1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that ARM uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "arm-isel" 16 #include "ARM.h" 17 #include "ARMAddressingModes.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMPerfectShuffle.h" 23 #include "ARMRegisterInfo.h" 24 #include "ARMSubtarget.h" 25 #include "ARMTargetMachine.h" 26 #include "ARMTargetObjectFile.h" 27 #include "llvm/CallingConv.h" 28 #include "llvm/Constants.h" 29 #include "llvm/Function.h" 30 #include "llvm/GlobalValue.h" 31 #include "llvm/Instruction.h" 32 #include "llvm/Instructions.h" 33 #include "llvm/Intrinsics.h" 34 #include "llvm/Type.h" 35 #include "llvm/CodeGen/CallingConvLower.h" 36 #include "llvm/CodeGen/IntrinsicLowering.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/PseudoSourceValue.h" 43 #include "llvm/CodeGen/SelectionDAG.h" 44 #include "llvm/MC/MCSectionMachO.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/ADT/VectorExtras.h" 47 #include "llvm/ADT/StringExtras.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <sstream> 54 using namespace llvm; 55 56 STATISTIC(NumTailCalls, "Number of tail calls"); 57 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); 58 59 // This option should go away when tail calls fully work. 60 static cl::opt<bool> 61 EnableARMTailCalls("arm-tail-calls", cl::Hidden, 62 cl::desc("Generate tail calls (TEMPORARY OPTION)."), 63 cl::init(false)); 64 65 cl::opt<bool> 66 EnableARMLongCalls("arm-long-calls", cl::Hidden, 67 cl::desc("Generate calls via indirect call instructions"), 68 cl::init(false)); 69 70 static cl::opt<bool> 71 ARMInterworking("arm-interworking", cl::Hidden, 72 cl::desc("Enable / disable ARM interworking (for debugging only)"), 73 cl::init(true)); 74 75 namespace llvm { 76 class ARMCCState : public CCState { 77 public: 78 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 79 const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs, 80 LLVMContext &C, ParmContext PC) 81 : CCState(CC, isVarArg, MF, TM, locs, C) { 82 assert(((PC == Call) || (PC == Prologue)) && 83 "ARMCCState users must specify whether their context is call" 84 "or prologue generation."); 85 CallOrPrologue = PC; 86 } 87 }; 88 } 89 90 // The APCS parameter registers. 91 static const unsigned GPRArgRegs[] = { 92 ARM::R0, ARM::R1, ARM::R2, ARM::R3 93 }; 94 95 void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT, 96 EVT PromotedBitwiseVT) { 97 if (VT != PromotedLdStVT) { 98 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); 99 AddPromotedToType (ISD::LOAD, VT.getSimpleVT(), 100 PromotedLdStVT.getSimpleVT()); 101 102 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); 103 AddPromotedToType (ISD::STORE, VT.getSimpleVT(), 104 PromotedLdStVT.getSimpleVT()); 105 } 106 107 EVT ElemTy = VT.getVectorElementType(); 108 if (ElemTy != MVT::i64 && ElemTy != MVT::f64) 109 setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom); 110 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); 111 if (ElemTy != MVT::i32) { 112 setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand); 113 setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand); 114 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand); 115 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand); 116 } 117 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); 118 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); 119 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); 120 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal); 121 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); 122 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); 123 if (VT.isInteger()) { 124 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); 125 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); 126 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); 127 setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand); 128 setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand); 129 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 130 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) 131 setTruncStoreAction(VT.getSimpleVT(), 132 (MVT::SimpleValueType)InnerVT, Expand); 133 } 134 setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand); 135 136 // Promote all bit-wise operations. 137 if (VT.isInteger() && VT != PromotedBitwiseVT) { 138 setOperationAction(ISD::AND, VT.getSimpleVT(), Promote); 139 AddPromotedToType (ISD::AND, VT.getSimpleVT(), 140 PromotedBitwiseVT.getSimpleVT()); 141 setOperationAction(ISD::OR, VT.getSimpleVT(), Promote); 142 AddPromotedToType (ISD::OR, VT.getSimpleVT(), 143 PromotedBitwiseVT.getSimpleVT()); 144 setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote); 145 AddPromotedToType (ISD::XOR, VT.getSimpleVT(), 146 PromotedBitwiseVT.getSimpleVT()); 147 } 148 149 // Neon does not support vector divide/remainder operations. 150 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); 151 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); 152 setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand); 153 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); 154 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); 155 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); 156 } 157 158 void ARMTargetLowering::addDRTypeForNEON(EVT VT) { 159 addRegisterClass(VT, ARM::DPRRegisterClass); 160 addTypeForNEON(VT, MVT::f64, MVT::v2i32); 161 } 162 163 void ARMTargetLowering::addQRTypeForNEON(EVT VT) { 164 addRegisterClass(VT, ARM::QPRRegisterClass); 165 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); 166 } 167 168 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { 169 if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin()) 170 return new TargetLoweringObjectFileMachO(); 171 172 return new ARMElfTargetObjectFile(); 173 } 174 175 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) 176 : TargetLowering(TM, createTLOF(TM)) { 177 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 178 RegInfo = TM.getRegisterInfo(); 179 Itins = TM.getInstrItineraryData(); 180 181 if (Subtarget->isTargetDarwin()) { 182 // Uses VFP for Thumb libfuncs if available. 183 if (Subtarget->isThumb() && Subtarget->hasVFP2()) { 184 // Single-precision floating-point arithmetic. 185 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); 186 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); 187 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); 188 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); 189 190 // Double-precision floating-point arithmetic. 191 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); 192 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); 193 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); 194 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); 195 196 // Single-precision comparisons. 197 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); 198 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); 199 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); 200 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); 201 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); 202 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); 203 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); 204 setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); 205 206 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); 207 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); 208 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); 209 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); 210 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); 211 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); 212 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); 213 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); 214 215 // Double-precision comparisons. 216 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); 217 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); 218 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); 219 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); 220 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); 221 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); 222 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); 223 setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); 224 225 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); 226 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); 227 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); 228 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); 229 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); 230 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); 231 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); 232 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); 233 234 // Floating-point to integer conversions. 235 // i64 conversions are done via library routines even when generating VFP 236 // instructions, so use the same ones. 237 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); 238 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); 239 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); 240 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); 241 242 // Conversions between floating types. 243 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); 244 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); 245 246 // Integer to floating-point conversions. 