Home | History | Annotate | Download | only in CodeGen
      1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Methods common to all machine instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/MachineInstr.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/InlineAsm.h"
     18 #include "llvm/LLVMContext.h"
     19 #include "llvm/Metadata.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Type.h"
     22 #include "llvm/Value.h"
     23 #include "llvm/Assembly/Writer.h"
     24 #include "llvm/CodeGen/MachineConstantPool.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineMemOperand.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/MC/MCInstrDesc.h"
     31 #include "llvm/MC/MCSymbol.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 #include "llvm/Analysis/AliasAnalysis.h"
     36 #include "llvm/Analysis/DebugInfo.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/LeakDetector.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/ADT/FoldingSet.h"
     43 using namespace llvm;
     44 
     45 //===----------------------------------------------------------------------===//
     46 // MachineOperand Implementation
     47 //===----------------------------------------------------------------------===//
     48 
     49 /// AddRegOperandToRegInfo - Add this register operand to the specified
     50 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
     51 /// explicitly nulled out.
     52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
     53   assert(isReg() && "Can only add reg operand to use lists");
     54 
     55   // If the reginfo pointer is null, just explicitly null out or next/prev
     56   // pointers, to ensure they are not garbage.
     57   if (RegInfo == 0) {
     58     Contents.Reg.Prev = 0;
     59     Contents.Reg.Next = 0;
     60     return;
     61   }
     62 
     63   // Otherwise, add this operand to the head of the registers use/def list.
     64   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
     65 
     66   // For SSA values, we prefer to keep the definition at the start of the list.
     67   // we do this by skipping over the definition if it is at the head of the
     68   // list.
     69   if (*Head && (*Head)->isDef())
     70     Head = &(*Head)->Contents.Reg.Next;
     71 
     72   Contents.Reg.Next = *Head;
     73   if (Contents.Reg.Next) {
     74     assert(getReg() == Contents.Reg.Next->getReg() &&
     75            "Different regs on the same list!");
     76     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
     77   }
     78 
     79   Contents.Reg.Prev = Head;
     80   *Head = this;
     81 }
     82 
     83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
     84 /// MachineRegisterInfo it is linked with.
     85 void MachineOperand::RemoveRegOperandFromRegInfo() {
     86   assert(isOnRegUseList() && "Reg operand is not on a use list");
     87   // Unlink this from the doubly linked list of operands.
     88   MachineOperand *NextOp = Contents.Reg.Next;
     89   *Contents.Reg.Prev = NextOp;
     90   if (NextOp) {
     91     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
     92     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
     93   }
     94   Contents.Reg.Prev = 0;
     95   Contents.Reg.Next = 0;
     96 }
     97 
     98 void MachineOperand::setReg(unsigned Reg) {
     99   if (getReg() == Reg) return; // No change.
    100 
    101   // Otherwise, we have to change the register.  If this operand is embedded
    102   // into a machine function, we need to update the old and new register's
    103   // use/def lists.
    104   if (MachineInstr *MI = getParent())
    105     if (MachineBasicBlock *MBB = MI->getParent())
    106       if (MachineFunction *MF = MBB->getParent()) {
    107         RemoveRegOperandFromRegInfo();
    108         SmallContents.RegNo = Reg;
    109         AddRegOperandToRegInfo(&MF->getRegInfo());
    110         return;
    111       }
    112 
    113   // Otherwise, just change the register, no problem.  :)
    114   SmallContents.RegNo = Reg;
    115 }
    116 
    117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
    118                                   const TargetRegisterInfo &TRI) {
    119   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    120   if (SubIdx && getSubReg())
    121     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
    122   setReg(Reg);
    123   if (SubIdx)
    124     setSubReg(SubIdx);
    125 }
    126 
    127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
    128   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
    129   if (getSubReg()) {
    130     Reg = TRI.getSubReg(Reg, getSubReg());
    131     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
    132     // That won't happen in legal code.
    133     setSubReg(0);
    134   }
    135   setReg(Reg);
    136 }
    137 
    138 /// ChangeToImmediate - Replace this operand with a new immediate operand of
    139 /// the specified value.  If an operand is known to be an immediate already,
    140 /// the setImm method should be used.
    141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
    142   // If this operand is currently a register operand, and if this is in a
    143   // function, deregister the operand from the register's use/def list.
    144   if (isReg() && getParent() && getParent()->getParent() &&
    145       getParent()->getParent()->getParent())
    146     RemoveRegOperandFromRegInfo();
    147 
    148   OpKind = MO_Immediate;
    149   Contents.ImmVal = ImmVal;
    150 }
    151 
    152 /// ChangeToRegister - Replace this operand with a new register operand of
    153 /// the specified value.  If an operand is known to be an register already,
    154 /// the setReg method should be used.
    155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
    156                                       bool isKill, bool isDead, bool isUndef,
    157                                       bool isDebug) {
    158   // If this operand is already a register operand, use setReg to update the
    159   // register's use/def lists.
    160   if (isReg()) {
    161     assert(!isEarlyClobber());
    162     setReg(Reg);
    163   } else {
    164     // Otherwise, change this to a register and set the reg#.
    165     OpKind = MO_Register;
    166     SmallContents.RegNo = Reg;
    167 
    168     // If this operand is embedded in a function, add the operand to the
    169     // register's use/def list.
    170     if (MachineInstr *MI = getParent())
    171       if (MachineBasicBlock *MBB = MI->getParent())
    172         if (MachineFunction *MF = MBB->getParent())
    173           AddRegOperandToRegInfo(&MF->getRegInfo());
    174   }
    175 
    176   IsDef = isDef;
    177   IsImp = isImp;
    178   IsKill = isKill;
    179   IsDead = isDead;
    180   IsUndef = isUndef;
    181   IsEarlyClobber = false;
    182   IsDebug = isDebug;
    183   SubReg = 0;
    184 }
    185 
    186 /// isIdenticalTo - Return true if this operand is identical to the specified
    187 /// operand.
    188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
    189   if (getType() != Other.getType() ||
    190       getTargetFlags() != Other.getTargetFlags())
    191     return false;
    192 
    193   switch (getType()) {
    194   default: llvm_unreachable("Unrecognized operand type");
    195   case MachineOperand::MO_Register:
    196     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
    197            getSubReg() == Other.getSubReg();
    198   case MachineOperand::MO_Immediate:
    199     return getImm() == Other.getImm();
    200   case MachineOperand::MO_CImmediate:
    201     return getCImm() == Other.getCImm();
    202   case MachineOperand::MO_FPImmediate:
    203     return getFPImm() == Other.getFPImm();
    204   case MachineOperand::MO_MachineBasicBlock:
    205     return getMBB() == Other.getMBB();
    206   case MachineOperand::MO_FrameIndex:
    207     return getIndex() == Other.getIndex();
    208   case MachineOperand::MO_ConstantPoolIndex:
    209     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
    210   case MachineOperand::MO_JumpTableIndex:
    211     return getIndex() == Other.getIndex();
    212   case MachineOperand::MO_GlobalAddress:
    213     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
    214   case MachineOperand::MO_ExternalSymbol:
    215     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
    216            getOffset() == Other.getOffset();
    217   case MachineOperand::MO_BlockAddress:
    218     return getBlockAddress() == Other.getBlockAddress();
    219   case MachineOperand::MO_MCSymbol:
    220     return getMCSymbol() == Other.getMCSymbol();
    221   case MachineOperand::MO_Metadata:
    222     return getMetadata() == Other.getMetadata();
    223   }
    224 }
    225 
    226 /// print - Print the specified machine operand.
