1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the PPCISelLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCISelLowering.h" 15 #include "PPCMachineFunctionInfo.h" 16 #include "PPCPerfectShuffle.h" 17 #include "PPCPredicates.h" 18 #include "PPCTargetMachine.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/VectorExtras.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/PseudoSourceValue.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Function.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/DerivedTypes.h" 39 using namespace llvm; 40 41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 42 CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, 44 CCState &State); 45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 46 MVT &LocVT, 47 CCValAssign::LocInfo &LocInfo, 48 ISD::ArgFlagsTy &ArgFlags, 49 CCState &State); 50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 51 MVT &LocVT, 52 CCValAssign::LocInfo &LocInfo, 53 ISD::ArgFlagsTy &ArgFlags, 54 CCState &State); 55 56 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 57 cl::desc("enable preincrement load/store generation on PPC (experimental)"), 58 cl::Hidden); 59 60 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) { 61 if (TM.getSubtargetImpl()->isDarwin()) 62 return new TargetLoweringObjectFileMachO(); 63 64 return new TargetLoweringObjectFileELF(); 65 } 66 67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) 68 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) { 69 70 setPow2DivIsCheap(); 71 72 // Use _setjmp/_longjmp instead of setjmp/longjmp. 73 setUseUnderscoreSetJmp(true); 74 setUseUnderscoreLongJmp(true); 75 76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 77 // arguments are at least 4/8 bytes aligned. 78 setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4); 79 80 // Set up the register classes. 81 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); 82 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); 83 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); 84 85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD 86 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 87 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 88 89 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 90 91 // PowerPC has pre-inc load and store's. 92 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 93 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 94 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 95 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 96 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 97 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 98 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 99 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 100 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 101 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 102 103 // This is used in the ppcf128->int sequence. Note it has different semantics 104 // from FP_ROUND: that rounds to nearest, this rounds to zero. 105 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom); 106 107 // PowerPC has no SREM/UREM instructions 108 setOperationAction(ISD::SREM, MVT::i32, Expand); 109 setOperationAction(ISD::UREM, MVT::i32, Expand); 110 setOperationAction(ISD::SREM, MVT::i64, Expand); 111 setOperationAction(ISD::UREM, MVT::i64, Expand); 112 113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 114 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 115 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 116 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 117 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 118 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 119 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 120 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 121 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 122 123 // We don't support sin/cos/sqrt/fmod/pow 124 setOperationAction(ISD::FSIN , MVT::f64, Expand); 125 setOperationAction(ISD::FCOS , MVT::f64, Expand); 126 setOperationAction(ISD::FREM , MVT::f64, Expand); 127 setOperationAction(ISD::FPOW , MVT::f64, Expand); 128 setOperationAction(ISD::FMA , MVT::f64, Expand); 129 setOperationAction(ISD::FSIN , MVT::f32, Expand); 130 setOperationAction(ISD::FCOS , MVT::f32, Expand); 131 setOperationAction(ISD::FREM , MVT::f32, Expand); 132 setOperationAction(ISD::FPOW , MVT::f32, Expand); 133 setOperationAction(ISD::FMA , MVT::f32, Expand); 134 135 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 136 137 // If we're enabling GP optimizations, use hardware square root 138 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) { 139 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 140 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 141 } 142 143 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 144 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 145 146 // PowerPC does not have BSWAP, CTPOP or CTTZ 147 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 148 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 149 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 150 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 151 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 152 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 153 154 // PowerPC does not have ROTR 155 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 156 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 157 158 // PowerPC does not have Select 159 setOperationAction(ISD::SELECT, MVT::i32, Expand); 160 setOperationAction(ISD::SELECT, MVT::i64, Expand); 161 setOperationAction(ISD::SELECT, MVT::f32, Expand); 162 setOperationAction(ISD::SELECT, MVT::f64, Expand); 163 164 // PowerPC wants to turn select_cc of FP into fsel when possible. 165 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 166 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 167 168 // PowerPC wants to optimize integer setcc a bit 169 setOperationAction(ISD::SETCC, MVT::i32, Custom); 170 171 // PowerPC does not have BRCOND which requires SetCC 172 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 173 174 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 175 176 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 177 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 178 179 // PowerPC does not have [U|S]INT_TO_FP 180 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 181 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 182 183 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 184 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 185 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 186 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 187 188 // We cannot sextinreg(i1). Expand to shifts. 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 190 191 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 192 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 193 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 194 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 195 196 197 // We want to legalize GlobalAddress and ConstantPool nodes into the 198 // appropriate instructions to materialize the address. 199 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 200 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 201 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 202 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 203 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 204 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 205 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 206 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 207 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 208 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 209 210 // TRAP is legal. 211 setOperationAction(ISD::TRAP, MVT::Other, Legal); 212 213 // TRAMPOLINE is custom lowered. 214 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 215 216 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 217 setOperationAction(ISD::VASTART , MVT::Other, Custom); 218 219 // VAARG is custom lowered with the 32-bit SVR4 ABI. 220 if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 221 && !TM.getSubtarget<PPCSubtarget>().isPPC64()) { 222 setOperationAction(ISD::VAARG, MVT::Other, Custom); 223 setOperationAction(ISD::VAARG, MVT::i64, Custom); 224 } else 225 setOperationAction(ISD::VAARG, MVT::Other, Expand); 226 227 // Use the default implementation. 228 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 229 setOperationAction(ISD::VAEND , MVT::Other, Expand); 230 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 231 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 232 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 233 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 234 235 // We want to custom lower some of our intrinsics. 236 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 237 238 // Comparisons that require checking two conditions. 239 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 240 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 241 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 242 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 243 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 244 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 245 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 246 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 247 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 248 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 249 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 250 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 251 252 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 253 // They also have instructions for converting between i64 and fp. 254 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 255 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 256 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 257 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 258 // This is just the low 32 bits of a (signed) fp->i64 conversion. 259 // We cannot do this with Promote because i64 is not a legal type. 260 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 261 262 // FIXME: disable this lowered code. This generates 64-bit register values, 263 // and we don't model the fact that the top part is clobbered by calls. We 264 // need to flag these together so that the value isn't live across a call. 265 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 266 } else { 267 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 268 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 269 } 270 271 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) { 272 // 64-bit PowerPC implementations can support i64 types directly 273 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); 274 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 275 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 276 // 64-bit PowerPC wants to expand i128 shifts itself. 277 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 278 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 279 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 280 } else { 281 // 32-bit PowerPC wants to expand i64 shifts itself. 282 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 283 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 284 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 285 } 286 287 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) { 288 // First set operation action for all vector types to expand. Then we 289 // will selectively turn on ones that can be effectively codegen'd. 290 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 291 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 292 MVT::SimpleValueType VT = (MVT::SimpleValueType)i; 293 294 // add/sub are legal for all supported vector VT's. 295 setOperationAction(ISD::ADD , VT, Legal); 296 setOperationAction(ISD::SUB , VT, Legal); 297 298 // We promote all shuffles to v16i8. 299 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 300 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 301 302 // We promote all non-typed operations to v4i32. 303 setOperationAction(ISD::AND , VT, Promote); 304 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 305 setOperationAction(ISD::OR , VT, Promote); 306 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 307 setOperationAction(ISD::XOR , VT, Promote); 308 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 309 setOperationAction(ISD::LOAD , VT, Promote); 310 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 311 setOperationAction(ISD::SELECT, VT, Promote); 312 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 313 setOperationAction(ISD::STORE, VT, Promote); 314 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 315 316 // No other operations are legal. 317 setOperationAction(ISD::MUL , VT, Expand); 318 setOperationAction(ISD::SDIV, VT, Expand); 319 setOperationAction(ISD::SREM, VT, Expand); 320 setOperationAction(ISD::UDIV, VT, Expand); 321 setOperationAction(ISD::UREM, VT, Expand); 322 setOperationAction(ISD::FDIV, VT, Expand); 323 setOperationAction(ISD::FNEG, VT, Expand); 324 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 325 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 326 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 327 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 328 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 329 setOperationAction(ISD::UDIVREM, VT, Expand); 330 setOperationAction(ISD::SDIVREM, VT, Expand); 331 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 332 setOperationAction(ISD::FPOW, VT, Expand); 333 setOperationAction(ISD::CTPOP, VT, Expand); 334 setOperationAction(ISD::CTLZ, VT, Expand); 335 setOperationAction(ISD::CTTZ, VT, Expand); 336 } 337 338 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 339 // with merges, splats, etc. 340 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 341 342 setOperationAction(ISD::AND , MVT::v4i32, Legal); 343 setOperationAction(ISD::OR , MVT::v4i32, Legal); 344 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 345 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 346 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 347 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 348 349 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); 350 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); 351 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); 352 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); 353 354 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 355 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 356 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 357 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 358 359 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 360 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 361 362 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 363 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 364 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 365 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 366 } 367 368 setBooleanContents(ZeroOrOneBooleanContent); 369 370 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) { 371 setStackPointerRegisterToSaveRestore(PPC::X1); 372 setExceptionPointerRegister(PPC::X3); 373 setExceptionSelectorRegister(PPC::X4); 374 } else { 375 setStackPointerRegisterToSaveRestore(PPC::R1); 376 setExceptionPointerRegister(PPC::R3); 377 setExceptionSelectorRegister(PPC::R4); 378 } 379 380 // We have target-specific dag combine patterns for the following nodes: 381 setTargetDAGCombine(ISD::SINT_TO_FP); 382 setTargetDAGCombine(ISD::STORE); 383 setTargetDAGCombine(ISD::BR_CC); 384 setTargetDAGCombine(ISD::BSWAP); 385 386 // Darwin long double math library functions have $LDBL128 appended. 387 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) { 388 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 389 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 390 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 391 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 392 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 393 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 394 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 395 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 396 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 397 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 398 } 399 400 setMinFunctionAlignment(2); 401 if (PPCSubTarget.isDarwin()) 402 setPrefFunctionAlignment(4); 403 404 computeRegisterProperties(); 405 } 406 407 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 408 /// function arguments in the caller parameter area. 409 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const { 410 const TargetMachine &TM = getTargetMachine(); 411 // Darwin passes everything on 4 byte boundary. 412 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) 413 return 4; 414 // FIXME SVR4 TBD 415 return 4; 416 } 417 418 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 419 switch (Opcode) { 420 default: return 0; 421 case PPCISD::FSEL: return "PPCISD::FSEL"; 422 case PPCISD::FCFID: return "PPCISD::FCFID"; 423 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 424 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 425 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 426 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 427 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 428 case PPCISD::VPERM: return "PPCISD::VPERM"; 429 case PPCISD::Hi: return "PPCISD::Hi"; 430 case PPCISD::Lo: return "PPCISD::Lo"; 431 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 432 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE"; 433 case PPCISD::LOAD: return "PPCISD::LOAD"; 434 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC"; 435 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 436 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 437 case PPCISD::SRL: return "PPCISD::SRL"; 438 case PPCISD::SRA: return "PPCISD::SRA"; 439 case PPCISD::SHL: return "PPCISD::SHL"; 440 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; 441 case PPCISD::STD_32: return "PPCISD::STD_32"; 442 case PPCISD::CALL_SVR4: return "PPCISD::CALL_SVR4"; 443 case PPCISD::CALL_Darwin: return "PPCISD::CALL_Darwin"; 444 case PPCISD::NOP: return "PPCISD::NOP"; 445 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 446 case PPCISD::BCTRL_Darwin: return "PPCISD::BCTRL_Darwin"; 447 case PPCISD::BCTRL_SVR4: return "PPCISD::BCTRL_SVR4"; 448 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 449 case PPCISD::MFCR: return "PPCISD::MFCR"; 450 case PPCISD::VCMP: return "PPCISD::VCMP"; 451 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 452 case PPCISD::LBRX: return "PPCISD::LBRX"; 453 case PPCISD::STBRX: return "PPCISD::STBRX"; 454 case PPCISD::LARX: return "PPCISD::LARX"; 455 case PPCISD::STCX: return "PPCISD::STCX"; 456 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 457 case PPCISD::MFFS: return "PPCISD::MFFS"; 458 case PPCISD::MTFSB0: return "PPCISD::MTFSB0"; 459 case PPCISD::MTFSB1: return "PPCISD::MTFSB1"; 460 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 461 case PPCISD::MTFSF: return "PPCISD::MTFSF"; 462 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 463 } 464 } 465 466 MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const { 467 return MVT::i32; 468 } 469 470 //===----------------------------------------------------------------------===// 471 // Node matching predicates, for use by the tblgen matching code. 472 //===----------------------------------------------------------------------===// 473 474 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 475 static bool isFloatingPointZero(SDValue Op) { 476 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 477 return CFP->getValueAPF().isZero(); 478 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 479 // Maybe this has already been legalized into the constant pool? 480 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 481 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 482 return CFP->getValueAPF().isZero(); 483 } 484 return false; 485 } 486 487 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 488 /// true if Op is undef or if it matches the specified value. 489 static bool isConstantOrUndef(int Op, int Val) { 490 return Op < 0 || Op == Val; 491 } 492 493 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 494 /// VPKUHUM instruction. 495 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 496 if (!isUnary) { 497 for (unsigned i = 0; i != 16; ++i) 498 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 499 return false; 500 } else { 501 for (unsigned i = 0; i != 8; ++i) 502 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) || 503 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1)) 504 return false; 505 } 506 return true; 507 } 508 509 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 510 /// VPKUWUM instruction. 511 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) { 512 if (!isUnary) { 513 for (unsigned i = 0; i != 16; i += 2) 514 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 515 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 516 return false; 517 } else { 518 for (unsigned i = 0; i != 8; i += 2) 519 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 520 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) || 521 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) || 522 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3)) 523 return false; 524 } 525 return true; 526 } 527 528 /// isVMerge - Common function, used to match vmrg* shuffles. 529 /// 530 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 531 unsigned LHSStart, unsigned RHSStart) { 532 assert(N->getValueType(0) == MVT::v16i8 && 533 "PPC only supports shuffles by bytes!"); 534 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 535 "Unsupported merge size!"); 536 537 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 538 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 539 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 540 LHSStart+j+i*UnitSize) || 541 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 542 RHSStart+j+i*UnitSize)) 543 return false; 544 } 545 return true; 546 } 547 548 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 549 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). 550 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 551 bool isUnary) { 552 if (!isUnary) 553 return isVMerge(N, UnitSize, 8, 24); 554 return isVMerge(N, UnitSize, 8, 8); 555 } 556 557 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 558 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). 559 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 560 bool isUnary) { 561 if (!isUnary) 562 return isVMerge(N, UnitSize, 0, 16); 563 return isVMerge(N, UnitSize, 0, 0); 564 } 565 566 567 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 568 /// amount, otherwise return -1. 569 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { 570 assert(N->getValueType(0) == MVT::v16i8 && 571 "PPC only supports shuffles by bytes!"); 572 573 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 574 575 // Find the first non-undef value in the shuffle mask. 576 unsigned i; 577 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 578 /*search*/; 579 580 if (i == 16) return -1; // all undef. 581 582 // Otherwise, check to see if the rest of the elements are consecutively 583 // numbered from this value. 584 unsigned ShiftAmt = SVOp->getMaskElt(i); 585 if (ShiftAmt < i) return -1; 586 ShiftAmt -= i; 587 588 if (!isUnary) { 589 // Check the rest of the elements to see if they are consecutive. 590 for (++i; i != 16; ++i) 591 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 592 return -1; 593 } else { 594 // Check the rest of the elements to see if they are consecutive. 595 for (++i; i != 16; ++i) 596 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 597 return -1; 598 } 599 return ShiftAmt; 600 } 601 602 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 603 /// specifies a splat of a single element that is suitable for input to 604 /// VSPLTB/VSPLTH/VSPLTW. 605 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 606 assert(N->getValueType(0) == MVT::v16i8 && 607 (EltSize == 1 || EltSize == 2 || EltSize == 4)); 608 609 // This is a splat operation if each element of the permute is the same, and 610 // if the value doesn't reference the second vector. 611 unsigned ElementBase = N->getMaskElt(0); 612 613 // FIXME: Handle UNDEF elements too! 614 if (ElementBase >= 16) 615 return false; 616 617 // Check that the indices are consecutive, in the case of a multi-byte element 618 // splatted with a v16i8 mask. 619 for (unsigned i = 1; i != EltSize; ++i) 620 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 621 return false; 622 623 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 624 if (N->getMaskElt(i) < 0) continue; 625 for (unsigned j = 0; j != EltSize; ++j) 626 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 627 return false; 628 } 629 return true; 630 } 631 632 /// isAllNegativeZeroVector - Returns true if all elements of build_vector 633 /// are -0.0. 634 bool PPC::isAllNegativeZeroVector(SDNode *N) { 635 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N); 636 637 APInt APVal, APUndef; 638 unsigned BitSize; 639 bool HasAnyUndefs; 640 641 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true)) 642 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 643 return CFP->getValueAPF().isNegZero(); 644 645 return false; 646 } 647 648 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the 649 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. 650 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { 651 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 652 assert(isSplatShuffleMask(SVOp, EltSize)); 653 return SVOp->getMaskElt(0) / EltSize; 654 } 655 656 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 657 /// by using a vspltis[bhw] instruction of the specified element size, return 658 /// the constant being splatted. The ByteSize field indicates the number of 659 /// bytes of each element [124] -> [bhw]. 660 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 661 SDValue OpVal(0, 0); 662 663 // If ByteSize of the splat is bigger than the element size of the 664 // build_vector, then we have a case where we are checking for a splat where 665 // multiple elements of the buildvector are folded together into a single 666 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 667 unsigned EltSize = 16/N->getNumOperands(); 668 if (EltSize < ByteSize) { 669 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 670 SDValue UniquedVals[4]; 671 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 672 673 // See if all of the elements in the buildvector agree across. 674 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 675 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 676 // If the element isn't a constant, bail fully out. 677 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 678 679 680 if (UniquedVals[i&(Multiple-1)].getNode() == 0) 681 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 682 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 683 return SDValue(); // no match. 