247 // i64 conversions are done via library routines even when generating VFP 248 // instructions, so use the same ones. 249 // FIXME: There appears to be some naming inconsistency in ARM libgcc: 250 // e.g., __floatunsidf vs. __floatunssidfvfp. 251 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); 252 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); 253 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); 254 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); 255 } 256 } 257 258 // These libcalls are not available in 32-bit. 259 setLibcallName(RTLIB::SHL_I128, 0); 260 setLibcallName(RTLIB::SRL_I128, 0); 261 setLibcallName(RTLIB::SRA_I128, 0); 262 263 if (Subtarget->isAAPCS_ABI()) { 264 // Double-precision floating-point arithmetic helper functions 265 // RTABI chapter 4.1.2, Table 2 266 setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd"); 267 setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv"); 268 setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul"); 269 setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub"); 270 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS); 271 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS); 272 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS); 273 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS); 274 275 // Double-precision floating-point comparison helper functions 276 // RTABI chapter 4.1.2, Table 3 277 setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq"); 278 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); 279 setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq"); 280 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ); 281 setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt"); 282 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); 283 setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple"); 284 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); 285 setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge"); 286 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); 287 setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt"); 288 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); 289 setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun"); 290 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); 291 setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun"); 292 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); 293 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS); 294 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS); 295 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS); 296 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS); 297 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS); 298 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS); 299 setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS); 300 setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS); 301 302 // Single-precision floating-point arithmetic helper functions 303 // RTABI chapter 4.1.2, Table 4 304 setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd"); 305 setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv"); 306 setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul"); 307 setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub"); 308 setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS); 309 setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS); 310 setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS); 311 setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS); 312 313 // Single-precision floating-point comparison helper functions 314 // RTABI chapter 4.1.2, Table 5 315 setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq"); 316 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); 317 setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq"); 318 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ); 319 setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt"); 320 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); 321 setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple"); 322 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); 323 setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge"); 324 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); 325 setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt"); 326 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); 327 setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun"); 328 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); 329 setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun"); 330 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); 331 setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS); 332 setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS); 333 setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS); 334 setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS); 335 setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS); 336 setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS); 337 setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS); 338 setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS); 339 340 // Floating-point to integer conversions. 341 // RTABI chapter 4.1.2, Table 6 342 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz"); 343 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz"); 344 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz"); 345 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz"); 346 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz"); 347 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz"); 348 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz"); 349 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz"); 350 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS); 351 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS); 352 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS); 353 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS); 354 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS); 355 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS); 356 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS); 357 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS); 358 359 // Conversions between floating types. 360 // RTABI chapter 4.1.2, Table 7 361 setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f"); 362 setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d"); 363 setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS); 364 setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS); 365 366 // Integer to floating-point conversions. 367 // RTABI chapter 4.1.2, Table 8 368 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d"); 369 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d"); 370 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d"); 371 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d"); 372 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f"); 373 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f"); 374 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f"); 375 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f"); 376 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS); 377 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS); 378 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS); 379 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS); 380 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS); 381 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS); 382 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS); 383 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS); 384 385 // Long long helper functions 386 // RTABI chapter 4.2, Table 9 387 setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul"); 388 setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod"); 389 setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod"); 390 setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl"); 391 setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr"); 392 setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr"); 393 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS); 394 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); 395 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); 396 setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS); 397 setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS); 398 setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS); 399 400 // Integer division functions 401 // RTABI chapter 4.3.1 402 setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv"); 403 setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv"); 404 setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv"); 405 setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv"); 406 setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv"); 407 setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv"); 408 setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS); 409 setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS); 410 setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS); 411 setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS); 412 setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS); 413 setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS); 