const { return Kind == k_CoprocOption; } 672 bool isCondCode() const { return Kind == k_CondCode; } 673 bool isCCOut() const { return Kind == k_CCOut; } 674 bool isITMask() const { return Kind == k_ITCondMask; } 675 bool isITCondCode() const { return Kind == k_CondCode; } 676 bool isImm() const override { 677 return Kind == k_Immediate; 678 } 679 680 bool isARMBranchTarget() const { 681 if (!isImm()) return false; 682 683 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 684 return CE->getValue() % 4 == 0; 685 return true; 686 } 687 688 689 bool isThumbBranchTarget() const { 690 if (!isImm()) return false; 691 692 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 693 return CE->getValue() % 2 == 0; 694 return true; 695 } 696 697 // checks whether this operand is an unsigned offset which fits is a field 698 // of specified width and scaled by a specific number of bits 699 template<unsigned width, unsigned scale> 700 bool isUnsignedOffset() const { 701 if (!isImm()) return false; 702 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 703 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 704 int64_t Val = CE->getValue(); 705 int64_t Align = 1LL << scale; 706 int64_t Max = Align * ((1LL << width) - 1); 707 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 708 } 709 return false; 710 } 711 // checks whether this operand is an signed offset which fits is a field 712 // of specified width and scaled by a specific number of bits 713 template<unsigned width, unsigned scale> 714 bool isSignedOffset() const { 715 if (!isImm()) return false; 716 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 717 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 718 int64_t Val = CE->getValue(); 719 int64_t Align = 1LL << scale; 720 int64_t Max = Align * ((1LL << (width-1)) - 1); 721 int64_t Min = -Align * (1LL << (width-1)); 722 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 723 } 724 return false; 725 } 726 727 // checks whether this operand is a memory operand computed as an offset 728 // applied to PC. the offset may have 8 bits of magnitude and is represented 729 // with two bits of shift. textually it may be either [pc, #imm], #imm or 730 // relocable expression... 731 bool isThumbMemPC() const { 732 int64_t Val = 0; 733 if (isImm()) { 734 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 735 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 736 if (!CE) return false; 737 Val = CE->getValue(); 738 } 739 else if (isMem()) { 740 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 741 if(Memory.BaseRegNum != ARM::PC) return false; 742 Val = Memory.OffsetImm->getValue(); 743 } 744 else return false; 745 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 746 } 747 bool isFPImm() const { 748 if (!isImm()) return false; 749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 750 if (!CE) return false; 751 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 752 return Val != -1; 753 } 754 bool isFBits16() const { 755 if (!isImm()) return false; 756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 757 if (!CE) return false; 758 int64_t Value = CE->getValue(); 759 return Value >= 0 && Value <= 16; 760 } 761 bool isFBits32() const { 762 if (!isImm()) return false; 763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 764 if (!CE) return false; 765 int64_t Value = CE->getValue(); 766 return Value >= 1 && Value <= 32; 767 } 768 bool isImm8s4() const { 769 if (!isImm()) return false; 770 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 771 if (!CE) return false; 772 int64_t Value = CE->getValue(); 773 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 774 } 775 bool isImm0_1020s4() const { 776 if (!isImm()) return false; 777 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 778 if (!CE) return false; 779 int64_t Value = CE->getValue(); 780 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 781 } 782 bool isImm0_508s4() const { 783 if (!isImm()) return false; 784 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 785 if (!CE) return false; 786 int64_t Value = CE->getValue(); 787 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 788 } 789 bool isImm0_508s4Neg() const { 790 if (!isImm()) return false; 791 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 792 if (!CE) return false; 793 int64_t Value = -CE->getValue(); 794 // explicitly exclude zero. we want that to use the normal 0_508 version. 795 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 796 } 797 bool isImm0_239() const { 798 if (!isImm()) return false; 799 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 800 if (!CE) return false; 801 int64_t Value = CE->getValue(); 802 return Value >= 0 && Value < 240; 803 } 804 bool isImm0_255() const { 805 if (!isImm()) return false; 806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 807 if (!CE) return false; 808 int64_t Value = CE->getValue(); 809 return Value >= 0 && Value < 256; 810 } 811 bool isImm0_4095() const { 812 if (!isImm()) return false; 813 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 814 if (!CE) return false; 815 int64_t Value = CE->getValue(); 816 return Value >= 0 && Value < 4096; 817 } 818 bool isImm0_4095Neg() const { 819 if (!isImm()) return false; 820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 821 if (!CE) return false; 822 int64_t Value = -CE->getValue(); 823 return Value > 0 && Value < 4096; 824 } 825 bool isImm0_1() const { 826 if (!isImm()) return false; 827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 828 if (!CE) return false; 829 int64_t Value = CE->getValue(); 830 return Value >= 0 && Value < 2; 831 } 832 bool isImm0_3() const { 833 if (!isImm()) return false; 834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 835 if (!CE) return false; 836 int64_t Value = CE->getValue(); 837 return Value >= 0 && Value < 4; 838 } 839 bool isImm0_7() const { 840 if (!isImm()) return false; 841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 842 if (!CE) return false; 843 int64_t Value = CE->getValue(); 844 return Value >= 0 && Value < 8; 845 } 846 bool isImm0_15() const { 847 if (!isImm()) return false; 848 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 849 if (!CE) return false; 850 int64_t Value = CE->getValue(); 851 return Value >= 0 && Value < 16; 852 } 853 bool isImm0_31() const { 854 if (!isImm()) return false; 855 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 856 if (!CE) return false; 857 int64_t Value = CE->getValue(); 858 return Value >= 0 && Value < 32; 859 } 860 bool isImm0_63() const { 861 if (!isImm()) return false; 862 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 863 if (!CE) return false; 864 int64_t Value = CE->getValue(); 865 return Value >= 0 && Value < 64; 866 } 867 bool isImm8() const { 868 if (!isImm()) return false; 869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 870 if (!CE) return false; 871 int64_t Value = CE->getValue(); 872 return Value == 8; 873 } 874 bool isImm16() const { 875 if (!isImm()) return false; 876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 877 if (!CE) return false; 878 int64_t Value = CE->getValue(); 879 return Value == 16; 880 } 881 bool isImm32() const { 882 if (!isImm()) return false; 883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 884 if (!CE) return false; 885 int64_t Value = CE->getValue(); 886 return Value == 32; 887 } 888 bool isShrImm8() const { 889 if (!isImm()) return false; 890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 891 if (!CE) return false; 892 int64_t Value = CE->getValue(); 893 return Value > 0 && Value <= 8; 894 } 895 bool isShrImm16() const { 896 if (!isImm()) return false; 897 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 898 if (!CE) return false; 899 int64_t Value = CE->getValue(); 900 return Value > 0 && Value <= 16; 901 } 902 bool isShrImm32() const { 903 if (!isImm()) return false; 904 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 905 if (!CE) return false; 906 int64_t Value = CE->getValue(); 907 return Value > 0 && Value <= 32; 908 } 909 bool isShrImm64() const { 910 if (!isImm()) return false; 911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 912 if (!CE) return false; 913 int64_t Value = CE->getValue(); 914 return Value > 0 && Value <= 64; 915 } 916 bool isImm1_7() const { 917 if (!isImm()) return false; 918 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 919 if (!CE) return false; 920 int64_t Value = CE->getValue(); 921 return Value > 0 && Value < 8; 922 } 923 bool isImm1_15() const { 924 if (!isImm()) return false; 925 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 926 if (!CE) return false; 927 int64_t Value = CE->getValue(); 928 return Value > 0 && Value < 16; 929 } 930 bool isImm1_31() const { 931 if (!isImm()) return false; 932 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 933 if (!CE) return false; 934 int64_t Value = CE->getValue(); 935 return Value > 0 && Value < 32; 936 } 937 bool isImm1_16() const { 938 if (!isImm()) return false; 939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 940 if (!CE) return false; 941 int64_t Value = CE->getValue(); 942 return Value > 0 && Value < 17; 943 } 944 bool isImm1_32() const { 945 if (!isImm()) return false; 946 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 947 if (!CE) return false; 948 int64_t Value = CE->getValue(); 949 return Value > 0 && Value < 33; 950 } 951 bool isImm0_32() const { 952 if (!isImm()) return false; 953 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 954 if (!CE) return false; 955 int64_t Value = CE->getValue(); 956 return Value >= 0 && Value < 33; 957 } 958 bool isImm0_65535() const { 959 if (!isImm()) return false; 960 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 961 if (!CE) return false; 962 int64_t Value = CE->getValue(); 963 return Value >= 0 && Value < 65536; 964 } 965 bool isImm256_65535Expr() const { 966 if (!isImm()) return false; 967 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 968 // If it's not a constant expression, it'll generate a fixup and be 969 // handled later. 970 if (!CE) return true; 971 int64_t Value = CE->getValue(); 972 return Value >= 256 && Value < 65536; 973 } 974 bool isImm0_65535Expr() const { 975 if (!isImm()) return false; 976 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 977 // If it's not a constant expression, it'll generate a fixup and be 978 // handled later. 979 if (!CE) return true; 980 int64_t Value = CE->getValue(); 981 return Value >= 0 && Value < 65536; 982 } 983 bool isImm24bit() const { 984 if (!isImm()) return false; 985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 986 if (!CE) return false; 987 int64_t Value = CE->getValue(); 988 return Value >= 0 && Value <= 0xffffff; 989 } 990 bool isImmThumbSR() const { 991 if (!isImm()) return false; 992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 993 if (!CE) return false; 994 int64_t Value = CE->getValue(); 995 return Value > 0 && Value < 33; 996 } 997 bool isPKHLSLImm() const { 998 if (!isImm()) return false; 999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1000 if (!CE) return false; 1001 int64_t Value = CE->getValue(); 1002 return Value >= 0 && Value < 32; 1003 } 1004 bool isPKHASRImm() const { 1005 if (!isImm()) return false; 1006 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1007 if (!CE) return false; 1008 int64_t Value = CE->getValue(); 1009 return Value > 0 && Value <= 32; 1010 } 1011 bool isAdrLabel() const { 1012 // If we have an immediate that's not a constant, treat it as a label 1013 // reference needing a fixup. 1014 if (isImm() && !isa<MCConstantExpr>(getImm())) 1015 return true; 1016 1017 // If it is a constant, it must fit into a modified immediate encoding. 1018 if (!isImm()) return false; 1019 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1020 if (!CE) return false; 1021 int64_t Value = CE->getValue(); 1022 return (ARM_AM::getSOImmVal(Value) != -1 || 1023 ARM_AM::getSOImmVal(-Value) != -1); 1024 } 1025 bool isT2SOImm() const { 1026 if (!isImm()) return false; 1027 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1028 if (!CE) return false; 1029 int64_t Value = CE->getValue(); 1030 return ARM_AM::getT2SOImmVal(Value) != -1; 1031 } 1032 bool isT2SOImmNot() const { 1033 if (!isImm()) return false; 1034 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1035 if (!CE) return false; 1036 int64_t Value = CE->getValue(); 1037 return ARM_AM::getT2SOImmVal(Value) == -1 && 1038 ARM_AM::getT2SOImmVal(~Value) != -1; 1039 } 1040 bool isT2SOImmNeg() const { 1041 if (!isImm()) return false; 1042 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1043 if (!CE) return false; 1044 int64_t Value = CE->getValue(); 1045 // Only use this when not representable as a plain so_imm. 1046 return ARM_AM::getT2SOImmVal(Value) == -1 && 1047 ARM_AM::getT2SOImmVal(-Value) != -1; 1048 } 1049 bool isSetEndImm() const { 1050 if (!isImm()) return false; 1051 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1052 if (!CE) return false; 1053 int64_t Value = CE->getValue(); 1054 return Value == 1 || Value == 0; 1055 } 1056 bool isReg() const override { return Kind == k_Register; } 1057 bool isRegList() const { return Kind == k_RegisterList; } 1058 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1059 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1060 bool isToken() const override { return Kind == k_Token; } 1061 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1062 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1063 bool isMem() const override { return Kind == k_Memory; } 1064 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1065 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1066 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1067 bool isRotImm() const { return Kind == k_RotateImmediate; } 1068 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1069 bool isModImmNot() const { 1070 if (!isImm()) return false; 1071 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1072 if (!CE) return false; 1073 int64_t Value = CE->getValue(); 1074 return ARM_AM::getSOImmVal(~Value) != -1; 1075 } 1076 bool isModImmNeg() const { 1077 if (!isImm()) return false; 1078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1079 if (!CE) return false; 1080 int64_t Value = CE->getValue(); 1081 return ARM_AM::getSOImmVal(Value) == -1 && 1082 ARM_AM::getSOImmVal(-Value) != -1; 1083 } 1084 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1085 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1086 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1087 bool isPostIdxReg() const { 1088 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1089 } 1090 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1091 if (!isMem()) 1092 return false; 1093 // No offset of any kind. 1094 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1095 (alignOK || Memory.Alignment == Alignment); 1096 } 1097 bool isMemPCRelImm12() const { 1098 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1099 return false; 1100 // Base register must be PC. 1101 if (Memory.BaseRegNum != ARM::PC) 1102 return false; 1103 // Immediate offset in range [-4095, 4095]. 1104 if (!Memory.OffsetImm) return true; 1105 int64_t Val = Memory.OffsetImm->getValue(); 1106 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1107 } 1108 bool isAlignedMemory() const { 1109 return isMemNoOffset(true); 1110 } 1111 bool isAlignedMemoryNone() const { 1112 return isMemNoOffset(false, 0); 1113 } 1114 bool isDupAlignedMemoryNone() const { 1115 return isMemNoOffset(false, 0); 1116 } 1117 bool isAlignedMemory16() const { 1118 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1119 return true; 1120 return isMemNoOffset(false, 0); 1121 } 1122 bool isDupAlignedMemory16() const { 1123 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1124 return true; 1125 return isMemNoOffset(false, 0); 1126 } 1127 bool isAlignedMemory32() const { 1128 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1129 return true; 1130 return isMemNoOffset(false, 0); 1131 } 1132 bool isDupAlignedMemory32() const { 1133 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1134 return true; 1135 return isMemNoOffset(false, 0); 1136 } 1137 bool isAlignedMemory64() const { 1138 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1139 return true; 1140 return isMemNoOffset(false, 0); 1141 } 1142 bool isDupAlignedMemory64() const { 1143 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1144 return true; 1145 return isMemNoOffset(false, 0); 1146 } 1147 bool isAlignedMemory64or128() const { 1148 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1149 return true; 1150 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1151 return true; 1152 return isMemNoOffset(false, 0); 1153 } 1154 bool isDupAlignedMemory64or128() const { 1155 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1156 return true; 1157 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1158 return true; 1159 return isMemNoOffset(false, 0); 1160 } 1161 bool isAlignedMemory64or128or256() const { 1162 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1163 return true; 1164 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1165 return true; 1166 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1167 return true; 1168 return isMemNoOffset(false, 0); 1169 } 1170 bool isAddrMode2() const { 1171 if (!isMem() || Memory.Alignment != 0) return false; 1172 // Check for register offset. 1173 if (Memory.OffsetRegNum) return true; 1174 // Immediate offset in range [-4095, 4095]. 1175 if (!Memory.OffsetImm) return true; 1176 int64_t Val = Memory.OffsetImm->getValue(); 1177 return Val > -4096 && Val < 4096; 1178 } 1179 bool isAM2OffsetImm() const { 1180 if (!isImm()) return false; 1181 // Immediate offset in range [-4095, 4095]. 1182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1183 if (!CE) return false; 1184 int64_t Val = CE->getValue(); 1185 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1186 } 1187 bool isAddrMode3() const { 1188 // If we have an immediate that's not a constant, treat it as a label 1189 // reference needing a fixup. If it is a constant, it's something else 1190 // and we reject it. 1191 if (isImm() && !isa<MCConstantExpr>(getImm())) 1192 return true; 1193 if (!isMem() || Memory.Alignment != 0) return false; 1194 // No shifts are legal for AM3. 1195 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1196 // Check for register offset. 1197 if (Memory.OffsetRegNum) return true; 1198 // Immediate offset in range [-255, 255]. 1199 if (!Memory.OffsetImm) return true; 1200 int64_t Val = Memory.OffsetImm->getValue(); 1201 // The #-0 offset is encoded as INT32_MIN, and we have to check 1202 // for this too. 1203 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1204 } 1205 bool isAM3Offset() const { 1206 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1207 return false; 1208 if (Kind == k_PostIndexRegister) 1209 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1210 // Immediate offset in range [-255, 255]. 1211 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1212 if (!CE) return false; 1213 int64_t Val = CE->getValue(); 1214 // Special case, #-0 is INT32_MIN. 1215 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1216 } 1217 bool isAddrMode5() const { 1218 // If we have an immediate that's not a constant, treat it as a label 1219 // reference needing a fixup. If it is a constant, it's something else 1220 // and we reject it. 1221 if (isImm() && !isa<MCConstantExpr>(getImm())) 1222 return true; 1223 if (!isMem() || Memory.Alignment != 0) return false; 1224 // Check for register offset. 1225 if (Memory.OffsetRegNum) return false; 1226 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1227 if (!Memory.OffsetImm) return true; 1228 int64_t Val = Memory.OffsetImm->getValue(); 1229 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1230 Val == INT32_MIN; 1231 } 1232 bool isAddrMode5FP16() const { 1233 // If we have an immediate that's not a constant, treat it as a label 1234 // reference needing a fixup. If it is a constant, it's something else 1235 // and we reject it. 1236 if (isImm() && !isa<MCConstantExpr>(getImm())) 1237 return true; 1238 if (!isMem() || Memory.Alignment != 0) return false; 1239 // Check for register offset. 1240 if (Memory.OffsetRegNum) return false; 1241 // Immediate offset in range [-510, 510] and a multiple of 2. 1242 if (!Memory.OffsetImm) return true; 1243 int64_t Val = Memory.OffsetImm->getValue(); 1244 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1245 } 1246 bool isMemTBB() const { 1247 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1248 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1249 return false; 1250 return true; 1251 } 1252 bool isMemTBH() const { 1253 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1254 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1255 Memory.Alignment != 0 ) 1256 return false; 1257 return true; 1258 } 1259 bool isMemRegOffset() const { 1260 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1261 return false; 1262 return true; 1263 } 1264 bool isT2MemRegOffset() const { 1265 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1266 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1267 return false; 1268 // Only lsl #{0, 1, 2, 3} allowed. 1269 if (Memory.ShiftType == ARM_AM::no_shift) 1270 return true; 1271 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1272 return false; 1273 return true; 1274 } 1275 bool isMemThumbRR() const { 1276 // Thumb reg+reg addressing is simple. Just two registers, a base and 1277 // an offset. No shifts, negations or any other complicating factors. 1278 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1279 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1280 return false; 1281 return isARMLowRegister(Memory.BaseRegNum) && 1282 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1283 } 1284 bool isMemThumbRIs4() const { 1285 if (!isMem() || Memory.OffsetRegNum != 0 || 1286 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1287 return false; 1288 // Immediate offset, multiple of 4 in range [0, 124]. 1289 if (!Memory.OffsetImm) return true; 1290 int64_t Val = Memory.OffsetImm->getValue(); 1291 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1292 } 1293 bool isMemThumbRIs2() const { 1294 if (!isMem() || Memory.OffsetRegNum != 0 || 1295 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1296 return false; 1297 // Immediate offset, multiple of 4 in range [0, 62]. 1298 if (!Memory.OffsetImm) return true; 1299 int64_t Val = Memory.OffsetImm->getValue(); 1300 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1301 } 1302 bool isMemThumbRIs1() const { 1303 if (!isMem() || Memory.OffsetRegNum != 0 || 1304 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1305 return false; 1306 // Immediate offset in range [0, 31]. 1307 if (!Memory.OffsetImm) return true; 1308 int64_t Val = Memory.OffsetImm->getValue(); 1309 return Val >= 0 && Val <= 31; 1310 } 1311 bool isMemThumbSPI() const { 1312 if (!isMem() || Memory.OffsetRegNum != 0 || 1313 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1314 return false; 1315 // Immediate offset, multiple of 4 in range [0, 1020]. 1316 if (!Memory.OffsetImm) return true; 1317 int64_t Val = Memory.OffsetImm->getValue(); 1318 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1319 } 1320 bool isMemImm8s4Offset() const { 1321 // If we have an immediate that's not a constant, treat it as a label 1322 // reference needing a fixup. If it is a constant, it's something else 1323 // and we reject it. 1324 if (isImm() && !isa<MCConstantExpr>(getImm())) 1325 return true; 1326 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1327 return false; 1328 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1329 if (!Memory.OffsetImm) return true; 1330 int64_t Val = Memory.OffsetImm->getValue(); 1331 // Special case, #-0 is INT32_MIN. 1332 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1333 } 1334 bool isMemImm0_1020s4Offset() const { 1335 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1336 return false; 1337 // Immediate offset a multiple of 4 in range [0, 1020]. 1338 if (!Memory.OffsetImm) return true; 1339 int64_t Val = Memory.OffsetImm->getValue(); 1340 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1341 } 1342 bool isMemImm8Offset() const { 1343 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1344 return false; 1345 // Base reg of PC isn't allowed for these encodings. 1346 if (Memory.BaseRegNum == ARM::PC) return false; 1347 // Immediate offset in range [-255, 255]. 1348 if (!Memory.OffsetImm) return true; 1349 int64_t Val = Memory.OffsetImm->getValue(); 1350 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1351 } 1352 bool isMemPosImm8Offset() const { 1353 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1354 return false; 1355 // Immediate offset in range [0, 255]. 1356 if (!Memory.OffsetImm) return true; 1357 int64_t Val = Memory.OffsetImm->getValue(); 1358 return Val >= 0 && Val < 256; 1359 } 1360 bool isMemNegImm8Offset() const { 1361 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1362 return false; 1363 // Base reg of PC isn't allowed for these encodings. 1364 if (Memory.BaseRegNum == ARM::PC) return false; 1365 // Immediate offset in range [-255, -1]. 1366 if (!Memory.OffsetImm) return false; 1367 int64_t Val = Memory.OffsetImm->getValue(); 1368 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1369 } 1370 bool isMemUImm12Offset() const { 1371 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1372 return false; 1373 // Immediate offset in range [0, 4095]. 1374 if (!Memory.OffsetImm) return true; 1375 int64_t Val = Memory.OffsetImm->getValue(); 1376 return (Val >= 0 && Val < 4096); 1377 } 1378 bool isMemImm12Offset() const { 1379 // If we have an immediate that's not a constant, treat it as a label 1380 // reference needing a fixup. If it is a constant, it's something else 1381 // and we reject it. 1382 1383 if (isImm() && !isa<MCConstantExpr>(getImm())) 1384 return true; 1385 1386 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1387 return false; 1388 // Immediate offset in range [-4095, 4095]. 1389 if (!Memory.OffsetImm) return true; 1390 int64_t Val = Memory.OffsetImm->getValue(); 1391 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1392 } 1393 bool isConstPoolAsmImm() const { 1394 // Delay processing of Constant Pool Immediate, this will turn into 1395 // a constant. Match no other operand 1396 return (isConstantPoolImm()); 1397 } 1398 bool isPostIdxImm8() const { 1399 if (!isImm()) return false; 1400 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1401 if (!CE) return false; 1402 int64_t Val = CE->getValue(); 1403 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1404 } 1405 bool isPostIdxImm8s4() const { 1406 if (!isImm()) return false; 1407 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1408 if (!CE) return false; 1409 int64_t Val = CE->getValue(); 1410 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1411 (Val == INT32_MIN); 1412 } 1413 1414 bool isMSRMask() const { return Kind == k_MSRMask; } 1415 bool isBankedReg() const { return Kind == k_BankedReg; } 1416 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1417 1418 // NEON operands. 1419 bool isSingleSpacedVectorList() const { 1420 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1421 } 1422 bool isDoubleSpacedVectorList() const { 1423 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1424 } 1425 bool isVecListOneD() const { 1426 if (!isSingleSpacedVectorList()) return false; 1427 return VectorList.Count == 1; 1428 } 1429 1430 bool isVecListDPair() const { 1431 if (!isSingleSpacedVectorList()) return false; 1432 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1433 .contains(VectorList.RegNum)); 1434 } 1435 1436 bool isVecListThreeD() const { 1437 if (!isSingleSpacedVectorList()) return false; 1438 return VectorList.Count == 3; 1439 } 1440 1441 bool isVecListFourD() const { 1442 if (!isSingleSpacedVectorList()) return false; 1443 return VectorList.Count == 4; 1444 } 1445 1446 bool isVecListDPairSpaced() const { 1447 if (Kind != k_VectorList) return false; 1448 if (isSingleSpacedVectorList()) return false; 1449 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1450 .contains(VectorList.RegNum)); 1451 } 1452 1453 bool isVecListThreeQ() const { 1454 if (!isDoubleSpacedVectorList()) return false; 1455 return VectorList.Count == 3; 1456 } 1457 1458 bool isVecListFourQ() const { 1459 if (!isDoubleSpacedVectorList()) return false; 1460 return VectorList.Count == 4; 1461 } 1462 1463 bool isSingleSpacedVectorAllLanes() const { 1464 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1465 } 1466 bool isDoubleSpacedVectorAllLanes() const { 1467 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1468 } 1469 bool isVecListOneDAllLanes() const { 1470 if (!isSingleSpacedVectorAllLanes()) return false; 1471 return VectorList.Count == 1; 1472 } 1473 1474 bool isVecListDPairAllLanes() const { 1475 if (!isSingleSpacedVectorAllLanes()) return false; 1476 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1477 .contains(VectorList.RegNum)); 1478 } 1479 1480 bool isVecListDPairSpacedAllLanes() const { 1481 if (!isDoubleSpacedVectorAllLanes()) return false; 1482 return VectorList.Count == 2; 1483 } 1484 1485 bool isVecListThreeDAllLanes() const { 1486 if (!isSingleSpacedVectorAllLanes()) return false; 1487 return VectorList.Count == 3; 1488 } 1489 1490 bool isVecListThreeQAllLanes() const { 1491 if (!isDoubleSpacedVectorAllLanes()) return false; 1492 return VectorList.Count == 3; 1493 } 1494 1495 bool isVecListFourDAllLanes() const { 1496 if (!isSingleSpacedVectorAllLanes()) return false; 1497 return VectorList.Count == 4; 1498 } 1499 1500 bool isVecListFourQAllLanes() const { 1501 if (!isDoubleSpacedVectorAllLanes()) return false; 1502 return VectorList.Count == 4; 1503 } 1504 1505 bool isSingleSpacedVectorIndexed() const { 1506 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1507 } 1508 bool isDoubleSpacedVectorIndexed() const { 1509 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1510 } 1511 bool isVecListOneDByteIndexed() const { 1512 if (!isSingleSpacedVectorIndexed()) return false; 1513 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1514 } 1515 1516 bool isVecListOneDHWordIndexed() const { 1517 if (!isSingleSpacedVectorIndexed()) return false; 1518 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1519 } 1520 1521 bool isVecListOneDWordIndexed() const { 1522 if (!isSingleSpacedVectorIndexed()) return false; 1523 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1524 } 1525 1526 bool isVecListTwoDByteIndexed() const { 1527 if (!isSingleSpacedVectorIndexed()) return false; 1528 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1529 } 1530 1531 bool isVecListTwoDHWordIndexed() const { 1532 if (!isSingleSpacedVectorIndexed()) return false; 1533 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1534 } 1535 1536 bool isVecListTwoQWordIndexed() const { 1537 if (!isDoubleSpacedVectorIndexed()) return false; 1538 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1539 } 1540 1541 bool isVecListTwoQHWordIndexed() const { 1542 if (!isDoubleSpacedVectorIndexed()) return false; 1543 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1544 } 1545 1546 bool isVecListTwoDWordIndexed() const { 1547 if (!isSingleSpacedVectorIndexed()) return false; 1548 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1549 } 1550 1551 bool isVecListThreeDByteIndexed() const { 1552 if (!isSingleSpacedVectorIndexed()) return false; 1553 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1554 } 1555 1556 bool isVecListThreeDHWordIndexed() const { 1557 if (!isSingleSpacedVectorIndexed()) return false; 1558 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1559 } 1560 1561 bool isVecListThreeQWordIndexed() const { 1562 if (!isDoubleSpacedVectorIndexed()) return false; 1563 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1564 } 1565 1566 bool isVecListThreeQHWordIndexed() const { 1567 if (!isDoubleSpacedVectorIndexed()) return false; 1568 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1569 } 1570 1571 bool isVecListThreeDWordIndexed() const { 1572 if (!isSingleSpacedVectorIndexed()) return false; 1573 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1574 } 1575 1576 bool isVecListFourDByteIndexed() const { 1577 if (!isSingleSpacedVectorIndexed()) return false; 1578 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1579 } 1580 1581 bool isVecListFourDHWordIndexed() const { 1582 if (!isSingleSpacedVectorIndexed()) return false; 1583 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1584 } 1585 1586 bool isVecListFourQWordIndexed() const { 1587 if (!isDoubleSpacedVectorIndexed()) return false; 1588 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1589 } 1590 1591 bool isVecListFourQHWordIndexed() const { 1592 if (!isDoubleSpacedVectorIndexed()) return false; 1593 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1594 } 1595 1596 bool isVecListFourDWordIndexed() const { 1597 if (!isSingleSpacedVectorIndexed()) return false; 1598 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1599 } 1600 1601 bool isVectorIndex8() const { 1602 if (Kind != k_VectorIndex) return false; 1603 return VectorIndex.Val < 8; 1604 } 1605 bool isVectorIndex16() const { 1606 if (Kind != k_VectorIndex) return false; 1607 return VectorIndex.Val < 4; 1608 } 1609 bool isVectorIndex32() const { 1610 if (Kind != k_VectorIndex) return false; 1611 return VectorIndex.Val < 2; 1612 } 1613 1614 bool isNEONi8splat() const { 1615 if (!isImm()) return false; 1616 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1617 // Must be a constant. 1618 if (!CE) return false; 1619 int64_t Value = CE->getValue(); 1620 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1621 // value. 1622 return Value >= 0 && Value < 256; 1623 } 1624 1625 bool isNEONi16splat() const { 1626 if (isNEONByteReplicate(2)) 1627 return false; // Leave that for bytes replication and forbid by default. 1628 if (!isImm()) 1629 return false; 1630 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1631 // Must be a constant. 1632 if (!CE) return false; 1633 unsigned Value = CE->getValue(); 1634 return ARM_AM::isNEONi16splat(Value); 1635 } 1636 1637 bool isNEONi16splatNot() const { 1638 if (!isImm()) 1639 return false; 1640 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1641 // Must be a constant. 1642 if (!CE) return false; 1643 unsigned Value = CE->getValue(); 1644 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1645 } 1646 1647 bool isNEONi32splat() const { 1648 if (isNEONByteReplicate(4)) 1649 return false; // Leave that for bytes replication and forbid by default. 1650 if (!isImm()) 1651 return false; 1652 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1653 // Must be a constant. 1654 if (!CE) return false; 1655 unsigned Value = CE->getValue(); 1656 return ARM_AM::isNEONi32splat(Value); 1657 } 1658 1659 bool isNEONi32splatNot() const { 1660 if (!isImm()) 1661 return false; 1662 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1663 // Must be a constant. 1664 if (!CE) return false; 1665 unsigned Value = CE->getValue(); 1666 return ARM_AM::isNEONi32splat(~Value); 1667 } 1668 1669 bool isNEONByteReplicate(unsigned NumBytes) const { 1670 if (!isImm()) 1671 return false; 1672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1673 // Must be a constant. 1674 if (!CE) 1675 return false; 1676 int64_t Value = CE->getValue(); 1677 if (!Value) 1678 return false; // Don't bother with zero. 1679 1680 unsigned char B = Value & 0xff; 1681 for (unsigned i = 1; i < NumBytes; ++i) { 1682 Value >>= 8; 1683 if ((Value & 0xff) != B) 1684 return false; 1685 } 1686 return true; 1687 } 1688 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1689 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1690 bool isNEONi32vmov() const { 1691 if (isNEONByteReplicate(4)) 1692 return false; // Let it to be classified as byte-replicate case. 1693 if (!isImm()) 1694 return false; 1695 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1696 // Must be a constant. 1697 if (!CE) 1698 return false; 1699 int64_t Value = CE->getValue(); 1700 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1701 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1702 // FIXME: This is probably wrong and a copy and paste from previous example 1703 return (Value >= 0 && Value < 256) || 1704 (Value >= 0x0100 && Value <= 0xff00) || 1705 (Value >= 0x010000 && Value <= 0xff0000) || 1706 (Value >= 0x01000000 && Value <= 0xff000000) || 1707 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1708 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1709 } 1710 bool isNEONi32vmovNeg() const { 1711 if (!isImm()) return false; 1712 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1713 // Must be a constant. 1714 if (!CE) return false; 1715 int64_t Value = ~CE->getValue(); 1716 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1717 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1718 // FIXME: This is probably wrong and a copy and paste from previous example 1719 return (Value >= 0 && Value < 256) || 1720 (Value >= 0x0100 && Value <= 0xff00) || 1721 (Value >= 0x010000 && Value <= 0xff0000) || 1722 (Value >= 0x01000000 && Value <= 0xff000000) || 1723 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1724 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1725 } 1726 1727 bool isNEONi64splat() const { 1728 if (!isImm()) return false; 1729 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1730 // Must be a constant. 1731 if (!CE) return false; 1732 uint64_t Value = CE->getValue(); 1733 // i64 value with each byte being either 0 or 0xff. 1734 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1735 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1736 return true; 1737 } 1738 1739 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1740 // Add as immediates when possible. Null MCExpr = 0. 