Home | History | Annotate | Download | only in ARM
      1 //===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARMBaseInstrInfo.h"
     15 #include "ARM.h"
     16 #include "ARMAddressingModes.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMHazardRecognizer.h"
     19 #include "ARMMachineFunctionInfo.h"
     20 #include "ARMRegisterInfo.h"
     21 #include "llvm/Constants.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalValue.h"
     24 #include "llvm/CodeGen/LiveVariables.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineMemOperand.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/CodeGen/PseudoSourceValue.h"
     32 #include "llvm/MC/MCAsmInfo.h"
     33 #include "llvm/Support/BranchProbability.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/ADT/STLExtras.h"
     38 
     39 #define GET_INSTRINFO_CTOR
     40 #include "ARMGenInstrInfo.inc"
     41 
     42 using namespace llvm;
     43 
     44 static cl::opt<bool>
     45 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
     46                cl::desc("Enable ARM 2-addr to 3-addr conv"));
     47 
     48 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
     49 struct ARM_MLxEntry {
     50   unsigned MLxOpc;     // MLA / MLS opcode
     51   unsigned MulOpc;     // Expanded multiplication opcode
     52   unsigned AddSubOpc;  // Expanded add / sub opcode
     53   bool NegAcc;         // True if the acc is negated before the add / sub.
     54   bool HasLane;        // True if instruction has an extra "lane" operand.
     55 };
     56 
     57 static const ARM_MLxEntry ARM_MLxTable[] = {
     58   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
     59   // fp scalar ops
     60   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
     61   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
     62   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
     63   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
     64   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
     65   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
     66   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
     67   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
     68 
     69   // fp SIMD ops
     70   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
     71   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
     72   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
     73   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
     74   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
     75   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
     76   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
     77   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
     78 };
     79 
     80 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
     81   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
     82     Subtarget(STI) {
     83   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
     84     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
     85       assert(false && "Duplicated entries?");
     86     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
     87     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
     88   }
     89 }
     90 
     91 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
     92 // currently defaults to no prepass hazard recognizer.
     93 ScheduleHazardRecognizer *ARMBaseInstrInfo::
     94 CreateTargetHazardRecognizer(const TargetMachine *TM,
     95                              const ScheduleDAG *DAG) const {
     96   if (usePreRAHazardRecognizer()) {
     97     const InstrItineraryData *II = TM->getInstrItineraryData();
     98     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
     99   }
    100   return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
    101 }
    102 
    103 ScheduleHazardRecognizer *ARMBaseInstrInfo::
    104 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    105                                    const ScheduleDAG *DAG) const {
    106   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
    107     return (ScheduleHazardRecognizer *)
    108       new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
    109   return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
    110 }
    111 
    112 MachineInstr *
    113 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
    114                                         MachineBasicBlock::iterator &MBBI,
    115                                         LiveVariables *LV) const {
    116   // FIXME: Thumb2 support.
    117 
    118   if (!EnableARM3Addr)
    119     return NULL;
    120 
    121   MachineInstr *MI = MBBI;
    122   MachineFunction &MF = *MI->getParent()->getParent();
    123   uint64_t TSFlags = MI->getDesc().TSFlags;
    124   bool isPre = false;
    125   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
    126   default: return NULL;
    127   case ARMII::IndexModePre:
    128     isPre = true;
    129     break;
    130   case ARMII::IndexModePost:
    131     break;
    132   }
    133 
    134   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
    135   // operation.
    136   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
    137   if (MemOpc == 0)
    138     return NULL;
    139 
    140   MachineInstr *UpdateMI = NULL;
    141   MachineInstr *MemMI = NULL;
    142   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
    143   const MCInstrDesc &MCID = MI->getDesc();
    144   unsigned NumOps = MCID.getNumOperands();
    145   bool isLoad = !MCID.mayStore();
    146   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
    147   const MachineOperand &Base = MI->getOperand(2);
    148   const MachineOperand &Offset = MI->getOperand(NumOps-3);
    149   unsigned WBReg = WB.getReg();
    150   unsigned BaseReg = Base.getReg();
    151   unsigned OffReg = Offset.getReg();
    152   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
    153   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
    154   switch (AddrMode) {
    155   default:
    156     assert(false && "Unknown indexed op!");
    157     return NULL;
    158   case ARMII::AddrMode2: {
    159     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    160     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    161     if (OffReg == 0) {
    162       if (ARM_AM::getSOImmVal(Amt) == -1)
    163         // Can't encode it in a so_imm operand. This transformation will
    164         // add more than 1 instruction. Abandon!
    165         return NULL;
    166       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    167                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    168         .addReg(BaseReg).addImm(Amt)
    169         .addImm(Pred).addReg(0).addReg(0);
    170     } else if (Amt != 0) {
    171       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    172       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
    173       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    174                          get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
    175         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
    176         .addImm(Pred).addReg(0).addReg(0);
    177     } else
    178       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    179                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    180         .addReg(BaseReg).addReg(OffReg)
    181         .addImm(Pred).addReg(0).addReg(0);
    182     break;
    183   }
    184   case ARMII::AddrMode3 : {
    185     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    186     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    187     if (OffReg == 0)
    188       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
    189       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    190                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    191         .addReg(BaseReg).addImm(Amt)
    192         .addImm(Pred).addReg(0).addReg(0);
    193     else
    194       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    195                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    196         .addReg(BaseReg).addReg(OffReg)
    197         .addImm(Pred).addReg(0).addReg(0);
    198     break;
    199   }
    200   }
    201 
    202   std::vector<MachineInstr*> NewMIs;
    203   if (isPre) {
    204     if (isLoad)
    205       MemMI = BuildMI(MF, MI->getDebugLoc(),
    206                       get(MemOpc), MI->getOperand(0).getReg())
    207         .addReg(WBReg).addImm(0).addImm(Pred);
    208     else
    209       MemMI = BuildMI(MF, MI->getDebugLoc(),
    210                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    211         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    212     NewMIs.push_back(MemMI);
    213     NewMIs.push_back(UpdateMI);
    214   } else {
    215     if (isLoad)
    216       MemMI = BuildMI(MF, MI->getDebugLoc(),
    217                       get(MemOpc), MI->getOperand(0).getReg())
    218         .addReg(BaseReg).addImm(0).addImm(Pred);
    219     else
    220       MemMI = BuildMI(MF, MI->getDebugLoc(),
    221                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    222         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    223     if (WB.isDead())
    224       UpdateMI->getOperand(0).setIsDead();
    225     NewMIs.push_back(UpdateMI);
    226     NewMIs.push_back(MemMI);
    227   }
    228 
    229   // Transfer LiveVariables states, kill / dead info.
    230   if (LV) {
    231     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    232       MachineOperand &MO = MI->getOperand(i);
    233       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    234         unsigned Reg = MO.getReg();
    235 
    236         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
    237         if (MO.isDef()) {
    238           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
    239           if (MO.isDead())
    240             LV->addVirtualRegisterDead(Reg, NewMI);
    241         }
    242         if (MO.isUse() && MO.isKill()) {
    243           for (unsigned j = 0; j < 2; ++j) {
    244             // Look at the two new MI's in reverse order.
    245             MachineInstr *NewMI = NewMIs[j];
    246             if (!NewMI->readsRegister(Reg))
    247               continue;
    248             LV->addVirtualRegisterKilled(Reg, NewMI);
    249             if (VI.removeKill(MI))
    250               VI.Kills.push_back(NewMI);
    251             break;
    252           }
    253         }
    254       }
    255     }
    256   }
    257 
    258   MFI->insert(MBBI, NewMIs[1]);
    259   MFI->insert(MBBI, NewMIs[0]);
    260   return NewMIs[0];
    261 }
    262 
    263 // Branch analysis.
    264 bool
    265 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    266                                 MachineBasicBlock *&FBB,
    267                                 SmallVectorImpl<MachineOperand> &Cond,
    268                                 bool AllowModify) const {
    269   // If the block has no terminators, it just falls into the block after it.
    270   MachineBasicBlock::iterator I = MBB.end();
    271   if (I == MBB.begin())
    272     return false;
    273   --I;
    274   while (I->isDebugValue()) {
    275     if (I == MBB.begin())
    276       return false;
    277     --I;
    278   }
    279   if (!isUnpredicatedTerminator(I))
    280     return false;
    281 
    282   // Get the last instruction in the block.
    283   MachineInstr *LastInst = I;
    284 
    285   // If there is only one terminator instruction, process it.
    286   unsigned LastOpc = LastInst->getOpcode();
    287   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    288     if (isUncondBranchOpcode(LastOpc)) {
    289       TBB = LastInst->getOperand(0).getMBB();
    290       return false;
    291     }
    292     if (isCondBranchOpcode(LastOpc)) {
    293       // Block ends with fall-through condbranch.
    294       TBB = LastInst->getOperand(0).getMBB();
    295       Cond.push_back(LastInst->getOperand(1));
    296       Cond.push_back(LastInst->getOperand(2));
    297       return false;
    298     }
    299     return true;  // Can't handle indirect branch.
    300   }
    301 
    302   // Get the instruction before it if it is a terminator.
    303   MachineInstr *SecondLastInst = I;
    304   unsigned SecondLastOpc = SecondLastInst->getOpcode();
    305 
    306   // If AllowModify is true and the block ends with two or more unconditional
    307   // branches, delete all but the first unconditional branch.
    308   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
    309     while (isUncondBranchOpcode(SecondLastOpc)) {
    310       LastInst->eraseFromParent();
    311       LastInst = SecondLastInst;
    312       LastOpc = LastInst->getOpcode();
    313       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    314         // Return now the only terminator is an unconditional branch.
    315         TBB = LastInst->getOperand(0).getMBB();
    316         return false;
    317       } else {
    318         SecondLastInst = I;
    319         SecondLastOpc = SecondLastInst->getOpcode();
    320       }
    321     }
    322   }
    323 
    324   // If there are three terminators, we don't know what sort of block this is.
    325   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    326     return true;
    327 
    328   // If the block ends with a B and a Bcc, handle it.
    329   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    330     TBB =  SecondLastInst->getOperand(0).getMBB();
    331     Cond.push_back(SecondLastInst->getOperand(1));
    332     Cond.push_back(SecondLastInst->getOperand(2));
    333     FBB = LastInst->getOperand(0).getMBB();
    334     return false;
    335   }
    336 
    337   // If the block ends with two unconditional branches, handle it.  The second
    338   // one is not executed, so remove it.
    339   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    340     TBB = SecondLastInst->getOperand(0).getMBB();
    341     I = LastInst;
    342     if (AllowModify)
    343       I->eraseFromParent();
    344     return false;
    345   }
    346 
    347   // ...likewise if it ends with a branch table followed by an unconditional
    348   // branch. The branch folder can create these, and we must get rid of them for
    349   // correctness of Thumb constant islands.
    350   if ((isJumpTableBranchOpcode(SecondLastOpc) ||
    351        isIndirectBranchOpcode(SecondLastOpc)) &&
    352       isUncondBranchOpcode(LastOpc)) {
    353     I = LastInst;
    354     if (AllowModify)
    355       I->eraseFromParent();
    356     return true;
    357   }
    358 
    359   // Otherwise, can't handle this.
    360   return true;
    361 }
    362 
    363 
    364 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    365   MachineBasicBlock::iterator I = MBB.end();
    366   if (I == MBB.begin()) return 0;
    367   --I;
    368   while (I->isDebugValue()) {
    369     if (I == MBB.begin())
    370       return 0;
    371     --I;
    372   }
    373   if (!isUncondBranchOpcode(I->getOpcode()) &&
    374       !isCondBranchOpcode(I->getOpcode()))
    375     return 0;
    376 
    377   // Remove the branch.