414 415 // Memory operations 416 // RTABI chapter 4.3.4 417 setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy"); 418 setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove"); 419 setLibcallName(RTLIB::MEMSET, "__aeabi_memset"); 420 } 421 422 if (Subtarget->isThumb1Only()) 423 addRegisterClass(MVT::i32, ARM::tGPRRegisterClass); 424 else 425 addRegisterClass(MVT::i32, ARM::GPRRegisterClass); 426 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { 427 addRegisterClass(MVT::f32, ARM::SPRRegisterClass); 428 if (!Subtarget->isFPOnlySP()) 429 addRegisterClass(MVT::f64, ARM::DPRRegisterClass); 430 431 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 432 } 433 434 if (Subtarget->hasNEON()) { 435 addDRTypeForNEON(MVT::v2f32); 436 addDRTypeForNEON(MVT::v8i8); 437 addDRTypeForNEON(MVT::v4i16); 438 addDRTypeForNEON(MVT::v2i32); 439 addDRTypeForNEON(MVT::v1i64); 440 441 addQRTypeForNEON(MVT::v4f32); 442 addQRTypeForNEON(MVT::v2f64); 443 addQRTypeForNEON(MVT::v16i8); 444 addQRTypeForNEON(MVT::v8i16); 445 addQRTypeForNEON(MVT::v4i32); 446 addQRTypeForNEON(MVT::v2i64); 447 448 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but 449 // neither Neon nor VFP support any arithmetic operations on it. 450 setOperationAction(ISD::FADD, MVT::v2f64, Expand); 451 setOperationAction(ISD::FSUB, MVT::v2f64, Expand); 452 setOperationAction(ISD::FMUL, MVT::v2f64, Expand); 453 setOperationAction(ISD::FDIV, MVT::v2f64, Expand); 454 setOperationAction(ISD::FREM, MVT::v2f64, Expand); 455 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); 456 setOperationAction(ISD::VSETCC, MVT::v2f64, Expand); 457 setOperationAction(ISD::FNEG, MVT::v2f64, Expand); 458 setOperationAction(ISD::FABS, MVT::v2f64, Expand); 459 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); 460 setOperationAction(ISD::FSIN, MVT::v2f64, Expand); 461 setOperationAction(ISD::FCOS, MVT::v2f64, Expand); 462 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); 463 setOperationAction(ISD::FPOW, MVT::v2f64, Expand); 464 setOperationAction(ISD::FLOG, MVT::v2f64, Expand); 465 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); 466 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); 467 setOperationAction(ISD::FEXP, MVT::v2f64, Expand); 468 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); 469 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); 470 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); 471 setOperationAction(ISD::FRINT, MVT::v2f64, Expand); 472 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); 473 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); 474 475 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); 476 477 // Neon does not support some operations on v1i64 and v2i64 types. 478 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 479 // Custom handling for some quad-vector types to detect VMULL. 480 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 481 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 482 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 483 // Custom handling for some vector types to avoid expensive expansions 484 setOperationAction(ISD::SDIV, MVT::v4i16, Custom); 485 setOperationAction(ISD::SDIV, MVT::v8i8, Custom); 486 setOperationAction(ISD::UDIV, MVT::v4i16, Custom); 487 setOperationAction(ISD::UDIV, MVT::v8i8, Custom); 488 setOperationAction(ISD::VSETCC, MVT::v1i64, Expand); 489 setOperationAction(ISD::VSETCC, MVT::v2i64, Expand); 490 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with 491 // a destination type that is wider than the source. 492 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 493 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 494 495 setTargetDAGCombine(ISD::INTRINSIC_VOID); 496 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 497 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 498 setTargetDAGCombine(ISD::SHL); 499 setTargetDAGCombine(ISD::SRL); 500 setTargetDAGCombine(ISD::SRA); 501 setTargetDAGCombine(ISD::SIGN_EXTEND); 502 setTargetDAGCombine(ISD::ZERO_EXTEND); 503 setTargetDAGCombine(ISD::ANY_EXTEND); 504 setTargetDAGCombine(ISD::SELECT_CC); 505 setTargetDAGCombine(ISD::BUILD_VECTOR); 506 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 507 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 508 setTargetDAGCombine(ISD::STORE); 509 setTargetDAGCombine(ISD::FP_TO_SINT); 510 setTargetDAGCombine(ISD::FP_TO_UINT); 511 setTargetDAGCombine(ISD::FDIV); 512 } 513 514 computeRegisterProperties(); 515 516 // ARM does not have f32 extending load. 517 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); 518 519 // ARM does not have i1 sign extending load. 520 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 521 522 // ARM supports all 4 flavors of integer indexed load / store. 523 if (!Subtarget->isThumb1Only()) { 524 for (unsigned im = (unsigned)ISD::PRE_INC; 525 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 526 setIndexedLoadAction(im, MVT::i1, Legal); 527 setIndexedLoadAction(im, MVT::i8, Legal); 528 setIndexedLoadAction(im, MVT::i16, Legal); 529 setIndexedLoadAction(im, MVT::i32, Legal); 530 setIndexedStoreAction(im, MVT::i1, Legal); 531 setIndexedStoreAction(im, MVT::i8, Legal); 532 setIndexedStoreAction(im, MVT::i16, Legal); 533 setIndexedStoreAction(im, MVT::i32, Legal); 534 } 535 } 536 537 // i64 operation support. 538 setOperationAction(ISD::MUL, MVT::i64, Expand); 539 setOperationAction(ISD::MULHU, MVT::i32, Expand); 540 if (Subtarget->isThumb1Only()) { 541 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 542 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 543 } 544 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() 545 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP())) 546 setOperationAction(ISD::MULHS, MVT::i32, Expand); 547 548 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 549 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 550 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 551 setOperationAction(ISD::SRL, MVT::i64, Custom); 552 setOperationAction(ISD::SRA, MVT::i64, Custom); 553 554 // ARM does not have ROTL. 555 setOperationAction(ISD::ROTL, MVT::i32, Expand); 556 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 557 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 558 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) 559 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 560 561 // Only ARMv6 has BSWAP. 562 if (!Subtarget->hasV6Ops()) 563 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 564 565 // These are expanded into libcalls. 566 if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) { 567 // v7M has a hardware divider 568 setOperationAction(ISD::SDIV, MVT::i32, Expand); 569 setOperationAction(ISD::UDIV, MVT::i32, Expand); 570 } 571 setOperationAction(ISD::SREM, MVT::i32, Expand); 572 setOperationAction(ISD::UREM, MVT::i32, Expand); 573 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 574 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 575 576 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 577 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 578 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 579 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 580 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 581 582 setOperationAction(ISD::TRAP, MVT::Other, Legal); 583 584 // Use the default implementation. 585 setOperationAction(ISD::VASTART, MVT::Other, Custom); 586 setOperationAction(ISD::VAARG, MVT::Other, Expand); 587 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 588 setOperationAction(ISD::VAEND, MVT::Other, Expand); 589 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 590 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 591 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 592 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 593 setExceptionPointerRegister(ARM::R0); 594 setExceptionSelectorRegister(ARM::R1); 595 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 597 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use 598 // the default expansion. 599 if (Subtarget->hasDataBarrier() || 600 (Subtarget->hasV6Ops() && !Subtarget->isThumb())) { 601 // membarrier needs custom lowering; the rest are legal and handled 602 // normally. 603 setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); 604 } else { 605 // Set them all for expansion, which will force libcalls. 