1741 if (!Expr) 1742 Inst.addOperand(MCOperand::createImm(0)); 1743 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1744 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1745 else 1746 Inst.addOperand(MCOperand::createExpr(Expr)); 1747 } 1748 1749 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1750 assert(N == 1 && "Invalid number of operands!"); 1751 addExpr(Inst, getImm()); 1752 } 1753 1754 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1755 assert(N == 1 && "Invalid number of operands!"); 1756 addExpr(Inst, getImm()); 1757 } 1758 1759 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1760 assert(N == 2 && "Invalid number of operands!"); 1761 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1762 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1763 Inst.addOperand(MCOperand::createReg(RegNum)); 1764 } 1765 1766 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1767 assert(N == 1 && "Invalid number of operands!"); 1768 Inst.addOperand(MCOperand::createImm(getCoproc())); 1769 } 1770 1771 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1772 assert(N == 1 && "Invalid number of operands!"); 1773 Inst.addOperand(MCOperand::createImm(getCoproc())); 1774 } 1775 1776 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1777 assert(N == 1 && "Invalid number of operands!"); 1778 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1779 } 1780 1781 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1782 assert(N == 1 && "Invalid number of operands!"); 1783 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1784 } 1785 1786 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1787 assert(N == 1 && "Invalid number of operands!"); 1788 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1789 } 1790 1791 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1792 assert(N == 1 && "Invalid number of operands!"); 1793 Inst.addOperand(MCOperand::createReg(getReg())); 1794 } 1795 1796 void addRegOperands(MCInst &Inst, unsigned N) const { 1797 assert(N == 1 && "Invalid number of operands!"); 1798 Inst.addOperand(MCOperand::createReg(getReg())); 1799 } 1800 1801 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1802 assert(N == 3 && "Invalid number of operands!"); 1803 assert(isRegShiftedReg() && 1804 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1805 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1806 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1807 Inst.addOperand(MCOperand::createImm( 1808 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1809 } 1810 1811 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1812 assert(N == 2 && "Invalid number of operands!"); 1813 assert(isRegShiftedImm() && 1814 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1815 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1816 // Shift of #32 is encoded as 0 where permitted 1817 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1818 Inst.addOperand(MCOperand::createImm( 1819 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1820 } 1821 1822 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1823 assert(N == 1 && "Invalid number of operands!"); 1824 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1825 ShifterImm.Imm)); 1826 } 1827 1828 void addRegListOperands(MCInst &Inst, unsigned N) const { 1829 assert(N == 1 && "Invalid number of operands!"); 1830 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1831 for (SmallVectorImpl<unsigned>::const_iterator 1832 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1833 Inst.addOperand(MCOperand::createReg(*I)); 1834 } 1835 1836 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1837 addRegListOperands(Inst, N); 1838 } 1839 1840 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1841 addRegListOperands(Inst, N); 1842 } 1843 1844 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1845 assert(N == 1 && "Invalid number of operands!"); 1846 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1847 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1848 } 1849 1850 void addModImmOperands(MCInst &Inst, unsigned N) const { 1851 assert(N == 1 && "Invalid number of operands!"); 1852 1853 // Support for fixups (MCFixup) 1854 if (isImm()) 1855 return addImmOperands(Inst, N); 1856 1857 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1858 } 1859 1860 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1861 assert(N == 1 && "Invalid number of operands!"); 1862 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1863 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1864 Inst.addOperand(MCOperand::createImm(Enc)); 1865 } 1866 1867 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1868 assert(N == 1 && "Invalid number of operands!"); 1869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1870 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1871 Inst.addOperand(MCOperand::createImm(Enc)); 1872 } 1873 1874 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1875 assert(N == 1 && "Invalid number of operands!"); 1876 // Munge the lsb/width into a bitfield mask. 1877 unsigned lsb = Bitfield.LSB; 1878 unsigned width = Bitfield.Width; 1879 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1880 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1881 (32 - (lsb + width))); 1882 Inst.addOperand(MCOperand::createImm(Mask)); 1883 } 1884 1885 void addImmOperands(MCInst &Inst, unsigned N) const { 1886 assert(N == 1 && "Invalid number of operands!"); 1887 addExpr(Inst, getImm()); 1888 } 1889 1890 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1891 assert(N == 1 && "Invalid number of operands!"); 1892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1893 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1894 } 1895 1896 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1897 assert(N == 1 && "Invalid number of operands!"); 1898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1899 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1900 } 1901 1902 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1903 assert(N == 1 && "Invalid number of operands!"); 1904 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1905 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1906 Inst.addOperand(MCOperand::createImm(Val)); 1907 } 1908 1909 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1910 assert(N == 1 && "Invalid number of operands!"); 1911 // FIXME: We really want to scale the value here, but the LDRD/STRD 1912 // instruction don't encode operands that way yet. 1913 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1914 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1915 } 1916 1917 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1918 assert(N == 1 && "Invalid number of operands!"); 1919 // The immediate is scaled by four in the encoding and is stored 1920 // in the MCInst as such. Lop off the low two bits here. 1921 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1922 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1923 } 1924 1925 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1926 assert(N == 1 && "Invalid number of operands!"); 1927 // The immediate is scaled by four in the encoding and is stored 1928 // in the MCInst as such. Lop off the low two bits here. 1929 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1930 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1931 } 1932 1933 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1934 assert(N == 1 && "Invalid number of operands!"); 1935 // The immediate is scaled by four in the encoding and is stored 1936 // in the MCInst as such. Lop off the low two bits here. 1937 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1938 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1939 } 1940 1941 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1942 assert(N == 1 && "Invalid number of operands!"); 1943 // The constant encodes as the immediate-1, and we store in the instruction 1944 // the bits as encoded, so subtract off one here. 1945 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1946 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1947 } 1948 1949 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1950 assert(N == 1 && "Invalid number of operands!"); 1951 // The constant encodes as the immediate-1, and we store in the instruction 1952 // the bits as encoded, so subtract off one here. 1953 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1954 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1955 } 1956 1957 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1958 assert(N == 1 && "Invalid number of operands!"); 1959 // The constant encodes as the immediate, except for 32, which encodes as 1960 // zero. 1961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1962 unsigned Imm = CE->getValue(); 1963 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1964 } 1965 1966 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1967 assert(N == 1 && "Invalid number of operands!"); 1968 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1969 // the instruction as well. 1970 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1971 int Val = CE->getValue(); 1972 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1973 } 1974 1975 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1976 assert(N == 1 && "Invalid number of operands!"); 1977 // The operand is actually a t2_so_imm, but we have its bitwise 1978 // negation in the assembly source, so twiddle it here. 1979 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1980 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1981 } 1982 1983 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1984 assert(N == 1 && "Invalid number of operands!"); 1985 // The operand is actually a t2_so_imm, but we have its 1986 // negation in the assembly source, so twiddle it here. 1987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1988 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1989 } 1990 1991 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1992 assert(N == 1 && "Invalid number of operands!"); 1993 // The operand is actually an imm0_4095, but we have its 1994 // negation in the assembly source, so twiddle it here. 1995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1996 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1997 } 1998 1999 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2000 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2001 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2002 return; 2003 } 2004 2005 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2006 assert(SR && "Unknown value type!"); 2007 Inst.addOperand(MCOperand::createExpr(SR)); 2008 } 2009 2010 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2011 assert(N == 1 && "Invalid number of operands!"); 2012 if (isImm()) { 2013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2014 if (CE) { 2015 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2016 return; 2017 } 2018 2019 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2020 2021 assert(SR && "Unknown value type!"); 2022 Inst.addOperand(MCOperand::createExpr(SR)); 2023 return; 2024 } 2025 2026 assert(isMem() && "Unknown value type!"); 2027 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2028 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2029 } 2030 2031 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2032 assert(N == 1 && "Invalid number of operands!"); 2033 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2034 } 2035 2036 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2037 assert(N == 1 && "Invalid number of operands!"); 2038 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2039 } 2040 2041 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2042 assert(N == 1 && "Invalid number of operands!"); 2043 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2044 } 2045 2046 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2047 assert(N == 1 && "Invalid number of operands!"); 2048 int32_t Imm = Memory.OffsetImm->getValue(); 2049 Inst.addOperand(MCOperand::createImm(Imm)); 2050 } 2051 2052 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2053 assert(N == 1 && "Invalid number of operands!"); 2054 assert(isImm() && "Not an immediate!"); 2055 2056 // If we have an immediate that's not a constant, treat it as a label 2057 // reference needing a fixup. 2058 if (!isa<MCConstantExpr>(getImm())) { 2059 Inst.addOperand(MCOperand::createExpr(getImm())); 2060 return; 2061 } 2062 2063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2064 int Val = CE->getValue(); 2065 Inst.addOperand(MCOperand::createImm(Val)); 2066 } 2067 2068 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2069 assert(N == 2 && "Invalid number of operands!"); 2070 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2071 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2072 } 2073 2074 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2075 addAlignedMemoryOperands(Inst, N); 2076 } 2077 2078 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2079 addAlignedMemoryOperands(Inst, N); 2080 } 2081 2082 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2083 addAlignedMemoryOperands(Inst, N); 2084 } 2085 2086 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2087 addAlignedMemoryOperands(Inst, N); 2088 } 2089 2090 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2091 addAlignedMemoryOperands(Inst, N); 2092 } 2093 2094 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2095 addAlignedMemoryOperands(Inst, N); 2096 } 2097 2098 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2099 addAlignedMemoryOperands(Inst, N); 2100 } 2101 2102 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2103 addAlignedMemoryOperands(Inst, N); 2104 } 2105 2106 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2107 addAlignedMemoryOperands(Inst, N); 2108 } 2109 2110 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2111 addAlignedMemoryOperands(Inst, N); 2112 } 2113 2114 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2115 addAlignedMemoryOperands(Inst, N); 2116 } 2117 2118 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2119 assert(N == 3 && "Invalid number of operands!"); 2120 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2121 if (!Memory.OffsetRegNum) { 2122 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2123 // Special case for #-0 2124 if (Val == INT32_MIN) Val = 0; 2125 if (Val < 0) Val = -Val; 2126 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2127 } else { 2128 // For register offset, we encode the shift type and negation flag 2129 // here. 2130 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2131 Memory.ShiftImm, Memory.ShiftType); 2132 } 2133 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2134 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2135 Inst.addOperand(MCOperand::createImm(Val)); 2136 } 2137 2138 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2139 assert(N == 2 && "Invalid number of operands!"); 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 assert(CE && "non-constant AM2OffsetImm operand!"); 2142 int32_t Val = CE->getValue(); 2143 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2144 // Special case for #-0 2145 if (Val == INT32_MIN) Val = 0; 2146 if (Val < 0) Val = -Val; 2147 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2148 Inst.addOperand(MCOperand::createReg(0)); 2149 Inst.addOperand(MCOperand::createImm(Val)); 2150 } 2151 2152 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2153 assert(N == 3 && "Invalid number of operands!"); 2154 // If we have an immediate that's not a constant, treat it as a label 2155 // reference needing a fixup. If it is a constant, it's something else 2156 // and we reject it. 2157 if (isImm()) { 2158 Inst.addOperand(MCOperand::createExpr(getImm())); 2159 Inst.addOperand(MCOperand::createReg(0)); 2160 Inst.addOperand(MCOperand::createImm(0)); 2161 return; 2162 } 2163 2164 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2165 if (!Memory.OffsetRegNum) { 2166 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2167 // Special case for #-0 2168 if (Val == INT32_MIN) Val = 0; 2169 if (Val < 0) Val = -Val; 2170 Val = ARM_AM::getAM3Opc(AddSub, Val); 2171 } else { 2172 // For register offset, we encode the shift type and negation flag 2173 // here. 2174 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2175 } 2176 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2177 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2178 Inst.addOperand(MCOperand::createImm(Val)); 2179 } 2180 2181 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2182 assert(N == 2 && "Invalid number of operands!"); 2183 if (Kind == k_PostIndexRegister) { 2184 int32_t Val = 2185 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2186 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2187 Inst.addOperand(MCOperand::createImm(Val)); 2188 return; 2189 } 2190 2191 // Constant offset. 2192 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2193 int32_t Val = CE->getValue(); 2194 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2195 // Special case for #-0 2196 if (Val == INT32_MIN) Val = 0; 2197 if (Val < 0) Val = -Val; 2198 Val = ARM_AM::getAM3Opc(AddSub, Val); 2199 Inst.addOperand(MCOperand::createReg(0)); 2200 Inst.addOperand(MCOperand::createImm(Val)); 2201 } 2202 2203 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2204 assert(N == 2 && "Invalid number of operands!"); 2205 // If we have an immediate that's not a constant, treat it as a label 2206 // reference needing a fixup. If it is a constant, it's something else 2207 // and we reject it. 2208 if (isImm()) { 2209 Inst.addOperand(MCOperand::createExpr(getImm())); 2210 Inst.addOperand(MCOperand::createImm(0)); 2211 return; 2212 } 2213 2214 // The lower two bits are always zero and as such are not encoded. 2215 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2216 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2217 // Special case for #-0 2218 if (Val == INT32_MIN) Val = 0; 2219 if (Val < 0) Val = -Val; 2220 Val = ARM_AM::getAM5Opc(AddSub, Val); 2221 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2222 Inst.addOperand(MCOperand::createImm(Val)); 2223 } 2224 2225 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2226 assert(N == 2 && "Invalid number of operands!"); 2227 // If we have an immediate that's not a constant, treat it as a label 2228 // reference needing a fixup. If it is a constant, it's something else 2229 // and we reject it. 2230 if (isImm()) { 2231 Inst.addOperand(MCOperand::createExpr(getImm())); 2232 Inst.addOperand(MCOperand::createImm(0)); 2233 return; 2234 } 2235 2236 // The lower bit is always zero and as such is not encoded. 2237 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2238 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2239 // Special case for #-0 2240 if (Val == INT32_MIN) Val = 0; 2241 if (Val < 0) Val = -Val; 2242 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2243 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2244 Inst.addOperand(MCOperand::createImm(Val)); 2245 } 2246 2247 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2248 assert(N == 2 && "Invalid number of operands!"); 2249 // If we have an immediate that's not a constant, treat it as a label 2250 // reference needing a fixup. If it is a constant, it's something else 2251 // and we reject it. 2252 if (isImm()) { 2253 Inst.addOperand(MCOperand::createExpr(getImm())); 2254 Inst.addOperand(MCOperand::createImm(0)); 2255 return; 2256 } 2257 2258 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2259 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2260 Inst.addOperand(MCOperand::createImm(Val)); 2261 } 2262 2263 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2264 assert(N == 2 && "Invalid number of operands!"); 2265 // The lower two bits are always zero and as such are not encoded. 2266 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2267 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2268 Inst.addOperand(MCOperand::createImm(Val)); 2269 } 2270 2271 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2272 assert(N == 2 && "Invalid number of operands!"); 2273 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2274 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2275 Inst.addOperand(MCOperand::createImm(Val)); 2276 } 2277 2278 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2279 addMemImm8OffsetOperands(Inst, N); 2280 } 2281 2282 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2283 addMemImm8OffsetOperands(Inst, N); 2284 } 2285 2286 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2287 assert(N == 2 && "Invalid number of operands!"); 2288 // If this is an immediate, it's a label reference. 2289 if (isImm()) { 2290 addExpr(Inst, getImm()); 2291 Inst.addOperand(MCOperand::createImm(0)); 2292 return; 2293 } 2294 2295 // Otherwise, it's a normal memory reg+offset. 2296 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2297 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2298 Inst.addOperand(MCOperand::createImm(Val)); 2299 } 2300 2301 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2302 assert(N == 2 && "Invalid number of operands!"); 2303 // If this is an immediate, it's a label reference. 2304 if (isImm()) { 2305 addExpr(Inst, getImm()); 2306 Inst.addOperand(MCOperand::createImm(0)); 2307 return; 2308 } 2309 2310 // Otherwise, it's a normal memory reg+offset. 2311 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2312 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2313 Inst.addOperand(MCOperand::createImm(Val)); 2314 } 2315 2316 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2317 assert(N == 1 && "Invalid number of operands!"); 2318 // This is container for the immediate that we will create the constant 2319 // pool from 2320 addExpr(Inst, getConstantPoolImm()); 2321 return; 2322 } 2323 2324 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2325 assert(N == 2 && "Invalid number of operands!"); 2326 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2327 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2328 } 2329 2330 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2331 assert(N == 2 && "Invalid number of operands!"); 2332 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2333 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2334 } 2335 2336 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2337 assert(N == 3 && "Invalid number of operands!"); 2338 unsigned Val = 2339 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2340 Memory.ShiftImm, Memory.ShiftType); 2341 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2342 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2343 Inst.addOperand(MCOperand::createImm(Val)); 2344 } 2345 2346 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2347 assert(N == 3 && "Invalid number of operands!"); 2348 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2349 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2350 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2351 } 2352 2353 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2354 assert(N == 2 && "Invalid number of operands!"); 2355 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2356 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2357 } 2358 2359 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2360 assert(N == 2 && "Invalid number of operands!"); 2361 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2362 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2363 Inst.addOperand(MCOperand::createImm(Val)); 2364 } 2365 2366 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2367 assert(N == 2 && "Invalid number of operands!"); 2368 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2369 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2370 Inst.addOperand(MCOperand::createImm(Val)); 2371 } 2372 2373 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2374 assert(N == 2 && "Invalid number of operands!"); 2375 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2376 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2377 Inst.addOperand(MCOperand::createImm(Val)); 2378 } 2379 2380 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2381 assert(N == 2 && "Invalid number of operands!"); 2382 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2383 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2384 Inst.addOperand(MCOperand::createImm(Val)); 2385 } 2386 2387 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2388 assert(N == 1 && "Invalid number of operands!"); 2389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2390 assert(CE && "non-constant post-idx-imm8 operand!"); 2391 int Imm = CE->getValue(); 2392 bool isAdd = Imm >= 0; 2393 if (Imm == INT32_MIN) Imm = 0; 2394 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2395 Inst.addOperand(MCOperand::createImm(Imm)); 2396 } 2397 2398 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2401 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2402 int Imm = CE->getValue(); 2403 bool isAdd = Imm >= 0; 2404 if (Imm == INT32_MIN) Imm = 0; 2405 // Immediate is scaled by 4. 2406 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2407 Inst.addOperand(MCOperand::createImm(Imm)); 2408 } 2409 2410 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2411 assert(N == 2 && "Invalid number of operands!"); 2412 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2413 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2414 } 2415 2416 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2417 assert(N == 2 && "Invalid number of operands!"); 2418 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2419 // The sign, shift type, and shift amount are encoded in a single operand 2420 // using the AM2 encoding helpers. 2421 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2422 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2423 PostIdxReg.ShiftTy); 2424 Inst.addOperand(MCOperand::createImm(Imm)); 2425 } 2426 2427 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2428 assert(N == 1 && "Invalid number of operands!"); 2429 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2430 } 2431 2432 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2433 assert(N == 1 && "Invalid number of operands!"); 2434 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2435 } 2436 2437 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2438 assert(N == 1 && "Invalid number of operands!"); 2439 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2440 } 2441 2442 void addVecListOperands(MCInst &Inst, unsigned N) const { 2443 assert(N == 1 && "Invalid number of operands!"); 2444 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2445 } 2446 2447 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2448 assert(N == 2 && "Invalid number of operands!"); 2449 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2450 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2451 } 2452 2453 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2454 assert(N == 1 && "Invalid number of operands!"); 2455 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2456 } 2457 2458 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2459 assert(N == 1 && "Invalid number of operands!"); 2460 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2461 } 2462 2463 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2464 assert(N == 1 && "Invalid number of operands!"); 2465 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2466 } 2467 2468 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2469 assert(N == 1 && "Invalid number of operands!"); 2470 // The immediate encodes the type of constant as well as the value. 2471 // Mask in that this is an i8 splat. 2472 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2473 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2474 } 2475 2476 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2477 assert(N == 1 && "Invalid number of operands!"); 2478 // The immediate encodes the type of constant as well as the value. 2479 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2480 unsigned Value = CE->getValue(); 2481 Value = ARM_AM::encodeNEONi16splat(Value); 2482 Inst.addOperand(MCOperand::createImm(Value)); 2483 } 2484 2485 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2486 assert(N == 1 && "Invalid number of operands!"); 2487 // The immediate encodes the type of constant as well as the value. 2488 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2489 unsigned Value = CE->getValue(); 2490 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2491 Inst.addOperand(MCOperand::createImm(Value)); 2492 } 2493 2494 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2495 assert(N == 1 && "Invalid number of operands!"); 2496 // The immediate encodes the type of constant as well as the value. 2497 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2498 unsigned Value = CE->getValue(); 2499 Value = ARM_AM::encodeNEONi32splat(Value); 2500 Inst.addOperand(MCOperand::createImm(Value)); 2501 } 2502 2503 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2504 assert(N == 1 && "Invalid number of operands!"); 2505 // The immediate encodes the type of constant as well as the value. 2506 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2507 unsigned Value = CE->getValue(); 2508 Value = ARM_AM::encodeNEONi32splat(~Value); 2509 Inst.addOperand(MCOperand::createImm(Value)); 2510 } 2511 2512 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2513 assert(N == 1 && "Invalid number of operands!"); 2514 // The immediate encodes the type of constant as well as the value. 2515 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2516 unsigned Value = CE->getValue(); 2517 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2518 Inst.getOpcode() == ARM::VMOVv16i8) && 2519 "All vmvn instructions that wants to replicate non-zero byte " 2520 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2521 unsigned B = ((~Value) & 0xff); 2522 B |= 0xe00; // cmode = 0b1110 2523 Inst.addOperand(MCOperand::createImm(B)); 2524 } 2525 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2526 assert(N == 1 && "Invalid number of operands!"); 2527 // The immediate encodes the type of constant as well as the value. 2528 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2529 unsigned Value = CE->getValue(); 2530 if (Value >= 256 && Value <= 0xffff) 2531 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2532 else if (Value > 0xffff && Value <= 0xffffff) 2533 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2534 else if (Value > 0xffffff) 2535 Value = (Value >> 24) | 0x600; 2536 Inst.addOperand(MCOperand::createImm(Value)); 2537 } 2538 2539 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2540 assert(N == 1 && "Invalid number of operands!"); 2541 // The immediate encodes the type of constant as well as the value. 2542 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2543 unsigned Value = CE->getValue(); 2544 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2545 Inst.getOpcode() == ARM::VMOVv16i8) && 2546 "All instructions that wants to replicate non-zero byte " 2547 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2548 unsigned B = Value & 0xff; 2549 B |= 0xe00; // cmode = 0b1110 2550 Inst.addOperand(MCOperand::createImm(B)); 2551 } 2552 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2553 assert(N == 1 && "Invalid number of operands!"); 2554 // The immediate encodes the type of constant as well as the value. 2555 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2556 unsigned Value = ~CE->getValue(); 2557 if (Value >= 256 && Value <= 0xffff) 2558 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2559 else if (Value > 0xffff && Value <= 0xffffff) 2560 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2561 else if (Value > 0xffffff) 2562 Value = (Value >> 24) | 0x600; 2563 Inst.addOperand(MCOperand::createImm(Value)); 2564 } 2565 2566 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2567 assert(N == 1 && "Invalid number of operands!"); 2568 // The immediate encodes the type of constant as well as the value. 2569 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2570 uint64_t Value = CE->getValue(); 2571 unsigned Imm = 0; 2572 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2573 Imm |= (Value & 1) << i; 2574 } 2575 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2576 } 2577 2578 void print(raw_ostream &OS) const override; 2579 2580 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2581 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2582 Op->ITMask.Mask = Mask; 2583 Op->StartLoc = S; 2584 Op->EndLoc = S; 2585 return Op; 2586 } 2587 2588 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2589 SMLoc S) { 2590 auto Op = make_unique<ARMOperand>(k_CondCode); 2591 Op->CC.Val = CC; 2592 Op->StartLoc = S; 2593 Op->EndLoc = S; 2594 return Op; 2595 } 2596 2597 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2598 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2599 Op->Cop.Val = CopVal; 2600 Op->StartLoc = S; 2601 Op->EndLoc = S; 2602 return Op; 2603 } 2604 2605 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2606 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2607 Op->Cop.Val = CopVal; 2608 Op->StartLoc = S; 2609 Op->EndLoc = S; 2610 return Op; 2611 } 2612 2613 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2614 SMLoc E) { 2615 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2616 Op->Cop.Val = Val; 2617 Op->StartLoc = S; 2618 Op->EndLoc = E; 2619 return Op; 2620 } 2621 2622 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2623 auto Op = make_unique<ARMOperand>(k_CCOut); 2624 Op->Reg.RegNum = RegNum; 2625 Op->StartLoc = S; 2626 Op->EndLoc = S; 2627 return Op; 2628 } 2629 2630 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2631 auto Op = make_unique<ARMOperand>(k_Token); 2632 Op->Tok.Data = Str.data(); 2633 Op->Tok.Length = Str.size(); 2634 Op->StartLoc = S; 2635 Op->EndLoc = S; 2636 return Op; 2637 } 2638 2639 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2640 SMLoc E) { 2641 auto Op = make_unique<ARMOperand>(k_Register); 2642 Op->Reg.RegNum = RegNum; 2643 Op->StartLoc = S; 2644 Op->EndLoc = E; 2645 return Op; 2646 } 2647 2648 static std::unique_ptr<ARMOperand> 2649 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2650 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2651 SMLoc E) { 2652 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2653 Op->RegShiftedReg.ShiftTy = ShTy; 2654 Op->RegShiftedReg.SrcReg = SrcReg; 2655 Op->RegShiftedReg.ShiftReg = ShiftReg; 2656 Op->RegShiftedReg.ShiftImm = ShiftImm; 2657 Op->StartLoc = S; 2658 Op->EndLoc = E; 2659 return Op; 2660 } 2661 2662 static std::unique_ptr<ARMOperand> 2663 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2664 unsigned ShiftImm, SMLoc S, SMLoc E) { 2665 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2666 Op->RegShiftedImm.ShiftTy = ShTy; 2667 Op->RegShiftedImm.SrcReg = SrcReg; 2668 Op->RegShiftedImm.ShiftImm = ShiftImm; 2669 Op->StartLoc = S; 2670 Op->EndLoc = E; 2671 return Op; 2672 } 2673 2674 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2675 SMLoc S, SMLoc E) { 2676 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2677 Op->ShifterImm.isASR = isASR; 2678 Op->ShifterImm.Imm = Imm; 2679 Op->StartLoc = S; 2680 Op->EndLoc = E; 2681 return Op; 2682 } 2683 2684 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2685 SMLoc E) { 2686 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2687 Op->RotImm.Imm = Imm; 2688 Op->StartLoc = S; 2689 Op->EndLoc = E; 2690 return Op; 2691 } 2692 2693 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2694 SMLoc S, SMLoc E) { 2695 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2696 Op->ModImm.Bits = Bits; 2697 Op->ModImm.Rot = Rot; 2698 Op->StartLoc = S; 2699 Op->EndLoc = E; 2700 return Op; 2701 } 2702 2703 static std::unique_ptr<ARMOperand> 2704 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2705 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2706 Op->Imm.Val = Val; 2707 Op->StartLoc = S; 2708 Op->EndLoc = E; 2709 return Op; 2710 } 2711 2712 static std::unique_ptr<ARMOperand> 2713 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2714 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2715 Op->Bitfield.LSB = LSB; 2716 Op->Bitfield.Width = Width; 2717 Op->StartLoc = S; 2718 Op->EndLoc = E; 2719 return Op; 2720 } 2721 2722 static std::unique_ptr<ARMOperand> 2723 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2724 SMLoc StartLoc, SMLoc EndLoc) { 2725 assert (Regs.size() > 0 && "RegList contains no registers?"); 2726 KindTy Kind = k_RegisterList; 2727 2728 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2729 Kind = k_DPRRegisterList; 2730 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2731 contains(Regs.front().second)) 2732 Kind = k_SPRRegisterList; 2733 2734 // Sort based on the register encoding values. 2735 array_pod_sort(Regs.begin(), Regs.end()); 2736 2737 auto Op = make_unique<ARMOperand>(Kind); 2738 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2739 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2740 Op->Registers.push_back(I->second); 2741 Op->StartLoc = StartLoc; 2742 Op->EndLoc = EndLoc; 2743 return Op; 2744 } 2745 2746 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2747 unsigned Count, 2748 bool isDoubleSpaced, 2749 SMLoc S, SMLoc E) { 2750 auto Op = make_unique<ARMOperand>(k_VectorList); 2751 Op->VectorList.RegNum = RegNum; 2752 Op->VectorList.Count = Count; 2753 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2754 Op->StartLoc = S; 2755 Op->EndLoc = E; 2756 return Op; 2757 } 2758 2759 static std::unique_ptr<ARMOperand> 2760 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2761 SMLoc S, SMLoc E) { 2762 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2763 Op->VectorList.RegNum = RegNum; 2764 Op->VectorList.Count = Count; 2765 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2766 Op->StartLoc = S; 2767 Op->EndLoc = E; 2768 return Op; 2769 } 2770 2771 static std::unique_ptr<ARMOperand> 2772 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2773 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2774 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2775 Op->VectorList.RegNum = RegNum; 2776 Op->VectorList.Count = Count; 2777 Op->VectorList.LaneIndex = Index; 2778 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2779 Op->StartLoc = S; 2780 Op->EndLoc = E; 2781 return Op; 2782 } 2783 2784 static std::unique_ptr<ARMOperand> 2785 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2786 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2787 Op->VectorIndex.Val = Idx; 2788 Op->StartLoc = S; 2789 Op->EndLoc = E; 2790 return Op; 2791 } 2792 2793 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2794 SMLoc E) { 2795 auto Op = make_unique<ARMOperand>(k_Immediate); 2796 Op->Imm.Val = Val; 2797 Op->StartLoc = S; 2798 Op->EndLoc = E; 2799 return Op; 2800 } 2801 2802 static std::unique_ptr<ARMOperand> 2803 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2804 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2805 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2806 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2807 auto Op = make_unique<ARMOperand>(k_Memory); 2808 Op->Memory.BaseRegNum = BaseRegNum; 2809 Op->Memory.OffsetImm = OffsetImm; 2810 Op->Memory.OffsetRegNum = OffsetRegNum; 2811 Op->Memory.ShiftType = ShiftType; 2812 Op->Memory.ShiftImm = ShiftImm; 2813 Op->Memory.Alignment = Alignment; 2814 Op->Memory.isNegative = isNegative; 2815 Op->StartLoc = S; 2816 Op->EndLoc = E; 2817 Op->AlignmentLoc = AlignmentLoc; 2818 return Op; 2819 } 2820 2821 static std::unique_ptr<ARMOperand> 2822 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2823 unsigned ShiftImm, SMLoc S, SMLoc E) { 2824 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2825 Op->PostIdxReg.RegNum = RegNum; 2826 Op->PostIdxReg.isAdd = isAdd; 2827 Op->PostIdxReg.ShiftTy = ShiftTy; 2828 Op->PostIdxReg.ShiftImm = ShiftImm; 2829 Op->StartLoc = S; 2830 Op->EndLoc = E; 2831 return Op; 2832 } 2833 2834 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2835 SMLoc S) { 2836 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2837 Op->MBOpt.Val = Opt; 2838 Op->StartLoc = S; 2839 Op->EndLoc = S; 2840 return Op; 2841 } 2842 2843 static std::unique_ptr<ARMOperand> 2844 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2845 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2846 Op->ISBOpt.Val = Opt; 2847 Op->StartLoc = S; 2848 Op->EndLoc = S; 2849 return Op; 2850 } 2851 2852 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2853 SMLoc S) { 2854 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2855 Op->IFlags.Val = IFlags; 2856 Op->StartLoc = S; 2857 Op->EndLoc = S; 2858 return Op; 2859 } 2860 2861 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2862 auto Op = make_unique<ARMOperand>(k_MSRMask); 2863 Op->MMask.Val = MMask; 2864 Op->StartLoc = S; 2865 Op->EndLoc = S; 2866 return Op; 2867 } 2868 2869 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2870 auto Op = make_unique<ARMOperand>(k_BankedReg); 2871 Op->BankedReg.Val = Reg; 2872 Op->StartLoc = S; 2873 Op->EndLoc = S; 2874 return Op; 2875 } 2876 }; 2877 2878 } // end anonymous namespace. 2879 2880 void ARMOperand::print(raw_ostream &OS) const { 2881 switch (Kind) { 2882 case k_CondCode: 2883 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2884 break; 2885 case k_CCOut: 2886 OS << "<ccout " << getReg() << ">"; 2887 break; 2888 case k_ITCondMask: { 2889 static const char *const MaskStr[] = { 2890 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2891 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2892 }; 2893 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2894 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2895 break; 2896 } 2897 case k_CoprocNum: 2898 OS << "<coprocessor number: " << getCoproc() << ">"; 2899 break; 2900 case k_CoprocReg: 2901 OS << "<coprocessor register: " << getCoproc() << ">"; 2902 break; 2903 case k_CoprocOption: 2904 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2905 break; 2906 case k_MSRMask: 2907 OS << "<mask: " << getMSRMask() << ">"; 2908 break; 2909 case k_BankedReg: 2910 OS << "<banked reg: " << getBankedReg() << ">"; 2911 break; 2912 case k_Immediate: 2913 OS << *getImm(); 2914 break; 2915 case k_MemBarrierOpt: 2916 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2917 break; 2918 case k_InstSyncBarrierOpt: 2919 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2920 break; 2921 case k_Memory: 2922 OS << "<memory " 2923 << " base:" << Memory.BaseRegNum; 2924 OS << ">"; 2925 break; 2926 case k_PostIndexRegister: 2927 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2928 << PostIdxReg.RegNum; 2929 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2930 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2931 << PostIdxReg.ShiftImm; 2932 OS << ">"; 2933 break; 2934 case k_ProcIFlags: { 2935 OS << "<ARM_PROC::"; 2936 unsigned IFlags = getProcIFlags(); 2937 for (int i=2; i >= 0; --i) 2938 if (IFlags & (1 << i)) 2939 OS << ARM_PROC::IFlagsToString(1 << i); 2940 OS << ">"; 2941 break; 2942 } 2943 case k_Register: 2944 OS << "<register " << getReg() << ">"; 2945 break; 2946 case k_ShifterImmediate: 2947 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2948 << " #" << ShifterImm.Imm << ">"; 2949 break; 2950 case k_ShiftedRegister: 2951 OS << "<so_reg_reg " 2952 << RegShiftedReg.SrcReg << " " 2953 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2954 << " " << RegShiftedReg.ShiftReg << ">"; 2955 break; 2956 case k_ShiftedImmediate: 2957 OS << "<so_reg_imm " 2958 << RegShiftedImm.SrcReg << " " 2959 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2960 << " #" << RegShiftedImm.ShiftImm << ">"; 2961 break; 2962 case k_RotateImmediate: 2963 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2964 break; 2965 case k_ModifiedImmediate: 2966 OS << "<mod_imm #" << ModImm.Bits << ", #" 2967 << ModImm.Rot << ")>"; 2968 break; 2969 case k_ConstantPoolImmediate: 2970 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 2971 break; 2972 case k_BitfieldDescriptor: 2973 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2974 << ", width: " << Bitfield.Width << ">"; 2975 break; 2976 case k_RegisterList: 2977 case k_DPRRegisterList: 2978 case k_SPRRegisterList: { 2979 OS << "<register_list "; 2980 2981 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2982 for (SmallVectorImpl<unsigned>::const_iterator 2983 I = RegList.begin(), E = RegList.end(); I != E; ) { 2984 OS << *I; 2985 if (++I < E) OS << ", "; 2986 } 2987 2988 OS << ">"; 2989 break; 2990 } 2991 case k_VectorList: 2992 OS << "<vector_list " << VectorList.Count << " * " 2993 << VectorList.RegNum << ">"; 2994 break; 2995 case k_VectorListAllLanes: 2996 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2997 << VectorList.RegNum << ">"; 2998 break; 2999 case k_VectorListIndexed: 3000 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3001 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3002 break; 3003 case k_Token: 3004 OS << "'" << getToken() << "'"; 3005 break; 3006 case k_VectorIndex: 3007 OS << "<vectorindex " << getVectorIndex() << ">"; 3008 break; 3009 } 3010 } 3011 3012 /// @name Auto-generated Match Functions 3013 /// { 3014 3015 static unsigned MatchRegisterName(StringRef Name); 3016 3017 /// } 3018 3019 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3020 SMLoc &StartLoc, SMLoc &EndLoc) { 3021 const AsmToken &Tok = getParser().getTok(); 3022 StartLoc = Tok.getLoc(); 3023 EndLoc = Tok.getEndLoc(); 3024 RegNo = tryParseRegister(); 3025 3026 return (RegNo == (unsigned)-1); 3027 } 3028 3029 /// Try to parse a register name. The token must be an Identifier when called, 3030 /// and if it is a register name the token is eaten and the register number is 3031 /// returned. Otherwise return -1. 3032 /// 3033 int ARMAsmParser::tryParseRegister() { 3034 MCAsmParser &Parser = getParser(); 3035 const AsmToken &Tok = Parser.getTok(); 3036 if (Tok.isNot(AsmToken::Identifier)) return -1; 3037 3038 std::string lowerCase = Tok.getString().lower(); 3039 unsigned RegNum = MatchRegisterName(lowerCase); 3040 if (!RegNum) { 3041 RegNum = StringSwitch<unsigned>(lowerCase) 3042 .Case("r13", ARM::SP) 3043 .Case("r14", ARM::LR) 3044 .Case("r15", ARM::PC) 3045 .Case("ip", ARM::R12) 3046 // Additional register name aliases for 'gas' compatibility. 3047 .Case("a1", ARM::R0) 3048 .Case("a2", ARM::R1) 3049 .Case("a3", ARM::R2) 3050 .Case("a4", ARM::R3) 3051 .Case("v1", ARM::R4) 3052 .Case("v2", ARM::R5) 3053 .Case("v3", ARM::R6) 3054 .Case("v4", ARM::R7) 3055 .Case("v5", ARM::R8) 3056 .Case("v6", ARM::R9) 3057 .Case("v7", ARM::R10) 3058 .Case("v8", ARM::R11) 3059 .Case("sb", ARM::R9) 3060 .Case("sl", ARM::R10) 3061 .Case("fp", ARM::R11) 3062 .Default(0); 3063 } 3064 if (!RegNum) { 3065 // Check for aliases registered via .req. Canonicalize to lower case. 3066 // That's more consistent since register names are case insensitive, and 3067 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3068 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3069 // If no match, return failure. 3070 if (Entry == RegisterReqs.end()) 3071 return -1; 3072 Parser.Lex(); // Eat identifier token. 3073 return Entry->getValue(); 3074 } 3075 3076 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3077 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3078 return -1; 3079 3080 Parser.Lex(); // Eat identifier token. 3081 3082 return RegNum; 3083 } 3084 3085 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3086 // If a recoverable error occurs, return 1. If an irrecoverable error 3087 // occurs, return -1. An irrecoverable error is one where tokens have been 3088 // consumed in the process of trying to parse the shifter (i.e., when it is 3089 // indeed a shifter operand, but malformed). 3090 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3091 MCAsmParser &Parser = getParser(); 3092 SMLoc S = Parser.getTok().getLoc(); 3093 const AsmToken &Tok = Parser.getTok(); 3094 if (Tok.isNot(AsmToken::Identifier)) 3095 return -1; 3096 3097 std::string lowerCase = Tok.getString().lower(); 3098 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3099 .Case("asl", ARM_AM::lsl) 3100 .Case("lsl", ARM_AM::lsl) 3101 .Case("lsr", ARM_AM::lsr) 3102 .Case("asr", ARM_AM::asr) 3103 .Case("ror", ARM_AM::ror) 3104 .Case("rrx", ARM_AM::rrx) 3105 .Default(ARM_AM::no_shift); 3106 3107 if (ShiftTy == ARM_AM::no_shift) 3108 return 1; 3109 3110 Parser.Lex(); // Eat the operator. 3111 3112 // The source register for the shift has already been added to the 3113 // operand list, so we need to pop it off and combine it into the shifted 3114 // register operand instead. 