    227 ///
    228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
    229   // If the instruction is embedded into a basic block, we can find the
    230   // target info for the instruction.
    231   if (!TM)
    232     if (const MachineInstr *MI = getParent())
    233       if (const MachineBasicBlock *MBB = MI->getParent())
    234         if (const MachineFunction *MF = MBB->getParent())
    235           TM = &MF->getTarget();
    236   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
    237 
    238   switch (getType()) {
    239   case MachineOperand::MO_Register:
    240     OS << PrintReg(getReg(), TRI, getSubReg());
    241 
    242     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
    243         isEarlyClobber()) {
    244       OS << '<';
    245       bool NeedComma = false;
    246       if (isDef()) {
    247         if (NeedComma) OS << ',';
    248         if (isEarlyClobber())
    249           OS << "earlyclobber,";
    250         if (isImplicit())
    251           OS << "imp-";
    252         OS << "def";
    253         NeedComma = true;
    254       } else if (isImplicit()) {
    255           OS << "imp-use";
    256           NeedComma = true;
    257       }
    258 
    259       if (isKill() || isDead() || isUndef()) {
    260         if (NeedComma) OS << ',';
    261         if (isKill())  OS << "kill";
    262         if (isDead())  OS << "dead";
    263         if (isUndef()) {
    264           if (isKill() || isDead())
    265             OS << ',';
    266           OS << "undef";
    267         }
    268       }
    269       OS << '>';
    270     }
    271     break;
    272   case MachineOperand::MO_Immediate:
    273     OS << getImm();
    274     break;
    275   case MachineOperand::MO_CImmediate:
    276     getCImm()->getValue().print(OS, false);
    277     break;
    278   case MachineOperand::MO_FPImmediate:
    279     if (getFPImm()->getType()->isFloatTy())
    280       OS << getFPImm()->getValueAPF().convertToFloat();
    281     else
    282       OS << getFPImm()->getValueAPF().convertToDouble();
    283     break;
    284   case MachineOperand::MO_MachineBasicBlock:
    285     OS << "<BB#" << getMBB()->getNumber() << ">";
    286     break;
    287   case MachineOperand::MO_FrameIndex:
    288     OS << "<fi#" << getIndex() << '>';
    289     break;
    290   case MachineOperand::MO_ConstantPoolIndex:
    291     OS << "<cp#" << getIndex();
    292     if (getOffset()) OS << "+" << getOffset();
    293     OS << '>';
    294     break;
    295   case MachineOperand::MO_JumpTableIndex:
    296     OS << "<jt#" << getIndex() << '>';
    297     break;
    298   case MachineOperand::MO_GlobalAddress:
    299     OS << "<ga:";
    300     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
    301     if (getOffset()) OS << "+" << getOffset();
    302     OS << '>';
    303     break;
    304   case MachineOperand::MO_ExternalSymbol:
    305     OS << "<es:" << getSymbolName();
    306     if (getOffset()) OS << "+" << getOffset();
    307     OS << '>';
    308     break;
    309   case MachineOperand::MO_BlockAddress:
    310     OS << '<';
    311     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
    312     OS << '>';
    313     break;
    314   case MachineOperand::MO_Metadata:
    315     OS << '<';
    316     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
    317     OS << '>';
    318     break;
    319   case MachineOperand::MO_MCSymbol:
    320     OS << "<MCSym=" << *getMCSymbol() << '>';
    321     break;
    322   default:
    323     llvm_unreachable("Unrecognized operand type");
    324   }
    325 
    326   if (unsigned TF = getTargetFlags())
    327     OS << "[TF=" << TF << ']';
    328 }
    329 
    330 //===----------------------------------------------------------------------===//
    331 // MachineMemOperand Implementation
    332 //===----------------------------------------------------------------------===//
    333 
    334 /// getAddrSpace - Return the LLVM IR address space number that this pointer
    335 /// points into.
    336 unsigned MachinePointerInfo::getAddrSpace() const {
    337   if (V == 0) return 0;
    338   return cast<PointerType>(V->getType())->getAddressSpace();
    339 }
    340 
    341 /// getConstantPool - Return a MachinePointerInfo record that refers to the
    342 /// constant pool.
    343 MachinePointerInfo MachinePointerInfo::getConstantPool() {
    344   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
    345 }
    346 
    347 /// getFixedStack - Return a MachinePointerInfo record that refers to the
    348 /// the specified FrameIndex.
    349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
    350   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
    351 }
    352 
    353 MachinePointerInfo MachinePointerInfo::getJumpTable() {
    354   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
    355 }
    356 
    357 MachinePointerInfo MachinePointerInfo::getGOT() {
    358   return MachinePointerInfo(PseudoSourceValue::getGOT());
    359 }
    360 
    361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
    362   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
    363 }
    364 
    365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
    366                                      uint64_t s, unsigned int a,
    367                                      const MDNode *TBAAInfo)
    368   : PtrInfo(ptrinfo), Size(s),
    369     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
    370     TBAAInfo(TBAAInfo) {
    371   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
    372          "invalid pointer value");
    373   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
    374   assert((isLoad() || isStore()) && "Not a load/store!");
    375 }
    376 
    377 /// Profile - Gather unique data for the object.
    378 ///
    379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
    380   ID.AddInteger(getOffset());
    381   ID.AddInteger(Size);
    382   ID.AddPointer(getValue());
    383   ID.AddInteger(Flags);
    384 }
    385 
    386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
    387   // The Value and Offset may differ due to CSE. But the flags and size
    388   // should be the same.
    389   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
    390   assert(MMO->getSize() == getSize() && "Size mismatch!");
    391 
    392   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
    393     // Update the alignment value.
    394     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
    395       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
    396     // Also update the base and offset, because the new alignment may
    397     // not be applicable with the old ones.
    398     PtrInfo = MMO->PtrInfo;
    399   }
    400 }
    401 
    402 /// getAlignment - Return the minimum known alignment in bytes of the
    403 /// actual memory reference.
    404 uint64_t MachineMemOperand::getAlignment() const {
    405   return MinAlign(getBaseAlignment(), getOffset());
    406 }
    407 
    408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
    409   assert((MMO.isLoad() || MMO.isStore()) &&
    410          "SV has to be a load, store or both.");
    411 
    412   if (MMO.isVolatile())
    413     OS << "Volatile ";
    414 
    415   if (MMO.isLoad())
    416     OS << "LD";
    417   if (MMO.isStore())
    418     OS << "ST";
    419   OS << MMO.getSize();
    420 
    421   // Print the address information.
    422   OS << "[";
    423   if (!MMO.getValue())
    424     OS << "<unknown>";
    425   else
    426     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
    427 
    428   // If the alignment of the memory reference itself differs from the alignment
    429   // of the base pointer, print the base alignment explicitly, next to the base
    430   // pointer.
    431   if (MMO.getBaseAlignment() != MMO.getAlignment())
    432     OS << "(align=" << MMO.getBaseAlignment() << ")";
    433 
    434   if (MMO.getOffset() != 0)
    435     OS << "+" << MMO.getOffset();
    436   OS << "]";
    437 
    438   // Print the alignment of the reference.
    439   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
    440       MMO.getBaseAlignment() != MMO.getSize())
    441     OS << "(align=" << MMO.getAlignment() << ")";
    442 
    443   // Print TBAA info.
    444   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
    445     OS << "(tbaa=";
    446     if (TBAAInfo->getNumOperands() > 0)
    447       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
    448     else
    449       OS << "<unknown>";
    450     OS << ")";
    451   }
    452 
    453   // Print nontemporal info.