    378   I->eraseFromParent();
    379 
    380   I = MBB.end();
    381 
    382   if (I == MBB.begin()) return 1;
    383   --I;
    384   if (!isCondBranchOpcode(I->getOpcode()))
    385     return 1;
    386 
    387   // Remove the branch.
    388   I->eraseFromParent();
    389   return 2;
    390 }
    391 
    392 unsigned
    393 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    394                                MachineBasicBlock *FBB,
    395                                const SmallVectorImpl<MachineOperand> &Cond,
    396                                DebugLoc DL) const {
    397   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
    398   int BOpc   = !AFI->isThumbFunction()
    399     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
    400   int BccOpc = !AFI->isThumbFunction()
    401     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
    402 
    403   // Shouldn't be a fall through.
    404   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    405   assert((Cond.size() == 2 || Cond.size() == 0) &&
    406          "ARM branch conditions have two components!");
    407 
    408   if (FBB == 0) {
    409     if (Cond.empty()) // Unconditional branch?
    410       BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    411     else
    412       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    413         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    414     return 1;
    415   }
    416 
    417   // Two-way conditional branch.
    418   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    419     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    420   BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    421   return 2;
    422 }
    423 
    424 bool ARMBaseInstrInfo::
    425 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    426   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
    427   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
    428   return false;
    429 }
    430 
    431 bool ARMBaseInstrInfo::
    432 PredicateInstruction(MachineInstr *MI,
    433                      const SmallVectorImpl<MachineOperand> &Pred) const {
    434   unsigned Opc = MI->getOpcode();
    435   if (isUncondBranchOpcode(Opc)) {
    436     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
    437     MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
    438     MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
    439     return true;
    440   }
    441 
    442   int PIdx = MI->findFirstPredOperandIdx();
    443   if (PIdx != -1) {
    444     MachineOperand &PMO = MI->getOperand(PIdx);
    445     PMO.setImm(Pred[0].getImm());
    446     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
    447     return true;
    448   }
    449   return false;
    450 }
    451 
    452 bool ARMBaseInstrInfo::
    453 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    454                   const SmallVectorImpl<MachineOperand> &Pred2) const {
    455   if (Pred1.size() > 2 || Pred2.size() > 2)
    456     return false;
    457 
    458   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
    459   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
    460   if (CC1 == CC2)
    461     return true;
    462 
    463   switch (CC1) {
    464   default:
    465     return false;
    466   case ARMCC::AL:
    467     return true;
    468   case ARMCC::HS:
    469     return CC2 == ARMCC::HI;
    470   case ARMCC::LS:
    471     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
    472   case ARMCC::GE:
    473     return CC2 == ARMCC::GT;
    474   case ARMCC::LE:
    475     return CC2 == ARMCC::LT;
    476   }
    477 }
    478 
    479 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
    480                                     std::vector<MachineOperand> &Pred) const {
    481   // FIXME: This confuses implicit_def with optional CPSR def.
    482   const MCInstrDesc &MCID = MI->getDesc();
    483   if (!MCID.getImplicitDefs() && !MCID.hasOptionalDef())
    484     return false;
    485 
    486   bool Found = false;
    487   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    488     const MachineOperand &MO = MI->getOperand(i);
    489     if (MO.isReg() && MO.getReg() == ARM::CPSR) {
    490       Pred.push_back(MO);
    491       Found = true;
    492     }
    493   }
    494 
    495   return Found;
    496 }
    497 
    498 /// isPredicable - Return true if the specified instruction can be predicated.
    499 /// By default, this returns true for every instruction with a
    500 /// PredicateOperand.
    501 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
    502   const MCInstrDesc &MCID = MI->getDesc();
    503   if (!MCID.isPredicable())
    504     return false;
    505 
    506   if ((MCID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
    507     ARMFunctionInfo *AFI =
    508       MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
    509     return AFI->isThumb2Function();
    510   }
    511   return true;
    512 }
    513 
    514 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
    515 LLVM_ATTRIBUTE_NOINLINE
    516 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    517                                 unsigned JTI);
    518 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    519                                 unsigned JTI) {
    520   assert(JTI < JT.size());
    521   return JT[JTI].MBBs.size();
    522 }
    523 
    524 /// GetInstSize - Return the size of the specified MachineInstr.
    525 ///
    526 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
    527   const MachineBasicBlock &MBB = *MI->getParent();
    528   const MachineFunction *MF = MBB.getParent();
    529   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
    530 
    531   const MCInstrDesc &MCID = MI->getDesc();
    532   if (MCID.getSize())
    533     return MCID.getSize();
    534 
    535     // If this machine instr is an inline asm, measure it.
    536     if (MI->getOpcode() == ARM::INLINEASM)
    537       return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
    538     if (MI->isLabel())
    539       return 0;
    540   unsigned Opc = MI->getOpcode();
    541     switch (Opc) {
    542     case TargetOpcode::IMPLICIT_DEF:
    543     case TargetOpcode::KILL:
    544     case TargetOpcode::PROLOG_LABEL:
    545     case TargetOpcode::EH_LABEL:
    546     case TargetOpcode::DBG_VALUE:
    547       return 0;
    548     case ARM::MOVi16_ga_pcrel:
    549     case ARM::MOVTi16_ga_pcrel:
    550     case ARM::t2MOVi16_ga_pcrel:
    551     case ARM::t2MOVTi16_ga_pcrel:
    552       return 4;
    553     case ARM::MOVi32imm:
    554     case ARM::t2MOVi32imm:
    555       return 8;
    556     case ARM::CONSTPOOL_ENTRY:
    557       // If this machine instr is a constant pool entry, its size is recorded as
    558       // operand #2.
    559       return MI->getOperand(2).getImm();
    560     case ARM::Int_eh_sjlj_longjmp:
    561       return 16;
    562     case ARM::tInt_eh_sjlj_longjmp:
    563       return 10;
    564     case ARM::Int_eh_sjlj_setjmp:
    565     case ARM::Int_eh_sjlj_setjmp_nofp:
    566       return 20;
    567     case ARM::tInt_eh_sjlj_setjmp:
    568     case ARM::t2Int_eh_sjlj_setjmp:
    569     case ARM::t2Int_eh_sjlj_setjmp_nofp:
    570       return 12;
    571     case ARM::BR_JTr:
    572     case ARM::BR_JTm:
    573     case ARM::BR_JTadd:
    574     case ARM::tBR_JTr:
    575     case ARM::t2BR_JT:
    576     case ARM::t2TBB_JT:
    577     case ARM::t2TBH_JT: {
    578       // These are jumptable branches, i.e. a branch followed by an inlined
    579       // jumptable. The size is 4 + 4 * number of entries. For TBB, each
    580       // entry is one byte; TBH two byte each.
    581       unsigned EntrySize = (Opc == ARM::t2TBB_JT)
    582         ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
    583       unsigned NumOps = MCID.getNumOperands();
    584       MachineOperand JTOP =
    585         MI->getOperand(NumOps - (MCID.isPredicable() ? 3 : 2));
    586       unsigned JTI = JTOP.getIndex();
    587       const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
    588       assert(MJTI != 0);
    589       const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
    590       assert(JTI < JT.size());
    591       // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
    592       // 4 aligned. The assembler / linker may add 2 byte padding just before
    593       // the JT entries.  The size does not include this padding; the
    594       // constant islands pass does separate bookkeeping for it.
    595       // FIXME: If we know the size of the function is less than (1 << 16) *2
    596       // bytes, we can use 16-bit entries instead. Then there won't be an
    597       // alignment issue.
    598       unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
    599       unsigned NumEntries = getNumJTEntries(JT, JTI);
    600       if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
    601         // Make sure the instruction that follows TBB is 2-byte aligned.
    602         // FIXME: Constant island pass should insert an "ALIGN" instruction
    603         // instead.
    604         ++NumEntries;
    605       return NumEntries * EntrySize + InstSize;
    606     }
    607     default:
    608       // Otherwise, pseudo-instruction sizes are zero.
    609       return 0;
    610     }
    611   return 0; // Not reached
    612 }
    613 
    614 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    615                                    MachineBasicBlock::iterator I, DebugLoc DL,
    616                                    unsigned DestReg, unsigned SrcReg,
    617                                    bool KillSrc) const {
    618   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
    619   bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
    620 
    621   if (GPRDest && GPRSrc) {
    622     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
    623                                   .addReg(SrcReg, getKillRegState(KillSrc))));
    624     return;
    625   }
    626 
    627   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
    628   bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
    629 
    630   unsigned Opc;
    631   if (SPRDest && SPRSrc)
    632     Opc = ARM::VMOVS;
    633   else if (GPRDest && SPRSrc)
    634     Opc = ARM::VMOVRS;
    635   else if (SPRDest && GPRSrc)
    636     Opc = ARM::VMOVSR;
    637   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
    638     Opc = ARM::VMOVD;
    639   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    640     Opc = ARM::VORRq;
    641   else if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
    642     Opc = ARM::VMOVQQ;
    643   else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
    644     Opc = ARM::VMOVQQQQ;
    645   else
    646     llvm_unreachable("Impossible reg-to-reg copy");
    647 
    648   MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    649   MIB.addReg(SrcReg, getKillRegState(KillSrc));
    650   if (Opc == ARM::VORRq)
    651     MIB.addReg(SrcReg, getKillRegState(KillSrc));
    652   if (Opc != ARM::VMOVQQ && Opc != ARM::VMOVQQQQ)
    653     AddDefaultPred(MIB);
    654 }
    655 
    656 static const
    657 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
    658                              unsigned Reg, unsigned SubIdx, unsigned State,
    659                              const TargetRegisterInfo *TRI) {
    660   if (!SubIdx)
    661     return MIB.addReg(Reg, State);
    662 
    663   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    664     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
    665   return MIB.addReg(Reg, State, SubIdx);
    666 }
    667 
    668 void ARMBaseInstrInfo::
    669 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    670                     unsigned SrcReg, bool isKill, int FI,
    671                     const TargetRegisterClass *RC,
    672                     const TargetRegisterInfo *TRI) const {
    673   DebugLoc DL;
    674   if (I != MBB.end()) DL = I->getDebugLoc();
    675   MachineFunction &MF = *MBB.getParent();
    676   MachineFrameInfo &MFI = *MF.getFrameInfo();
    677   unsigned Align = MFI.getObjectAlignment(FI);
    678 
    679   MachineMemOperand *MMO =
    680     MF.getMachineMemOperand(MachinePointerInfo(
    681                                          PseudoSourceValue::getFixedStack(FI)),
    682                             MachineMemOperand::MOStore,
    683                             MFI.getObjectSize(FI),
    684                             Align);
    685 
    686   // tGPR is used sometimes in ARM instructions that need to avoid using
    687   // certain registers.  Just treat it as GPR here. Likewise, rGPR.
    688   if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
    689       || RC == ARM::rGPRRegisterClass)
    690     RC = ARM::GPRRegisterClass;
    691 
    692   switch (RC->getID()) {
    693   case ARM::GPRRegClassID:
    694     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
    695                    .addReg(SrcReg, getKillRegState(isKill))
    696                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    697     break;
    698   case ARM::SPRRegClassID:
    699     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
    700                    .addReg(SrcReg, getKillRegState(isKill))
    701                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    702     break;
    703   case ARM::DPRRegClassID:
    704   case ARM::DPR_VFP2RegClassID:
    705   case ARM::DPR_8RegClassID:
    706     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
    707                    .addReg(SrcReg, getKillRegState(isKill))
    708                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    709     break;
    710   case ARM::QPRRegClassID:
    711   case ARM::QPR_VFP2RegClassID:
    712   case ARM::QPR_8RegClassID:
    713     if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
    714       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
    715                      .addFrameIndex(FI).addImm(16)
    716                      .addReg(SrcReg, getKillRegState(isKill))
    717                      .addMemOperand(MMO));
    718     } else {
    719       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
    720                      .addReg(SrcReg, getKillRegState(isKill))
    721                      .addFrameIndex(FI)
    722                      .addMemOperand(MMO));
    723     }
    724     break;
    725   case ARM::QQPRRegClassID:
    726   case ARM::QQPR_VFP2RegClassID:
    727     if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    728       // FIXME: It's possible to only store part of the QQ register if the
    729       // spilled def has a sub-register index.