3115 std::unique_ptr<ARMOperand> PrevOp( 3116 (ARMOperand *)Operands.pop_back_val().release()); 3117 if (!PrevOp->isReg()) 3118 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3119 int SrcReg = PrevOp->getReg(); 3120 3121 SMLoc EndLoc; 3122 int64_t Imm = 0; 3123 int ShiftReg = 0; 3124 if (ShiftTy == ARM_AM::rrx) { 3125 // RRX Doesn't have an explicit shift amount. The encoder expects 3126 // the shift register to be the same as the source register. Seems odd, 3127 // but OK. 3128 ShiftReg = SrcReg; 3129 } else { 3130 // Figure out if this is shifted by a constant or a register (for non-RRX). 3131 if (Parser.getTok().is(AsmToken::Hash) || 3132 Parser.getTok().is(AsmToken::Dollar)) { 3133 Parser.Lex(); // Eat hash. 3134 SMLoc ImmLoc = Parser.getTok().getLoc(); 3135 const MCExpr *ShiftExpr = nullptr; 3136 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3137 Error(ImmLoc, "invalid immediate shift value"); 3138 return -1; 3139 } 3140 // The expression must be evaluatable as an immediate. 3141 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3142 if (!CE) { 3143 Error(ImmLoc, "invalid immediate shift value"); 3144 return -1; 3145 } 3146 // Range check the immediate. 3147 // lsl, ror: 0 <= imm <= 31 3148 // lsr, asr: 0 <= imm <= 32 3149 Imm = CE->getValue(); 3150 if (Imm < 0 || 3151 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3152 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3153 Error(ImmLoc, "immediate shift value out of range"); 3154 return -1; 3155 } 3156 // shift by zero is a nop. Always send it through as lsl. 3157 // ('as' compatibility) 3158 if (Imm == 0) 3159 ShiftTy = ARM_AM::lsl; 3160 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3161 SMLoc L = Parser.getTok().getLoc(); 3162 EndLoc = Parser.getTok().getEndLoc(); 3163 ShiftReg = tryParseRegister(); 3164 if (ShiftReg == -1) { 3165 Error(L, "expected immediate or register in shift operand"); 3166 return -1; 3167 } 3168 } else { 3169 Error(Parser.getTok().getLoc(), 3170 "expected immediate or register in shift operand"); 3171 return -1; 3172 } 3173 } 3174 3175 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3176 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3177 ShiftReg, Imm, 3178 S, EndLoc)); 3179 else 3180 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3181 S, EndLoc)); 3182 3183 return 0; 3184 } 3185 3186 3187 /// Try to parse a register name. The token must be an Identifier when called. 3188 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3189 /// if there is a "writeback". 'true' if it's not a register. 3190 /// 3191 /// TODO this is likely to change to allow different register types and or to 3192 /// parse for a specific register type. 3193 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3194 MCAsmParser &Parser = getParser(); 3195 const AsmToken &RegTok = Parser.getTok(); 3196 int RegNo = tryParseRegister(); 3197 if (RegNo == -1) 3198 return true; 3199 3200 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3201 RegTok.getEndLoc())); 3202 3203 const AsmToken &ExclaimTok = Parser.getTok(); 3204 if (ExclaimTok.is(AsmToken::Exclaim)) { 3205 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3206 ExclaimTok.getLoc())); 3207 Parser.Lex(); // Eat exclaim token 3208 return false; 3209 } 3210 3211 // Also check for an index operand. This is only legal for vector registers, 3212 // but that'll get caught OK in operand matching, so we don't need to 3213 // explicitly filter everything else out here. 3214 if (Parser.getTok().is(AsmToken::LBrac)) { 3215 SMLoc SIdx = Parser.getTok().getLoc(); 3216 Parser.Lex(); // Eat left bracket token. 3217 3218 const MCExpr *ImmVal; 3219 if (getParser().parseExpression(ImmVal)) 3220 return true; 3221 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3222 if (!MCE) 3223 return TokError("immediate value expected for vector index"); 3224 3225 if (Parser.getTok().isNot(AsmToken::RBrac)) 3226 return Error(Parser.getTok().getLoc(), "']' expected"); 3227 3228 SMLoc E = Parser.getTok().getEndLoc(); 3229 Parser.Lex(); // Eat right bracket token. 3230 3231 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3232 SIdx, E, 3233 getContext())); 3234 } 3235 3236 return false; 3237 } 3238 3239 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3240 /// instruction with a symbolic operand name. 3241 /// We accept "crN" syntax for GAS compatibility. 3242 /// <operand-name> ::= <prefix><number> 3243 /// If CoprocOp is 'c', then: 3244 /// <prefix> ::= c | cr 3245 /// If CoprocOp is 'p', then : 3246 /// <prefix> ::= p 3247 /// <number> ::= integer in range [0, 15] 3248 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3249 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3250 // but efficient. 3251 if (Name.size() < 2 || Name[0] != CoprocOp) 3252 return -1; 3253 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3254 3255 switch (Name.size()) { 3256 default: return -1; 3257 case 1: 3258 switch (Name[0]) { 3259 default: return -1; 3260 case '0': return 0; 3261 case '1': return 1; 3262 case '2': return 2; 3263 case '3': return 3; 3264 case '4': return 4; 3265 case '5': return 5; 3266 case '6': return 6; 3267 case '7': return 7; 3268 case '8': return 8; 3269 case '9': return 9; 3270 } 3271 case 2: 3272 if (Name[0] != '1') 3273 return -1; 3274 switch (Name[1]) { 3275 default: return -1; 3276 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3277 // However, old cores (v5/v6) did use them in that way. 3278 case '0': return 10; 3279 case '1': return 11; 3280 case '2': return 12; 3281 case '3': return 13; 3282 case '4': return 14; 3283 case '5': return 15; 3284 } 3285 } 3286 } 3287 3288 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3289 ARMAsmParser::OperandMatchResultTy 3290 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3291 MCAsmParser &Parser = getParser(); 3292 SMLoc S = Parser.getTok().getLoc(); 3293 const AsmToken &Tok = Parser.getTok(); 3294 if (!Tok.is(AsmToken::Identifier)) 3295 return MatchOperand_NoMatch; 3296 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3297 .Case("eq", ARMCC::EQ) 3298 .Case("ne", ARMCC::NE) 3299 .Case("hs", ARMCC::HS) 3300 .Case("cs", ARMCC::HS) 3301 .Case("lo", ARMCC::LO) 3302 .Case("cc", ARMCC::LO) 3303 .Case("mi", ARMCC::MI) 3304 .Case("pl", ARMCC::PL) 3305 .Case("vs", ARMCC::VS) 3306 .Case("vc", ARMCC::VC) 3307 .Case("hi", ARMCC::HI) 3308 .Case("ls", ARMCC::LS) 3309 .Case("ge", ARMCC::GE) 3310 .Case("lt", ARMCC::LT) 3311 .Case("gt", ARMCC::GT) 3312 .Case("le", ARMCC::LE) 3313 .Case("al", ARMCC::AL) 3314 .Default(~0U); 3315 if (CC == ~0U) 3316 return MatchOperand_NoMatch; 3317 Parser.Lex(); // Eat the token. 3318 3319 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3320 3321 return MatchOperand_Success; 3322 } 3323 3324 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3325 /// token must be an Identifier when called, and if it is a coprocessor 3326 /// number, the token is eaten and the operand is added to the operand list. 3327 ARMAsmParser::OperandMatchResultTy 3328 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3329 MCAsmParser &Parser = getParser(); 3330 SMLoc S = Parser.getTok().getLoc(); 3331 const AsmToken &Tok = Parser.getTok(); 3332 if (Tok.isNot(AsmToken::Identifier)) 3333 return MatchOperand_NoMatch; 3334 3335 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3336 if (Num == -1) 3337 return MatchOperand_NoMatch; 3338 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3339 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3340 return MatchOperand_NoMatch; 3341 3342 Parser.Lex(); // Eat identifier token. 3343 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3344 return MatchOperand_Success; 3345 } 3346 3347 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3348 /// token must be an Identifier when called, and if it is a coprocessor 3349 /// number, the token is eaten and the operand is added to the operand list. 3350 ARMAsmParser::OperandMatchResultTy 3351 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3352 MCAsmParser &Parser = getParser(); 3353 SMLoc S = Parser.getTok().getLoc(); 3354 const AsmToken &Tok = Parser.getTok(); 3355 if (Tok.isNot(AsmToken::Identifier)) 3356 return MatchOperand_NoMatch; 3357 3358 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3359 if (Reg == -1) 3360 return MatchOperand_NoMatch; 3361 3362 Parser.Lex(); // Eat identifier token. 3363 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3364 return MatchOperand_Success; 3365 } 3366 3367 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3368 /// coproc_option : '{' imm0_255 '}' 3369 ARMAsmParser::OperandMatchResultTy 3370 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3371 MCAsmParser &Parser = getParser(); 3372 SMLoc S = Parser.getTok().getLoc(); 3373 3374 // If this isn't a '{', this isn't a coprocessor immediate operand. 3375 if (Parser.getTok().isNot(AsmToken::LCurly)) 3376 return MatchOperand_NoMatch; 3377 Parser.Lex(); // Eat the '{' 3378 3379 const MCExpr *Expr; 3380 SMLoc Loc = Parser.getTok().getLoc(); 3381 if (getParser().parseExpression(Expr)) { 3382 Error(Loc, "illegal expression"); 3383 return MatchOperand_ParseFail; 3384 } 3385 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3386 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3387 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3388 return MatchOperand_ParseFail; 3389 } 3390 int Val = CE->getValue(); 3391 3392 // Check for and consume the closing '}' 3393 if (Parser.getTok().isNot(AsmToken::RCurly)) 3394 return MatchOperand_ParseFail; 3395 SMLoc E = Parser.getTok().getEndLoc(); 3396 Parser.Lex(); // Eat the '}' 3397 3398 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3399 return MatchOperand_Success; 3400 } 3401 3402 // For register list parsing, we need to map from raw GPR register numbering 3403 // to the enumeration values. The enumeration values aren't sorted by 3404 // register number due to our using "sp", "lr" and "pc" as canonical names. 3405 static unsigned getNextRegister(unsigned Reg) { 3406 // If this is a GPR, we need to do it manually, otherwise we can rely 3407 // on the sort ordering of the enumeration since the other reg-classes 3408 // are sane. 3409 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3410 return Reg + 1; 3411 switch(Reg) { 3412 default: llvm_unreachable("Invalid GPR number!"); 3413 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3414 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3415 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3416 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3417 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3418 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3419 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3420 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3421 } 3422 } 3423 3424 // Return the low-subreg of a given Q register. 3425 static unsigned getDRegFromQReg(unsigned QReg) { 3426 switch (QReg) { 3427 default: llvm_unreachable("expected a Q register!"); 3428 case ARM::Q0: return ARM::D0; 3429 case ARM::Q1: return ARM::D2; 3430 case ARM::Q2: return ARM::D4; 3431 case ARM::Q3: return ARM::D6; 3432 case ARM::Q4: return ARM::D8; 3433 case ARM::Q5: return ARM::D10; 3434 case ARM::Q6: return ARM::D12; 3435 case ARM::Q7: return ARM::D14; 3436 case ARM::Q8: return ARM::D16; 3437 case ARM::Q9: return ARM::D18; 3438 case ARM::Q10: return ARM::D20; 3439 case ARM::Q11: return ARM::D22; 3440 case ARM::Q12: return ARM::D24; 3441 case ARM::Q13: return ARM::D26; 3442 case ARM::Q14: return ARM::D28; 3443 case ARM::Q15: return ARM::D30; 3444 } 3445 } 3446 3447 /// Parse a register list. 3448 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3449 MCAsmParser &Parser = getParser(); 3450 assert(Parser.getTok().is(AsmToken::LCurly) && 3451 "Token is not a Left Curly Brace"); 3452 SMLoc S = Parser.getTok().getLoc(); 3453 Parser.Lex(); // Eat '{' token. 3454 SMLoc RegLoc = Parser.getTok().getLoc(); 3455 3456 // Check the first register in the list to see what register class 3457 // this is a list of. 3458 int Reg = tryParseRegister(); 3459 if (Reg == -1) 3460 return Error(RegLoc, "register expected"); 3461 3462 // The reglist instructions have at most 16 registers, so reserve 3463 // space for that many. 3464 int EReg = 0; 3465 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3466 3467 // Allow Q regs and just interpret them as the two D sub-registers. 3468 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3469 Reg = getDRegFromQReg(Reg); 3470 EReg = MRI->getEncodingValue(Reg); 3471 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3472 ++Reg; 3473 } 3474 const MCRegisterClass *RC; 3475 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3476 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3477 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3478 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3479 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3480 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3481 else 3482 return Error(RegLoc, "invalid register in register list"); 3483 3484 // Store the register. 3485 EReg = MRI->getEncodingValue(Reg); 3486 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3487 3488 // This starts immediately after the first register token in the list, 3489 // so we can see either a comma or a minus (range separator) as a legal 3490 // next token. 3491 while (Parser.getTok().is(AsmToken::Comma) || 3492 Parser.getTok().is(AsmToken::Minus)) { 3493 if (Parser.getTok().is(AsmToken::Minus)) { 3494 Parser.Lex(); // Eat the minus. 3495 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3496 int EndReg = tryParseRegister(); 3497 if (EndReg == -1) 3498 return Error(AfterMinusLoc, "register expected"); 3499 // Allow Q regs and just interpret them as the two D sub-registers. 3500 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3501 EndReg = getDRegFromQReg(EndReg) + 1; 3502 // If the register is the same as the start reg, there's nothing 3503 // more to do. 3504 if (Reg == EndReg) 3505 continue; 3506 // The register must be in the same register class as the first. 3507 if (!RC->contains(EndReg)) 3508 return Error(AfterMinusLoc, "invalid register in register list"); 3509 // Ranges must go from low to high. 3510 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3511 return Error(AfterMinusLoc, "bad range in register list"); 3512 3513 // Add all the registers in the range to the register list. 3514 while (Reg != EndReg) { 3515 Reg = getNextRegister(Reg); 3516 EReg = MRI->getEncodingValue(Reg); 3517 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3518 } 3519 continue; 3520 } 3521 Parser.Lex(); // Eat the comma. 3522 RegLoc = Parser.getTok().getLoc(); 3523 int OldReg = Reg; 3524 const AsmToken RegTok = Parser.getTok(); 3525 Reg = tryParseRegister(); 3526 if (Reg == -1) 3527 return Error(RegLoc, "register expected"); 3528 // Allow Q regs and just interpret them as the two D sub-registers. 3529 bool isQReg = false; 3530 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3531 Reg = getDRegFromQReg(Reg); 3532 isQReg = true; 3533 } 3534 // The register must be in the same register class as the first. 3535 if (!RC->contains(Reg)) 3536 return Error(RegLoc, "invalid register in register list"); 3537 // List must be monotonically increasing. 3538 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3539 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3540 Warning(RegLoc, "register list not in ascending order"); 3541 else 3542 return Error(RegLoc, "register list not in ascending order"); 3543 } 3544 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3545 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3546 ") in register list"); 3547 continue; 3548 } 3549 // VFP register lists must also be contiguous. 3550 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3551 Reg != OldReg + 1) 3552 return Error(RegLoc, "non-contiguous register range"); 3553 EReg = MRI->getEncodingValue(Reg); 3554 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3555 if (isQReg) { 3556 EReg = MRI->getEncodingValue(++Reg); 3557 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3558 } 3559 } 3560 3561 if (Parser.getTok().isNot(AsmToken::RCurly)) 3562 return Error(Parser.getTok().getLoc(), "'}' expected"); 3563 SMLoc E = Parser.getTok().getEndLoc(); 3564 Parser.Lex(); // Eat '}' token. 3565 3566 // Push the register list operand. 3567 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3568 3569 // The ARM system instruction variants for LDM/STM have a '^' token here. 3570 if (Parser.getTok().is(AsmToken::Caret)) { 3571 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3572 Parser.Lex(); // Eat '^' token. 3573 } 3574 3575 return false; 3576 } 3577 3578 // Helper function to parse the lane index for vector lists. 3579 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3580 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3581 MCAsmParser &Parser = getParser(); 3582 Index = 0; // Always return a defined index value. 3583 if (Parser.getTok().is(AsmToken::LBrac)) { 3584 Parser.Lex(); // Eat the '['. 3585 if (Parser.getTok().is(AsmToken::RBrac)) { 3586 // "Dn[]" is the 'all lanes' syntax. 3587 LaneKind = AllLanes; 3588 EndLoc = Parser.getTok().getEndLoc(); 3589 Parser.Lex(); // Eat the ']'. 3590 return MatchOperand_Success; 3591 } 3592 3593 // There's an optional '#' token here. Normally there wouldn't be, but 3594 // inline assemble puts one in, and it's friendly to accept that. 3595 if (Parser.getTok().is(AsmToken::Hash)) 3596 Parser.Lex(); // Eat '#' or '$'. 3597 3598 const MCExpr *LaneIndex; 3599 SMLoc Loc = Parser.getTok().getLoc(); 3600 if (getParser().parseExpression(LaneIndex)) { 3601 Error(Loc, "illegal expression"); 3602 return MatchOperand_ParseFail; 3603 } 3604 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3605 if (!CE) { 3606 Error(Loc, "lane index must be empty or an integer"); 3607 return MatchOperand_ParseFail; 3608 } 3609 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3610 Error(Parser.getTok().getLoc(), "']' expected"); 3611 return MatchOperand_ParseFail; 3612 } 3613 EndLoc = Parser.getTok().getEndLoc(); 3614 Parser.Lex(); // Eat the ']'. 3615 int64_t Val = CE->getValue(); 3616 3617 // FIXME: Make this range check context sensitive for .8, .16, .32. 3618 if (Val < 0 || Val > 7) { 3619 Error(Parser.getTok().getLoc(), "lane index out of range"); 3620 return MatchOperand_ParseFail; 3621 } 3622 Index = Val; 3623 LaneKind = IndexedLane; 3624 return MatchOperand_Success; 3625 } 3626 LaneKind = NoLanes; 3627 return MatchOperand_Success; 3628 } 3629 3630 // parse a vector register list 3631 ARMAsmParser::OperandMatchResultTy 3632 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3633 MCAsmParser &Parser = getParser(); 3634 VectorLaneTy LaneKind; 3635 unsigned LaneIndex; 3636 SMLoc S = Parser.getTok().getLoc(); 3637 // As an extension (to match gas), support a plain D register or Q register 3638 // (without encosing curly braces) as a single or double entry list, 3639 // respectively. 3640 if (Parser.getTok().is(AsmToken::Identifier)) { 3641 SMLoc E = Parser.getTok().getEndLoc(); 3642 int Reg = tryParseRegister(); 3643 if (Reg == -1) 3644 return MatchOperand_NoMatch; 3645 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3646 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3647 if (Res != MatchOperand_Success) 3648 return Res; 3649 switch (LaneKind) { 3650 case NoLanes: 3651 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3652 break; 3653 case AllLanes: 3654 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3655 S, E)); 3656 break; 3657 case IndexedLane: 3658 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3659 LaneIndex, 3660 false, S, E)); 3661 break; 3662 } 3663 return MatchOperand_Success; 3664 } 3665 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3666 Reg = getDRegFromQReg(Reg); 3667 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3668 if (Res != MatchOperand_Success) 3669 return Res; 3670 switch (LaneKind) { 3671 case NoLanes: 3672 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3673 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3674 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3675 break; 3676 case AllLanes: 3677 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3678 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3679 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3680 S, E)); 3681 break; 3682 case IndexedLane: 3683 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3684 LaneIndex, 3685 false, S, E)); 3686 break; 3687 } 3688 return MatchOperand_Success; 3689 } 3690 Error(S, "vector register expected"); 3691 return MatchOperand_ParseFail; 3692 } 3693 3694 if (Parser.getTok().isNot(AsmToken::LCurly)) 3695 return MatchOperand_NoMatch; 3696 3697 Parser.Lex(); // Eat '{' token. 3698 SMLoc RegLoc = Parser.getTok().getLoc(); 3699 3700 int Reg = tryParseRegister(); 3701 if (Reg == -1) { 3702 Error(RegLoc, "register expected"); 3703 return MatchOperand_ParseFail; 3704 } 3705 unsigned Count = 1; 3706 int Spacing = 0; 3707 unsigned FirstReg = Reg; 3708 // The list is of D registers, but we also allow Q regs and just interpret 3709 // them as the two D sub-registers. 3710 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3711 FirstReg = Reg = getDRegFromQReg(Reg); 3712 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3713 // it's ambiguous with four-register single spaced. 3714 ++Reg; 3715 ++Count; 3716 } 3717 3718 SMLoc E; 3719 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3720 return MatchOperand_ParseFail; 3721 3722 while (Parser.getTok().is(AsmToken::Comma) || 3723 Parser.getTok().is(AsmToken::Minus)) { 3724 if (Parser.getTok().is(AsmToken::Minus)) { 3725 if (!Spacing) 3726 Spacing = 1; // Register range implies a single spaced list. 3727 else if (Spacing == 2) { 3728 Error(Parser.getTok().getLoc(), 3729 "sequential registers in double spaced list"); 3730 return MatchOperand_ParseFail; 3731 } 3732 Parser.Lex(); // Eat the minus. 3733 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3734 int EndReg = tryParseRegister(); 3735 if (EndReg == -1) { 3736 Error(AfterMinusLoc, "register expected"); 3737 return MatchOperand_ParseFail; 3738 } 3739 // Allow Q regs and just interpret them as the two D sub-registers. 3740 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3741 EndReg = getDRegFromQReg(EndReg) + 1; 3742 // If the register is the same as the start reg, there's nothing 3743 // more to do. 3744 if (Reg == EndReg) 3745 continue; 3746 // The register must be in the same register class as the first. 3747 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3748 Error(AfterMinusLoc, "invalid register in register list"); 3749 return MatchOperand_ParseFail; 3750 } 3751 // Ranges must go from low to high. 3752 if (Reg > EndReg) { 3753 Error(AfterMinusLoc, "bad range in register list"); 3754 return MatchOperand_ParseFail; 3755 } 3756 // Parse the lane specifier if present. 3757 VectorLaneTy NextLaneKind; 3758 unsigned NextLaneIndex; 3759 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3760 MatchOperand_Success) 3761 return MatchOperand_ParseFail; 3762 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3763 Error(AfterMinusLoc, "mismatched lane index in register list"); 3764 return MatchOperand_ParseFail; 3765 } 3766 3767 // Add all the registers in the range to the register list. 3768 Count += EndReg - Reg; 3769 Reg = EndReg; 3770 continue; 3771 } 3772 Parser.Lex(); // Eat the comma. 3773 RegLoc = Parser.getTok().getLoc(); 3774 int OldReg = Reg; 3775 Reg = tryParseRegister(); 3776 if (Reg == -1) { 3777 Error(RegLoc, "register expected"); 3778 return MatchOperand_ParseFail; 3779 } 3780 // vector register lists must be contiguous. 3781 // It's OK to use the enumeration values directly here rather, as the 3782 // VFP register classes have the enum sorted properly. 3783 // 3784 // The list is of D registers, but we also allow Q regs and just interpret 3785 // them as the two D sub-registers. 3786 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3787 if (!Spacing) 3788 Spacing = 1; // Register range implies a single spaced list. 3789 else if (Spacing == 2) { 3790 Error(RegLoc, 3791 "invalid register in double-spaced list (must be 'D' register')"); 3792 return MatchOperand_ParseFail; 3793 } 3794 Reg = getDRegFromQReg(Reg); 3795 if (Reg != OldReg + 1) { 3796 Error(RegLoc, "non-contiguous register range"); 3797 return MatchOperand_ParseFail; 3798 } 3799 ++Reg; 3800 Count += 2; 3801 // Parse the lane specifier if present. 3802 VectorLaneTy NextLaneKind; 3803 unsigned NextLaneIndex; 3804 SMLoc LaneLoc = Parser.getTok().getLoc(); 3805 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3806 MatchOperand_Success) 3807 return MatchOperand_ParseFail; 3808 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3809 Error(LaneLoc, "mismatched lane index in register list"); 3810 return MatchOperand_ParseFail; 3811 } 3812 continue; 3813 } 3814 // Normal D register. 3815 // Figure out the register spacing (single or double) of the list if 3816 // we don't know it already. 3817 if (!Spacing) 3818 Spacing = 1 + (Reg == OldReg + 2); 3819 3820 // Just check that it's contiguous and keep going. 3821 if (Reg != OldReg + Spacing) { 3822 Error(RegLoc, "non-contiguous register range"); 3823 return MatchOperand_ParseFail; 3824 } 3825 ++Count; 3826 // Parse the lane specifier if present. 3827 VectorLaneTy NextLaneKind; 3828 unsigned NextLaneIndex; 3829 SMLoc EndLoc = Parser.getTok().getLoc(); 3830 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3831 return MatchOperand_ParseFail; 3832 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3833 Error(EndLoc, "mismatched lane index in register list"); 3834 return MatchOperand_ParseFail; 3835 } 3836 } 3837 3838 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3839 Error(Parser.getTok().getLoc(), "'}' expected"); 3840 return MatchOperand_ParseFail; 3841 } 3842 E = Parser.getTok().getEndLoc(); 3843 Parser.Lex(); // Eat '}' token. 3844 3845 switch (LaneKind) { 3846 case NoLanes: 3847 // Two-register operands have been converted to the 3848 // composite register classes. 3849 if (Count == 2) { 3850 const MCRegisterClass *RC = (Spacing == 1) ? 3851 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3852 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3853 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3854 } 3855 3856 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3857 (Spacing == 2), S, E)); 3858 break; 3859 case AllLanes: 3860 // Two-register operands have been converted to the 3861 // composite register classes. 3862 if (Count == 2) { 3863 const MCRegisterClass *RC = (Spacing == 1) ? 3864 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3865 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3866 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3867 } 3868 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3869 (Spacing == 2), 3870 S, E)); 3871 break; 3872 case IndexedLane: 3873 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3874 LaneIndex, 3875 (Spacing == 2), 3876 S, E)); 3877 break; 3878 } 3879 return MatchOperand_Success; 3880 } 3881 3882 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3883 ARMAsmParser::OperandMatchResultTy 3884 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3885 MCAsmParser &Parser = getParser(); 3886 SMLoc S = Parser.getTok().getLoc(); 3887 const AsmToken &Tok = Parser.getTok(); 3888 unsigned Opt; 3889 3890 if (Tok.is(AsmToken::Identifier)) { 3891 StringRef OptStr = Tok.getString(); 3892 3893 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3894 .Case("sy", ARM_MB::SY) 3895 .Case("st", ARM_MB::ST) 3896 .Case("ld", ARM_MB::LD) 3897 .Case("sh", ARM_MB::ISH) 3898 .Case("ish", ARM_MB::ISH) 3899 .Case("shst", ARM_MB::ISHST) 3900 .Case("ishst", ARM_MB::ISHST) 3901 .Case("ishld", ARM_MB::ISHLD) 3902 .Case("nsh", ARM_MB::NSH) 3903 .Case("un", ARM_MB::NSH) 3904 .Case("nshst", ARM_MB::NSHST) 3905 .Case("nshld", ARM_MB::NSHLD) 3906 .Case("unst", ARM_MB::NSHST) 3907 .Case("osh", ARM_MB::OSH) 3908 .Case("oshst", ARM_MB::OSHST) 3909 .Case("oshld", ARM_MB::OSHLD) 3910 .Default(~0U); 3911 3912 // ishld, oshld, nshld and ld are only available from ARMv8. 3913 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3914 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3915 Opt = ~0U; 3916 3917 if (Opt == ~0U) 3918 return MatchOperand_NoMatch; 3919 3920 Parser.Lex(); // Eat identifier token. 3921 } else if (Tok.is(AsmToken::Hash) || 3922 Tok.is(AsmToken::Dollar) || 3923 Tok.is(AsmToken::Integer)) { 3924 if (Parser.getTok().isNot(AsmToken::Integer)) 3925 Parser.Lex(); // Eat '#' or '$'. 3926 SMLoc Loc = Parser.getTok().getLoc(); 3927 3928 const MCExpr *MemBarrierID; 3929 if (getParser().parseExpression(MemBarrierID)) { 3930 Error(Loc, "illegal expression"); 3931 return MatchOperand_ParseFail; 3932 } 3933 3934 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3935 if (!CE) { 3936 Error(Loc, "constant expression expected"); 3937 return MatchOperand_ParseFail; 3938 } 3939 3940 int Val = CE->getValue(); 3941 if (Val & ~0xf) { 3942 Error(Loc, "immediate value out of range"); 3943 return MatchOperand_ParseFail; 3944 } 3945 3946 Opt = ARM_MB::RESERVED_0 + Val; 3947 } else 3948 return MatchOperand_ParseFail; 3949 3950 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3951 return MatchOperand_Success; 3952 } 3953 3954 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3955 ARMAsmParser::OperandMatchResultTy 3956 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3957 MCAsmParser &Parser = getParser(); 3958 SMLoc S = Parser.getTok().getLoc(); 3959 const AsmToken &Tok = Parser.getTok(); 3960 unsigned Opt; 3961 3962 if (Tok.is(AsmToken::Identifier)) { 3963 StringRef OptStr = Tok.getString(); 3964 3965 if (OptStr.equals_lower("sy")) 3966 Opt = ARM_ISB::SY; 3967 else 3968 return MatchOperand_NoMatch; 3969 3970 Parser.Lex(); // Eat identifier token. 3971 } else if (Tok.is(AsmToken::Hash) || 3972 Tok.is(AsmToken::Dollar) || 3973 Tok.is(AsmToken::Integer)) { 3974 if (Parser.getTok().isNot(AsmToken::Integer)) 3975 Parser.Lex(); // Eat '#' or '$'. 3976 SMLoc Loc = Parser.getTok().getLoc(); 3977 3978 const MCExpr *ISBarrierID; 3979 if (getParser().parseExpression(ISBarrierID)) { 3980 Error(Loc, "illegal expression"); 3981 return MatchOperand_ParseFail; 3982 } 3983 3984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3985 if (!CE) { 3986 Error(Loc, "constant expression expected"); 3987 return MatchOperand_ParseFail; 3988 } 3989 3990 int Val = CE->getValue(); 3991 if (Val & ~0xf) { 3992 Error(Loc, "immediate value out of range"); 3993 return MatchOperand_ParseFail; 3994 } 3995 3996 Opt = ARM_ISB::RESERVED_0 + Val; 3997 } else 3998 return MatchOperand_ParseFail; 3999 4000 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4001 (ARM_ISB::InstSyncBOpt)Opt, S)); 4002 return MatchOperand_Success; 4003 } 4004 4005 4006 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4007 ARMAsmParser::OperandMatchResultTy 4008 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4009 MCAsmParser &Parser = getParser(); 4010 SMLoc S = Parser.getTok().getLoc(); 4011 const AsmToken &Tok = Parser.getTok(); 4012 if (!Tok.is(AsmToken::Identifier)) 4013 return MatchOperand_NoMatch; 4014 StringRef IFlagsStr = Tok.getString(); 4015 4016 // An iflags string of "none" is interpreted to mean that none of the AIF 4017 // bits are set. Not a terribly useful instruction, but a valid encoding. 4018 unsigned IFlags = 0; 4019 if (IFlagsStr != "none") { 4020 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4021 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4022 .Case("a", ARM_PROC::A) 4023 .Case("i", ARM_PROC::I) 4024 .Case("f", ARM_PROC::F) 4025 .Default(~0U); 4026 4027 // If some specific iflag is already set, it means that some letter is 4028 // present more than once, this is not acceptable. 4029 if (Flag == ~0U || (IFlags & Flag)) 4030 return MatchOperand_NoMatch; 4031 4032 IFlags |= Flag; 4033 } 4034 } 4035 4036 Parser.Lex(); // Eat identifier token. 4037 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4038 return MatchOperand_Success; 4039 } 4040 4041 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4042 ARMAsmParser::OperandMatchResultTy 4043 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4044 MCAsmParser &Parser = getParser(); 4045 SMLoc S = Parser.getTok().getLoc(); 4046 const AsmToken &Tok = Parser.getTok(); 4047 if (!Tok.is(AsmToken::Identifier)) 4048 return MatchOperand_NoMatch; 4049 StringRef Mask = Tok.getString(); 4050 4051 if (isMClass()) { 4052 // See ARMv6-M 10.1.1 4053 std::string Name = Mask.lower(); 4054 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4055 // Note: in the documentation: 4056 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4057 // for MSR APSR_nzcvq. 4058 // but we do make it an alias here. This is so to get the "mask encoding" 4059 // bits correct on MSR APSR writes. 4060 // 4061 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4062 // should really only be allowed when writing a special register. Note 4063 // they get dropped in the MRS instruction reading a special register as 4064 // the SYSm field is only 8 bits. 4065 .Case("apsr", 0x800) 4066 .Case("apsr_nzcvq", 0x800) 4067 .Case("apsr_g", 0x400) 4068 .Case("apsr_nzcvqg", 0xc00) 4069 .Case("iapsr", 0x801) 4070 .Case("iapsr_nzcvq", 0x801) 4071 .Case("iapsr_g", 0x401) 4072 .Case("iapsr_nzcvqg", 0xc01) 4073 .Case("eapsr", 0x802) 4074 .Case("eapsr_nzcvq", 0x802) 4075 .Case("eapsr_g", 0x402) 4076 .Case("eapsr_nzcvqg", 0xc02) 4077 .Case("xpsr", 0x803) 4078 .Case("xpsr_nzcvq", 0x803) 4079 .Case("xpsr_g", 0x403) 4080 .Case("xpsr_nzcvqg", 0xc03) 4081 .Case("ipsr", 0x805) 4082 .Case("epsr", 0x806) 4083 .Case("iepsr", 0x807) 4084 .Case("msp", 0x808) 4085 .Case("psp", 0x809) 4086 .Case("primask", 0x810) 4087 .Case("basepri", 0x811) 4088 .Case("basepri_max", 0x812) 4089 .Case("faultmask", 0x813) 4090 .Case("control", 0x814) 4091 .Case("msplim", 0x80a) 4092 .Case("psplim", 0x80b) 4093 .Case("msp_ns", 0x888) 4094 .Case("psp_ns", 0x889) 4095 .Case("msplim_ns", 0x88a) 4096 .Case("psplim_ns", 0x88b) 4097 .Case("primask_ns", 0x890) 4098 .Case("basepri_ns", 0x891) 4099 .Case("basepri_max_ns", 0x892) 4100 .Case("faultmask_ns", 0x893) 4101 .Case("control_ns", 0x894) 4102 .Case("sp_ns", 0x898) 4103 .Default(~0U); 4104 4105 if (FlagsVal == ~0U) 4106 return MatchOperand_NoMatch; 4107 4108 if (!hasDSP() && (FlagsVal & 0x400)) 4109 // The _g and _nzcvqg versions are only valid if the DSP extension is 4110 // available. 4111 return MatchOperand_NoMatch; 4112 4113 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4114 // basepri, basepri_max and faultmask only valid for V7m. 4115 return MatchOperand_NoMatch; 4116 4117 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4118 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4119 return MatchOperand_NoMatch; 4120 4121 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4122 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4123 return MatchOperand_NoMatch; 4124 4125 Parser.Lex(); // Eat identifier token. 4126 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4127 return MatchOperand_Success; 4128 } 4129 4130 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4131 size_t Start = 0, Next = Mask.find('_'); 4132 StringRef Flags = ""; 4133 std::string SpecReg = Mask.slice(Start, Next).lower(); 4134 if (Next != StringRef::npos) 4135 Flags = Mask.slice(Next+1, Mask.size()); 4136 4137 // FlagsVal contains the complete mask: 4138 // 3-0: Mask 4139 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4140 unsigned FlagsVal = 0; 4141 4142 if (SpecReg == "apsr") { 4143 FlagsVal = StringSwitch<unsigned>(Flags) 4144 .Case("nzcvq", 0x8) // same as CPSR_f 4145 .Case("g", 0x4) // same as CPSR_s 4146 .Case("nzcvqg", 0xc) // same as CPSR_fs 4147 .Default(~0U); 4148 4149 if (FlagsVal == ~0U) { 4150 if (!Flags.empty()) 4151 return MatchOperand_NoMatch; 4152 else 4153 FlagsVal = 8; // No flag 4154 } 4155 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4156 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4157 if (Flags == "all" || Flags == "") 4158 Flags = "fc"; 4159 for (int i = 0, e = Flags.size(); i != e; ++i) { 4160 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4161 .Case("c", 1) 4162 .Case("x", 2) 4163 .Case("s", 4) 4164 .Case("f", 8) 4165 .Default(~0U); 4166 4167 // If some specific flag is already set, it means that some letter is 4168 // present more than once, this is not acceptable. 4169 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4170 return MatchOperand_NoMatch; 4171 FlagsVal |= Flag; 4172 } 4173 } else // No match for special register. 4174 return MatchOperand_NoMatch; 4175 4176 // Special register without flags is NOT equivalent to "fc" flags. 4177 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4178 // two lines would enable gas compatibility at the expense of breaking 4179 // round-tripping. 4180 // 4181 // if (!FlagsVal) 4182 // FlagsVal = 0x9; 4183 4184 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4185 if (SpecReg == "spsr") 4186 FlagsVal |= 16; 4187 4188 Parser.Lex(); // Eat identifier token. 4189 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4190 return MatchOperand_Success; 4191 } 4192 4193 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4194 /// use in the MRS/MSR instructions added to support virtualization. 4195 ARMAsmParser::OperandMatchResultTy 4196 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4197 MCAsmParser &Parser = getParser(); 4198 SMLoc S = Parser.getTok().getLoc(); 4199 const AsmToken &Tok = Parser.getTok(); 4200 if (!Tok.is(AsmToken::Identifier)) 4201 return MatchOperand_NoMatch; 4202 StringRef RegName = Tok.getString(); 4203 4204 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4205 // and bit 5 is R. 4206 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4207 .Case("r8_usr", 0x00) 4208 .Case("r9_usr", 0x01) 4209 .Case("r10_usr", 0x02) 4210 .Case("r11_usr", 0x03) 4211 .Case("r12_usr", 0x04) 4212 .Case("sp_usr", 0x05) 4213 .Case("lr_usr", 0x06) 4214 .Case("r8_fiq", 0x08) 4215 .Case("r9_fiq", 0x09) 4216 .Case("r10_fiq", 0x0a) 4217 .Case("r11_fiq", 0x0b) 4218 .Case("r12_fiq", 0x0c) 4219 .Case("sp_fiq", 0x0d) 4220 .Case("lr_fiq", 0x0e) 4221 .Case("lr_irq", 0x10) 4222 .Case("sp_irq", 0x11) 4223 .Case("lr_svc", 0x12) 4224 .Case("sp_svc", 0x13) 4225 .Case("lr_abt", 0x14) 4226 .Case("sp_abt", 0x15) 4227 .Case("lr_und", 0x16) 4228 .Case("sp_und", 0x17) 4229 .Case("lr_mon", 0x1c) 4230 .Case("sp_mon", 0x1d) 4231 .Case("elr_hyp", 0x1e) 4232 .Case("sp_hyp", 0x1f) 4233 .Case("spsr_fiq", 0x2e) 4234 .Case("spsr_irq", 0x30) 4235 .Case("spsr_svc", 0x32) 4236 .Case("spsr_abt", 0x34) 4237 .Case("spsr_und", 0x36) 4238 .Case("spsr_mon", 0x3c) 4239 .Case("spsr_hyp", 0x3e) 4240 .Default(~0U); 4241 4242 if (Encoding == ~0U) 4243 return MatchOperand_NoMatch; 4244 4245 Parser.Lex(); // Eat identifier token. 4246 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4247 return MatchOperand_Success; 4248 } 4249 4250 ARMAsmParser::OperandMatchResultTy 4251 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4252 int High) { 4253 MCAsmParser &Parser = getParser(); 4254 const AsmToken &Tok = Parser.getTok(); 4255 if (Tok.isNot(AsmToken::Identifier)) { 4256 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4257 return MatchOperand_ParseFail; 4258 } 4259 StringRef ShiftName = Tok.getString(); 4260 std::string LowerOp = Op.lower(); 4261 std::string UpperOp = Op.upper(); 4262 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4263 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4264 return MatchOperand_ParseFail; 4265 } 4266 Parser.Lex(); // Eat shift type token. 4267 4268 // There must be a '#' and a shift amount. 4269 if (Parser.getTok().isNot(AsmToken::Hash) && 4270 Parser.getTok().isNot(AsmToken::Dollar)) { 4271 Error(Parser.getTok().getLoc(), "'#' expected"); 4272 return MatchOperand_ParseFail; 4273 } 4274 Parser.Lex(); // Eat hash token. 4275 4276 const MCExpr *ShiftAmount; 4277 SMLoc Loc = Parser.getTok().getLoc(); 4278 SMLoc EndLoc; 4279 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4280 Error(Loc, "illegal expression"); 4281 return MatchOperand_ParseFail; 4282 } 4283 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4284 if (!CE) { 4285 Error(Loc, "constant expression expected"); 4286 return MatchOperand_ParseFail; 4287 } 4288 int Val = CE->getValue(); 4289 if (Val < Low || Val > High) { 4290 Error(Loc, "immediate value out of range"); 4291 return MatchOperand_ParseFail; 4292 } 4293 4294 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4295 4296 return MatchOperand_Success; 4297 } 4298 4299 ARMAsmParser::OperandMatchResultTy 4300 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4301 MCAsmParser &Parser = getParser(); 4302 const AsmToken &Tok = Parser.getTok(); 4303 SMLoc S = Tok.getLoc(); 4304 if (Tok.isNot(AsmToken::Identifier)) { 4305 Error(S, "'be' or 'le' operand expected"); 4306 return MatchOperand_ParseFail; 4307 } 4308 int Val = StringSwitch<int>(Tok.getString().lower()) 4309 .Case("be", 1) 4310 .Case("le", 0) 4311 .Default(-1); 4312 Parser.Lex(); // Eat the token. 4313 4314 if (Val == -1) { 4315 Error(S, "'be' or 'le' operand expected"); 4316 return MatchOperand_ParseFail; 4317 } 4318 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4319 getContext()), 4320 S, Tok.getEndLoc())); 4321 return MatchOperand_Success; 4322 } 4323 4324 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4325 /// instructions. Legal values are: 4326 /// lsl #n 'n' in [0,31] 4327 /// asr #n 'n' in [1,32] 4328 /// n == 32 encoded as n == 0. 4329 ARMAsmParser::OperandMatchResultTy 4330 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4331 MCAsmParser &Parser = getParser(); 4332 const AsmToken &Tok = Parser.getTok(); 4333 SMLoc S = Tok.getLoc(); 4334 if (Tok.isNot(AsmToken::Identifier)) { 4335 Error(S, "shift operator 'asr' or 'lsl' expected"); 4336 return MatchOperand_ParseFail; 4337 } 4338 StringRef ShiftName = Tok.getString(); 4339 bool isASR; 4340 if (ShiftName == "lsl" || ShiftName == "LSL") 4341 isASR = false; 4342 else if (ShiftName == "asr" || ShiftName == "ASR") 4343 isASR = true; 4344 else { 4345 Error(S, "shift operator 'asr' or 'lsl' expected"); 4346 return MatchOperand_ParseFail; 4347 } 4348 Parser.Lex(); // Eat the operator. 4349 4350 // A '#' and a shift amount. 4351 if (Parser.getTok().isNot(AsmToken::Hash) && 4352 Parser.getTok().isNot(AsmToken::Dollar)) { 4353 Error(Parser.getTok().getLoc(), "'#' expected"); 4354 return MatchOperand_ParseFail; 4355 } 4356 Parser.Lex(); // Eat hash token. 4357 SMLoc ExLoc = Parser.getTok().getLoc(); 4358 4359 const MCExpr *ShiftAmount; 4360 SMLoc EndLoc; 4361 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4362 Error(ExLoc, "malformed shift expression"); 4363 return MatchOperand_ParseFail; 4364 } 4365 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4366 if (!CE) { 4367 Error(ExLoc, "shift amount must be an immediate"); 4368 return MatchOperand_ParseFail; 4369 } 4370 4371 int64_t Val = CE->getValue(); 4372 if (isASR) { 4373 // Shift amount must be in [1,32] 4374 if (Val < 1 || Val > 32) { 4375 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4376 return MatchOperand_ParseFail; 4377 } 4378 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4379 if (isThumb() && Val == 32) { 4380 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4381 return MatchOperand_ParseFail; 4382 } 4383 if (Val == 32) Val = 0; 4384 } else { 4385 // Shift amount must be in [1,32] 4386 if (Val < 0 || Val > 31) { 4387 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4388 return MatchOperand_ParseFail; 4389 } 4390 } 4391 4392 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4393 4394 return MatchOperand_Success; 4395 } 4396 4397 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4398 /// of instructions. Legal values are: 4399 /// ror #n 'n' in {0, 8, 16, 24} 4400 ARMAsmParser::OperandMatchResultTy 4401 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4402 MCAsmParser &Parser = getParser(); 4403 const AsmToken &Tok = Parser.getTok(); 4404 SMLoc S = Tok.getLoc(); 4405 if (Tok.isNot(AsmToken::Identifier)) 4406 return MatchOperand_NoMatch; 4407 StringRef ShiftName = Tok.getString(); 4408 if (ShiftName != "ror" && ShiftName != "ROR") 4409 return MatchOperand_NoMatch; 4410 Parser.Lex(); // Eat the operator. 