    454   if (MMO.isNonTemporal())
    455     OS << "(nontemporal)";
    456 
    457   return OS;
    458 }
    459 
    460 //===----------------------------------------------------------------------===//
    461 // MachineInstr Implementation
    462 //===----------------------------------------------------------------------===//
    463 
    464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
    465 /// MCID NULL and no operands.
    466 MachineInstr::MachineInstr()
    467   : MCID(0), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
    468     MemRefs(0), MemRefsEnd(0),
    469     Parent(0) {
    470   // Make sure that we get added to a machine basicblock
    471   LeakDetector::addGarbageObject(this);
    472 }
    473 
    474 void MachineInstr::addImplicitDefUseOperands() {
    475   if (MCID->ImplicitDefs)
    476     for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
    477       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
    478   if (MCID->ImplicitUses)
    479     for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
    480       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
    481 }
    482 
    483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
    484 /// implicit operands. It reserves space for the number of operands specified by
    485 /// the MCInstrDesc.
    486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
    487   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
    488     MemRefs(0), MemRefsEnd(0), Parent(0) {
    489   if (!NoImp)
    490     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    491   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    492   if (!NoImp)
    493     addImplicitDefUseOperands();
    494   // Make sure that we get added to a machine basicblock
    495   LeakDetector::addGarbageObject(this);
    496 }
    497 
    498 /// MachineInstr ctor - As above, but with a DebugLoc.
    499 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
    500                            bool NoImp)
    501   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
    502     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
    503   if (!NoImp)
    504     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    505   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    506   if (!NoImp)
    507     addImplicitDefUseOperands();
    508   // Make sure that we get added to a machine basicblock
    509   LeakDetector::addGarbageObject(this);
    510 }
    511 
    512 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
    513 /// that the MachineInstr is created and added to the end of the specified
    514 /// basic block.
    515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
    516   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
    517     MemRefs(0), MemRefsEnd(0), Parent(0) {
    518   assert(MBB && "Cannot use inserting ctor with null basic block!");
    519   NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    520   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    521   addImplicitDefUseOperands();
    522   // Make sure that we get added to a machine basicblock
    523   LeakDetector::addGarbageObject(this);
    524   MBB->push_back(this);  // Add instruction to end of basic block!
    525 }
    526 
    527 /// MachineInstr ctor - As above, but with a DebugLoc.
    528 ///
    529 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
    530                            const MCInstrDesc &tid)
    531   : MCID(&tid), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
    532     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
    533   assert(MBB && "Cannot use inserting ctor with null basic block!");
    534   NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    535   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    536   addImplicitDefUseOperands();
    537   // Make sure that we get added to a machine basicblock
    538   LeakDetector::addGarbageObject(this);
    539   MBB->push_back(this);  // Add instruction to end of basic block!
    540 }
    541 
    542 /// MachineInstr ctor - Copies MachineInstr arg exactly
    543 ///
    544 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
    545   : MCID(&MI.getDesc()), NumImplicitOps(0), Flags(0), AsmPrinterFlags(0),
    546     MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
    547     Parent(0), debugLoc(MI.getDebugLoc()) {
    548   Operands.reserve(MI.getNumOperands());
    549 
    550   // Add operands
    551   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
    552     addOperand(MI.getOperand(i));
    553   NumImplicitOps = MI.NumImplicitOps;
    554 
    555   // Copy all the flags.
    556   Flags = MI.Flags;
    557 
    558   // Set parent to null.
    559   Parent = 0;
    560 
    561   LeakDetector::addGarbageObject(this);
    562 }
    563 
    564 MachineInstr::~MachineInstr() {
    565   LeakDetector::removeGarbageObject(this);
    566 #ifndef NDEBUG
    567   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    568     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
    569     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
    570            "Reg operand def/use list corrupted");
    571   }
    572 #endif
    573 }
    574 
    575 /// getRegInfo - If this instruction is embedded into a MachineFunction,
    576 /// return the MachineRegisterInfo object for the current function, otherwise
    577 /// return null.
    578 MachineRegisterInfo *MachineInstr::getRegInfo() {
    579   if (MachineBasicBlock *MBB = getParent())
    580     return &MBB->getParent()->getRegInfo();
    581   return 0;
    582 }
    583 
    584 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
    585 /// this instruction from their respective use lists.  This requires that the
    586 /// operands already be on their use lists.
    587 void MachineInstr::RemoveRegOperandsFromUseLists() {
    588   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    589     if (Operands[i].isReg())
    590       Operands[i].RemoveRegOperandFromRegInfo();
    591   }
    592 }
    593 
    594 /// AddRegOperandsToUseLists - Add all of the register operands in
    595 /// this instruction from their respective use lists.  This requires that the
    596 /// operands not be on their use lists yet.
    597 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
    598   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    599     if (Operands[i].isReg())
    600       Operands[i].AddRegOperandToRegInfo(&RegInfo);
    601   }
    602 }
    603 
    604 
    605 /// addOperand - Add the specified operand to the instruction.  If it is an
    606 /// implicit operand, it is added to the end of the operand list.  If it is
    607 /// an explicit operand it is added at the end of the explicit operand list
    608 /// (before the first implicit operand).
    609 void MachineInstr::addOperand(const MachineOperand &Op) {
    610   bool isImpReg = Op.isReg() && Op.isImplicit();
    611   assert((isImpReg || !OperandsComplete()) &&
    612          "Trying to add an operand to a machine instr that is already done!");
    613 
    614   MachineRegisterInfo *RegInfo = getRegInfo();
    615 
    616   // If we are adding the operand to the end of the list, our job is simpler.
    617   // This is true most of the time, so this is a reasonable optimization.
    618   if (isImpReg || NumImplicitOps == 0) {
    619     // We can only do this optimization if we know that the operand list won't
    620     // reallocate.
    621     if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
    622       Operands.push_back(Op);
    623 
    624       // Set the parent of the operand.
    625       Operands.back().ParentMI = this;
    626 
    627       // If the operand is a register, update the operand's use list.
    628       if (Op.isReg()) {
    629         Operands.back().AddRegOperandToRegInfo(RegInfo);
    630         // If the register operand is flagged as early, mark the operand as such
    631         unsigned OpNo = Operands.size() - 1;
    632         if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    633           Operands[OpNo].setIsEarlyClobber(true);
    634       }
    635       return;
    636     }
    637   }
    638 
    639   // Otherwise, we have to insert a real operand before any implicit ones.
    640   unsigned OpNo = Operands.size()-NumImplicitOps;
    641 
    642   // If this instruction isn't embedded into a function, then we don't need to
    643   // update any operand lists.
    644   if (RegInfo == 0) {
    645     // Simple insertion, no reginfo update needed for other register operands.
    646     Operands.insert(Operands.begin()+OpNo, Op);
    647     Operands[OpNo].ParentMI = this;
    648 
    649     // Do explicitly set the reginfo for this operand though, to ensure the
    650     // next/prev fields are properly nulled out.
    651     if (Operands[OpNo].isReg()) {
    652       Operands[OpNo].AddRegOperandToRegInfo(0);
    653       // If the register operand is flagged as early, mark the operand as such
    654       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    655         Operands[OpNo].setIsEarlyClobber(true);
    656     }
    657 
    658   } else if (Operands.size()+1 <= Operands.capacity()) {
    659     // Otherwise, we have to remove register operands from their register use
    660     // list, add the operand, then add the register operands back to their use
    661     // list.  This also must handle the case when the operand list reallocates
    662     // to somewhere else.
    663 
    664     // If insertion of this operand won't cause reallocation of the operand
    665     // list, just remove the implicit operands, add the operand, then re-add all
    666     // the rest of the operands.