    730       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
    731                      .addFrameIndex(FI).addImm(16)
    732                      .addReg(SrcReg, getKillRegState(isKill))
    733                      .addMemOperand(MMO));
    734     } else {
    735       MachineInstrBuilder MIB =
    736         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    737                        .addFrameIndex(FI))
    738         .addMemOperand(MMO);
    739       MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    740       MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    741       MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    742             AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    743     }
    744     break;
    745   case ARM::QQQQPRRegClassID: {
    746     MachineInstrBuilder MIB =
    747       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    748                      .addFrameIndex(FI))
    749       .addMemOperand(MMO);
    750     MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    751     MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    752     MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    753     MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    754     MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
    755     MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
    756     MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
    757           AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
    758     break;
    759   }
    760   default:
    761     llvm_unreachable("Unknown regclass!");
    762   }
    763 }
    764 
    765 unsigned
    766 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    767                                      int &FrameIndex) const {
    768   switch (MI->getOpcode()) {
    769   default: break;
    770   case ARM::STRrs:
    771   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
    772     if (MI->getOperand(1).isFI() &&
    773         MI->getOperand(2).isReg() &&
    774         MI->getOperand(3).isImm() &&
    775         MI->getOperand(2).getReg() == 0 &&
    776         MI->getOperand(3).getImm() == 0) {
    777       FrameIndex = MI->getOperand(1).getIndex();
    778       return MI->getOperand(0).getReg();
    779     }
    780     break;
    781   case ARM::STRi12:
    782   case ARM::t2STRi12:
    783   case ARM::tSTRspi:
    784   case ARM::VSTRD:
    785   case ARM::VSTRS:
    786     if (MI->getOperand(1).isFI() &&
    787         MI->getOperand(2).isImm() &&
    788         MI->getOperand(2).getImm() == 0) {
    789       FrameIndex = MI->getOperand(1).getIndex();
    790       return MI->getOperand(0).getReg();
    791     }
    792     break;
    793   case ARM::VST1q64Pseudo:
    794     if (MI->getOperand(0).isFI() &&
    795         MI->getOperand(2).getSubReg() == 0) {
    796       FrameIndex = MI->getOperand(0).getIndex();
    797       return MI->getOperand(2).getReg();
    798     }
    799     break;
    800   case ARM::VSTMQIA:
    801     if (MI->getOperand(1).isFI() &&
    802         MI->getOperand(0).getSubReg() == 0) {
    803       FrameIndex = MI->getOperand(1).getIndex();
    804       return MI->getOperand(0).getReg();
    805     }
    806     break;
    807   }
    808 
    809   return 0;
    810 }
    811 
    812 void ARMBaseInstrInfo::
    813 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    814                      unsigned DestReg, int FI,
    815                      const TargetRegisterClass *RC,
    816                      const TargetRegisterInfo *TRI) const {
    817   DebugLoc DL;
    818   if (I != MBB.end()) DL = I->getDebugLoc();
    819   MachineFunction &MF = *MBB.getParent();
    820   MachineFrameInfo &MFI = *MF.getFrameInfo();
    821   unsigned Align = MFI.getObjectAlignment(FI);
    822   MachineMemOperand *MMO =
    823     MF.getMachineMemOperand(
    824                     MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    825                             MachineMemOperand::MOLoad,
    826                             MFI.getObjectSize(FI),
    827                             Align);
    828 
    829   // tGPR is used sometimes in ARM instructions that need to avoid using
    830   // certain registers.  Just treat it as GPR here.
    831   if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
    832       || RC == ARM::rGPRRegisterClass)
    833     RC = ARM::GPRRegisterClass;
    834 
    835   switch (RC->getID()) {
    836   case ARM::GPRRegClassID:
    837     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
    838                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    839     break;
    840   case ARM::SPRRegClassID:
    841     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
    842                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    843     break;
    844   case ARM::DPRRegClassID:
    845   case ARM::DPR_VFP2RegClassID:
    846   case ARM::DPR_8RegClassID:
    847     AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
    848                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    849     break;
    850   case ARM::QPRRegClassID:
    851   case ARM::QPR_VFP2RegClassID:
    852   case ARM::QPR_8RegClassID:
    853     if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
    854       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
    855                      .addFrameIndex(FI).addImm(16)
    856                      .addMemOperand(MMO));
    857     } else {
    858       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
    859                      .addFrameIndex(FI)
    860                      .addMemOperand(MMO));
    861     }
    862     break;
    863   case ARM::QQPRRegClassID:
    864   case ARM::QQPR_VFP2RegClassID:
    865     if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    866       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
    867                      .addFrameIndex(FI).addImm(16)
    868                      .addMemOperand(MMO));
    869     } else {
    870       MachineInstrBuilder MIB =
    871         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
    872                        .addFrameIndex(FI))
    873         .addMemOperand(MMO);
    874       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
    875       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
    876       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
    877             AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
    878     }
    879     break;
    880   case ARM::QQQQPRRegClassID: {
    881     MachineInstrBuilder MIB =
    882       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
    883                      .addFrameIndex(FI))
    884       .addMemOperand(MMO);
    885     MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
    886     MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
    887     MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
    888     MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
    889     MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
    890     MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
    891     MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
    892     AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
    893     break;
    894   }
    895   default:
    896     llvm_unreachable("Unknown regclass!");
    897   }
    898 }
    899 
    900 unsigned
    901 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    902                                       int &FrameIndex) const {
    903   switch (MI->getOpcode()) {
    904   default: break;
    905   case ARM::LDRrs:
    906   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
    907     if (MI->getOperand(1).isFI() &&
    908         MI->getOperand(2).isReg() &&
    909         MI->getOperand(3).isImm() &&
    910         MI->getOperand(2).getReg() == 0 &&
    911         MI->getOperand(3).getImm() == 0) {
    912       FrameIndex = MI->getOperand(1).getIndex();
    913       return MI->getOperand(0).getReg();
    914     }
    915     break;
    916   case ARM::LDRi12:
    917   case ARM::t2LDRi12:
    918   case ARM::tLDRspi:
    919   case ARM::VLDRD:
    920   case ARM::VLDRS:
    921     if (MI->getOperand(1).isFI() &&
    922         MI->getOperand(2).isImm() &&
    923         MI->getOperand(2).getImm() == 0) {
    924       FrameIndex = MI->getOperand(1).getIndex();
    925       return MI->getOperand(0).getReg();
    926     }
    927     break;
    928   case ARM::VLD1q64Pseudo:
    929     if (MI->getOperand(1).isFI() &&
    930         MI->getOperand(0).getSubReg() == 0) {
    931       FrameIndex = MI->getOperand(1).getIndex();
    932       return MI->getOperand(0).getReg();
    933     }
    934     break;
    935   case ARM::VLDMQIA:
    936     if (MI->getOperand(1).isFI() &&
    937         MI->getOperand(0).getSubReg() == 0) {
    938       FrameIndex = MI->getOperand(1).getIndex();
    939       return MI->getOperand(0).getReg();
    940     }
    941     break;
    942   }
    943 
    944   return 0;
    945 }
    946 
    947 MachineInstr*
    948 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
    949                                            int FrameIx, uint64_t Offset,
    950                                            const MDNode *MDPtr,
    951                                            DebugLoc DL) const {
    952   MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
    953     .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
    954   return &*MIB;
    955 }
    956 
    957 /// Create a copy of a const pool value. Update CPI to the new index and return
    958 /// the label UID.
    959 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
    960   MachineConstantPool *MCP = MF.getConstantPool();
    961   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
    962 
    963   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
    964   assert(MCPE.isMachineConstantPoolEntry() &&
    965          "Expecting a machine constantpool entry!");
    966   ARMConstantPoolValue *ACPV =
    967     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
    968 
    969   unsigned PCLabelId = AFI->createPICLabelUId();
    970   ARMConstantPoolValue *NewCPV = 0;
    971   // FIXME: The below assumes PIC relocation model and that the function
    972   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
    973   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
    974   // instructions, so that's probably OK, but is PIC always correct when
    975   // we get here?
    976   if (ACPV->isGlobalValue())
    977     NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
    978                                       ARMCP::CPValue, 4);
    979   else if (ACPV->isExtSymbol())
    980     NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
    981                                       ACPV->getSymbol(), PCLabelId, 4);
    982   else if (ACPV->isBlockAddress())
    983     NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
    984                                       ARMCP::CPBlockAddress, 4);
    985   else if (ACPV->isLSDA())
    986     NewCPV = new ARMConstantPoolValue(MF.getFunction(), PCLabelId,
    987                                       ARMCP::CPLSDA, 4);
    988   else
    989     llvm_unreachable("Unexpected ARM constantpool value type!!");
    990   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
    991   return PCLabelId;
    992 }
    993 
    994 void ARMBaseInstrInfo::
    995 reMaterialize(MachineBasicBlock &MBB,
    996               MachineBasicBlock::iterator I,
    997               unsigned DestReg, unsigned SubIdx,
    998               const MachineInstr *Orig,
    999               const TargetRegisterInfo &TRI) const {
   1000   unsigned Opcode = Orig->getOpcode();
   1001   switch (Opcode) {
   1002   default: {
   1003     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1004     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1005     MBB.insert(I, MI);
   1006     break;
   1007   }
   1008   case ARM::tLDRpci_pic:
   1009   case ARM::t2LDRpci_pic: {
   1010     MachineFunction &MF = *MBB.getParent();
   1011     unsigned CPI = Orig->getOperand(1).getIndex();
   1012     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1013     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
   1014                                       DestReg)
   1015       .addConstantPoolIndex(CPI).addImm(PCLabelId);
   1016     MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
   1017     break;
   1018   }
   1019   }
   1020 }
   1021 
   1022 MachineInstr *
   1023 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
   1024   MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
   1025   switch(Orig->getOpcode()) {
   1026   case ARM::tLDRpci_pic:
   1027   case ARM::t2LDRpci_pic: {
   1028     unsigned CPI = Orig->getOperand(1).getIndex();
   1029     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1030     Orig->getOperand(1).setIndex(CPI);
   1031     Orig->getOperand(2).setImm(PCLabelId);
   1032     break;
   1033   }
   1034   }
   1035   return MI;
   1036 }
   1037 
   1038 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
   1039                                         const MachineInstr *MI1,
   1040                                         const MachineRegisterInfo *MRI) const {
   1041   int Opcode = MI0->getOpcode();
   1042   if (Opcode == ARM::t2LDRpci ||
   1043       Opcode == ARM::t2LDRpci_pic ||
   1044       Opcode == ARM::tLDRpci ||
   1045       Opcode == ARM::tLDRpci_pic ||
   1046       Opcode == ARM::MOV_ga_dyn ||
   1047       Opcode == ARM::MOV_ga_pcrel ||
   1048       Opcode == ARM::MOV_ga_pcrel_ldr ||
   1049       Opcode == ARM::t2MOV_ga_dyn ||
   1050       Opcode == ARM::t2MOV_ga_pcrel) {
   1051     if (MI1->getOpcode() != Opcode)
   1052       return false;
   1053     if (MI0->getNumOperands() != MI1->getNumOperands())
   1054       return false;
   1055 
   1056     const MachineOperand &MO0 = MI0->getOperand(1);
   1057     const MachineOperand &MO1 = MI1->getOperand(1);
   1058     if (MO0.getOffset() != MO1.getOffset())
   1059       return false;
   1060 
   1061     if (Opcode == ARM::MOV_ga_dyn ||
   1062         Opcode == ARM::MOV_ga_pcrel ||
   1063         Opcode == ARM::MOV_ga_pcrel_ldr ||
   1064         Opcode == ARM::t2MOV_ga_dyn ||
   1065         Opcode == ARM::t2MOV_ga_pcrel)
   1066       // Ignore the PC labels.