606 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand); 607 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Expand); 608 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Expand); 609 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 610 setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, Expand); 611 setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, Expand); 612 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 613 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, Expand); 614 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, Expand); 615 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 616 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Expand); 617 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Expand); 618 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 619 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i8, Expand); 620 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i16, Expand); 621 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 622 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, Expand); 623 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, Expand); 624 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 625 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, Expand); 626 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, Expand); 627 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 628 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8, Expand); 629 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand); 630 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 631 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i8, Expand); 632 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i16, Expand); 633 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 634 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i8, Expand); 635 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i16, Expand); 636 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 637 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i8, Expand); 638 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i16, Expand); 639 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 640 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i8, Expand); 641 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i16, Expand); 642 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 643 // Since the libcalls include locking, fold in the fences 644 setShouldFoldAtomicFences(true); 645 } 646 // 64-bit versions are always libcalls (for now) 647 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Expand); 648 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Expand); 649 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Expand); 650 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Expand); 651 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Expand); 652 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Expand); 653 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Expand); 654 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand); 655 656 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 657 658 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. 659 if (!Subtarget->hasV6Ops()) { 660 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 661 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 662 } 663 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 664 665 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { 666 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR 667 // iff target supports vfp2. 668 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 669 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 670 } 671 672 // We want to custom lower some of our intrinsics. 673 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 674 if (Subtarget->isTargetDarwin()) { 675 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 676 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 677 setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom); 678 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 679 } 680 681 setOperationAction(ISD::SETCC, MVT::i32, Expand); 682 setOperationAction(ISD::SETCC, MVT::f32, Expand); 683 setOperationAction(ISD::SETCC, MVT::f64, Expand); 684 setOperationAction(ISD::SELECT, MVT::i32, Custom); 685 setOperationAction(ISD::SELECT, MVT::f32, Custom); 686 setOperationAction(ISD::SELECT, MVT::f64, Custom); 687 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 688 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 689 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 690 691 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 692 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 693 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 694 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 695 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 696 697 // We don't support sin/cos/fmod/copysign/pow 698 setOperationAction(ISD::FSIN, MVT::f64, Expand); 699 setOperationAction(ISD::FSIN, MVT::f32, Expand); 700 setOperationAction(ISD::FCOS, MVT::f32, Expand); 701 setOperationAction(ISD::FCOS, MVT::f64, Expand); 702 setOperationAction(ISD::FREM, MVT::f64, Expand); 703 setOperationAction(ISD::FREM, MVT::f32, Expand); 704 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { 705 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 706 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 707 } 708 setOperationAction(ISD::FPOW, MVT::f64, Expand); 709 setOperationAction(ISD::FPOW, MVT::f32, Expand); 710 711 setOperationAction(ISD::FMA, MVT::f64, Expand); 712 setOperationAction(ISD::FMA, MVT::f32, Expand); 713 714 // Various VFP goodness 715 if (!UseSoftFloat && !Subtarget->isThumb1Only()) { 716 // int <-> fp are custom expanded into bit_convert + ARMISD ops. 717 if (Subtarget->hasVFP2()) { 718 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 719 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 720 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 721 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 722 } 723 // Special handling for half-precision FP. 724 if (!Subtarget->hasFP16()) { 725 setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand); 726 setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand); 727 } 728 } 729 730 // We have target-specific dag combine patterns for the following nodes: 731 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine 732 setTargetDAGCombine(ISD::ADD); 733 setTargetDAGCombine(ISD::SUB); 734 setTargetDAGCombine(ISD::MUL); 735 736 if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON()) 737 setTargetDAGCombine(ISD::OR); 738 if (Subtarget->hasNEON()) 739 setTargetDAGCombine(ISD::AND); 740 741 setStackPointerRegisterToSaveRestore(ARM::SP); 742 743 if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2()) 744 setSchedulingPreference(Sched::RegPressure); 745 else 746 setSchedulingPreference(Sched::Hybrid); 747 748 //// temporary - rewrite interface to use type 749 maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1; 750 751 // On ARM arguments smaller than 4 bytes are extended, so all arguments 752 // are at least 4 bytes aligned. 753 setMinStackArgumentAlignment(4); 754 755 benefitFromCodePlacementOpt = true; 756 757 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); 758 } 759 760 // FIXME: It might make sense to define the representative register class as the 761 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is 762 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, 763 // SPR's representative would be DPR_VFP2. This should work well if register 764 // pressure tracking were modified such that a register use would increment the 765 // pressure of the register class's representative and all of it's super 766 // classes' representatives transitively. We have not implemented this because 767 // of the difficulty prior to coalescing of modeling operand register classes 768 // due to the common occurrence of cross class copies and subregister insertions 769 // and extractions. 770 std::pair<const TargetRegisterClass*, uint8_t> 771 ARMTargetLowering::findRepresentativeClass(EVT VT) const{ 772 const TargetRegisterClass *RRC = 0; 773 uint8_t Cost = 1; 774 switch (VT.getSimpleVT().SimpleTy) { 775 default: 776 return TargetLowering::findRepresentativeClass(VT); 777 // Use DPR as representative register class for all floating point 778 // and vector types. Since there are 32 SPR registers and 32 DPR registers so 779 // the cost is 1 for both f32 and f64. 780 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: 781 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: 782 RRC = ARM::DPRRegisterClass; 783 // When NEON is used for SP, only half of the register file is available 784 // because operations that define both SP and DP results will be constrained 785 // to the VFP2 class (D0-D15). We currently model this constraint prior to 786 // coalescing by double-counting the SP regs. See the FIXME above. 