    667     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    668       assert(Operands[i].isReg() && "Should only be an implicit reg!");
    669       Operands[i].RemoveRegOperandFromRegInfo();
    670     }
    671 
    672     // Add the operand.  If it is a register, add it to the reg list.
    673     Operands.insert(Operands.begin()+OpNo, Op);
    674     Operands[OpNo].ParentMI = this;
    675 
    676     if (Operands[OpNo].isReg()) {
    677       Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
    678       // If the register operand is flagged as early, mark the operand as such
    679       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    680         Operands[OpNo].setIsEarlyClobber(true);
    681     }
    682 
    683     // Re-add all the implicit ops.
    684     for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
    685       assert(Operands[i].isReg() && "Should only be an implicit reg!");
    686       Operands[i].AddRegOperandToRegInfo(RegInfo);
    687     }
    688   } else {
    689     // Otherwise, we will be reallocating the operand list.  Remove all reg
    690     // operands from their list, then readd them after the operand list is
    691     // reallocated.
    692     RemoveRegOperandsFromUseLists();
    693 
    694     Operands.insert(Operands.begin()+OpNo, Op);
    695     Operands[OpNo].ParentMI = this;
    696 
    697     // Re-add all the operands.
    698     AddRegOperandsToUseLists(*RegInfo);
    699 
    700       // If the register operand is flagged as early, mark the operand as such
    701     if (Operands[OpNo].isReg()
    702         && MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    703       Operands[OpNo].setIsEarlyClobber(true);
    704   }
    705 }
    706 
    707 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    708 /// fewer operand than it started with.
    709 ///
    710 void MachineInstr::RemoveOperand(unsigned OpNo) {
    711   assert(OpNo < Operands.size() && "Invalid operand number");
    712 
    713   // Special case removing the last one.
    714   if (OpNo == Operands.size()-1) {
    715     // If needed, remove from the reg def/use list.
    716     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
    717       Operands.back().RemoveRegOperandFromRegInfo();
    718 
    719     Operands.pop_back();
    720     return;
    721   }
    722 
    723   // Otherwise, we are removing an interior operand.  If we have reginfo to
    724   // update, remove all operands that will be shifted down from their reg lists,
    725   // move everything down, then re-add them.
    726   MachineRegisterInfo *RegInfo = getRegInfo();
    727   if (RegInfo) {
    728     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    729       if (Operands[i].isReg())
    730         Operands[i].RemoveRegOperandFromRegInfo();
    731     }
    732   }
    733 
    734   Operands.erase(Operands.begin()+OpNo);
    735 
    736   if (RegInfo) {
    737     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    738       if (Operands[i].isReg())
    739         Operands[i].AddRegOperandToRegInfo(RegInfo);
    740     }
    741   }
    742 }
    743 
    744 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    745 /// This function should be used only occasionally. The setMemRefs function
    746 /// is the primary method for setting up a MachineInstr's MemRefs list.
    747 void MachineInstr::addMemOperand(MachineFunction &MF,
    748                                  MachineMemOperand *MO) {
    749   mmo_iterator OldMemRefs = MemRefs;
    750   mmo_iterator OldMemRefsEnd = MemRefsEnd;
    751 
    752   size_t NewNum = (MemRefsEnd - MemRefs) + 1;
    753   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
    754   mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
    755 
    756   std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
    757   NewMemRefs[NewNum - 1] = MO;
    758 
    759   MemRefs = NewMemRefs;
    760   MemRefsEnd = NewMemRefsEnd;
    761 }
    762 
    763 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
    764                                  MICheckType Check) const {
    765   // If opcodes or number of operands are not the same then the two
    766   // instructions are obviously not identical.
    767   if (Other->getOpcode() != getOpcode() ||
    768       Other->getNumOperands() != getNumOperands())
    769     return false;
    770 
    771   // Check operands to make sure they match.
    772   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    773     const MachineOperand &MO = getOperand(i);
    774     const MachineOperand &OMO = Other->getOperand(i);
    775     if (!MO.isReg()) {
    776       if (!MO.isIdenticalTo(OMO))
    777         return false;
    778       continue;
    779     }
    780 
    781     // Clients may or may not want to ignore defs when testing for equality.
    782     // For example, machine CSE pass only cares about finding common
    783     // subexpressions, so it's safe to ignore virtual register defs.
    784     if (MO.isDef()) {
    785       if (Check == IgnoreDefs)
    786         continue;
    787       else if (Check == IgnoreVRegDefs) {
    788         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
    789             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
    790           if (MO.getReg() != OMO.getReg())
    791             return false;
    792       } else {
    793         if (!MO.isIdenticalTo(OMO))
    794           return false;
    795         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
    796           return false;
    797       }
    798     } else {
    799       if (!MO.isIdenticalTo(OMO))
    800         return false;
    801       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
    802         return false;
    803     }
    804   }
    805   // If DebugLoc does not match then two dbg.values are not identical.
    806   if (isDebugValue())
    807     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
    808         && getDebugLoc() != Other->getDebugLoc())
    809       return false;
    810   return true;
    811 }
    812 
    813 /// removeFromParent - This method unlinks 'this' from the containing basic
    814 /// block, and returns it, but does not delete it.
    815 MachineInstr *MachineInstr::removeFromParent() {
    816   assert(getParent() && "Not embedded in a basic block!");
    817   getParent()->remove(this);
    818   return this;
    819 }
    820 
    821 
    822 /// eraseFromParent - This method unlinks 'this' from the containing basic
    823 /// block, and deletes it.
    824 void MachineInstr::eraseFromParent() {
    825   assert(getParent() && "Not embedded in a basic block!");
    826   getParent()->erase(this);
    827 }
    828 
    829 
    830 /// OperandComplete - Return true if it's illegal to add a new operand
    831 ///
    832 bool MachineInstr::OperandsComplete() const {
    833   unsigned short NumOperands = MCID->getNumOperands();
    834   if (!MCID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
    835     return true;  // Broken: we have all the operands of this instruction!
    836   return false;
    837 }
    838 
    839 /// getNumExplicitOperands - Returns the number of non-implicit operands.
    840 ///
    841 unsigned MachineInstr::getNumExplicitOperands() const {
    842   unsigned NumOperands = MCID->getNumOperands();
    843   if (!MCID->isVariadic())
    844     return NumOperands;
    845 
    846   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
    847     const MachineOperand &MO = getOperand(i);
    848     if (!MO.isReg() || !MO.isImplicit())
    849       NumOperands++;
    850   }
    851   return NumOperands;
    852 }
    853 
    854 bool MachineInstr::isStackAligningInlineAsm() const {
    855   if (isInlineAsm()) {
    856     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    857     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
    858       return true;
    859   }
    860   return false;
    861 }
    862 
    863 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
    864 /// the specific register or -1 if it is not found. It further tightens
    865 /// the search criteria to a use that kills the register if isKill is true.
    866 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
    867                                           const TargetRegisterInfo *TRI) const {
    868   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    869     const MachineOperand &MO = getOperand(i);
    870     if (!MO.isReg() || !MO.isUse())
    871       continue;
    872     unsigned MOReg = MO.getReg();
    873     if (!MOReg)
    874       continue;
    875     if (MOReg == Reg ||
    876         (TRI &&
    877          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
    878          TargetRegisterInfo::isPhysicalRegister(Reg) &&
    879          TRI->isSubRegister(MOReg, Reg)))
    880       if (!isKill || MO.isKill())
    881         return i;
    882   }
    883   return -1;
    884 }
    885 
    886 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
    887 /// indicating if this instruction reads or writes Reg. This also considers
    888 /// partial defines.