4411 4412 // A '#' and a rotate amount. 4413 if (Parser.getTok().isNot(AsmToken::Hash) && 4414 Parser.getTok().isNot(AsmToken::Dollar)) { 4415 Error(Parser.getTok().getLoc(), "'#' expected"); 4416 return MatchOperand_ParseFail; 4417 } 4418 Parser.Lex(); // Eat hash token. 4419 SMLoc ExLoc = Parser.getTok().getLoc(); 4420 4421 const MCExpr *ShiftAmount; 4422 SMLoc EndLoc; 4423 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4424 Error(ExLoc, "malformed rotate expression"); 4425 return MatchOperand_ParseFail; 4426 } 4427 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4428 if (!CE) { 4429 Error(ExLoc, "rotate amount must be an immediate"); 4430 return MatchOperand_ParseFail; 4431 } 4432 4433 int64_t Val = CE->getValue(); 4434 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4435 // normally, zero is represented in asm by omitting the rotate operand 4436 // entirely. 4437 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4438 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4439 return MatchOperand_ParseFail; 4440 } 4441 4442 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4443 4444 return MatchOperand_Success; 4445 } 4446 4447 ARMAsmParser::OperandMatchResultTy 4448 ARMAsmParser::parseModImm(OperandVector &Operands) { 4449 MCAsmParser &Parser = getParser(); 4450 MCAsmLexer &Lexer = getLexer(); 4451 int64_t Imm1, Imm2; 4452 4453 SMLoc S = Parser.getTok().getLoc(); 4454 4455 // 1) A mod_imm operand can appear in the place of a register name: 4456 // add r0, #mod_imm 4457 // add r0, r0, #mod_imm 4458 // to correctly handle the latter, we bail out as soon as we see an 4459 // identifier. 4460 // 4461 // 2) Similarly, we do not want to parse into complex operands: 4462 // mov r0, #mod_imm 4463 // mov r0, :lower16:(_foo) 4464 if (Parser.getTok().is(AsmToken::Identifier) || 4465 Parser.getTok().is(AsmToken::Colon)) 4466 return MatchOperand_NoMatch; 4467 4468 // Hash (dollar) is optional as per the ARMARM 4469 if (Parser.getTok().is(AsmToken::Hash) || 4470 Parser.getTok().is(AsmToken::Dollar)) { 4471 // Avoid parsing into complex operands (#:) 4472 if (Lexer.peekTok().is(AsmToken::Colon)) 4473 return MatchOperand_NoMatch; 4474 4475 // Eat the hash (dollar) 4476 Parser.Lex(); 4477 } 4478 4479 SMLoc Sx1, Ex1; 4480 Sx1 = Parser.getTok().getLoc(); 4481 const MCExpr *Imm1Exp; 4482 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4483 Error(Sx1, "malformed expression"); 4484 return MatchOperand_ParseFail; 4485 } 4486 4487 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4488 4489 if (CE) { 4490 // Immediate must fit within 32-bits 4491 Imm1 = CE->getValue(); 4492 int Enc = ARM_AM::getSOImmVal(Imm1); 4493 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4494 // We have a match! 4495 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4496 (Enc & 0xF00) >> 7, 4497 Sx1, Ex1)); 4498 return MatchOperand_Success; 4499 } 4500 4501 // We have parsed an immediate which is not for us, fallback to a plain 4502 // immediate. This can happen for instruction aliases. For an example, 4503 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4504 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4505 // instruction with a mod_imm operand. The alias is defined such that the 4506 // parser method is shared, that's why we have to do this here. 4507 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4508 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4509 return MatchOperand_Success; 4510 } 4511 } else { 4512 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4513 // MCFixup). Fallback to a plain immediate. 4514 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4515 return MatchOperand_Success; 4516 } 4517 4518 // From this point onward, we expect the input to be a (#bits, #rot) pair 4519 if (Parser.getTok().isNot(AsmToken::Comma)) { 4520 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4521 return MatchOperand_ParseFail; 4522 } 4523 4524 if (Imm1 & ~0xFF) { 4525 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4526 return MatchOperand_ParseFail; 4527 } 4528 4529 // Eat the comma 4530 Parser.Lex(); 4531 4532 // Repeat for #rot 4533 SMLoc Sx2, Ex2; 4534 Sx2 = Parser.getTok().getLoc(); 4535 4536 // Eat the optional hash (dollar) 4537 if (Parser.getTok().is(AsmToken::Hash) || 4538 Parser.getTok().is(AsmToken::Dollar)) 4539 Parser.Lex(); 4540 4541 const MCExpr *Imm2Exp; 4542 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4543 Error(Sx2, "malformed expression"); 4544 return MatchOperand_ParseFail; 4545 } 4546 4547 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4548 4549 if (CE) { 4550 Imm2 = CE->getValue(); 4551 if (!(Imm2 & ~0x1E)) { 4552 // We have a match! 4553 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4554 return MatchOperand_Success; 4555 } 4556 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4557 return MatchOperand_ParseFail; 4558 } else { 4559 Error(Sx2, "constant expression expected"); 4560 return MatchOperand_ParseFail; 4561 } 4562 } 4563 4564 ARMAsmParser::OperandMatchResultTy 4565 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4566 MCAsmParser &Parser = getParser(); 4567 SMLoc S = Parser.getTok().getLoc(); 4568 // The bitfield descriptor is really two operands, the LSB and the width. 4569 if (Parser.getTok().isNot(AsmToken::Hash) && 4570 Parser.getTok().isNot(AsmToken::Dollar)) { 4571 Error(Parser.getTok().getLoc(), "'#' expected"); 4572 return MatchOperand_ParseFail; 4573 } 4574 Parser.Lex(); // Eat hash token. 4575 4576 const MCExpr *LSBExpr; 4577 SMLoc E = Parser.getTok().getLoc(); 4578 if (getParser().parseExpression(LSBExpr)) { 4579 Error(E, "malformed immediate expression"); 4580 return MatchOperand_ParseFail; 4581 } 4582 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4583 if (!CE) { 4584 Error(E, "'lsb' operand must be an immediate"); 4585 return MatchOperand_ParseFail; 4586 } 4587 4588 int64_t LSB = CE->getValue(); 4589 // The LSB must be in the range [0,31] 4590 if (LSB < 0 || LSB > 31) { 4591 Error(E, "'lsb' operand must be in the range [0,31]"); 4592 return MatchOperand_ParseFail; 4593 } 4594 E = Parser.getTok().getLoc(); 4595 4596 // Expect another immediate operand. 4597 if (Parser.getTok().isNot(AsmToken::Comma)) { 4598 Error(Parser.getTok().getLoc(), "too few operands"); 4599 return MatchOperand_ParseFail; 4600 } 4601 Parser.Lex(); // Eat hash token. 4602 if (Parser.getTok().isNot(AsmToken::Hash) && 4603 Parser.getTok().isNot(AsmToken::Dollar)) { 4604 Error(Parser.getTok().getLoc(), "'#' expected"); 4605 return MatchOperand_ParseFail; 4606 } 4607 Parser.Lex(); // Eat hash token. 4608 4609 const MCExpr *WidthExpr; 4610 SMLoc EndLoc; 4611 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4612 Error(E, "malformed immediate expression"); 4613 return MatchOperand_ParseFail; 4614 } 4615 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4616 if (!CE) { 4617 Error(E, "'width' operand must be an immediate"); 4618 return MatchOperand_ParseFail; 4619 } 4620 4621 int64_t Width = CE->getValue(); 4622 // The LSB must be in the range [1,32-lsb] 4623 if (Width < 1 || Width > 32 - LSB) { 4624 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4625 return MatchOperand_ParseFail; 4626 } 4627 4628 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4629 4630 return MatchOperand_Success; 4631 } 4632 4633 ARMAsmParser::OperandMatchResultTy 4634 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4635 // Check for a post-index addressing register operand. Specifically: 4636 // postidx_reg := '+' register {, shift} 4637 // | '-' register {, shift} 4638 // | register {, shift} 4639 4640 // This method must return MatchOperand_NoMatch without consuming any tokens 4641 // in the case where there is no match, as other alternatives take other 4642 // parse methods. 4643 MCAsmParser &Parser = getParser(); 4644 AsmToken Tok = Parser.getTok(); 4645 SMLoc S = Tok.getLoc(); 4646 bool haveEaten = false; 4647 bool isAdd = true; 4648 if (Tok.is(AsmToken::Plus)) { 4649 Parser.Lex(); // Eat the '+' token. 4650 haveEaten = true; 4651 } else if (Tok.is(AsmToken::Minus)) { 4652 Parser.Lex(); // Eat the '-' token. 4653 isAdd = false; 4654 haveEaten = true; 4655 } 4656 4657 SMLoc E = Parser.getTok().getEndLoc(); 4658 int Reg = tryParseRegister(); 4659 if (Reg == -1) { 4660 if (!haveEaten) 4661 return MatchOperand_NoMatch; 4662 Error(Parser.getTok().getLoc(), "register expected"); 4663 return MatchOperand_ParseFail; 4664 } 4665 4666 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4667 unsigned ShiftImm = 0; 4668 if (Parser.getTok().is(AsmToken::Comma)) { 4669 Parser.Lex(); // Eat the ','. 4670 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4671 return MatchOperand_ParseFail; 4672 4673 // FIXME: Only approximates end...may include intervening whitespace. 4674 E = Parser.getTok().getLoc(); 4675 } 4676 4677 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4678 ShiftImm, S, E)); 4679 4680 return MatchOperand_Success; 4681 } 4682 4683 ARMAsmParser::OperandMatchResultTy 4684 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4685 // Check for a post-index addressing register operand. Specifically: 4686 // am3offset := '+' register 4687 // | '-' register 4688 // | register 4689 // | # imm 4690 // | # + imm 4691 // | # - imm 4692 4693 // This method must return MatchOperand_NoMatch without consuming any tokens 4694 // in the case where there is no match, as other alternatives take other 4695 // parse methods. 4696 MCAsmParser &Parser = getParser(); 4697 AsmToken Tok = Parser.getTok(); 4698 SMLoc S = Tok.getLoc(); 4699 4700 // Do immediates first, as we always parse those if we have a '#'. 4701 if (Parser.getTok().is(AsmToken::Hash) || 4702 Parser.getTok().is(AsmToken::Dollar)) { 4703 Parser.Lex(); // Eat '#' or '$'. 4704 // Explicitly look for a '-', as we need to encode negative zero 4705 // differently. 4706 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4707 const MCExpr *Offset; 4708 SMLoc E; 4709 if (getParser().parseExpression(Offset, E)) 4710 return MatchOperand_ParseFail; 4711 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4712 if (!CE) { 4713 Error(S, "constant expression expected"); 4714 return MatchOperand_ParseFail; 4715 } 4716 // Negative zero is encoded as the flag value INT32_MIN. 4717 int32_t Val = CE->getValue(); 4718 if (isNegative && Val == 0) 4719 Val = INT32_MIN; 4720 4721 Operands.push_back( 4722 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4723 4724 return MatchOperand_Success; 4725 } 4726 4727 4728 bool haveEaten = false; 4729 bool isAdd = true; 4730 if (Tok.is(AsmToken::Plus)) { 4731 Parser.Lex(); // Eat the '+' token. 4732 haveEaten = true; 4733 } else if (Tok.is(AsmToken::Minus)) { 4734 Parser.Lex(); // Eat the '-' token. 4735 isAdd = false; 4736 haveEaten = true; 4737 } 4738 4739 Tok = Parser.getTok(); 4740 int Reg = tryParseRegister(); 4741 if (Reg == -1) { 4742 if (!haveEaten) 4743 return MatchOperand_NoMatch; 4744 Error(Tok.getLoc(), "register expected"); 4745 return MatchOperand_ParseFail; 4746 } 4747 4748 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4749 0, S, Tok.getEndLoc())); 4750 4751 return MatchOperand_Success; 4752 } 4753 4754 /// Convert parsed operands to MCInst. Needed here because this instruction 4755 /// only has two register operands, but multiplication is commutative so 4756 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4757 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4758 const OperandVector &Operands) { 4759 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4760 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4761 // If we have a three-operand form, make sure to set Rn to be the operand 4762 // that isn't the same as Rd. 4763 unsigned RegOp = 4; 4764 if (Operands.size() == 6 && 4765 ((ARMOperand &)*Operands[4]).getReg() == 4766 ((ARMOperand &)*Operands[3]).getReg()) 4767 RegOp = 5; 4768 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4769 Inst.addOperand(Inst.getOperand(0)); 4770 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4771 } 4772 4773 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4774 const OperandVector &Operands) { 4775 int CondOp = -1, ImmOp = -1; 4776 switch(Inst.getOpcode()) { 4777 case ARM::tB: 4778 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4779 4780 case ARM::t2B: 4781 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4782 4783 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4784 } 4785 // first decide whether or not the branch should be conditional 4786 // by looking at it's location relative to an IT block 4787 if(inITBlock()) { 4788 // inside an IT block we cannot have any conditional branches. any 4789 // such instructions needs to be converted to unconditional form 4790 switch(Inst.getOpcode()) { 4791 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4792 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4793 } 4794 } else { 4795 // outside IT blocks we can only have unconditional branches with AL 4796 // condition code or conditional branches with non-AL condition code 4797 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4798 switch(Inst.getOpcode()) { 4799 case ARM::tB: 4800 case ARM::tBcc: 4801 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4802 break; 4803 case ARM::t2B: 4804 case ARM::t2Bcc: 4805 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4806 break; 4807 } 4808 } 4809 4810 // now decide on encoding size based on branch target range 4811 switch(Inst.getOpcode()) { 4812 // classify tB as either t2B or t1B based on range of immediate operand 4813 case ARM::tB: { 4814 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4815 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4816 Inst.setOpcode(ARM::t2B); 4817 break; 4818 } 4819 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4820 case ARM::tBcc: { 4821 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4822 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4823 Inst.setOpcode(ARM::t2Bcc); 4824 break; 4825 } 4826 } 4827 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4828 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4829 } 4830 4831 /// Parse an ARM memory expression, return false if successful else return true 4832 /// or an error. The first token must be a '[' when called. 4833 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4834 MCAsmParser &Parser = getParser(); 4835 SMLoc S, E; 4836 assert(Parser.getTok().is(AsmToken::LBrac) && 4837 "Token is not a Left Bracket"); 4838 S = Parser.getTok().getLoc(); 4839 Parser.Lex(); // Eat left bracket token. 4840 4841 const AsmToken &BaseRegTok = Parser.getTok(); 4842 int BaseRegNum = tryParseRegister(); 4843 if (BaseRegNum == -1) 4844 return Error(BaseRegTok.getLoc(), "register expected"); 4845 4846 // The next token must either be a comma, a colon or a closing bracket. 4847 const AsmToken &Tok = Parser.getTok(); 4848 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4849 !Tok.is(AsmToken::RBrac)) 4850 return Error(Tok.getLoc(), "malformed memory operand"); 4851 4852 if (Tok.is(AsmToken::RBrac)) { 4853 E = Tok.getEndLoc(); 4854 Parser.Lex(); // Eat right bracket token. 4855 4856 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4857 ARM_AM::no_shift, 0, 0, false, 4858 S, E)); 4859 4860 // If there's a pre-indexing writeback marker, '!', just add it as a token 4861 // operand. It's rather odd, but syntactically valid. 4862 if (Parser.getTok().is(AsmToken::Exclaim)) { 4863 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4864 Parser.Lex(); // Eat the '!'. 4865 } 4866 4867 return false; 4868 } 4869 4870 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4871 "Lost colon or comma in memory operand?!"); 4872 if (Tok.is(AsmToken::Comma)) { 4873 Parser.Lex(); // Eat the comma. 4874 } 4875 4876 // If we have a ':', it's an alignment specifier. 4877 if (Parser.getTok().is(AsmToken::Colon)) { 4878 Parser.Lex(); // Eat the ':'. 4879 E = Parser.getTok().getLoc(); 4880 SMLoc AlignmentLoc = Tok.getLoc(); 4881 4882 const MCExpr *Expr; 4883 if (getParser().parseExpression(Expr)) 4884 return true; 4885 4886 // The expression has to be a constant. Memory references with relocations 4887 // don't come through here, as they use the <label> forms of the relevant 4888 // instructions. 4889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4890 if (!CE) 4891 return Error (E, "constant expression expected"); 4892 4893 unsigned Align = 0; 4894 switch (CE->getValue()) { 4895 default: 4896 return Error(E, 4897 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4898 case 16: Align = 2; break; 4899 case 32: Align = 4; break; 4900 case 64: Align = 8; break; 4901 case 128: Align = 16; break; 4902 case 256: Align = 32; break; 4903 } 4904 4905 // Now we should have the closing ']' 4906 if (Parser.getTok().isNot(AsmToken::RBrac)) 4907 return Error(Parser.getTok().getLoc(), "']' expected"); 4908 E = Parser.getTok().getEndLoc(); 4909 Parser.Lex(); // Eat right bracket token. 4910 4911 // Don't worry about range checking the value here. That's handled by 4912 // the is*() predicates. 4913 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4914 ARM_AM::no_shift, 0, Align, 4915 false, S, E, AlignmentLoc)); 4916 4917 // If there's a pre-indexing writeback marker, '!', just add it as a token 4918 // operand. 4919 if (Parser.getTok().is(AsmToken::Exclaim)) { 4920 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4921 Parser.Lex(); // Eat the '!'. 4922 } 4923 4924 return false; 4925 } 4926 4927 // If we have a '#', it's an immediate offset, else assume it's a register 4928 // offset. Be friendly and also accept a plain integer (without a leading 4929 // hash) for gas compatibility. 4930 if (Parser.getTok().is(AsmToken::Hash) || 4931 Parser.getTok().is(AsmToken::Dollar) || 4932 Parser.getTok().is(AsmToken::Integer)) { 4933 if (Parser.getTok().isNot(AsmToken::Integer)) 4934 Parser.Lex(); // Eat '#' or '$'. 4935 E = Parser.getTok().getLoc(); 4936 4937 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4938 const MCExpr *Offset; 4939 if (getParser().parseExpression(Offset)) 4940 return true; 4941 4942 // The expression has to be a constant. Memory references with relocations 4943 // don't come through here, as they use the <label> forms of the relevant 4944 // instructions. 4945 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4946 if (!CE) 4947 return Error (E, "constant expression expected"); 4948 4949 // If the constant was #-0, represent it as INT32_MIN. 4950 int32_t Val = CE->getValue(); 4951 if (isNegative && Val == 0) 4952 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4953 4954 // Now we should have the closing ']' 4955 if (Parser.getTok().isNot(AsmToken::RBrac)) 4956 return Error(Parser.getTok().getLoc(), "']' expected"); 4957 E = Parser.getTok().getEndLoc(); 4958 Parser.Lex(); // Eat right bracket token. 4959 4960 // Don't worry about range checking the value here. That's handled by 4961 // the is*() predicates. 4962 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4963 ARM_AM::no_shift, 0, 0, 4964 false, S, E)); 4965 4966 // If there's a pre-indexing writeback marker, '!', just add it as a token 4967 // operand. 4968 if (Parser.getTok().is(AsmToken::Exclaim)) { 4969 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4970 Parser.Lex(); // Eat the '!'. 4971 } 4972 4973 return false; 4974 } 4975 4976 // The register offset is optionally preceded by a '+' or '-' 4977 bool isNegative = false; 4978 if (Parser.getTok().is(AsmToken::Minus)) { 4979 isNegative = true; 4980 Parser.Lex(); // Eat the '-'. 4981 } else if (Parser.getTok().is(AsmToken::Plus)) { 4982 // Nothing to do. 4983 Parser.Lex(); // Eat the '+'. 4984 } 4985 4986 E = Parser.getTok().getLoc(); 4987 int OffsetRegNum = tryParseRegister(); 4988 if (OffsetRegNum == -1) 4989 return Error(E, "register expected"); 4990 4991 // If there's a shift operator, handle it. 4992 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4993 unsigned ShiftImm = 0; 4994 if (Parser.getTok().is(AsmToken::Comma)) { 4995 Parser.Lex(); // Eat the ','. 4996 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4997 return true; 4998 } 4999 5000 // Now we should have the closing ']' 5001 if (Parser.getTok().isNot(AsmToken::RBrac)) 5002 return Error(Parser.getTok().getLoc(), "']' expected"); 5003 E = Parser.getTok().getEndLoc(); 5004 Parser.Lex(); // Eat right bracket token. 5005 5006 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5007 ShiftType, ShiftImm, 0, isNegative, 5008 S, E)); 5009 5010 // If there's a pre-indexing writeback marker, '!', just add it as a token 5011 // operand. 5012 if (Parser.getTok().is(AsmToken::Exclaim)) { 5013 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5014 Parser.Lex(); // Eat the '!'. 5015 } 5016 5017 return false; 5018 } 5019 5020 /// parseMemRegOffsetShift - one of these two: 5021 /// ( lsl | lsr | asr | ror ) , # shift_amount 5022 /// rrx 5023 /// return true if it parses a shift otherwise it returns false. 5024 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5025 unsigned &Amount) { 5026 MCAsmParser &Parser = getParser(); 5027 SMLoc Loc = Parser.getTok().getLoc(); 5028 const AsmToken &Tok = Parser.getTok(); 5029 if (Tok.isNot(AsmToken::Identifier)) 5030 return true; 5031 StringRef ShiftName = Tok.getString(); 5032 if (ShiftName == "lsl" || ShiftName == "LSL" || 5033 ShiftName == "asl" || ShiftName == "ASL") 5034 St = ARM_AM::lsl; 5035 else if (ShiftName == "lsr" || ShiftName == "LSR") 5036 St = ARM_AM::lsr; 5037 else if (ShiftName == "asr" || ShiftName == "ASR") 5038 St = ARM_AM::asr; 5039 else if (ShiftName == "ror" || ShiftName == "ROR") 5040 St = ARM_AM::ror; 5041 else if (ShiftName == "rrx" || ShiftName == "RRX") 5042 St = ARM_AM::rrx; 5043 else 5044 return Error(Loc, "illegal shift operator"); 5045 Parser.Lex(); // Eat shift type token. 5046 5047 // rrx stands alone. 5048 Amount = 0; 5049 if (St != ARM_AM::rrx) { 5050 Loc = Parser.getTok().getLoc(); 5051 // A '#' and a shift amount. 5052 const AsmToken &HashTok = Parser.getTok(); 5053 if (HashTok.isNot(AsmToken::Hash) && 5054 HashTok.isNot(AsmToken::Dollar)) 5055 return Error(HashTok.getLoc(), "'#' expected"); 5056 Parser.Lex(); // Eat hash token. 5057 5058 const MCExpr *Expr; 5059 if (getParser().parseExpression(Expr)) 5060 return true; 5061 // Range check the immediate. 5062 // lsl, ror: 0 <= imm <= 31 5063 // lsr, asr: 0 <= imm <= 32 5064 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5065 if (!CE) 5066 return Error(Loc, "shift amount must be an immediate"); 5067 int64_t Imm = CE->getValue(); 5068 if (Imm < 0 || 5069 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5070 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5071 return Error(Loc, "immediate shift value out of range"); 5072 // If <ShiftTy> #0, turn it into a no_shift. 5073 if (Imm == 0) 5074 St = ARM_AM::lsl; 5075 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5076 if (Imm == 32) 5077 Imm = 0; 5078 Amount = Imm; 5079 } 5080 5081 return false; 5082 } 5083 5084 /// parseFPImm - A floating point immediate expression operand. 5085 ARMAsmParser::OperandMatchResultTy 5086 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5087 MCAsmParser &Parser = getParser(); 5088 // Anything that can accept a floating point constant as an operand 5089 // needs to go through here, as the regular parseExpression is 5090 // integer only. 5091 // 5092 // This routine still creates a generic Immediate operand, containing 5093 // a bitcast of the 64-bit floating point value. The various operands 5094 // that accept floats can check whether the value is valid for them 5095 // via the standard is*() predicates. 5096 5097 SMLoc S = Parser.getTok().getLoc(); 5098 5099 if (Parser.getTok().isNot(AsmToken::Hash) && 5100 Parser.getTok().isNot(AsmToken::Dollar)) 5101 return MatchOperand_NoMatch; 5102 5103 // Disambiguate the VMOV forms that can accept an FP immediate. 5104 // vmov.f32 <sreg>, #imm 5105 // vmov.f64 <dreg>, #imm 5106 // vmov.f32 <dreg>, #imm @ vector f32x2 5107 // vmov.f32 <qreg>, #imm @ vector f32x4 5108 // 5109 // There are also the NEON VMOV instructions which expect an 5110 // integer constant. Make sure we don't try to parse an FPImm 5111 // for these: 5112 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5113 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5114 bool isVmovf = TyOp.isToken() && 5115 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5116 TyOp.getToken() == ".f16"); 5117 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5118 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5119 Mnemonic.getToken() == "fconsts"); 5120 if (!(isVmovf || isFconst)) 5121 return MatchOperand_NoMatch; 5122 5123 Parser.Lex(); // Eat '#' or '$'. 5124 5125 // Handle negation, as that still comes through as a separate token. 5126 bool isNegative = false; 5127 if (Parser.getTok().is(AsmToken::Minus)) { 5128 isNegative = true; 5129 Parser.Lex(); 5130 } 5131 const AsmToken &Tok = Parser.getTok(); 5132 SMLoc Loc = Tok.getLoc(); 5133 if (Tok.is(AsmToken::Real) && isVmovf) { 5134 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5135 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5136 // If we had a '-' in front, toggle the sign bit. 5137 IntVal ^= (uint64_t)isNegative << 31; 5138 Parser.Lex(); // Eat the token. 5139 Operands.push_back(ARMOperand::CreateImm( 5140 MCConstantExpr::create(IntVal, getContext()), 5141 S, Parser.getTok().getLoc())); 5142 return MatchOperand_Success; 5143 } 5144 // Also handle plain integers. Instructions which allow floating point 5145 // immediates also allow a raw encoded 8-bit value. 5146 if (Tok.is(AsmToken::Integer) && isFconst) { 5147 int64_t Val = Tok.getIntVal(); 5148 Parser.Lex(); // Eat the token. 5149 if (Val > 255 || Val < 0) { 5150 Error(Loc, "encoded floating point value out of range"); 5151 return MatchOperand_ParseFail; 5152 } 5153 float RealVal = ARM_AM::getFPImmFloat(Val); 5154 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5155 5156 Operands.push_back(ARMOperand::CreateImm( 5157 MCConstantExpr::create(Val, getContext()), S, 5158 Parser.getTok().getLoc())); 5159 return MatchOperand_Success; 5160 } 5161 5162 Error(Loc, "invalid floating point immediate"); 5163 return MatchOperand_ParseFail; 5164 } 5165 5166 /// Parse a arm instruction operand. For now this parses the operand regardless 5167 /// of the mnemonic. 5168 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5169 MCAsmParser &Parser = getParser(); 5170 SMLoc S, E; 5171 5172 // Check if the current operand has a custom associated parser, if so, try to 5173 // custom parse the operand, or fallback to the general approach. 5174 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5175 if (ResTy == MatchOperand_Success) 5176 return false; 5177 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5178 // there was a match, but an error occurred, in which case, just return that 5179 // the operand parsing failed. 5180 if (ResTy == MatchOperand_ParseFail) 5181 return true; 5182 5183 switch (getLexer().getKind()) { 5184 default: 5185 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5186 return true; 5187 case AsmToken::Identifier: { 5188 // If we've seen a branch mnemonic, the next operand must be a label. This 5189 // is true even if the label is a register name. So "br r1" means branch to 5190 // label "r1". 5191 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5192 if (!ExpectLabel) { 5193 if (!tryParseRegisterWithWriteBack(Operands)) 5194 return false; 5195 int Res = tryParseShiftRegister(Operands); 5196 if (Res == 0) // success 5197 return false; 5198 else if (Res == -1) // irrecoverable error 5199 return true; 5200 // If this is VMRS, check for the apsr_nzcv operand. 5201 if (Mnemonic == "vmrs" && 5202 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5203 S = Parser.getTok().getLoc(); 5204 Parser.Lex(); 5205 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5206 return false; 5207 } 5208 } 5209 5210 // Fall though for the Identifier case that is not a register or a 5211 // special name. 5212 } 5213 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5214 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5215 case AsmToken::String: // quoted label names. 5216 case AsmToken::Dot: { // . as a branch target 5217 // This was not a register so parse other operands that start with an 5218 // identifier (like labels) as expressions and create them as immediates. 5219 const MCExpr *IdVal; 5220 S = Parser.getTok().getLoc(); 5221 if (getParser().parseExpression(IdVal)) 5222 return true; 5223 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5224 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5225 return false; 5226 } 5227 case AsmToken::LBrac: 5228 return parseMemory(Operands); 5229 case AsmToken::LCurly: 5230 return parseRegisterList(Operands); 5231 case AsmToken::Dollar: 5232 case AsmToken::Hash: { 5233 // #42 -> immediate. 5234 S = Parser.getTok().getLoc(); 5235 Parser.Lex(); 5236 5237 if (Parser.getTok().isNot(AsmToken::Colon)) { 5238 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5239 const MCExpr *ImmVal; 5240 if (getParser().parseExpression(ImmVal)) 5241 return true; 5242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5243 if (CE) { 5244 int32_t Val = CE->getValue(); 5245 if (isNegative && Val == 0) 5246 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5247 } 5248 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5249 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5250 5251 // There can be a trailing '!' on operands that we want as a separate 5252 // '!' Token operand. Handle that here. For example, the compatibility 5253 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5254 if (Parser.getTok().is(AsmToken::Exclaim)) { 5255 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5256 Parser.getTok().getLoc())); 5257 Parser.Lex(); // Eat exclaim token 5258 } 5259 return false; 5260 } 5261 // w/ a ':' after the '#', it's just like a plain ':'. 5262 // FALLTHROUGH 5263 } 5264 case AsmToken::Colon: { 5265 S = Parser.getTok().getLoc(); 5266 // ":lower16:" and ":upper16:" expression prefixes 5267 // FIXME: Check it's an expression prefix, 5268 // e.g. (FOO - :lower16:BAR) isn't legal. 5269 ARMMCExpr::VariantKind RefKind; 5270 if (parsePrefix(RefKind)) 5271 return true; 5272 5273 const MCExpr *SubExprVal; 5274 if (getParser().parseExpression(SubExprVal)) 5275 return true; 5276 5277 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5278 getContext()); 5279 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5280 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5281 return false; 5282 } 5283 case AsmToken::Equal: { 5284 S = Parser.getTok().getLoc(); 5285 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5286 return Error(S, "unexpected token in operand"); 5287 Parser.Lex(); // Eat '=' 5288 const MCExpr *SubExprVal; 5289 if (getParser().parseExpression(SubExprVal)) 5290 return true; 5291 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5292 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5293 return false; 5294 } 5295 } 5296 } 5297 5298 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5299 // :lower16: and :upper16:. 5300 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5301 MCAsmParser &Parser = getParser(); 5302 RefKind = ARMMCExpr::VK_ARM_None; 5303 5304 // consume an optional '#' (GNU compatibility) 5305 if (getLexer().is(AsmToken::Hash)) 5306 Parser.Lex(); 5307 5308 // :lower16: and :upper16: modifiers 5309 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5310 Parser.Lex(); // Eat ':' 5311 5312 if (getLexer().isNot(AsmToken::Identifier)) { 5313 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5314 return true; 5315 } 5316 5317 enum { 5318 COFF = (1 << MCObjectFileInfo::IsCOFF), 5319 ELF = (1 << MCObjectFileInfo::IsELF), 5320 MACHO = (1 << MCObjectFileInfo::IsMachO) 5321 }; 5322 static const struct PrefixEntry { 5323 const char *Spelling; 5324 ARMMCExpr::VariantKind VariantKind; 5325 uint8_t SupportedFormats; 5326 } PrefixEntries[] = { 5327 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5328 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5329 }; 5330 5331 StringRef IDVal = Parser.getTok().getIdentifier(); 5332 5333 const auto &Prefix = 5334 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5335 [&IDVal](const PrefixEntry &PE) { 5336 return PE.Spelling == IDVal; 5337 }); 5338 if (Prefix == std::end(PrefixEntries)) { 5339 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5340 return true; 5341 } 5342 5343 uint8_t CurrentFormat; 5344 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5345 case MCObjectFileInfo::IsMachO: 5346 CurrentFormat = MACHO; 5347 break; 5348 case MCObjectFileInfo::IsELF: 5349 CurrentFormat = ELF; 5350 break; 5351 case MCObjectFileInfo::IsCOFF: 5352 CurrentFormat = COFF; 5353 break; 5354 } 5355 5356 if (~Prefix->SupportedFormats & CurrentFormat) { 5357 Error(Parser.getTok().getLoc(), 5358 "cannot represent relocation in the current file format"); 5359 return true; 5360 } 5361 5362 RefKind = Prefix->VariantKind; 5363 Parser.Lex(); 5364 5365 if (getLexer().isNot(AsmToken::Colon)) { 5366 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5367 return true; 5368 } 5369 Parser.Lex(); // Eat the last ':' 5370 5371 return false; 5372 } 5373 5374 /// \brief Given a mnemonic, split out possible predication code and carry 5375 /// setting letters to form a canonical mnemonic and flags. 5376 // 5377 // FIXME: Would be nice to autogen this. 5378 // FIXME: This is a bit of a maze of special cases. 5379 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5380 unsigned &PredicationCode, 5381 bool &CarrySetting, 5382 unsigned &ProcessorIMod, 5383 StringRef &ITMask) { 5384 PredicationCode = ARMCC::AL; 5385 CarrySetting = false; 5386 ProcessorIMod = 0; 5387 5388 // Ignore some mnemonics we know aren't predicated forms. 5389 // 5390 // FIXME: Would be nice to autogen this. 5391 if ((Mnemonic == "movs" && isThumb()) || 5392 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5393 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5394 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5395 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5396 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5397 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5398 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5399 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5400 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5401 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5402 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5403 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5404 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5405 Mnemonic == "bxns" || Mnemonic == "blxns") 5406 return Mnemonic; 5407 5408 // First, split out any predication code. Ignore mnemonics we know aren't 5409 // predicated but do have a carry-set and so weren't caught above. 5410 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5411 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5412 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5413 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5414 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5415 .Case("eq", ARMCC::EQ) 5416 .Case("ne", ARMCC::NE) 5417 .Case("hs", ARMCC::HS) 5418 .Case("cs", ARMCC::HS) 5419 .Case("lo", ARMCC::LO) 5420 .Case("cc", ARMCC::LO) 5421 .Case("mi", ARMCC::MI) 5422 .Case("pl", ARMCC::PL) 5423 .Case("vs", ARMCC::VS) 5424 .Case("vc", ARMCC::VC) 5425 .Case("hi", ARMCC::HI) 5426 .Case("ls", ARMCC::LS) 5427 .Case("ge", ARMCC::GE) 5428 .Case("lt", ARMCC::LT) 5429 .Case("gt", ARMCC::GT) 5430 .Case("le", ARMCC::LE) 5431 .Case("al", ARMCC::AL) 5432 .Default(~0U); 5433 if (CC != ~0U) { 5434 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5435 PredicationCode = CC; 5436 } 5437 } 5438 5439 // Next, determine if we have a carry setting bit. We explicitly ignore all 5440 // the instructions we know end in 's'. 5441 if (Mnemonic.endswith("s") && 5442 !(Mnemonic == "cps" || Mnemonic == "mls" || 5443 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5444 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5445 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5446 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5447 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5448 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5449 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5450 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5451 Mnemonic == "bxns" || Mnemonic == "blxns" || 5452 (Mnemonic == "movs" && isThumb()))) { 5453 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5454 CarrySetting = true; 5455 } 5456 5457 // The "cps" instruction can have a interrupt mode operand which is glued into 5458 // the mnemonic. Check if this is the case, split it and parse the imod op 5459 if (Mnemonic.startswith("cps")) { 5460 // Split out any imod code. 5461 unsigned IMod = 5462 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5463 .Case("ie", ARM_PROC::IE) 5464 .Case("id", ARM_PROC::ID) 5465 .Default(~0U); 5466 if (IMod != ~0U) { 5467 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5468 ProcessorIMod = IMod; 5469 } 5470 } 5471 5472 // The "it" instruction has the condition mask on the end of the mnemonic. 5473 if (Mnemonic.startswith("it")) { 5474 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5475 Mnemonic = Mnemonic.slice(0, 2); 5476 } 5477 5478 return Mnemonic; 5479 } 5480 5481 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5482 /// inclusion of carry set or predication code operands. 5483 // 5484 // FIXME: It would be nice to autogen this. 5485 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5486 bool &CanAcceptCarrySet, 5487 bool &CanAcceptPredicationCode) { 5488 CanAcceptCarrySet = 5489 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5490 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5491 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5492 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5493 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5494 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5495 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5496 (!isThumb() && 5497 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5498 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5499 5500 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5501 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5502 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5503 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5504 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5505 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5506 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5507 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5508 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5509 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5510 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5511 Mnemonic == "vmovx" || Mnemonic == "vins") { 5512 // These mnemonics are never predicable 5513 CanAcceptPredicationCode = false; 5514 } else if (!isThumb()) { 5515 // Some instructions are only predicable in Thumb mode 5516 CanAcceptPredicationCode = 5517 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5518 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5519 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5520 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5521 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5522 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5523 !Mnemonic.startswith("srs"); 5524 } else if (isThumbOne()) { 5525 if (hasV6MOps()) 5526 CanAcceptPredicationCode = Mnemonic != "movs"; 5527 else 5528 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5529 } else 5530 CanAcceptPredicationCode = true; 5531 } 5532 5533 // \brief Some Thumb instructions have two operand forms that are not 5534 // available as three operand, convert to two operand form if possible. 5535 // 5536 // FIXME: We would really like to be able to tablegen'erate this. 5537 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5538 bool CarrySetting, 5539 OperandVector &Operands) { 5540 if (Operands.size() != 6) 5541 return; 5542 5543 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5544 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5545 if (!Op3.isReg() || !Op4.isReg()) 5546 return; 5547 5548 auto Op3Reg = Op3.getReg(); 5549 auto Op4Reg = Op4.getReg(); 5550 5551 // For most Thumb2 cases we just generate the 3 operand form and reduce 5552 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5553 // won't accept SP or PC so we do the transformation here taking care 5554 // with immediate range in the 'add sp, sp #imm' case. 5555 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5556 if (isThumbTwo()) { 5557 if (Mnemonic != "add") 5558 return; 5559 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5560 (Op5.isReg() && Op5.getReg() == ARM::PC); 5561 if (!TryTransform) { 5562 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5563 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5564 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5565 Op5.isImm() && !Op5.isImm0_508s4()); 5566 } 5567 if (!TryTransform) 5568 return; 5569 } else if (!isThumbOne()) 5570 return; 5571 5572 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5573 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5574 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5575 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5576 return; 5577 5578 // If first 2 operands of a 3 operand instruction are the same 5579 // then transform to 2 operand version of the same instruction 5580 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5581 bool Transform = Op3Reg == Op4Reg; 5582 5583 // For communtative operations, we might be able to transform if we swap 5584 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5585 // as tADDrsp. 5586 const ARMOperand *LastOp = &Op5; 5587 bool Swap = false; 5588 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5589 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5590 Mnemonic == "and" || Mnemonic == "eor" || 5591 Mnemonic == "adc" || Mnemonic == "orr")) { 5592 Swap = true; 5593 LastOp = &Op4; 5594 Transform = true; 5595 } 5596 5597 // If both registers are the same then remove one of them from 5598 // the operand list, with certain exceptions. 5599 if (Transform) { 5600 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5601 // 2 operand forms don't exist. 