787 if (Subtarget->useNEONForSinglePrecisionFP()) 788 Cost = 2; 789 break; 790 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: 791 case MVT::v4f32: case MVT::v2f64: 792 RRC = ARM::DPRRegisterClass; 793 Cost = 2; 794 break; 795 case MVT::v4i64: 796 RRC = ARM::DPRRegisterClass; 797 Cost = 4; 798 break; 799 case MVT::v8i64: 800 RRC = ARM::DPRRegisterClass; 801 Cost = 8; 802 break; 803 } 804 return std::make_pair(RRC, Cost); 805 } 806 807 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { 808 switch (Opcode) { 809 default: return 0; 810 case ARMISD::Wrapper: return "ARMISD::Wrapper"; 811 case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN"; 812 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; 813 case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; 814 case ARMISD::CALL: return "ARMISD::CALL"; 815 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; 816 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; 817 case ARMISD::tCALL: return "ARMISD::tCALL"; 818 case ARMISD::BRCOND: return "ARMISD::BRCOND"; 819 case ARMISD::BR_JT: return "ARMISD::BR_JT"; 820 case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; 821 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; 822 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; 823 case ARMISD::CMP: return "ARMISD::CMP"; 824 case ARMISD::CMPZ: return "ARMISD::CMPZ"; 825 case ARMISD::CMPFP: return "ARMISD::CMPFP"; 826 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; 827 case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; 828 case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; 829 case ARMISD::CMOV: return "ARMISD::CMOV"; 830 831 case ARMISD::RBIT: return "ARMISD::RBIT"; 832 833 case ARMISD::FTOSI: return "ARMISD::FTOSI"; 834 case ARMISD::FTOUI: return "ARMISD::FTOUI"; 835 case ARMISD::SITOF: return "ARMISD::SITOF"; 836 case ARMISD::UITOF: return "ARMISD::UITOF"; 837 838 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; 839 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; 840 case ARMISD::RRX: return "ARMISD::RRX"; 841 842 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; 843 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; 844 845 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; 846 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; 847 case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP"; 848 849 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; 850 851 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; 852 853 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; 854 855 case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER"; 856 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; 857 858 case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; 859 860 case ARMISD::VCEQ: return "ARMISD::VCEQ"; 861 case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; 862 case ARMISD::VCGE: return "ARMISD::VCGE"; 863 case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; 864 case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; 865 case ARMISD::VCGEU: return "ARMISD::VCGEU"; 866 case ARMISD::VCGT: return "ARMISD::VCGT"; 867 case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; 868 case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; 869 case ARMISD::VCGTU: return "ARMISD::VCGTU"; 870 case ARMISD::VTST: return "ARMISD::VTST"; 871 872 case ARMISD::VSHL: return "ARMISD::VSHL"; 873 case ARMISD::VSHRs: return "ARMISD::VSHRs"; 874 case ARMISD::VSHRu: return "ARMISD::VSHRu"; 875 case ARMISD::VSHLLs: return "ARMISD::VSHLLs"; 876 case ARMISD::VSHLLu: return "ARMISD::VSHLLu"; 877 case ARMISD::VSHLLi: return "ARMISD::VSHLLi"; 878 case ARMISD::VSHRN: return "ARMISD::VSHRN"; 879 case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; 880 case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; 881 case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; 882 case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; 883 case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; 884 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; 885 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; 886 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; 887 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; 888 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; 889 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; 890 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; 891 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; 892 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; 893 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; 894 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; 895 case ARMISD::VDUP: return "ARMISD::VDUP"; 896 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; 897 case ARMISD::VEXT: return "ARMISD::VEXT"; 898 case ARMISD::VREV64: return "ARMISD::VREV64"; 899 case ARMISD::VREV32: return "ARMISD::VREV32"; 900 case ARMISD::VREV16: return "ARMISD::VREV16"; 901 case ARMISD::VZIP: return "ARMISD::VZIP"; 902 case ARMISD::VUZP: return "ARMISD::VUZP"; 903 case ARMISD::VTRN: return "ARMISD::VTRN"; 904 case ARMISD::VTBL1: return "ARMISD::VTBL1"; 905 case ARMISD::VTBL2: return "ARMISD::VTBL2"; 906 case ARMISD::VMULLs: return "ARMISD::VMULLs"; 907 case ARMISD::VMULLu: return "ARMISD::VMULLu"; 908 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; 909 case ARMISD::FMAX: return "ARMISD::FMAX"; 910 case ARMISD::FMIN: return "ARMISD::FMIN"; 911 case ARMISD::BFI: return "ARMISD::BFI"; 912 case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; 913 case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; 914 case ARMISD::VBSL: return "ARMISD::VBSL"; 915 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; 916 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; 917 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; 918 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; 919 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; 920 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; 921 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; 922 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; 923 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; 924 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; 925 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; 926 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; 927 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; 928 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; 929 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; 930 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; 931 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; 932 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; 933 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; 934 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; 935 } 936 } 937 938 /// getRegClassFor - Return the register class that should be used for the 939 /// specified value type. 940 TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const { 941 // Map v4i64 to QQ registers but do not make the type legal. Similarly map 942 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to 943 // load / store 4 to 8 consecutive D registers. 944 if (Subtarget->hasNEON()) { 945 if (VT == MVT::v4i64) 946 return ARM::QQPRRegisterClass; 947 else if (VT == MVT::v8i64) 948 return ARM::QQQQPRRegisterClass; 949 } 950 return TargetLowering::getRegClassFor(VT); 951 } 952 953 // Create a fast isel object. 954 FastISel * 955 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const { 956 return ARM::createFastISel(funcInfo); 957 } 958 959 /// getMaximalGlobalOffset - Returns the maximal possible offset which can 960 /// be used for loads / stores from the global. 961 unsigned ARMTargetLowering::getMaximalGlobalOffset() const { 962 return (Subtarget->isThumb1Only() ? 127 : 4095); 963 } 964 965 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { 966 unsigned NumVals = N->getNumValues(); 967 if (!NumVals) 968 return Sched::RegPressure; 969 970 for (unsigned i = 0; i != NumVals; ++i) { 971 EVT VT = N->getValueType(i); 972 if (VT == MVT::Glue || VT == MVT::Other) 973 continue; 974 if (VT.isFloatingPoint() || VT.isVector()) 975 return Sched::Latency; 976 } 977 978 if (!N->isMachineOpcode()) 979 return Sched::RegPressure; 980 981 // Load are scheduled for latency even if there instruction itinerary 982 // is not available. 983 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 984 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 985 986 if (MCID.getNumDefs() == 0) 987 return Sched::RegPressure; 988 if (!Itins->isEmpty() && 989 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) 990 return Sched::Latency; 991 992 return Sched::RegPressure; 993 } 994 995 //===----------------------------------------------------------------------===// 996 // Lowering Code 997 //===----------------------------------------------------------------------===// 998 999 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC 1000 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { 1001 switch (CC) { 1002 default: llvm_unreachable("Unknown condition code!"); 1003 case ISD::SETNE: return ARMCC::NE; 1004 case ISD::SETEQ: return ARMCC::EQ; 1005 case ISD::SETGT: return ARMCC::GT; 1006 case ISD::SETGE: return ARMCC::GE; 1007 case ISD::SETLT: return ARMCC::LT; 1008 case ISD::SETLE: return ARMCC::LE; 1009 case ISD::SETUGT: return ARMCC::HI; 1010 case ISD::SETUGE: return ARMCC::HS; 1011 case ISD::SETULT: return ARMCC::LO; 1012 case ISD::SETULE: return ARMCC::LS; 1013 } 1014 } 1015 1016 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. 1017 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 1018 ARMCC::CondCodes &CondCode2) { 1019 CondCode2 = ARMCC::AL; 1020 switch (CC) { 1021 default: llvm_unreachable("Unknown FP condition!"); 1022 case ISD::SETEQ: 1023 case ISD::SETOEQ: CondCode = ARMCC::EQ; break; 1024 case ISD::SETGT: 1025 case ISD::SETOGT: CondCode = ARMCC::GT; break; 1026 case ISD::SETGE: 1027 case ISD::SETOGE: CondCode = ARMCC::GE; break; 1028 case ISD::SETOLT: CondCode = ARMCC::MI; break; 1029 case ISD::SETOLE: CondCode = ARMCC::LS; break; 1030 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; 1031 case ISD::SETO: CondCode = ARMCC::VC; break; 1032 case ISD::SETUO: CondCode = ARMCC::VS; break; 1033 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; 1034 case ISD::SETUGT: CondCode = ARMCC::HI; break; 1035 case ISD::SETUGE: CondCode = ARMCC::PL; break; 1036 case ISD::SETLT: 1037 case ISD::SETULT: CondCode = ARMCC::LT; break; 1038 case ISD::SETLE: 1039 case ISD::SETULE: CondCode = ARMCC::LE; break; 1040 case ISD::SETNE: 1041 case ISD::SETUNE: CondCode = ARMCC::NE; break; 1042 } 1043 } 1044 1045 //===----------------------------------------------------------------------===// 1046 // Calling Convention Implementation 1047 //===----------------------------------------------------------------------===// 1048 1049 #include "ARMGenCallingConv.inc" 1050 1051 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the 1052 /// given CallingConvention value. 