    889 std::pair<bool,bool>
    890 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
    891                                          SmallVectorImpl<unsigned> *Ops) const {
    892   bool PartDef = false; // Partial redefine.
    893   bool FullDef = false; // Full define.
    894   bool Use = false;
    895 
    896   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    897     const MachineOperand &MO = getOperand(i);
    898     if (!MO.isReg() || MO.getReg() != Reg)
    899       continue;
    900     if (Ops)
    901       Ops->push_back(i);
    902     if (MO.isUse())
    903       Use |= !MO.isUndef();
    904     else if (MO.getSubReg())
    905       PartDef = true;
    906     else
    907       FullDef = true;
    908   }
    909   // A partial redefine uses Reg unless there is also a full define.
    910   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
    911 }
    912 
    913 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
    914 /// the specified register or -1 if it is not found. If isDead is true, defs
    915 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
    916 /// also checks if there is a def of a super-register.
    917 int
    918 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
    919                                         const TargetRegisterInfo *TRI) const {
    920   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
    921   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    922     const MachineOperand &MO = getOperand(i);
    923     if (!MO.isReg() || !MO.isDef())
    924       continue;
    925     unsigned MOReg = MO.getReg();
    926     bool Found = (MOReg == Reg);
    927     if (!Found && TRI && isPhys &&
    928         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
    929       if (Overlap)
    930         Found = TRI->regsOverlap(MOReg, Reg);
    931       else
    932         Found = TRI->isSubRegister(MOReg, Reg);
    933     }
    934     if (Found && (!isDead || MO.isDead()))
    935       return i;
    936   }
    937   return -1;
    938 }
    939 
    940 /// findFirstPredOperandIdx() - Find the index of the first operand in the
    941 /// operand list that is used to represent the predicate. It returns -1 if
    942 /// none is found.
    943 int MachineInstr::findFirstPredOperandIdx() const {
    944   const MCInstrDesc &MCID = getDesc();
    945   if (MCID.isPredicable()) {
    946     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    947       if (MCID.OpInfo[i].isPredicate())
    948         return i;
    949   }
    950 
    951   return -1;
    952 }
    953 
    954 /// isRegTiedToUseOperand - Given the index of a register def operand,
    955 /// check if the register def is tied to a source operand, due to either
    956 /// two-address elimination or inline assembly constraints. Returns the
    957 /// first tied use operand index by reference is UseOpIdx is not null.
    958 bool MachineInstr::
    959 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
    960   if (isInlineAsm()) {
    961     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
    962     const MachineOperand &MO = getOperand(DefOpIdx);
    963     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
    964       return false;
    965     // Determine the actual operand index that corresponds to this index.
    966     unsigned DefNo = 0;
    967     unsigned DefPart = 0;
    968     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
    969          i < e; ) {
    970       const MachineOperand &FMO = getOperand(i);
    971       // After the normal asm operands there may be additional imp-def regs.
    972       if (!FMO.isImm())
    973         return false;
    974       // Skip over this def.
    975       unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
    976       unsigned PrevDef = i + 1;
    977       i = PrevDef + NumOps;
    978       if (i > DefOpIdx) {
    979         DefPart = DefOpIdx - PrevDef;
    980         break;
    981       }
    982       ++DefNo;
    983     }
    984     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
    985          i != e; ++i) {
    986       const MachineOperand &FMO = getOperand(i);
    987       if (!FMO.isImm())
    988         continue;
    989       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
    990         continue;
    991       unsigned Idx;
    992       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
    993           Idx == DefNo) {
    994         if (UseOpIdx)
    995           *UseOpIdx = (unsigned)i + 1 + DefPart;
    996         return true;
    997       }
    998     }
    999     return false;
   1000   }
   1001 
   1002   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
   1003   const MCInstrDesc &MCID = getDesc();
   1004   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
   1005     const MachineOperand &MO = getOperand(i);
   1006     if (MO.isReg() && MO.isUse() &&
   1007         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
   1008       if (UseOpIdx)
   1009         *UseOpIdx = (unsigned)i;
   1010       return true;
   1011     }
   1012   }
   1013   return false;
   1014 }
   1015 
   1016 /// isRegTiedToDefOperand - Return true if the operand of the specified index
   1017 /// is a register use and it is tied to an def operand. It also returns the def
   1018 /// operand index by reference.
   1019 bool MachineInstr::
   1020 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
   1021   if (isInlineAsm()) {
   1022     const MachineOperand &MO = getOperand(UseOpIdx);
   1023     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
   1024       return false;
   1025 
   1026     // Find the flag operand corresponding to UseOpIdx
   1027     unsigned FlagIdx, NumOps=0;
   1028     for (FlagIdx = InlineAsm::MIOp_FirstOperand;
   1029          FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
   1030       const MachineOperand &UFMO = getOperand(FlagIdx);
   1031       // After the normal asm operands there may be additional imp-def regs.
   1032       if (!UFMO.isImm())
   1033         return false;
   1034       NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
   1035       assert(NumOps < getNumOperands() && "Invalid inline asm flag");
   1036       if (UseOpIdx < FlagIdx+NumOps+1)
   1037         break;
   1038     }
   1039     if (FlagIdx >= UseOpIdx)
   1040       return false;
   1041     const MachineOperand &UFMO = getOperand(FlagIdx);
   1042     unsigned DefNo;
   1043     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
   1044       if (!DefOpIdx)
   1045         return true;
   1046 
   1047       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
   1048       // Remember to adjust the index. First operand is asm string, second is
   1049       // the HasSideEffects and AlignStack bits, then there is a flag for each.
   1050       while (DefNo) {
   1051         const MachineOperand &FMO = getOperand(DefIdx);
   1052         assert(FMO.isImm());
   1053         // Skip over this def.
   1054         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
   1055         --DefNo;
   1056       }
   1057       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
   1058       return true;
   1059     }
   1060     return false;
   1061   }
   1062 
   1063   const MCInstrDesc &MCID = getDesc();
   1064   if (UseOpIdx >= MCID.getNumOperands())
   1065     return false;
   1066   const MachineOperand &MO = getOperand(UseOpIdx);
   1067   if (!MO.isReg() || !MO.isUse())
   1068     return false;
   1069   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
   1070   if (DefIdx == -1)
   1071     return false;
   1072   if (DefOpIdx)
   1073     *DefOpIdx = (unsigned)DefIdx;
   1074   return true;
   1075 }
   1076 
   1077 /// clearKillInfo - Clears kill flags on all operands.
   1078 ///
   1079 void MachineInstr::clearKillInfo() {
   1080   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1081     MachineOperand &MO = getOperand(i);
   1082     if (MO.isReg() && MO.isUse())
   1083       MO.setIsKill(false);
   1084   }
   1085 }
   1086 
   1087 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
   1088 ///
   1089 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
   1090   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1091     const MachineOperand &MO = MI->getOperand(i);
   1092     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
   1093       continue;
   1094     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
   1095       MachineOperand &MOp = getOperand(j);
   1096       if (!MOp.isIdenticalTo(MO))
   1097         continue;
   1098       if (MO.isKill())
   1099         MOp.setIsKill();
   1100       else
   1101         MOp.setIsDead();
   1102       break;
   1103     }
   1104   }
   1105 }
   1106 
   1107 /// copyPredicates - Copies predicate operand(s) from MI.
   1108 void MachineInstr::copyPredicates(const MachineInstr *MI) {
   1109   const MCInstrDesc &MCID = MI->getDesc();
   1110   if (!MCID.isPredicable())
   1111     return;
   1112   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1113     if (MCID.OpInfo[i].isPredicate()) {
   1114       // Predicated operands must be last operands.