684 } 685 686 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 687 // either constant or undef values that are identical for each chunk. See 688 // if these chunks can form into a larger vspltis*. 689 690 // Check to see if all of the leading entries are either 0 or -1. If 691 // neither, then this won't fit into the immediate field. 692 bool LeadingZero = true; 693 bool LeadingOnes = true; 694 for (unsigned i = 0; i != Multiple-1; ++i) { 695 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs. 696 697 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue(); 698 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue(); 699 } 700 // Finally, check the least significant entry. 701 if (LeadingZero) { 702 if (UniquedVals[Multiple-1].getNode() == 0) 703 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef 704 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 705 if (Val < 16) 706 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) 707 } 708 if (LeadingOnes) { 709 if (UniquedVals[Multiple-1].getNode() == 0) 710 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef 711 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 712 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 713 return DAG.getTargetConstant(Val, MVT::i32); 714 } 715 716 return SDValue(); 717 } 718 719 // Check to see if this buildvec has a single non-undef value in its elements. 720 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 721 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; 722 if (OpVal.getNode() == 0) 723 OpVal = N->getOperand(i); 724 else if (OpVal != N->getOperand(i)) 725 return SDValue(); 726 } 727 728 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def. 729 730 unsigned ValSizeInBytes = EltSize; 731 uint64_t Value = 0; 732 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 733 Value = CN->getZExtValue(); 734 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 735 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 736 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 737 } 738 739 // If the splat value is larger than the element value, then we can never do 740 // this splat. The only case that we could fit the replicated bits into our 741 // immediate field for would be zero, and we prefer to use vxor for it. 742 if (ValSizeInBytes < ByteSize) return SDValue(); 743 744 // If the element value is larger than the splat value, cut it in half and 745 // check to see if the two halves are equal. Continue doing this until we 746 // get to ByteSize. This allows us to handle 0x01010101 as 0x01. 747 while (ValSizeInBytes > ByteSize) { 748 ValSizeInBytes >>= 1; 749 750 // If the top half equals the bottom half, we're still ok. 751 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != 752 (Value & ((1 << (8*ValSizeInBytes))-1))) 753 return SDValue(); 754 } 755 756 // Properly sign extend the value. 757 int ShAmt = (4-ByteSize)*8; 758 int MaskVal = ((int)Value << ShAmt) >> ShAmt; 759 760 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 761 if (MaskVal == 0) return SDValue(); 762 763 // Finally, if this value fits in a 5 bit sext field, return it 764 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) 765 return DAG.getTargetConstant(MaskVal, MVT::i32); 766 return SDValue(); 767 } 768 769 //===----------------------------------------------------------------------===// 770 // Addressing Mode Selection 771 //===----------------------------------------------------------------------===// 772 773 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 774 /// or 64-bit immediate, and if the value can be accurately represented as a 775 /// sign extension from a 16-bit value. If so, this returns true and the 776 /// immediate. 777 static bool isIntS16Immediate(SDNode *N, short &Imm) { 778 if (N->getOpcode() != ISD::Constant) 779 return false; 780 781 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 782 if (N->getValueType(0) == MVT::i32) 783 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 784 else 785 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 786 } 787 static bool isIntS16Immediate(SDValue Op, short &Imm) { 788 return isIntS16Immediate(Op.getNode(), Imm); 789 } 790 791 792 /// SelectAddressRegReg - Given the specified addressed, check to see if it 793 /// can be represented as an indexed [r+r] operation. Returns false if it 794 /// can be more efficiently represented with [r+imm]. 795 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 796 SDValue &Index, 797 SelectionDAG &DAG) const { 798 short imm = 0; 799 if (N.getOpcode() == ISD::ADD) { 800 if (isIntS16Immediate(N.getOperand(1), imm)) 801 return false; // r+i 802 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 803 return false; // r+i 804 805 Base = N.getOperand(0); 806 Index = N.getOperand(1); 807 return true; 808 } else if (N.getOpcode() == ISD::OR) { 809 if (isIntS16Immediate(N.getOperand(1), imm)) 810 return false; // r+i can fold it if we can. 811 812 // If this is an or of disjoint bitfields, we can codegen this as an add 813 // (for better address arithmetic) if the LHS and RHS of the OR are provably 814 // disjoint. 815 APInt LHSKnownZero, LHSKnownOne; 816 APInt RHSKnownZero, RHSKnownOne; 817 DAG.ComputeMaskedBits(N.getOperand(0), 818 APInt::getAllOnesValue(N.getOperand(0) 819 .getValueSizeInBits()), 820 LHSKnownZero, LHSKnownOne); 821 822 if (LHSKnownZero.getBoolValue()) { 823 DAG.ComputeMaskedBits(N.getOperand(1), 824 APInt::getAllOnesValue(N.getOperand(1) 825 .getValueSizeInBits()), 826 RHSKnownZero, RHSKnownOne); 827 // If all of the bits are known zero on the LHS or RHS, the add won't 828 // carry. 829 if (~(LHSKnownZero | RHSKnownZero) == 0) { 830 Base = N.getOperand(0); 831 Index = N.getOperand(1); 832 return true; 833 } 834 } 835 } 836 837 return false; 838 } 839 840 /// Returns true if the address N can be represented by a base register plus 841 /// a signed 16-bit displacement [r+imm], and if it is not better 842 /// represented as reg+reg. 843 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 844 SDValue &Base, 845 SelectionDAG &DAG) const { 846 // FIXME dl should come from parent load or store, not from address 847 DebugLoc dl = N.getDebugLoc(); 848 // If this can be more profitably realized as r+r, fail. 849 if (SelectAddressRegReg(N, Disp, Base, DAG)) 850 return false; 851 852 if (N.getOpcode() == ISD::ADD) { 853 short imm = 0; 854 if (isIntS16Immediate(N.getOperand(1), imm)) { 855 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 856 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 857 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 858 } else { 859 Base = N.getOperand(0); 860 } 861 return true; // [r+i] 862 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 863 // Match LOAD (ADD (X, Lo(G))). 864 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 865 && "Cannot handle constant offsets yet!"); 866 Disp = N.getOperand(1).getOperand(0); // The global address. 867 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 868 Disp.getOpcode() == ISD::TargetConstantPool || 869 Disp.getOpcode() == ISD::TargetJumpTable); 870 Base = N.getOperand(0); 871 return true; // [&g+r] 872 } 873 } else if (N.getOpcode() == ISD::OR) { 874 short imm = 0; 875 if (isIntS16Immediate(N.getOperand(1), imm)) { 876 // If this is an or of disjoint bitfields, we can codegen this as an add 877 // (for better address arithmetic) if the LHS and RHS of the OR are 878 // provably disjoint. 879 APInt LHSKnownZero, LHSKnownOne; 880 DAG.ComputeMaskedBits(N.getOperand(0), 881 APInt::getAllOnesValue(N.getOperand(0) 882 .getValueSizeInBits()), 883 LHSKnownZero, LHSKnownOne); 884 885 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 886 // If all of the bits are known zero on the LHS or RHS, the add won't 887 // carry. 888 Base = N.getOperand(0); 889 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); 890 return true; 891 } 892 } 893 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 894 // Loading from a constant address. 895 896 // If this address fits entirely in a 16-bit sext immediate field, codegen 897 // this as "d, 0" 898 short Imm; 899 if (isIntS16Immediate(CN, Imm)) { 900 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); 901 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 902 CN->getValueType(0)); 903 return true; 904 } 905 906 // Handle 32-bit sext immediates with LIS + addr mode. 907 if (CN->getValueType(0) == MVT::i32 || 908 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 909 int Addr = (int)CN->getZExtValue(); 910 911 // Otherwise, break this down into an LIS + disp. 912 Disp = DAG.getTargetConstant((short)Addr, MVT::i32); 913 914 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32); 915 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 916 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 917 return true; 918 } 919 } 920 921 Disp = DAG.getTargetConstant(0, getPointerTy()); 922 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 923 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 924 else 925 Base = N; 926 return true; // [r+0] 927 } 928 929 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 930 /// represented as an indexed [r+r] operation. 931 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 932 SDValue &Index, 933 SelectionDAG &DAG) const { 934 // Check to see if we can easily represent this as an [r+r] address. This 935 // will fail if it thinks that the address is more profitably represented as 936 // reg+imm, e.g. where imm = 0. 937 if (SelectAddressRegReg(N, Base, Index, DAG)) 938 return true; 939 940 // If the operand is an addition, always emit this as [r+r], since this is 941 // better (for code size, and execution, as the memop does the add for free) 942 // than emitting an explicit add. 943 if (N.getOpcode() == ISD::ADD) { 944 Base = N.getOperand(0); 945 Index = N.getOperand(1); 946 return true; 947 } 948 949 // Otherwise, do it the hard way, using R0 as the base register. 950 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 951 N.getValueType()); 952 Index = N; 953 return true; 954 } 955 956 /// SelectAddressRegImmShift - Returns true if the address N can be 957 /// represented by a base register plus a signed 14-bit displacement 958 /// [r+imm*4]. Suitable for use by STD and friends. 959 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp, 960 SDValue &Base, 961 SelectionDAG &DAG) const { 962 // FIXME dl should come from the parent load or store, not the address 963 DebugLoc dl = N.getDebugLoc(); 964 // If this can be more profitably realized as r+r, fail. 965 if (SelectAddressRegReg(N, Disp, Base, DAG)) 966 return false; 967 968 if (N.getOpcode() == ISD::ADD) { 969 short imm = 0; 970 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 971 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 972 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 973 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 974 } else { 975 Base = N.getOperand(0); 976 } 977 return true; // [r+i] 978 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 979 // Match LOAD (ADD (X, Lo(G))). 980 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 981 && "Cannot handle constant offsets yet!"); 982 Disp = N.getOperand(1).getOperand(0); // The global address. 983 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 984 Disp.getOpcode() == ISD::TargetConstantPool || 985 Disp.getOpcode() == ISD::TargetJumpTable); 986 Base = N.getOperand(0); 987 return true; // [&g+r] 988 } 989 } else if (N.getOpcode() == ISD::OR) { 990 short imm = 0; 991 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { 992 // If this is an or of disjoint bitfields, we can codegen this as an add 993 // (for better address arithmetic) if the LHS and RHS of the OR are 994 // provably disjoint. 995 APInt LHSKnownZero, LHSKnownOne; 996 DAG.ComputeMaskedBits(N.getOperand(0), 997 APInt::getAllOnesValue(N.getOperand(0) 998 .getValueSizeInBits()), 999 LHSKnownZero, LHSKnownOne); 1000 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 1001 // If all of the bits are known zero on the LHS or RHS, the add won't 1002 // carry. 1003 Base = N.getOperand(0); 1004 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); 1005 return true; 1006 } 1007 } 1008 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 1009 // Loading from a constant address. Verify low two bits are clear. 1010 if ((CN->getZExtValue() & 3) == 0) { 1011 // If this address fits entirely in a 14-bit sext immediate field, codegen 1012 // this as "d, 0" 1013 short Imm; 1014 if (isIntS16Immediate(CN, Imm)) { 1015 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); 1016 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0, 1017 CN->getValueType(0)); 1018 return true; 1019 } 1020 1021 // Fold the low-part of 32-bit absolute addresses into addr mode. 1022 if (CN->getValueType(0) == MVT::i32 || 1023 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) { 1024 int Addr = (int)CN->getZExtValue(); 1025 1026 // Otherwise, break this down into an LIS + disp. 1027 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); 1028 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32); 1029 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 1030 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0); 1031 return true; 1032 } 1033 } 1034 } 1035 1036 Disp = DAG.getTargetConstant(0, getPointerTy()); 1037 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) 1038 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 1039 else 1040 Base = N; 1041 return true; // [r+0] 1042 } 1043 1044 1045 /// getPreIndexedAddressParts - returns true by value, base pointer and 1046 /// offset pointer and addressing mode by reference if the node's address 1047 /// can be legally represented as pre-indexed load / store address. 1048 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 1049 SDValue &Offset, 1050 ISD::MemIndexedMode &AM, 1051 SelectionDAG &DAG) const { 1052 // Disabled by default for now. 1053 if (!EnablePPCPreinc) return false; 1054 1055 SDValue Ptr; 1056 EVT VT; 1057 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1058 Ptr = LD->getBasePtr(); 1059 VT = LD->getMemoryVT(); 1060 1061 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 1062 Ptr = ST->getBasePtr(); 1063 VT = ST->getMemoryVT(); 1064 } else 1065 return false; 1066 1067 // PowerPC doesn't have preinc load/store instructions for vectors. 1068 if (VT.isVector()) 1069 return false; 1070 1071 // TODO: Check reg+reg first. 1072 1073 // LDU/STU use reg+imm*4, others use reg+imm. 1074 if (VT != MVT::i64) { 1075 // reg + imm 1076 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) 1077 return false; 1078 } else { 1079 // reg + imm * 4. 1080 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) 1081 return false; 1082 } 1083 1084 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 1085 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 1086 // sext i32 to i64 when addr mode is r+i. 1087 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 1088 LD->getExtensionType() == ISD::SEXTLOAD && 1089 isa<ConstantSDNode>(Offset)) 1090 return false; 1091 } 1092 1093 AM = ISD::PRE_INC; 1094 return true; 1095 } 1096 1097 //===----------------------------------------------------------------------===// 1098 // LowerOperation implementation 1099 //===----------------------------------------------------------------------===// 1100 1101 /// GetLabelAccessInfo - Return true if we should reference labels using a 1102 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags. 1103 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags, 1104 unsigned &LoOpFlags, const GlobalValue *GV = 0) { 1105 HiOpFlags = PPCII::MO_HA16; 1106 LoOpFlags = PPCII::MO_LO16; 1107 1108 // Don't use the pic base if not in PIC relocation model. Or if we are on a 1109 // non-darwin platform. We don't support PIC on other platforms yet. 1110 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ && 1111 TM.getSubtarget<PPCSubtarget>().isDarwin(); 1112 if (isPIC) { 1113 HiOpFlags |= PPCII::MO_PIC_FLAG; 1114 LoOpFlags |= PPCII::MO_PIC_FLAG; 1115 } 1116 1117 // If this is a reference to a global value that requires a non-lazy-ptr, make 1118 // sure that instruction lowering adds it. 1119 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) { 1120 HiOpFlags |= PPCII::MO_NLP_FLAG; 1121 LoOpFlags |= PPCII::MO_NLP_FLAG; 1122 1123 if (GV->hasHiddenVisibility()) { 1124 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1125 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 1126 } 1127 } 1128 1129 return isPIC; 1130 } 1131 1132 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 1133 SelectionDAG &DAG) { 1134 EVT PtrVT = HiPart.getValueType(); 1135 SDValue Zero = DAG.getConstant(0, PtrVT); 1136 DebugLoc DL = HiPart.getDebugLoc(); 1137 1138 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 1139 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 1140 1141 // With PIC, the first instruction is actually "GR+hi(&G)". 1142 if (isPIC) 1143 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 1144 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 1145 1146 // Generate non-pic code that has direct accesses to the constant pool. 1147 // The address of the global is just (hi(&g)+lo(&g)). 1148 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1149 } 1150 1151 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 1152 SelectionDAG &DAG) const { 1153 EVT PtrVT = Op.getValueType(); 1154 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1155 const Constant *C = CP->getConstVal(); 1156 1157 unsigned MOHiFlag, MOLoFlag; 1158 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1159 SDValue CPIHi = 1160 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 1161 SDValue CPILo = 1162 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 1163 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG); 1164 } 1165 1166 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1167 EVT PtrVT = Op.getValueType(); 1168 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1169 1170 unsigned MOHiFlag, MOLoFlag; 1171 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1172 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 1173 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 1174 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG); 1175 } 1176 1177 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 1178 SelectionDAG &DAG) const { 1179 EVT PtrVT = Op.getValueType(); 1180 1181 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1182 1183 unsigned MOHiFlag, MOLoFlag; 1184 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag); 1185 SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag); 1186 SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag); 1187 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG); 1188 } 1189 1190 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 1191 SelectionDAG &DAG) const { 1192 EVT PtrVT = Op.getValueType(); 1193 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 1194 DebugLoc DL = GSDN->getDebugLoc(); 1195 const GlobalValue *GV = GSDN->getGlobal(); 1196 1197 // 64-bit SVR4 ABI code is always position-independent. 1198 // The actual address of the GlobalValue is stored in the TOC. 1199 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) { 1200 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 1201 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA, 1202 DAG.getRegister(PPC::X2, MVT::i64)); 1203 } 1204 1205 unsigned MOHiFlag, MOLoFlag; 1206 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV); 1207 1208 SDValue GAHi = 1209 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 1210 SDValue GALo = 1211 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 1212 1213 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG); 1214 1215 // If the global reference is actually to a non-lazy-pointer, we have to do an 1216 // extra load to get the address of the global. 1217 if (MOHiFlag & PPCII::MO_NLP_FLAG) 1218 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(), 1219 false, false, 0); 1220 return Ptr; 1221 } 1222 1223 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1224 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1225 DebugLoc dl = Op.getDebugLoc(); 1226 1227 // If we're comparing for equality to zero, expose the fact that this is 1228 // implented as a ctlz/srl pair on ppc, so that the dag combiner can 1229 // fold the new nodes. 1230 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1231 if (C->isNullValue() && CC == ISD::SETEQ) { 1232 EVT VT = Op.getOperand(0).getValueType(); 1233 SDValue Zext = Op.getOperand(0); 1234 if (VT.bitsLT(MVT::i32)) { 1235 VT = MVT::i32; 1236 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 1237 } 1238 unsigned Log2b = Log2_32(VT.getSizeInBits()); 1239 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 1240 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 1241 DAG.getConstant(Log2b, MVT::i32)); 1242 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 1243 } 1244 // Leave comparisons against 0 and -1 alone for now, since they're usually 1245 // optimized. FIXME: revisit this when we can custom lower all setcc 1246 // optimizations. 1247 if (C->isAllOnesValue() || C->isNullValue()) 1248 return SDValue(); 1249 } 1250 1251 // If we have an integer seteq/setne, turn it into a compare against zero 1252 // by xor'ing the rhs with the lhs, which is faster than setting a 1253 // condition register, reading it back out, and masking the correct bit. The 1254 // normal approach here uses sub to do this instead of xor. Using xor exposes 1255 // the result to other bit-twiddling opportunities. 1256 EVT LHSVT = Op.getOperand(0).getValueType(); 1257 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1258 EVT VT = Op.getValueType(); 1259 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 1260 Op.getOperand(1)); 1261 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC); 1262 } 1263 return SDValue(); 1264 } 1265 1266 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG, 1267 const PPCSubtarget &Subtarget) const { 1268 SDNode *Node = Op.getNode(); 1269 EVT VT = Node->getValueType(0); 1270 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1271 SDValue InChain = Node->getOperand(0); 1272 SDValue VAListPtr = Node->getOperand(1); 1273 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1274 DebugLoc dl = Node->getDebugLoc(); 1275 1276 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 1277 1278 // gpr_index 1279 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1280 VAListPtr, MachinePointerInfo(SV), MVT::i8, 1281 false, false, 0); 1282 InChain = GprIndex.getValue(1); 1283 1284 if (VT == MVT::i64) { 1285 // Check if GprIndex is even 1286 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 1287 DAG.getConstant(1, MVT::i32)); 1288 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 1289 DAG.getConstant(0, MVT::i32), ISD::SETNE); 1290 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 1291 DAG.getConstant(1, MVT::i32)); 1292 // Align GprIndex to be even if it isn't 1293 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 1294 GprIndex); 1295 } 1296 1297 // fpr index is 1 byte after gpr 1298 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1299 DAG.getConstant(1, MVT::i32)); 1300 1301 // fpr 1302 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 1303 FprPtr, MachinePointerInfo(SV), MVT::i8, 1304 false, false, 0); 1305 InChain = FprIndex.getValue(1); 1306 1307 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1308 DAG.getConstant(8, MVT::i32)); 1309 1310 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 1311 DAG.getConstant(4, MVT::i32)); 1312 1313 // areas 1314 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, 1315 MachinePointerInfo(), false, false, 0); 1316 InChain = OverflowArea.getValue(1); 1317 1318 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, 1319 MachinePointerInfo(), false, false, 0); 1320 InChain = RegSaveArea.getValue(1); 1321 1322 // select overflow_area if index > 8 1323 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 1324 DAG.getConstant(8, MVT::i32), ISD::SETLT); 1325 1326 // adjustment constant gpr_index * 4/8 1327 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 1328 VT.isInteger() ? GprIndex : FprIndex, 1329 DAG.getConstant(VT.isInteger() ? 4 : 8, 1330 MVT::i32)); 1331 1332 // OurReg = RegSaveArea + RegConstant 1333 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 1334 RegConstant); 1335 1336 // Floating types are 32 bytes into RegSaveArea 1337 if (VT.isFloatingPoint()) 1338 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 1339 DAG.getConstant(32, MVT::i32)); 1340 1341 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 1342 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 1343 VT.isInteger() ? GprIndex : FprIndex, 1344 DAG.getConstant(VT == MVT::i64 ? 2 : 1, 1345 MVT::i32)); 1346 1347 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 1348 VT.isInteger() ? VAListPtr : FprPtr, 1349 MachinePointerInfo(SV), 1350 MVT::i8, false, false, 0); 1351 1352 // determine if we should load from reg_save_area or overflow_area 1353 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 1354 1355 // increase overflow_area by 4/8 if gpr/fpr > 8 1356 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 1357 DAG.getConstant(VT.isInteger() ? 4 : 8, 1358 MVT::i32)); 1359 1360 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 1361 OverflowAreaPlusN); 1362 1363 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, 1364 OverflowAreaPtr, 1365 MachinePointerInfo(), 1366 MVT::i32, false, false, 0); 1367 1368 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), false, false, 0); 1369 } 1370 1371 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, 1372 SelectionDAG &DAG) const { 1373 SDValue Chain = Op.getOperand(0); 1374 SDValue Trmp = Op.getOperand(1); // trampoline 1375 SDValue FPtr = Op.getOperand(2); // nested function 1376 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 1377 DebugLoc dl = Op.getDebugLoc(); 1378 1379 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1380 bool isPPC64 = (PtrVT == MVT::i64); 1381 Type *IntPtrTy = 1382 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType( 1383 *DAG.getContext()); 1384 1385 TargetLowering::ArgListTy Args; 1386 TargetLowering::ArgListEntry Entry; 1387 1388 Entry.Ty = IntPtrTy; 1389 Entry.Node = Trmp; Args.push_back(Entry); 1390 1391 // TrampSize == (isPPC64 ? 48 : 40); 1392 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, 1393 isPPC64 ? MVT::i64 : MVT::i32); 1394 Args.push_back(Entry); 1395 1396 Entry.Node = FPtr; Args.push_back(Entry); 1397 Entry.Node = Nest; Args.push_back(Entry); 1398 1399 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 1400 std::pair<SDValue, SDValue> CallResult = 1401 LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()), 1402 false, false, false, false, 0, CallingConv::C, false, 1403 /*isReturnValueUsed=*/true, 1404 DAG.getExternalSymbol("__trampoline_setup", PtrVT), 1405 Args, DAG, dl); 1406 1407 SDValue Ops[] = 1408 { CallResult.first, CallResult.second }; 1409 1410 return DAG.getMergeValues(Ops, 2, dl); 1411 } 1412 1413 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG, 1414 const PPCSubtarget &Subtarget) const { 1415 MachineFunction &MF = DAG.getMachineFunction(); 1416 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1417 1418 DebugLoc dl = Op.getDebugLoc(); 1419 1420 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 1421 // vastart just stores the address of the VarArgsFrameIndex slot into the 1422 // memory location argument. 