Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Declares a Simulator for ARM instructions if we are not generating a native
      6 // ARM binary. This Simulator allows us to run and debug ARM code generation on
      7 // regular desktop machines.
      8 // V8 calls into generated code by using the GeneratedCode class,
      9 // which will start execution in the Simulator or forwards to the real entry
     10 // on a ARM HW platform.
     11 
     12 #ifndef V8_ARM_SIMULATOR_ARM_H_
     13 #define V8_ARM_SIMULATOR_ARM_H_
     14 
     15 #include "src/allocation.h"
     16 #include "src/base/lazy-instance.h"
     17 #include "src/base/platform/mutex.h"
     18 #include "src/boxed-float.h"
     19 
     20 #if defined(USE_SIMULATOR)
     21 // Running with a simulator.
     22 
     23 #include "src/arm/constants-arm.h"
     24 #include "src/assembler.h"
     25 #include "src/base/hashmap.h"
     26 #include "src/simulator-base.h"
     27 
     28 namespace v8 {
     29 namespace internal {
     30 
     31 class CachePage {
     32  public:
     33   static const int LINE_VALID = 0;
     34   static const int LINE_INVALID = 1;
     35 
     36   static const int kPageShift = 12;
     37   static const int kPageSize = 1 << kPageShift;
     38   static const int kPageMask = kPageSize - 1;
     39   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
     40   static const int kLineLength = 1 << kLineShift;
     41   static const int kLineMask = kLineLength - 1;
     42 
     43   CachePage() {
     44     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
     45   }
     46 
     47   char* ValidityByte(int offset) {
     48     return &validity_map_[offset >> kLineShift];
     49   }
     50 
     51   char* CachedData(int offset) {
     52     return &data_[offset];
     53   }
     54 
     55  private:
     56   char data_[kPageSize];   // The cached data.
     57   static const int kValidityMapSize = kPageSize >> kLineShift;
     58   char validity_map_[kValidityMapSize];  // One byte per line.
     59 };
     60 
     61 class Simulator : public SimulatorBase {
     62  public:
     63   friend class ArmDebugger;
     64   enum Register {
     65     no_reg = -1,
     66     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
     67     r8, r9, r10, r11, r12, r13, r14, r15,
     68     num_registers,
     69     sp = 13,
     70     lr = 14,
     71     pc = 15,
     72     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
     73     s8, s9, s10, s11, s12, s13, s14, s15,
     74     s16, s17, s18, s19, s20, s21, s22, s23,
     75     s24, s25, s26, s27, s28, s29, s30, s31,
     76     num_s_registers = 32,
     77     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
     78     d8, d9, d10, d11, d12, d13, d14, d15,
     79     d16, d17, d18, d19, d20, d21, d22, d23,
     80     d24, d25, d26, d27, d28, d29, d30, d31,
     81     num_d_registers = 32,
     82     q0 = 0, q1, q2, q3, q4, q5, q6, q7,
     83     q8, q9, q10, q11, q12, q13, q14, q15,
     84     num_q_registers = 16
     85   };
     86 
     87   explicit Simulator(Isolate* isolate);
     88   ~Simulator();
     89 
     90   // The currently executing Simulator instance. Potentially there can be one
     91   // for each native thread.
     92   V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate);
     93 
     94   // Accessors for register state. Reading the pc value adheres to the ARM
     95   // architecture specification and is off by a 8 from the currently executing
     96   // instruction.
     97   void set_register(int reg, int32_t value);
     98   int32_t get_register(int reg) const;
     99   double get_double_from_register_pair(int reg);
    100   void set_register_pair_from_double(int reg, double* value);
    101   void set_dw_register(int dreg, const int* dbl);
    102 
    103   // Support for VFP.
    104   void get_d_register(int dreg, uint64_t* value);
    105   void set_d_register(int dreg, const uint64_t* value);
    106   void get_d_register(int dreg, uint32_t* value);
    107   void set_d_register(int dreg, const uint32_t* value);
    108   // Support for NEON.