   1115       addOperand(MI->getOperand(i));
   1116     }
   1117   }
   1118 }
   1119 
   1120 void MachineInstr::substituteRegister(unsigned FromReg,
   1121                                       unsigned ToReg,
   1122                                       unsigned SubIdx,
   1123                                       const TargetRegisterInfo &RegInfo) {
   1124   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
   1125     if (SubIdx)
   1126       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
   1127     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1128       MachineOperand &MO = getOperand(i);
   1129       if (!MO.isReg() || MO.getReg() != FromReg)
   1130         continue;
   1131       MO.substPhysReg(ToReg, RegInfo);
   1132     }
   1133   } else {
   1134     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1135       MachineOperand &MO = getOperand(i);
   1136       if (!MO.isReg() || MO.getReg() != FromReg)
   1137         continue;
   1138       MO.substVirtReg(ToReg, SubIdx, RegInfo);
   1139     }
   1140   }
   1141 }
   1142 
   1143 /// isSafeToMove - Return true if it is safe to move this instruction. If
   1144 /// SawStore is set to true, it means that there is a store (or call) between
   1145 /// the instruction's location and its intended destination.
   1146 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
   1147                                 AliasAnalysis *AA,
   1148                                 bool &SawStore) const {
   1149   // Ignore stuff that we obviously can't move.
   1150   if (MCID->mayStore() || MCID->isCall()) {
   1151     SawStore = true;
   1152     return false;
   1153   }
   1154 
   1155   if (isLabel() || isDebugValue() ||
   1156       MCID->isTerminator() || hasUnmodeledSideEffects())
   1157     return false;
   1158 
   1159   // See if this instruction does a load.  If so, we have to guarantee that the
   1160   // loaded value doesn't change between the load and the its intended
   1161   // destination. The check for isInvariantLoad gives the targe the chance to
   1162   // classify the load as always returning a constant, e.g. a constant pool
   1163   // load.
   1164   if (MCID->mayLoad() && !isInvariantLoad(AA))
   1165     // Otherwise, this is a real load.  If there is a store between the load and
   1166     // end of block, or if the load is volatile, we can't move it.
   1167     return !SawStore && !hasVolatileMemoryRef();
   1168 
   1169   return true;
   1170 }
   1171 
   1172 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
   1173 /// instruction which defined the specified register instead of copying it.
   1174 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
   1175                                  AliasAnalysis *AA,
   1176                                  unsigned DstReg) const {
   1177   bool SawStore = false;
   1178   if (!TII->isTriviallyReMaterializable(this, AA) ||
   1179       !isSafeToMove(TII, AA, SawStore))
   1180     return false;
   1181   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1182     const MachineOperand &MO = getOperand(i);
   1183     if (!MO.isReg())
   1184       continue;
   1185     // FIXME: For now, do not remat any instruction with register operands.
   1186     // Later on, we can loosen the restriction is the register operands have
   1187     // not been modified between the def and use. Note, this is different from
   1188     // MachineSink because the code is no longer in two-address form (at least
   1189     // partially).
   1190     if (MO.isUse())
   1191       return false;
   1192     else if (!MO.isDead() && MO.getReg() != DstReg)
   1193       return false;
   1194   }
   1195   return true;
   1196 }
   1197 
   1198 /// hasVolatileMemoryRef - Return true if this instruction may have a
   1199 /// volatile memory reference, or if the information describing the
   1200 /// memory reference is not available. Return false if it is known to
   1201 /// have no volatile memory references.
   1202 bool MachineInstr::hasVolatileMemoryRef() const {
   1203   // An instruction known never to access memory won't have a volatile access.
   1204   if (!MCID->mayStore() &&
   1205       !MCID->mayLoad() &&
   1206       !MCID->isCall() &&
   1207       !hasUnmodeledSideEffects())
   1208     return false;
   1209 
   1210   // Otherwise, if the instruction has no memory reference information,
   1211   // conservatively assume it wasn't preserved.
   1212   if (memoperands_empty())
   1213     return true;
   1214 
   1215   // Check the memory reference information for volatile references.
   1216   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
   1217     if ((*I)->isVolatile())
   1218       return true;
   1219 
   1220   return false;
   1221 }
   1222 
   1223 /// isInvariantLoad - Return true if this instruction is loading from a
   1224 /// location whose value is invariant across the function.  For example,
   1225 /// loading a value from the constant pool or from the argument area
   1226 /// of a function if it does not change.  This should only return true of
   1227 /// *all* loads the instruction does are invariant (if it does multiple loads).
   1228 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
   1229   // If the instruction doesn't load at all, it isn't an invariant load.
   1230   if (!MCID->mayLoad())
   1231     return false;
   1232 
   1233   // If the instruction has lost its memoperands, conservatively assume that
   1234   // it may not be an invariant load.
   1235   if (memoperands_empty())
   1236     return false;
   1237 
   1238   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
   1239 
   1240   for (mmo_iterator I = memoperands_begin(),
   1241        E = memoperands_end(); I != E; ++I) {
   1242     if ((*I)->isVolatile()) return false;
   1243     if ((*I)->isStore()) return false;
   1244 
   1245     if (const Value *V = (*I)->getValue()) {
   1246       // A load from a constant PseudoSourceValue is invariant.
   1247       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
   1248         if (PSV->isConstant(MFI))
   1249           continue;
   1250       // If we have an AliasAnalysis, ask it whether the memory is constant.
   1251       if (AA && AA->pointsToConstantMemory(
   1252                       AliasAnalysis::Location(V, (*I)->getSize(),
   1253                                               (*I)->getTBAAInfo())))
   1254         continue;
   1255     }
   1256 
   1257     // Otherwise assume conservatively.
   1258     return false;
   1259   }
   1260 
   1261   // Everything checks out.
   1262   return true;
   1263 }
   1264 
   1265 /// isConstantValuePHI - If the specified instruction is a PHI that always
   1266 /// merges together the same virtual register, return the register, otherwise
   1267 /// return 0.
   1268 unsigned MachineInstr::isConstantValuePHI() const {
   1269   if (!isPHI())
   1270     return 0;
   1271   assert(getNumOperands() >= 3 &&
   1272          "It's illegal to have a PHI without source operands");
   1273 
   1274   unsigned Reg = getOperand(1).getReg();
   1275   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
   1276     if (getOperand(i).getReg() != Reg)
   1277       return 0;
   1278   return Reg;
   1279 }
   1280 
   1281 bool MachineInstr::hasUnmodeledSideEffects() const {
   1282   if (getDesc().hasUnmodeledSideEffects())
   1283     return true;
   1284   if (isInlineAsm()) {
   1285     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1286     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1287       return true;
   1288   }
   1289 
   1290   return false;
   1291 }
   1292 
   1293 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1294 ///
   1295 bool MachineInstr::allDefsAreDead() const {
   1296   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
   1297     const MachineOperand &MO = getOperand(i);
   1298     if (!MO.isReg() || MO.isUse())
   1299       continue;
   1300     if (!MO.isDead())
   1301       return false;
   1302   }
   1303   return true;
   1304 }
   1305 
   1306 /// copyImplicitOps - Copy implicit register operands from specified
   1307 /// instruction to this instruction.
   1308 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
   1309   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
   1310        i != e; ++i) {
   1311     const MachineOperand &MO = MI->getOperand(i);
   1312     if (MO.isReg() && MO.isImplicit())
   1313       addOperand(MO);
   1314   }
   1315 }
   1316 
   1317 void MachineInstr::dump() const {
   1318   dbgs() << "  " << *this;
   1319 }
   1320 
   1321 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
   1322                          raw_ostream &CommentOS) {
   1323   const LLVMContext &Ctx = MF->getFunction()->getContext();
   1324   if (!DL.isUnknown()) {          // Print source line info.