1423 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1424 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1425 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1426 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 1427 MachinePointerInfo(SV), 1428 false, false, 0); 1429 } 1430 1431 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 1432 // We suppose the given va_list is already allocated. 1433 // 1434 // typedef struct { 1435 // char gpr; /* index into the array of 8 GPRs 1436 // * stored in the register save area 1437 // * gpr=0 corresponds to r3, 1438 // * gpr=1 to r4, etc. 1439 // */ 1440 // char fpr; /* index into the array of 8 FPRs 1441 // * stored in the register save area 1442 // * fpr=0 corresponds to f1, 1443 // * fpr=1 to f2, etc. 1444 // */ 1445 // char *overflow_arg_area; 1446 // /* location on stack that holds 1447 // * the next overflow argument 1448 // */ 1449 // char *reg_save_area; 1450 // /* where r3:r10 and f1:f8 (if saved) 1451 // * are stored 1452 // */ 1453 // } va_list[1]; 1454 1455 1456 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32); 1457 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32); 1458 1459 1460 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1461 1462 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 1463 PtrVT); 1464 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1465 PtrVT); 1466 1467 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 1468 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT); 1469 1470 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 1471 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT); 1472 1473 uint64_t FPROffset = 1; 1474 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT); 1475 1476 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1477 1478 // Store first byte : number of int regs 1479 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, 1480 Op.getOperand(1), 1481 MachinePointerInfo(SV), 1482 MVT::i8, false, false, 0); 1483 uint64_t nextOffset = FPROffset; 1484 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 1485 ConstFPROffset); 1486 1487 // Store second byte : number of float regs 1488 SDValue secondStore = 1489 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 1490 MachinePointerInfo(SV, nextOffset), MVT::i8, 1491 false, false, 0); 1492 nextOffset += StackOffset; 1493 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 1494 1495 // Store second word : arguments given on stack 1496 SDValue thirdStore = 1497 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 1498 MachinePointerInfo(SV, nextOffset), 1499 false, false, 0); 1500 nextOffset += FrameOffset; 1501 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 1502 1503 // Store third word : arguments given in registers 1504 return DAG.getStore(thirdStore, dl, FR, nextPtr, 1505 MachinePointerInfo(SV, nextOffset), 1506 false, false, 0); 1507 1508 } 1509 1510 #include "PPCGenCallingConv.inc" 1511 1512 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 1513 CCValAssign::LocInfo &LocInfo, 1514 ISD::ArgFlagsTy &ArgFlags, 1515 CCState &State) { 1516 return true; 1517 } 1518 1519 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, 1520 MVT &LocVT, 1521 CCValAssign::LocInfo &LocInfo, 1522 ISD::ArgFlagsTy &ArgFlags, 1523 CCState &State) { 1524 static const unsigned ArgRegs[] = { 1525 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1526 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1527 }; 1528 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1529 1530 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1531 1532 // Skip one register if the first unallocated register has an even register 1533 // number and there are still argument registers available which have not been 1534 // allocated yet. RegNum is actually an index into ArgRegs, which means we 1535 // need to skip a register if RegNum is odd. 1536 if (RegNum != NumArgRegs && RegNum % 2 == 1) { 1537 State.AllocateReg(ArgRegs[RegNum]); 1538 } 1539 1540 // Always return false here, as this function only makes sure that the first 1541 // unallocated register has an odd register number and does not actually 1542 // allocate a register for the current argument. 1543 return false; 1544 } 1545 1546 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, 1547 MVT &LocVT, 1548 CCValAssign::LocInfo &LocInfo, 1549 ISD::ArgFlagsTy &ArgFlags, 1550 CCState &State) { 1551 static const unsigned ArgRegs[] = { 1552 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1553 PPC::F8 1554 }; 1555 1556 const unsigned NumArgRegs = array_lengthof(ArgRegs); 1557 1558 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs); 1559 1560 // If there is only one Floating-point register left we need to put both f64 1561 // values of a split ppc_fp128 value on the stack. 1562 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) { 1563 State.AllocateReg(ArgRegs[RegNum]); 1564 } 1565 1566 // Always return false here, as this function only makes sure that the two f64 1567 // values a ppc_fp128 value is split into are both passed in registers or both 1568 // passed on the stack and does not actually allocate a register for the 1569 // current argument. 1570 return false; 1571 } 1572 1573 /// GetFPR - Get the set of FP registers that should be allocated for arguments, 1574 /// on Darwin. 1575 static const unsigned *GetFPR() { 1576 static const unsigned FPR[] = { 1577 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1578 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 1579 }; 1580 1581 return FPR; 1582 } 1583 1584 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 1585 /// the stack. 1586 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 1587 unsigned PtrByteSize) { 1588 unsigned ArgSize = ArgVT.getSizeInBits()/8; 1589 if (Flags.isByVal()) 1590 ArgSize = Flags.getByValSize(); 1591 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1592 1593 return ArgSize; 1594 } 1595 1596 SDValue 1597 PPCTargetLowering::LowerFormalArguments(SDValue Chain, 1598 CallingConv::ID CallConv, bool isVarArg, 1599 const SmallVectorImpl<ISD::InputArg> 1600 &Ins, 1601 DebugLoc dl, SelectionDAG &DAG, 1602 SmallVectorImpl<SDValue> &InVals) 1603 const { 1604 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) { 1605 return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins, 1606 dl, DAG, InVals); 1607 } else { 1608 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, 1609 dl, DAG, InVals); 1610 } 1611 } 1612 1613 SDValue 1614 PPCTargetLowering::LowerFormalArguments_SVR4( 1615 SDValue Chain, 1616 CallingConv::ID CallConv, bool isVarArg, 1617 const SmallVectorImpl<ISD::InputArg> 1618 &Ins, 1619 DebugLoc dl, SelectionDAG &DAG, 1620 SmallVectorImpl<SDValue> &InVals) const { 1621 1622 // 32-bit SVR4 ABI Stack Frame Layout: 1623 // +-----------------------------------+ 1624 // +--> | Back chain | 1625 // | +-----------------------------------+ 1626 // | | Floating-point register save area | 1627 // | +-----------------------------------+ 1628 // | | General register save area | 1629 // | +-----------------------------------+ 1630 // | | CR save word | 1631 // | +-----------------------------------+ 1632 // | | VRSAVE save word | 1633 // | +-----------------------------------+ 1634 // | | Alignment padding | 1635 // | +-----------------------------------+ 1636 // | | Vector register save area | 1637 // | +-----------------------------------+ 1638 // | | Local variable space | 1639 // | +-----------------------------------+ 1640 // | | Parameter list area | 1641 // | +-----------------------------------+ 1642 // | | LR save word | 1643 // | +-----------------------------------+ 1644 // SP--> +--- | Back chain | 1645 // +-----------------------------------+ 1646 // 1647 // Specifications: 1648 // System V Application Binary Interface PowerPC Processor Supplement 1649 // AltiVec Technology Programming Interface Manual 1650 1651 MachineFunction &MF = DAG.getMachineFunction(); 1652 MachineFrameInfo *MFI = MF.getFrameInfo(); 1653 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1654 1655 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1656 // Potential tail calls could cause overwriting of argument stack slots. 1657 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1658 unsigned PtrByteSize = 4; 1659 1660 // Assign locations to all of the incoming arguments. 1661 SmallVector<CCValAssign, 16> ArgLocs; 1662 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1663 getTargetMachine(), ArgLocs, *DAG.getContext()); 1664 1665 // Reserve space for the linkage area on the stack. 1666 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 1667 1668 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4); 1669 1670 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1671 CCValAssign &VA = ArgLocs[i]; 1672 1673 // Arguments stored in registers. 1674 if (VA.isRegLoc()) { 1675 TargetRegisterClass *RC; 1676 EVT ValVT = VA.getValVT(); 1677 1678 switch (ValVT.getSimpleVT().SimpleTy) { 1679 default: 1680 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 1681 case MVT::i32: 1682 RC = PPC::GPRCRegisterClass; 1683 break; 1684 case MVT::f32: 1685 RC = PPC::F4RCRegisterClass; 1686 break; 1687 case MVT::f64: 1688 RC = PPC::F8RCRegisterClass; 1689 break; 1690 case MVT::v16i8: 1691 case MVT::v8i16: 1692 case MVT::v4i32: 1693 case MVT::v4f32: 1694 RC = PPC::VRRCRegisterClass; 1695 break; 1696 } 1697 1698 // Transform the arguments stored in physical registers into virtual ones. 1699 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1700 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT); 1701 1702 InVals.push_back(ArgValue); 1703 } else { 1704 // Argument stored in memory. 1705 assert(VA.isMemLoc()); 1706 1707 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8; 1708 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), 1709 isImmutable); 1710 1711 // Create load nodes to retrieve arguments from the stack. 1712 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1713 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 1714 MachinePointerInfo(), 1715 false, false, 0)); 1716 } 1717 } 1718 1719 // Assign locations to all of the incoming aggregate by value arguments. 1720 // Aggregates passed by value are stored in the local variable space of the 1721 // caller's stack frame, right above the parameter list area. 1722 SmallVector<CCValAssign, 16> ByValArgLocs; 1723 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1724 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 1725 1726 // Reserve stack space for the allocations in CCInfo. 1727 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 1728 1729 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal); 1730 1731 // Area that is at least reserved in the caller of this function. 1732 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 1733 1734 // Set the size that is at least reserved in caller of this function. Tail 1735 // call optimized function's reserved stack space needs to be aligned so that 1736 // taking the difference between two stack areas will result in an aligned 1737 // stack. 1738 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1739 1740 MinReservedArea = 1741 std::max(MinReservedArea, 1742 PPCFrameLowering::getMinCallFrameSize(false, false)); 1743 1744 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 1745 getStackAlignment(); 1746 unsigned AlignMask = TargetAlign-1; 1747 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 1748 1749 FI->setMinReservedArea(MinReservedArea); 1750 1751 SmallVector<SDValue, 8> MemOps; 1752 1753 // If the function takes variable number of arguments, make a frame index for 1754 // the start of the first vararg value... for expansion of llvm.va_start. 1755 if (isVarArg) { 1756 static const unsigned GPArgRegs[] = { 1757 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1758 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1759 }; 1760 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 1761 1762 static const unsigned FPArgRegs[] = { 1763 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 1764 PPC::F8 1765 }; 1766 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 1767 1768 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs, 1769 NumGPArgRegs)); 1770 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs, 1771 NumFPArgRegs)); 1772 1773 // Make room for NumGPArgRegs and NumFPArgRegs. 1774 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 1775 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8; 1776 1777 FuncInfo->setVarArgsStackOffset( 1778 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 1779 CCInfo.getNextStackOffset(), true)); 1780 1781 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false)); 1782 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1783 1784 // The fixed integer arguments of a variadic function are stored to the 1785 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing 1786 // the result of va_next. 1787 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 1788 // Get an existing live-in vreg, or add a new one. 1789 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 1790 if (!VReg) 1791 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 1792 1793 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1794 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1795 MachinePointerInfo(), false, false, 0); 1796 MemOps.push_back(Store); 1797 // Increment the address by four for the next argument to store 1798 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 1799 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1800 } 1801 1802 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 1803 // is set. 1804 // The double arguments are stored to the VarArgsFrameIndex 1805 // on the stack. 1806 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 1807 // Get an existing live-in vreg, or add a new one. 1808 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 1809 if (!VReg) 1810 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 1811 1812 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 1813 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1814 MachinePointerInfo(), false, false, 0); 1815 MemOps.push_back(Store); 1816 // Increment the address by eight for the next argument to store 1817 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8, 1818 PtrVT); 1819 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 1820 } 1821 } 1822 1823 if (!MemOps.empty()) 1824 Chain = DAG.getNode(ISD::TokenFactor, dl, 1825 MVT::Other, &MemOps[0], MemOps.size()); 1826 1827 return Chain; 1828 } 1829 1830 SDValue 1831 PPCTargetLowering::LowerFormalArguments_Darwin( 1832 SDValue Chain, 1833 CallingConv::ID CallConv, bool isVarArg, 1834 const SmallVectorImpl<ISD::InputArg> 1835 &Ins, 1836 DebugLoc dl, SelectionDAG &DAG, 1837 SmallVectorImpl<SDValue> &InVals) const { 1838 // TODO: add description of PPC stack frame format, or at least some docs. 1839 // 1840 MachineFunction &MF = DAG.getMachineFunction(); 1841 MachineFrameInfo *MFI = MF.getFrameInfo(); 1842 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 1843 1844 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1845 bool isPPC64 = PtrVT == MVT::i64; 1846 // Potential tail calls could cause overwriting of argument stack slots. 1847 bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast)); 1848 unsigned PtrByteSize = isPPC64 ? 8 : 4; 1849 1850 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 1851 // Area that is at least reserved in caller of this function. 1852 unsigned MinReservedArea = ArgOffset; 1853 1854 static const unsigned GPR_32[] = { // 32-bit registers. 1855 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 1856 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 1857 }; 1858 static const unsigned GPR_64[] = { // 64-bit registers. 1859 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 1860 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 1861 }; 1862 1863 static const unsigned *FPR = GetFPR(); 1864 1865 static const unsigned VR[] = { 1866 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 1867 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 1868 }; 1869 1870 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 1871 const unsigned Num_FPR_Regs = 13; 1872 const unsigned Num_VR_Regs = array_lengthof( VR); 1873 1874 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 1875 1876 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 1877 1878 // In 32-bit non-varargs functions, the stack space for vectors is after the 1879 // stack space for non-vectors. We do not use this space unless we have 1880 // too many vectors to fit in registers, something that only occurs in 1881 // constructed examples:), but we have to walk the arglist to figure 1882 // that out...for the pathological case, compute VecArgOffset as the 1883 // start of the vector parameter area. Computing VecArgOffset is the 1884 // entire point of the following loop. 1885 unsigned VecArgOffset = ArgOffset; 1886 if (!isVarArg && !isPPC64) { 1887 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 1888 ++ArgNo) { 1889 EVT ObjectVT = Ins[ArgNo].VT; 1890 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1891 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1892 1893 if (Flags.isByVal()) { 1894 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 1895 ObjSize = Flags.getByValSize(); 1896 unsigned ArgSize = 1897 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1898 VecArgOffset += ArgSize; 1899 continue; 1900 } 1901 1902 switch(ObjectVT.getSimpleVT().SimpleTy) { 1903 default: llvm_unreachable("Unhandled argument type!"); 1904 case MVT::i32: 1905 case MVT::f32: 1906 VecArgOffset += isPPC64 ? 8 : 4; 1907 break; 1908 case MVT::i64: // PPC64 1909 case MVT::f64: 1910 VecArgOffset += 8; 1911 break; 1912 case MVT::v4f32: 1913 case MVT::v4i32: 1914 case MVT::v8i16: 1915 case MVT::v16i8: 1916 // Nothing to do, we're only looking at Nonvector args here. 1917 break; 1918 } 1919 } 1920 } 1921 // We've found where the vector parameter area in memory is. Skip the 1922 // first 12 parameters; these don't use that memory. 1923 VecArgOffset = ((VecArgOffset+15)/16)*16; 1924 VecArgOffset += 12*16; 1925 1926 // Add DAG nodes to load the arguments or copy them out of registers. On 1927 // entry to a function on PPC, the arguments start after the linkage area, 1928 // although the first ones are often in registers. 1929 1930 SmallVector<SDValue, 8> MemOps; 1931 unsigned nAltivecParamsAtEnd = 0; 1932 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 1933 SDValue ArgVal; 1934 bool needsLoad = false; 1935 EVT ObjectVT = Ins[ArgNo].VT; 1936 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 1937 unsigned ArgSize = ObjSize; 1938 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 1939 1940 unsigned CurArgOffset = ArgOffset; 1941 1942 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 1943 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 1944 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 1945 if (isVarArg || isPPC64) { 1946 MinReservedArea = ((MinReservedArea+15)/16)*16; 1947 MinReservedArea += CalculateStackSlotSize(ObjectVT, 1948 Flags, 1949 PtrByteSize); 1950 } else nAltivecParamsAtEnd++; 1951 } else 1952 // Calculate min reserved area. 1953 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 1954 Flags, 1955 PtrByteSize); 1956 1957 // FIXME the codegen can be much improved in some cases. 1958 // We do not have to keep everything in memory. 1959 if (Flags.isByVal()) { 1960 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 1961 ObjSize = Flags.getByValSize(); 1962 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 1963 // Objects of size 1 and 2 are right justified, everything else is 1964 // left justified. This means the memory address is adjusted forwards. 1965 if (ObjSize==1 || ObjSize==2) { 1966 CurArgOffset = CurArgOffset + (4 - ObjSize); 1967 } 1968 // The value of the object is its address. 1969 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true); 1970 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1971 InVals.push_back(FIN); 1972 if (ObjSize==1 || ObjSize==2) { 1973 if (GPR_idx != Num_GPR_Regs) { 1974 unsigned VReg; 1975 if (isPPC64) 1976 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 1977 else 1978 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 1979 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 1980 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 1981 MachinePointerInfo(), 1982 ObjSize==1 ? MVT::i8 : MVT::i16, 1983 false, false, 0); 1984 MemOps.push_back(Store); 1985 ++GPR_idx; 1986 } 1987 1988 ArgOffset += PtrByteSize; 1989 1990 continue; 1991 } 1992 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 1993 // Store whatever pieces of the object are in registers 1994 // to memory. ArgVal will be address of the beginning of 1995 // the object. 1996 if (GPR_idx != Num_GPR_Regs) { 1997 unsigned VReg; 1998 if (isPPC64) 1999 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2000 else 2001 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2002 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true); 2003 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2004 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2005 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2006 MachinePointerInfo(), 2007 false, false, 0); 2008 MemOps.push_back(Store); 2009 ++GPR_idx; 2010 ArgOffset += PtrByteSize; 2011 } else { 2012 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 2013 break; 2014 } 2015 } 2016 continue; 2017 } 2018 2019 switch (ObjectVT.getSimpleVT().SimpleTy) { 2020 default: llvm_unreachable("Unhandled argument type!"); 2021 case MVT::i32: 2022 if (!isPPC64) { 2023 if (GPR_idx != Num_GPR_Regs) { 2024 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2025 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2026 ++GPR_idx; 2027 } else { 2028 needsLoad = true; 2029 ArgSize = PtrByteSize; 2030 } 2031 // All int arguments reserve stack space in the Darwin ABI. 2032 ArgOffset += PtrByteSize; 2033 break; 2034 } 2035 // FALLTHROUGH 2036 case MVT::i64: // PPC64 2037 if (GPR_idx != Num_GPR_Regs) { 2038 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2039 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 2040 2041 if (ObjectVT == MVT::i32) { 2042 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 2043 // value to MVT::i64 and then truncate to the correct register size. 2044 if (Flags.isSExt()) 2045 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 2046 DAG.getValueType(ObjectVT)); 2047 else if (Flags.isZExt()) 2048 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 2049 DAG.getValueType(ObjectVT)); 2050 2051 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 2052 } 2053 2054 ++GPR_idx; 2055 } else { 2056 needsLoad = true; 2057 ArgSize = PtrByteSize; 2058 } 2059 // All int arguments reserve stack space in the Darwin ABI. 2060 ArgOffset += 8; 2061 break; 2062 2063 case MVT::f32: 2064 case MVT::f64: 2065 // Every 4 bytes of argument space consumes one of the GPRs available for 2066 // argument passing. 2067 if (GPR_idx != Num_GPR_Regs) { 2068 ++GPR_idx; 2069 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 2070 ++GPR_idx; 2071 } 2072 if (FPR_idx != Num_FPR_Regs) { 2073 unsigned VReg; 2074 2075 if (ObjectVT == MVT::f32) 2076 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 2077 else 2078 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 2079 2080 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2081 ++FPR_idx; 2082 } else { 2083 needsLoad = true; 2084 } 2085 2086 // All FP arguments reserve stack space in the Darwin ABI. 2087 ArgOffset += isPPC64 ? 8 : ObjSize; 2088 break; 2089 case MVT::v4f32: 2090 case MVT::v4i32: 2091 case MVT::v8i16: 2092 case MVT::v16i8: 2093 // Note that vector arguments in registers don't reserve stack space, 2094 // except in varargs functions. 2095 if (VR_idx != Num_VR_Regs) { 2096 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 2097 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 2098 if (isVarArg) { 2099 while ((ArgOffset % 16) != 0) { 2100 ArgOffset += PtrByteSize; 2101 if (GPR_idx != Num_GPR_Regs) 2102 GPR_idx++; 2103 } 2104 ArgOffset += 16; 2105 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 2106 } 2107 ++VR_idx; 2108 } else { 2109 if (!isVarArg && !isPPC64) { 2110 // Vectors go after all the nonvectors. 2111 CurArgOffset = VecArgOffset; 2112 VecArgOffset += 16; 2113 } else { 2114 // Vectors are aligned. 2115 ArgOffset = ((ArgOffset+15)/16)*16; 2116 CurArgOffset = ArgOffset; 2117 ArgOffset += 16; 2118 } 2119 needsLoad = true; 2120 } 2121 break; 2122 } 2123 2124 // We need to load the argument to a virtual register if we determined above 2125 // that we ran out of physical registers of the appropriate type. 2126 if (needsLoad) { 2127 int FI = MFI->CreateFixedObject(ObjSize, 2128 CurArgOffset + (ArgSize - ObjSize), 2129 isImmutable); 2130 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 2131 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(), 2132 false, false, 0); 2133 } 2134 2135 InVals.push_back(ArgVal); 2136 } 2137 2138 // Set the size that is at least reserved in caller of this function. Tail 2139 // call optimized function's reserved stack space needs to be aligned so that 2140 // taking the difference between two stack areas will result in an aligned 2141 // stack. 2142 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 2143 // Add the Altivec parameters at the end, if needed. 2144 if (nAltivecParamsAtEnd) { 2145 MinReservedArea = ((MinReservedArea+15)/16)*16; 2146 MinReservedArea += 16*nAltivecParamsAtEnd; 2147 } 2148 MinReservedArea = 2149 std::max(MinReservedArea, 2150 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2151 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2152 getStackAlignment(); 2153 unsigned AlignMask = TargetAlign-1; 2154 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask; 2155 FI->setMinReservedArea(MinReservedArea); 2156 2157 // If the function takes variable number of arguments, make a frame index for 2158 // the start of the first vararg value... for expansion of llvm.va_start. 2159 if (isVarArg) { 2160 int Depth = ArgOffset; 2161 2162 FuncInfo->setVarArgsFrameIndex( 2163 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8, 2164 Depth, true)); 2165 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2166 2167 // If this function is vararg, store any remaining integer argument regs 2168 // to their spots on the stack so that they may be loaded by deferencing the 2169 // result of va_next. 2170 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 2171 unsigned VReg; 2172 2173 if (isPPC64) 2174 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 2175 else 2176 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 2177 2178 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 2179 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 2180 MachinePointerInfo(), false, false, 0); 2181 MemOps.push_back(Store); 2182 // Increment the address by four for the next argument to store 2183 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT); 2184 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 2185 } 2186 } 2187 2188 if (!MemOps.empty()) 2189 Chain = DAG.getNode(ISD::TokenFactor, dl, 2190 MVT::Other, &MemOps[0], MemOps.size()); 2191 2192 return Chain; 2193 } 2194 2195 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus 2196 /// linkage area for the Darwin ABI. 2197 static unsigned 2198 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG, 2199 bool isPPC64, 2200 bool isVarArg, 2201 unsigned CC, 2202 const SmallVectorImpl<ISD::OutputArg> 2203 &Outs, 2204 const SmallVectorImpl<SDValue> &OutVals, 2205 unsigned &nAltivecParamsAtEnd) { 2206 // Count how many bytes are to be pushed on the stack, including the linkage 2207 // area, and parameter passing area. We start with 24/48 bytes, which is 2208 // prereserved space for [SP][CR][LR][3 x unused]. 