   1067       return MO0.getGlobal() == MO1.getGlobal();
   1068 
   1069     const MachineFunction *MF = MI0->getParent()->getParent();
   1070     const MachineConstantPool *MCP = MF->getConstantPool();
   1071     int CPI0 = MO0.getIndex();
   1072     int CPI1 = MO1.getIndex();
   1073     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
   1074     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
   1075     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
   1076     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
   1077     if (isARMCP0 && isARMCP1) {
   1078       ARMConstantPoolValue *ACPV0 =
   1079         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
   1080       ARMConstantPoolValue *ACPV1 =
   1081         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
   1082       return ACPV0->hasSameValue(ACPV1);
   1083     } else if (!isARMCP0 && !isARMCP1) {
   1084       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
   1085     }
   1086     return false;
   1087   } else if (Opcode == ARM::PICLDR) {
   1088     if (MI1->getOpcode() != Opcode)
   1089       return false;
   1090     if (MI0->getNumOperands() != MI1->getNumOperands())
   1091       return false;
   1092 
   1093     unsigned Addr0 = MI0->getOperand(1).getReg();
   1094     unsigned Addr1 = MI1->getOperand(1).getReg();
   1095     if (Addr0 != Addr1) {
   1096       if (!MRI ||
   1097           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
   1098           !TargetRegisterInfo::isVirtualRegister(Addr1))
   1099         return false;
   1100 
   1101       // This assumes SSA form.
   1102       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
   1103       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
   1104       // Check if the loaded value, e.g. a constantpool of a global address, are
   1105       // the same.
   1106       if (!produceSameValue(Def0, Def1, MRI))
   1107         return false;
   1108     }
   1109 
   1110     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
   1111       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
   1112       const MachineOperand &MO0 = MI0->getOperand(i);
   1113       const MachineOperand &MO1 = MI1->getOperand(i);
   1114       if (!MO0.isIdenticalTo(MO1))
   1115         return false;
   1116     }
   1117     return true;
   1118   }
   1119 
   1120   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
   1121 }
   1122 
   1123 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
   1124 /// determine if two loads are loading from the same base address. It should
   1125 /// only return true if the base pointers are the same and the only differences
   1126 /// between the two addresses is the offset. It also returns the offsets by
   1127 /// reference.
   1128 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1129                                                int64_t &Offset1,
   1130                                                int64_t &Offset2) const {
   1131   // Don't worry about Thumb: just ARM and Thumb2.
   1132   if (Subtarget.isThumb1Only()) return false;
   1133 
   1134   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   1135     return false;
   1136 
   1137   switch (Load1->getMachineOpcode()) {
   1138   default:
   1139     return false;
   1140   case ARM::LDRi12:
   1141   case ARM::LDRBi12:
   1142   case ARM::LDRD:
   1143   case ARM::LDRH:
   1144   case ARM::LDRSB:
   1145   case ARM::LDRSH:
   1146   case ARM::VLDRD:
   1147   case ARM::VLDRS:
   1148   case ARM::t2LDRi8:
   1149   case ARM::t2LDRDi8:
   1150   case ARM::t2LDRSHi8:
   1151   case ARM::t2LDRi12:
   1152   case ARM::t2LDRSHi12:
   1153     break;
   1154   }
   1155 
   1156   switch (Load2->getMachineOpcode()) {
   1157   default:
   1158     return false;
   1159   case ARM::LDRi12:
   1160   case ARM::LDRBi12:
   1161   case ARM::LDRD:
   1162   case ARM::LDRH:
   1163   case ARM::LDRSB:
   1164   case ARM::LDRSH:
   1165   case ARM::VLDRD:
   1166   case ARM::VLDRS:
   1167   case ARM::t2LDRi8:
   1168   case ARM::t2LDRDi8:
   1169   case ARM::t2LDRSHi8:
   1170   case ARM::t2LDRi12:
   1171   case ARM::t2LDRSHi12:
   1172     break;
   1173   }
   1174 
   1175   // Check if base addresses and chain operands match.
   1176   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   1177       Load1->getOperand(4) != Load2->getOperand(4))
   1178     return false;
   1179 
   1180   // Index should be Reg0.
   1181   if (Load1->getOperand(3) != Load2->getOperand(3))
   1182     return false;
   1183 
   1184   // Determine the offsets.
   1185   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
   1186       isa<ConstantSDNode>(Load2->getOperand(1))) {
   1187     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
   1188     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
   1189     return true;
   1190   }
   1191 
   1192   return false;
   1193 }
   1194 
   1195 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
   1196 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
   1197 /// be scheduled togther. On some targets if two loads are loading from
   1198 /// addresses in the same cache line, it's better if they are scheduled
   1199 /// together. This function takes two integers that represent the load offsets
   1200 /// from the common base address. It returns true if it decides it's desirable
   1201 /// to schedule the two loads together. "NumLoads" is the number of loads that
   1202 /// have already been scheduled after Load1.
   1203 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1204                                                int64_t Offset1, int64_t Offset2,
   1205                                                unsigned NumLoads) const {
   1206   // Don't worry about Thumb: just ARM and Thumb2.
   1207   if (Subtarget.isThumb1Only()) return false;
   1208 
   1209   assert(Offset2 > Offset1);
   1210 
   1211   if ((Offset2 - Offset1) / 8 > 64)
   1212     return false;
   1213 
   1214   if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
   1215     return false;  // FIXME: overly conservative?
   1216 
   1217   // Four loads in a row should be sufficient.
   1218   if (NumLoads >= 3)
   1219     return false;
   1220 
   1221   return true;
   1222 }
   1223 
   1224 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1225                                             const MachineBasicBlock *MBB,
   1226                                             const MachineFunction &MF) const {
   1227   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1228   // due to the special treatment of IT instructions below, otherwise a
   1229   // dbg_value followed by an IT will result in the IT instruction being
   1230   // considered a scheduling hazard, which is wrong. It should be the actual
   1231   // instruction preceding the dbg_value instruction(s), just like it is
   1232   // when debug info is not present.
   1233   if (MI->isDebugValue())
   1234     return false;
   1235 
   1236   // Terminators and labels can't be scheduled around.
   1237   if (MI->getDesc().isTerminator() || MI->isLabel())
   1238     return true;
   1239 
   1240   // Treat the start of the IT block as a scheduling boundary, but schedule
   1241   // t2IT along with all instructions following it.
   1242   // FIXME: This is a big hammer. But the alternative is to add all potential
   1243   // true and anti dependencies to IT block instructions as implicit operands
   1244   // to the t2IT instruction. The added compile time and complexity does not
   1245   // seem worth it.
   1246   MachineBasicBlock::const_iterator I = MI;
   1247   // Make sure to skip any dbg_value instructions
   1248   while (++I != MBB->end() && I->isDebugValue())
   1249     ;
   1250   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
   1251     return true;
   1252 
   1253   // Don't attempt to schedule around any instruction that defines
   1254   // a stack-oriented pointer, as it's unlikely to be profitable. This
   1255   // saves compile time, because it doesn't require every single
   1256   // stack slot reference to depend on the instruction that does the
   1257   // modification.
   1258   if (MI->definesRegister(ARM::SP))
   1259     return true;
   1260 
   1261   return false;
   1262 }
   1263 
   1264 bool ARMBaseInstrInfo::
   1265 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1266                     unsigned NumCycles, unsigned ExtraPredCycles,
   1267                     const BranchProbability &Probability) const {
   1268   if (!NumCycles)
   1269     return false;
   1270 
   1271   // Attempt to estimate the relative costs of predication versus branching.
   1272   unsigned UnpredCost = Probability.getNumerator() * NumCycles;
   1273   UnpredCost /= Probability.getDenominator();
   1274   UnpredCost += 1; // The branch itself
   1275   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1276 
   1277   return (NumCycles + ExtraPredCycles) <= UnpredCost;
   1278 }
   1279 
   1280 bool ARMBaseInstrInfo::
   1281 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1282                     unsigned TCycles, unsigned TExtra,
   1283                     MachineBasicBlock &FMBB,
   1284                     unsigned FCycles, unsigned FExtra,
   1285                     const BranchProbability &Probability) const {
   1286   if (!TCycles || !FCycles)
   1287     return false;
   1288 
   1289   // Attempt to estimate the relative costs of predication versus branching.
   1290   unsigned TUnpredCost = Probability.getNumerator() * TCycles;
   1291   TUnpredCost /= Probability.getDenominator();
   1292 
   1293   uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
   1294   unsigned FUnpredCost = Comp * FCycles;
   1295   FUnpredCost /= Probability.getDenominator();
   1296 
   1297   unsigned UnpredCost = TUnpredCost + FUnpredCost;
   1298   UnpredCost += 1; // The branch itself
   1299   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1300 
   1301   return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
   1302 }
   1303 
   1304 /// getInstrPredicate - If instruction is predicated, returns its predicate
   1305 /// condition, otherwise returns AL. It also returns the condition code
   1306 /// register by reference.
   1307 ARMCC::CondCodes
   1308 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
   1309   int PIdx = MI->findFirstPredOperandIdx();
   1310   if (PIdx == -1) {
   1311     PredReg = 0;
   1312     return ARMCC::AL;
   1313   }
   1314 
   1315   PredReg = MI->getOperand(PIdx+1).getReg();
   1316   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
   1317 }
   1318 
   1319 
   1320 int llvm::getMatchingCondBranchOpcode(int Opc) {
   1321   if (Opc == ARM::B)
   1322     return ARM::Bcc;
   1323   else if (Opc == ARM::tB)
   1324     return ARM::tBcc;
   1325   else if (Opc == ARM::t2B)
   1326       return ARM::t2Bcc;
   1327 
   1328   llvm_unreachable("Unknown unconditional branch opcode!");
   1329   return 0;
   1330 }
   1331 
   1332 
   1333 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
   1334                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
   1335                                unsigned DestReg, unsigned BaseReg, int NumBytes,
   1336                                ARMCC::CondCodes Pred, unsigned PredReg,
   1337                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
   1338   bool isSub = NumBytes < 0;
   1339   if (isSub) NumBytes = -NumBytes;
   1340 
   1341   while (NumBytes) {
   1342     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
   1343     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
   1344     assert(ThisVal && "Didn't extract field correctly");
   1345 
   1346     // We will handle these bits from offset, clear them.
   1347     NumBytes &= ~ThisVal;
   1348 
   1349     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
   1350 
   1351     // Build the new ADD / SUB.
   1352     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
   1353     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
   1354       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
   1355       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   1356       .setMIFlags(MIFlags);
   1357     BaseReg = DestReg;
   1358   }
   1359 }
   1360 
   1361 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   1362                                 unsigned FrameReg, int &Offset,
   1363                                 const ARMBaseInstrInfo &TII) {
   1364   unsigned Opcode = MI.getOpcode();
   1365   const MCInstrDesc &Desc = MI.getDesc();
   1366   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
   1367   bool isSub = false;
   1368 
   1369   // Memory operands in inline assembly always use AddrMode2.
   1370   if (Opcode == ARM::INLINEASM)
   1371     AddrMode = ARMII::AddrMode2;
   1372 
   1373   if (Opcode == ARM::ADDri) {
   1374     Offset += MI.getOperand(FrameRegIdx+1).getImm();
   1375     if (Offset == 0) {
   1376       // Turn it into a move.