    109   template <typename T, int SIZE = kSimd128Size>
    110   void get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]);
    111   template <typename T, int SIZE = kSimd128Size>
    112   void set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]);
    113 
    114   void set_s_register(int reg, unsigned int value);
    115   unsigned int get_s_register(int reg) const;
    116 
    117   void set_d_register_from_double(int dreg, const Float64 dbl) {
    118     SetVFPRegister<Float64, 2>(dreg, dbl);
    119   }
    120   void set_d_register_from_double(int dreg, const double dbl) {
    121     SetVFPRegister<double, 2>(dreg, dbl);
    122   }
    123 
    124   Float64 get_double_from_d_register(int dreg) {
    125     return GetFromVFPRegister<Float64, 2>(dreg);
    126   }
    127 
    128   void set_s_register_from_float(int sreg, const Float32 flt) {
    129     SetVFPRegister<Float32, 1>(sreg, flt);
    130   }
    131   void set_s_register_from_float(int sreg, const float flt) {
    132     SetVFPRegister<float, 1>(sreg, flt);
    133   }
    134 
    135   Float32 get_float_from_s_register(int sreg) {
    136     return GetFromVFPRegister<Float32, 1>(sreg);
    137   }
    138 
    139   void set_s_register_from_sinteger(int sreg, const int sint) {
    140     SetVFPRegister<int, 1>(sreg, sint);
    141   }
    142 
    143   int get_sinteger_from_s_register(int sreg) {
    144     return GetFromVFPRegister<int, 1>(sreg);
    145   }
    146 
    147   // Special case of set_register and get_register to access the raw PC value.
    148   void set_pc(int32_t value);
    149   int32_t get_pc() const;
    150 
    151   Address get_sp() const { return static_cast<Address>(get_register(sp)); }
    152 
    153   // Accessor to the internal simulator stack area.
    154   uintptr_t StackLimit(uintptr_t c_limit) const;
    155 
    156   // Executes ARM instructions until the PC reaches end_sim_pc.
    157   void Execute();
    158 
    159   template <typename Return, typename... Args>
    160   Return Call(Address entry, Args... args) {
    161     return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...);
    162   }
    163 
    164   // Alternative: call a 2-argument double function.
    165   template <typename Return>
    166   Return CallFP(Address entry, double d0, double d1) {
    167     return ConvertReturn<Return>(CallFPImpl(entry, d0, d1));
    168   }
    169 
    170   // Push an address onto the JS stack.
    171   uintptr_t PushAddress(uintptr_t address);
    172 
    173   // Pop an address from the JS stack.
    174   uintptr_t PopAddress();
    175 
    176   // Debugger input.
    177   void set_last_debugger_input(char* input);
    178   char* last_debugger_input() { return last_debugger_input_; }
    179 
    180   // Redirection support.
    181   static void SetRedirectInstruction(Instruction* instruction);
    182 
    183   // ICache checking.
    184   static bool ICacheMatch(void* one, void* two);
    185   static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
    186                           size_t size);
    187 
    188   // Returns true if pc register contains one of the 'special_values' defined
    189   // below (bad_lr, end_sim_pc).
    190   bool has_bad_pc() const;
    191 
    192   // EABI variant for double arguments in use.
    193   bool use_eabi_hardfloat() {
    194 #if USE_EABI_HARDFLOAT
    195     return true;
    196 #else
    197     return false;
    198 #endif
    199   }
    200 
    201  private:
    202   enum special_values {
    203     // Known bad pc value to ensure that the simulator does not execute
    204     // without being properly setup.
    205     bad_lr = -1,
    206     // A pc value used to signal the simulator to stop execution.  Generally
    207     // the lr is set to this value on transition from native C code to
    208     // simulated execution, so that the simulator can "return" to the native
    209     // C code.
    210     end_sim_pc = -2
    211   };
    212 
    213   V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count,
    214                                       const intptr_t* arguments);
    215   intptr_t CallFPImpl(Address entry, double d0, double d1);
    216 
    217   // Unsupported instructions use Format to print an error and stop execution.
    218   void Format(Instruction* instr, const char* format);
    219 
    220   // Checks if the current instruction should be executed based on its
    221   // condition bits.
    222   inline bool ConditionallyExecute(Instruction* instr);
    223 
    224   // Helper functions to set the conditional flags in the architecture state.
    225   void SetNZFlags(int32_t val);
    226   void SetCFlag(bool val);
    227   void SetVFlag(bool val);
    228   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
    229   bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1);
    230   bool OverflowFrom(int32_t alu_out,
    231                     int32_t left,
    232                     int32_t right,
    233                     bool addition);
    234 
    235   inline int GetCarry() {
    236     return c_flag_ ? 1 : 0;
    237   }
    238 
    239   // Support for VFP.
    240   void Compute_FPSCR_Flags(float val1, float val2);
    241   void Compute_FPSCR_Flags(double val1, double val2);
    242   void Copy_FPSCR_to_APSR();
    243   inline float canonicalizeNaN(float value);
    244   inline double canonicalizeNaN(double value);
    245   inline Float32 canonicalizeNaN(Float32 value);
    246   inline Float64 canonicalizeNaN(Float64 value);
    247 
    248   // Helper functions to decode common "addressing" modes
    249   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
    250   int32_t GetImm(Instruction* instr, bool* carry_out);
    251   int32_t ProcessPU(Instruction* instr,
    252                     int num_regs,
    253                     int operand_size,
    254                     intptr_t* start_address,
    255                     intptr_t* end_address);
    256   void HandleRList(Instruction* instr, bool load);
    257   void HandleVList(Instruction* inst);
    258   void SoftwareInterrupt(Instruction* instr);
    259 
    260   // Stop helper functions.