2209 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true); 2210 unsigned NumOps = Outs.size(); 2211 unsigned PtrByteSize = isPPC64 ? 8 : 4; 2212 2213 // Add up all the space actually used. 2214 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 2215 // they all go in registers, but we must reserve stack space for them for 2216 // possible use by the caller. In varargs or 64-bit calls, parameters are 2217 // assigned stack space in order, with padding so Altivec parameters are 2218 // 16-byte aligned. 2219 nAltivecParamsAtEnd = 0; 2220 for (unsigned i = 0; i != NumOps; ++i) { 2221 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2222 EVT ArgVT = Outs[i].VT; 2223 // Varargs Altivec parameters are padded to a 16 byte boundary. 2224 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 || 2225 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) { 2226 if (!isVarArg && !isPPC64) { 2227 // Non-varargs Altivec parameters go after all the non-Altivec 2228 // parameters; handle those later so we know how much padding we need. 2229 nAltivecParamsAtEnd++; 2230 continue; 2231 } 2232 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 2233 NumBytes = ((NumBytes+15)/16)*16; 2234 } 2235 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 2236 } 2237 2238 // Allow for Altivec parameters at the end, if needed. 2239 if (nAltivecParamsAtEnd) { 2240 NumBytes = ((NumBytes+15)/16)*16; 2241 NumBytes += 16*nAltivecParamsAtEnd; 2242 } 2243 2244 // The prolog code of the callee may store up to 8 GPR argument registers to 2245 // the stack, allowing va_start to index over them in memory if its varargs. 2246 // Because we cannot tell if this is needed on the caller side, we have to 2247 // conservatively assume that it is needed. As such, make sure we have at 2248 // least enough stack space for the caller to store the 8 GPRs. 2249 NumBytes = std::max(NumBytes, 2250 PPCFrameLowering::getMinCallFrameSize(isPPC64, true)); 2251 2252 // Tail call needs the stack to be aligned. 2253 if (CC==CallingConv::Fast && GuaranteedTailCallOpt) { 2254 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()-> 2255 getStackAlignment(); 2256 unsigned AlignMask = TargetAlign-1; 2257 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 2258 } 2259 2260 return NumBytes; 2261 } 2262 2263 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 2264 /// adjusted to accommodate the arguments for the tailcall. 2265 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 2266 unsigned ParamSize) { 2267 2268 if (!isTailCall) return 0; 2269 2270 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 2271 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 2272 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 2273 // Remember only if the new adjustement is bigger. 2274 if (SPDiff < FI->getTailCallSPDelta()) 2275 FI->setTailCallSPDelta(SPDiff); 2276 2277 return SPDiff; 2278 } 2279 2280 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2281 /// for tail call optimization. Targets which want to do tail call 2282 /// optimization should implement this function. 2283 bool 2284 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2285 CallingConv::ID CalleeCC, 2286 bool isVarArg, 2287 const SmallVectorImpl<ISD::InputArg> &Ins, 2288 SelectionDAG& DAG) const { 2289 if (!GuaranteedTailCallOpt) 2290 return false; 2291 2292 // Variable argument functions are not supported. 2293 if (isVarArg) 2294 return false; 2295 2296 MachineFunction &MF = DAG.getMachineFunction(); 2297 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv(); 2298 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 2299 // Functions containing by val parameters are not supported. 2300 for (unsigned i = 0; i != Ins.size(); i++) { 2301 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2302 if (Flags.isByVal()) return false; 2303 } 2304 2305 // Non PIC/GOT tail calls are supported. 2306 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 2307 return true; 2308 2309 // At the moment we can only do local tail calls (in same module, hidden 2310 // or protected) if we are generating PIC. 2311 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 2312 return G->getGlobal()->hasHiddenVisibility() 2313 || G->getGlobal()->hasProtectedVisibility(); 2314 } 2315 2316 return false; 2317 } 2318 2319 /// isCallCompatibleAddress - Return the immediate to use if the specified 2320 /// 32-bit value is representable in the immediate field of a BxA instruction. 2321 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 2322 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2323 if (!C) return 0; 2324 2325 int Addr = C->getZExtValue(); 2326 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 2327 (Addr << 6 >> 6) != Addr) 2328 return 0; // Top 6 bits have to be sext of immediate. 2329 2330 return DAG.getConstant((int)C->getZExtValue() >> 2, 2331 DAG.getTargetLoweringInfo().getPointerTy()).getNode(); 2332 } 2333 2334 namespace { 2335 2336 struct TailCallArgumentInfo { 2337 SDValue Arg; 2338 SDValue FrameIdxOp; 2339 int FrameIdx; 2340 2341 TailCallArgumentInfo() : FrameIdx(0) {} 2342 }; 2343 2344 } 2345 2346 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 2347 static void 2348 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG, 2349 SDValue Chain, 2350 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs, 2351 SmallVector<SDValue, 8> &MemOpChains, 2352 DebugLoc dl) { 2353 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 2354 SDValue Arg = TailCallArgs[i].Arg; 2355 SDValue FIN = TailCallArgs[i].FrameIdxOp; 2356 int FI = TailCallArgs[i].FrameIdx; 2357 // Store relative to framepointer. 2358 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN, 2359 MachinePointerInfo::getFixedStack(FI), 2360 false, false, 0)); 2361 } 2362 } 2363 2364 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 2365 /// the appropriate stack slot for the tail call optimized function call. 2366 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, 2367 MachineFunction &MF, 2368 SDValue Chain, 2369 SDValue OldRetAddr, 2370 SDValue OldFP, 2371 int SPDiff, 2372 bool isPPC64, 2373 bool isDarwinABI, 2374 DebugLoc dl) { 2375 if (SPDiff) { 2376 // Calculate the new stack slot for the return address. 2377 int SlotSize = isPPC64 ? 8 : 4; 2378 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64, 2379 isDarwinABI); 2380 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize, 2381 NewRetAddrLoc, true); 2382 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2383 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 2384 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 2385 MachinePointerInfo::getFixedStack(NewRetAddr), 2386 false, false, 0); 2387 2388 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 2389 // slot as the FP is never overwritten. 2390 if (isDarwinABI) { 2391 int NewFPLoc = 2392 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI); 2393 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc, 2394 true); 2395 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 2396 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 2397 MachinePointerInfo::getFixedStack(NewFPIdx), 2398 false, false, 0); 2399 } 2400 } 2401 return Chain; 2402 } 2403 2404 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 2405 /// the position of the argument. 2406 static void 2407 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 2408 SDValue Arg, int SPDiff, unsigned ArgOffset, 2409 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) { 2410 int Offset = ArgOffset + SPDiff; 2411 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8; 2412 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2413 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 2414 SDValue FIN = DAG.getFrameIndex(FI, VT); 2415 TailCallArgumentInfo Info; 2416 Info.Arg = Arg; 2417 Info.FrameIdxOp = FIN; 2418 Info.FrameIdx = FI; 2419 TailCallArguments.push_back(Info); 2420 } 2421 2422 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 2423 /// stack slot. Returns the chain as result and the loaded frame pointers in 2424 /// LROpOut/FPOpout. Used when tail calling. 2425 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG, 2426 int SPDiff, 2427 SDValue Chain, 2428 SDValue &LROpOut, 2429 SDValue &FPOpOut, 2430 bool isDarwinABI, 2431 DebugLoc dl) const { 2432 if (SPDiff) { 2433 // Load the LR and FP stack slot for later adjusting. 2434 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32; 2435 LROpOut = getReturnAddrFrameIndex(DAG); 2436 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(), 2437 false, false, 0); 2438 Chain = SDValue(LROpOut.getNode(), 1); 2439 2440 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 2441 // slot as the FP is never overwritten. 2442 if (isDarwinABI) { 2443 FPOpOut = getFramePointerFrameIndex(DAG); 2444 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(), 2445 false, false, 0); 2446 Chain = SDValue(FPOpOut.getNode(), 1); 2447 } 2448 } 2449 return Chain; 2450 } 2451 2452 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 2453 /// by "Src" to address "Dst" of size "Size". Alignment information is 2454 /// specified by the specific parameter attribute. The copy will be passed as 2455 /// a byval function parameter. 2456 /// Sometimes what we are copying is the end of a larger object, the part that 2457 /// does not fit in registers. 2458 static SDValue 2459 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 2460 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 2461 DebugLoc dl) { 2462 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 2463 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 2464 false, false, MachinePointerInfo(0), 2465 MachinePointerInfo(0)); 2466 } 2467 2468 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 2469 /// tail calls. 2470 static void 2471 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, 2472 SDValue Arg, SDValue PtrOff, int SPDiff, 2473 unsigned ArgOffset, bool isPPC64, bool isTailCall, 2474 bool isVector, SmallVector<SDValue, 8> &MemOpChains, 2475 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments, 2476 DebugLoc dl) { 2477 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2478 if (!isTailCall) { 2479 if (isVector) { 2480 SDValue StackPtr; 2481 if (isPPC64) 2482 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 2483 else 2484 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2485 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 2486 DAG.getConstant(ArgOffset, PtrVT)); 2487 } 2488 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 2489 MachinePointerInfo(), false, false, 0)); 2490 // Calculate and remember argument location. 2491 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 2492 TailCallArguments); 2493 } 2494 2495 static 2496 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 2497 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes, 2498 SDValue LROp, SDValue FPOp, bool isDarwinABI, 2499 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) { 2500 MachineFunction &MF = DAG.getMachineFunction(); 2501 2502 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 2503 // might overwrite each other in case of tail call optimization. 2504 SmallVector<SDValue, 8> MemOpChains2; 2505 // Do not flag preceding copytoreg stuff together with the following stuff. 2506 InFlag = SDValue(); 2507 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 2508 MemOpChains2, dl); 2509 if (!MemOpChains2.empty()) 2510 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2511 &MemOpChains2[0], MemOpChains2.size()); 2512 2513 // Store the return address to the appropriate stack slot. 2514 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff, 2515 isPPC64, isDarwinABI, dl); 2516 2517 // Emit callseq_end just before tailcall node. 2518 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2519 DAG.getIntPtrConstant(0, true), InFlag); 2520 InFlag = Chain.getValue(1); 2521 } 2522 2523 static 2524 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, 2525 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall, 2526 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 2527 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys, 2528 const PPCSubtarget &PPCSubTarget) { 2529 2530 bool isPPC64 = PPCSubTarget.isPPC64(); 2531 bool isSVR4ABI = PPCSubTarget.isSVR4ABI(); 2532 2533 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2534 NodeTys.push_back(MVT::Other); // Returns a chain 2535 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use. 2536 2537 unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin; 2538 2539 bool needIndirectCall = true; 2540 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) { 2541 // If this is an absolute destination address, use the munged value. 2542 Callee = SDValue(Dest, 0); 2543 needIndirectCall = false; 2544 } 2545 2546 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2547 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201 2548 // Use indirect calls for ALL functions calls in JIT mode, since the 2549 // far-call stubs may be outside relocation limits for a BL instruction. 2550 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) { 2551 unsigned OpFlags = 0; 2552 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2553 (!PPCSubTarget.getTargetTriple().isMacOSX() || 2554 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) && 2555 (G->getGlobal()->isDeclaration() || 2556 G->getGlobal()->isWeakForLinker())) { 2557 // PC-relative references to external symbols should go through $stub, 2558 // unless we're building with the leopard linker or later, which 2559 // automatically synthesizes these stubs. 2560 OpFlags = PPCII::MO_DARWIN_STUB; 2561 } 2562 2563 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, 2564 // every direct call is) turn it into a TargetGlobalAddress / 2565 // TargetExternalSymbol node so that legalize doesn't hack it. 2566 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 2567 Callee.getValueType(), 2568 0, OpFlags); 2569 needIndirectCall = false; 2570 } 2571 } 2572 2573 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2574 unsigned char OpFlags = 0; 2575 2576 if (DAG.getTarget().getRelocationModel() != Reloc::Static && 2577 (!PPCSubTarget.getTargetTriple().isMacOSX() || 2578 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) { 2579 // PC-relative references to external symbols should go through $stub, 2580 // unless we're building with the leopard linker or later, which 2581 // automatically synthesizes these stubs. 2582 OpFlags = PPCII::MO_DARWIN_STUB; 2583 } 2584 2585 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(), 2586 OpFlags); 2587 needIndirectCall = false; 2588 } 2589 2590 if (needIndirectCall) { 2591 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair 2592 // to do the call, we can't use PPCISD::CALL. 2593 SDValue MTCTROps[] = {Chain, Callee, InFlag}; 2594 2595 if (isSVR4ABI && isPPC64) { 2596 // Function pointers in the 64-bit SVR4 ABI do not point to the function 2597 // entry point, but to the function descriptor (the function entry point 2598 // address is part of the function descriptor though). 2599 // The function descriptor is a three doubleword structure with the 2600 // following fields: function entry point, TOC base address and 2601 // environment pointer. 2602 // Thus for a call through a function pointer, the following actions need 2603 // to be performed: 2604 // 1. Save the TOC of the caller in the TOC save area of its stack 2605 // frame (this is done in LowerCall_Darwin()). 2606 // 2. Load the address of the function entry point from the function 2607 // descriptor. 2608 // 3. Load the TOC of the callee from the function descriptor into r2. 2609 // 4. Load the environment pointer from the function descriptor into 2610 // r11. 2611 // 5. Branch to the function entry point address. 2612 // 6. On return of the callee, the TOC of the caller needs to be 2613 // restored (this is done in FinishCall()). 2614 // 2615 // All those operations are flagged together to ensure that no other 2616 // operations can be scheduled in between. E.g. without flagging the 2617 // operations together, a TOC access in the caller could be scheduled 2618 // between the load of the callee TOC and the branch to the callee, which 2619 // results in the TOC access going through the TOC of the callee instead 2620 // of going through the TOC of the caller, which leads to incorrect code. 2621 2622 // Load the address of the function entry point from the function 2623 // descriptor. 2624 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue); 2625 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps, 2626 InFlag.getNode() ? 3 : 2); 2627 Chain = LoadFuncPtr.getValue(1); 2628 InFlag = LoadFuncPtr.getValue(2); 2629 2630 // Load environment pointer into r11. 2631 // Offset of the environment pointer within the function descriptor. 2632 SDValue PtrOff = DAG.getIntPtrConstant(16); 2633 2634 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff); 2635 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr, 2636 InFlag); 2637 Chain = LoadEnvPtr.getValue(1); 2638 InFlag = LoadEnvPtr.getValue(2); 2639 2640 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr, 2641 InFlag); 2642 Chain = EnvVal.getValue(0); 2643 InFlag = EnvVal.getValue(1); 2644 2645 // Load TOC of the callee into r2. We are using a target-specific load 2646 // with r2 hard coded, because the result of a target-independent load 2647 // would never go directly into r2, since r2 is a reserved register (which 2648 // prevents the register allocator from allocating it), resulting in an 2649 // additional register being allocated and an unnecessary move instruction 2650 // being generated. 2651 VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2652 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain, 2653 Callee, InFlag); 2654 Chain = LoadTOCPtr.getValue(0); 2655 InFlag = LoadTOCPtr.getValue(1); 2656 2657 MTCTROps[0] = Chain; 2658 MTCTROps[1] = LoadFuncPtr; 2659 MTCTROps[2] = InFlag; 2660 } 2661 2662 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps, 2663 2 + (InFlag.getNode() != 0)); 2664 InFlag = Chain.getValue(1); 2665 2666 NodeTys.clear(); 2667 NodeTys.push_back(MVT::Other); 2668 NodeTys.push_back(MVT::Glue); 2669 Ops.push_back(Chain); 2670 CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin; 2671 Callee.setNode(0); 2672 // Add CTR register as callee so a bctr can be emitted later. 2673 if (isTailCall) 2674 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT)); 2675 } 2676 2677 // If this is a direct call, pass the chain and the callee. 2678 if (Callee.getNode()) { 2679 Ops.push_back(Chain); 2680 Ops.push_back(Callee); 2681 } 2682 // If this is a tail call add stack pointer delta. 2683 if (isTailCall) 2684 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32)); 2685 2686 // Add argument registers to the end of the list so that they are known live 2687 // into the call. 2688 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2689 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2690 RegsToPass[i].second.getValueType())); 2691 2692 return CallOpc; 2693 } 2694 2695 SDValue 2696 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 2697 CallingConv::ID CallConv, bool isVarArg, 2698 const SmallVectorImpl<ISD::InputArg> &Ins, 2699 DebugLoc dl, SelectionDAG &DAG, 2700 SmallVectorImpl<SDValue> &InVals) const { 2701 2702 SmallVector<CCValAssign, 16> RVLocs; 2703 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2704 getTargetMachine(), RVLocs, *DAG.getContext()); 2705 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2706 2707 // Copy all of the result registers out of their specified physreg. 2708 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2709 CCValAssign &VA = RVLocs[i]; 2710 EVT VT = VA.getValVT(); 2711 assert(VA.isRegLoc() && "Can only return in registers!"); 2712 Chain = DAG.getCopyFromReg(Chain, dl, 2713 VA.getLocReg(), VT, InFlag).getValue(1); 2714 InVals.push_back(Chain.getValue(0)); 2715 InFlag = Chain.getValue(2); 2716 } 2717 2718 return Chain; 2719 } 2720 2721 SDValue 2722 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl, 2723 bool isTailCall, bool isVarArg, 2724 SelectionDAG &DAG, 2725 SmallVector<std::pair<unsigned, SDValue>, 8> 2726 &RegsToPass, 2727 SDValue InFlag, SDValue Chain, 2728 SDValue &Callee, 2729 int SPDiff, unsigned NumBytes, 2730 const SmallVectorImpl<ISD::InputArg> &Ins, 2731 SmallVectorImpl<SDValue> &InVals) const { 2732 std::vector<EVT> NodeTys; 2733 SmallVector<SDValue, 8> Ops; 2734 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff, 2735 isTailCall, RegsToPass, Ops, NodeTys, 2736 PPCSubTarget); 2737 2738 // When performing tail call optimization the callee pops its arguments off 2739 // the stack. Account for this here so these bytes can be pushed back on in 2740 // PPCRegisterInfo::eliminateCallFramePseudoInstr. 2741 int BytesCalleePops = 2742 (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0; 2743 2744 if (InFlag.getNode()) 2745 Ops.push_back(InFlag); 2746 2747 // Emit tail call. 2748 if (isTailCall) { 2749 // If this is the first return lowered for this function, add the regs 2750 // to the liveout set for the function. 2751 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 2752 SmallVector<CCValAssign, 16> RVLocs; 2753 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2754 getTargetMachine(), RVLocs, *DAG.getContext()); 2755 CCInfo.AnalyzeCallResult(Ins, RetCC_PPC); 2756 for (unsigned i = 0; i != RVLocs.size(); ++i) 2757 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 2758 } 2759 2760 assert(((Callee.getOpcode() == ISD::Register && 2761 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 2762 Callee.getOpcode() == ISD::TargetExternalSymbol || 2763 Callee.getOpcode() == ISD::TargetGlobalAddress || 2764 isa<ConstantSDNode>(Callee)) && 2765 "Expecting an global address, external symbol, absolute value or register"); 2766 2767 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size()); 2768 } 2769 2770 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 2771 InFlag = Chain.getValue(1); 2772 2773 // Add a NOP immediately after the branch instruction when using the 64-bit 2774 // SVR4 ABI. At link time, if caller and callee are in a different module and 2775 // thus have a different TOC, the call will be replaced with a call to a stub 2776 // function which saves the current TOC, loads the TOC of the callee and 2777 // branches to the callee. The NOP will be replaced with a load instruction 2778 // which restores the TOC of the caller from the TOC save slot of the current 2779 // stack frame. If caller and callee belong to the same module (and have the 2780 // same TOC), the NOP will remain unchanged. 2781 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) { 2782 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 2783 if (CallOpc == PPCISD::BCTRL_SVR4) { 2784 // This is a call through a function pointer. 2785 // Restore the caller TOC from the save area into R2. 2786 // See PrepareCall() for more information about calls through function 2787 // pointers in the 64-bit SVR4 ABI. 2788 // We are using a target-specific load with r2 hard coded, because the 2789 // result of a target-independent load would never go directly into r2, 2790 // since r2 is a reserved register (which prevents the register allocator 2791 // from allocating it), resulting in an additional register being 2792 // allocated and an unnecessary move instruction being generated. 2793 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag); 2794 InFlag = Chain.getValue(1); 2795 } else { 2796 // Otherwise insert NOP. 2797 InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag); 2798 } 2799 } 2800 2801 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2802 DAG.getIntPtrConstant(BytesCalleePops, true), 2803 InFlag); 2804 if (!Ins.empty()) 2805 InFlag = Chain.getValue(1); 2806 2807 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2808 Ins, dl, DAG, InVals); 2809 } 2810 2811 SDValue 2812 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 2813 CallingConv::ID CallConv, bool isVarArg, 2814 bool &isTailCall, 2815 const SmallVectorImpl<ISD::OutputArg> &Outs, 2816 const SmallVectorImpl<SDValue> &OutVals, 2817 const SmallVectorImpl<ISD::InputArg> &Ins, 2818 DebugLoc dl, SelectionDAG &DAG, 2819 SmallVectorImpl<SDValue> &InVals) const { 2820 if (isTailCall) 2821 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 2822 Ins, DAG); 2823 2824 if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) 2825 return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg, 2826 isTailCall, Outs, OutVals, Ins, 2827 dl, DAG, InVals); 2828 2829 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 2830 isTailCall, Outs, OutVals, Ins, 2831 dl, DAG, InVals); 2832 } 2833 2834 SDValue 2835 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee, 2836 CallingConv::ID CallConv, bool isVarArg, 2837 bool isTailCall, 2838 const SmallVectorImpl<ISD::OutputArg> &Outs, 2839 const SmallVectorImpl<SDValue> &OutVals, 2840 const SmallVectorImpl<ISD::InputArg> &Ins, 2841 DebugLoc dl, SelectionDAG &DAG, 2842 SmallVectorImpl<SDValue> &InVals) const { 2843 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description 2844 // of the 32-bit SVR4 ABI stack frame layout. 2845 2846 assert((CallConv == CallingConv::C || 2847 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 2848 2849 unsigned PtrByteSize = 4; 2850 2851 MachineFunction &MF = DAG.getMachineFunction(); 2852 2853 // Mark this function as potentially containing a function that contains a 2854 // tail call. As a consequence the frame pointer will be used for dynamicalloc 2855 // and restoring the callers stack pointer in this functions epilog. This is 2856 // done because by tail calling the called function might overwrite the value 2857 // in this function's (MF) stack pointer stack slot 0(SP). 2858 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 2859 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 2860 2861 // Count how many bytes are to be pushed on the stack, including the linkage 2862 // area, parameter list area and the part of the local variable space which 2863 // contains copies of aggregates which are passed by value. 2864 2865 // Assign locations to all of the outgoing arguments. 2866 SmallVector<CCValAssign, 16> ArgLocs; 2867 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2868 getTargetMachine(), ArgLocs, *DAG.getContext()); 2869 2870 // Reserve space for the linkage area on the stack. 2871 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize); 2872 2873 if (isVarArg) { 2874 // Handle fixed and variable vector arguments differently. 2875 // Fixed vector arguments go into registers as long as registers are 2876 // available. Variable vector arguments always go into memory. 