5602 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5603 LastOp->isReg()) 5604 Transform = false; 5605 5606 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5607 // 3-bits because the ARMARM says not to. 5608 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5609 Transform = false; 5610 } 5611 5612 if (Transform) { 5613 if (Swap) 5614 std::swap(Op4, Op5); 5615 Operands.erase(Operands.begin() + 3); 5616 } 5617 } 5618 5619 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5620 OperandVector &Operands) { 5621 // FIXME: This is all horribly hacky. We really need a better way to deal 5622 // with optional operands like this in the matcher table. 5623 5624 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5625 // another does not. Specifically, the MOVW instruction does not. So we 5626 // special case it here and remove the defaulted (non-setting) cc_out 5627 // operand if that's the instruction we're trying to match. 5628 // 5629 // We do this as post-processing of the explicit operands rather than just 5630 // conditionally adding the cc_out in the first place because we need 5631 // to check the type of the parsed immediate operand. 5632 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5633 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5634 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5635 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5636 return true; 5637 5638 // Register-register 'add' for thumb does not have a cc_out operand 5639 // when there are only two register operands. 5640 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5641 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5642 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5643 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5644 return true; 5645 // Register-register 'add' for thumb does not have a cc_out operand 5646 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5647 // have to check the immediate range here since Thumb2 has a variant 5648 // that can handle a different range and has a cc_out operand. 5649 if (((isThumb() && Mnemonic == "add") || 5650 (isThumbTwo() && Mnemonic == "sub")) && 5651 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5652 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5653 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5654 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5655 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5656 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5657 return true; 5658 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5659 // imm0_4095 variant. That's the least-preferred variant when 5660 // selecting via the generic "add" mnemonic, so to know that we 5661 // should remove the cc_out operand, we have to explicitly check that 5662 // it's not one of the other variants. Ugh. 5663 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5664 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5665 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5666 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5667 // Nest conditions rather than one big 'if' statement for readability. 5668 // 5669 // If both registers are low, we're in an IT block, and the immediate is 5670 // in range, we should use encoding T1 instead, which has a cc_out. 5671 if (inITBlock() && 5672 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5673 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5674 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5675 return false; 5676 // Check against T3. If the second register is the PC, this is an 5677 // alternate form of ADR, which uses encoding T4, so check for that too. 5678 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5679 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5680 return false; 5681 5682 // Otherwise, we use encoding T4, which does not have a cc_out 5683 // operand. 5684 return true; 5685 } 5686 5687 // The thumb2 multiply instruction doesn't have a CCOut register, so 5688 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5689 // use the 16-bit encoding or not. 5690 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5691 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5692 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5693 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5694 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5695 // If the registers aren't low regs, the destination reg isn't the 5696 // same as one of the source regs, or the cc_out operand is zero 5697 // outside of an IT block, we have to use the 32-bit encoding, so 5698 // remove the cc_out operand. 5699 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5700 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5701 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5702 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5703 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5704 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5705 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5706 return true; 5707 5708 // Also check the 'mul' syntax variant that doesn't specify an explicit 5709 // destination register. 5710 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5711 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5712 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5713 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5714 // If the registers aren't low regs or the cc_out operand is zero 5715 // outside of an IT block, we have to use the 32-bit encoding, so 5716 // remove the cc_out operand. 5717 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5718 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5719 !inITBlock())) 5720 return true; 5721 5722 5723 5724 // Register-register 'add/sub' for thumb does not have a cc_out operand 5725 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5726 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5727 // right, this will result in better diagnostics (which operand is off) 5728 // anyway. 5729 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5730 (Operands.size() == 5 || Operands.size() == 6) && 5731 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5732 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5733 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5734 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5735 (Operands.size() == 6 && 5736 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5737 return true; 5738 5739 return false; 5740 } 5741 5742 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5743 OperandVector &Operands) { 5744 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5745 unsigned RegIdx = 3; 5746 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5747 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5748 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5749 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5750 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5751 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5752 RegIdx = 4; 5753 5754 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5755 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5756 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5757 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5758 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5759 return true; 5760 } 5761 return false; 5762 } 5763 5764 static bool isDataTypeToken(StringRef Tok) { 5765 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5766 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5767 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5768 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5769 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5770 Tok == ".f" || Tok == ".d"; 5771 } 5772 5773 // FIXME: This bit should probably be handled via an explicit match class 5774 // in the .td files that matches the suffix instead of having it be 5775 // a literal string token the way it is now. 5776 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5777 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5778 } 5779 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5780 unsigned VariantID); 5781 5782 static bool RequiresVFPRegListValidation(StringRef Inst, 5783 bool &AcceptSinglePrecisionOnly, 5784 bool &AcceptDoublePrecisionOnly) { 5785 if (Inst.size() < 7) 5786 return false; 5787 5788 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5789 StringRef AddressingMode = Inst.substr(4, 2); 5790 if (AddressingMode == "ia" || AddressingMode == "db" || 5791 AddressingMode == "ea" || AddressingMode == "fd") { 5792 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5793 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5794 return true; 5795 } 5796 } 5797 5798 return false; 5799 } 5800 5801 /// Parse an arm instruction mnemonic followed by its operands. 5802 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5803 SMLoc NameLoc, OperandVector &Operands) { 5804 MCAsmParser &Parser = getParser(); 5805 // FIXME: Can this be done via tablegen in some fashion? 5806 bool RequireVFPRegisterListCheck; 5807 bool AcceptSinglePrecisionOnly; 5808 bool AcceptDoublePrecisionOnly; 5809 RequireVFPRegisterListCheck = 5810 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5811 AcceptDoublePrecisionOnly); 5812 5813 // Apply mnemonic aliases before doing anything else, as the destination 5814 // mnemonic may include suffices and we want to handle them normally. 5815 // The generic tblgen'erated code does this later, at the start of 5816 // MatchInstructionImpl(), but that's too late for aliases that include 5817 // any sort of suffix. 5818 uint64_t AvailableFeatures = getAvailableFeatures(); 5819 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5820 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5821 5822 // First check for the ARM-specific .req directive. 5823 if (Parser.getTok().is(AsmToken::Identifier) && 5824 Parser.getTok().getIdentifier() == ".req") { 5825 parseDirectiveReq(Name, NameLoc); 5826 // We always return 'error' for this, as we're done with this 5827 // statement and don't need to match the 'instruction." 5828 return true; 5829 } 5830 5831 // Create the leading tokens for the mnemonic, split by '.' characters. 5832 size_t Start = 0, Next = Name.find('.'); 5833 StringRef Mnemonic = Name.slice(Start, Next); 5834 5835 // Split out the predication code and carry setting flag from the mnemonic. 5836 unsigned PredicationCode; 5837 unsigned ProcessorIMod; 5838 bool CarrySetting; 5839 StringRef ITMask; 5840 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5841 ProcessorIMod, ITMask); 5842 5843 // In Thumb1, only the branch (B) instruction can be predicated. 5844 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5845 Parser.eatToEndOfStatement(); 5846 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5847 } 5848 5849 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5850 5851 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5852 // is the mask as it will be for the IT encoding if the conditional 5853 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5854 // where the conditional bit0 is zero, the instruction post-processing 5855 // will adjust the mask accordingly. 5856 if (Mnemonic == "it") { 5857 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5858 if (ITMask.size() > 3) { 5859 Parser.eatToEndOfStatement(); 5860 return Error(Loc, "too many conditions on IT instruction"); 5861 } 5862 unsigned Mask = 8; 5863 for (unsigned i = ITMask.size(); i != 0; --i) { 5864 char pos = ITMask[i - 1]; 5865 if (pos != 't' && pos != 'e') { 5866 Parser.eatToEndOfStatement(); 5867 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5868 } 5869 Mask >>= 1; 5870 if (ITMask[i - 1] == 't') 5871 Mask |= 8; 5872 } 5873 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5874 } 5875 5876 // FIXME: This is all a pretty gross hack. We should automatically handle 5877 // optional operands like this via tblgen. 5878 5879 // Next, add the CCOut and ConditionCode operands, if needed. 5880 // 5881 // For mnemonics which can ever incorporate a carry setting bit or predication 5882 // code, our matching model involves us always generating CCOut and 5883 // ConditionCode operands to match the mnemonic "as written" and then we let 5884 // the matcher deal with finding the right instruction or generating an 5885 // appropriate error. 5886 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5887 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5888 5889 // If we had a carry-set on an instruction that can't do that, issue an 5890 // error. 5891 if (!CanAcceptCarrySet && CarrySetting) { 5892 Parser.eatToEndOfStatement(); 5893 return Error(NameLoc, "instruction '" + Mnemonic + 5894 "' can not set flags, but 's' suffix specified"); 5895 } 5896 // If we had a predication code on an instruction that can't do that, issue an 5897 // error. 5898 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5899 Parser.eatToEndOfStatement(); 5900 return Error(NameLoc, "instruction '" + Mnemonic + 5901 "' is not predicable, but condition code specified"); 5902 } 5903 5904 // Add the carry setting operand, if necessary. 5905 if (CanAcceptCarrySet) { 5906 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5907 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5908 Loc)); 5909 } 5910 5911 // Add the predication code operand, if necessary. 5912 if (CanAcceptPredicationCode) { 5913 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5914 CarrySetting); 5915 Operands.push_back(ARMOperand::CreateCondCode( 5916 ARMCC::CondCodes(PredicationCode), Loc)); 5917 } 5918 5919 // Add the processor imod operand, if necessary. 5920 if (ProcessorIMod) { 5921 Operands.push_back(ARMOperand::CreateImm( 5922 MCConstantExpr::create(ProcessorIMod, getContext()), 5923 NameLoc, NameLoc)); 5924 } else if (Mnemonic == "cps" && isMClass()) { 5925 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5926 } 5927 5928 // Add the remaining tokens in the mnemonic. 5929 while (Next != StringRef::npos) { 5930 Start = Next; 5931 Next = Name.find('.', Start + 1); 5932 StringRef ExtraToken = Name.slice(Start, Next); 5933 5934 // Some NEON instructions have an optional datatype suffix that is 5935 // completely ignored. Check for that. 5936 if (isDataTypeToken(ExtraToken) && 5937 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5938 continue; 5939 5940 // For for ARM mode generate an error if the .n qualifier is used. 5941 if (ExtraToken == ".n" && !isThumb()) { 5942 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5943 Parser.eatToEndOfStatement(); 5944 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5945 "arm mode"); 5946 } 5947 5948 // The .n qualifier is always discarded as that is what the tables 5949 // and matcher expect. In ARM mode the .w qualifier has no effect, 5950 // so discard it to avoid errors that can be caused by the matcher. 5951 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5952 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5953 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5954 } 5955 } 5956 5957 // Read the remaining operands. 5958 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5959 // Read the first operand. 5960 if (parseOperand(Operands, Mnemonic)) { 5961 Parser.eatToEndOfStatement(); 5962 return true; 5963 } 5964 5965 while (getLexer().is(AsmToken::Comma)) { 5966 Parser.Lex(); // Eat the comma. 5967 5968 // Parse and remember the operand. 5969 if (parseOperand(Operands, Mnemonic)) { 5970 Parser.eatToEndOfStatement(); 5971 return true; 5972 } 5973 } 5974 } 5975 5976 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5977 SMLoc Loc = getLexer().getLoc(); 5978 Parser.eatToEndOfStatement(); 5979 return Error(Loc, "unexpected token in argument list"); 5980 } 5981 5982 Parser.Lex(); // Consume the EndOfStatement 5983 5984 if (RequireVFPRegisterListCheck) { 5985 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5986 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5987 return Error(Op.getStartLoc(), 5988 "VFP/Neon single precision register expected"); 5989 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5990 return Error(Op.getStartLoc(), 5991 "VFP/Neon double precision register expected"); 5992 } 5993 5994 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5995 5996 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5997 // do and don't have a cc_out optional-def operand. With some spot-checks 5998 // of the operand list, we can figure out which variant we're trying to 5999 // parse and adjust accordingly before actually matching. We shouldn't ever 6000 // try to remove a cc_out operand that was explicitly set on the 6001 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6002 // table driven matcher doesn't fit well with the ARM instruction set. 6003 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6004 Operands.erase(Operands.begin() + 1); 6005 6006 // Some instructions have the same mnemonic, but don't always 6007 // have a predicate. Distinguish them here and delete the 6008 // predicate if needed. 6009 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6010 Operands.erase(Operands.begin() + 1); 6011 6012 // ARM mode 'blx' need special handling, as the register operand version 6013 // is predicable, but the label operand version is not. So, we can't rely 6014 // on the Mnemonic based checking to correctly figure out when to put 6015 // a k_CondCode operand in the list. If we're trying to match the label 6016 // version, remove the k_CondCode operand here. 6017 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6018 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6019 Operands.erase(Operands.begin() + 1); 6020 6021 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6022 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6023 // a single GPRPair reg operand is used in the .td file to replace the two 6024 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6025 // expressed as a GPRPair, so we have to manually merge them. 6026 // FIXME: We would really like to be able to tablegen'erate this. 6027 if (!isThumb() && Operands.size() > 4 && 6028 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6029 Mnemonic == "stlexd")) { 6030 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6031 unsigned Idx = isLoad ? 2 : 3; 6032 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6033 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6034 6035 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6036 // Adjust only if Op1 and Op2 are GPRs. 6037 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6038 MRC.contains(Op2.getReg())) { 6039 unsigned Reg1 = Op1.getReg(); 6040 unsigned Reg2 = Op2.getReg(); 6041 unsigned Rt = MRI->getEncodingValue(Reg1); 6042 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6043 6044 // Rt2 must be Rt + 1 and Rt must be even. 6045 if (Rt + 1 != Rt2 || (Rt & 1)) { 6046 Error(Op2.getStartLoc(), isLoad 6047 ? "destination operands must be sequential" 6048 : "source operands must be sequential"); 6049 return true; 6050 } 6051 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6052 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6053 Operands[Idx] = 6054 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6055 Operands.erase(Operands.begin() + Idx + 1); 6056 } 6057 } 6058 6059 // GNU Assembler extension (compatibility) 6060 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6061 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6062 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6063 if (Op3.isMem()) { 6064 assert(Op2.isReg() && "expected register argument"); 6065 6066 unsigned SuperReg = MRI->getMatchingSuperReg( 6067 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6068 6069 assert(SuperReg && "expected register pair"); 6070 6071 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6072 6073 Operands.insert( 6074 Operands.begin() + 3, 6075 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6076 } 6077 } 6078 6079 // FIXME: As said above, this is all a pretty gross hack. This instruction 6080 // does not fit with other "subs" and tblgen. 6081 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6082 // so the Mnemonic is the original name "subs" and delete the predicate 6083 // operand so it will match the table entry. 6084 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6085 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6086 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6087 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6088 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6089 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6090 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6091 Operands.erase(Operands.begin() + 1); 6092 } 6093 return false; 6094 } 6095 6096 // Validate context-sensitive operand constraints. 6097 6098 // return 'true' if register list contains non-low GPR registers, 6099 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6100 // 'containsReg' to true. 6101 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6102 unsigned Reg, unsigned HiReg, 6103 bool &containsReg) { 6104 containsReg = false; 6105 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6106 unsigned OpReg = Inst.getOperand(i).getReg(); 6107 if (OpReg == Reg) 6108 containsReg = true; 6109 // Anything other than a low register isn't legal here. 6110 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6111 return true; 6112 } 6113 return false; 6114 } 6115 6116 // Check if the specified regisgter is in the register list of the inst, 6117 // starting at the indicated operand number. 6118 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6119 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6120 unsigned OpReg = Inst.getOperand(i).getReg(); 6121 if (OpReg == Reg) 6122 return true; 6123 } 6124 return false; 6125 } 6126 6127 // Return true if instruction has the interesting property of being 6128 // allowed in IT blocks, but not being predicable. 6129 static bool instIsBreakpoint(const MCInst &Inst) { 6130 return Inst.getOpcode() == ARM::tBKPT || 6131 Inst.getOpcode() == ARM::BKPT || 6132 Inst.getOpcode() == ARM::tHLT || 6133 Inst.getOpcode() == ARM::HLT; 6134 6135 } 6136 6137 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6138 const OperandVector &Operands, 6139 unsigned ListNo, bool IsARPop) { 6140 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6141 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6142 6143 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6144 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6145 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6146 6147 if (!IsARPop && ListContainsSP) 6148 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6149 "SP may not be in the register list"); 6150 else if (ListContainsPC && ListContainsLR) 6151 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6152 "PC and LR may not be in the register list simultaneously"); 6153 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6154 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6155 "instruction must be outside of IT block or the last " 6156 "instruction in an IT block"); 6157 return false; 6158 } 6159 6160 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6161 const OperandVector &Operands, 6162 unsigned ListNo) { 6163 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6164 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6165 6166 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6167 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6168 6169 if (ListContainsSP && ListContainsPC) 6170 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6171 "SP and PC may not be in the register list"); 6172 else if (ListContainsSP) 6173 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6174 "SP may not be in the register list"); 6175 else if (ListContainsPC) 6176 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6177 "PC may not be in the register list"); 6178 return false; 6179 } 6180 6181 // FIXME: We would really like to be able to tablegen'erate this. 6182 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6183 const OperandVector &Operands) { 6184 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6185 SMLoc Loc = Operands[0]->getStartLoc(); 6186 6187 // Check the IT block state first. 6188 // NOTE: BKPT and HLT instructions have the interesting property of being 6189 // allowed in IT blocks, but not being predicable. They just always execute. 6190 if (inITBlock() && !instIsBreakpoint(Inst)) { 6191 unsigned Bit = 1; 6192 if (ITState.FirstCond) 6193 ITState.FirstCond = false; 6194 else 6195 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6196 // The instruction must be predicable. 6197 if (!MCID.isPredicable()) 6198 return Error(Loc, "instructions in IT block must be predicable"); 6199 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6200 unsigned ITCond = Bit ? ITState.Cond : 6201 ARMCC::getOppositeCondition(ITState.Cond); 6202 if (Cond != ITCond) { 6203 // Find the condition code Operand to get its SMLoc information. 6204 SMLoc CondLoc; 6205 for (unsigned I = 1; I < Operands.size(); ++I) 6206 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6207 CondLoc = Operands[I]->getStartLoc(); 6208 return Error(CondLoc, "incorrect condition in IT block; got '" + 6209 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6210 "', but expected '" + 6211 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6212 } 6213 // Check for non-'al' condition codes outside of the IT block. 6214 } else if (isThumbTwo() && MCID.isPredicable() && 6215 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6216 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6217 Inst.getOpcode() != ARM::t2Bcc) 6218 return Error(Loc, "predicated instructions must be in IT block"); 6219 6220 const unsigned Opcode = Inst.getOpcode(); 6221 switch (Opcode) { 6222 case ARM::LDRD: 6223 case ARM::LDRD_PRE: 6224 case ARM::LDRD_POST: { 6225 const unsigned RtReg = Inst.getOperand(0).getReg(); 6226 6227 // Rt can't be R14. 6228 if (RtReg == ARM::LR) 6229 return Error(Operands[3]->getStartLoc(), 6230 "Rt can't be R14"); 6231 6232 const unsigned Rt = MRI->getEncodingValue(RtReg); 6233 // Rt must be even-numbered. 6234 if ((Rt & 1) == 1) 6235 return Error(Operands[3]->getStartLoc(), 6236 "Rt must be even-numbered"); 6237 6238 // Rt2 must be Rt + 1. 6239 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6240 if (Rt2 != Rt + 1) 6241 return Error(Operands[3]->getStartLoc(), 6242 "destination operands must be sequential"); 6243 6244 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6245 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6246 // For addressing modes with writeback, the base register needs to be 6247 // different from the destination registers. 6248 if (Rn == Rt || Rn == Rt2) 6249 return Error(Operands[3]->getStartLoc(), 6250 "base register needs to be different from destination " 6251 "registers"); 6252 } 6253 6254 return false; 6255 } 6256 case ARM::t2LDRDi8: 6257 case ARM::t2LDRD_PRE: 6258 case ARM::t2LDRD_POST: { 6259 // Rt2 must be different from Rt. 6260 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6261 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6262 if (Rt2 == Rt) 6263 return Error(Operands[3]->getStartLoc(), 6264 "destination operands can't be identical"); 6265 return false; 6266 } 6267 case ARM::t2BXJ: { 6268 const unsigned RmReg = Inst.getOperand(0).getReg(); 6269 // Rm = SP is no longer unpredictable in v8-A 6270 if (RmReg == ARM::SP && !hasV8Ops()) 6271 return Error(Operands[2]->getStartLoc(), 6272 "r13 (SP) is an unpredictable operand to BXJ"); 6273 return false; 6274 } 6275 case ARM::STRD: { 6276 // Rt2 must be Rt + 1. 6277 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6278 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6279 if (Rt2 != Rt + 1) 6280 return Error(Operands[3]->getStartLoc(), 6281 "source operands must be sequential"); 6282 return false; 6283 } 6284 case ARM::STRD_PRE: 6285 case ARM::STRD_POST: { 6286 // Rt2 must be Rt + 1. 6287 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6288 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6289 if (Rt2 != Rt + 1) 6290 return Error(Operands[3]->getStartLoc(), 6291 "source operands must be sequential"); 6292 return false; 6293 } 6294 case ARM::STR_PRE_IMM: 6295 case ARM::STR_PRE_REG: 6296 case ARM::STR_POST_IMM: 6297 case ARM::STR_POST_REG: 6298 case ARM::STRH_PRE: 6299 case ARM::STRH_POST: 6300 case ARM::STRB_PRE_IMM: 6301 case ARM::STRB_PRE_REG: 6302 case ARM::STRB_POST_IMM: 6303 case ARM::STRB_POST_REG: { 6304 // Rt must be different from Rn. 6305 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6306 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6307 6308 if (Rt == Rn) 6309 return Error(Operands[3]->getStartLoc(), 6310 "source register and base register can't be identical"); 6311 return false; 6312 } 6313 case ARM::LDR_PRE_IMM: 6314 case ARM::LDR_PRE_REG: 6315 case ARM::LDR_POST_IMM: 6316 case ARM::LDR_POST_REG: 6317 case ARM::LDRH_PRE: 6318 case ARM::LDRH_POST: 6319 case ARM::LDRSH_PRE: 6320 case ARM::LDRSH_POST: 6321 case ARM::LDRB_PRE_IMM: 6322 case ARM::LDRB_PRE_REG: 6323 case ARM::LDRB_POST_IMM: 6324 case ARM::LDRB_POST_REG: 6325 case ARM::LDRSB_PRE: 6326 case ARM::LDRSB_POST: { 6327 // Rt must be different from Rn. 6328 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6329 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6330 6331 if (Rt == Rn) 6332 return Error(Operands[3]->getStartLoc(), 6333 "destination register and base register can't be identical"); 6334 return false; 6335 } 6336 case ARM::SBFX: 6337 case ARM::UBFX: { 6338 // Width must be in range [1, 32-lsb]. 6339 unsigned LSB = Inst.getOperand(2).getImm(); 6340 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6341 if (Widthm1 >= 32 - LSB) 6342 return Error(Operands[5]->getStartLoc(), 6343 "bitfield width must be in range [1,32-lsb]"); 6344 return false; 6345 } 6346 // Notionally handles ARM::tLDMIA_UPD too. 6347 case ARM::tLDMIA: { 6348 // If we're parsing Thumb2, the .w variant is available and handles 6349 // most cases that are normally illegal for a Thumb1 LDM instruction. 6350 // We'll make the transformation in processInstruction() if necessary. 6351 // 6352 // Thumb LDM instructions are writeback iff the base register is not 6353 // in the register list. 6354 unsigned Rn = Inst.getOperand(0).getReg(); 6355 bool HasWritebackToken = 6356 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6357 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6358 bool ListContainsBase; 6359 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6360 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6361 "registers must be in range r0-r7"); 6362 // If we should have writeback, then there should be a '!' token. 6363 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6364 return Error(Operands[2]->getStartLoc(), 6365 "writeback operator '!' expected"); 6366 // If we should not have writeback, there must not be a '!'. This is 6367 // true even for the 32-bit wide encodings. 6368 if (ListContainsBase && HasWritebackToken) 6369 return Error(Operands[3]->getStartLoc(), 6370 "writeback operator '!' not allowed when base register " 6371 "in register list"); 6372 6373 if (validatetLDMRegList(Inst, Operands, 3)) 6374 return true; 6375 break; 6376 } 6377 case ARM::LDMIA_UPD: 6378 case ARM::LDMDB_UPD: 6379 case ARM::LDMIB_UPD: 6380 case ARM::LDMDA_UPD: 6381 // ARM variants loading and updating the same register are only officially 6382 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6383 if (!hasV7Ops()) 6384 break; 6385 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6386 return Error(Operands.back()->getStartLoc(), 6387 "writeback register not allowed in register list"); 6388 break; 6389 case ARM::t2LDMIA: 6390 case ARM::t2LDMDB: 6391 if (validatetLDMRegList(Inst, Operands, 3)) 6392 return true; 6393 break; 6394 case ARM::t2STMIA: 6395 case ARM::t2STMDB: 6396 if (validatetSTMRegList(Inst, Operands, 3)) 6397 return true; 6398 break; 6399 case ARM::t2LDMIA_UPD: 6400 case ARM::t2LDMDB_UPD: 6401 case ARM::t2STMIA_UPD: 6402 case ARM::t2STMDB_UPD: { 6403 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6404 return Error(Operands.back()->getStartLoc(), 6405 "writeback register not allowed in register list"); 6406 6407 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6408 if (validatetLDMRegList(Inst, Operands, 3)) 6409 return true; 6410 } else { 6411 if (validatetSTMRegList(Inst, Operands, 3)) 6412 return true; 6413 } 6414 break; 6415 } 6416 case ARM::sysLDMIA_UPD: 6417 case ARM::sysLDMDA_UPD: 6418 case ARM::sysLDMDB_UPD: 6419 case ARM::sysLDMIB_UPD: 6420 if (!listContainsReg(Inst, 3, ARM::PC)) 6421 return Error(Operands[4]->getStartLoc(), 6422 "writeback register only allowed on system LDM " 6423 "if PC in register-list"); 6424 break; 6425 case ARM::sysSTMIA_UPD: 6426 case ARM::sysSTMDA_UPD: 6427 case ARM::sysSTMDB_UPD: 6428 case ARM::sysSTMIB_UPD: 6429 return Error(Operands[2]->getStartLoc(), 6430 "system STM cannot have writeback register"); 6431 case ARM::tMUL: { 6432 // The second source operand must be the same register as the destination 6433 // operand. 6434 // 6435 // In this case, we must directly check the parsed operands because the 6436 // cvtThumbMultiply() function is written in such a way that it guarantees 6437 // this first statement is always true for the new Inst. Essentially, the 6438 // destination is unconditionally copied into the second source operand 6439 // without checking to see if it matches what we actually parsed. 6440 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6441 ((ARMOperand &)*Operands[5]).getReg()) && 6442 (((ARMOperand &)*Operands[3]).getReg() != 6443 ((ARMOperand &)*Operands[4]).getReg())) { 6444 return Error(Operands[3]->getStartLoc(), 6445 "destination register must match source register"); 6446 } 6447 break; 6448 } 6449 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6450 // so only issue a diagnostic for thumb1. The instructions will be 6451 // switched to the t2 encodings in processInstruction() if necessary. 6452 case ARM::tPOP: { 6453 bool ListContainsBase; 6454 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6455 !isThumbTwo()) 6456 return Error(Operands[2]->getStartLoc(), 6457 "registers must be in range r0-r7 or pc"); 6458 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6459 return true; 6460 break; 6461 } 6462 case ARM::tPUSH: { 6463 bool ListContainsBase; 6464 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6465 !isThumbTwo()) 6466 return Error(Operands[2]->getStartLoc(), 6467 "registers must be in range r0-r7 or lr"); 6468 if (validatetSTMRegList(Inst, Operands, 2)) 6469 return true; 6470 break; 6471 } 6472 case ARM::tSTMIA_UPD: { 6473 bool ListContainsBase, InvalidLowList; 6474 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6475 0, ListContainsBase); 6476 if (InvalidLowList && !isThumbTwo()) 6477 return Error(Operands[4]->getStartLoc(), 6478 "registers must be in range r0-r7"); 6479 6480 // This would be converted to a 32-bit stm, but that's not valid if the 6481 // writeback register is in the list. 6482 if (InvalidLowList && ListContainsBase) 6483 return Error(Operands[4]->getStartLoc(), 6484 "writeback operator '!' not allowed when base register " 6485 "in register list"); 6486 6487 if (validatetSTMRegList(Inst, Operands, 4)) 6488 return true; 6489 break; 6490 } 6491 case ARM::tADDrSP: { 6492 // If the non-SP source operand and the destination operand are not the 6493 // same, we need thumb2 (for the wide encoding), or we have an error. 6494 if (!isThumbTwo() && 6495 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6496 return Error(Operands[4]->getStartLoc(), 6497 "source register must be the same as destination"); 6498 } 6499 break; 6500 } 6501 // Final range checking for Thumb unconditional branch instructions. 6502 case ARM::tB: 6503 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6504 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6505 break; 6506 case ARM::t2B: { 6507 int op = (Operands[2]->isImm()) ? 2 : 3; 6508 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6509 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6510 break; 6511 } 6512 // Final range checking for Thumb conditional branch instructions. 6513 case ARM::tBcc: 6514 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6515 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6516 break; 6517 case ARM::t2Bcc: { 6518 int Op = (Operands[2]->isImm()) ? 2 : 3; 6519 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6520 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6521 break; 6522 } 6523 case ARM::MOVi16: 6524 case ARM::t2MOVi16: 6525 case ARM::t2MOVTi16: 6526 { 6527 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6528 // especially when we turn it into a movw and the expression <symbol> does 6529 // not have a :lower16: or :upper16 as part of the expression. We don't 6530 // want the behavior of silently truncating, which can be unexpected and 6531 // lead to bugs that are difficult to find since this is an easy mistake 6532 // to make. 6533 int i = (Operands[3]->isImm()) ? 3 : 4; 6534 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6535 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6536 if (CE) break; 6537 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6538 if (!E) break; 6539 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6540 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6541 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6542 return Error( 6543 Op.getStartLoc(), 6544 "immediate expression for mov requires :lower16: or :upper16"); 6545 break; 6546 } 6547 case ARM::HINT: 6548 case ARM::t2HINT: { 6549 if (hasRAS()) { 6550 // ESB is not predicable (pred must be AL) 6551 unsigned Imm8 = Inst.getOperand(0).getImm(); 6552 unsigned Pred = Inst.getOperand(1).getImm(); 6553 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6554 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6555 "predicable, but condition " 6556 "code specified"); 6557 } 6558 // Without the RAS extension, this behaves as any other unallocated hint. 6559 break; 6560 } 6561 } 6562 6563 return false; 6564 } 6565 6566 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6567 switch(Opc) { 6568 default: llvm_unreachable("unexpected opcode!"); 6569 // VST1LN 6570 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6571 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6572 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6573 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6574 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6575 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6576 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6577 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6578 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6579 6580 // VST2LN 6581 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6582 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6583 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6584 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6585 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6586 6587 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6588 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6589 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6590 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6591 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6592 6593 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6594 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6595 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6596 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6597 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6598 6599 // VST3LN 6600 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6601 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6602 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6603 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6604 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6605 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6606 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6607 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6608 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6609 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6610 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6611 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6612 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6613 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6614 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6615 6616 // VST3 6617 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6618 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6619 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6620 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6621 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6622 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6623 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6624 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6625 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6626 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6627 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6628 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6629 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6630 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6631 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6632 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6633 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6634 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6635 6636 // VST4LN 6637 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6638 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6639 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6640 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6641 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6642 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6643 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6644 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6645 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6646 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6647 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6648 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6649 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6650 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6651 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6652 6653 // VST4 6654 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6655 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6656 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6657 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6658 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6659 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6660 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6661 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6662 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6663 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6664 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6665 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6666 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6667 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6668 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6669 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6670 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6671 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6672 } 6673 } 6674 6675 