    261   inline bool isStopInstruction(Instruction* instr);
    262   inline bool isWatchedStop(uint32_t bkpt_code);
    263   inline bool isEnabledStop(uint32_t bkpt_code);
    264   inline void EnableStop(uint32_t bkpt_code);
    265   inline void DisableStop(uint32_t bkpt_code);
    266   inline void IncreaseStopCounter(uint32_t bkpt_code);
    267   void PrintStopInfo(uint32_t code);
    268 
    269   // Read and write memory.
    270   // The *Ex functions are exclusive access. The writes return the strex status:
    271   // 0 if the write succeeds, and 1 if the write fails.
    272   inline uint8_t ReadBU(int32_t addr);
    273   inline int8_t ReadB(int32_t addr);
    274   uint8_t ReadExBU(int32_t addr);
    275   inline void WriteB(int32_t addr, uint8_t value);
    276   inline void WriteB(int32_t addr, int8_t value);
    277   int WriteExB(int32_t addr, uint8_t value);
    278 
    279   inline uint16_t ReadHU(int32_t addr);
    280   inline int16_t ReadH(int32_t addr);
    281   uint16_t ReadExHU(int32_t addr);
    282   // Note: Overloaded on the sign of the value.
    283   inline void WriteH(int32_t addr, uint16_t value);
    284   inline void WriteH(int32_t addr, int16_t value);
    285   int WriteExH(int32_t addr, uint16_t value);
    286 
    287   inline int ReadW(int32_t addr);
    288   int ReadExW(int32_t addr);
    289   inline void WriteW(int32_t addr, int value);
    290   int WriteExW(int32_t addr, int value);
    291 
    292   int32_t* ReadDW(int32_t addr);
    293   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
    294   int32_t* ReadExDW(int32_t addr);
    295   int WriteExDW(int32_t addr, int32_t value1, int32_t value2);
    296 
    297   // Executing is handled based on the instruction type.
    298   // Both type 0 and type 1 rolled into one.
    299   void DecodeType01(Instruction* instr);
    300   void DecodeType2(Instruction* instr);
    301   void DecodeType3(Instruction* instr);
    302   void DecodeType4(Instruction* instr);
    303   void DecodeType5(Instruction* instr);
    304   void DecodeType6(Instruction* instr);
    305   void DecodeType7(Instruction* instr);
    306 
    307   // CP15 coprocessor instructions.
    308   void DecodeTypeCP15(Instruction* instr);
    309 
    310   // Support for VFP.
    311   void DecodeTypeVFP(Instruction* instr);
    312   void DecodeType6CoprocessorIns(Instruction* instr);
    313   void DecodeSpecialCondition(Instruction* instr);
    314 
    315   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
    316   void DecodeVCMP(Instruction* instr);
    317   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
    318   int32_t ConvertDoubleToInt(double val, bool unsigned_integer,
    319                              VFPRoundingMode mode);
    320   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
    321 
    322   // Executes one instruction.
    323   void InstructionDecode(Instruction* instr);
    324 
    325   // ICache.
    326   static void CheckICache(base::CustomMatcherHashMap* i_cache,
    327                           Instruction* instr);
    328   static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
    329                            int size);
    330   static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
    331                                  void* page);
    332 
    333   // Handle arguments and return value for runtime FP functions.
    334   void GetFpArgs(double* x, double* y, int32_t* z);
    335   void SetFpResult(const double& result);
    336   void TrashCallerSaveRegisters();
    337 
    338   template<class ReturnType, int register_size>
    339       ReturnType GetFromVFPRegister(int reg_index);
    340 
    341   template<class InputType, int register_size>
    342       void SetVFPRegister(int reg_index, const InputType& value);
    343 
    344   void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value);
    345   uint32_t GetFromSpecialRegister(SRegister reg);
    346 
    347   void CallInternal(Address entry);
    348 
    349   // Architecture state.
    350   // Saturating instructions require a Q flag to indicate saturation.
    351   // There is currently no way to read the CPSR directly, and thus read the Q
    352   // flag, so this is left unimplemented.
    353   int32_t registers_[16];
    354   bool n_flag_;
    355   bool z_flag_;
    356   bool c_flag_;
    357   bool v_flag_;
    358 
    359   // VFP architecture state.