2877 unsigned NumArgs = Outs.size(); 2878 2879 for (unsigned i = 0; i != NumArgs; ++i) { 2880 MVT ArgVT = Outs[i].VT; 2881 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 2882 bool Result; 2883 2884 if (Outs[i].IsFixed) { 2885 Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 2886 CCInfo); 2887 } else { 2888 Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 2889 ArgFlags, CCInfo); 2890 } 2891 2892 if (Result) { 2893 #ifndef NDEBUG 2894 errs() << "Call operand #" << i << " has unhandled type " 2895 << EVT(ArgVT).getEVTString() << "\n"; 2896 #endif 2897 llvm_unreachable(0); 2898 } 2899 } 2900 } else { 2901 // All arguments are treated the same. 2902 CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4); 2903 } 2904 2905 // Assign locations to all of the outgoing aggregate by value arguments. 2906 SmallVector<CCValAssign, 16> ByValArgLocs; 2907 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2908 getTargetMachine(), ByValArgLocs, *DAG.getContext()); 2909 2910 // Reserve stack space for the allocations in CCInfo. 2911 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 2912 2913 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal); 2914 2915 // Size of the linkage area, parameter list area and the part of the local 2916 // space variable where copies of aggregates which are passed by value are 2917 // stored. 2918 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 2919 2920 // Calculate by how many bytes the stack has to be adjusted in case of tail 2921 // call optimization. 2922 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 2923 2924 // Adjust the stack pointer for the new arguments... 2925 // These operations are automatically eliminated by the prolog/epilog pass 2926 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 2927 SDValue CallSeqStart = Chain; 2928 2929 // Load the return address and frame pointer so it can be moved somewhere else 2930 // later. 2931 SDValue LROp, FPOp; 2932 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false, 2933 dl); 2934 2935 // Set up a copy of the stack pointer for use loading and storing any 2936 // arguments that may not fit in the registers available for argument 2937 // passing. 2938 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 2939 2940 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 2941 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 2942 SmallVector<SDValue, 8> MemOpChains; 2943 2944 // Walk the register/memloc assignments, inserting copies/loads. 2945 for (unsigned i = 0, j = 0, e = ArgLocs.size(); 2946 i != e; 2947 ++i) { 2948 CCValAssign &VA = ArgLocs[i]; 2949 SDValue Arg = OutVals[i]; 2950 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2951 2952 if (Flags.isByVal()) { 2953 // Argument is an aggregate which is passed by value, thus we need to 2954 // create a copy of it in the local variable space of the current stack 2955 // frame (which is the stack frame of the caller) and pass the address of 2956 // this copy to the callee. 2957 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 2958 CCValAssign &ByValVA = ByValArgLocs[j++]; 2959 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 2960 2961 // Memory reserved in the local variable space of the callers stack frame. 2962 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 2963 2964 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2965 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2966 2967 // Create a copy of the argument in the local area of the current 2968 // stack frame. 2969 SDValue MemcpyCall = 2970 CreateCopyOfByValArgument(Arg, PtrOff, 2971 CallSeqStart.getNode()->getOperand(0), 2972 Flags, DAG, dl); 2973 2974 // This must go outside the CALLSEQ_START..END. 2975 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 2976 CallSeqStart.getNode()->getOperand(1)); 2977 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 2978 NewCallSeqStart.getNode()); 2979 Chain = CallSeqStart = NewCallSeqStart; 2980 2981 // Pass the address of the aggregate copy on the stack either in a 2982 // physical register or in the parameter list area of the current stack 2983 // frame to the callee. 2984 Arg = PtrOff; 2985 } 2986 2987 if (VA.isRegLoc()) { 2988 // Put argument in a physical register. 2989 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2990 } else { 2991 // Put argument in the parameter list area of the current stack frame. 2992 assert(VA.isMemLoc()); 2993 unsigned LocMemOffset = VA.getLocMemOffset(); 2994 2995 if (!isTailCall) { 2996 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 2997 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 2998 2999 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 3000 MachinePointerInfo(), 3001 false, false, 0)); 3002 } else { 3003 // Calculate and remember argument location. 3004 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 3005 TailCallArguments); 3006 } 3007 } 3008 } 3009 3010 if (!MemOpChains.empty()) 3011 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3012 &MemOpChains[0], MemOpChains.size()); 3013 3014 // Set CR6 to true if this is a vararg call. 3015 if (isVarArg) { 3016 SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0); 3017 RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR)); 3018 } 3019 3020 // Build a sequence of copy-to-reg nodes chained together with token chain 3021 // and flag operands which copy the outgoing args into the appropriate regs. 3022 SDValue InFlag; 3023 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3024 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3025 RegsToPass[i].second, InFlag); 3026 InFlag = Chain.getValue(1); 3027 } 3028 3029 if (isTailCall) 3030 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp, 3031 false, TailCallArguments); 3032 3033 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3034 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3035 Ins, InVals); 3036 } 3037 3038 SDValue 3039 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee, 3040 CallingConv::ID CallConv, bool isVarArg, 3041 bool isTailCall, 3042 const SmallVectorImpl<ISD::OutputArg> &Outs, 3043 const SmallVectorImpl<SDValue> &OutVals, 3044 const SmallVectorImpl<ISD::InputArg> &Ins, 3045 DebugLoc dl, SelectionDAG &DAG, 3046 SmallVectorImpl<SDValue> &InVals) const { 3047 3048 unsigned NumOps = Outs.size(); 3049 3050 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3051 bool isPPC64 = PtrVT == MVT::i64; 3052 unsigned PtrByteSize = isPPC64 ? 8 : 4; 3053 3054 MachineFunction &MF = DAG.getMachineFunction(); 3055 3056 // Mark this function as potentially containing a function that contains a 3057 // tail call. As a consequence the frame pointer will be used for dynamicalloc 3058 // and restoring the callers stack pointer in this functions epilog. This is 3059 // done because by tail calling the called function might overwrite the value 3060 // in this function's (MF) stack pointer stack slot 0(SP). 3061 if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast) 3062 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 3063 3064 unsigned nAltivecParamsAtEnd = 0; 3065 3066 // Count how many bytes are to be pushed on the stack, including the linkage 3067 // area, and parameter passing area. We start with 24/48 bytes, which is 3068 // prereserved space for [SP][CR][LR][3 x unused]. 3069 unsigned NumBytes = 3070 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv, 3071 Outs, OutVals, 3072 nAltivecParamsAtEnd); 3073 3074 // Calculate by how many bytes the stack has to be adjusted in case of tail 3075 // call optimization. 3076 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 3077 3078 // To protect arguments on the stack from being clobbered in a tail call, 3079 // force all the loads to happen before doing any other lowering. 3080 if (isTailCall) 3081 Chain = DAG.getStackArgumentTokenFactor(Chain); 3082 3083 // Adjust the stack pointer for the new arguments... 3084 // These operations are automatically eliminated by the prolog/epilog pass 3085 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 3086 SDValue CallSeqStart = Chain; 3087 3088 // Load the return address and frame pointer so it can be move somewhere else 3089 // later. 3090 SDValue LROp, FPOp; 3091 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true, 3092 dl); 3093 3094 // Set up a copy of the stack pointer for use loading and storing any 3095 // arguments that may not fit in the registers available for argument 3096 // passing. 3097 SDValue StackPtr; 3098 if (isPPC64) 3099 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 3100 else 3101 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 3102 3103 // Figure out which arguments are going to go in registers, and which in 3104 // memory. Also, if this is a vararg function, floating point operations 3105 // must be stored to our stack, and loaded into integer regs as well, if 3106 // any integer regs are available for argument passing. 3107 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true); 3108 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3109 3110 static const unsigned GPR_32[] = { // 32-bit registers. 3111 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3112 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3113 }; 3114 static const unsigned GPR_64[] = { // 64-bit registers. 3115 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3116 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3117 }; 3118 static const unsigned *FPR = GetFPR(); 3119 3120 static const unsigned VR[] = { 3121 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3122 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3123 }; 3124 const unsigned NumGPRs = array_lengthof(GPR_32); 3125 const unsigned NumFPRs = 13; 3126 const unsigned NumVRs = array_lengthof(VR); 3127 3128 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; 3129 3130 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3131 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 3132 3133 SmallVector<SDValue, 8> MemOpChains; 3134 for (unsigned i = 0; i != NumOps; ++i) { 3135 SDValue Arg = OutVals[i]; 3136 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3137 3138 // PtrOff will be used to store the current argument to the stack if a 3139 // register cannot be found for it. 3140 SDValue PtrOff; 3141 3142 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); 3143 3144 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3145 3146 // On PPC64, promote integers to 64-bit values. 3147 if (isPPC64 && Arg.getValueType() == MVT::i32) { 3148 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 3149 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 3150 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 3151 } 3152 3153 // FIXME memcpy is used way more than necessary. Correctness first. 3154 if (Flags.isByVal()) { 3155 unsigned Size = Flags.getByValSize(); 3156 if (Size==1 || Size==2) { 3157 // Very small objects are passed right-justified. 3158 // Everything else is passed left-justified. 3159 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 3160 if (GPR_idx != NumGPRs) { 3161 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 3162 MachinePointerInfo(), VT, 3163 false, false, 0); 3164 MemOpChains.push_back(Load.getValue(1)); 3165 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3166 3167 ArgOffset += PtrByteSize; 3168 } else { 3169 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType()); 3170 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 3171 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr, 3172 CallSeqStart.getNode()->getOperand(0), 3173 Flags, DAG, dl); 3174 // This must go outside the CALLSEQ_START..END. 3175 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3176 CallSeqStart.getNode()->getOperand(1)); 3177 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 3178 NewCallSeqStart.getNode()); 3179 Chain = CallSeqStart = NewCallSeqStart; 3180 ArgOffset += PtrByteSize; 3181 } 3182 continue; 3183 } 3184 // Copy entire object into memory. There are cases where gcc-generated 3185 // code assumes it is there, even if it could be put entirely into 3186 // registers. (This is not what the doc says.) 3187 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 3188 CallSeqStart.getNode()->getOperand(0), 3189 Flags, DAG, dl); 3190 // This must go outside the CALLSEQ_START..END. 3191 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, 3192 CallSeqStart.getNode()->getOperand(1)); 3193 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); 3194 Chain = CallSeqStart = NewCallSeqStart; 3195 // And copy the pieces of it that fit into registers. 3196 for (unsigned j=0; j<Size; j+=PtrByteSize) { 3197 SDValue Const = DAG.getConstant(j, PtrOff.getValueType()); 3198 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 3199 if (GPR_idx != NumGPRs) { 3200 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 3201 MachinePointerInfo(), 3202 false, false, 0); 3203 MemOpChains.push_back(Load.getValue(1)); 3204 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3205 ArgOffset += PtrByteSize; 3206 } else { 3207 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 3208 break; 3209 } 3210 } 3211 continue; 3212 } 3213 3214 switch (Arg.getValueType().getSimpleVT().SimpleTy) { 3215 default: llvm_unreachable("Unexpected ValueType for argument!"); 3216 case MVT::i32: 3217 case MVT::i64: 3218 if (GPR_idx != NumGPRs) { 3219 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 3220 } else { 3221 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3222 isPPC64, isTailCall, false, MemOpChains, 3223 TailCallArguments, dl); 3224 } 3225 ArgOffset += PtrByteSize; 3226 break; 3227 case MVT::f32: 3228 case MVT::f64: 3229 if (FPR_idx != NumFPRs) { 3230 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 3231 3232 if (isVarArg) { 3233 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3234 MachinePointerInfo(), false, false, 0); 3235 MemOpChains.push_back(Store); 3236 3237 // Float varargs are always shadowed in available integer registers 3238 if (GPR_idx != NumGPRs) { 3239 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3240 MachinePointerInfo(), false, false, 0); 3241 MemOpChains.push_back(Load.getValue(1)); 3242 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3243 } 3244 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 3245 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType()); 3246 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 3247 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, 3248 MachinePointerInfo(), 3249 false, false, 0); 3250 MemOpChains.push_back(Load.getValue(1)); 3251 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3252 } 3253 } else { 3254 // If we have any FPRs remaining, we may also have GPRs remaining. 3255 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 3256 // GPRs. 3257 if (GPR_idx != NumGPRs) 3258 ++GPR_idx; 3259 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 3260 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 3261 ++GPR_idx; 3262 } 3263 } else { 3264 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3265 isPPC64, isTailCall, false, MemOpChains, 3266 TailCallArguments, dl); 3267 } 3268 if (isPPC64) 3269 ArgOffset += 8; 3270 else 3271 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 3272 break; 3273 case MVT::v4f32: 3274 case MVT::v4i32: 3275 case MVT::v8i16: 3276 case MVT::v16i8: 3277 if (isVarArg) { 3278 // These go aligned on the stack, or in the corresponding R registers 3279 // when within range. The Darwin PPC ABI doc claims they also go in 3280 // V registers; in fact gcc does this only for arguments that are 3281 // prototyped, not for those that match the ... We do it for all 3282 // arguments, seems to work. 3283 while (ArgOffset % 16 !=0) { 3284 ArgOffset += PtrByteSize; 3285 if (GPR_idx != NumGPRs) 3286 GPR_idx++; 3287 } 3288 // We could elide this store in the case where the object fits 3289 // entirely in R registers. Maybe later. 3290 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 3291 DAG.getConstant(ArgOffset, PtrVT)); 3292 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, 3293 MachinePointerInfo(), false, false, 0); 3294 MemOpChains.push_back(Store); 3295 if (VR_idx != NumVRs) { 3296 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, 3297 MachinePointerInfo(), 3298 false, false, 0); 3299 MemOpChains.push_back(Load.getValue(1)); 3300 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 3301 } 3302 ArgOffset += 16; 3303 for (unsigned i=0; i<16; i+=PtrByteSize) { 3304 if (GPR_idx == NumGPRs) 3305 break; 3306 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 3307 DAG.getConstant(i, PtrVT)); 3308 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(), 3309 false, false, 0); 3310 MemOpChains.push_back(Load.getValue(1)); 3311 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 3312 } 3313 break; 3314 } 3315 3316 // Non-varargs Altivec params generally go in registers, but have 3317 // stack space allocated at the end. 3318 if (VR_idx != NumVRs) { 3319 // Doesn't have GPR space allocated. 3320 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 3321 } else if (nAltivecParamsAtEnd==0) { 3322 // We are emitting Altivec params in order. 3323 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3324 isPPC64, isTailCall, true, MemOpChains, 3325 TailCallArguments, dl); 3326 ArgOffset += 16; 3327 } 3328 break; 3329 } 3330 } 3331 // If all Altivec parameters fit in registers, as they usually do, 3332 // they get stack space following the non-Altivec parameters. We 3333 // don't track this here because nobody below needs it. 3334 // If there are more Altivec parameters than fit in registers emit 3335 // the stores here. 3336 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 3337 unsigned j = 0; 3338 // Offset is aligned; skip 1st 12 params which go in V registers. 3339 ArgOffset = ((ArgOffset+15)/16)*16; 3340 ArgOffset += 12*16; 3341 for (unsigned i = 0; i != NumOps; ++i) { 3342 SDValue Arg = OutVals[i]; 3343 EVT ArgType = Outs[i].VT; 3344 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 3345 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 3346 if (++j > NumVRs) { 3347 SDValue PtrOff; 3348 // We are emitting Altivec params in order. 3349 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 3350 isPPC64, isTailCall, true, MemOpChains, 3351 TailCallArguments, dl); 3352 ArgOffset += 16; 3353 } 3354 } 3355 } 3356 } 3357 3358 if (!MemOpChains.empty()) 3359 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3360 &MemOpChains[0], MemOpChains.size()); 3361 3362 // Check if this is an indirect call (MTCTR/BCTRL). 3363 // See PrepareCall() for more information about calls through function 3364 // pointers in the 64-bit SVR4 ABI. 3365 if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() && 3366 !dyn_cast<GlobalAddressSDNode>(Callee) && 3367 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3368 !isBLACompatibleAddress(Callee, DAG)) { 3369 // Load r2 into a virtual register and store it to the TOC save area. 3370 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 3371 // TOC save area offset. 3372 SDValue PtrOff = DAG.getIntPtrConstant(40); 3373 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 3374 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(), 3375 false, false, 0); 3376 } 3377 3378 // On Darwin, R12 must contain the address of an indirect callee. This does 3379 // not mean the MTCTR instruction must use R12; it's easier to model this as 3380 // an extra parameter, so do that. 3381 if (!isTailCall && 3382 !dyn_cast<GlobalAddressSDNode>(Callee) && 3383 !dyn_cast<ExternalSymbolSDNode>(Callee) && 3384 !isBLACompatibleAddress(Callee, DAG)) 3385 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 3386 PPC::R12), Callee)); 3387 3388 // Build a sequence of copy-to-reg nodes chained together with token chain 3389 // and flag operands which copy the outgoing args into the appropriate regs. 3390 SDValue InFlag; 3391 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 3392 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 3393 RegsToPass[i].second, InFlag); 3394 InFlag = Chain.getValue(1); 3395 } 3396 3397 if (isTailCall) 3398 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp, 3399 FPOp, true, TailCallArguments); 3400 3401 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG, 3402 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes, 3403 Ins, InVals); 3404 } 3405 3406 SDValue 3407 PPCTargetLowering::LowerReturn(SDValue Chain, 3408 CallingConv::ID CallConv, bool isVarArg, 3409 const SmallVectorImpl<ISD::OutputArg> &Outs, 3410 const SmallVectorImpl<SDValue> &OutVals, 3411 DebugLoc dl, SelectionDAG &DAG) const { 3412 3413 SmallVector<CCValAssign, 16> RVLocs; 3414 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3415 getTargetMachine(), RVLocs, *DAG.getContext()); 3416 CCInfo.AnalyzeReturn(Outs, RetCC_PPC); 3417 3418 // If this is the first return lowered for this function, add the regs to the 3419 // liveout set for the function. 3420 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 3421 for (unsigned i = 0; i != RVLocs.size(); ++i) 3422 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 3423 } 3424 3425 SDValue Flag; 3426 3427 // Copy the result values into the output registers. 3428 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3429 CCValAssign &VA = RVLocs[i]; 3430 assert(VA.isRegLoc() && "Can only return in registers!"); 3431 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 3432 OutVals[i], Flag); 3433 Flag = Chain.getValue(1); 3434 } 3435 3436 if (Flag.getNode()) 3437 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 3438 else 3439 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain); 3440 } 3441 3442 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG, 3443 const PPCSubtarget &Subtarget) const { 3444 // When we pop the dynamic allocation we need to restore the SP link. 3445 DebugLoc dl = Op.getDebugLoc(); 3446 3447 // Get the corect type for pointers. 3448 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3449 3450 // Construct the stack pointer operand. 3451 bool isPPC64 = Subtarget.isPPC64(); 3452 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 3453 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 3454 3455 // Get the operands for the STACKRESTORE. 3456 SDValue Chain = Op.getOperand(0); 3457 SDValue SaveSP = Op.getOperand(1); 3458 3459 // Load the old link SP. 3460 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, 3461 MachinePointerInfo(), 3462 false, false, 0); 3463 3464 // Restore the stack pointer. 3465 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 3466 3467 // Store the old link SP. 3468 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(), 3469 false, false, 0); 3470 } 3471 3472 3473 3474 SDValue 3475 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const { 3476 MachineFunction &MF = DAG.getMachineFunction(); 3477 bool isPPC64 = PPCSubTarget.isPPC64(); 3478 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3479 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3480 3481 // Get current frame pointer save index. The users of this index will be 3482 // primarily DYNALLOC instructions. 3483 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3484 int RASI = FI->getReturnAddrSaveIndex(); 3485 3486 // If the frame pointer save index hasn't been defined yet. 3487 if (!RASI) { 3488 // Find out what the fix offset of the frame pointer save area. 3489 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI); 3490 // Allocate the frame index for frame pointer save area. 3491 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true); 3492 // Save the result. 3493 FI->setReturnAddrSaveIndex(RASI); 3494 } 3495 return DAG.getFrameIndex(RASI, PtrVT); 3496 } 3497 3498 SDValue 3499 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 3500 MachineFunction &MF = DAG.getMachineFunction(); 3501 bool isPPC64 = PPCSubTarget.isPPC64(); 3502 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 3503 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3504 3505 // Get current frame pointer save index. The users of this index will be 3506 // primarily DYNALLOC instructions. 3507 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 3508 int FPSI = FI->getFramePointerSaveIndex(); 3509 3510 // If the frame pointer save index hasn't been defined yet. 3511 if (!FPSI) { 3512 // Find out what the fix offset of the frame pointer save area. 3513 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64, 3514 isDarwinABI); 3515 3516 // Allocate the frame index for frame pointer save area. 3517 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 3518 // Save the result. 3519 FI->setFramePointerSaveIndex(FPSI); 3520 } 3521 return DAG.getFrameIndex(FPSI, PtrVT); 3522 } 3523 3524 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3525 SelectionDAG &DAG, 3526 const PPCSubtarget &Subtarget) const { 3527 // Get the inputs. 3528 SDValue Chain = Op.getOperand(0); 3529 SDValue Size = Op.getOperand(1); 3530 DebugLoc dl = Op.getDebugLoc(); 3531 3532 // Get the corect type for pointers. 3533 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3534 // Negate the size. 3535 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 3536 DAG.getConstant(0, PtrVT), Size); 3537 // Construct a node for the frame pointer save index. 3538 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 3539 // Build a DYNALLOC node. 3540 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 3541 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 3542 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3); 3543 } 3544 3545 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 3546 /// possible. 3547 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3548 // Not FP? Not a fsel. 3549 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 3550 !Op.getOperand(2).getValueType().isFloatingPoint()) 3551 return Op; 3552 3553 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3554 3555 // Cannot handle SETEQ/SETNE. 3556 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op; 3557 3558 EVT ResVT = Op.getValueType(); 3559 EVT CmpVT = Op.getOperand(0).getValueType(); 3560 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 3561 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 3562 DebugLoc dl = Op.getDebugLoc(); 3563 3564 // If the RHS of the comparison is a 0.0, we don't need to do the 3565 // subtraction at all. 3566 if (isFloatingPointZero(RHS)) 3567 switch (CC) { 3568 default: break; // SETUO etc aren't handled by fsel. 3569 case ISD::SETULT: 3570 case ISD::SETLT: 3571 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3572 case ISD::SETOGE: 3573 case ISD::SETGE: 3574 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3575 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3576 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 3577 case ISD::SETUGT: 3578 case ISD::SETGT: 3579 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 3580 case ISD::SETOLE: 3581 case ISD::SETLE: 3582 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 3583 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 3584 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 3585 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 3586 } 3587 3588 SDValue Cmp; 3589 switch (CC) { 3590 default: break; // SETUO etc aren't handled by fsel. 3591 case ISD::SETULT: 3592 case ISD::SETLT: 3593 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3594 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3595 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3596 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3597 case ISD::SETOGE: 3598 case ISD::SETGE: 3599 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS); 3600 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3601 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3602 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3603 case ISD::SETUGT: 3604 case ISD::SETGT: 3605 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3606 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3607 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3608 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 3609 case ISD::SETOLE: 3610 case ISD::SETLE: 3611 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS); 3612 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 3613 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 3614 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 3615 } 3616 return Op; 3617 } 3618 3619 // FIXME: Split this code up when LegalizeDAGTypes lands. 