   1325     DIScope Scope(DL.getScope(Ctx));
   1326     // Omit the directory, because it's likely to be long and uninteresting.
   1327     if (Scope.Verify())
   1328       CommentOS << Scope.getFilename();
   1329     else
   1330       CommentOS << "<unknown>";
   1331     CommentOS << ':' << DL.getLine();
   1332     if (DL.getCol() != 0)
   1333       CommentOS << ':' << DL.getCol();
   1334     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
   1335     if (!InlinedAtDL.isUnknown()) {
   1336       CommentOS << " @[ ";
   1337       printDebugLoc(InlinedAtDL, MF, CommentOS);
   1338       CommentOS << " ]";
   1339     }
   1340   }
   1341 }
   1342 
   1343 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
   1344   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
   1345   const MachineFunction *MF = 0;
   1346   const MachineRegisterInfo *MRI = 0;
   1347   if (const MachineBasicBlock *MBB = getParent()) {
   1348     MF = MBB->getParent();
   1349     if (!TM && MF)
   1350       TM = &MF->getTarget();
   1351     if (MF)
   1352       MRI = &MF->getRegInfo();
   1353   }
   1354 
   1355   // Save a list of virtual registers.
   1356   SmallVector<unsigned, 8> VirtRegs;
   1357 
   1358   // Print explicitly defined operands on the left of an assignment syntax.
   1359   unsigned StartOp = 0, e = getNumOperands();
   1360   for (; StartOp < e && getOperand(StartOp).isReg() &&
   1361          getOperand(StartOp).isDef() &&
   1362          !getOperand(StartOp).isImplicit();
   1363        ++StartOp) {
   1364     if (StartOp != 0) OS << ", ";
   1365     getOperand(StartOp).print(OS, TM);
   1366     unsigned Reg = getOperand(StartOp).getReg();
   1367     if (TargetRegisterInfo::isVirtualRegister(Reg))
   1368       VirtRegs.push_back(Reg);
   1369   }
   1370 
   1371   if (StartOp != 0)
   1372     OS << " = ";
   1373 
   1374   // Print the opcode name.
   1375   OS << getDesc().getName();
   1376 
   1377   // Print the rest of the operands.
   1378   bool OmittedAnyCallClobbers = false;
   1379   bool FirstOp = true;
   1380   unsigned AsmDescOp = ~0u;
   1381   unsigned AsmOpCount = 0;
   1382 
   1383   if (isInlineAsm()) {
   1384     // Print asm string.
   1385     OS << " ";
   1386     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
   1387 
   1388     // Print HasSideEffects, IsAlignStack
   1389     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1390     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1391       OS << " [sideeffect]";
   1392     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
   1393       OS << " [alignstack]";
   1394 
   1395     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
   1396     FirstOp = false;
   1397   }
   1398 
   1399 
   1400   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
   1401     const MachineOperand &MO = getOperand(i);
   1402 
   1403     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1404       VirtRegs.push_back(MO.getReg());
   1405 
   1406     // Omit call-clobbered registers which aren't used anywhere. This makes
   1407     // call instructions much less noisy on targets where calls clobber lots
   1408     // of registers. Don't rely on MO.isDead() because we may be called before
   1409     // LiveVariables is run, or we may be looking at a non-allocatable reg.
   1410     if (MF && getDesc().isCall() &&
   1411         MO.isReg() && MO.isImplicit() && MO.isDef()) {
   1412       unsigned Reg = MO.getReg();
   1413       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1414         const MachineRegisterInfo &MRI = MF->getRegInfo();
   1415         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
   1416           bool HasAliasLive = false;
   1417           for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
   1418                unsigned AliasReg = *Alias; ++Alias)
   1419             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
   1420               HasAliasLive = true;
   1421               break;
   1422             }
   1423           if (!HasAliasLive) {
   1424             OmittedAnyCallClobbers = true;
   1425             continue;
   1426           }
   1427         }
   1428       }
   1429     }
   1430 
   1431     if (FirstOp) FirstOp = false; else OS << ",";
   1432     OS << " ";
   1433     if (i < getDesc().NumOperands) {
   1434       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
   1435       if (MCOI.isPredicate())
   1436         OS << "pred:";
   1437       if (MCOI.isOptionalDef())
   1438         OS << "opt:";
   1439     }
   1440     if (isDebugValue() && MO.isMetadata()) {
   1441       // Pretty print DBG_VALUE instructions.
   1442       const MDNode *MD = MO.getMetadata();
   1443       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
   1444         OS << "!\"" << MDS->getString() << '\"';
   1445       else
   1446         MO.print(OS, TM);
   1447     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
   1448       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
   1449     } else if (i == AsmDescOp && MO.isImm()) {
   1450       // Pretty print the inline asm operand descriptor.
   1451       OS << '$' << AsmOpCount++;
   1452       unsigned Flag = MO.getImm();
   1453       switch (InlineAsm::getKind(Flag)) {
   1454       case InlineAsm::Kind_RegUse:             OS << ":[reguse]"; break;
   1455       case InlineAsm::Kind_RegDef:             OS << ":[regdef]"; break;
   1456       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec]"; break;
   1457       case InlineAsm::Kind_Clobber:            OS << ":[clobber]"; break;
   1458       case InlineAsm::Kind_Imm:                OS << ":[imm]"; break;
   1459       case InlineAsm::Kind_Mem:                OS << ":[mem]"; break;
   1460       default: OS << ":[??" << InlineAsm::getKind(Flag) << ']'; break;
   1461       }
   1462 
   1463       unsigned TiedTo = 0;
   1464       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
   1465         OS << " [tiedto:$" << TiedTo << ']';
   1466 
   1467       // Compute the index of the next operand descriptor.
   1468       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
   1469     } else
   1470       MO.print(OS, TM);
   1471   }
   1472 
   1473   // Briefly indicate whether any call clobbers were omitted.
   1474   if (OmittedAnyCallClobbers) {
   1475     if (!FirstOp) OS << ",";
   1476     OS << " ...";
   1477   }
   1478 
   1479   bool HaveSemi = false;
   1480   if (Flags) {
   1481     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1482     OS << " flags: ";
   1483 
   1484     if (Flags & FrameSetup)
   1485       OS << "FrameSetup";
   1486   }
   1487 
   1488   if (!memoperands_empty()) {
   1489     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1490 
   1491     OS << " mem:";
   1492     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
   1493          i != e; ++i) {
   1494       OS << **i;
   1495       if (llvm::next(i) != e)
   1496         OS << " ";
   1497     }
   1498   }
   1499 
   1500   // Print the regclass of any virtual registers encountered.
   1501   if (MRI && !VirtRegs.empty()) {
   1502     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1503     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
   1504       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
   1505       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
   1506       for (unsigned j = i+1; j != VirtRegs.size();) {
   1507         if (MRI->getRegClass(VirtRegs[j]) != RC) {
   1508           ++j;
   1509           continue;
   1510         }
   1511         if (VirtRegs[i] != VirtRegs[j])
   1512           OS << "," << PrintReg(VirtRegs[j]);
   1513         VirtRegs.erase(VirtRegs.begin()+j);
   1514       }
   1515     }
   1516   }
   1517 
   1518   // Print debug location information.