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6676 switch(Opc) { 6677 default: llvm_unreachable("unexpected opcode!"); 6678 // VLD1LN 6679 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6680 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6681 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6682 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6683 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6684 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6685 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6686 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6687 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6688 6689 // VLD2LN 6690 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6691 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6692 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6693 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6694 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6695 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6696 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6697 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6698 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6699 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6700 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6701 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6702 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6703 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6704 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6705 6706 // VLD3DUP 6707 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6708 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6709 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6710 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6711 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6712 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6713 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6714 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6715 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6716 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6717 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6718 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6719 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6720 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6721 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6722 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6723 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6724 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6725 6726 // VLD3LN 6727 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6728 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6729 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6730 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6731 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6732 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6733 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6734 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6735 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6736 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6737 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6738 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6739 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6740 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6741 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6742 6743 // VLD3 6744 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6745 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6746 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6747 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6748 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6749 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6750 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6751 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6752 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6753 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6754 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6755 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6756 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6757 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6758 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6759 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6760 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6761 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6762 6763 // VLD4LN 6764 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6765 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6766 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6767 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6768 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6769 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6770 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6771 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6772 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6773 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6774 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6775 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6776 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6777 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6778 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6779 6780 // VLD4DUP 6781 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6782 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6783 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6784 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6785 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6786 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6787 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6788 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6789 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6790 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6791 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6792 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6793 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6794 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6795 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6796 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6797 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6798 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6799 6800 // VLD4 6801 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6802 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6803 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6804 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6805 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6806 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6807 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6808 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6809 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6810 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6811 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6812 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6813 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6814 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6815 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6816 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6817 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6818 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6819 } 6820 } 6821 6822 bool ARMAsmParser::processInstruction(MCInst &Inst, 6823 const OperandVector &Operands, 6824 MCStreamer &Out) { 6825 switch (Inst.getOpcode()) { 6826 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6827 case ARM::LDRT_POST: 6828 case ARM::LDRBT_POST: { 6829 const unsigned Opcode = 6830 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6831 : ARM::LDRBT_POST_IMM; 6832 MCInst TmpInst; 6833 TmpInst.setOpcode(Opcode); 6834 TmpInst.addOperand(Inst.getOperand(0)); 6835 TmpInst.addOperand(Inst.getOperand(1)); 6836 TmpInst.addOperand(Inst.getOperand(1)); 6837 TmpInst.addOperand(MCOperand::createReg(0)); 6838 TmpInst.addOperand(MCOperand::createImm(0)); 6839 TmpInst.addOperand(Inst.getOperand(2)); 6840 TmpInst.addOperand(Inst.getOperand(3)); 6841 Inst = TmpInst; 6842 return true; 6843 } 6844 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6845 case ARM::STRT_POST: 6846 case ARM::STRBT_POST: { 6847 const unsigned Opcode = 6848 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6849 : ARM::STRBT_POST_IMM; 6850 MCInst TmpInst; 6851 TmpInst.setOpcode(Opcode); 6852 TmpInst.addOperand(Inst.getOperand(1)); 6853 TmpInst.addOperand(Inst.getOperand(0)); 6854 TmpInst.addOperand(Inst.getOperand(1)); 6855 TmpInst.addOperand(MCOperand::createReg(0)); 6856 TmpInst.addOperand(MCOperand::createImm(0)); 6857 TmpInst.addOperand(Inst.getOperand(2)); 6858 TmpInst.addOperand(Inst.getOperand(3)); 6859 Inst = TmpInst; 6860 return true; 6861 } 6862 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6863 case ARM::ADDri: { 6864 if (Inst.getOperand(1).getReg() != ARM::PC || 6865 Inst.getOperand(5).getReg() != 0 || 6866 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6867 return false; 6868 MCInst TmpInst; 6869 TmpInst.setOpcode(ARM::ADR); 6870 TmpInst.addOperand(Inst.getOperand(0)); 6871 if (Inst.getOperand(2).isImm()) { 6872 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6873 // before passing it to the ADR instruction. 6874 unsigned Enc = Inst.getOperand(2).getImm(); 6875 TmpInst.addOperand(MCOperand::createImm( 6876 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6877 } else { 6878 // Turn PC-relative expression into absolute expression. 6879 // Reading PC provides the start of the current instruction + 8 and 6880 // the transform to adr is biased by that. 6881 MCSymbol *Dot = getContext().createTempSymbol(); 6882 Out.EmitLabel(Dot); 6883 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6884 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6885 MCSymbolRefExpr::VK_None, 6886 getContext()); 6887 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6888 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6889 getContext()); 6890 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6891 getContext()); 6892 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6893 } 6894 TmpInst.addOperand(Inst.getOperand(3)); 6895 TmpInst.addOperand(Inst.getOperand(4)); 6896 Inst = TmpInst; 6897 return true; 6898 } 6899 // Aliases for alternate PC+imm syntax of LDR instructions. 6900 case ARM::t2LDRpcrel: 6901 // Select the narrow version if the immediate will fit. 6902 if (Inst.getOperand(1).getImm() > 0 && 6903 Inst.getOperand(1).getImm() <= 0xff && 6904 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6905 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6906 Inst.setOpcode(ARM::tLDRpci); 6907 else 6908 Inst.setOpcode(ARM::t2LDRpci); 6909 return true; 6910 case ARM::t2LDRBpcrel: 6911 Inst.setOpcode(ARM::t2LDRBpci); 6912 return true; 6913 case ARM::t2LDRHpcrel: 6914 Inst.setOpcode(ARM::t2LDRHpci); 6915 return true; 6916 case ARM::t2LDRSBpcrel: 6917 Inst.setOpcode(ARM::t2LDRSBpci); 6918 return true; 6919 case ARM::t2LDRSHpcrel: 6920 Inst.setOpcode(ARM::t2LDRSHpci); 6921 return true; 6922 case ARM::LDRConstPool: 6923 case ARM::tLDRConstPool: 6924 case ARM::t2LDRConstPool: { 6925 // Pseudo instruction ldr rt, =immediate is converted to a 6926 // MOV rt, immediate if immediate is known and representable 6927 // otherwise we create a constant pool entry that we load from. 6928 MCInst TmpInst; 6929 if (Inst.getOpcode() == ARM::LDRConstPool) 6930 TmpInst.setOpcode(ARM::LDRi12); 6931 else if (Inst.getOpcode() == ARM::tLDRConstPool) 6932 TmpInst.setOpcode(ARM::tLDRpci); 6933 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 6934 TmpInst.setOpcode(ARM::t2LDRpci); 6935 const ARMOperand &PoolOperand = 6936 static_cast<ARMOperand &>(*Operands[3]); 6937 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 6938 // If SubExprVal is a constant we may be able to use a MOV 6939 if (isa<MCConstantExpr>(SubExprVal) && 6940 Inst.getOperand(0).getReg() != ARM::PC && 6941 Inst.getOperand(0).getReg() != ARM::SP) { 6942 int64_t Value = 6943 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 6944 bool UseMov = true; 6945 bool MovHasS = true; 6946 if (Inst.getOpcode() == ARM::LDRConstPool) { 6947 // ARM Constant 6948 if (ARM_AM::getSOImmVal(Value) != -1) { 6949 Value = ARM_AM::getSOImmVal(Value); 6950 TmpInst.setOpcode(ARM::MOVi); 6951 } 6952 else if (ARM_AM::getSOImmVal(~Value) != -1) { 6953 Value = ARM_AM::getSOImmVal(~Value); 6954 TmpInst.setOpcode(ARM::MVNi); 6955 } 6956 else if (hasV6T2Ops() && 6957 Value >=0 && Value < 65536) { 6958 TmpInst.setOpcode(ARM::MOVi16); 6959 MovHasS = false; 6960 } 6961 else 6962 UseMov = false; 6963 } 6964 else { 6965 // Thumb/Thumb2 Constant 6966 if (hasThumb2() && 6967 ARM_AM::getT2SOImmVal(Value) != -1) 6968 TmpInst.setOpcode(ARM::t2MOVi); 6969 else if (hasThumb2() && 6970 ARM_AM::getT2SOImmVal(~Value) != -1) { 6971 TmpInst.setOpcode(ARM::t2MVNi); 6972 Value = ~Value; 6973 } 6974 else if (hasV8MBaseline() && 6975 Value >=0 && Value < 65536) { 6976 TmpInst.setOpcode(ARM::t2MOVi16); 6977 MovHasS = false; 6978 } 6979 else 6980 UseMov = false; 6981 } 6982 if (UseMov) { 6983 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6984 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 6985 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6986 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6987 if (MovHasS) 6988 TmpInst.addOperand(MCOperand::createReg(0)); // S 6989 Inst = TmpInst; 6990 return true; 6991 } 6992 } 6993 // No opportunity to use MOV/MVN create constant pool 6994 const MCExpr *CPLoc = 6995 getTargetStreamer().addConstantPoolEntry(SubExprVal, 6996 PoolOperand.getStartLoc()); 6997 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6998 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 6999 if (TmpInst.getOpcode() == ARM::LDRi12) 7000 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7001 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7002 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7003 Inst = TmpInst; 7004 return true; 7005 } 7006 // Handle NEON VST complex aliases. 7007 case ARM::VST1LNdWB_register_Asm_8: 7008 case ARM::VST1LNdWB_register_Asm_16: 7009 case ARM::VST1LNdWB_register_Asm_32: { 7010 MCInst TmpInst; 7011 // Shuffle the operands around so the lane index operand is in the 7012 // right place. 7013 unsigned Spacing; 7014 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7015 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7016 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7017 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7018 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7019 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7020 TmpInst.addOperand(Inst.getOperand(1)); // lane 7021 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7022 TmpInst.addOperand(Inst.getOperand(6)); 7023 Inst = TmpInst; 7024 return true; 7025 } 7026 7027 case ARM::VST2LNdWB_register_Asm_8: 7028 case ARM::VST2LNdWB_register_Asm_16: 7029 case ARM::VST2LNdWB_register_Asm_32: 7030 case ARM::VST2LNqWB_register_Asm_16: 7031 case ARM::VST2LNqWB_register_Asm_32: { 7032 MCInst TmpInst; 7033 // Shuffle the operands around so the lane index operand is in the 7034 // right place. 7035 unsigned Spacing; 7036 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7037 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7038 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7039 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7040 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7041 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7042 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7043 Spacing)); 7044 TmpInst.addOperand(Inst.getOperand(1)); // lane 7045 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7046 TmpInst.addOperand(Inst.getOperand(6)); 7047 Inst = TmpInst; 7048 return true; 7049 } 7050 7051 case ARM::VST3LNdWB_register_Asm_8: 7052 case ARM::VST3LNdWB_register_Asm_16: 7053 case ARM::VST3LNdWB_register_Asm_32: 7054 case ARM::VST3LNqWB_register_Asm_16: 7055 case ARM::VST3LNqWB_register_Asm_32: { 7056 MCInst TmpInst; 7057 // Shuffle the operands around so the lane index operand is in the 7058 // right place. 7059 unsigned Spacing; 7060 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7061 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7062 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7063 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7064 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7065 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7066 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7067 Spacing)); 7068 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7069 Spacing * 2)); 7070 TmpInst.addOperand(Inst.getOperand(1)); // lane 7071 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7072 TmpInst.addOperand(Inst.getOperand(6)); 7073 Inst = TmpInst; 7074 return true; 7075 } 7076 7077 case ARM::VST4LNdWB_register_Asm_8: 7078 case ARM::VST4LNdWB_register_Asm_16: 7079 case ARM::VST4LNdWB_register_Asm_32: 7080 case ARM::VST4LNqWB_register_Asm_16: 7081 case ARM::VST4LNqWB_register_Asm_32: { 7082 MCInst TmpInst; 7083 // Shuffle the operands around so the lane index operand is in the 7084 // right place. 7085 unsigned Spacing; 7086 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7087 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7088 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7089 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7090 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7091 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7092 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7093 Spacing)); 7094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7095 Spacing * 2)); 7096 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7097 Spacing * 3)); 7098 TmpInst.addOperand(Inst.getOperand(1)); // lane 7099 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7100 TmpInst.addOperand(Inst.getOperand(6)); 7101 Inst = TmpInst; 7102 return true; 7103 } 7104 7105 case ARM::VST1LNdWB_fixed_Asm_8: 7106 case ARM::VST1LNdWB_fixed_Asm_16: 7107 case ARM::VST1LNdWB_fixed_Asm_32: { 7108 MCInst TmpInst; 7109 // Shuffle the operands around so the lane index operand is in the 7110 // right place. 7111 unsigned Spacing; 7112 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7113 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7114 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7115 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7116 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7117 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7118 TmpInst.addOperand(Inst.getOperand(1)); // lane 7119 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7120 TmpInst.addOperand(Inst.getOperand(5)); 7121 Inst = TmpInst; 7122 return true; 7123 } 7124 7125 case ARM::VST2LNdWB_fixed_Asm_8: 7126 case ARM::VST2LNdWB_fixed_Asm_16: 7127 case ARM::VST2LNdWB_fixed_Asm_32: 7128 case ARM::VST2LNqWB_fixed_Asm_16: 7129 case ARM::VST2LNqWB_fixed_Asm_32: { 7130 MCInst TmpInst; 7131 // Shuffle the operands around so the lane index operand is in the 7132 // right place. 7133 unsigned Spacing; 7134 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7135 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7136 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7137 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7138 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7139 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7140 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7141 Spacing)); 7142 TmpInst.addOperand(Inst.getOperand(1)); // lane 7143 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7144 TmpInst.addOperand(Inst.getOperand(5)); 7145 Inst = TmpInst; 7146 return true; 7147 } 7148 7149 case ARM::VST3LNdWB_fixed_Asm_8: 7150 case ARM::VST3LNdWB_fixed_Asm_16: 7151 case ARM::VST3LNdWB_fixed_Asm_32: 7152 case ARM::VST3LNqWB_fixed_Asm_16: 7153 case ARM::VST3LNqWB_fixed_Asm_32: { 7154 MCInst TmpInst; 7155 // Shuffle the operands around so the lane index operand is in the 7156 // right place. 7157 unsigned Spacing; 7158 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7159 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7160 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7161 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7162 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7163 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7164 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7165 Spacing)); 7166 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7167 Spacing * 2)); 7168 TmpInst.addOperand(Inst.getOperand(1)); // lane 7169 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7170 TmpInst.addOperand(Inst.getOperand(5)); 7171 Inst = TmpInst; 7172 return true; 7173 } 7174 7175 case ARM::VST4LNdWB_fixed_Asm_8: 7176 case ARM::VST4LNdWB_fixed_Asm_16: 7177 case ARM::VST4LNdWB_fixed_Asm_32: 7178 case ARM::VST4LNqWB_fixed_Asm_16: 7179 case ARM::VST4LNqWB_fixed_Asm_32: { 7180 MCInst TmpInst; 7181 // Shuffle the operands around so the lane index operand is in the 7182 // right place. 7183 unsigned Spacing; 7184 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7185 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7186 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7187 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7188 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7189 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7190 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7191 Spacing)); 7192 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7193 Spacing * 2)); 7194 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7195 Spacing * 3)); 7196 TmpInst.addOperand(Inst.getOperand(1)); // lane 7197 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7198 TmpInst.addOperand(Inst.getOperand(5)); 7199 Inst = TmpInst; 7200 return true; 7201 } 7202 7203 case ARM::VST1LNdAsm_8: 7204 case ARM::VST1LNdAsm_16: 7205 case ARM::VST1LNdAsm_32: { 7206 MCInst TmpInst; 7207 // Shuffle the operands around so the lane index operand is in the 7208 // right place. 7209 unsigned Spacing; 7210 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7211 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7212 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7213 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7214 TmpInst.addOperand(Inst.getOperand(1)); // lane 7215 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7216 TmpInst.addOperand(Inst.getOperand(5)); 7217 Inst = TmpInst; 7218 return true; 7219 } 7220 7221 case ARM::VST2LNdAsm_8: 7222 case ARM::VST2LNdAsm_16: 7223 case ARM::VST2LNdAsm_32: 7224 case ARM::VST2LNqAsm_16: 7225 case ARM::VST2LNqAsm_32: { 7226 MCInst TmpInst; 7227 // Shuffle the operands around so the lane index operand is in the 7228 // right place. 7229 unsigned Spacing; 7230 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7231 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7232 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7233 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7235 Spacing)); 7236 TmpInst.addOperand(Inst.getOperand(1)); // lane 7237 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7238 TmpInst.addOperand(Inst.getOperand(5)); 7239 Inst = TmpInst; 7240 return true; 7241 } 7242 7243 case ARM::VST3LNdAsm_8: 7244 case ARM::VST3LNdAsm_16: 7245 case ARM::VST3LNdAsm_32: 7246 case ARM::VST3LNqAsm_16: 7247 case ARM::VST3LNqAsm_32: { 7248 MCInst TmpInst; 7249 // Shuffle the operands around so the lane index operand is in the 7250 // right place. 7251 unsigned Spacing; 7252 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7253 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7254 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7255 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7257 Spacing)); 7258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7259 Spacing * 2)); 7260 TmpInst.addOperand(Inst.getOperand(1)); // lane 7261 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7262 TmpInst.addOperand(Inst.getOperand(5)); 7263 Inst = TmpInst; 7264 return true; 7265 } 7266 7267 case ARM::VST4LNdAsm_8: 7268 case ARM::VST4LNdAsm_16: 7269 case ARM::VST4LNdAsm_32: 7270 case ARM::VST4LNqAsm_16: 7271 case ARM::VST4LNqAsm_32: { 7272 MCInst TmpInst; 7273 // Shuffle the operands around so the lane index operand is in the 7274 // right place. 7275 unsigned Spacing; 7276 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7277 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7278 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7279 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7281 Spacing)); 7282 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7283 Spacing * 2)); 7284 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7285 Spacing * 3)); 7286 TmpInst.addOperand(Inst.getOperand(1)); // lane 7287 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7288 TmpInst.addOperand(Inst.getOperand(5)); 7289 Inst = TmpInst; 7290 return true; 7291 } 7292 7293 // Handle NEON VLD complex aliases. 7294 case ARM::VLD1LNdWB_register_Asm_8: 7295 case ARM::VLD1LNdWB_register_Asm_16: 7296 case ARM::VLD1LNdWB_register_Asm_32: { 7297 MCInst TmpInst; 7298 // Shuffle the operands around so the lane index operand is in the 7299 // right place. 7300 unsigned Spacing; 7301 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7302 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7303 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7304 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7305 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7306 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7307 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7308 TmpInst.addOperand(Inst.getOperand(1)); // lane 7309 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7310 TmpInst.addOperand(Inst.getOperand(6)); 7311 Inst = TmpInst; 7312 return true; 7313 } 7314 7315 case ARM::VLD2LNdWB_register_Asm_8: 7316 case ARM::VLD2LNdWB_register_Asm_16: 7317 case ARM::VLD2LNdWB_register_Asm_32: 7318 case ARM::VLD2LNqWB_register_Asm_16: 7319 case ARM::VLD2LNqWB_register_Asm_32: { 7320 MCInst TmpInst; 7321 // Shuffle the operands around so the lane index operand is in the 7322 // right place. 7323 unsigned Spacing; 7324 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7325 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7326 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7327 Spacing)); 7328 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7329 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7330 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7331 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7332 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7334 Spacing)); 7335 TmpInst.addOperand(Inst.getOperand(1)); // lane 7336 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7337 TmpInst.addOperand(Inst.getOperand(6)); 7338 Inst = TmpInst; 7339 return true; 7340 } 7341 7342 case ARM::VLD3LNdWB_register_Asm_8: 7343 case ARM::VLD3LNdWB_register_Asm_16: 7344 case ARM::VLD3LNdWB_register_Asm_32: 7345 case ARM::VLD3LNqWB_register_Asm_16: 7346 case ARM::VLD3LNqWB_register_Asm_32: { 7347 MCInst TmpInst; 7348 // Shuffle the operands around so the lane index operand is in the 7349 // right place. 7350 unsigned Spacing; 7351 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7352 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7354 Spacing)); 7355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7356 Spacing * 2)); 7357 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7358 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7359 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7360 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7361 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7362 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7363 Spacing)); 7364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7365 Spacing * 2)); 7366 TmpInst.addOperand(Inst.getOperand(1)); // lane 7367 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7368 TmpInst.addOperand(Inst.getOperand(6)); 7369 Inst = TmpInst; 7370 return true; 7371 } 7372 7373 case ARM::VLD4LNdWB_register_Asm_8: 7374 case ARM::VLD4LNdWB_register_Asm_16: 7375 case ARM::VLD4LNdWB_register_Asm_32: 7376 case ARM::VLD4LNqWB_register_Asm_16: 7377 case ARM::VLD4LNqWB_register_Asm_32: { 7378 MCInst TmpInst; 7379 // Shuffle the operands around so the lane index operand is in the 7380 // right place. 7381 unsigned Spacing; 7382 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7383 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7385 Spacing)); 7386 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7387 Spacing * 2)); 7388 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7389 Spacing * 3)); 7390 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7391 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7392 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7393 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7394 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7395 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7396 Spacing)); 7397 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7398 Spacing * 2)); 7399 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7400 Spacing * 3)); 7401 TmpInst.addOperand(Inst.getOperand(1)); // lane 7402 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7403 TmpInst.addOperand(Inst.getOperand(6)); 7404 Inst = TmpInst; 7405 return true; 7406 } 7407 7408 case ARM::VLD1LNdWB_fixed_Asm_8: 7409 case ARM::VLD1LNdWB_fixed_Asm_16: 7410 case ARM::VLD1LNdWB_fixed_Asm_32: { 7411 MCInst TmpInst; 7412 // Shuffle the operands around so the lane index operand is in the 7413 // right place. 7414 unsigned Spacing; 7415 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7416 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7417 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7418 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7419 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7420 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7421 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7422 TmpInst.addOperand(Inst.getOperand(1)); // lane 7423 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7424 TmpInst.addOperand(Inst.getOperand(5)); 7425 Inst = TmpInst; 7426 return true; 7427 } 7428 7429 case ARM::VLD2LNdWB_fixed_Asm_8: 7430 case ARM::VLD2LNdWB_fixed_Asm_16: 7431 case ARM::VLD2LNdWB_fixed_Asm_32: 7432 case ARM::VLD2LNqWB_fixed_Asm_16: 7433 case ARM::VLD2LNqWB_fixed_Asm_32: { 7434 MCInst TmpInst; 7435 // Shuffle the operands around so the lane index operand is in the 7436 // right place. 7437 unsigned Spacing; 7438 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7439 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7441 Spacing)); 7442 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7443 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7444 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7445 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7446 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7447 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7448 Spacing)); 7449 TmpInst.addOperand(Inst.getOperand(1)); // lane 7450 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7451 TmpInst.addOperand(Inst.getOperand(5)); 7452 Inst = TmpInst; 7453 return true; 7454 } 7455 7456 case ARM::VLD3LNdWB_fixed_Asm_8: 7457 case ARM::VLD3LNdWB_fixed_Asm_16: 7458 case ARM::VLD3LNdWB_fixed_Asm_32: 7459 case ARM::VLD3LNqWB_fixed_Asm_16: 7460 case ARM::VLD3LNqWB_fixed_Asm_32: { 7461 MCInst TmpInst; 7462 // Shuffle the operands around so the lane index operand is in the 7463 // right place. 7464 unsigned Spacing; 7465 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7466 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7467 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7468 Spacing)); 7469 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7470 Spacing * 2)); 7471 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7472 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7473 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7474 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7475 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7476 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7477 Spacing)); 7478 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7479 Spacing * 2)); 7480 TmpInst.addOperand(Inst.getOperand(1)); // lane 7481 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7482 TmpInst.addOperand(Inst.getOperand(5)); 7483 Inst = TmpInst; 7484 return true; 7485 } 7486 7487 case ARM::VLD4LNdWB_fixed_Asm_8: 7488 case ARM::VLD4LNdWB_fixed_Asm_16: 7489 case ARM::VLD4LNdWB_fixed_Asm_32: 7490 case ARM::VLD4LNqWB_fixed_Asm_16: 7491 case ARM::VLD4LNqWB_fixed_Asm_32: { 7492 MCInst TmpInst; 7493 // Shuffle the operands around so the lane index operand is in the 7494 // right place. 7495 unsigned Spacing; 7496 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7497 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7499 Spacing)); 7500 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7501 Spacing * 2)); 7502 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7503 Spacing * 3)); 7504 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7505 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7506 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7507 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7508 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7509 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7510 Spacing)); 7511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7512 Spacing * 2)); 7513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7514 Spacing * 3)); 7515 TmpInst.addOperand(Inst.getOperand(1)); // lane 7516 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7517 TmpInst.addOperand(Inst.getOperand(5)); 7518 Inst = TmpInst; 7519 return true; 7520 } 7521 7522 case ARM::VLD1LNdAsm_8: 7523 case ARM::VLD1LNdAsm_16: 7524 case ARM::VLD1LNdAsm_32: { 7525 MCInst TmpInst; 7526 // Shuffle the operands around so the lane index operand is in the 7527 // right place. 7528 unsigned Spacing; 7529 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7530 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7531 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7532 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7533 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7534 TmpInst.addOperand(Inst.getOperand(1)); // lane 7535 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7536 TmpInst.addOperand(Inst.getOperand(5)); 7537 Inst = TmpInst; 7538 return true; 7539 } 7540 7541 case ARM::VLD2LNdAsm_8: 7542 case ARM::VLD2LNdAsm_16: 7543 case ARM::VLD2LNdAsm_32: 7544 case ARM::VLD2LNqAsm_16: 7545 case ARM::VLD2LNqAsm_32: { 7546 MCInst TmpInst; 7547 // Shuffle the operands around so the lane index operand is in the 7548 // right place. 7549 unsigned Spacing; 7550 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7551 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7552 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7553 Spacing)); 7554 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7555 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7556 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7557 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7558 Spacing)); 7559 TmpInst.addOperand(Inst.getOperand(1)); // lane 7560 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7561 TmpInst.addOperand(Inst.getOperand(5)); 7562 Inst = TmpInst; 7563 return true; 7564 } 7565 7566 case ARM::VLD3LNdAsm_8: 7567 case ARM::VLD3LNdAsm_16: 7568 case ARM::VLD3LNdAsm_32: 7569 case ARM::VLD3LNqAsm_16: 7570 case ARM::VLD3LNqAsm_32: { 7571 MCInst TmpInst; 7572 // Shuffle the operands around so the lane index operand is in the 7573 // right place. 7574 unsigned Spacing; 7575 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7576 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7577 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7578 Spacing)); 7579 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7580 Spacing * 2)); 7581 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7582 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7583 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7584 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7585 Spacing)); 7586 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7587 Spacing * 2)); 7588 TmpInst.addOperand(Inst.getOperand(1)); // lane 7589 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7590 TmpInst.addOperand(Inst.getOperand(5)); 7591 Inst = TmpInst; 7592 return true; 7593 } 7594 7595 case ARM::VLD4LNdAsm_8: 7596 case ARM::VLD4LNdAsm_16: 7597 case ARM::VLD4LNdAsm_32: 7598 case ARM::VLD4LNqAsm_16: 7599 case ARM::VLD4LNqAsm_32: { 7600 MCInst TmpInst; 7601 // Shuffle the operands around so the lane index operand is in the 7602 // right place. 7603 unsigned Spacing; 7604 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7605 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7606 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7607 Spacing)); 7608 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7609 Spacing * 2)); 7610 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7611 Spacing * 3)); 7612 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7613 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7614 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7616 Spacing)); 7617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7618 Spacing * 2)); 7619 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7620 Spacing * 3)); 7621 TmpInst.addOperand(Inst.getOperand(1)); // lane 7622 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7623 TmpInst.addOperand(Inst.getOperand(5)); 7624 Inst = TmpInst; 7625 return true; 7626 } 7627 7628 // VLD3DUP single 3-element structure to all lanes instructions. 7629 case ARM::VLD3DUPdAsm_8: 7630 case ARM::VLD3DUPdAsm_16: 7631 case ARM::VLD3DUPdAsm_32: 7632 case ARM::VLD3DUPqAsm_8: 7633 case ARM::VLD3DUPqAsm_16: 7634 case ARM::VLD3DUPqAsm_32: { 7635 MCInst TmpInst; 7636 unsigned Spacing; 7637 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7638 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing)); 7641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7642 Spacing * 2)); 7643 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7644 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7645 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7646 TmpInst.addOperand(Inst.getOperand(4)); 7647 Inst = TmpInst; 7648 return true; 7649 } 7650 7651 case ARM::VLD3DUPdWB_fixed_Asm_8: 7652 case ARM::VLD3DUPdWB_fixed_Asm_16: 7653 case ARM::VLD3DUPdWB_fixed_Asm_32: 7654 case ARM::VLD3DUPqWB_fixed_Asm_8: 7655 case ARM::VLD3DUPqWB_fixed_Asm_16: 7656 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7657 MCInst TmpInst; 7658 unsigned Spacing; 7659 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7660 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7661 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7662 Spacing)); 7663 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7664 Spacing * 2)); 7665 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7666 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7667 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7668 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7669 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7670 TmpInst.addOperand(Inst.getOperand(4)); 7671 Inst = TmpInst; 7672 return true; 7673 } 7674 7675 case ARM::VLD3DUPdWB_register_Asm_8: 7676 case ARM::VLD3DUPdWB_register_Asm_16: 7677 case ARM::VLD3DUPdWB_register_Asm_32: 7678 case ARM::VLD3DUPqWB_register_Asm_8: 7679 case ARM::VLD3DUPqWB_register_Asm_16: 7680 case ARM::VLD3DUPqWB_register_Asm_32: { 7681 MCInst TmpInst; 7682 unsigned Spacing; 7683 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7684 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7685 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7686 Spacing)); 7687 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7688 Spacing * 2)); 7689 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7690 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7691 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7692 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7693 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7694 TmpInst.addOperand(Inst.getOperand(5)); 7695 Inst = TmpInst; 7696 return true; 7697 } 7698 7699 // VLD3 multiple 3-element structure instructions. 7700 case ARM::VLD3dAsm_8: 7701 case ARM::VLD3dAsm_16: 7702 case ARM::VLD3dAsm_32: 7703 case ARM::VLD3qAsm_8: 7704 case ARM::VLD3qAsm_16: 7705 case ARM::VLD3qAsm_32: { 7706 MCInst TmpInst; 7707 unsigned Spacing; 7708 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing)); 7712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7713 Spacing * 2)); 7714 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7715 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7716 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7717 TmpInst.addOperand(Inst.getOperand(4)); 7718 Inst = TmpInst; 7719 return true; 7720 } 7721 7722 case ARM::VLD3dWB_fixed_Asm_8: 7723 case ARM::VLD3dWB_fixed_Asm_16: 7724 case ARM::VLD3dWB_fixed_Asm_32: 7725 case ARM::VLD3qWB_fixed_Asm_8: 7726 case ARM::VLD3qWB_fixed_Asm_16: 7727 case ARM::VLD3qWB_fixed_Asm_32: { 7728 MCInst TmpInst; 7729 unsigned Spacing; 7730 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7731 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7733 Spacing)); 7734 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7735 Spacing * 2)); 7736 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7737 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7738 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7739 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7740 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7741 TmpInst.addOperand(Inst.getOperand(4)); 7742 Inst = TmpInst; 7743 return true; 7744 } 7745 7746 case ARM::VLD3dWB_register_Asm_8: 7747 case ARM::VLD3dWB_register_Asm_16: 7748 case ARM::VLD3dWB_register_Asm_32: 7749 case ARM::VLD3qWB_register_Asm_8: 7750 case ARM::VLD3qWB_register_Asm_16: 7751 case ARM::VLD3qWB_register_Asm_32: { 7752 MCInst TmpInst; 7753 unsigned Spacing; 7754 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7755 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7757 Spacing)); 7758 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7759 Spacing * 2)); 7760 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7761 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7762 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7763 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7764 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7765 TmpInst.addOperand(Inst.getOperand(5)); 7766 Inst = TmpInst; 7767 return true; 7768 } 7769 7770 // VLD4DUP single 3-element structure to all lanes instructions. 