3620 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 3621 DebugLoc dl) const { 3622 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 3623 SDValue Src = Op.getOperand(0); 3624 if (Src.getValueType() == MVT::f32) 3625 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 3626 3627 SDValue Tmp; 3628 switch (Op.getValueType().getSimpleVT().SimpleTy) { 3629 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 3630 case MVT::i32: 3631 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ : 3632 PPCISD::FCTIDZ, 3633 dl, MVT::f64, Src); 3634 break; 3635 case MVT::i64: 3636 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src); 3637 break; 3638 } 3639 3640 // Convert the FP value to an int value through memory. 3641 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64); 3642 3643 // Emit a store to the stack slot. 3644 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, 3645 MachinePointerInfo(), false, false, 0); 3646 3647 // Result is a load from the stack slot. If loading 4 bytes, make sure to 3648 // add in a bias. 3649 if (Op.getValueType() == MVT::i32) 3650 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 3651 DAG.getConstant(4, FIPtr.getValueType())); 3652 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(), 3653 false, false, 0); 3654 } 3655 3656 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, 3657 SelectionDAG &DAG) const { 3658 DebugLoc dl = Op.getDebugLoc(); 3659 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 3660 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 3661 return SDValue(); 3662 3663 if (Op.getOperand(0).getValueType() == MVT::i64) { 3664 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0)); 3665 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits); 3666 if (Op.getValueType() == MVT::f32) 3667 FP = DAG.getNode(ISD::FP_ROUND, dl, 3668 MVT::f32, FP, DAG.getIntPtrConstant(0)); 3669 return FP; 3670 } 3671 3672 assert(Op.getOperand(0).getValueType() == MVT::i32 && 3673 "Unhandled SINT_TO_FP type in custom expander!"); 3674 // Since we only generate this in 64-bit mode, we can take advantage of 3675 // 64-bit registers. In particular, sign extend the input value into the 3676 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 3677 // then lfd it and fcfid it. 3678 MachineFunction &MF = DAG.getMachineFunction(); 3679 MachineFrameInfo *FrameInfo = MF.getFrameInfo(); 3680 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false); 3681 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3682 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 3683 3684 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32, 3685 Op.getOperand(0)); 3686 3687 // STD the extended value into the stack slot. 3688 MachineMemOperand *MMO = 3689 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 3690 MachineMemOperand::MOStore, 8, 8); 3691 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx }; 3692 SDValue Store = 3693 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other), 3694 Ops, 4, MVT::i64, MMO); 3695 // Load the value as a double. 3696 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(), 3697 false, false, 0); 3698 3699 // FCFID it and return it. 3700 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld); 3701 if (Op.getValueType() == MVT::f32) 3702 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0)); 3703 return FP; 3704 } 3705 3706 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3707 SelectionDAG &DAG) const { 3708 DebugLoc dl = Op.getDebugLoc(); 3709 /* 3710 The rounding mode is in bits 30:31 of FPSR, and has the following 3711 settings: 3712 00 Round to nearest 3713 01 Round to 0 3714 10 Round to +inf 3715 11 Round to -inf 3716 3717 FLT_ROUNDS, on the other hand, expects the following: 3718 -1 Undefined 3719 0 Round to 0 3720 1 Round to nearest 3721 2 Round to +inf 3722 3 Round to -inf 3723 3724 To perform the conversion, we do: 3725 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 3726 */ 3727 3728 MachineFunction &MF = DAG.getMachineFunction(); 3729 EVT VT = Op.getValueType(); 3730 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 3731 std::vector<EVT> NodeTys; 3732 SDValue MFFSreg, InFlag; 3733 3734 // Save FP Control Word to register 3735 NodeTys.push_back(MVT::f64); // return register 3736 NodeTys.push_back(MVT::Glue); // unused in this context 3737 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 3738 3739 // Save FP register to stack slot 3740 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); 3741 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 3742 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, 3743 StackSlot, MachinePointerInfo(), false, false,0); 3744 3745 // Load FP Control Word from low 32 bits of stack slot. 3746 SDValue Four = DAG.getConstant(4, PtrVT); 3747 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 3748 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(), 3749 false, false, 0); 3750 3751 // Transform as necessary 3752 SDValue CWD1 = 3753 DAG.getNode(ISD::AND, dl, MVT::i32, 3754 CWD, DAG.getConstant(3, MVT::i32)); 3755 SDValue CWD2 = 3756 DAG.getNode(ISD::SRL, dl, MVT::i32, 3757 DAG.getNode(ISD::AND, dl, MVT::i32, 3758 DAG.getNode(ISD::XOR, dl, MVT::i32, 3759 CWD, DAG.getConstant(3, MVT::i32)), 3760 DAG.getConstant(3, MVT::i32)), 3761 DAG.getConstant(1, MVT::i32)); 3762 3763 SDValue RetVal = 3764 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 3765 3766 return DAG.getNode((VT.getSizeInBits() < 16 ? 3767 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 3768 } 3769 3770 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3771 EVT VT = Op.getValueType(); 3772 unsigned BitWidth = VT.getSizeInBits(); 3773 DebugLoc dl = Op.getDebugLoc(); 3774 assert(Op.getNumOperands() == 3 && 3775 VT == Op.getOperand(1).getValueType() && 3776 "Unexpected SHL!"); 3777 3778 // Expand into a bunch of logical ops. Note that these ops 3779 // depend on the PPC behavior for oversized shift amounts. 3780 SDValue Lo = Op.getOperand(0); 3781 SDValue Hi = Op.getOperand(1); 3782 SDValue Amt = Op.getOperand(2); 3783 EVT AmtVT = Amt.getValueType(); 3784 3785 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3786 DAG.getConstant(BitWidth, AmtVT), Amt); 3787 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 3788 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 3789 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 3790 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3791 DAG.getConstant(-BitWidth, AmtVT)); 3792 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 3793 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3794 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 3795 SDValue OutOps[] = { OutLo, OutHi }; 3796 return DAG.getMergeValues(OutOps, 2, dl); 3797 } 3798 3799 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 3800 EVT VT = Op.getValueType(); 3801 DebugLoc dl = Op.getDebugLoc(); 3802 unsigned BitWidth = VT.getSizeInBits(); 3803 assert(Op.getNumOperands() == 3 && 3804 VT == Op.getOperand(1).getValueType() && 3805 "Unexpected SRL!"); 3806 3807 // Expand into a bunch of logical ops. Note that these ops 3808 // depend on the PPC behavior for oversized shift amounts. 3809 SDValue Lo = Op.getOperand(0); 3810 SDValue Hi = Op.getOperand(1); 3811 SDValue Amt = Op.getOperand(2); 3812 EVT AmtVT = Amt.getValueType(); 3813 3814 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3815 DAG.getConstant(BitWidth, AmtVT), Amt); 3816 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3817 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3818 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3819 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3820 DAG.getConstant(-BitWidth, AmtVT)); 3821 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 3822 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 3823 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 3824 SDValue OutOps[] = { OutLo, OutHi }; 3825 return DAG.getMergeValues(OutOps, 2, dl); 3826 } 3827 3828 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 3829 DebugLoc dl = Op.getDebugLoc(); 3830 EVT VT = Op.getValueType(); 3831 unsigned BitWidth = VT.getSizeInBits(); 3832 assert(Op.getNumOperands() == 3 && 3833 VT == Op.getOperand(1).getValueType() && 3834 "Unexpected SRA!"); 3835 3836 // Expand into a bunch of logical ops, followed by a select_cc. 3837 SDValue Lo = Op.getOperand(0); 3838 SDValue Hi = Op.getOperand(1); 3839 SDValue Amt = Op.getOperand(2); 3840 EVT AmtVT = Amt.getValueType(); 3841 3842 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 3843 DAG.getConstant(BitWidth, AmtVT), Amt); 3844 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 3845 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 3846 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 3847 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 3848 DAG.getConstant(-BitWidth, AmtVT)); 3849 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 3850 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 3851 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT), 3852 Tmp4, Tmp6, ISD::SETLE); 3853 SDValue OutOps[] = { OutLo, OutHi }; 3854 return DAG.getMergeValues(OutOps, 2, dl); 3855 } 3856 3857 //===----------------------------------------------------------------------===// 3858 // Vector related lowering. 3859 // 3860 3861 /// BuildSplatI - Build a canonical splati of Val with an element size of 3862 /// SplatSize. Cast the result to VT. 3863 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 3864 SelectionDAG &DAG, DebugLoc dl) { 3865 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); 3866 3867 static const EVT VTys[] = { // canonical VT to use for each size. 3868 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 3869 }; 3870 3871 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 3872 3873 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 3874 if (Val == -1) 3875 SplatSize = 1; 3876 3877 EVT CanonicalVT = VTys[SplatSize-1]; 3878 3879 // Build a canonical splat for this value. 3880 SDValue Elt = DAG.getConstant(Val, MVT::i32); 3881 SmallVector<SDValue, 8> Ops; 3882 Ops.assign(CanonicalVT.getVectorNumElements(), Elt); 3883 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, 3884 &Ops[0], Ops.size()); 3885 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res); 3886 } 3887 3888 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 3889 /// specified intrinsic ID. 3890 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 3891 SelectionDAG &DAG, DebugLoc dl, 3892 EVT DestVT = MVT::Other) { 3893 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 3894 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3895 DAG.getConstant(IID, MVT::i32), LHS, RHS); 3896 } 3897 3898 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 3899 /// specified intrinsic ID. 3900 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 3901 SDValue Op2, SelectionDAG &DAG, 3902 DebugLoc dl, EVT DestVT = MVT::Other) { 3903 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 3904 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 3905 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); 3906 } 3907 3908 3909 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 3910 /// amount. The result has the specified value type. 3911 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, 3912 EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3913 // Force LHS/RHS to be the right type. 3914 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 3915 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 3916 3917 int Ops[16]; 3918 for (unsigned i = 0; i != 16; ++i) 3919 Ops[i] = i + Amt; 3920 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 3921 return DAG.getNode(ISD::BITCAST, dl, VT, T); 3922 } 3923 3924 // If this is a case we can't handle, return null and let the default 3925 // expansion code take care of it. If we CAN select this case, and if it 3926 // selects to a single instruction, return Op. Otherwise, if we can codegen 3927 // this case more efficiently than a constant pool load, lower it to the 3928 // sequence of ops that should be used. 3929 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 3930 SelectionDAG &DAG) const { 3931 DebugLoc dl = Op.getDebugLoc(); 3932 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 3933 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 3934 3935 // Check if this is a splat of a constant value. 3936 APInt APSplatBits, APSplatUndef; 3937 unsigned SplatBitSize; 3938 bool HasAnyUndefs; 3939 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 3940 HasAnyUndefs, 0, true) || SplatBitSize > 32) 3941 return SDValue(); 3942 3943 unsigned SplatBits = APSplatBits.getZExtValue(); 3944 unsigned SplatUndef = APSplatUndef.getZExtValue(); 3945 unsigned SplatSize = SplatBitSize / 8; 3946 3947 // First, handle single instruction cases. 3948 3949 // All zeros? 3950 if (SplatBits == 0) { 3951 // Canonicalize all zero vectors to be v4i32. 3952 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 3953 SDValue Z = DAG.getConstant(0, MVT::i32); 3954 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z); 3955 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 3956 } 3957 return Op; 3958 } 3959 3960 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 3961 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 3962 (32-SplatBitSize)); 3963 if (SextVal >= -16 && SextVal <= 15) 3964 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 3965 3966 3967 // Two instruction sequences. 3968 3969 // If this value is in the range [-32,30] and is even, use: 3970 // tmp = VSPLTI[bhw], result = add tmp, tmp 3971 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { 3972 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl); 3973 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res); 3974 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3975 } 3976 3977 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 3978 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 3979 // for fneg/fabs. 3980 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 3981 // Make -1 and vspltisw -1: 3982 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 3983 3984 // Make the VSLW intrinsic, computing 0x8000_0000. 3985 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 3986 OnesV, DAG, dl); 3987 3988 // xor by OnesV to invert it. 3989 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 3990 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 3991 } 3992 3993 // Check to see if this is a wide variety of vsplti*, binop self cases. 3994 static const signed char SplatCsts[] = { 3995 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 3996 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 3997 }; 3998 3999 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 4000 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 4001 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 4002 int i = SplatCsts[idx]; 4003 4004 // Figure out what shift amount will be used by altivec if shifted by i in 4005 // this splat size. 4006 unsigned TypeShiftAmt = i & (SplatBitSize-1); 4007 4008 // vsplti + shl self. 4009 if (SextVal == (i << (int)TypeShiftAmt)) { 4010 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4011 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4012 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 4013 Intrinsic::ppc_altivec_vslw 4014 }; 4015 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4016 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4017 } 4018 4019 // vsplti + srl self. 4020 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4021 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4022 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4023 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 4024 Intrinsic::ppc_altivec_vsrw 4025 }; 4026 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4027 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4028 } 4029 4030 // vsplti + sra self. 4031 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 4032 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4033 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4034 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 4035 Intrinsic::ppc_altivec_vsraw 4036 }; 4037 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4038 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4039 } 4040 4041 // vsplti + rol self. 4042 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 4043 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 4044 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 4045 static const unsigned IIDs[] = { // Intrinsic to use for each size. 4046 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 4047 Intrinsic::ppc_altivec_vrlw 4048 }; 4049 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 4050 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 4051 } 4052 4053 // t = vsplti c, result = vsldoi t, t, 1 4054 if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) { 4055 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4056 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl); 4057 } 4058 // t = vsplti c, result = vsldoi t, t, 2 4059 if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) { 4060 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4061 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl); 4062 } 4063 // t = vsplti c, result = vsldoi t, t, 3 4064 if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 4065 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 4066 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl); 4067 } 4068 } 4069 4070 // Three instruction sequences. 4071 4072 // Odd, in range [17,31]: (vsplti C)-(vsplti -16). 4073 if (SextVal >= 0 && SextVal <= 31) { 4074 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl); 4075 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4076 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS); 4077 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4078 } 4079 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). 4080 if (SextVal >= -31 && SextVal <= 0) { 4081 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl); 4082 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl); 4083 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS); 4084 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS); 4085 } 4086 4087 return SDValue(); 4088 } 4089 4090 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4091 /// the specified operations to build the shuffle. 4092 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4093 SDValue RHS, SelectionDAG &DAG, 4094 DebugLoc dl) { 4095 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4096 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4097 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4098 4099 enum { 4100 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4101 OP_VMRGHW, 4102 OP_VMRGLW, 4103 OP_VSPLTISW0, 4104 OP_VSPLTISW1, 4105 OP_VSPLTISW2, 4106 OP_VSPLTISW3, 4107 OP_VSLDOI4, 4108 OP_VSLDOI8, 4109 OP_VSLDOI12 4110 }; 4111 4112 if (OpNum == OP_COPY) { 4113 if (LHSID == (1*9+2)*9+3) return LHS; 4114 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4115 return RHS; 4116 } 4117 4118 SDValue OpLHS, OpRHS; 4119 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4120 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4121 4122 int ShufIdxs[16]; 4123 switch (OpNum) { 4124 default: llvm_unreachable("Unknown i32 permute!"); 4125 case OP_VMRGHW: 4126 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 4127 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 4128 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 4129 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 4130 break; 4131 case OP_VMRGLW: 4132 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 4133 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 4134 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 4135 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 4136 break; 4137 case OP_VSPLTISW0: 4138 for (unsigned i = 0; i != 16; ++i) 4139 ShufIdxs[i] = (i&3)+0; 4140 break; 4141 case OP_VSPLTISW1: 4142 for (unsigned i = 0; i != 16; ++i) 4143 ShufIdxs[i] = (i&3)+4; 4144 break; 4145 case OP_VSPLTISW2: 4146 for (unsigned i = 0; i != 16; ++i) 4147 ShufIdxs[i] = (i&3)+8; 4148 break; 4149 case OP_VSPLTISW3: 4150 for (unsigned i = 0; i != 16; ++i) 4151 ShufIdxs[i] = (i&3)+12; 4152 break; 4153 case OP_VSLDOI4: 4154 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 4155 case OP_VSLDOI8: 4156 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 4157 case OP_VSLDOI12: 4158 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 4159 } 4160 EVT VT = OpLHS.getValueType(); 4161 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 4162 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 4163 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 4164 return DAG.getNode(ISD::BITCAST, dl, VT, T); 4165 } 4166 4167 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 4168 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 4169 /// return the code it can be lowered into. Worst case, it can always be 4170 /// lowered into a vperm. 4171 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 4172 SelectionDAG &DAG) const { 4173 DebugLoc dl = Op.getDebugLoc(); 4174 SDValue V1 = Op.getOperand(0); 4175 SDValue V2 = Op.getOperand(1); 4176 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4177 EVT VT = Op.getValueType(); 4178 4179 // Cases that are handled by instructions that take permute immediates 4180 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 4181 // selected by the instruction selector. 4182 if (V2.getOpcode() == ISD::UNDEF) { 4183 if (PPC::isSplatShuffleMask(SVOp, 1) || 4184 PPC::isSplatShuffleMask(SVOp, 2) || 4185 PPC::isSplatShuffleMask(SVOp, 4) || 4186 PPC::isVPKUWUMShuffleMask(SVOp, true) || 4187 PPC::isVPKUHUMShuffleMask(SVOp, true) || 4188 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 || 4189 PPC::isVMRGLShuffleMask(SVOp, 1, true) || 4190 PPC::isVMRGLShuffleMask(SVOp, 2, true) || 4191 PPC::isVMRGLShuffleMask(SVOp, 4, true) || 4192 PPC::isVMRGHShuffleMask(SVOp, 1, true) || 4193 PPC::isVMRGHShuffleMask(SVOp, 2, true) || 4194 PPC::isVMRGHShuffleMask(SVOp, 4, true)) { 4195 return Op; 4196 } 4197 } 4198 4199 // Altivec has a variety of "shuffle immediates" that take two vector inputs 4200 // and produce a fixed permutation. If any of these match, do not lower to 4201 // VPERM. 4202 if (PPC::isVPKUWUMShuffleMask(SVOp, false) || 4203 PPC::isVPKUHUMShuffleMask(SVOp, false) || 4204 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 || 4205 PPC::isVMRGLShuffleMask(SVOp, 1, false) || 4206 PPC::isVMRGLShuffleMask(SVOp, 2, false) || 4207 PPC::isVMRGLShuffleMask(SVOp, 4, false) || 4208 PPC::isVMRGHShuffleMask(SVOp, 1, false) || 4209 PPC::isVMRGHShuffleMask(SVOp, 2, false) || 4210 PPC::isVMRGHShuffleMask(SVOp, 4, false)) 4211 return Op; 4212 4213 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 4214 // perfect shuffle table to emit an optimal matching sequence. 4215 SmallVector<int, 16> PermMask; 4216 SVOp->getMask(PermMask); 4217 4218 unsigned PFIndexes[4]; 4219 bool isFourElementShuffle = true; 4220 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 4221 unsigned EltNo = 8; // Start out undef. 4222 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 4223 if (PermMask[i*4+j] < 0) 4224 continue; // Undef, ignore it. 4225 4226 unsigned ByteSource = PermMask[i*4+j]; 4227 if ((ByteSource & 3) != j) { 4228 isFourElementShuffle = false; 4229 break; 4230 } 4231 4232 if (EltNo == 8) { 4233 EltNo = ByteSource/4; 4234 } else if (EltNo != ByteSource/4) { 4235 isFourElementShuffle = false; 4236 break; 4237 } 4238 } 4239 PFIndexes[i] = EltNo; 4240 } 4241 4242 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 4243 // perfect shuffle vector to determine if it is cost effective to do this as 4244 // discrete instructions, or whether we should use a vperm. 4245 if (isFourElementShuffle) { 4246 // Compute the index in the perfect shuffle table. 4247 unsigned PFTableIndex = 4248 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4249 4250 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4251 unsigned Cost = (PFEntry >> 30); 4252 4253 // Determining when to avoid vperm is tricky. Many things affect the cost 4254 // of vperm, particularly how many times the perm mask needs to be computed. 4255 // For example, if the perm mask can be hoisted out of a loop or is already 4256 // used (perhaps because there are multiple permutes with the same shuffle 4257 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 4258 // the loop requires an extra register. 4259 // 4260 // As a compromise, we only emit discrete instructions if the shuffle can be 4261 // generated in 3 or fewer operations. When we have loop information 4262 // available, if this block is within a loop, we should avoid using vperm 4263 // for 3-operation perms and use a constant pool load instead. 4264 if (Cost < 3) 4265 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4266 } 4267 4268 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 4269 // vector that will get spilled to the constant pool. 4270 if (V2.getOpcode() == ISD::UNDEF) V2 = V1; 4271 4272 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 4273 // that it is in input element units, not in bytes. Convert now. 4274 EVT EltVT = V1.getValueType().getVectorElementType(); 4275 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 4276 4277 SmallVector<SDValue, 16> ResultMask; 4278 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 4279 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 4280 4281 for (unsigned j = 0; j != BytesPerElement; ++j) 4282 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, 4283 MVT::i32)); 4284 } 4285 4286 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8, 4287 &ResultMask[0], ResultMask.size()); 4288 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask); 4289 } 4290 4291 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an 4292 /// altivec comparison. If it is, return true and fill in Opc/isDot with 4293 /// information about the intrinsic. 4294 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc, 4295 bool &isDot) { 4296 unsigned IntrinsicID = 4297 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 4298 CompareOpc = -1; 4299 isDot = false; 4300 switch (IntrinsicID) { 4301 default: return false; 4302 // Comparison predicates. 