    360   unsigned int vfp_registers_[num_d_registers * 2];
    361   bool n_flag_FPSCR_;
    362   bool z_flag_FPSCR_;
    363   bool c_flag_FPSCR_;
    364   bool v_flag_FPSCR_;
    365 
    366   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
    367   VFPRoundingMode FPSCR_rounding_mode_;
    368   bool FPSCR_default_NaN_mode_;
    369 
    370   // VFP FP exception flags architecture state.
    371   bool inv_op_vfp_flag_;
    372   bool div_zero_vfp_flag_;
    373   bool overflow_vfp_flag_;
    374   bool underflow_vfp_flag_;
    375   bool inexact_vfp_flag_;
    376 
    377   // Simulator support.
    378   char* stack_;
    379   bool pc_modified_;
    380   int icount_;
    381 
    382   // Debugger input.
    383   char* last_debugger_input_;
    384 
    385   // Registered breakpoints.
    386   Instruction* break_pc_;
    387   Instr break_instr_;
    388 
    389   v8::internal::Isolate* isolate_;
    390 
    391   // A stop is watched if its code is less than kNumOfWatchedStops.
    392   // Only watched stops support enabling/disabling and the counter feature.
    393   static const uint32_t kNumOfWatchedStops = 256;
    394 
    395   // Breakpoint is disabled if bit 31 is set.
    396   static const uint32_t kStopDisabledBit = 1 << 31;
    397 
    398   // A stop is enabled, meaning the simulator will stop when meeting the
    399   // instruction, if bit 31 of watched_stops_[code].count is unset.
    400   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
    401   // the breakpoint was hit or gone through.
    402   struct StopCountAndDesc {
    403     uint32_t count;
    404     char* desc;
    405   };
    406   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
    407 
    408   // Synchronization primitives. See ARM DDI 0406C.b, A2.9.
    409   enum class MonitorAccess {
    410     Open,
    411     Exclusive,
    412   };
    413 
    414   enum class TransactionSize {
    415     None = 0,
    416     Byte = 1,
    417     HalfWord = 2,
    418     Word = 4,
    419     DoubleWord = 8,
    420   };
    421 
    422   // The least-significant bits of the address are ignored. The number of bits
    423   // is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3.
    424   static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1);
    425 
    426   class LocalMonitor {
    427    public:
    428     LocalMonitor();
    429 
    430     // These functions manage the state machine for the local monitor, but do
    431     // not actually perform loads and stores. NotifyStoreExcl only returns
    432     // true if the exclusive store is allowed; the global monitor will still
    433     // have to be checked to see whether the memory should be updated.
    434     void NotifyLoad(int32_t addr);
    435     void NotifyLoadExcl(int32_t addr, TransactionSize size);
    436     void NotifyStore(int32_t addr);
    437     bool NotifyStoreExcl(int32_t addr, TransactionSize size);
    438 
    439    private:
    440     void Clear();
    441 
    442     MonitorAccess access_state_;
    443     int32_t tagged_addr_;
    444     TransactionSize size_;
    445   };
    446 
    447   class GlobalMonitor {
    448    public:
    449     GlobalMonitor();
    450 
    451     class Processor {
    452      public:
    453       Processor();
    454 
    455      private:
    456       friend class GlobalMonitor;
    457       // These functions manage the state machine for the global monitor, but do
    458       // not actually perform loads and stores.
    459       void Clear_Locked();
    460       void NotifyLoadExcl_Locked(int32_t addr);
    461       void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
    462       bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);
    463 
    464       MonitorAccess access_state_;
    465       int32_t tagged_addr_;
    466       Processor* next_;
    467       Processor* prev_;
    468       // A strex can fail due to background cache evictions. Rather than
    469       // simulating this, we'll just occasionally introduce cases where an
    470       // exclusive store fails. This will happen once after every
    471       // kMaxFailureCounter exclusive stores.
    472       static const int kMaxFailureCounter = 5;
    473       int failure_counter_;
    474     };
    475 
    476     // Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
    477     base::Mutex mutex;
    478 
    479     void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
    480     void NotifyStore_Locked(int32_t addr, Processor* processor);
    481     bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);
    482 
    483     // Called when the simulator is destroyed.
    484     void RemoveProcessor(Processor* processor);
    485 
    486    private:
    487     bool IsProcessorInLinkedList_Locked(Processor* processor) const;
    488     void PrependProcessor_Locked(Processor* processor);
    489 
    490     Processor* head_;
    491   };
    492 
    493   LocalMonitor local_monitor_;
    494   GlobalMonitor::Processor global_monitor_processor_;
    495   static base::LazyInstance<GlobalMonitor>::type global_monitor_;
    496 };
    497 
    498 }  // namespace internal
    499 }  // namespace v8
    500 
    501 #endif  // defined(USE_SIMULATOR)
    502 #endif  // V8_ARM_SIMULATOR_ARM_H_
    503