   1519   if (!debugLoc.isUnknown() && MF) {
   1520     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1521     OS << " dbg:";
   1522     printDebugLoc(debugLoc, MF, OS);
   1523   }
   1524 
   1525   OS << '\n';
   1526 }
   1527 
   1528 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
   1529                                      const TargetRegisterInfo *RegInfo,
   1530                                      bool AddIfNotFound) {
   1531   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1532   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
   1533   bool Found = false;
   1534   SmallVector<unsigned,4> DeadOps;
   1535   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1536     MachineOperand &MO = getOperand(i);
   1537     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
   1538       continue;
   1539     unsigned Reg = MO.getReg();
   1540     if (!Reg)
   1541       continue;
   1542 
   1543     if (Reg == IncomingReg) {
   1544       if (!Found) {
   1545         if (MO.isKill())
   1546           // The register is already marked kill.
   1547           return true;
   1548         if (isPhysReg && isRegTiedToDefOperand(i))
   1549           // Two-address uses of physregs must not be marked kill.
   1550           return true;
   1551         MO.setIsKill();
   1552         Found = true;
   1553       }
   1554     } else if (hasAliases && MO.isKill() &&
   1555                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1556       // A super-register kill already exists.
   1557       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1558         return true;
   1559       if (RegInfo->isSubRegister(IncomingReg, Reg))
   1560         DeadOps.push_back(i);
   1561     }
   1562   }
   1563 
   1564   // Trim unneeded kill operands.
   1565   while (!DeadOps.empty()) {
   1566     unsigned OpIdx = DeadOps.back();
   1567     if (getOperand(OpIdx).isImplicit())
   1568       RemoveOperand(OpIdx);
   1569     else
   1570       getOperand(OpIdx).setIsKill(false);
   1571     DeadOps.pop_back();
   1572   }
   1573 
   1574   // If not found, this means an alias of one of the operands is killed. Add a
   1575   // new implicit operand if required.
   1576   if (!Found && AddIfNotFound) {
   1577     addOperand(MachineOperand::CreateReg(IncomingReg,
   1578                                          false /*IsDef*/,
   1579                                          true  /*IsImp*/,
   1580                                          true  /*IsKill*/));
   1581     return true;
   1582   }
   1583   return Found;
   1584 }
   1585 
   1586 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
   1587                                    const TargetRegisterInfo *RegInfo,
   1588                                    bool AddIfNotFound) {
   1589   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1590   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
   1591   bool Found = false;
   1592   SmallVector<unsigned,4> DeadOps;
   1593   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1594     MachineOperand &MO = getOperand(i);
   1595     if (!MO.isReg() || !MO.isDef())
   1596       continue;
   1597     unsigned Reg = MO.getReg();
   1598     if (!Reg)
   1599       continue;
   1600 
   1601     if (Reg == IncomingReg) {
   1602       MO.setIsDead();
   1603       Found = true;
   1604     } else if (hasAliases && MO.isDead() &&
   1605                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1606       // There exists a super-register that's marked dead.
   1607       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1608         return true;
   1609       if (RegInfo->getSubRegisters(IncomingReg) &&
   1610           RegInfo->getSuperRegisters(Reg) &&
   1611           RegInfo->isSubRegister(IncomingReg, Reg))
   1612         DeadOps.push_back(i);
   1613     }
   1614   }
   1615 
   1616   // Trim unneeded dead operands.
   1617   while (!DeadOps.empty()) {
   1618     unsigned OpIdx = DeadOps.back();
   1619     if (getOperand(OpIdx).isImplicit())
   1620       RemoveOperand(OpIdx);
   1621     else
   1622       getOperand(OpIdx).setIsDead(false);
   1623     DeadOps.pop_back();
   1624   }
   1625 
   1626   // If not found, this means an alias of one of the operands is dead. Add a
   1627   // new implicit operand if required.
   1628   if (Found || !AddIfNotFound)
   1629     return Found;
   1630 
   1631   addOperand(MachineOperand::CreateReg(IncomingReg,
   1632                                        true  /*IsDef*/,
   1633                                        true  /*IsImp*/,
   1634                                        false /*IsKill*/,
   1635                                        true  /*IsDead*/));
   1636   return true;
   1637 }
   1638 
   1639 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
   1640                                       const TargetRegisterInfo *RegInfo) {
   1641   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
   1642     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
   1643     if (MO)
   1644       return;
   1645   } else {
   1646     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1647       const MachineOperand &MO = getOperand(i);
   1648       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
   1649           MO.getSubReg() == 0)
   1650         return;
   1651     }
   1652   }
   1653   addOperand(MachineOperand::CreateReg(IncomingReg,
   1654                                        true  /*IsDef*/,
   1655                                        true  /*IsImp*/));
   1656 }
   1657 
   1658 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
   1659                                          const TargetRegisterInfo &TRI) {
   1660   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1661     MachineOperand &MO = getOperand(i);
   1662     if (!MO.isReg() || !MO.isDef()) continue;
   1663     unsigned Reg = MO.getReg();
   1664     if (Reg == 0) continue;
   1665     bool Dead = true;
   1666     for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
   1667          E = UsedRegs.end(); I != E; ++I)
   1668       if (TRI.regsOverlap(*I, Reg)) {
   1669         Dead = false;
   1670         break;
   1671       }
   1672     // If there are no uses, including partial uses, the def is dead.
   1673     if (Dead) MO.setIsDead();
   1674   }
   1675 }
   1676 
   1677 unsigned
   1678 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
   1679   unsigned Hash = MI->getOpcode() * 37;
   1680   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1681     const MachineOperand &MO = MI->getOperand(i);
   1682     uint64_t Key = (uint64_t)MO.getType() << 32;
   1683     switch (MO.getType()) {
   1684     default: break;
   1685     case MachineOperand::MO_Register:
   1686       if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1687         continue;  // Skip virtual register defs.
   1688       Key |= MO.getReg();
   1689       break;
   1690     case MachineOperand::MO_Immediate:
   1691       Key |= MO.getImm();
   1692       break;
   1693     case MachineOperand::MO_FrameIndex:
   1694     case MachineOperand::MO_ConstantPoolIndex:
   1695     case MachineOperand::MO_JumpTableIndex:
   1696       Key |= MO.getIndex();
   1697       break;
   1698     case MachineOperand::MO_MachineBasicBlock:
   1699       Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
   1700       break;
   1701     case MachineOperand::MO_GlobalAddress:
   1702       Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
   1703       break;
   1704     case MachineOperand::MO_BlockAddress:
   1705       Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
   1706       break;
   1707     case MachineOperand::MO_MCSymbol:
   1708       Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
   1709       break;
   1710     }
   1711     Key += ~(Key << 32);
   1712     Key ^= (Key >> 22);
   1713     Key += ~(Key << 13);
   1714     Key ^= (Key >> 8);
   1715     Key += (Key << 3);
   1716     Key ^= (Key >> 15);
   1717     Key += ~(Key << 27);
   1718     Key ^= (Key >> 31);
   1719     Hash = (unsigned)Key + Hash * 37;
   1720   }
   1721   return Hash;
   1722 }
   1723 
   1724 void MachineInstr::emitError(StringRef Msg) const {
   1725   // Find the source location cookie.
   1726   unsigned LocCookie = 0;
   1727   const MDNode *LocMD = 0;
   1728   for (unsigned i = getNumOperands(); i != 0; --i) {
   1729     if (getOperand(i-1).isMetadata() &&
   1730         (LocMD = getOperand(i-1).getMetadata()) &&
   1731         LocMD->getNumOperands() != 0) {
   1732       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
   1733         LocCookie = CI->getZExtValue();
   1734         break;
   1735       }
   1736     }
   1737   }
   1738 
   1739   if (const MachineBasicBlock *MBB = getParent())
   1740     if (const MachineFunction *MF = MBB->getParent())
   1741       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
   1742   report_fatal_error(Msg);
   1743 }
   1744