4303 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; 4304 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; 4305 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; 4306 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; 4307 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; 4308 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; 4309 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; 4310 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; 4311 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; 4312 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; 4313 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; 4314 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; 4315 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; 4316 4317 // Normal Comparisons. 4318 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; 4319 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; 4320 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; 4321 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; 4322 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; 4323 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; 4324 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; 4325 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; 4326 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; 4327 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; 4328 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; 4329 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; 4330 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; 4331 } 4332 return true; 4333 } 4334 4335 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 4336 /// lower, do it, otherwise return null. 4337 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 4338 SelectionDAG &DAG) const { 4339 // If this is a lowered altivec predicate compare, CompareOpc is set to the 4340 // opcode number of the comparison. 4341 DebugLoc dl = Op.getDebugLoc(); 4342 int CompareOpc; 4343 bool isDot; 4344 if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) 4345 return SDValue(); // Don't custom lower most intrinsics. 4346 4347 // If this is a non-dot comparison, make the VCMP node and we are done. 4348 if (!isDot) { 4349 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 4350 Op.getOperand(1), Op.getOperand(2), 4351 DAG.getConstant(CompareOpc, MVT::i32)); 4352 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 4353 } 4354 4355 // Create the PPCISD altivec 'dot' comparison node. 4356 SDValue Ops[] = { 4357 Op.getOperand(2), // LHS 4358 Op.getOperand(3), // RHS 4359 DAG.getConstant(CompareOpc, MVT::i32) 4360 }; 4361 std::vector<EVT> VTs; 4362 VTs.push_back(Op.getOperand(2).getValueType()); 4363 VTs.push_back(MVT::Glue); 4364 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 4365 4366 // Now that we have the comparison, emit a copy from the CR to a GPR. 4367 // This is flagged to the above dot comparison. 4368 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32, 4369 DAG.getRegister(PPC::CR6, MVT::i32), 4370 CompNode.getValue(1)); 4371 4372 // Unpack the result based on how the target uses it. 4373 unsigned BitNo; // Bit # of CR6. 4374 bool InvertBit; // Invert result? 4375 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 4376 default: // Can't happen, don't crash on invalid number though. 4377 case 0: // Return the value of the EQ bit of CR6. 4378 BitNo = 0; InvertBit = false; 4379 break; 4380 case 1: // Return the inverted value of the EQ bit of CR6. 4381 BitNo = 0; InvertBit = true; 4382 break; 4383 case 2: // Return the value of the LT bit of CR6. 4384 BitNo = 2; InvertBit = false; 4385 break; 4386 case 3: // Return the inverted value of the LT bit of CR6. 4387 BitNo = 2; InvertBit = true; 4388 break; 4389 } 4390 4391 // Shift the bit into the low position. 4392 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 4393 DAG.getConstant(8-(3-BitNo), MVT::i32)); 4394 // Isolate the bit. 4395 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 4396 DAG.getConstant(1, MVT::i32)); 4397 4398 // If we are supposed to, toggle the bit. 4399 if (InvertBit) 4400 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 4401 DAG.getConstant(1, MVT::i32)); 4402 return Flags; 4403 } 4404 4405 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 4406 SelectionDAG &DAG) const { 4407 DebugLoc dl = Op.getDebugLoc(); 4408 // Create a stack slot that is 16-byte aligned. 4409 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 4410 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false); 4411 EVT PtrVT = getPointerTy(); 4412 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 4413 4414 // Store the input value into Value#0 of the stack slot. 4415 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, 4416 Op.getOperand(0), FIdx, MachinePointerInfo(), 4417 false, false, 0); 4418 // Load it out. 4419 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(), 4420 false, false, 0); 4421 } 4422 4423 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 4424 DebugLoc dl = Op.getDebugLoc(); 4425 if (Op.getValueType() == MVT::v4i32) { 4426 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4427 4428 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 4429 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 4430 4431 SDValue RHSSwap = // = vrlw RHS, 16 4432 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 4433 4434 // Shrinkify inputs to v8i16. 4435 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 4436 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 4437 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 4438 4439 // Low parts multiplied together, generating 32-bit results (we ignore the 4440 // top parts). 4441 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 4442 LHS, RHS, DAG, dl, MVT::v4i32); 4443 4444 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 4445 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 4446 // Shift the high parts up 16 bits. 4447 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 4448 Neg16, DAG, dl); 4449 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 4450 } else if (Op.getValueType() == MVT::v8i16) { 4451 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4452 4453 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 4454 4455 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 4456 LHS, RHS, Zero, DAG, dl); 4457 } else if (Op.getValueType() == MVT::v16i8) { 4458 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 4459 4460 // Multiply the even 8-bit parts, producing 16-bit sums. 4461 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 4462 LHS, RHS, DAG, dl, MVT::v8i16); 4463 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 4464 4465 // Multiply the odd 8-bit parts, producing 16-bit sums. 4466 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 4467 LHS, RHS, DAG, dl, MVT::v8i16); 4468 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 4469 4470 // Merge the results together. 4471 int Ops[16]; 4472 for (unsigned i = 0; i != 8; ++i) { 4473 Ops[i*2 ] = 2*i+1; 4474 Ops[i*2+1] = 2*i+1+16; 4475 } 4476 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 4477 } else { 4478 llvm_unreachable("Unknown mul to lower!"); 4479 } 4480 } 4481 4482 /// LowerOperation - Provide custom lowering hooks for some operations. 4483 /// 4484 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4485 switch (Op.getOpcode()) { 4486 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 4487 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4488 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4489 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 4490 case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for PPC"); 4491 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 4492 case ISD::SETCC: return LowerSETCC(Op, DAG); 4493 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 4494 case ISD::VASTART: 4495 return LowerVASTART(Op, DAG, PPCSubTarget); 4496 4497 case ISD::VAARG: 4498 return LowerVAARG(Op, DAG, PPCSubTarget); 4499 4500 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); 4501 case ISD::DYNAMIC_STACKALLOC: 4502 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); 4503 4504 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4505 case ISD::FP_TO_UINT: 4506 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, 4507 Op.getDebugLoc()); 4508 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 4509 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4510 4511 // Lower 64-bit shifts. 4512 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 4513 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 4514 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 4515 4516 // Vector-related lowering. 4517 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 4518 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4519 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 4520 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 4521 case ISD::MUL: return LowerMUL(Op, DAG); 4522 4523 // Frame & Return address. 4524 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4525 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4526 } 4527 return SDValue(); 4528 } 4529 4530 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 4531 SmallVectorImpl<SDValue>&Results, 4532 SelectionDAG &DAG) const { 4533 const TargetMachine &TM = getTargetMachine(); 4534 DebugLoc dl = N->getDebugLoc(); 4535 switch (N->getOpcode()) { 4536 default: 4537 assert(false && "Do not know how to custom type legalize this operation!"); 4538 return; 4539 case ISD::VAARG: { 4540 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI() 4541 || TM.getSubtarget<PPCSubtarget>().isPPC64()) 4542 return; 4543 4544 EVT VT = N->getValueType(0); 4545 4546 if (VT == MVT::i64) { 4547 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget); 4548 4549 Results.push_back(NewNode); 4550 Results.push_back(NewNode.getValue(1)); 4551 } 4552 return; 4553 } 4554 case ISD::FP_ROUND_INREG: { 4555 assert(N->getValueType(0) == MVT::ppcf128); 4556 assert(N->getOperand(0).getValueType() == MVT::ppcf128); 4557 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4558 MVT::f64, N->getOperand(0), 4559 DAG.getIntPtrConstant(0)); 4560 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 4561 MVT::f64, N->getOperand(0), 4562 DAG.getIntPtrConstant(1)); 4563 4564 // This sequence changes FPSCR to do round-to-zero, adds the two halves 4565 // of the long double, and puts FPSCR back the way it was. We do not 4566 // actually model FPSCR. 4567 std::vector<EVT> NodeTys; 4568 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg; 4569 4570 NodeTys.push_back(MVT::f64); // Return register 4571 NodeTys.push_back(MVT::Glue); // Returns a flag for later insns 4572 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0); 4573 MFFSreg = Result.getValue(0); 4574 InFlag = Result.getValue(1); 4575 4576 NodeTys.clear(); 4577 NodeTys.push_back(MVT::Glue); // Returns a flag 4578 Ops[0] = DAG.getConstant(31, MVT::i32); 4579 Ops[1] = InFlag; 4580 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2); 4581 InFlag = Result.getValue(0); 4582 4583 NodeTys.clear(); 4584 NodeTys.push_back(MVT::Glue); // Returns a flag 4585 Ops[0] = DAG.getConstant(30, MVT::i32); 4586 Ops[1] = InFlag; 4587 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2); 4588 InFlag = Result.getValue(0); 4589 4590 NodeTys.clear(); 4591 NodeTys.push_back(MVT::f64); // result of add 4592 NodeTys.push_back(MVT::Glue); // Returns a flag 4593 Ops[0] = Lo; 4594 Ops[1] = Hi; 4595 Ops[2] = InFlag; 4596 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3); 4597 FPreg = Result.getValue(0); 4598 InFlag = Result.getValue(1); 4599 4600 NodeTys.clear(); 4601 NodeTys.push_back(MVT::f64); 4602 Ops[0] = DAG.getConstant(1, MVT::i32); 4603 Ops[1] = MFFSreg; 4604 Ops[2] = FPreg; 4605 Ops[3] = InFlag; 4606 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4); 4607 FPreg = Result.getValue(0); 4608 4609 // We know the low half is about to be thrown away, so just use something 4610 // convenient. 4611 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, 4612 FPreg, FPreg)); 4613 return; 4614 } 4615 case ISD::FP_TO_SINT: 4616 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 4617 return; 4618 } 4619 } 4620 4621 4622 //===----------------------------------------------------------------------===// 4623 // Other Lowering Code 4624 //===----------------------------------------------------------------------===// 4625 4626 MachineBasicBlock * 4627 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4628 bool is64bit, unsigned BinOpcode) const { 4629 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4630 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4631 4632 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4633 MachineFunction *F = BB->getParent(); 4634 MachineFunction::iterator It = BB; 4635 ++It; 4636 4637 unsigned dest = MI->getOperand(0).getReg(); 4638 unsigned ptrA = MI->getOperand(1).getReg(); 4639 unsigned ptrB = MI->getOperand(2).getReg(); 4640 unsigned incr = MI->getOperand(3).getReg(); 4641 DebugLoc dl = MI->getDebugLoc(); 4642 4643 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4644 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4645 F->insert(It, loopMBB); 4646 F->insert(It, exitMBB); 4647 exitMBB->splice(exitMBB->begin(), BB, 4648 llvm::next(MachineBasicBlock::iterator(MI)), 4649 BB->end()); 4650 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4651 4652 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4653 unsigned TmpReg = (!BinOpcode) ? incr : 4654 RegInfo.createVirtualRegister( 4655 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4656 (const TargetRegisterClass *) &PPC::GPRCRegClass); 4657 4658 // thisMBB: 4659 // ... 4660 // fallthrough --> loopMBB 4661 BB->addSuccessor(loopMBB); 4662 4663 // loopMBB: 4664 // l[wd]arx dest, ptr 4665 // add r0, dest, incr 4666 // st[wd]cx. r0, ptr 4667 // bne- loopMBB 4668 // fallthrough --> exitMBB 4669 BB = loopMBB; 4670 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4671 .addReg(ptrA).addReg(ptrB); 4672 if (BinOpcode) 4673 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 4674 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4675 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 4676 BuildMI(BB, dl, TII->get(PPC::BCC)) 4677 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4678 BB->addSuccessor(loopMBB); 4679 BB->addSuccessor(exitMBB); 4680 4681 // exitMBB: 4682 // ... 4683 BB = exitMBB; 4684 return BB; 4685 } 4686 4687 MachineBasicBlock * 4688 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 4689 MachineBasicBlock *BB, 4690 bool is8bit, // operation 4691 unsigned BinOpcode) const { 4692 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 4693 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4694 // In 64 bit mode we have to use 64 bits for addresses, even though the 4695 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 4696 // registers without caring whether they're 32 or 64, but here we're 4697 // doing actual arithmetic on the addresses. 4698 bool is64bit = PPCSubTarget.isPPC64(); 4699 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 4700 4701 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4702 MachineFunction *F = BB->getParent(); 4703 MachineFunction::iterator It = BB; 4704 ++It; 4705 4706 unsigned dest = MI->getOperand(0).getReg(); 4707 unsigned ptrA = MI->getOperand(1).getReg(); 4708 unsigned ptrB = MI->getOperand(2).getReg(); 4709 unsigned incr = MI->getOperand(3).getReg(); 4710 DebugLoc dl = MI->getDebugLoc(); 4711 4712 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 4713 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4714 F->insert(It, loopMBB); 4715 F->insert(It, exitMBB); 4716 exitMBB->splice(exitMBB->begin(), BB, 4717 llvm::next(MachineBasicBlock::iterator(MI)), 4718 BB->end()); 4719 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4720 4721 MachineRegisterInfo &RegInfo = F->getRegInfo(); 4722 const TargetRegisterClass *RC = 4723 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 4724 (const TargetRegisterClass *) &PPC::GPRCRegClass; 4725 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 4726 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 4727 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 4728 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC); 4729 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 4730 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 4731 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 4732 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 4733 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC); 4734 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 4735 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 4736 unsigned Ptr1Reg; 4737 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC); 4738 4739 // thisMBB: 4740 // ... 4741 // fallthrough --> loopMBB 4742 BB->addSuccessor(loopMBB); 4743 4744 // The 4-byte load must be aligned, while a char or short may be 4745 // anywhere in the word. Hence all this nasty bookkeeping code. 4746 // add ptr1, ptrA, ptrB [copy if ptrA==0] 4747 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 4748 // xori shift, shift1, 24 [16] 4749 // rlwinm ptr, ptr1, 0, 0, 29 4750 // slw incr2, incr, shift 4751 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 4752 // slw mask, mask2, shift 4753 // loopMBB: 4754 // lwarx tmpDest, ptr 4755 // add tmp, tmpDest, incr2 4756 // andc tmp2, tmpDest, mask 4757 // and tmp3, tmp, mask 4758 // or tmp4, tmp3, tmp2 4759 // stwcx. tmp4, ptr 4760 // bne- loopMBB 4761 // fallthrough --> exitMBB 4762 // srw dest, tmpDest, shift 4763 if (ptrA != ZeroReg) { 4764 Ptr1Reg = RegInfo.createVirtualRegister(RC); 4765 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 4766 .addReg(ptrA).addReg(ptrB); 4767 } else { 4768 Ptr1Reg = ptrB; 4769 } 4770 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 4771 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 4772 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 4773 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 4774 if (is64bit) 4775 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 4776 .addReg(Ptr1Reg).addImm(0).addImm(61); 4777 else 4778 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 4779 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 4780 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg) 4781 .addReg(incr).addReg(ShiftReg); 4782 if (is8bit) 4783 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 4784 else { 4785 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 4786 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535); 4787 } 4788 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 4789 .addReg(Mask2Reg).addReg(ShiftReg); 4790 4791 BB = loopMBB; 4792 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 4793 .addReg(ZeroReg).addReg(PtrReg); 4794 if (BinOpcode) 4795 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 4796 .addReg(Incr2Reg).addReg(TmpDestReg); 4797 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg) 4798 .addReg(TmpDestReg).addReg(MaskReg); 4799 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg) 4800 .addReg(TmpReg).addReg(MaskReg); 4801 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg) 4802 .addReg(Tmp3Reg).addReg(Tmp2Reg); 4803 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 4804 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg); 4805 BuildMI(BB, dl, TII->get(PPC::BCC)) 4806 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 4807 BB->addSuccessor(loopMBB); 4808 BB->addSuccessor(exitMBB); 4809 4810 // exitMBB: 4811 // ... 4812 BB = exitMBB; 4813 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg) 4814 .addReg(ShiftReg); 4815 return BB; 4816 } 4817 4818 MachineBasicBlock * 4819 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 4820 MachineBasicBlock *BB) const { 4821 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4822 4823 // To "insert" these instructions we actually have to insert their 4824 // control-flow patterns. 4825 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4826 MachineFunction::iterator It = BB; 4827 ++It; 4828 4829 MachineFunction *F = BB->getParent(); 4830 4831 if (MI->getOpcode() == PPC::SELECT_CC_I4 || 4832 MI->getOpcode() == PPC::SELECT_CC_I8 || 4833 MI->getOpcode() == PPC::SELECT_CC_F4 || 4834 MI->getOpcode() == PPC::SELECT_CC_F8 || 4835 MI->getOpcode() == PPC::SELECT_CC_VRRC) { 4836 4837 // The incoming instruction knows the destination vreg to set, the 4838 // condition code register to branch on, the true/false values to 4839 // select between, and a branch opcode to use. 4840 4841 // thisMBB: 4842 // ... 4843 // TrueVal = ... 4844 // cmpTY ccX, r1, r2 4845 // bCC copy1MBB 4846 // fallthrough --> copy0MBB 4847 MachineBasicBlock *thisMBB = BB; 4848 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 4849 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 4850 unsigned SelectPred = MI->getOperand(4).getImm(); 4851 DebugLoc dl = MI->getDebugLoc(); 4852 F->insert(It, copy0MBB); 4853 F->insert(It, sinkMBB); 4854 4855 // Transfer the remainder of BB and its successor edges to sinkMBB. 4856 sinkMBB->splice(sinkMBB->begin(), BB, 4857 llvm::next(MachineBasicBlock::iterator(MI)), 4858 BB->end()); 4859 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 4860 4861 // Next, add the true and fallthrough blocks as its successors. 4862 BB->addSuccessor(copy0MBB); 4863 BB->addSuccessor(sinkMBB); 4864 4865 BuildMI(BB, dl, TII->get(PPC::BCC)) 4866 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 4867 4868 // copy0MBB: 4869 // %FalseValue = ... 4870 // # fallthrough to sinkMBB 4871 BB = copy0MBB; 4872 4873 // Update machine-CFG edges 4874 BB->addSuccessor(sinkMBB); 4875 4876 // sinkMBB: 4877 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 4878 // ... 4879 BB = sinkMBB; 4880 BuildMI(*BB, BB->begin(), dl, 4881 TII->get(PPC::PHI), MI->getOperand(0).getReg()) 4882 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 4883 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 4884 } 4885 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 4886 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 4887 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 4888 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 4889 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 4890 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4); 4891 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 4892 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8); 4893 4894 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 4895 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 4896 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 4897 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 4898 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 4899 BB = EmitAtomicBinary(MI, BB, false, PPC::AND); 4900 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 4901 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8); 4902 4903 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 4904 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 4905 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 4906 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 4907 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 4908 BB = EmitAtomicBinary(MI, BB, false, PPC::OR); 4909 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 4910 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8); 4911 4912 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 4913 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 4914 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 4915 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 4916 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 4917 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR); 4918 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 4919 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8); 4920 4921 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 4922 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC); 4923 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 4924 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC); 4925 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 4926 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC); 4927 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 4928 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8); 4929 4930 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 4931 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 4932 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 4933 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 4934 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 4935 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF); 4936 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 4937 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8); 4938 4939 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8) 4940 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 4941 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16) 4942 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 4943 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32) 4944 BB = EmitAtomicBinary(MI, BB, false, 0); 4945 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64) 4946 BB = EmitAtomicBinary(MI, BB, true, 0); 4947 4948 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 4949 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) { 4950 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 4951 4952 unsigned dest = MI->getOperand(0).getReg(); 4953 unsigned ptrA = MI->getOperand(1).getReg(); 4954 unsigned ptrB = MI->getOperand(2).getReg(); 4955 unsigned oldval = MI->getOperand(3).getReg(); 4956 unsigned newval = MI->getOperand(4).getReg(); 4957 DebugLoc dl = MI->getDebugLoc(); 4958 4959 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 4960 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 4961 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 4962 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 4963 F->insert(It, loop1MBB); 4964 F->insert(It, loop2MBB); 4965 F->insert(It, midMBB); 4966 F->insert(It, exitMBB); 4967 exitMBB->splice(exitMBB->begin(), BB, 4968 llvm::next(MachineBasicBlock::iterator(MI)), 4969 BB->end()); 4970 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4971 4972 // thisMBB: 4973 // ... 4974 // fallthrough --> loopMBB 4975 BB->addSuccessor(loop1MBB); 4976 4977 // loop1MBB: 4978 // l[wd]arx dest, ptr 4979 // cmp[wd] dest, oldval 4980 // bne- midMBB 4981 // loop2MBB: 4982 // st[wd]cx. newval, ptr 4983 // bne- loopMBB 4984 // b exitBB 4985 // midMBB: 4986 // st[wd]cx. dest, ptr 4987 // exitBB: 4988 BB = loop1MBB; 4989 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest) 4990 .addReg(ptrA).addReg(ptrB); 4991 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 4992 .addReg(oldval).addReg(dest); 4993 BuildMI(BB, dl, TII->get(PPC::BCC)) 4994 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 4995 BB->addSuccessor(loop2MBB); 4996 BB->addSuccessor(midMBB); 4997 4998 BB = loop2MBB; 4999 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5000 .addReg(newval).addReg(ptrA).addReg(ptrB); 5001 BuildMI(BB, dl, TII->get(PPC::BCC)) 5002 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5003 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5004 BB->addSuccessor(loop1MBB); 5005 BB->addSuccessor(exitMBB); 5006 5007 BB = midMBB; 5008 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX)) 5009 .addReg(dest).addReg(ptrA).addReg(ptrB); 5010 BB->addSuccessor(exitMBB); 5011 5012 // exitMBB: 5013 // ... 