   1377       MI.setDesc(TII.get(ARM::MOVr));
   1378       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1379       MI.RemoveOperand(FrameRegIdx+1);
   1380       Offset = 0;
   1381       return true;
   1382     } else if (Offset < 0) {
   1383       Offset = -Offset;
   1384       isSub = true;
   1385       MI.setDesc(TII.get(ARM::SUBri));
   1386     }
   1387 
   1388     // Common case: small offset, fits into instruction.
   1389     if (ARM_AM::getSOImmVal(Offset) != -1) {
   1390       // Replace the FrameIndex with sp / fp
   1391       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1392       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
   1393       Offset = 0;
   1394       return true;
   1395     }
   1396 
   1397     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
   1398     // as possible.
   1399     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
   1400     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
   1401 
   1402     // We will handle these bits from offset, clear them.
   1403     Offset &= ~ThisImmVal;
   1404 
   1405     // Get the properly encoded SOImmVal field.
   1406     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
   1407            "Bit extraction didn't work?");
   1408     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
   1409  } else {
   1410     unsigned ImmIdx = 0;
   1411     int InstrOffs = 0;
   1412     unsigned NumBits = 0;
   1413     unsigned Scale = 1;
   1414     switch (AddrMode) {
   1415     case ARMII::AddrMode_i12: {
   1416       ImmIdx = FrameRegIdx + 1;
   1417       InstrOffs = MI.getOperand(ImmIdx).getImm();
   1418       NumBits = 12;
   1419       break;
   1420     }
   1421     case ARMII::AddrMode2: {
   1422       ImmIdx = FrameRegIdx+2;
   1423       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
   1424       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1425         InstrOffs *= -1;
   1426       NumBits = 12;
   1427       break;
   1428     }
   1429     case ARMII::AddrMode3: {
   1430       ImmIdx = FrameRegIdx+2;
   1431       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
   1432       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1433         InstrOffs *= -1;
   1434       NumBits = 8;
   1435       break;
   1436     }
   1437     case ARMII::AddrMode4:
   1438     case ARMII::AddrMode6:
   1439       // Can't fold any offset even if it's zero.
   1440       return false;
   1441     case ARMII::AddrMode5: {
   1442       ImmIdx = FrameRegIdx+1;
   1443       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   1444       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1445         InstrOffs *= -1;
   1446       NumBits = 8;
   1447       Scale = 4;
   1448       break;
   1449     }
   1450     default:
   1451       llvm_unreachable("Unsupported addressing mode!");
   1452       break;
   1453     }
   1454 
   1455     Offset += InstrOffs * Scale;
   1456     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
   1457     if (Offset < 0) {
   1458       Offset = -Offset;
   1459       isSub = true;
   1460     }
   1461 
   1462     // Attempt to fold address comp. if opcode has offset bits
   1463     if (NumBits > 0) {
   1464       // Common case: small offset, fits into instruction.
   1465       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
   1466       int ImmedOffset = Offset / Scale;
   1467       unsigned Mask = (1 << NumBits) - 1;
   1468       if ((unsigned)Offset <= Mask * Scale) {
   1469         // Replace the FrameIndex with sp
   1470         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1471         // FIXME: When addrmode2 goes away, this will simplify (like the
   1472         // T2 version), as the LDR.i12 versions don't need the encoding
   1473         // tricks for the offset value.
   1474         if (isSub) {
   1475           if (AddrMode == ARMII::AddrMode_i12)
   1476             ImmedOffset = -ImmedOffset;
   1477           else
   1478             ImmedOffset |= 1 << NumBits;
   1479         }
   1480         ImmOp.ChangeToImmediate(ImmedOffset);
   1481         Offset = 0;
   1482         return true;
   1483       }
   1484 
   1485       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
   1486       ImmedOffset = ImmedOffset & Mask;
   1487       if (isSub) {
   1488         if (AddrMode == ARMII::AddrMode_i12)
   1489           ImmedOffset = -ImmedOffset;
   1490         else
   1491           ImmedOffset |= 1 << NumBits;
   1492       }
   1493       ImmOp.ChangeToImmediate(ImmedOffset);
   1494       Offset &= ~(Mask*Scale);
   1495     }
   1496   }
   1497 
   1498   Offset = (isSub) ? -Offset : Offset;
   1499   return Offset == 0;
   1500 }
   1501 
   1502 bool ARMBaseInstrInfo::
   1503 AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
   1504                int &CmpValue) const {
   1505   switch (MI->getOpcode()) {
   1506   default: break;
   1507   case ARM::CMPri:
   1508   case ARM::t2CMPri:
   1509     SrcReg = MI->getOperand(0).getReg();
   1510     CmpMask = ~0;
   1511     CmpValue = MI->getOperand(1).getImm();
   1512     return true;
   1513   case ARM::TSTri:
   1514   case ARM::t2TSTri:
   1515     SrcReg = MI->getOperand(0).getReg();
   1516     CmpMask = MI->getOperand(1).getImm();
   1517     CmpValue = 0;
   1518     return true;
   1519   }
   1520 
   1521   return false;
   1522 }
   1523 
   1524 /// isSuitableForMask - Identify a suitable 'and' instruction that
   1525 /// operates on the given source register and applies the same mask
   1526 /// as a 'tst' instruction. Provide a limited look-through for copies.
   1527 /// When successful, MI will hold the found instruction.
   1528 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
   1529                               int CmpMask, bool CommonUse) {
   1530   switch (MI->getOpcode()) {
   1531     case ARM::ANDri:
   1532     case ARM::t2ANDri:
   1533       if (CmpMask != MI->getOperand(2).getImm())
   1534         return false;
   1535       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
   1536         return true;
   1537       break;
   1538     case ARM::COPY: {
   1539       // Walk down one instruction which is potentially an 'and'.
   1540       const MachineInstr &Copy = *MI;
   1541       MachineBasicBlock::iterator AND(
   1542         llvm::next(MachineBasicBlock::iterator(MI)));
   1543       if (AND == MI->getParent()->end()) return false;
   1544       MI = AND;
   1545       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
   1546                                CmpMask, true);
   1547     }
   1548   }
   1549 
   1550   return false;
   1551 }
   1552 
   1553 /// OptimizeCompareInstr - Convert the instruction supplying the argument to the
   1554 /// comparison into one that sets the zero bit in the flags register.
   1555 bool ARMBaseInstrInfo::
   1556 OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
   1557                      int CmpValue, const MachineRegisterInfo *MRI) const {
   1558   if (CmpValue != 0)
   1559     return false;
   1560 
   1561   MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
   1562   if (llvm::next(DI) != MRI->def_end())
   1563     // Only support one definition.
   1564     return false;
   1565 
   1566   MachineInstr *MI = &*DI;
   1567 
   1568   // Masked compares sometimes use the same register as the corresponding 'and'.
   1569   if (CmpMask != ~0) {
   1570     if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
   1571       MI = 0;
   1572       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
   1573            UE = MRI->use_end(); UI != UE; ++UI) {
   1574         if (UI->getParent() != CmpInstr->getParent()) continue;
   1575         MachineInstr *PotentialAND = &*UI;
   1576         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
   1577           continue;
   1578         MI = PotentialAND;
   1579         break;
   1580       }
   1581       if (!MI) return false;
   1582     }
   1583   }
   1584 
   1585   // Conservatively refuse to convert an instruction which isn't in the same BB
   1586   // as the comparison.
   1587   if (MI->getParent() != CmpInstr->getParent())
   1588     return false;
   1589 
   1590   // Check that CPSR isn't set between the comparison instruction and the one we
   1591   // want to change.
   1592   MachineBasicBlock::const_iterator I = CmpInstr, E = MI,
   1593     B = MI->getParent()->begin();
   1594 
   1595   // Early exit if CmpInstr is at the beginning of the BB.
   1596   if (I == B) return false;
   1597 
   1598   --I;
   1599   for (; I != E; --I) {
   1600     const MachineInstr &Instr = *I;
   1601 
   1602     for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
   1603       const MachineOperand &MO = Instr.getOperand(IO);
   1604       if (!MO.isReg()) continue;
   1605 
   1606       // This instruction modifies or uses CPSR after the one we want to
   1607       // change. We can't do this transformation.
   1608       if (MO.getReg() == ARM::CPSR)
   1609         return false;
   1610     }
   1611 
   1612     if (I == B)
   1613       // The 'and' is below the comparison instruction.
   1614       return false;
   1615   }
   1616 
   1617   // Set the "zero" bit in CPSR.
   1618   switch (MI->getOpcode()) {
   1619   default: break;
   1620   case ARM::RSBrr:
   1621   case ARM::RSBri:
   1622   case ARM::RSCrr:
   1623   case ARM::RSCri:
   1624   case ARM::ADDrr:
   1625   case ARM::ADDri:
   1626   case ARM::ADCrr:
   1627   case ARM::ADCri:
   1628   case ARM::SUBrr:
   1629   case ARM::SUBri:
   1630   case ARM::SBCrr:
   1631   case ARM::SBCri:
   1632   case ARM::t2RSBri:
   1633   case ARM::t2ADDrr:
   1634   case ARM::t2ADDri:
   1635   case ARM::t2ADCrr:
   1636   case ARM::t2ADCri:
   1637   case ARM::t2SUBrr:
   1638   case ARM::t2SUBri:
   1639   case ARM::t2SBCrr:
   1640   case ARM::t2SBCri:
   1641   case ARM::ANDrr:
   1642   case ARM::ANDri:
   1643   case ARM::t2ANDrr:
   1644   case ARM::t2ANDri:
   1645   case ARM::ORRrr:
   1646   case ARM::ORRri:
   1647   case ARM::t2ORRrr:
   1648   case ARM::t2ORRri:
   1649   case ARM::EORrr:
   1650   case ARM::EORri:
   1651   case ARM::t2EORrr:
   1652   case ARM::t2EORri: {
   1653     // Scan forward for the use of CPSR, if it's a conditional code requires
   1654     // checking of V bit, then this is not safe to do. If we can't find the
   1655     // CPSR use (i.e. used in another block), then it's not safe to perform
   1656     // the optimization.
   1657     bool isSafe = false;
   1658     I = CmpInstr;
   1659     E = MI->getParent()->end();
   1660     while (!isSafe && ++I != E) {
   1661       const MachineInstr &Instr = *I;
   1662       for (unsigned IO = 0, EO = Instr.getNumOperands();
   1663            !isSafe && IO != EO; ++IO) {
   1664         const MachineOperand &MO = Instr.getOperand(IO);
   1665         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
   1666           continue;
   1667         if (MO.isDef()) {
   1668           isSafe = true;
   1669           break;
   1670         }
   1671         // Condition code is after the operand before CPSR.
   1672         ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
   1673         switch (CC) {
   1674         default:
   1675           isSafe = true;
   1676           break;
   1677         case ARMCC::VS:
   1678         case ARMCC::VC:
   1679         case ARMCC::GE:
   1680         case ARMCC::LT:
   1681         case ARMCC::GT:
   1682         case ARMCC::LE:
   1683           return false;
   1684         }
   1685       }
   1686     }
   1687 
   1688     if (!isSafe)
   1689       return false;
   1690 
   1691     // Toggle the optional operand to CPSR.
   1692     MI->getOperand(5).setReg(ARM::CPSR);
   1693     MI->getOperand(5).setIsDef(true);
   1694     CmpInstr->eraseFromParent();
   1695     return true;
   1696   }
   1697   }
   1698 
   1699   return false;
   1700 }
   1701 
   1702 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
   1703                                      MachineInstr *DefMI, unsigned Reg,
   1704                                      MachineRegisterInfo *MRI) const {
   1705   // Fold large immediates into add, sub, or, xor.