7771 case ARM::VLD4DUPdAsm_8: 7772 case ARM::VLD4DUPdAsm_16: 7773 case ARM::VLD4DUPdAsm_32: 7774 case ARM::VLD4DUPqAsm_8: 7775 case ARM::VLD4DUPqAsm_16: 7776 case ARM::VLD4DUPqAsm_32: { 7777 MCInst TmpInst; 7778 unsigned Spacing; 7779 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7780 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7781 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7782 Spacing)); 7783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7784 Spacing * 2)); 7785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7786 Spacing * 3)); 7787 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7788 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7789 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7790 TmpInst.addOperand(Inst.getOperand(4)); 7791 Inst = TmpInst; 7792 return true; 7793 } 7794 7795 case ARM::VLD4DUPdWB_fixed_Asm_8: 7796 case ARM::VLD4DUPdWB_fixed_Asm_16: 7797 case ARM::VLD4DUPdWB_fixed_Asm_32: 7798 case ARM::VLD4DUPqWB_fixed_Asm_8: 7799 case ARM::VLD4DUPqWB_fixed_Asm_16: 7800 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7801 MCInst TmpInst; 7802 unsigned Spacing; 7803 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7804 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7806 Spacing)); 7807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7808 Spacing * 2)); 7809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7810 Spacing * 3)); 7811 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7812 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7813 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7814 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7815 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7816 TmpInst.addOperand(Inst.getOperand(4)); 7817 Inst = TmpInst; 7818 return true; 7819 } 7820 7821 case ARM::VLD4DUPdWB_register_Asm_8: 7822 case ARM::VLD4DUPdWB_register_Asm_16: 7823 case ARM::VLD4DUPdWB_register_Asm_32: 7824 case ARM::VLD4DUPqWB_register_Asm_8: 7825 case ARM::VLD4DUPqWB_register_Asm_16: 7826 case ARM::VLD4DUPqWB_register_Asm_32: { 7827 MCInst TmpInst; 7828 unsigned Spacing; 7829 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7830 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7832 Spacing)); 7833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7834 Spacing * 2)); 7835 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7836 Spacing * 3)); 7837 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7838 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7839 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7840 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7841 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7842 TmpInst.addOperand(Inst.getOperand(5)); 7843 Inst = TmpInst; 7844 return true; 7845 } 7846 7847 // VLD4 multiple 4-element structure instructions. 7848 case ARM::VLD4dAsm_8: 7849 case ARM::VLD4dAsm_16: 7850 case ARM::VLD4dAsm_32: 7851 case ARM::VLD4qAsm_8: 7852 case ARM::VLD4qAsm_16: 7853 case ARM::VLD4qAsm_32: { 7854 MCInst TmpInst; 7855 unsigned Spacing; 7856 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7857 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7858 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7859 Spacing)); 7860 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7861 Spacing * 2)); 7862 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7863 Spacing * 3)); 7864 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7865 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7866 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7867 TmpInst.addOperand(Inst.getOperand(4)); 7868 Inst = TmpInst; 7869 return true; 7870 } 7871 7872 case ARM::VLD4dWB_fixed_Asm_8: 7873 case ARM::VLD4dWB_fixed_Asm_16: 7874 case ARM::VLD4dWB_fixed_Asm_32: 7875 case ARM::VLD4qWB_fixed_Asm_8: 7876 case ARM::VLD4qWB_fixed_Asm_16: 7877 case ARM::VLD4qWB_fixed_Asm_32: { 7878 MCInst TmpInst; 7879 unsigned Spacing; 7880 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7881 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7882 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7883 Spacing)); 7884 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7885 Spacing * 2)); 7886 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7887 Spacing * 3)); 7888 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7889 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7890 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7891 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7892 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7893 TmpInst.addOperand(Inst.getOperand(4)); 7894 Inst = TmpInst; 7895 return true; 7896 } 7897 7898 case ARM::VLD4dWB_register_Asm_8: 7899 case ARM::VLD4dWB_register_Asm_16: 7900 case ARM::VLD4dWB_register_Asm_32: 7901 case ARM::VLD4qWB_register_Asm_8: 7902 case ARM::VLD4qWB_register_Asm_16: 7903 case ARM::VLD4qWB_register_Asm_32: { 7904 MCInst TmpInst; 7905 unsigned Spacing; 7906 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7907 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7909 Spacing)); 7910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7911 Spacing * 2)); 7912 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7913 Spacing * 3)); 7914 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7915 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7916 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7917 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7918 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7919 TmpInst.addOperand(Inst.getOperand(5)); 7920 Inst = TmpInst; 7921 return true; 7922 } 7923 7924 // VST3 multiple 3-element structure instructions. 7925 case ARM::VST3dAsm_8: 7926 case ARM::VST3dAsm_16: 7927 case ARM::VST3dAsm_32: 7928 case ARM::VST3qAsm_8: 7929 case ARM::VST3qAsm_16: 7930 case ARM::VST3qAsm_32: { 7931 MCInst TmpInst; 7932 unsigned Spacing; 7933 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7934 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7935 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7936 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7937 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7938 Spacing)); 7939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7940 Spacing * 2)); 7941 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7942 TmpInst.addOperand(Inst.getOperand(4)); 7943 Inst = TmpInst; 7944 return true; 7945 } 7946 7947 case ARM::VST3dWB_fixed_Asm_8: 7948 case ARM::VST3dWB_fixed_Asm_16: 7949 case ARM::VST3dWB_fixed_Asm_32: 7950 case ARM::VST3qWB_fixed_Asm_8: 7951 case ARM::VST3qWB_fixed_Asm_16: 7952 case ARM::VST3qWB_fixed_Asm_32: { 7953 MCInst TmpInst; 7954 unsigned Spacing; 7955 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7956 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7957 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7958 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7959 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7960 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7961 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7962 Spacing)); 7963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7964 Spacing * 2)); 7965 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7966 TmpInst.addOperand(Inst.getOperand(4)); 7967 Inst = TmpInst; 7968 return true; 7969 } 7970 7971 case ARM::VST3dWB_register_Asm_8: 7972 case ARM::VST3dWB_register_Asm_16: 7973 case ARM::VST3dWB_register_Asm_32: 7974 case ARM::VST3qWB_register_Asm_8: 7975 case ARM::VST3qWB_register_Asm_16: 7976 case ARM::VST3qWB_register_Asm_32: { 7977 MCInst TmpInst; 7978 unsigned Spacing; 7979 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7980 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7981 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7982 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7983 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7984 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7985 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7986 Spacing)); 7987 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7988 Spacing * 2)); 7989 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7990 TmpInst.addOperand(Inst.getOperand(5)); 7991 Inst = TmpInst; 7992 return true; 7993 } 7994 7995 // VST4 multiple 3-element structure instructions. 7996 case ARM::VST4dAsm_8: 7997 case ARM::VST4dAsm_16: 7998 case ARM::VST4dAsm_32: 7999 case ARM::VST4qAsm_8: 8000 case ARM::VST4qAsm_16: 8001 case ARM::VST4qAsm_32: { 8002 MCInst TmpInst; 8003 unsigned Spacing; 8004 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8005 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8006 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8007 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8008 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8009 Spacing)); 8010 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8011 Spacing * 2)); 8012 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8013 Spacing * 3)); 8014 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8015 TmpInst.addOperand(Inst.getOperand(4)); 8016 Inst = TmpInst; 8017 return true; 8018 } 8019 8020 case ARM::VST4dWB_fixed_Asm_8: 8021 case ARM::VST4dWB_fixed_Asm_16: 8022 case ARM::VST4dWB_fixed_Asm_32: 8023 case ARM::VST4qWB_fixed_Asm_8: 8024 case ARM::VST4qWB_fixed_Asm_16: 8025 case ARM::VST4qWB_fixed_Asm_32: { 8026 MCInst TmpInst; 8027 unsigned Spacing; 8028 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8029 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8030 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8031 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8032 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8033 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8034 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8035 Spacing)); 8036 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8037 Spacing * 2)); 8038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8039 Spacing * 3)); 8040 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8041 TmpInst.addOperand(Inst.getOperand(4)); 8042 Inst = TmpInst; 8043 return true; 8044 } 8045 8046 case ARM::VST4dWB_register_Asm_8: 8047 case ARM::VST4dWB_register_Asm_16: 8048 case ARM::VST4dWB_register_Asm_32: 8049 case ARM::VST4qWB_register_Asm_8: 8050 case ARM::VST4qWB_register_Asm_16: 8051 case ARM::VST4qWB_register_Asm_32: { 8052 MCInst TmpInst; 8053 unsigned Spacing; 8054 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8055 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8056 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8057 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8058 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8059 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8060 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8061 Spacing)); 8062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8063 Spacing * 2)); 8064 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8065 Spacing * 3)); 8066 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8067 TmpInst.addOperand(Inst.getOperand(5)); 8068 Inst = TmpInst; 8069 return true; 8070 } 8071 8072 // Handle encoding choice for the shift-immediate instructions. 8073 case ARM::t2LSLri: 8074 case ARM::t2LSRri: 8075 case ARM::t2ASRri: { 8076 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8077 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8078 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8079 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8080 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8081 unsigned NewOpc; 8082 switch (Inst.getOpcode()) { 8083 default: llvm_unreachable("unexpected opcode"); 8084 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8085 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8086 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8087 } 8088 // The Thumb1 operands aren't in the same order. Awesome, eh? 8089 MCInst TmpInst; 8090 TmpInst.setOpcode(NewOpc); 8091 TmpInst.addOperand(Inst.getOperand(0)); 8092 TmpInst.addOperand(Inst.getOperand(5)); 8093 TmpInst.addOperand(Inst.getOperand(1)); 8094 TmpInst.addOperand(Inst.getOperand(2)); 8095 TmpInst.addOperand(Inst.getOperand(3)); 8096 TmpInst.addOperand(Inst.getOperand(4)); 8097 Inst = TmpInst; 8098 return true; 8099 } 8100 return false; 8101 } 8102 8103 // Handle the Thumb2 mode MOV complex aliases. 8104 case ARM::t2MOVsr: 8105 case ARM::t2MOVSsr: { 8106 // Which instruction to expand to depends on the CCOut operand and 8107 // whether we're in an IT block if the register operands are low 8108 // registers. 8109 bool isNarrow = false; 8110 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8111 isARMLowRegister(Inst.getOperand(1).getReg()) && 8112 isARMLowRegister(Inst.getOperand(2).getReg()) && 8113 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8114 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8115 isNarrow = true; 8116 MCInst TmpInst; 8117 unsigned newOpc; 8118 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8119 default: llvm_unreachable("unexpected opcode!"); 8120 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8121 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8122 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8123 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8124 } 8125 TmpInst.setOpcode(newOpc); 8126 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8127 if (isNarrow) 8128 TmpInst.addOperand(MCOperand::createReg( 8129 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8130 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8131 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8132 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8133 TmpInst.addOperand(Inst.getOperand(5)); 8134 if (!isNarrow) 8135 TmpInst.addOperand(MCOperand::createReg( 8136 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8137 Inst = TmpInst; 8138 return true; 8139 } 8140 case ARM::t2MOVsi: 8141 case ARM::t2MOVSsi: { 8142 // Which instruction to expand to depends on the CCOut operand and 8143 // whether we're in an IT block if the register operands are low 8144 // registers. 8145 bool isNarrow = false; 8146 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8147 isARMLowRegister(Inst.getOperand(1).getReg()) && 8148 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8149 isNarrow = true; 8150 MCInst TmpInst; 8151 unsigned newOpc; 8152 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 8153 default: llvm_unreachable("unexpected opcode!"); 8154 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8155 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8156 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8157 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8158 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8159 } 8160 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8161 if (Amount == 32) Amount = 0; 8162 TmpInst.setOpcode(newOpc); 8163 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8164 if (isNarrow) 8165 TmpInst.addOperand(MCOperand::createReg( 8166 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8167 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8168 if (newOpc != ARM::t2RRX) 8169 TmpInst.addOperand(MCOperand::createImm(Amount)); 8170 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8171 TmpInst.addOperand(Inst.getOperand(4)); 8172 if (!isNarrow) 8173 TmpInst.addOperand(MCOperand::createReg( 8174 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8175 Inst = TmpInst; 8176 return true; 8177 } 8178 // Handle the ARM mode MOV complex aliases. 8179 case ARM::ASRr: 8180 case ARM::LSRr: 8181 case ARM::LSLr: 8182 case ARM::RORr: { 8183 ARM_AM::ShiftOpc ShiftTy; 8184 switch(Inst.getOpcode()) { 8185 default: llvm_unreachable("unexpected opcode!"); 8186 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8187 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8188 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8189 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8190 } 8191 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8192 MCInst TmpInst; 8193 TmpInst.setOpcode(ARM::MOVsr); 8194 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8195 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8196 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8197 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8198 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8199 TmpInst.addOperand(Inst.getOperand(4)); 8200 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8201 Inst = TmpInst; 8202 return true; 8203 } 8204 case ARM::ASRi: 8205 case ARM::LSRi: 8206 case ARM::LSLi: 8207 case ARM::RORi: { 8208 ARM_AM::ShiftOpc ShiftTy; 8209 switch(Inst.getOpcode()) { 8210 default: llvm_unreachable("unexpected opcode!"); 8211 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8212 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8213 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8214 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8215 } 8216 // A shift by zero is a plain MOVr, not a MOVsi. 8217 unsigned Amt = Inst.getOperand(2).getImm(); 8218 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8219 // A shift by 32 should be encoded as 0 when permitted 8220 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8221 Amt = 0; 8222 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8223 MCInst TmpInst; 8224 TmpInst.setOpcode(Opc); 8225 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8226 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8227 if (Opc == ARM::MOVsi) 8228 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8229 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8230 TmpInst.addOperand(Inst.getOperand(4)); 8231 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8232 Inst = TmpInst; 8233 return true; 8234 } 8235 case ARM::RRXi: { 8236 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8237 MCInst TmpInst; 8238 TmpInst.setOpcode(ARM::MOVsi); 8239 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8240 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8241 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8242 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8243 TmpInst.addOperand(Inst.getOperand(3)); 8244 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8245 Inst = TmpInst; 8246 return true; 8247 } 8248 case ARM::t2LDMIA_UPD: { 8249 // If this is a load of a single register, then we should use 8250 // a post-indexed LDR instruction instead, per the ARM ARM. 8251 if (Inst.getNumOperands() != 5) 8252 return false; 8253 MCInst TmpInst; 8254 TmpInst.setOpcode(ARM::t2LDR_POST); 8255 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8256 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8257 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8258 TmpInst.addOperand(MCOperand::createImm(4)); 8259 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8260 TmpInst.addOperand(Inst.getOperand(3)); 8261 Inst = TmpInst; 8262 return true; 8263 } 8264 case ARM::t2STMDB_UPD: { 8265 // If this is a store of a single register, then we should use 8266 // a pre-indexed STR instruction instead, per the ARM ARM. 8267 if (Inst.getNumOperands() != 5) 8268 return false; 8269 MCInst TmpInst; 8270 TmpInst.setOpcode(ARM::t2STR_PRE); 8271 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8272 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8273 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8274 TmpInst.addOperand(MCOperand::createImm(-4)); 8275 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8276 TmpInst.addOperand(Inst.getOperand(3)); 8277 Inst = TmpInst; 8278 return true; 8279 } 8280 case ARM::LDMIA_UPD: 8281 // If this is a load of a single register via a 'pop', then we should use 8282 // a post-indexed LDR instruction instead, per the ARM ARM. 8283 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8284 Inst.getNumOperands() == 5) { 8285 MCInst TmpInst; 8286 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8287 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8288 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8289 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8290 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8291 TmpInst.addOperand(MCOperand::createImm(4)); 8292 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8293 TmpInst.addOperand(Inst.getOperand(3)); 8294 Inst = TmpInst; 8295 return true; 8296 } 8297 break; 8298 case ARM::STMDB_UPD: 8299 // If this is a store of a single register via a 'push', then we should use 8300 // a pre-indexed STR instruction instead, per the ARM ARM. 8301 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8302 Inst.getNumOperands() == 5) { 8303 MCInst TmpInst; 8304 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8305 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8306 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8307 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8308 TmpInst.addOperand(MCOperand::createImm(-4)); 8309 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8310 TmpInst.addOperand(Inst.getOperand(3)); 8311 Inst = TmpInst; 8312 } 8313 break; 8314 case ARM::t2ADDri12: 8315 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8316 // mnemonic was used (not "addw"), encoding T3 is preferred. 8317 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8318 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8319 break; 8320 Inst.setOpcode(ARM::t2ADDri); 8321 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8322 break; 8323 case ARM::t2SUBri12: 8324 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8325 // mnemonic was used (not "subw"), encoding T3 is preferred. 8326 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8327 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8328 break; 8329 Inst.setOpcode(ARM::t2SUBri); 8330 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8331 break; 8332 case ARM::tADDi8: 8333 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8334 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8335 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8336 // to encoding T1 if <Rd> is omitted." 8337 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8338 Inst.setOpcode(ARM::tADDi3); 8339 return true; 8340 } 8341 break; 8342 case ARM::tSUBi8: 8343 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8344 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8345 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8346 // to encoding T1 if <Rd> is omitted." 8347 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8348 Inst.setOpcode(ARM::tSUBi3); 8349 return true; 8350 } 8351 break; 8352 case ARM::t2ADDri: 8353 case ARM::t2SUBri: { 8354 // If the destination and first source operand are the same, and 8355 // the flags are compatible with the current IT status, use encoding T2 8356 // instead of T3. For compatibility with the system 'as'. Make sure the 8357 // wide encoding wasn't explicit. 8358 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8359 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8360 (unsigned)Inst.getOperand(2).getImm() > 255 || 8361 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8362 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8363 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8364 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8365 break; 8366 MCInst TmpInst; 8367 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8368 ARM::tADDi8 : ARM::tSUBi8); 8369 TmpInst.addOperand(Inst.getOperand(0)); 8370 TmpInst.addOperand(Inst.getOperand(5)); 8371 TmpInst.addOperand(Inst.getOperand(0)); 8372 TmpInst.addOperand(Inst.getOperand(2)); 8373 TmpInst.addOperand(Inst.getOperand(3)); 8374 TmpInst.addOperand(Inst.getOperand(4)); 8375 Inst = TmpInst; 8376 return true; 8377 } 8378 case ARM::t2ADDrr: { 8379 // If the destination and first source operand are the same, and 8380 // there's no setting of the flags, use encoding T2 instead of T3. 8381 // Note that this is only for ADD, not SUB. This mirrors the system 8382 // 'as' behaviour. Also take advantage of ADD being commutative. 8383 // Make sure the wide encoding wasn't explicit. 8384 bool Swap = false; 8385 auto DestReg = Inst.getOperand(0).getReg(); 8386 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8387 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8388 Transform = true; 8389 Swap = true; 8390 } 8391 if (!Transform || 8392 Inst.getOperand(5).getReg() != 0 || 8393 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8394 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8395 break; 8396 MCInst TmpInst; 8397 TmpInst.setOpcode(ARM::tADDhirr); 8398 TmpInst.addOperand(Inst.getOperand(0)); 8399 TmpInst.addOperand(Inst.getOperand(0)); 8400 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8401 TmpInst.addOperand(Inst.getOperand(3)); 8402 TmpInst.addOperand(Inst.getOperand(4)); 8403 Inst = TmpInst; 8404 return true; 8405 } 8406 case ARM::tADDrSP: { 8407 // If the non-SP source operand and the destination operand are not the 8408 // same, we need to use the 32-bit encoding if it's available. 8409 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8410 Inst.setOpcode(ARM::t2ADDrr); 8411 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8412 return true; 8413 } 8414 break; 8415 } 8416 case ARM::tB: 8417 // A Thumb conditional branch outside of an IT block is a tBcc. 8418 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8419 Inst.setOpcode(ARM::tBcc); 8420 return true; 8421 } 8422 break; 8423 case ARM::t2B: 8424 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8425 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8426 Inst.setOpcode(ARM::t2Bcc); 8427 return true; 8428 } 8429 break; 8430 case ARM::t2Bcc: 8431 // If the conditional is AL or we're in an IT block, we really want t2B. 8432 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8433 Inst.setOpcode(ARM::t2B); 8434 return true; 8435 } 8436 break; 8437 case ARM::tBcc: 8438 // If the conditional is AL, we really want tB. 8439 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8440 Inst.setOpcode(ARM::tB); 8441 return true; 8442 } 8443 break; 8444 case ARM::tLDMIA: { 8445 // If the register list contains any high registers, or if the writeback 8446 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8447 // instead if we're in Thumb2. Otherwise, this should have generated 8448 // an error in validateInstruction(). 8449 unsigned Rn = Inst.getOperand(0).getReg(); 8450 bool hasWritebackToken = 8451 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8452 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8453 bool listContainsBase; 8454 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8455 (!listContainsBase && !hasWritebackToken) || 8456 (listContainsBase && hasWritebackToken)) { 8457 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8458 assert (isThumbTwo()); 8459 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8460 // If we're switching to the updating version, we need to insert 8461 // the writeback tied operand. 8462 if (hasWritebackToken) 8463 Inst.insert(Inst.begin(), 8464 MCOperand::createReg(Inst.getOperand(0).getReg())); 8465 return true; 8466 } 8467 break; 8468 } 8469 case ARM::tSTMIA_UPD: { 8470 // If the register list contains any high registers, we need to use 8471 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8472 // should have generated an error in validateInstruction(). 8473 unsigned Rn = Inst.getOperand(0).getReg(); 8474 bool listContainsBase; 8475 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8476 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8477 assert (isThumbTwo()); 8478 Inst.setOpcode(ARM::t2STMIA_UPD); 8479 return true; 8480 } 8481 break; 8482 } 8483 case ARM::tPOP: { 8484 bool listContainsBase; 8485 // If the register list contains any high registers, we need to use 8486 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8487 // should have generated an error in validateInstruction(). 8488 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8489 return false; 8490 assert (isThumbTwo()); 8491 Inst.setOpcode(ARM::t2LDMIA_UPD); 8492 // Add the base register and writeback operands. 8493 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8494 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8495 return true; 8496 } 8497 case ARM::tPUSH: { 8498 bool listContainsBase; 8499 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8500 return false; 8501 assert (isThumbTwo()); 8502 Inst.setOpcode(ARM::t2STMDB_UPD); 8503 // Add the base register and writeback operands. 8504 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8505 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8506 return true; 8507 } 8508 case ARM::t2MOVi: { 8509 // If we can use the 16-bit encoding and the user didn't explicitly 8510 // request the 32-bit variant, transform it here. 8511 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8512 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8513 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8514 Inst.getOperand(4).getReg() == ARM::CPSR) || 8515 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8516 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8517 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8518 // The operands aren't in the same order for tMOVi8... 8519 MCInst TmpInst; 8520 TmpInst.setOpcode(ARM::tMOVi8); 8521 TmpInst.addOperand(Inst.getOperand(0)); 8522 TmpInst.addOperand(Inst.getOperand(4)); 8523 TmpInst.addOperand(Inst.getOperand(1)); 8524 TmpInst.addOperand(Inst.getOperand(2)); 8525 TmpInst.addOperand(Inst.getOperand(3)); 8526 Inst = TmpInst; 8527 return true; 8528 } 8529 break; 8530 } 8531 case ARM::t2MOVr: { 8532 // If we can use the 16-bit encoding and the user didn't explicitly 8533 // request the 32-bit variant, transform it here. 8534 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8535 isARMLowRegister(Inst.getOperand(1).getReg()) && 8536 Inst.getOperand(2).getImm() == ARMCC::AL && 8537 Inst.getOperand(4).getReg() == ARM::CPSR && 8538 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8539 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8540 // The operands aren't the same for tMOV[S]r... (no cc_out) 8541 MCInst TmpInst; 8542 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8543 TmpInst.addOperand(Inst.getOperand(0)); 8544 TmpInst.addOperand(Inst.getOperand(1)); 8545 TmpInst.addOperand(Inst.getOperand(2)); 8546 TmpInst.addOperand(Inst.getOperand(3)); 8547 Inst = TmpInst; 8548 return true; 8549 } 8550 break; 8551 } 8552 case ARM::t2SXTH: 8553 case ARM::t2SXTB: 8554 case ARM::t2UXTH: 8555 case ARM::t2UXTB: { 8556 // If we can use the 16-bit encoding and the user didn't explicitly 8557 // request the 32-bit variant, transform it here. 8558 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8559 isARMLowRegister(Inst.getOperand(1).getReg()) && 8560 Inst.getOperand(2).getImm() == 0 && 8561 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8562 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8563 unsigned NewOpc; 8564 switch (Inst.getOpcode()) { 8565 default: llvm_unreachable("Illegal opcode!"); 8566 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8567 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8568 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8569 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8570 } 8571 // The operands aren't the same for thumb1 (no rotate operand). 8572 MCInst TmpInst; 8573 TmpInst.setOpcode(NewOpc); 8574 TmpInst.addOperand(Inst.getOperand(0)); 8575 TmpInst.addOperand(Inst.getOperand(1)); 8576 TmpInst.addOperand(Inst.getOperand(3)); 8577 TmpInst.addOperand(Inst.getOperand(4)); 8578 Inst = TmpInst; 8579 return true; 8580 } 8581 break; 8582 } 8583 case ARM::MOVsi: { 8584 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8585 // rrx shifts and asr/lsr of #32 is encoded as 0 8586 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8587 return false; 8588 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8589 // Shifting by zero is accepted as a vanilla 'MOVr' 8590 MCInst TmpInst; 8591 TmpInst.setOpcode(ARM::MOVr); 8592 TmpInst.addOperand(Inst.getOperand(0)); 8593 TmpInst.addOperand(Inst.getOperand(1)); 8594 TmpInst.addOperand(Inst.getOperand(3)); 8595 TmpInst.addOperand(Inst.getOperand(4)); 8596 TmpInst.addOperand(Inst.getOperand(5)); 8597 Inst = TmpInst; 8598 return true; 8599 } 8600 return false; 8601 } 8602 case ARM::ANDrsi: 8603 case ARM::ORRrsi: 8604 case ARM::EORrsi: 8605 case ARM::BICrsi: 8606 case ARM::SUBrsi: 8607 case ARM::ADDrsi: { 8608 unsigned newOpc; 8609 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8610 if (SOpc == ARM_AM::rrx) return false; 8611 switch (Inst.getOpcode()) { 8612 default: llvm_unreachable("unexpected opcode!"); 8613 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8614 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8615 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8616 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8617 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8618 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8619 } 8620 // If the shift is by zero, use the non-shifted instruction definition. 8621 // The exception is for right shifts, where 0 == 32 8622 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8623 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8624 MCInst TmpInst; 8625 TmpInst.setOpcode(newOpc); 8626 TmpInst.addOperand(Inst.getOperand(0)); 8627 TmpInst.addOperand(Inst.getOperand(1)); 8628 TmpInst.addOperand(Inst.getOperand(2)); 8629 TmpInst.addOperand(Inst.getOperand(4)); 8630 TmpInst.addOperand(Inst.getOperand(5)); 8631 TmpInst.addOperand(Inst.getOperand(6)); 8632 Inst = TmpInst; 8633 return true; 8634 } 8635 return false; 8636 } 8637 case ARM::ITasm: 8638 case ARM::t2IT: { 8639 // The mask bits for all but the first condition are represented as 8640 // the low bit of the condition code value implies 't'. We currently 8641 // always have 1 implies 't', so XOR toggle the bits if the low bit 8642 // of the condition code is zero. 8643 MCOperand &MO = Inst.getOperand(1); 8644 unsigned Mask = MO.getImm(); 8645 unsigned OrigMask = Mask; 8646 unsigned TZ = countTrailingZeros(Mask); 8647 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8648 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8649 Mask ^= (0xE << TZ) & 0xF; 8650 } 8651 MO.setImm(Mask); 8652 8653 // Set up the IT block state according to the IT instruction we just 8654 // matched. 8655 assert(!inITBlock() && "nested IT blocks?!"); 8656 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8657 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8658 ITState.CurPosition = 0; 8659 ITState.FirstCond = true; 8660 break; 8661 } 8662 case ARM::t2LSLrr: 8663 case ARM::t2LSRrr: 8664 case ARM::t2ASRrr: 8665 case ARM::t2SBCrr: 8666 case ARM::t2RORrr: 8667 case ARM::t2BICrr: 8668 { 8669 // Assemblers should use the narrow encodings of these instructions when permissible. 8670 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8671 isARMLowRegister(Inst.getOperand(2).getReg())) && 8672 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8673 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8674 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8675 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8676 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8677 ".w"))) { 8678 unsigned NewOpc; 8679 switch (Inst.getOpcode()) { 8680 default: llvm_unreachable("unexpected opcode"); 8681 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8682 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8683 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8684 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8685 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8686 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8687 } 8688 MCInst TmpInst; 8689 TmpInst.setOpcode(NewOpc); 8690 TmpInst.addOperand(Inst.getOperand(0)); 8691 TmpInst.addOperand(Inst.getOperand(5)); 8692 TmpInst.addOperand(Inst.getOperand(1)); 8693 TmpInst.addOperand(Inst.getOperand(2)); 8694 TmpInst.addOperand(Inst.getOperand(3)); 8695 TmpInst.addOperand(Inst.getOperand(4)); 8696 Inst = TmpInst; 8697 return true; 8698 } 8699 return false; 8700 } 8701 case ARM::t2ANDrr: 8702 case ARM::t2EORrr: 8703 case ARM::t2ADCrr: 8704 case ARM::t2ORRrr: 8705 { 8706 // Assemblers should use the narrow encodings of these instructions when permissible. 8707 // These instructions are special in that they are commutable, so shorter encodings 8708 // are available more often. 8709 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8710 isARMLowRegister(Inst.getOperand(2).getReg())) && 8711 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8712 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8713 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8714 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8715 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8716 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8717 ".w"))) { 8718 unsigned NewOpc; 8719 switch (Inst.getOpcode()) { 8720 default: llvm_unreachable("unexpected opcode"); 8721 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8722 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8723 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8724 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8725 } 8726 MCInst TmpInst; 8727 TmpInst.setOpcode(NewOpc); 8728 TmpInst.addOperand(Inst.getOperand(0)); 8729 TmpInst.addOperand(Inst.getOperand(5)); 8730 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8731 TmpInst.addOperand(Inst.getOperand(1)); 8732 TmpInst.addOperand(Inst.getOperand(2)); 8733 } else { 8734 TmpInst.addOperand(Inst.getOperand(2)); 8735 TmpInst.addOperand(Inst.getOperand(1)); 8736 } 8737 TmpInst.addOperand(Inst.getOperand(3)); 8738 TmpInst.addOperand(Inst.getOperand(4)); 8739 Inst = TmpInst; 8740 return true; 8741 } 8742 return false; 8743 } 8744 } 8745 return false; 8746 } 8747 8748 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8749 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8750 // suffix depending on whether they're in an IT block or not. 8751 unsigned Opc = Inst.getOpcode(); 8752 const MCInstrDesc &MCID = MII.get(Opc); 8753 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8754 assert(MCID.hasOptionalDef() && 8755 "optionally flag setting instruction missing optional def operand"); 8756 assert(MCID.NumOperands == Inst.getNumOperands() && 8757 "operand count mismatch!"); 8758 // Find the optional-def operand (cc_out). 8759 unsigned OpNo; 8760 for (OpNo = 0; 8761 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8762 ++OpNo) 8763 ; 8764 // If we're parsing Thumb1, reject it completely. 8765 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8766 return Match_MnemonicFail; 8767 // If we're parsing Thumb2, which form is legal depends on whether we're 8768 // in an IT block. 8769 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8770 !inITBlock()) 8771 return Match_RequiresITBlock; 8772 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8773 inITBlock()) 8774 return Match_RequiresNotITBlock; 8775 } else if (isThumbOne()) { 8776 // Some high-register supporting Thumb1 encodings only allow both registers 8777 // to be from r0-r7 when in Thumb2. 8778 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8779 isARMLowRegister(Inst.getOperand(1).getReg()) && 8780 isARMLowRegister(Inst.getOperand(2).getReg())) 8781 return Match_RequiresThumb2; 8782 // Others only require ARMv6 or later. 8783 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8784 isARMLowRegister(Inst.getOperand(0).getReg()) && 8785 isARMLowRegister(Inst.getOperand(1).getReg())) 8786 return Match_RequiresV6; 8787 } 8788 8789 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8790 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8791 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8792 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8793 return Match_RequiresV8; 8794 else if (Inst.getOperand(I).getReg() == ARM::PC) 8795 return Match_InvalidOperand; 8796 } 8797 8798 return Match_Success; 8799 } 8800 8801 namespace llvm { 8802 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8803 return true; // In an assembly source, no need to second-guess 8804 } 8805 } 8806 8807 static const char *getSubtargetFeatureName(uint64_t Val); 8808 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8809 OperandVector &Operands, 8810 MCStreamer &Out, uint64_t &ErrorInfo, 8811 bool MatchingInlineAsm) { 8812 MCInst Inst; 8813 unsigned MatchResult; 8814 8815 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8816 MatchingInlineAsm); 8817 switch (MatchResult) { 8818 case Match_Success: 8819 // Context sensitive operand constraints aren't handled by the matcher, 8820 // so check them here. 8821 if (validateInstruction(Inst, Operands)) { 8822 // Still progress the IT block, otherwise one wrong condition causes 8823 // nasty cascading errors. 8824 forwardITPosition(); 8825 return true; 8826 } 8827 8828 { // processInstruction() updates inITBlock state, we need to save it away 8829 bool wasInITBlock = inITBlock(); 8830 8831 // Some instructions need post-processing to, for example, tweak which 8832 // encoding is selected. Loop on it while changes happen so the 8833 // individual transformations can chain off each other. E.g., 8834 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8835 while (processInstruction(Inst, Operands, Out)) 8836 ; 8837 8838 // Only after the instruction is fully processed, we can validate it 8839 if (wasInITBlock && hasV8Ops() && isThumb() && 8840 !isV8EligibleForIT(&Inst)) { 8841 Warning(IDLoc, "deprecated instruction in IT block"); 8842 } 8843 } 8844 8845 // Only move forward at the very end so that everything in validate 8846 // and process gets a consistent answer about whether we're in an IT 8847 // block. 8848 forwardITPosition(); 8849 8850 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8851 // doesn't actually encode. 