5014 BB = exitMBB; 5015 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 5016 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 5017 // We must use 64-bit registers for addresses when targeting 64-bit, 5018 // since we're actually doing arithmetic on them. Other registers 5019 // can be 32-bit. 5020 bool is64bit = PPCSubTarget.isPPC64(); 5021 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 5022 5023 unsigned dest = MI->getOperand(0).getReg(); 5024 unsigned ptrA = MI->getOperand(1).getReg(); 5025 unsigned ptrB = MI->getOperand(2).getReg(); 5026 unsigned oldval = MI->getOperand(3).getReg(); 5027 unsigned newval = MI->getOperand(4).getReg(); 5028 DebugLoc dl = MI->getDebugLoc(); 5029 5030 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 5031 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 5032 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 5033 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 5034 F->insert(It, loop1MBB); 5035 F->insert(It, loop2MBB); 5036 F->insert(It, midMBB); 5037 F->insert(It, exitMBB); 5038 exitMBB->splice(exitMBB->begin(), BB, 5039 llvm::next(MachineBasicBlock::iterator(MI)), 5040 BB->end()); 5041 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5042 5043 MachineRegisterInfo &RegInfo = F->getRegInfo(); 5044 const TargetRegisterClass *RC = 5045 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass : 5046 (const TargetRegisterClass *) &PPC::GPRCRegClass; 5047 unsigned PtrReg = RegInfo.createVirtualRegister(RC); 5048 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC); 5049 unsigned ShiftReg = RegInfo.createVirtualRegister(RC); 5050 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC); 5051 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC); 5052 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC); 5053 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC); 5054 unsigned MaskReg = RegInfo.createVirtualRegister(RC); 5055 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC); 5056 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC); 5057 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC); 5058 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC); 5059 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC); 5060 unsigned Ptr1Reg; 5061 unsigned TmpReg = RegInfo.createVirtualRegister(RC); 5062 unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0; 5063 // thisMBB: 5064 // ... 5065 // fallthrough --> loopMBB 5066 BB->addSuccessor(loop1MBB); 5067 5068 // The 4-byte load must be aligned, while a char or short may be 5069 // anywhere in the word. Hence all this nasty bookkeeping code. 5070 // add ptr1, ptrA, ptrB [copy if ptrA==0] 5071 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 5072 // xori shift, shift1, 24 [16] 5073 // rlwinm ptr, ptr1, 0, 0, 29 5074 // slw newval2, newval, shift 5075 // slw oldval2, oldval,shift 5076 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 5077 // slw mask, mask2, shift 5078 // and newval3, newval2, mask 5079 // and oldval3, oldval2, mask 5080 // loop1MBB: 5081 // lwarx tmpDest, ptr 5082 // and tmp, tmpDest, mask 5083 // cmpw tmp, oldval3 5084 // bne- midMBB 5085 // loop2MBB: 5086 // andc tmp2, tmpDest, mask 5087 // or tmp4, tmp2, newval3 5088 // stwcx. tmp4, ptr 5089 // bne- loop1MBB 5090 // b exitBB 5091 // midMBB: 5092 // stwcx. tmpDest, ptr 5093 // exitBB: 5094 // srw dest, tmpDest, shift 5095 if (ptrA != ZeroReg) { 5096 Ptr1Reg = RegInfo.createVirtualRegister(RC); 5097 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 5098 .addReg(ptrA).addReg(ptrB); 5099 } else { 5100 Ptr1Reg = ptrB; 5101 } 5102 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg) 5103 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27); 5104 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg) 5105 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16); 5106 if (is64bit) 5107 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 5108 .addReg(Ptr1Reg).addImm(0).addImm(61); 5109 else 5110 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 5111 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29); 5112 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 5113 .addReg(newval).addReg(ShiftReg); 5114 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 5115 .addReg(oldval).addReg(ShiftReg); 5116 if (is8bit) 5117 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 5118 else { 5119 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 5120 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 5121 .addReg(Mask3Reg).addImm(65535); 5122 } 5123 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 5124 .addReg(Mask2Reg).addReg(ShiftReg); 5125 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 5126 .addReg(NewVal2Reg).addReg(MaskReg); 5127 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 5128 .addReg(OldVal2Reg).addReg(MaskReg); 5129 5130 BB = loop1MBB; 5131 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 5132 .addReg(ZeroReg).addReg(PtrReg); 5133 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg) 5134 .addReg(TmpDestReg).addReg(MaskReg); 5135 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 5136 .addReg(TmpReg).addReg(OldVal3Reg); 5137 BuildMI(BB, dl, TII->get(PPC::BCC)) 5138 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB); 5139 BB->addSuccessor(loop2MBB); 5140 BB->addSuccessor(midMBB); 5141 5142 BB = loop2MBB; 5143 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg) 5144 .addReg(TmpDestReg).addReg(MaskReg); 5145 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg) 5146 .addReg(Tmp2Reg).addReg(NewVal3Reg); 5147 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg) 5148 .addReg(ZeroReg).addReg(PtrReg); 5149 BuildMI(BB, dl, TII->get(PPC::BCC)) 5150 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB); 5151 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 5152 BB->addSuccessor(loop1MBB); 5153 BB->addSuccessor(exitMBB); 5154 5155 BB = midMBB; 5156 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg) 5157 .addReg(ZeroReg).addReg(PtrReg); 5158 BB->addSuccessor(exitMBB); 5159 5160 // exitMBB: 5161 // ... 5162 BB = exitMBB; 5163 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg) 5164 .addReg(ShiftReg); 5165 } else { 5166 llvm_unreachable("Unexpected instr type to insert"); 5167 } 5168 5169 MI->eraseFromParent(); // The pseudo instruction is gone now. 5170 return BB; 5171 } 5172 5173 //===----------------------------------------------------------------------===// 5174 // Target Optimization Hooks 5175 //===----------------------------------------------------------------------===// 5176 5177 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 5178 DAGCombinerInfo &DCI) const { 5179 const TargetMachine &TM = getTargetMachine(); 5180 SelectionDAG &DAG = DCI.DAG; 5181 DebugLoc dl = N->getDebugLoc(); 5182 switch (N->getOpcode()) { 5183 default: break; 5184 case PPCISD::SHL: 5185 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5186 if (C->isNullValue()) // 0 << V -> 0. 5187 return N->getOperand(0); 5188 } 5189 break; 5190 case PPCISD::SRL: 5191 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5192 if (C->isNullValue()) // 0 >>u V -> 0. 5193 return N->getOperand(0); 5194 } 5195 break; 5196 case PPCISD::SRA: 5197 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 5198 if (C->isNullValue() || // 0 >>s V -> 0. 5199 C->isAllOnesValue()) // -1 >>s V -> -1. 5200 return N->getOperand(0); 5201 } 5202 break; 5203 5204 case ISD::SINT_TO_FP: 5205 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) { 5206 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { 5207 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. 5208 // We allow the src/dst to be either f32/f64, but the intermediate 5209 // type must be i64. 5210 if (N->getOperand(0).getValueType() == MVT::i64 && 5211 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) { 5212 SDValue Val = N->getOperand(0).getOperand(0); 5213 if (Val.getValueType() == MVT::f32) { 5214 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5215 DCI.AddToWorklist(Val.getNode()); 5216 } 5217 5218 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val); 5219 DCI.AddToWorklist(Val.getNode()); 5220 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val); 5221 DCI.AddToWorklist(Val.getNode()); 5222 if (N->getValueType(0) == MVT::f32) { 5223 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val, 5224 DAG.getIntPtrConstant(0)); 5225 DCI.AddToWorklist(Val.getNode()); 5226 } 5227 return Val; 5228 } else if (N->getOperand(0).getValueType() == MVT::i32) { 5229 // If the intermediate type is i32, we can avoid the load/store here 5230 // too. 5231 } 5232 } 5233 } 5234 break; 5235 case ISD::STORE: 5236 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). 5237 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() && 5238 !cast<StoreSDNode>(N)->isTruncatingStore() && 5239 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && 5240 N->getOperand(1).getValueType() == MVT::i32 && 5241 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) { 5242 SDValue Val = N->getOperand(1).getOperand(0); 5243 if (Val.getValueType() == MVT::f32) { 5244 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 5245 DCI.AddToWorklist(Val.getNode()); 5246 } 5247 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val); 5248 DCI.AddToWorklist(Val.getNode()); 5249 5250 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val, 5251 N->getOperand(2), N->getOperand(3)); 5252 DCI.AddToWorklist(Val.getNode()); 5253 return Val; 5254 } 5255 5256 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 5257 if (cast<StoreSDNode>(N)->isUnindexed() && 5258 N->getOperand(1).getOpcode() == ISD::BSWAP && 5259 N->getOperand(1).getNode()->hasOneUse() && 5260 (N->getOperand(1).getValueType() == MVT::i32 || 5261 N->getOperand(1).getValueType() == MVT::i16)) { 5262 SDValue BSwapOp = N->getOperand(1).getOperand(0); 5263 // Do an any-extend to 32-bits if this is a half-word input. 5264 if (BSwapOp.getValueType() == MVT::i16) 5265 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 5266 5267 SDValue Ops[] = { 5268 N->getOperand(0), BSwapOp, N->getOperand(2), 5269 DAG.getValueType(N->getOperand(1).getValueType()) 5270 }; 5271 return 5272 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 5273 Ops, array_lengthof(Ops), 5274 cast<StoreSDNode>(N)->getMemoryVT(), 5275 cast<StoreSDNode>(N)->getMemOperand()); 5276 } 5277 break; 5278 case ISD::BSWAP: 5279 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 5280 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5281 N->getOperand(0).hasOneUse() && 5282 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { 5283 SDValue Load = N->getOperand(0); 5284 LoadSDNode *LD = cast<LoadSDNode>(Load); 5285 // Create the byte-swapping load. 5286 SDValue Ops[] = { 5287 LD->getChain(), // Chain 5288 LD->getBasePtr(), // Ptr 5289 DAG.getValueType(N->getValueType(0)) // VT 5290 }; 5291 SDValue BSLoad = 5292 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 5293 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3, 5294 LD->getMemoryVT(), LD->getMemOperand()); 5295 5296 // If this is an i16 load, insert the truncate. 5297 SDValue ResVal = BSLoad; 5298 if (N->getValueType(0) == MVT::i16) 5299 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 5300 5301 // First, combine the bswap away. This makes the value produced by the 5302 // load dead. 5303 DCI.CombineTo(N, ResVal); 5304 5305 // Next, combine the load away, we give it a bogus result value but a real 5306 // chain result. The result value is dead because the bswap is dead. 5307 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5308 5309 // Return N so it doesn't get rechecked! 5310 return SDValue(N, 0); 5311 } 5312 5313 break; 5314 case PPCISD::VCMP: { 5315 // If a VCMPo node already exists with exactly the same operands as this 5316 // node, use its result instead of this node (VCMPo computes both a CR6 and 5317 // a normal output). 5318 // 5319 if (!N->getOperand(0).hasOneUse() && 5320 !N->getOperand(1).hasOneUse() && 5321 !N->getOperand(2).hasOneUse()) { 5322 5323 // Scan all of the users of the LHS, looking for VCMPo's that match. 5324 SDNode *VCMPoNode = 0; 5325 5326 SDNode *LHSN = N->getOperand(0).getNode(); 5327 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 5328 UI != E; ++UI) 5329 if (UI->getOpcode() == PPCISD::VCMPo && 5330 UI->getOperand(1) == N->getOperand(1) && 5331 UI->getOperand(2) == N->getOperand(2) && 5332 UI->getOperand(0) == N->getOperand(0)) { 5333 VCMPoNode = *UI; 5334 break; 5335 } 5336 5337 // If there is no VCMPo node, or if the flag value has a single use, don't 5338 // transform this. 5339 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 5340 break; 5341 5342 // Look at the (necessarily single) use of the flag value. If it has a 5343 // chain, this transformation is more complex. Note that multiple things 5344 // could use the value result, which we should ignore. 5345 SDNode *FlagUser = 0; 5346 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 5347 FlagUser == 0; ++UI) { 5348 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 5349 SDNode *User = *UI; 5350 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 5351 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 5352 FlagUser = User; 5353 break; 5354 } 5355 } 5356 } 5357 5358 // If the user is a MFCR instruction, we know this is safe. Otherwise we 5359 // give up for right now. 5360 if (FlagUser->getOpcode() == PPCISD::MFCR) 5361 return SDValue(VCMPoNode, 0); 5362 } 5363 break; 5364 } 5365 case ISD::BR_CC: { 5366 // If this is a branch on an altivec predicate comparison, lower this so 5367 // that we don't have to do a MFCR: instead, branch directly on CR6. This 5368 // lowering is done pre-legalize, because the legalizer lowers the predicate 5369 // compare down to code that is difficult to reassemble. 5370 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 5371 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 5372 int CompareOpc; 5373 bool isDot; 5374 5375 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 5376 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 5377 getAltivecCompareInfo(LHS, CompareOpc, isDot)) { 5378 assert(isDot && "Can't compare against a vector result!"); 5379 5380 // If this is a comparison against something other than 0/1, then we know 5381 // that the condition is never/always true. 5382 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 5383 if (Val != 0 && Val != 1) { 5384 if (CC == ISD::SETEQ) // Cond never true, remove branch. 5385 return N->getOperand(0); 5386 // Always !=, turn it into an unconditional branch. 5387 return DAG.getNode(ISD::BR, dl, MVT::Other, 5388 N->getOperand(0), N->getOperand(4)); 5389 } 5390 5391 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 5392 5393 // Create the PPCISD altivec 'dot' comparison node. 5394 std::vector<EVT> VTs; 5395 SDValue Ops[] = { 5396 LHS.getOperand(2), // LHS of compare 5397 LHS.getOperand(3), // RHS of compare 5398 DAG.getConstant(CompareOpc, MVT::i32) 5399 }; 5400 VTs.push_back(LHS.getOperand(2).getValueType()); 5401 VTs.push_back(MVT::Glue); 5402 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3); 5403 5404 // Unpack the result based on how the target uses it. 5405 PPC::Predicate CompOpc; 5406 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 5407 default: // Can't happen, don't crash on invalid number though. 5408 case 0: // Branch on the value of the EQ bit of CR6. 5409 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 5410 break; 5411 case 1: // Branch on the inverted value of the EQ bit of CR6. 5412 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 5413 break; 5414 case 2: // Branch on the value of the LT bit of CR6. 5415 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 5416 break; 5417 case 3: // Branch on the inverted value of the LT bit of CR6. 5418 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 5419 break; 5420 } 5421 5422 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 5423 DAG.getConstant(CompOpc, MVT::i32), 5424 DAG.getRegister(PPC::CR6, MVT::i32), 5425 N->getOperand(4), CompNode.getValue(1)); 5426 } 5427 break; 5428 } 5429 } 5430 5431 return SDValue(); 5432 } 5433 5434 //===----------------------------------------------------------------------===// 5435 // Inline Assembly Support 5436 //===----------------------------------------------------------------------===// 5437 5438 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 5439 const APInt &Mask, 5440 APInt &KnownZero, 5441 APInt &KnownOne, 5442 const SelectionDAG &DAG, 5443 unsigned Depth) const { 5444 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 5445 switch (Op.getOpcode()) { 5446 default: break; 5447 case PPCISD::LBRX: { 5448 // lhbrx is known to have the top bits cleared out. 5449 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 5450 KnownZero = 0xFFFF0000; 5451 break; 5452 } 5453 case ISD::INTRINSIC_WO_CHAIN: { 5454 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 5455 default: break; 5456 case Intrinsic::ppc_altivec_vcmpbfp_p: 5457 case Intrinsic::ppc_altivec_vcmpeqfp_p: 5458 case Intrinsic::ppc_altivec_vcmpequb_p: 5459 case Intrinsic::ppc_altivec_vcmpequh_p: 5460 case Intrinsic::ppc_altivec_vcmpequw_p: 5461 case Intrinsic::ppc_altivec_vcmpgefp_p: 5462 case Intrinsic::ppc_altivec_vcmpgtfp_p: 5463 case Intrinsic::ppc_altivec_vcmpgtsb_p: 5464 case Intrinsic::ppc_altivec_vcmpgtsh_p: 5465 case Intrinsic::ppc_altivec_vcmpgtsw_p: 5466 case Intrinsic::ppc_altivec_vcmpgtub_p: 5467 case Intrinsic::ppc_altivec_vcmpgtuh_p: 5468 case Intrinsic::ppc_altivec_vcmpgtuw_p: 5469 KnownZero = ~1U; // All bits but the low one are known to be zero. 5470 break; 5471 } 5472 } 5473 } 5474 } 5475 5476 5477 /// getConstraintType - Given a constraint, return the type of 5478 /// constraint it is for this target. 5479 PPCTargetLowering::ConstraintType 5480 PPCTargetLowering::getConstraintType(const std::string &Constraint) const { 5481 if (Constraint.size() == 1) { 5482 switch (Constraint[0]) { 5483 default: break; 5484 case 'b': 5485 case 'r': 5486 case 'f': 5487 case 'v': 5488 case 'y': 5489 return C_RegisterClass; 5490 } 5491 } 5492 return TargetLowering::getConstraintType(Constraint); 5493 } 5494 5495 /// Examine constraint type and operand type and determine a weight value. 5496 /// This object must already have been set up with the operand type 5497 /// and the current alternative constraint selected. 5498 TargetLowering::ConstraintWeight 5499 PPCTargetLowering::getSingleConstraintMatchWeight( 5500 AsmOperandInfo &info, const char *constraint) const { 5501 ConstraintWeight weight = CW_Invalid; 5502 Value *CallOperandVal = info.CallOperandVal; 5503 // If we don't have a value, we can't do a match, 5504 // but allow it at the lowest weight. 5505 if (CallOperandVal == NULL) 5506 return CW_Default; 5507 Type *type = CallOperandVal->getType(); 5508 // Look at the constraint type. 5509 switch (*constraint) { 5510 default: 5511 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 5512 break; 5513 case 'b': 5514 if (type->isIntegerTy()) 5515 weight = CW_Register; 5516 break; 5517 case 'f': 5518 if (type->isFloatTy()) 5519 weight = CW_Register; 5520 break; 5521 case 'd': 5522 if (type->isDoubleTy()) 5523 weight = CW_Register; 5524 break; 5525 case 'v': 5526 if (type->isVectorTy()) 5527 weight = CW_Register; 5528 break; 5529 case 'y': 5530 weight = CW_Register; 5531 break; 5532 } 5533 return weight; 5534 } 5535 5536 std::pair<unsigned, const TargetRegisterClass*> 5537 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 5538 EVT VT) const { 5539 if (Constraint.size() == 1) { 5540 // GCC RS6000 Constraint Letters 5541 switch (Constraint[0]) { 5542 case 'b': // R1-R31 5543 case 'r': // R0-R31 5544 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) 5545 return std::make_pair(0U, PPC::G8RCRegisterClass); 5546 return std::make_pair(0U, PPC::GPRCRegisterClass); 5547 case 'f': 5548 if (VT == MVT::f32) 5549 return std::make_pair(0U, PPC::F4RCRegisterClass); 5550 else if (VT == MVT::f64) 5551 return std::make_pair(0U, PPC::F8RCRegisterClass); 5552 break; 5553 case 'v': 5554 return std::make_pair(0U, PPC::VRRCRegisterClass); 5555 case 'y': // crrc 5556 return std::make_pair(0U, PPC::CRRCRegisterClass); 5557 } 5558 } 5559 5560 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 5561 } 5562 5563 5564 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 5565 /// vector. If it is invalid, don't add anything to Ops. 5566 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5567 std::string &Constraint, 5568 std::vector<SDValue>&Ops, 5569 SelectionDAG &DAG) const { 5570 SDValue Result(0,0); 5571 5572 // Only support length 1 constraints. 5573 if (Constraint.length() > 1) return; 5574 5575 char Letter = Constraint[0]; 5576 switch (Letter) { 5577 default: break; 5578 case 'I': 5579 case 'J': 5580 case 'K': 5581 case 'L': 5582 case 'M': 5583 case 'N': 5584 case 'O': 5585 case 'P': { 5586 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 5587 if (!CST) return; // Must be an immediate to match. 5588 unsigned Value = CST->getZExtValue(); 5589 switch (Letter) { 5590 default: llvm_unreachable("Unknown constraint letter!"); 5591 case 'I': // "I" is a signed 16-bit constant. 5592 if ((short)Value == (int)Value) 5593 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5594 break; 5595 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 5596 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 5597 if ((short)Value == 0) 5598 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5599 break; 5600 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 5601 if ((Value >> 16) == 0) 5602 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5603 break; 5604 case 'M': // "M" is a constant that is greater than 31. 5605 if (Value > 31) 5606 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5607 break; 5608 case 'N': // "N" is a positive constant that is an exact power of two. 5609 if ((int)Value > 0 && isPowerOf2_32(Value)) 5610 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5611 break; 5612 case 'O': // "O" is the constant zero. 5613 if (Value == 0) 5614 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5615 break; 5616 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 5617 if ((short)-Value == (int)-Value) 5618 Result = DAG.getTargetConstant(Value, Op.getValueType()); 5619 break; 5620 } 5621 break; 5622 } 5623 } 5624 5625 if (Result.getNode()) { 5626 Ops.push_back(Result); 5627 return; 5628 } 5629 5630 // Handle standard constraint letters. 5631 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 5632 } 5633 5634 // isLegalAddressingMode - Return true if the addressing mode represented 5635 // by AM is legal for this target, for a load/store of the specified type. 5636 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 5637 Type *Ty) const { 5638 // FIXME: PPC does not allow r+i addressing modes for vectors! 5639 5640 // PPC allows a sign-extended 16-bit immediate field. 5641 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 5642 return false; 5643 5644 // No global is ever allowed as a base. 5645 if (AM.BaseGV) 5646 return false; 5647 5648 // PPC only support r+r, 5649 switch (AM.Scale) { 5650 case 0: // "r+i" or just "i", depending on HasBaseReg. 5651 break; 5652 case 1: 5653 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 5654 return false; 5655 // Otherwise we have r+r or r+i. 5656 break; 5657 case 2: 5658 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 5659 return false; 5660 // Allow 2*r as r+r. 5661 break; 5662 default: 5663 // No other scales are supported. 5664 return false; 5665 } 5666 5667 return true; 5668 } 5669 5670 /// isLegalAddressImmediate - Return true if the integer value can be used 5671 /// as the offset of the target addressing mode for load / store of the 5672 /// given type. 5673 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{ 5674 // PPC allows a sign-extended 16-bit immediate field. 5675 return (V > -(1 << 16) && V < (1 << 16)-1); 5676 } 5677 5678 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { 5679 return false; 5680 } 5681 5682 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 5683 SelectionDAG &DAG) const { 5684 MachineFunction &MF = DAG.getMachineFunction(); 5685 MachineFrameInfo *MFI = MF.getFrameInfo(); 5686 MFI->setReturnAddressIsTaken(true); 5687 5688 DebugLoc dl = Op.getDebugLoc(); 5689 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5690 5691 // Make sure the function does not optimize away the store of the RA to 5692 // the stack. 5693 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 5694 FuncInfo->setLRStoreRequired(); 5695 bool isPPC64 = PPCSubTarget.isPPC64(); 5696 bool isDarwinABI = PPCSubTarget.isDarwinABI(); 5697 5698 if (Depth > 0) { 5699 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5700 SDValue Offset = 5701 5702 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI), 5703 isPPC64? MVT::i64 : MVT::i32); 5704 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5705 DAG.getNode(ISD::ADD, dl, getPointerTy(), 5706 FrameAddr, Offset), 5707 MachinePointerInfo(), false, false, 0); 5708 } 5709 5710 // Just load the return address off the stack. 5711 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 5712 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 5713 RetAddrFI, MachinePointerInfo(), false, false, 0); 5714 } 5715 5716 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 5717 SelectionDAG &DAG) const { 5718 DebugLoc dl = Op.getDebugLoc(); 5719 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5720 5721 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 5722 bool isPPC64 = PtrVT == MVT::i64; 5723 5724 MachineFunction &MF = DAG.getMachineFunction(); 5725 MachineFrameInfo *MFI = MF.getFrameInfo(); 5726 MFI->setFrameAddressIsTaken(true); 5727 bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) && 5728 MFI->getStackSize() && 5729 !MF.getFunction()->hasFnAttr(Attribute::Naked); 5730 unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) : 5731 (is31 ? PPC::R31 : PPC::R1); 5732 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 5733 PtrVT); 5734 while (Depth--) 5735 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 5736 FrameAddr, MachinePointerInfo(), false, false, 0); 5737 return FrameAddr; 5738 } 5739 5740 bool 5741 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 5742 // The PowerPC target isn't yet aware of offsets. 5743 return false; 5744 } 5745 5746 /// getOptimalMemOpType - Returns the target specific optimal type for load 5747 /// and store operations as a result of memset, memcpy, and memmove 5748 /// lowering. If DstAlign is zero that means it's safe to destination 5749 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 5750 /// means there isn't a need to check it against alignment requirement, 5751 /// probably because the source does not need to be loaded. If 5752 /// 'NonScalarIntSafe' is true, that means it's safe to return a 5753 /// non-scalar-integer type, e.g. empty string source, constant, or loaded 5754 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 5755 /// constant so it does not need to be loaded. 5756 /// It returns EVT::Other if the type should be determined using generic 5757 /// target-independent logic. 5758 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, 5759 unsigned DstAlign, unsigned SrcAlign, 5760 bool NonScalarIntSafe, 5761 bool MemcpyStrSrc, 5762 MachineFunction &MF) const { 5763 if (this->PPCSubTarget.isPPC64()) { 5764 return MVT::i64; 5765 } else { 5766 return MVT::i32; 5767 } 5768 } 5769