   1706   unsigned DefOpc = DefMI->getOpcode();
   1707   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
   1708     return false;
   1709   if (!DefMI->getOperand(1).isImm())
   1710     // Could be t2MOVi32imm <ga:xx>
   1711     return false;
   1712 
   1713   if (!MRI->hasOneNonDBGUse(Reg))
   1714     return false;
   1715 
   1716   unsigned UseOpc = UseMI->getOpcode();
   1717   unsigned NewUseOpc = 0;
   1718   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
   1719   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
   1720   bool Commute = false;
   1721   switch (UseOpc) {
   1722   default: return false;
   1723   case ARM::SUBrr:
   1724   case ARM::ADDrr:
   1725   case ARM::ORRrr:
   1726   case ARM::EORrr:
   1727   case ARM::t2SUBrr:
   1728   case ARM::t2ADDrr:
   1729   case ARM::t2ORRrr:
   1730   case ARM::t2EORrr: {
   1731     Commute = UseMI->getOperand(2).getReg() != Reg;
   1732     switch (UseOpc) {
   1733     default: break;
   1734     case ARM::SUBrr: {
   1735       if (Commute)
   1736         return false;
   1737       ImmVal = -ImmVal;
   1738       NewUseOpc = ARM::SUBri;
   1739       // Fallthrough
   1740     }
   1741     case ARM::ADDrr:
   1742     case ARM::ORRrr:
   1743     case ARM::EORrr: {
   1744       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
   1745         return false;
   1746       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   1747       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   1748       switch (UseOpc) {
   1749       default: break;
   1750       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
   1751       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
   1752       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
   1753       }
   1754       break;
   1755     }
   1756     case ARM::t2SUBrr: {
   1757       if (Commute)
   1758         return false;
   1759       ImmVal = -ImmVal;
   1760       NewUseOpc = ARM::t2SUBri;
   1761       // Fallthrough
   1762     }
   1763     case ARM::t2ADDrr:
   1764     case ARM::t2ORRrr:
   1765     case ARM::t2EORrr: {
   1766       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   1767         return false;
   1768       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   1769       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   1770       switch (UseOpc) {
   1771       default: break;
   1772       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
   1773       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
   1774       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
   1775       }
   1776       break;
   1777     }
   1778     }
   1779   }
   1780   }
   1781 
   1782   unsigned OpIdx = Commute ? 2 : 1;
   1783   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
   1784   bool isKill = UseMI->getOperand(OpIdx).isKill();
   1785   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
   1786   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
   1787                                       *UseMI, UseMI->getDebugLoc(),
   1788                                       get(NewUseOpc), NewReg)
   1789                               .addReg(Reg1, getKillRegState(isKill))
   1790                               .addImm(SOImmValV1)));
   1791   UseMI->setDesc(get(NewUseOpc));
   1792   UseMI->getOperand(1).setReg(NewReg);
   1793   UseMI->getOperand(1).setIsKill();
   1794   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
   1795   DefMI->eraseFromParent();
   1796   return true;
   1797 }
   1798 
   1799 unsigned
   1800 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   1801                                  const MachineInstr *MI) const {
   1802   if (!ItinData || ItinData->isEmpty())
   1803     return 1;
   1804 
   1805   const MCInstrDesc &Desc = MI->getDesc();
   1806   unsigned Class = Desc.getSchedClass();
   1807   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
   1808   if (UOps)
   1809     return UOps;
   1810 
   1811   unsigned Opc = MI->getOpcode();
   1812   switch (Opc) {
   1813   default:
   1814     llvm_unreachable("Unexpected multi-uops instruction!");
   1815     break;
   1816   case ARM::VLDMQIA:
   1817   case ARM::VSTMQIA:
   1818     return 2;
   1819 
   1820   // The number of uOps for load / store multiple are determined by the number
   1821   // registers.
   1822   //
   1823   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
   1824   // same cycle. The scheduling for the first load / store must be done
   1825   // separately by assuming the the address is not 64-bit aligned.
   1826   //
   1827   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
   1828   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
   1829   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
   1830   case ARM::VLDMDIA:
   1831   case ARM::VLDMDIA_UPD:
   1832   case ARM::VLDMDDB_UPD:
   1833   case ARM::VLDMSIA:
   1834   case ARM::VLDMSIA_UPD:
   1835   case ARM::VLDMSDB_UPD:
   1836   case ARM::VSTMDIA:
   1837   case ARM::VSTMDIA_UPD:
   1838   case ARM::VSTMDDB_UPD:
   1839   case ARM::VSTMSIA:
   1840   case ARM::VSTMSIA_UPD:
   1841   case ARM::VSTMSDB_UPD: {
   1842     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
   1843     return (NumRegs / 2) + (NumRegs % 2) + 1;
   1844   }
   1845 
   1846   case ARM::LDMIA_RET:
   1847   case ARM::LDMIA:
   1848   case ARM::LDMDA:
   1849   case ARM::LDMDB:
   1850   case ARM::LDMIB:
   1851   case ARM::LDMIA_UPD:
   1852   case ARM::LDMDA_UPD:
   1853   case ARM::LDMDB_UPD:
   1854   case ARM::LDMIB_UPD:
   1855   case ARM::STMIA:
   1856   case ARM::STMDA:
   1857   case ARM::STMDB:
   1858   case ARM::STMIB:
   1859   case ARM::STMIA_UPD:
   1860   case ARM::STMDA_UPD:
   1861   case ARM::STMDB_UPD:
   1862   case ARM::STMIB_UPD:
   1863   case ARM::tLDMIA:
   1864   case ARM::tLDMIA_UPD:
   1865   case ARM::tSTMIA:
   1866   case ARM::tSTMIA_UPD:
   1867   case ARM::tPOP_RET:
   1868   case ARM::tPOP:
   1869   case ARM::tPUSH:
   1870   case ARM::t2LDMIA_RET:
   1871   case ARM::t2LDMIA:
   1872   case ARM::t2LDMDB:
   1873   case ARM::t2LDMIA_UPD:
   1874   case ARM::t2LDMDB_UPD:
   1875   case ARM::t2STMIA:
   1876   case ARM::t2STMDB:
   1877   case ARM::t2STMIA_UPD:
   1878   case ARM::t2STMDB_UPD: {
   1879     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
   1880     if (Subtarget.isCortexA8()) {
   1881       if (NumRegs < 4)
   1882         return 2;
   1883       // 4 registers would be issued: 2, 2.
   1884       // 5 registers would be issued: 2, 2, 1.
   1885       UOps = (NumRegs / 2);
   1886       if (NumRegs % 2)
   1887         ++UOps;
   1888       return UOps;
   1889     } else if (Subtarget.isCortexA9()) {
   1890       UOps = (NumRegs / 2);
   1891       // If there are odd number of registers or if it's not 64-bit aligned,
   1892       // then it takes an extra AGU (Address Generation Unit) cycle.
   1893       if ((NumRegs % 2) ||
   1894           !MI->hasOneMemOperand() ||
   1895           (*MI->memoperands_begin())->getAlignment() < 8)
   1896         ++UOps;
   1897       return UOps;
   1898     } else {
   1899       // Assume the worst.
   1900       return NumRegs;
   1901     }
   1902   }
   1903   }
   1904 }
   1905 
   1906 int
   1907 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
   1908                                   const MCInstrDesc &DefMCID,
   1909                                   unsigned DefClass,
   1910                                   unsigned DefIdx, unsigned DefAlign) const {
   1911   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   1912   if (RegNo <= 0)
   1913     // Def is the address writeback.
   1914     return ItinData->getOperandCycle(DefClass, DefIdx);
   1915 
   1916   int DefCycle;
   1917   if (Subtarget.isCortexA8()) {
   1918     // (regno / 2) + (regno % 2) + 1
   1919     DefCycle = RegNo / 2 + 1;
   1920     if (RegNo % 2)
   1921       ++DefCycle;
   1922   } else if (Subtarget.isCortexA9()) {
   1923     DefCycle = RegNo;
   1924     bool isSLoad = false;
   1925 
   1926     switch (DefMCID.getOpcode()) {
   1927     default: break;
   1928     case ARM::VLDMSIA:
   1929     case ARM::VLDMSIA_UPD:
   1930     case ARM::VLDMSDB_UPD:
   1931       isSLoad = true;
   1932       break;
   1933     }
   1934 
   1935     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   1936     // then it takes an extra cycle.
   1937     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
   1938       ++DefCycle;
   1939   } else {
   1940     // Assume the worst.
   1941     DefCycle = RegNo + 2;
   1942   }
   1943 
   1944   return DefCycle;
   1945 }
   1946 
   1947 int
   1948 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
   1949                                  const MCInstrDesc &DefMCID,
   1950                                  unsigned DefClass,
   1951                                  unsigned DefIdx, unsigned DefAlign) const {
   1952   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   1953   if (RegNo <= 0)
   1954     // Def is the address writeback.
   1955     return ItinData->getOperandCycle(DefClass, DefIdx);
   1956 
   1957   int DefCycle;
   1958   if (Subtarget.isCortexA8()) {
   1959     // 4 registers would be issued: 1, 2, 1.
   1960     // 5 registers would be issued: 1, 2, 2.
   1961     DefCycle = RegNo / 2;
   1962     if (DefCycle < 1)
   1963       DefCycle = 1;
   1964     // Result latency is issue cycle + 2: E2.
   1965     DefCycle += 2;
   1966   } else if (Subtarget.isCortexA9()) {
   1967     DefCycle = (RegNo / 2);
   1968     // If there are odd number of registers or if it's not 64-bit aligned,
   1969     // then it takes an extra AGU (Address Generation Unit) cycle.
   1970     if ((RegNo % 2) || DefAlign < 8)
   1971       ++DefCycle;
   1972     // Result latency is AGU cycles + 2.
   1973     DefCycle += 2;
   1974   } else {
   1975     // Assume the worst.
   1976     DefCycle = RegNo + 2;
   1977   }
   1978 
   1979   return DefCycle;
   1980 }
   1981 
   1982 int
   1983 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
   1984                                   const MCInstrDesc &UseMCID,
   1985                                   unsigned UseClass,
   1986                                   unsigned UseIdx, unsigned UseAlign) const {
   1987   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   1988   if (RegNo <= 0)
   1989     return ItinData->getOperandCycle(UseClass, UseIdx);
   1990 
   1991   int UseCycle;
   1992   if (Subtarget.isCortexA8()) {
   1993     // (regno / 2) + (regno % 2) + 1
   1994     UseCycle = RegNo / 2 + 1;
   1995     if (RegNo % 2)
   1996       ++UseCycle;
   1997   } else if (Subtarget.isCortexA9()) {
   1998     UseCycle = RegNo;
   1999     bool isSStore = false;
   2000 
   2001     switch (UseMCID.getOpcode()) {
   2002     default: break;
   2003     case ARM::VSTMSIA:
   2004     case ARM::VSTMSIA_UPD:
   2005     case ARM::VSTMSDB_UPD:
   2006       isSStore = true;
   2007       break;
   2008     }
   2009 
   2010     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   2011     // then it takes an extra cycle.
   2012     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
   2013       ++UseCycle;
   2014   } else {
   2015     // Assume the worst.
   2016     UseCycle = RegNo + 2;
   2017   }
   2018 
   2019   return UseCycle;
   2020 }
   2021 
   2022 int
   2023 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
   2024                                  const MCInstrDesc &UseMCID,
   2025                                  unsigned UseClass,
   2026                                  unsigned UseIdx, unsigned UseAlign) const {
   2027   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   2028   if (RegNo <= 0)
   2029     return ItinData->getOperandCycle(UseClass, UseIdx);
   2030 
   2031   int UseCycle;
   2032   if (Subtarget.isCortexA8()) {
   2033     UseCycle = RegNo / 2;
   2034     if (UseCycle < 2)
   2035       UseCycle = 2;
   2036     // Read in E3.