8852 if (Inst.getOpcode() == ARM::ITasm) 8853 return false; 8854 8855 Inst.setLoc(IDLoc); 8856 Out.EmitInstruction(Inst, getSTI()); 8857 return false; 8858 case Match_MissingFeature: { 8859 assert(ErrorInfo && "Unknown missing feature!"); 8860 // Special case the error message for the very common case where only 8861 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8862 std::string Msg = "instruction requires:"; 8863 uint64_t Mask = 1; 8864 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8865 if (ErrorInfo & Mask) { 8866 Msg += " "; 8867 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8868 } 8869 Mask <<= 1; 8870 } 8871 return Error(IDLoc, Msg); 8872 } 8873 case Match_InvalidOperand: { 8874 SMLoc ErrorLoc = IDLoc; 8875 if (ErrorInfo != ~0ULL) { 8876 if (ErrorInfo >= Operands.size()) 8877 return Error(IDLoc, "too few operands for instruction"); 8878 8879 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8880 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8881 } 8882 8883 return Error(ErrorLoc, "invalid operand for instruction"); 8884 } 8885 case Match_MnemonicFail: 8886 return Error(IDLoc, "invalid instruction", 8887 ((ARMOperand &)*Operands[0]).getLocRange()); 8888 case Match_RequiresNotITBlock: 8889 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8890 case Match_RequiresITBlock: 8891 return Error(IDLoc, "instruction only valid inside IT block"); 8892 case Match_RequiresV6: 8893 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8894 case Match_RequiresThumb2: 8895 return Error(IDLoc, "instruction variant requires Thumb2"); 8896 case Match_RequiresV8: 8897 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8898 case Match_ImmRange0_15: { 8899 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8900 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8901 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8902 } 8903 case Match_ImmRange0_239: { 8904 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8905 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8906 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8907 } 8908 case Match_AlignedMemoryRequiresNone: 8909 case Match_DupAlignedMemoryRequiresNone: 8910 case Match_AlignedMemoryRequires16: 8911 case Match_DupAlignedMemoryRequires16: 8912 case Match_AlignedMemoryRequires32: 8913 case Match_DupAlignedMemoryRequires32: 8914 case Match_AlignedMemoryRequires64: 8915 case Match_DupAlignedMemoryRequires64: 8916 case Match_AlignedMemoryRequires64or128: 8917 case Match_DupAlignedMemoryRequires64or128: 8918 case Match_AlignedMemoryRequires64or128or256: 8919 { 8920 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8921 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8922 switch (MatchResult) { 8923 default: 8924 llvm_unreachable("Missing Match_Aligned type"); 8925 case Match_AlignedMemoryRequiresNone: 8926 case Match_DupAlignedMemoryRequiresNone: 8927 return Error(ErrorLoc, "alignment must be omitted"); 8928 case Match_AlignedMemoryRequires16: 8929 case Match_DupAlignedMemoryRequires16: 8930 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8931 case Match_AlignedMemoryRequires32: 8932 case Match_DupAlignedMemoryRequires32: 8933 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8934 case Match_AlignedMemoryRequires64: 8935 case Match_DupAlignedMemoryRequires64: 8936 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8937 case Match_AlignedMemoryRequires64or128: 8938 case Match_DupAlignedMemoryRequires64or128: 8939 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8940 case Match_AlignedMemoryRequires64or128or256: 8941 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8942 } 8943 } 8944 } 8945 8946 llvm_unreachable("Implement any new match types added!"); 8947 } 8948 8949 /// parseDirective parses the arm specific directives 8950 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8951 const MCObjectFileInfo::Environment Format = 8952 getContext().getObjectFileInfo()->getObjectFileType(); 8953 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8954 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8955 8956 StringRef IDVal = DirectiveID.getIdentifier(); 8957 if (IDVal == ".word") 8958 return parseLiteralValues(4, DirectiveID.getLoc()); 8959 else if (IDVal == ".short" || IDVal == ".hword") 8960 return parseLiteralValues(2, DirectiveID.getLoc()); 8961 else if (IDVal == ".thumb") 8962 return parseDirectiveThumb(DirectiveID.getLoc()); 8963 else if (IDVal == ".arm") 8964 return parseDirectiveARM(DirectiveID.getLoc()); 8965 else if (IDVal == ".thumb_func") 8966 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8967 else if (IDVal == ".code") 8968 return parseDirectiveCode(DirectiveID.getLoc()); 8969 else if (IDVal == ".syntax") 8970 return parseDirectiveSyntax(DirectiveID.getLoc()); 8971 else if (IDVal == ".unreq") 8972 return parseDirectiveUnreq(DirectiveID.getLoc()); 8973 else if (IDVal == ".fnend") 8974 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8975 else if (IDVal == ".cantunwind") 8976 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8977 else if (IDVal == ".personality") 8978 return parseDirectivePersonality(DirectiveID.getLoc()); 8979 else if (IDVal == ".handlerdata") 8980 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8981 else if (IDVal == ".setfp") 8982 return parseDirectiveSetFP(DirectiveID.getLoc()); 8983 else if (IDVal == ".pad") 8984 return parseDirectivePad(DirectiveID.getLoc()); 8985 else if (IDVal == ".save") 8986 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8987 else if (IDVal == ".vsave") 8988 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8989 else if (IDVal == ".ltorg" || IDVal == ".pool") 8990 return parseDirectiveLtorg(DirectiveID.getLoc()); 8991 else if (IDVal == ".even") 8992 return parseDirectiveEven(DirectiveID.getLoc()); 8993 else if (IDVal == ".personalityindex") 8994 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8995 else if (IDVal == ".unwind_raw") 8996 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8997 else if (IDVal == ".movsp") 8998 return parseDirectiveMovSP(DirectiveID.getLoc()); 8999 else if (IDVal == ".arch_extension") 9000 return parseDirectiveArchExtension(DirectiveID.getLoc()); 9001 else if (IDVal == ".align") 9002 return parseDirectiveAlign(DirectiveID.getLoc()); 9003 else if (IDVal == ".thumb_set") 9004 return parseDirectiveThumbSet(DirectiveID.getLoc()); 9005 9006 if (!IsMachO && !IsCOFF) { 9007 if (IDVal == ".arch") 9008 return parseDirectiveArch(DirectiveID.getLoc()); 9009 else if (IDVal == ".cpu") 9010 return parseDirectiveCPU(DirectiveID.getLoc()); 9011 else if (IDVal == ".eabi_attribute") 9012 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 9013 else if (IDVal == ".fpu") 9014 return parseDirectiveFPU(DirectiveID.getLoc()); 9015 else if (IDVal == ".fnstart") 9016 return parseDirectiveFnStart(DirectiveID.getLoc()); 9017 else if (IDVal == ".inst") 9018 return parseDirectiveInst(DirectiveID.getLoc()); 9019 else if (IDVal == ".inst.n") 9020 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9021 else if (IDVal == ".inst.w") 9022 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9023 else if (IDVal == ".object_arch") 9024 return parseDirectiveObjectArch(DirectiveID.getLoc()); 9025 else if (IDVal == ".tlsdescseq") 9026 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9027 } 9028 9029 return true; 9030 } 9031 9032 /// parseLiteralValues 9033 /// ::= .hword expression [, expression]* 9034 /// ::= .short expression [, expression]* 9035 /// ::= .word expression [, expression]* 9036 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9037 MCAsmParser &Parser = getParser(); 9038 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9039 for (;;) { 9040 const MCExpr *Value; 9041 if (getParser().parseExpression(Value)) { 9042 Parser.eatToEndOfStatement(); 9043 return false; 9044 } 9045 9046 getParser().getStreamer().EmitValue(Value, Size, L); 9047 9048 if (getLexer().is(AsmToken::EndOfStatement)) 9049 break; 9050 9051 // FIXME: Improve diagnostic. 9052 if (getLexer().isNot(AsmToken::Comma)) { 9053 Error(L, "unexpected token in directive"); 9054 return false; 9055 } 9056 Parser.Lex(); 9057 } 9058 } 9059 9060 Parser.Lex(); 9061 return false; 9062 } 9063 9064 /// parseDirectiveThumb 9065 /// ::= .thumb 9066 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9067 MCAsmParser &Parser = getParser(); 9068 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9069 Error(L, "unexpected token in directive"); 9070 return false; 9071 } 9072 Parser.Lex(); 9073 9074 if (!hasThumb()) { 9075 Error(L, "target does not support Thumb mode"); 9076 return false; 9077 } 9078 9079 if (!isThumb()) 9080 SwitchMode(); 9081 9082 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9083 return false; 9084 } 9085 9086 /// parseDirectiveARM 9087 /// ::= .arm 9088 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9089 MCAsmParser &Parser = getParser(); 9090 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9091 Error(L, "unexpected token in directive"); 9092 return false; 9093 } 9094 Parser.Lex(); 9095 9096 if (!hasARM()) { 9097 Error(L, "target does not support ARM mode"); 9098 return false; 9099 } 9100 9101 if (isThumb()) 9102 SwitchMode(); 9103 9104 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9105 return false; 9106 } 9107 9108 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9109 if (NextSymbolIsThumb) { 9110 getParser().getStreamer().EmitThumbFunc(Symbol); 9111 NextSymbolIsThumb = false; 9112 } 9113 } 9114 9115 /// parseDirectiveThumbFunc 9116 /// ::= .thumbfunc symbol_name 9117 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9118 MCAsmParser &Parser = getParser(); 9119 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9120 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9121 9122 // Darwin asm has (optionally) function name after .thumb_func direction 9123 // ELF doesn't 9124 if (IsMachO) { 9125 const AsmToken &Tok = Parser.getTok(); 9126 if (Tok.isNot(AsmToken::EndOfStatement)) { 9127 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 9128 Error(L, "unexpected token in .thumb_func directive"); 9129 return false; 9130 } 9131 9132 MCSymbol *Func = 9133 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 9134 getParser().getStreamer().EmitThumbFunc(Func); 9135 Parser.Lex(); // Consume the identifier token. 9136 return false; 9137 } 9138 } 9139 9140 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9141 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9142 Parser.eatToEndOfStatement(); 9143 return false; 9144 } 9145 9146 NextSymbolIsThumb = true; 9147 return false; 9148 } 9149 9150 /// parseDirectiveSyntax 9151 /// ::= .syntax unified | divided 9152 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9153 MCAsmParser &Parser = getParser(); 9154 const AsmToken &Tok = Parser.getTok(); 9155 if (Tok.isNot(AsmToken::Identifier)) { 9156 Error(L, "unexpected token in .syntax directive"); 9157 return false; 9158 } 9159 9160 StringRef Mode = Tok.getString(); 9161 if (Mode == "unified" || Mode == "UNIFIED") { 9162 Parser.Lex(); 9163 } else if (Mode == "divided" || Mode == "DIVIDED") { 9164 Error(L, "'.syntax divided' arm asssembly not supported"); 9165 return false; 9166 } else { 9167 Error(L, "unrecognized syntax mode in .syntax directive"); 9168 return false; 9169 } 9170 9171 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9172 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9173 return false; 9174 } 9175 Parser.Lex(); 9176 9177 // TODO tell the MC streamer the mode 9178 // getParser().getStreamer().Emit???(); 9179 return false; 9180 } 9181 9182 /// parseDirectiveCode 9183 /// ::= .code 16 | 32 9184 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9185 MCAsmParser &Parser = getParser(); 9186 const AsmToken &Tok = Parser.getTok(); 9187 if (Tok.isNot(AsmToken::Integer)) { 9188 Error(L, "unexpected token in .code directive"); 9189 return false; 9190 } 9191 int64_t Val = Parser.getTok().getIntVal(); 9192 if (Val != 16 && Val != 32) { 9193 Error(L, "invalid operand to .code directive"); 9194 return false; 9195 } 9196 Parser.Lex(); 9197 9198 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9199 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9200 return false; 9201 } 9202 Parser.Lex(); 9203 9204 if (Val == 16) { 9205 if (!hasThumb()) { 9206 Error(L, "target does not support Thumb mode"); 9207 return false; 9208 } 9209 9210 if (!isThumb()) 9211 SwitchMode(); 9212 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9213 } else { 9214 if (!hasARM()) { 9215 Error(L, "target does not support ARM mode"); 9216 return false; 9217 } 9218 9219 if (isThumb()) 9220 SwitchMode(); 9221 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9222 } 9223 9224 return false; 9225 } 9226 9227 /// parseDirectiveReq 9228 /// ::= name .req registername 9229 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9230 MCAsmParser &Parser = getParser(); 9231 Parser.Lex(); // Eat the '.req' token. 9232 unsigned Reg; 9233 SMLoc SRegLoc, ERegLoc; 9234 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9235 Parser.eatToEndOfStatement(); 9236 Error(SRegLoc, "register name expected"); 9237 return false; 9238 } 9239 9240 // Shouldn't be anything else. 9241 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9242 Parser.eatToEndOfStatement(); 9243 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9244 return false; 9245 } 9246 9247 Parser.Lex(); // Consume the EndOfStatement 9248 9249 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9250 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9251 return false; 9252 } 9253 9254 return false; 9255 } 9256 9257 /// parseDirectiveUneq 9258 /// ::= .unreq registername 9259 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9260 MCAsmParser &Parser = getParser(); 9261 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9262 Parser.eatToEndOfStatement(); 9263 Error(L, "unexpected input in .unreq directive."); 9264 return false; 9265 } 9266 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9267 Parser.Lex(); // Eat the identifier. 9268 return false; 9269 } 9270 9271 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9272 // before, if supported by the new target, or emit mapping symbols for the mode 9273 // switch. 9274 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9275 if (WasThumb != isThumb()) { 9276 if (WasThumb && hasThumb()) { 9277 // Stay in Thumb mode 9278 SwitchMode(); 9279 } else if (!WasThumb && hasARM()) { 9280 // Stay in ARM mode 9281 SwitchMode(); 9282 } else { 9283 // Mode switch forced, because the new arch doesn't support the old mode. 9284 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9285 : MCAF_Code32); 9286 // Warn about the implcit mode switch. GAS does not switch modes here, 9287 // but instead stays in the old mode, reporting an error on any following 9288 // instructions as the mode does not exist on the target. 9289 Warning(Loc, Twine("new target does not support ") + 9290 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9291 (!WasThumb ? "thumb" : "arm") + " mode"); 9292 } 9293 } 9294 } 9295 9296 /// parseDirectiveArch 9297 /// ::= .arch token 9298 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9299 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9300 9301 unsigned ID = ARM::parseArch(Arch); 9302 9303 if (ID == ARM::AK_INVALID) { 9304 Error(L, "Unknown arch name"); 9305 return false; 9306 } 9307 9308 bool WasThumb = isThumb(); 9309 Triple T; 9310 MCSubtargetInfo &STI = copySTI(); 9311 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9312 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9313 FixModeAfterArchChange(WasThumb, L); 9314 9315 getTargetStreamer().emitArch(ID); 9316 return false; 9317 } 9318 9319 /// parseDirectiveEabiAttr 9320 /// ::= .eabi_attribute int, int [, "str"] 9321 /// ::= .eabi_attribute Tag_name, int [, "str"] 9322 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9323 MCAsmParser &Parser = getParser(); 9324 int64_t Tag; 9325 SMLoc TagLoc; 9326 TagLoc = Parser.getTok().getLoc(); 9327 if (Parser.getTok().is(AsmToken::Identifier)) { 9328 StringRef Name = Parser.getTok().getIdentifier(); 9329 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9330 if (Tag == -1) { 9331 Error(TagLoc, "attribute name not recognised: " + Name); 9332 Parser.eatToEndOfStatement(); 9333 return false; 9334 } 9335 Parser.Lex(); 9336 } else { 9337 const MCExpr *AttrExpr; 9338 9339 TagLoc = Parser.getTok().getLoc(); 9340 if (Parser.parseExpression(AttrExpr)) { 9341 Parser.eatToEndOfStatement(); 9342 return false; 9343 } 9344 9345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9346 if (!CE) { 9347 Error(TagLoc, "expected numeric constant"); 9348 Parser.eatToEndOfStatement(); 9349 return false; 9350 } 9351 9352 Tag = CE->getValue(); 9353 } 9354 9355 if (Parser.getTok().isNot(AsmToken::Comma)) { 9356 Error(Parser.getTok().getLoc(), "comma expected"); 9357 Parser.eatToEndOfStatement(); 9358 return false; 9359 } 9360 Parser.Lex(); // skip comma 9361 9362 StringRef StringValue = ""; 9363 bool IsStringValue = false; 9364 9365 int64_t IntegerValue = 0; 9366 bool IsIntegerValue = false; 9367 9368 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9369 IsStringValue = true; 9370 else if (Tag == ARMBuildAttrs::compatibility) { 9371 IsStringValue = true; 9372 IsIntegerValue = true; 9373 } else if (Tag < 32 || Tag % 2 == 0) 9374 IsIntegerValue = true; 9375 else if (Tag % 2 == 1) 9376 IsStringValue = true; 9377 else 9378 llvm_unreachable("invalid tag type"); 9379 9380 if (IsIntegerValue) { 9381 const MCExpr *ValueExpr; 9382 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9383 if (Parser.parseExpression(ValueExpr)) { 9384 Parser.eatToEndOfStatement(); 9385 return false; 9386 } 9387 9388 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9389 if (!CE) { 9390 Error(ValueExprLoc, "expected numeric constant"); 9391 Parser.eatToEndOfStatement(); 9392 return false; 9393 } 9394 9395 IntegerValue = CE->getValue(); 9396 } 9397 9398 if (Tag == ARMBuildAttrs::compatibility) { 9399 if (Parser.getTok().isNot(AsmToken::Comma)) 9400 IsStringValue = false; 9401 if (Parser.getTok().isNot(AsmToken::Comma)) { 9402 Error(Parser.getTok().getLoc(), "comma expected"); 9403 Parser.eatToEndOfStatement(); 9404 return false; 9405 } else { 9406 Parser.Lex(); 9407 } 9408 } 9409 9410 if (IsStringValue) { 9411 if (Parser.getTok().isNot(AsmToken::String)) { 9412 Error(Parser.getTok().getLoc(), "bad string constant"); 9413 Parser.eatToEndOfStatement(); 9414 return false; 9415 } 9416 9417 StringValue = Parser.getTok().getStringContents(); 9418 Parser.Lex(); 9419 } 9420 9421 if (IsIntegerValue && IsStringValue) { 9422 assert(Tag == ARMBuildAttrs::compatibility); 9423 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9424 } else if (IsIntegerValue) 9425 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9426 else if (IsStringValue) 9427 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9428 return false; 9429 } 9430 9431 /// parseDirectiveCPU 9432 /// ::= .cpu str 9433 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9434 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9435 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9436 9437 // FIXME: This is using table-gen data, but should be moved to 9438 // ARMTargetParser once that is table-gen'd. 9439 if (!getSTI().isCPUStringValid(CPU)) { 9440 Error(L, "Unknown CPU name"); 9441 return false; 9442 } 9443 9444 bool WasThumb = isThumb(); 9445 MCSubtargetInfo &STI = copySTI(); 9446 STI.setDefaultFeatures(CPU, ""); 9447 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9448 FixModeAfterArchChange(WasThumb, L); 9449 9450 return false; 9451 } 9452 /// parseDirectiveFPU 9453 /// ::= .fpu str 9454 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9455 SMLoc FPUNameLoc = getTok().getLoc(); 9456 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9457 9458 unsigned ID = ARM::parseFPU(FPU); 9459 std::vector<const char *> Features; 9460 if (!ARM::getFPUFeatures(ID, Features)) { 9461 Error(FPUNameLoc, "Unknown FPU name"); 9462 return false; 9463 } 9464 9465 MCSubtargetInfo &STI = copySTI(); 9466 for (auto Feature : Features) 9467 STI.ApplyFeatureFlag(Feature); 9468 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9469 9470 getTargetStreamer().emitFPU(ID); 9471 return false; 9472 } 9473 9474 /// parseDirectiveFnStart 9475 /// ::= .fnstart 9476 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9477 if (UC.hasFnStart()) { 9478 Error(L, ".fnstart starts before the end of previous one"); 9479 UC.emitFnStartLocNotes(); 9480 return false; 9481 } 9482 9483 // Reset the unwind directives parser state 9484 UC.reset(); 9485 9486 getTargetStreamer().emitFnStart(); 9487 9488 UC.recordFnStart(L); 9489 return false; 9490 } 9491 9492 /// parseDirectiveFnEnd 9493 /// ::= .fnend 9494 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9495 // Check the ordering of unwind directives 9496 if (!UC.hasFnStart()) { 9497 Error(L, ".fnstart must precede .fnend directive"); 9498 return false; 9499 } 9500 9501 // Reset the unwind directives parser state 9502 getTargetStreamer().emitFnEnd(); 9503 9504 UC.reset(); 9505 return false; 9506 } 9507 9508 /// parseDirectiveCantUnwind 9509 /// ::= .cantunwind 9510 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9511 UC.recordCantUnwind(L); 9512 9513 // Check the ordering of unwind directives 9514 if (!UC.hasFnStart()) { 9515 Error(L, ".fnstart must precede .cantunwind directive"); 9516 return false; 9517 } 9518 if (UC.hasHandlerData()) { 9519 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9520 UC.emitHandlerDataLocNotes(); 9521 return false; 9522 } 9523 if (UC.hasPersonality()) { 9524 Error(L, ".cantunwind can't be used with .personality directive"); 9525 UC.emitPersonalityLocNotes(); 9526 return false; 9527 } 9528 9529 getTargetStreamer().emitCantUnwind(); 9530 return false; 9531 } 9532 9533 /// parseDirectivePersonality 9534 /// ::= .personality name 9535 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9536 MCAsmParser &Parser = getParser(); 9537 bool HasExistingPersonality = UC.hasPersonality(); 9538 9539 UC.recordPersonality(L); 9540 9541 // Check the ordering of unwind directives 9542 if (!UC.hasFnStart()) { 9543 Error(L, ".fnstart must precede .personality directive"); 9544 return false; 9545 } 9546 if (UC.cantUnwind()) { 9547 Error(L, ".personality can't be used with .cantunwind directive"); 9548 UC.emitCantUnwindLocNotes(); 9549 return false; 9550 } 9551 if (UC.hasHandlerData()) { 9552 Error(L, ".personality must precede .handlerdata directive"); 9553 UC.emitHandlerDataLocNotes(); 9554 return false; 9555 } 9556 if (HasExistingPersonality) { 9557 Parser.eatToEndOfStatement(); 9558 Error(L, "multiple personality directives"); 9559 UC.emitPersonalityLocNotes(); 9560 return false; 9561 } 9562 9563 // Parse the name of the personality routine 9564 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9565 Parser.eatToEndOfStatement(); 9566 Error(L, "unexpected input in .personality directive."); 9567 return false; 9568 } 9569 StringRef Name(Parser.getTok().getIdentifier()); 9570 Parser.Lex(); 9571 9572 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9573 getTargetStreamer().emitPersonality(PR); 9574 return false; 9575 } 9576 9577 /// parseDirectiveHandlerData 9578 /// ::= .handlerdata 9579 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9580 UC.recordHandlerData(L); 9581 9582 // Check the ordering of unwind directives 9583 if (!UC.hasFnStart()) { 9584 Error(L, ".fnstart must precede .personality directive"); 9585 return false; 9586 } 9587 if (UC.cantUnwind()) { 9588 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9589 UC.emitCantUnwindLocNotes(); 9590 return false; 9591 } 9592 9593 getTargetStreamer().emitHandlerData(); 9594 return false; 9595 } 9596 9597 /// parseDirectiveSetFP 9598 /// ::= .setfp fpreg, spreg [, offset] 9599 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9600 MCAsmParser &Parser = getParser(); 9601 // Check the ordering of unwind directives 9602 if (!UC.hasFnStart()) { 9603 Error(L, ".fnstart must precede .setfp directive"); 9604 return false; 9605 } 9606 if (UC.hasHandlerData()) { 9607 Error(L, ".setfp must precede .handlerdata directive"); 9608 return false; 9609 } 9610 9611 // Parse fpreg 9612 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9613 int FPReg = tryParseRegister(); 9614 if (FPReg == -1) { 9615 Error(FPRegLoc, "frame pointer register expected"); 9616 return false; 9617 } 9618 9619 // Consume comma 9620 if (Parser.getTok().isNot(AsmToken::Comma)) { 9621 Error(Parser.getTok().getLoc(), "comma expected"); 9622 return false; 9623 } 9624 Parser.Lex(); // skip comma 9625 9626 // Parse spreg 9627 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9628 int SPReg = tryParseRegister(); 9629 if (SPReg == -1) { 9630 Error(SPRegLoc, "stack pointer register expected"); 9631 return false; 9632 } 9633 9634 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9635 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9636 return false; 9637 } 9638 9639 // Update the frame pointer register 9640 UC.saveFPReg(FPReg); 9641 9642 // Parse offset 9643 int64_t Offset = 0; 9644 if (Parser.getTok().is(AsmToken::Comma)) { 9645 Parser.Lex(); // skip comma 9646 9647 if (Parser.getTok().isNot(AsmToken::Hash) && 9648 Parser.getTok().isNot(AsmToken::Dollar)) { 9649 Error(Parser.getTok().getLoc(), "'#' expected"); 9650 return false; 9651 } 9652 Parser.Lex(); // skip hash token. 9653 9654 const MCExpr *OffsetExpr; 9655 SMLoc ExLoc = Parser.getTok().getLoc(); 9656 SMLoc EndLoc; 9657 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9658 Error(ExLoc, "malformed setfp offset"); 9659 return false; 9660 } 9661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9662 if (!CE) { 9663 Error(ExLoc, "setfp offset must be an immediate"); 9664 return false; 9665 } 9666 9667 Offset = CE->getValue(); 9668 } 9669 9670 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9671 static_cast<unsigned>(SPReg), Offset); 9672 return false; 9673 } 9674 9675 /// parseDirective 9676 /// ::= .pad offset 9677 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9678 MCAsmParser &Parser = getParser(); 9679 // Check the ordering of unwind directives 9680 if (!UC.hasFnStart()) { 9681 Error(L, ".fnstart must precede .pad directive"); 9682 return false; 9683 } 9684 if (UC.hasHandlerData()) { 9685 Error(L, ".pad must precede .handlerdata directive"); 9686 return false; 9687 } 9688 9689 // Parse the offset 9690 if (Parser.getTok().isNot(AsmToken::Hash) && 9691 Parser.getTok().isNot(AsmToken::Dollar)) { 9692 Error(Parser.getTok().getLoc(), "'#' expected"); 9693 return false; 9694 } 9695 Parser.Lex(); // skip hash token. 9696 9697 const MCExpr *OffsetExpr; 9698 SMLoc ExLoc = Parser.getTok().getLoc(); 9699 SMLoc EndLoc; 9700 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9701 Error(ExLoc, "malformed pad offset"); 9702 return false; 9703 } 9704 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9705 if (!CE) { 9706 Error(ExLoc, "pad offset must be an immediate"); 9707 return false; 9708 } 9709 9710 getTargetStreamer().emitPad(CE->getValue()); 9711 return false; 9712 } 9713 9714 /// parseDirectiveRegSave 9715 /// ::= .save { registers } 9716 /// ::= .vsave { registers } 9717 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9718 // Check the ordering of unwind directives 9719 if (!UC.hasFnStart()) { 9720 Error(L, ".fnstart must precede .save or .vsave directives"); 9721 return false; 9722 } 9723 if (UC.hasHandlerData()) { 9724 Error(L, ".save or .vsave must precede .handlerdata directive"); 9725 return false; 9726 } 9727 9728 // RAII object to make sure parsed operands are deleted. 9729 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9730 9731 // Parse the register list 9732 if (parseRegisterList(Operands)) 9733 return false; 9734 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9735 if (!IsVector && !Op.isRegList()) { 9736 Error(L, ".save expects GPR registers"); 9737 return false; 9738 } 9739 if (IsVector && !Op.isDPRRegList()) { 9740 Error(L, ".vsave expects DPR registers"); 9741 return false; 9742 } 9743 9744 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9745 return false; 9746 } 9747 9748 /// parseDirectiveInst 9749 /// ::= .inst opcode [, ...] 9750 /// ::= .inst.n opcode [, ...] 9751 /// ::= .inst.w opcode [, ...] 9752 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9753 MCAsmParser &Parser = getParser(); 9754 int Width; 9755 9756 if (isThumb()) { 9757 switch (Suffix) { 9758 case 'n': 9759 Width = 2; 9760 break; 9761 case 'w': 9762 Width = 4; 9763 break; 9764 default: 9765 Parser.eatToEndOfStatement(); 9766 Error(Loc, "cannot determine Thumb instruction size, " 9767 "use inst.n/inst.w instead"); 9768 return false; 9769 } 9770 } else { 9771 if (Suffix) { 9772 Parser.eatToEndOfStatement(); 9773 Error(Loc, "width suffixes are invalid in ARM mode"); 9774 return false; 9775 } 9776 Width = 4; 9777 } 9778 9779 if (getLexer().is(AsmToken::EndOfStatement)) { 9780 Parser.eatToEndOfStatement(); 9781 Error(Loc, "expected expression following directive"); 9782 return false; 9783 } 9784 9785 for (;;) { 9786 const MCExpr *Expr; 9787 9788 if (getParser().parseExpression(Expr)) { 9789 Error(Loc, "expected expression"); 9790 return false; 9791 } 9792 9793 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9794 if (!Value) { 9795 Error(Loc, "expected constant expression"); 9796 return false; 9797 } 9798 9799 switch (Width) { 9800 case 2: 9801 if (Value->getValue() > 0xffff) { 9802 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9803 return false; 9804 } 9805 break; 9806 case 4: 9807 if (Value->getValue() > 0xffffffff) { 9808 Error(Loc, 9809 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9810 return false; 9811 } 9812 break; 9813 default: 9814 llvm_unreachable("only supported widths are 2 and 4"); 9815 } 9816 9817 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9818 9819 if (getLexer().is(AsmToken::EndOfStatement)) 9820 break; 9821 9822 if (getLexer().isNot(AsmToken::Comma)) { 9823 Error(Loc, "unexpected token in directive"); 9824 return false; 9825 } 9826 9827 Parser.Lex(); 9828 } 9829 9830 Parser.Lex(); 9831 return false; 9832 } 9833 9834 /// parseDirectiveLtorg 9835 /// ::= .ltorg | .pool 9836 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9837 getTargetStreamer().emitCurrentConstantPool(); 9838 return false; 9839 } 9840 9841 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9842 const MCSection *Section = getStreamer().getCurrentSection().first; 9843 9844 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9845 TokError("unexpected token in directive"); 9846 return false; 9847 } 9848 9849 if (!Section) { 9850 getStreamer().InitSections(false); 9851 Section = getStreamer().getCurrentSection().first; 9852 } 9853 9854 assert(Section && "must have section to emit alignment"); 9855 if (Section->UseCodeAlign()) 9856 getStreamer().EmitCodeAlignment(2); 9857 else 9858 getStreamer().EmitValueToAlignment(2); 9859 9860 return false; 9861 } 9862 9863 /// parseDirectivePersonalityIndex 9864 /// ::= .personalityindex index 9865 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9866 MCAsmParser &Parser = getParser(); 9867 bool HasExistingPersonality = UC.hasPersonality(); 9868 9869 UC.recordPersonalityIndex(L); 9870 9871 if (!UC.hasFnStart()) { 9872 Parser.eatToEndOfStatement(); 9873 Error(L, ".fnstart must precede .personalityindex directive"); 9874 return false; 9875 } 9876 if (UC.cantUnwind()) { 9877 Parser.eatToEndOfStatement(); 9878 Error(L, ".personalityindex cannot be used with .cantunwind"); 9879 UC.emitCantUnwindLocNotes(); 9880 return false; 9881 } 9882 if (UC.hasHandlerData()) { 9883 Parser.eatToEndOfStatement(); 9884 Error(L, ".personalityindex must precede .handlerdata directive"); 9885 UC.emitHandlerDataLocNotes(); 9886 return false; 9887 } 9888 if (HasExistingPersonality) { 9889 Parser.eatToEndOfStatement(); 9890 Error(L, "multiple personality directives"); 9891 UC.emitPersonalityLocNotes(); 9892 return false; 9893 } 9894 9895 const MCExpr *IndexExpression; 9896 SMLoc IndexLoc = Parser.getTok().getLoc(); 9897 if (Parser.parseExpression(IndexExpression)) { 9898 Parser.eatToEndOfStatement(); 9899 return false; 9900 } 9901 9902 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9903 if (!CE) { 9904 Parser.eatToEndOfStatement(); 9905 Error(IndexLoc, "index must be a constant number"); 9906 return false; 9907 } 9908 if (CE->getValue() < 0 || 9909 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9910 Parser.eatToEndOfStatement(); 9911 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9912 return false; 9913 } 9914 9915 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9916 return false; 9917 } 9918 9919 /// parseDirectiveUnwindRaw 9920 /// ::= .unwind_raw offset, opcode [, opcode...] 9921 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9922 MCAsmParser &Parser = getParser(); 9923 if (!UC.hasFnStart()) { 9924 Parser.eatToEndOfStatement(); 9925 Error(L, ".fnstart must precede .unwind_raw directives"); 9926 return false; 9927 } 9928 9929 int64_t StackOffset; 9930 9931 const MCExpr *OffsetExpr; 9932 SMLoc OffsetLoc = getLexer().getLoc(); 9933 if (getLexer().is(AsmToken::EndOfStatement) || 9934 getParser().parseExpression(OffsetExpr)) { 9935 Error(OffsetLoc, "expected expression"); 9936 Parser.eatToEndOfStatement(); 9937 return false; 9938 } 9939 9940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9941 if (!CE) { 9942 Error(OffsetLoc, "offset must be a constant"); 9943 Parser.eatToEndOfStatement(); 9944 return false; 9945 } 9946 9947 StackOffset = CE->getValue(); 9948 9949 if (getLexer().isNot(AsmToken::Comma)) { 9950 Error(getLexer().getLoc(), "expected comma"); 9951 Parser.eatToEndOfStatement(); 9952 return false; 9953 } 9954 Parser.Lex(); 9955 9956 SmallVector<uint8_t, 16> Opcodes; 9957 for (;;) { 9958 const MCExpr *OE; 9959 9960 SMLoc OpcodeLoc = getLexer().getLoc(); 9961 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9962 Error(OpcodeLoc, "expected opcode expression"); 9963 Parser.eatToEndOfStatement(); 9964 return false; 9965 } 9966 9967 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9968 if (!OC) { 9969 Error(OpcodeLoc, "opcode value must be a constant"); 9970 Parser.eatToEndOfStatement(); 9971 return false; 9972 } 9973 9974 const int64_t Opcode = OC->getValue(); 9975 if (Opcode & ~0xff) { 9976 Error(OpcodeLoc, "invalid opcode"); 9977 Parser.eatToEndOfStatement(); 9978 return false; 9979 } 9980 9981 Opcodes.push_back(uint8_t(Opcode)); 9982 9983 if (getLexer().is(AsmToken::EndOfStatement)) 9984 break; 9985 9986 if (getLexer().isNot(AsmToken::Comma)) { 9987 Error(getLexer().getLoc(), "unexpected token in directive"); 9988 Parser.eatToEndOfStatement(); 9989 return false; 9990 } 9991 9992 Parser.Lex(); 9993 } 9994 9995 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9996 9997 Parser.Lex(); 9998 return false; 9999 } 10000 10001 /// parseDirectiveTLSDescSeq 10002 /// ::= .tlsdescseq tls-variable 10003 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10004 MCAsmParser &Parser = getParser(); 10005 10006 if (getLexer().isNot(AsmToken::Identifier)) { 10007 TokError("expected variable after '.tlsdescseq' directive"); 10008 Parser.eatToEndOfStatement(); 10009 return false; 10010 } 10011 10012 const MCSymbolRefExpr *SRE = 10013 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10014 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10015 Lex(); 10016 10017 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10018 Error(Parser.getTok().getLoc(), "unexpected token"); 10019 Parser.eatToEndOfStatement(); 10020 return false; 10021 } 10022 10023 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10024 return false; 10025 } 10026 10027 /// parseDirectiveMovSP 10028 /// ::= .movsp reg [, #offset] 10029 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10030 MCAsmParser &Parser = getParser(); 10031 if (!UC.hasFnStart()) { 10032 Parser.eatToEndOfStatement(); 10033 Error(L, ".fnstart must precede .movsp directives"); 10034 return false; 10035 } 10036 if (UC.getFPReg() != ARM::SP) { 10037 Parser.eatToEndOfStatement(); 10038 Error(L, "unexpected .movsp directive"); 10039 return false; 10040 } 10041 10042 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10043 int SPReg = tryParseRegister(); 10044 if (SPReg == -1) { 10045 Parser.eatToEndOfStatement(); 10046 Error(SPRegLoc, "register expected"); 10047 return false; 10048 } 10049 10050 if (SPReg == ARM::SP || SPReg == ARM::PC) { 10051 Parser.eatToEndOfStatement(); 10052 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10053 return false; 10054 } 10055 10056 int64_t Offset = 0; 10057 if (Parser.getTok().is(AsmToken::Comma)) { 10058 Parser.Lex(); 10059 10060 if (Parser.getTok().isNot(AsmToken::Hash)) { 10061 Error(Parser.getTok().getLoc(), "expected #constant"); 10062 Parser.eatToEndOfStatement(); 10063 return false; 10064 } 10065 Parser.Lex(); 10066 10067 const MCExpr *OffsetExpr; 10068 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10069 if (Parser.parseExpression(OffsetExpr)) { 10070 Parser.eatToEndOfStatement(); 10071 Error(OffsetLoc, "malformed offset expression"); 10072 return false; 10073 } 10074 10075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10076 if (!CE) { 10077 Parser.eatToEndOfStatement(); 10078 Error(OffsetLoc, "offset must be an immediate constant"); 10079 return false; 10080 } 10081 10082 Offset = CE->getValue(); 10083 } 10084 10085 getTargetStreamer().emitMovSP(SPReg, Offset); 10086 UC.saveFPReg(SPReg); 10087 10088 return false; 10089 } 10090 10091 /// parseDirectiveObjectArch 10092 /// ::= .object_arch name 10093 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10094 MCAsmParser &Parser = getParser(); 10095 if (getLexer().isNot(AsmToken::Identifier)) { 10096 Error(getLexer().getLoc(), "unexpected token"); 10097 Parser.eatToEndOfStatement(); 10098 return false; 10099 } 10100 10101 StringRef Arch = Parser.getTok().getString(); 10102 SMLoc ArchLoc = Parser.getTok().getLoc(); 10103 Lex(); 10104 10105 unsigned ID = ARM::parseArch(Arch); 10106 10107 if (ID == ARM::AK_INVALID) { 10108 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10109 Parser.eatToEndOfStatement(); 10110 return false; 10111 } 10112 10113 getTargetStreamer().emitObjectArch(ID); 10114 10115 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10116 Error(getLexer().getLoc(), "unexpected token"); 10117 Parser.eatToEndOfStatement(); 10118 } 10119 10120 return false; 10121 } 10122 10123 /// parseDirectiveAlign 10124 /// ::= .align 10125 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10126 // NOTE: if this is not the end of the statement, fall back to the target 10127 // agnostic handling for this directive which will correctly handle this. 10128 if (getLexer().isNot(AsmToken::EndOfStatement)) 10129 return true; 10130 10131 // '.align' is target specifically handled to mean 2**2 byte alignment. 10132 const MCSection *Section = getStreamer().getCurrentSection().first; 10133 assert(Section && "must have section to emit alignment"); 10134 if (Section->UseCodeAlign()) 10135 getStreamer().EmitCodeAlignment(4, 0); 10136 else 10137 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10138 10139 return false; 10140 } 10141 10142 /// parseDirectiveThumbSet 10143 /// ::= .thumb_set name, value 10144 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10145 MCAsmParser &Parser = getParser(); 10146 10147 StringRef Name; 10148 if (Parser.parseIdentifier(Name)) { 10149 TokError("expected identifier after '.thumb_set'"); 10150 Parser.eatToEndOfStatement(); 10151 return false; 10152 } 10153 10154 if (getLexer().isNot(AsmToken::Comma)) { 10155 TokError("expected comma after name '" + Name + "'"); 10156 Parser.eatToEndOfStatement(); 10157 return false; 10158 } 10159 Lex(); 10160 10161 MCSymbol *Sym; 10162 const MCExpr *Value; 10163 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10164 Parser, Sym, Value)) 10165 return true; 10166 10167 getTargetStreamer().emitThumbSet(Sym, Value); 10168 return false; 10169 } 10170 10171 /// Force static initialization. 10172 extern "C" void LLVMInitializeARMAsmParser() { 10173 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 10174 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 10175 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 10176 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 10177 } 10178 10179 #define GET_REGISTER_MATCHER 10180 #define GET_SUBTARGET_FEATURE_NAME 10181 #define GET_MATCHER_IMPLEMENTATION 10182 #include "ARMGenAsmMatcher.inc" 10183 10184 // FIXME: This structure should be moved inside ARMTargetParser 10185 // when we start to table-generate them, and we can use the ARM 10186 // flags below, that were generated by table-gen. 10187 static const struct { 10188 const unsigned Kind; 10189 const uint64_t ArchCheck; 10190 const FeatureBitset Features; 10191 } Extensions[] = { 10192 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10193 { ARM::AEK_CRYPTO, Feature_HasV8, 10194 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10195 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10196 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10197 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10198 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10199 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10200 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10201 // FIXME: Only available in A-class, isel not predicated 10202 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10203 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10204 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10205 // FIXME: Unsupported extensions. 10206 { ARM::AEK_OS, Feature_None, {} }, 10207 { ARM::AEK_IWMMXT, Feature_None, {} }, 10208 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10209 { ARM::AEK_MAVERICK, Feature_None, {} }, 10210 { ARM::AEK_XSCALE, Feature_None, {} }, 10211 }; 10212 10213 /// parseDirectiveArchExtension 10214 /// ::= .arch_extension [no]feature 10215 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10216 MCAsmParser &Parser = getParser(); 10217 10218 if (getLexer().isNot(AsmToken::Identifier)) { 10219 Error(getLexer().getLoc(), "unexpected token"); 10220 Parser.eatToEndOfStatement(); 10221 return false; 10222 } 10223 10224 StringRef Name = Parser.getTok().getString(); 10225 SMLoc ExtLoc = Parser.getTok().getLoc(); 10226 Lex(); 10227 10228 bool EnableFeature = true; 10229 if (Name.startswith_lower("no")) { 10230 EnableFeature = false; 10231 Name = Name.substr(2); 10232 } 10233 unsigned FeatureKind = ARM::parseArchExt(Name); 10234 if (FeatureKind == ARM::AEK_INVALID) 10235 Error(ExtLoc, "unknown architectural extension: " + Name); 10236 10237 for (const auto &Extension : Extensions) { 10238 if (Extension.Kind != FeatureKind) 10239 continue; 10240 10241 if (Extension.Features.none()) 10242 report_fatal_error("unsupported architectural extension: " + Name); 10243 10244 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10245 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10246 "allowed for the current base architecture"); 10247 return false; 10248 } 10249 10250 MCSubtargetInfo &STI = copySTI(); 10251 FeatureBitset ToggleFeatures = EnableFeature 10252 ? (~STI.getFeatureBits() & Extension.Features) 10253 : ( STI.getFeatureBits() & Extension.Features); 10254 10255 uint64_t Features = 10256 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10257 setAvailableFeatures(Features); 10258 return false; 10259 } 10260 10261 Error(ExtLoc, "unknown architectural extension: " + Name); 10262 Parser.eatToEndOfStatement(); 10263 return false; 10264 } 10265 10266 // Define this matcher function after the auto-generated include so we 10267 // have the match class enum definitions. 10268 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10269 unsigned Kind) { 10270 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10271 // If the kind is a token for a literal immediate, check if our asm 10272 // operand matches. This is for InstAliases which have a fixed-value 10273 // immediate in the syntax. 10274 switch (Kind) { 10275 default: break; 10276 case MCK__35_0: 10277 if (Op.isImm()) 10278 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10279 if (CE->getValue() == 0) 10280 return Match_Success; 10281 break; 10282 case MCK_ModImm: 10283 if (Op.isImm()) { 10284 const MCExpr *SOExpr = Op.getImm(); 10285 int64_t Value; 10286 if (!SOExpr->evaluateAsAbsolute(Value)) 10287 return Match_Success; 10288 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10289 "expression value must be representable in 32 bits"); 10290 } 10291 break; 10292 case MCK_rGPR: 10293 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10294 return Match_Success; 10295 break; 10296 case MCK_GPRPair: 10297 if (Op.isReg() && 10298 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10299 return Match_Success; 10300 break; 10301 } 10302 return Match_InvalidOperand; 10303 } 10304