1053 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, 1054 bool Return, 1055 bool isVarArg) const { 1056 switch (CC) { 1057 default: 1058 llvm_unreachable("Unsupported calling convention"); 1059 case CallingConv::Fast: 1060 if (Subtarget->hasVFP2() && !isVarArg) { 1061 if (!Subtarget->isAAPCS_ABI()) 1062 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1063 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1064 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1065 } 1066 // Fallthrough 1067 case CallingConv::C: { 1068 // Use target triple & subtarget features to do actual dispatch. 1069 if (!Subtarget->isAAPCS_ABI()) 1070 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 1071 else if (Subtarget->hasVFP2() && 1072 FloatABIType == FloatABI::Hard && !isVarArg) 1073 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1074 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 1075 } 1076 case CallingConv::ARM_AAPCS_VFP: 1077 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1078 case CallingConv::ARM_AAPCS: 1079 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 1080 case CallingConv::ARM_APCS: 1081 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 1082 } 1083 } 1084 1085 /// LowerCallResult - Lower the result values of a call into the 1086 /// appropriate copies out of appropriate physical registers. 1087 SDValue 1088 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 1089 CallingConv::ID CallConv, bool isVarArg, 1090 const SmallVectorImpl<ISD::InputArg> &Ins, 1091 DebugLoc dl, SelectionDAG &DAG, 1092 SmallVectorImpl<SDValue> &InVals) const { 1093 1094 // Assign locations to each value returned by this call. 1095 SmallVector<CCValAssign, 16> RVLocs; 1096 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1097 getTargetMachine(), RVLocs, *DAG.getContext(), Call); 1098 CCInfo.AnalyzeCallResult(Ins, 1099 CCAssignFnForNode(CallConv, /* Return*/ true, 1100 isVarArg)); 1101 1102 // Copy all of the result registers out of their specified physreg. 1103 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1104 CCValAssign VA = RVLocs[i]; 1105 1106 SDValue Val; 1107 if (VA.needsCustom()) { 1108 // Handle f64 or half of a v2f64. 1109 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1110 InFlag); 1111 Chain = Lo.getValue(1); 1112 InFlag = Lo.getValue(2); 1113 VA = RVLocs[++i]; // skip ahead to next loc 1114 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1115 InFlag); 1116 Chain = Hi.getValue(1); 1117 InFlag = Hi.getValue(2); 1118 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1119 1120 if (VA.getLocVT() == MVT::v2f64) { 1121 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 1122 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1123 DAG.getConstant(0, MVT::i32)); 1124 1125 VA = RVLocs[++i]; // skip ahead to next loc 1126 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1127 Chain = Lo.getValue(1); 1128 InFlag = Lo.getValue(2); 1129 VA = RVLocs[++i]; // skip ahead to next loc 1130 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1131 Chain = Hi.getValue(1); 1132 InFlag = Hi.getValue(2); 1133 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1134 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1135 DAG.getConstant(1, MVT::i32)); 1136 } 1137 } else { 1138 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), 1139 InFlag); 1140 Chain = Val.getValue(1); 1141 InFlag = Val.getValue(2); 1142 } 1143 1144 switch (VA.getLocInfo()) { 1145 default: llvm_unreachable("Unknown loc info!"); 1146 case CCValAssign::Full: break; 1147 case CCValAssign::BCvt: 1148 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); 1149 break; 1150 } 1151 1152 InVals.push_back(Val); 1153 } 1154 1155 return Chain; 1156 } 1157 1158 /// LowerMemOpCallTo - Store the argument to the stack. 1159 SDValue 1160 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, 1161 SDValue StackPtr, SDValue Arg, 1162 DebugLoc dl, SelectionDAG &DAG, 1163 const CCValAssign &VA, 1164 ISD::ArgFlagsTy Flags) const { 1165 unsigned LocMemOffset = VA.getLocMemOffset(); 1166 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1167 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 1168 return DAG.getStore(Chain, dl, Arg, PtrOff, 1169 MachinePointerInfo::getStack(LocMemOffset), 1170 false, false, 0); 1171 } 1172 1173 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG, 1174 SDValue Chain, SDValue &Arg, 1175 RegsToPassVector &RegsToPass, 1176 CCValAssign &VA, CCValAssign &NextVA, 1177 SDValue &StackPtr, 1178 SmallVector<SDValue, 8> &MemOpChains, 1179 ISD::ArgFlagsTy Flags) const { 1180 1181 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 1182 DAG.getVTList(MVT::i32, MVT::i32), Arg); 1183 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); 1184 1185 if (NextVA.isRegLoc()) 1186 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); 1187 else { 1188 assert(NextVA.isMemLoc()); 1189 if (StackPtr.getNode() == 0) 1190 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); 1191 1192 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), 1193 dl, DAG, NextVA, 1194 Flags)); 1195 } 1196 } 1197 1198 /// LowerCall - Lowering a call into a callseq_start <- 1199 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter 1200 /// nodes. 1201 SDValue 1202 ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee, 1203 CallingConv::ID CallConv, bool isVarArg, 1204 bool &isTailCall, 1205 const SmallVectorImpl<ISD::OutputArg> &Outs, 1206 const SmallVectorImpl<SDValue> &OutVals, 1207 const SmallVectorImpl<ISD::InputArg> &Ins, 1208 DebugLoc dl, SelectionDAG &DAG, 1209 SmallVectorImpl<SDValue> &InVals) const { 1210 MachineFunction &MF = DAG.getMachineFunction(); 1211 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 1212 bool IsSibCall = false; 1213 // Temporarily disable tail calls so things don't break. 1214 if (!EnableARMTailCalls) 1215 isTailCall = false; 1216 if (isTailCall) { 1217 // Check if it's really possible to do a tail call. 1218 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 1219 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), 1220 Outs, OutVals, Ins, DAG); 1221 // We don't support GuaranteedTailCallOpt for ARM, only automatically 1222 // detected sibcalls. 1223 if (isTailCall) { 1224 ++NumTailCalls; 1225 IsSibCall = true; 1226 } 1227 } 1228 1229 // Analyze operands of the call, assigning locations to each operand. 1230 SmallVector<CCValAssign, 16> ArgLocs; 1231 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1232 getTargetMachine(), ArgLocs, *DAG.getContext(), Call); 1233 CCInfo.AnalyzeCallOperands(Outs, 1234 CCAssignFnForNode(CallConv, /* Return*/ false, 1235 isVarArg)); 1236 1237 // Get a count of how many bytes are to be pushed on the stack. 1238 unsigned NumBytes = CCInfo.getNextStackOffset(); 1239 1240 // For tail calls, memory operands are available in our caller's stack. 1241 if (IsSibCall) 1242 NumBytes = 0; 1243 1244 // Adjust the stack pointer for the new arguments... 1245 // These operations are automatically eliminated by the prolog/epilog pass 1246 if (!IsSibCall) 1247 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 1248 1249 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); 1250 1251 RegsToPassVector RegsToPass; 1252 SmallVector<SDValue, 8> MemOpChains; 1253 1254 // Walk the register/memloc assignments, inserting copies/loads. In the case 1255 // of tail call optimization, arguments are handled later. 1256 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 1257 i != e; 1258 ++i, ++realArgIdx) { 1259 CCValAssign &VA = ArgLocs[i]; 1260 SDValue Arg = OutVals[realArgIdx]; 1261 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 1262 bool isByVal = Flags.isByVal(); 1263 1264 // Promote the value if needed. 1265 switch (VA.getLocInfo()) { 1266 default: llvm_unreachable("Unknown loc info!"); 1267 case CCValAssign::Full: break; 1268 case CCValAssign::SExt: 1269 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1270 break; 1271 case CCValAssign::ZExt: 1272 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1273 break; 1274 case CCValAssign::AExt: 1275 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1276 break; 1277 case CCValAssign::BCvt: 1278 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 1279 break; 1280 } 1281 1282 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces 1283 if (VA.needsCustom()) { 1284 if (VA.getLocVT() == MVT::v2f64) { 1285 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1286 DAG.getConstant(0, MVT::i32)); 1287 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1288 DAG.getConstant(1, MVT::i32)); 1289 1290 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, 1291 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1292 1293 VA = ArgLocs[++i]; // skip ahead to next loc 1294 if (VA.isRegLoc()) { 1295 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, 1296 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1297 } else { 1298 assert(VA.isMemLoc()); 1299 1300 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, 1301 dl, DAG, VA, Flags)); 1302 } 1303 } else { 1304 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], 1305 StackPtr, MemOpChains, Flags); 1306 } 1307 } else if (VA.isRegLoc()) { 1308 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1309 } else if (isByVal) { 1310 assert(VA.isMemLoc()); 1311 unsigned offset = 0; 1312 1313 // True if this byval aggregate will be split between registers 1314 // and memory. 