   2037     UseCycle += 2;
   2038   } else if (Subtarget.isCortexA9()) {
   2039     UseCycle = (RegNo / 2);
   2040     // If there are odd number of registers or if it's not 64-bit aligned,
   2041     // then it takes an extra AGU (Address Generation Unit) cycle.
   2042     if ((RegNo % 2) || UseAlign < 8)
   2043       ++UseCycle;
   2044   } else {
   2045     // Assume the worst.
   2046     UseCycle = 1;
   2047   }
   2048   return UseCycle;
   2049 }
   2050 
   2051 int
   2052 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2053                                     const MCInstrDesc &DefMCID,
   2054                                     unsigned DefIdx, unsigned DefAlign,
   2055                                     const MCInstrDesc &UseMCID,
   2056                                     unsigned UseIdx, unsigned UseAlign) const {
   2057   unsigned DefClass = DefMCID.getSchedClass();
   2058   unsigned UseClass = UseMCID.getSchedClass();
   2059 
   2060   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
   2061     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   2062 
   2063   // This may be a def / use of a variable_ops instruction, the operand
   2064   // latency might be determinable dynamically. Let the target try to
   2065   // figure it out.
   2066   int DefCycle = -1;
   2067   bool LdmBypass = false;
   2068   switch (DefMCID.getOpcode()) {
   2069   default:
   2070     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   2071     break;
   2072 
   2073   case ARM::VLDMDIA:
   2074   case ARM::VLDMDIA_UPD:
   2075   case ARM::VLDMDDB_UPD:
   2076   case ARM::VLDMSIA:
   2077   case ARM::VLDMSIA_UPD:
   2078   case ARM::VLDMSDB_UPD:
   2079     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   2080     break;
   2081 
   2082   case ARM::LDMIA_RET:
   2083   case ARM::LDMIA:
   2084   case ARM::LDMDA:
   2085   case ARM::LDMDB:
   2086   case ARM::LDMIB:
   2087   case ARM::LDMIA_UPD:
   2088   case ARM::LDMDA_UPD:
   2089   case ARM::LDMDB_UPD:
   2090   case ARM::LDMIB_UPD:
   2091   case ARM::tLDMIA:
   2092   case ARM::tLDMIA_UPD:
   2093   case ARM::tPUSH:
   2094   case ARM::t2LDMIA_RET:
   2095   case ARM::t2LDMIA:
   2096   case ARM::t2LDMDB:
   2097   case ARM::t2LDMIA_UPD:
   2098   case ARM::t2LDMDB_UPD:
   2099     LdmBypass = 1;
   2100     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   2101     break;
   2102   }
   2103 
   2104   if (DefCycle == -1)
   2105     // We can't seem to determine the result latency of the def, assume it's 2.
   2106     DefCycle = 2;
   2107 
   2108   int UseCycle = -1;
   2109   switch (UseMCID.getOpcode()) {
   2110   default:
   2111     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
   2112     break;
   2113 
   2114   case ARM::VSTMDIA:
   2115   case ARM::VSTMDIA_UPD:
   2116   case ARM::VSTMDDB_UPD:
   2117   case ARM::VSTMSIA:
   2118   case ARM::VSTMSIA_UPD:
   2119   case ARM::VSTMSDB_UPD:
   2120     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   2121     break;
   2122 
   2123   case ARM::STMIA:
   2124   case ARM::STMDA:
   2125   case ARM::STMDB:
   2126   case ARM::STMIB:
   2127   case ARM::STMIA_UPD:
   2128   case ARM::STMDA_UPD:
   2129   case ARM::STMDB_UPD:
   2130   case ARM::STMIB_UPD:
   2131   case ARM::tSTMIA:
   2132   case ARM::tSTMIA_UPD:
   2133   case ARM::tPOP_RET:
   2134   case ARM::tPOP:
   2135   case ARM::t2STMIA:
   2136   case ARM::t2STMDB:
   2137   case ARM::t2STMIA_UPD:
   2138   case ARM::t2STMDB_UPD:
   2139     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   2140     break;
   2141   }
   2142 
   2143   if (UseCycle == -1)
   2144     // Assume it's read in the first stage.
   2145     UseCycle = 1;
   2146 
   2147   UseCycle = DefCycle - UseCycle + 1;
   2148   if (UseCycle > 0) {
   2149     if (LdmBypass) {
   2150       // It's a variable_ops instruction so we can't use DefIdx here. Just use
   2151       // first def operand.
   2152       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
   2153                                           UseClass, UseIdx))
   2154         --UseCycle;
   2155     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
   2156                                                UseClass, UseIdx)) {
   2157       --UseCycle;
   2158     }
   2159   }
   2160 
   2161   return UseCycle;
   2162 }
   2163 
   2164 int
   2165 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2166                              const MachineInstr *DefMI, unsigned DefIdx,
   2167                              const MachineInstr *UseMI, unsigned UseIdx) const {
   2168   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
   2169       DefMI->isRegSequence() || DefMI->isImplicitDef())
   2170     return 1;
   2171 
   2172   const MCInstrDesc &DefMCID = DefMI->getDesc();
   2173   if (!ItinData || ItinData->isEmpty())
   2174     return DefMCID.mayLoad() ? 3 : 1;
   2175 
   2176   const MCInstrDesc &UseMCID = UseMI->getDesc();
   2177   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
   2178   if (DefMO.getReg() == ARM::CPSR) {
   2179     if (DefMI->getOpcode() == ARM::FMSTAT) {
   2180       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
   2181       return Subtarget.isCortexA9() ? 1 : 20;
   2182     }
   2183 
   2184     // CPSR set and branch can be paired in the same cycle.
   2185     if (UseMCID.isBranch())
   2186       return 0;
   2187   }
   2188 
   2189   unsigned DefAlign = DefMI->hasOneMemOperand()
   2190     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
   2191   unsigned UseAlign = UseMI->hasOneMemOperand()
   2192     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
   2193   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   2194                                   UseMCID, UseIdx, UseAlign);
   2195 
   2196   if (Latency > 1 &&
   2197       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
   2198     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   2199     // variants are one cycle cheaper.
   2200     switch (DefMCID.getOpcode()) {
   2201     default: break;
   2202     case ARM::LDRrs:
   2203     case ARM::LDRBrs: {
   2204       unsigned ShOpVal = DefMI->getOperand(3).getImm();
   2205       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2206       if (ShImm == 0 ||
   2207           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   2208         --Latency;
   2209       break;
   2210     }
   2211     case ARM::t2LDRs:
   2212     case ARM::t2LDRBs:
   2213     case ARM::t2LDRHs:
   2214     case ARM::t2LDRSHs: {
   2215       // Thumb2 mode: lsl only.
   2216       unsigned ShAmt = DefMI->getOperand(3).getImm();
   2217       if (ShAmt == 0 || ShAmt == 2)
   2218         --Latency;
   2219       break;
   2220     }
   2221     }
   2222   }
   2223 
   2224   if (DefAlign < 8 && Subtarget.isCortexA9())
   2225     switch (DefMCID.getOpcode()) {
   2226     default: break;
   2227     case ARM::VLD1q8:
   2228     case ARM::VLD1q16:
   2229     case ARM::VLD1q32:
   2230     case ARM::VLD1q64:
   2231     case ARM::VLD1q8_UPD:
   2232     case ARM::VLD1q16_UPD:
   2233     case ARM::VLD1q32_UPD:
   2234     case ARM::VLD1q64_UPD:
   2235     case ARM::VLD2d8:
   2236     case ARM::VLD2d16:
   2237     case ARM::VLD2d32:
   2238     case ARM::VLD2q8:
   2239     case ARM::VLD2q16:
   2240     case ARM::VLD2q32:
   2241     case ARM::VLD2d8_UPD:
   2242     case ARM::VLD2d16_UPD:
   2243     case ARM::VLD2d32_UPD:
   2244     case ARM::VLD2q8_UPD:
   2245     case ARM::VLD2q16_UPD:
   2246     case ARM::VLD2q32_UPD:
   2247     case ARM::VLD3d8:
   2248     case ARM::VLD3d16:
   2249     case ARM::VLD3d32:
   2250     case ARM::VLD1d64T:
   2251     case ARM::VLD3d8_UPD:
   2252     case ARM::VLD3d16_UPD:
   2253     case ARM::VLD3d32_UPD:
   2254     case ARM::VLD1d64T_UPD:
   2255     case ARM::VLD3q8_UPD:
   2256     case ARM::VLD3q16_UPD:
   2257     case ARM::VLD3q32_UPD:
   2258     case ARM::VLD4d8:
   2259     case ARM::VLD4d16:
   2260     case ARM::VLD4d32:
   2261     case ARM::VLD1d64Q:
   2262     case ARM::VLD4d8_UPD:
   2263     case ARM::VLD4d16_UPD:
   2264     case ARM::VLD4d32_UPD:
   2265     case ARM::VLD1d64Q_UPD:
   2266     case ARM::VLD4q8_UPD:
   2267     case ARM::VLD4q16_UPD:
   2268     case ARM::VLD4q32_UPD:
   2269     case ARM::VLD1DUPq8:
   2270     case ARM::VLD1DUPq16:
   2271     case ARM::VLD1DUPq32:
   2272     case ARM::VLD1DUPq8_UPD:
   2273     case ARM::VLD1DUPq16_UPD:
   2274     case ARM::VLD1DUPq32_UPD:
   2275     case ARM::VLD2DUPd8:
   2276     case ARM::VLD2DUPd16:
   2277     case ARM::VLD2DUPd32:
   2278     case ARM::VLD2DUPd8_UPD:
   2279     case ARM::VLD2DUPd16_UPD:
   2280     case ARM::VLD2DUPd32_UPD:
   2281     case ARM::VLD4DUPd8:
   2282     case ARM::VLD4DUPd16:
   2283     case ARM::VLD4DUPd32:
   2284     case ARM::VLD4DUPd8_UPD:
   2285     case ARM::VLD4DUPd16_UPD:
   2286     case ARM::VLD4DUPd32_UPD:
   2287     case ARM::VLD1LNd8:
   2288     case ARM::VLD1LNd16:
   2289     case ARM::VLD1LNd32:
   2290     case ARM::VLD1LNd8_UPD:
   2291     case ARM::VLD1LNd16_UPD:
   2292     case ARM::VLD1LNd32_UPD:
   2293     case ARM::VLD2LNd8:
   2294     case ARM::VLD2LNd16:
   2295     case ARM::VLD2LNd32:
   2296     case ARM::VLD2LNq16:
   2297     case ARM::VLD2LNq32:
   2298     case ARM::VLD2LNd8_UPD:
   2299     case ARM::VLD2LNd16_UPD:
   2300     case ARM::VLD2LNd32_UPD:
   2301     case ARM::VLD2LNq16_UPD:
   2302     case ARM::VLD2LNq32_UPD:
   2303     case ARM::VLD4LNd8:
   2304     case ARM::VLD4LNd16:
   2305     case ARM::VLD4LNd32:
   2306     case ARM::VLD4LNq16:
   2307     case ARM::VLD4LNq32:
   2308     case ARM::VLD4LNd8_UPD:
   2309     case ARM::VLD4LNd16_UPD:
   2310     case ARM::VLD4LNd32_UPD:
   2311     case ARM::VLD4LNq16_UPD:
   2312     case ARM::VLD4LNq32_UPD:
   2313       // If the address is not 64-bit aligned, the latencies of these
   2314       // instructions increases by one.
   2315       ++Latency;
   2316       break;
   2317     }
   2318 
   2319   return Latency;
   2320 }
   2321 
   2322 int
   2323 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2324                                     SDNode *DefNode, unsigned DefIdx,
   2325                                     SDNode *UseNode, unsigned UseIdx) const {
   2326   if (!DefNode->isMachineOpcode())
   2327     return 1;
   2328 
   2329   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
   2330 
   2331   if (isZeroCost(DefMCID.Opcode))
   2332     return 0;
   2333 
   2334   if (!ItinData || ItinData->isEmpty())
   2335     return DefMCID.mayLoad() ? 3 : 1;
   2336 
   2337   if (!UseNode->isMachineOpcode()) {
   2338     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
   2339     if (Subtarget.isCortexA9())
   2340       return Latency <= 2 ? 1 : Latency - 1;
   2341     else
   2342       return Latency <= 3 ? 1 : Latency - 2;
   2343   }
   2344 
   2345   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
   2346   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
   2347   unsigned DefAlign = !DefMN->memoperands_empty()
   2348     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
   2349   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
   2350   unsigned UseAlign = !UseMN->memoperands_empty()
   2351     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
   2352   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   2353                                   UseMCID, UseIdx, UseAlign);
   2354 
   2355   if (Latency > 1 &&
   2356       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
   2357     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   2358     // variants are one cycle cheaper.
   2359     switch (DefMCID.getOpcode()) {
   2360     default: break;
   2361     case ARM::LDRrs:
   2362     case ARM::LDRBrs: {
   2363       unsigned ShOpVal =
   2364         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   2365       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2366       if (ShImm == 0 ||
   2367           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   2368         --Latency;
   2369       break;
   2370     }
   2371     case ARM::t2LDRs:
   2372     case ARM::t2LDRBs:
   2373     case ARM::t2LDRHs:
   2374     case ARM::t2LDRSHs: {
   2375       // Thumb2 mode: lsl only.
   2376       unsigned ShAmt =
   2377         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   2378       if (ShAmt == 0 || ShAmt == 2)
   2379         --Latency;
   2380       break;
   2381     }
   2382     }
   2383   }
   2384 
   2385   if (DefAlign < 8 && Subtarget.isCortexA9())
   2386     switch (DefMCID.getOpcode()) {
   2387     default: break;
   2388     case ARM::VLD1q8Pseudo:
   2389     case ARM::VLD1q16Pseudo:
   2390     case ARM::VLD1q32Pseudo:
   2391     case ARM::VLD1q64Pseudo:
   2392     case ARM::VLD1q8Pseudo_UPD:
   2393     case ARM::VLD1q16Pseudo_UPD:
   2394     case ARM::VLD1q32Pseudo_UPD:
   2395     case ARM::VLD1q64Pseudo_UPD:
   2396     case ARM::VLD2d8Pseudo:
   2397     case ARM::VLD2d16Pseudo:
   2398     case ARM::VLD2d32Pseudo:
   2399     case ARM::VLD2q8Pseudo:
   2400     case ARM::VLD2q16Pseudo:
   2401     case ARM::VLD2q32Pseudo:
   2402     case ARM::VLD2d8Pseudo_UPD:
   2403     case ARM::VLD2d16Pseudo_UPD:
   2404     case ARM::VLD2d32Pseudo_UPD:
   2405     case ARM::VLD2q8Pseudo_UPD:
   2406     case ARM::VLD2q16Pseudo_UPD:
   2407     case ARM::VLD2q32Pseudo_UPD:
   2408     case ARM::VLD3d8Pseudo:
   2409     case ARM::VLD3d16Pseudo:
   2410     case ARM::VLD3d32Pseudo:
   2411     case ARM::VLD1d64TPseudo:
   2412     case ARM::VLD3d8Pseudo_UPD:
   2413     case ARM::VLD3d16Pseudo_UPD:
   2414     case ARM::VLD3d32Pseudo_UPD:
   2415     case ARM::VLD1d64TPseudo_UPD:
   2416     case ARM::VLD3q8Pseudo_UPD:
   2417     case ARM::VLD3q16Pseudo_UPD:
   2418     case ARM::VLD3q32Pseudo_UPD:
   2419     case ARM::VLD3q8oddPseudo:
   2420     case ARM::VLD3q16oddPseudo:
   2421     case ARM::VLD3q32oddPseudo:
   2422     case ARM::VLD3q8oddPseudo_UPD:
   2423     case ARM::VLD3q16oddPseudo_UPD:
   2424     case ARM::VLD3q32oddPseudo_UPD:
   2425     case ARM::VLD4d8Pseudo:
   2426     case ARM::VLD4d16Pseudo:
   2427     case ARM::VLD4d32Pseudo:
   2428     case ARM::VLD1d64QPseudo:
   2429     case ARM::VLD4d8Pseudo_UPD:
   2430     case ARM::VLD4d16Pseudo_UPD:
   2431     case ARM::VLD4d32Pseudo_UPD:
   2432     case ARM::VLD1d64QPseudo_UPD:
   2433     case ARM::VLD4q8Pseudo_UPD:
   2434     case ARM::VLD4q16Pseudo_UPD:
   2435     case ARM::VLD4q32Pseudo_UPD:
   2436     case ARM::VLD4q8oddPseudo:
   2437     case ARM::VLD4q16oddPseudo:
   2438     case ARM::VLD4q32oddPseudo:
   2439     case ARM::VLD4q8oddPseudo_UPD:
   2440     case ARM::VLD4q16oddPseudo_UPD:
   2441     case ARM::VLD4q32oddPseudo_UPD:
   2442     case ARM::VLD1DUPq8Pseudo:
   2443     case ARM::VLD1DUPq16Pseudo:
   2444     case ARM::VLD1DUPq32Pseudo:
   2445     case ARM::VLD1DUPq8Pseudo_UPD:
   2446     case ARM::VLD1DUPq16Pseudo_UPD:
   2447     case ARM::VLD1DUPq32Pseudo_UPD:
   2448     case ARM::VLD2DUPd8Pseudo:
   2449     case ARM::VLD2DUPd16Pseudo:
   2450     case ARM::VLD2DUPd32Pseudo:
   2451     case ARM::VLD2DUPd8Pseudo_UPD:
   2452     case ARM::VLD2DUPd16Pseudo_UPD:
   2453     case ARM::VLD2DUPd32Pseudo_UPD:
   2454     case ARM::VLD4DUPd8Pseudo:
   2455     case ARM::VLD4DUPd16Pseudo:
   2456     case ARM::VLD4DUPd32Pseudo:
   2457     case ARM::VLD4DUPd8Pseudo_UPD:
   2458     case ARM::VLD4DUPd16Pseudo_UPD:
   2459     case ARM::VLD4DUPd32Pseudo_UPD:
   2460     case ARM::VLD1LNq8Pseudo:
   2461     case ARM::VLD1LNq16Pseudo:
   2462     case ARM::VLD1LNq32Pseudo:
   2463     case ARM::VLD1LNq8Pseudo_UPD:
   2464     case ARM::VLD1LNq16Pseudo_UPD:
   2465     case ARM::VLD1LNq32Pseudo_UPD:
   2466     case ARM::VLD2LNd8Pseudo:
   2467     case ARM::VLD2LNd16Pseudo:
   2468     case ARM::VLD2LNd32Pseudo:
   2469     case ARM::VLD2LNq16Pseudo:
   2470     case ARM::VLD2LNq32Pseudo:
   2471     case ARM::VLD2LNd8Pseudo_UPD:
   2472     case ARM::VLD2LNd16Pseudo_UPD:
   2473     case ARM::VLD2LNd32Pseudo_UPD:
   2474     case ARM::VLD2LNq16Pseudo_UPD:
   2475     case ARM::VLD2LNq32Pseudo_UPD:
   2476     case ARM::VLD4LNd8Pseudo:
   2477     case ARM::VLD4LNd16Pseudo:
   2478     case ARM::VLD4LNd32Pseudo:
   2479     case ARM::VLD4LNq16Pseudo:
   2480     case ARM::VLD4LNq32Pseudo:
   2481     case ARM::VLD4LNd8Pseudo_UPD:
   2482     case ARM::VLD4LNd16Pseudo_UPD:
   2483     case ARM::VLD4LNd32Pseudo_UPD:
   2484     case ARM::VLD4LNq16Pseudo_UPD:
   2485     case ARM::VLD4LNq32Pseudo_UPD:
   2486       // If the address is not 64-bit aligned, the latencies of these
   2487       // instructions increases by one.
   2488       ++Latency;
   2489       break;
   2490     }
   2491 
   2492   return Latency;
   2493 }
   2494 
   2495 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   2496                                       const MachineInstr *MI,
   2497                                       unsigned *PredCost) const {
   2498   if (MI->isCopyLike() || MI->isInsertSubreg() ||
   2499       MI->isRegSequence() || MI->isImplicitDef())
   2500     return 1;
   2501 
   2502   if (!ItinData || ItinData->isEmpty())
   2503     return 1;
   2504 
   2505   const MCInstrDesc &MCID = MI->getDesc();
   2506   unsigned Class = MCID.getSchedClass();
   2507   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
   2508   if (PredCost && MCID.hasImplicitDefOfPhysReg(ARM::CPSR))
   2509     // When predicated, CPSR is an additional source operand for CPSR updating
   2510     // instructions, this apparently increases their latencies.
   2511     *PredCost = 1;
   2512   if (UOps)
   2513     return ItinData->getStageLatency(Class);
   2514   return getNumMicroOps(ItinData, MI);
   2515 }
   2516 
   2517 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   2518                                       SDNode *Node) const {
   2519   if (!Node->isMachineOpcode())
   2520     return 1;
   2521 
   2522   if (!ItinData || ItinData->isEmpty())
   2523     return 1;
   2524 
   2525   unsigned Opcode = Node->getMachineOpcode();
   2526   switch (Opcode) {
   2527   default:
   2528     return ItinData->getStageLatency(get(Opcode).getSchedClass());
   2529   case ARM::VLDMQIA:
   2530   case ARM::VSTMQIA:
   2531     return 2;
   2532   }
   2533 }
   2534 
   2535 bool ARMBaseInstrInfo::
   2536 hasHighOperandLatency(const InstrItineraryData *ItinData,
   2537                       const MachineRegisterInfo *MRI,
   2538                       const MachineInstr *DefMI, unsigned DefIdx,
   2539                       const MachineInstr *UseMI, unsigned UseIdx) const {
   2540   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   2541   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
   2542   if (Subtarget.isCortexA8() &&
   2543       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
   2544     // CortexA8 VFP instructions are not pipelined.
   2545     return true;
   2546 
   2547   // Hoist VFP / NEON instructions with 4 or higher latency.
   2548   int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
   2549   if (Latency <= 3)
   2550     return false;
   2551   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
   2552          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
   2553 }
   2554 
   2555 bool ARMBaseInstrInfo::
   2556 hasLowDefLatency(const InstrItineraryData *ItinData,
   2557                  const MachineInstr *DefMI, unsigned DefIdx) const {
   2558   if (!ItinData || ItinData->isEmpty())
   2559     return false;
   2560 
   2561   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   2562   if (DDomain == ARMII::DomainGeneral) {
   2563     unsigned DefClass = DefMI->getDesc().getSchedClass();
   2564     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   2565     return (DefCycle != -1 && DefCycle <= 2);
   2566   }
   2567   return false;
   2568 }
   2569 
   2570 bool
   2571 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
   2572                                      unsigned &AddSubOpc,
   2573                                      bool &NegAcc, bool &HasLane) const {
   2574   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
   2575   if (I == MLxEntryMap.end())
   2576     return false;
   2577 
   2578   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
   2579   MulOpc = Entry.MulOpc;
   2580   AddSubOpc = Entry.AddSubOpc;
   2581   NegAcc = Entry.NegAcc;
   2582   HasLane = Entry.HasLane;
   2583   return true;
   2584 }
   2585