1315 if (CCInfo.isFirstByValRegValid()) { 1316 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1317 unsigned int i, j; 1318 for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) { 1319 SDValue Const = DAG.getConstant(4*i, MVT::i32); 1320 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 1321 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 1322 MachinePointerInfo(), 1323 false, false, 0); 1324 MemOpChains.push_back(Load.getValue(1)); 1325 RegsToPass.push_back(std::make_pair(j, Load)); 1326 } 1327 offset = ARM::R4 - CCInfo.getFirstByValReg(); 1328 CCInfo.clearFirstByValReg(); 1329 } 1330 1331 unsigned LocMemOffset = VA.getLocMemOffset(); 1332 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset); 1333 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, 1334 StkPtrOff); 1335 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset); 1336 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset); 1337 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, 1338 MVT::i32); 1339 MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 1340 Flags.getByValAlign(), 1341 /*isVolatile=*/false, 1342 /*AlwaysInline=*/false, 1343 MachinePointerInfo(0), 1344 MachinePointerInfo(0))); 1345 1346 } else if (!IsSibCall) { 1347 assert(VA.isMemLoc()); 1348 1349 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, 1350 dl, DAG, VA, Flags)); 1351 } 1352 } 1353 1354 if (!MemOpChains.empty()) 1355 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1356 &MemOpChains[0], MemOpChains.size()); 1357 1358 // Build a sequence of copy-to-reg nodes chained together with token chain 1359 // and flag operands which copy the outgoing args into the appropriate regs. 1360 SDValue InFlag; 1361 // Tail call byval lowering might overwrite argument registers so in case of 1362 // tail call optimization the copies to registers are lowered later. 1363 if (!isTailCall) 1364 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1365 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1366 RegsToPass[i].second, InFlag); 1367 InFlag = Chain.getValue(1); 1368 } 1369 1370 // For tail calls lower the arguments to the 'real' stack slot. 1371 if (isTailCall) { 1372 // Force all the incoming stack arguments to be loaded from the stack 1373 // before any new outgoing arguments are stored to the stack, because the 1374 // outgoing stack slots may alias the incoming argument stack slots, and 1375 // the alias isn't otherwise explicit. This is slightly more conservative 1376 // than necessary, because it means that each store effectively depends 1377 // on every argument instead of just those arguments it would clobber. 1378 1379 // Do not flag preceding copytoreg stuff together with the following stuff. 1380 InFlag = SDValue(); 1381 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1382 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1383 RegsToPass[i].second, InFlag); 1384 InFlag = Chain.getValue(1); 1385 } 1386 InFlag =SDValue(); 1387 } 1388 1389 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 1390 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 1391 // node so that legalize doesn't hack it. 1392 bool isDirect = false; 1393 bool isARMFunc = false; 1394 bool isLocalARMFunc = false; 1395 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1396 1397 if (EnableARMLongCalls) { 1398 assert (getTargetMachine().getRelocationModel() == Reloc::Static 1399 && "long-calls with non-static relocation model!"); 1400 // Handle a global address or an external symbol. If it's not one of 1401 // those, the target's already in a register, so we don't need to do 1402 // anything extra. 1403 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1404 const GlobalValue *GV = G->getGlobal(); 1405 // Create a constant pool entry for the callee address 1406 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1407 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, 1408 ARMPCLabelIndex, 1409 ARMCP::CPValue, 0); 1410 // Get the address of the callee into a register 1411 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1412 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1413 Callee = DAG.getLoad(getPointerTy(), dl, 1414 DAG.getEntryNode(), CPAddr, 1415 MachinePointerInfo::getConstantPool(), 1416 false, false, 0); 1417 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { 1418 const char *Sym = S->getSymbol(); 1419 1420 // Create a constant pool entry for the callee address 1421 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1422 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), 1423 Sym, ARMPCLabelIndex, 0); 1424 // Get the address of the callee into a register 1425 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1426 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1427 Callee = DAG.getLoad(getPointerTy(), dl, 1428 DAG.getEntryNode(), CPAddr, 1429 MachinePointerInfo::getConstantPool(), 1430 false, false, 0); 1431 } 1432 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1433 const GlobalValue *GV = G->getGlobal(); 1434 isDirect = true; 1435 bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); 1436 bool isStub = (isExt && Subtarget->isTargetDarwin()) && 1437 getTargetMachine().getRelocationModel() != Reloc::Static; 1438 isARMFunc = !Subtarget->isThumb() || isStub; 1439 // ARM call to a local ARM function is predicable. 1440 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking); 1441 // tBX takes a register source operand. 1442 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1443 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1444 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, 1445 ARMPCLabelIndex, 1446 ARMCP::CPValue, 4); 1447 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1448 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1449 Callee = DAG.getLoad(getPointerTy(), dl, 1450 DAG.getEntryNode(), CPAddr, 1451 MachinePointerInfo::getConstantPool(), 1452 false, false, 0); 1453 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1454 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, 1455 getPointerTy(), Callee, PICLabel); 1456 } else { 1457 // On ELF targets for PIC code, direct calls should go through the PLT 1458 unsigned OpFlags = 0; 1459 if (Subtarget->isTargetELF() && 1460 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1461 OpFlags = ARMII::MO_PLT; 1462 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); 1463 } 1464 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1465 isDirect = true; 1466 bool isStub = Subtarget->isTargetDarwin() && 1467 getTargetMachine().getRelocationModel() != Reloc::Static; 1468 isARMFunc = !Subtarget->isThumb() || isStub; 1469 // tBX takes a register source operand. 1470 const char *Sym = S->getSymbol(); 1471 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1472 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1473 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), 1474 Sym, ARMPCLabelIndex, 4); 1475 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1476 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1477 Callee = DAG.getLoad(getPointerTy(), dl, 1478 DAG.getEntryNode(), CPAddr, 1479 MachinePointerInfo::getConstantPool(), 1480 false, false, 0); 1481 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1482 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, 1483 getPointerTy(), Callee, PICLabel); 1484 } else { 1485 unsigned OpFlags = 0; 1486 // On ELF targets for PIC code, direct calls should go through the PLT 1487 if (Subtarget->isTargetELF() && 1488 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1489 OpFlags = ARMII::MO_PLT; 1490 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags); 1491 } 1492 } 1493 1494 // FIXME: handle tail calls differently. 1495 unsigned CallOpc; 1496 if (Subtarget->isThumb()) { 1497 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) 1498 CallOpc = ARMISD::CALL_NOLINK; 1499 else 1500 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; 1501 } else { 1502 CallOpc = (isDirect || Subtarget->hasV5TOps()) 1503 ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL) 1504 : ARMISD::CALL_NOLINK; 1505 } 1506 1507 std::vector<SDValue> Ops; 1508 Ops.push_back(Chain); 1509 Ops.push_back(Callee); 1510 1511 // Add argument registers to the end of the list so that they are known live 1512 // into the call. 1513 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1514 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1515 RegsToPass[i].second.getValueType())); 1516 1517 if (InFlag.getNode()) 1518 Ops.push_back(InFlag); 1519 1520 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1521 if (isTailCall) 1522 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); 1523 1524 // Returns a chain and a flag for retval copy to use. 1525 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 1526 InFlag = Chain.getValue(1); 1527 1528 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 1529 DAG.getIntPtrConstant(0, true), InFlag); 1530 if (!Ins.empty()) 1531 InFlag = Chain.getValue(1); 1532 1533 // Handle result values, copying them out of physregs into vregs that we 1534 // return. 1535 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, 1536 dl, DAG, InVals); 1537 } 1538 1539 /// HandleByVal - Every parameter *after* a byval parameter is passed 1540 /// on the stack. Remember the next parameter register to allocate, 1541 /// and then confiscate the rest of the parameter registers to insure 1542 /// this. 1543 void 1544 llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const { 1545 unsigned reg = State->AllocateReg(GPRArgRegs, 4); 1546 assert((State->getCallOrPrologue() == Prologue || 1547 State->getCallOrPrologue() == Call) && 1548 "unhandled ParmContext"); 1549 if ((!State->isFirstByValRegValid()) && 1550 (ARM::R0 <= reg) && (reg <= ARM::R3)) { 1551 State->setFirstByValReg(reg); 1552 // At a call site, a byval parameter that is split between 1553 // registers and memory needs its size truncated here. In a 1554 // function prologue, such byval parameters are reassembled in 1555 // memory, and are not truncated. 1556 if (State->getCallOrPrologue() == Call) { 1557 unsigned excess = 4 * (ARM::R4 - reg); 1558 assert(size >= excess && "expected larger existing stack allocation"); 1559 size -= excess; 1560 } 1561 } 1562 // Confiscate any remaining parameter registers to preclude their 1563 // assignment to subsequent parameters. 1564 while (State->AllocateReg(GPRArgRegs, 4)) 1565 ; 1566 } 1567 1568 /// MatchingStackOffset - Return true if the given stack call argument is 1569 /// already available in the same position (relatively) of the caller's 1570 /// incoming argument stack. 1571 static 1572 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, 1573 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, 1574 const ARMInstrInfo *TII) { 1575 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; 1576 int FI = INT_MAX; 1577 if (Arg.getOpcode() == ISD::CopyFromReg) { 1578 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 1579 if (!TargetRegisterInfo::isVirtualRegister(VR)) 1580 return false; 1581 MachineInstr *Def = MRI->getVRegDef(VR); 1582 if (!Def) 1583 return false; 1584 if (!Flags.isByVal()) { 1585 if (!TII->isLoadFromStackSlot(Def, FI)) 1586 return false; 1587 } else { 1588 return false; 1589 } 1590 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { 1591 if (Flags.isByVal()) 1592 // ByVal argument is passed in as a pointer but it's now being 1593 // dereferenced. e.g. 1594 // define @foo(%struct.X* %A) { 1595 // tail call @bar(%struct.X* byval %A) 1596 // } 1597 return false; 1598 SDValue Ptr = Ld->getBasePtr(); 1599 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 1600 if (!FINode) 1601 return false; 1602 FI = FINode->getIndex(); 1603 } else 1604 return false; 1605 1606 assert(FI != INT_MAX); 1607 if (!MFI->isFixedObjectIndex(FI)) 1608 return false; 1609 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); 1610 } 1611 1612 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 1613 /// for tail call optimization. Targets which want to do tail call 1614 /// optimization should implement this function. 1615 bool 1616 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 1617 CallingConv::ID CalleeCC, 1618 bool isVarArg, 1619 bool isCalleeStructRet, 1620 bool isCallerStructRet, 1621 const SmallVectorImpl<ISD::OutputArg> &Outs, 1622 const SmallVectorImpl<SDValue> &OutVals, 1623 const SmallVectorImpl<ISD::InputArg> &Ins, 1624 SelectionDAG& DAG) const { 1625 const Function *CallerF = DAG.getMachineFunction().getFunction(); 1626 CallingConv::ID CallerCC = CallerF->getCallingConv(); 1627 bool CCMatch = CallerCC == CalleeCC; 1628 1629 // Look for obvious safe cases to perform tail call optimization that do not 1630 // require ABI changes. This is what gcc calls sibcall. 1631 1632 // Do not sibcall optimize vararg calls unless the call site is not passing 1633 // any arguments. 1634 if (isVarArg && !Outs.empty()) 1635 return false; 1636 1637 // Also avoid sibcall optimization if either caller or callee uses struct 1638 // return semantics. 1639 if (isCalleeStructRet || isCallerStructRet) 1640 return false; 1641 1642 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo:: 1643 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as 1644 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation 1645 // support in the assembler and linker to be used. This would need to be 1646 // fixed to fully support tail calls in Thumb1. 1647 // 1648 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take 1649 // LR. This means if we need to reload LR, it takes an extra instructions, 1650 // which outweighs the value of the tail call; but here we don't know yet 1651 // whether LR is going to be used. Probably the right approach is to 1652 // generate the tail call here and turn it back into CALL/RET in 1653 // emitEpilogue if LR is used. 1654 1655 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, 1656 // but we need to make sure there are enough registers; the only valid 1657 // registers are the 4 used for parameters. We don't currently do this 1658 // case. 1659 if (Subtarget->isThumb1Only()) 1660 return false; 1661 1662 // If the calling conventions do not match, then we'd better make sure the 1663 // results are returned in the same way as what the caller expects. 1664 if (!CCMatch) { 1665 SmallVector<CCValAssign, 16> RVLocs1; 1666 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), 1667 getTargetMachine(), RVLocs1, *DAG.getContext(), Call); 1668 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); 1669 1670 SmallVector<CCValAssign, 16> RVLocs2; 1671 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), 1672 getTargetMachine(), RVLocs2, *DAG.getContext(), Call); 1673 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); 1674 1675 if (RVLocs1.size() != RVLocs2.size()) 1676 return false; 1677 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { 1678 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) 1679 return false; 1680 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) 1681 return false; 1682 if (RVLocs1[i].isRegLoc()) { 1683 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) 1684 return false; 1685 } else { 1686 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) 1687 return false; 1688 } 1689 } 1690 } 1691 1692 // If the callee takes no arguments then go on to check the results of the 1693 // call. 1694 if (!Outs.empty()) { 1695 // Check if stack adjustment is needed. For now, do not do this if any 1696 // argument is passed on the stack. 1697 SmallVector<CCValAssign, 16> ArgLocs; 1698 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), 1699 getTargetMachine(), ArgLocs, *DAG.getContext(), Call); 1700 CCInfo.AnalyzeCallOperands(Outs, 1701 CCAssignFnForNode(CalleeCC, false, isVarArg)); 1702 if (CCInfo.getNextStackOffset()) { 1703 MachineFunction &MF = DAG.getMachineFunction(); 1704 1705 // Check if the arguments are already laid out in the right way as 1706 // the caller's fixed stack objects. 1707 MachineFrameInfo *MFI = MF.getFrameInfo(); 1708 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 1709 const ARMInstrInfo *TII = 1710 ((ARMTargetMachine&)getTargetMachine()).getInstrInfo(); 1711 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 1712 i != e; 1713 ++i, ++realArgIdx) { 1714 CCValAssign &VA = ArgLocs[i]; 1715 EVT RegVT = VA.getLocVT(); 1716 SDValue Arg = OutVals[realArgIdx]; 1717 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 1718 if (VA.getLocInfo() == CCValAssign::Indirect) 1719 return false; 1720 if (VA.needsCustom()) { 1721 // f64 and vector types are split into multiple registers or 1722 // register/stack-slot combinations. The types will not match 1723 // the registers; give up on memory f64 refs until we figure 1724 // out what to do about this. 1725 if (!VA.isRegLoc()) 1726 return false; 1727 if (!ArgLocs[++i].isRegLoc()) 1728 return false; 1729 if (RegVT == MVT::v2f64) { 1730 if (!ArgLocs[++i].isRegLoc()) 1731 return false; 1732 if (!ArgLocs[++i].isRegLoc()) 1733 return false; 1734 } 1735 } else if (!VA.isRegLoc()) { 1736 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, 1737 MFI, MRI, TII)) 1738 return false; 1739 } 1740 } 1741 } 1742 } 1743 1744 return true; 1745 } 1746 1747 SDValue 1748 ARMTargetLowering::LowerReturn(SDValue Chain, 1749 CallingConv::ID CallConv, bool isVarArg, 1750 const SmallVectorImpl<ISD::OutputArg> &Outs, 1751 const SmallVectorImpl<SDValue> &OutVals, 1752 DebugLoc dl, SelectionDAG &DAG) const { 1753 1754 // CCValAssign - represent the assignment of the return value to a location. 1755 SmallVector<CCValAssign, 16> RVLocs; 1756 1757 // CCState - Info about the registers and stack slots. 1758 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1759 getTargetMachine(), RVLocs, *DAG.getContext(), Call); 1760 1761 // Analyze outgoing return values. 1762 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, 1763 isVarArg)); 1764 1765 // If this is the first return lowered for this function, add 1766 // the regs to the liveout set for the function. 1767 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 1768 for (unsigned i = 0; i != RVLocs.size(); ++i) 1769 if (RVLocs[i].isRegLoc()) 1770 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 1771 } 1772 1773 SDValue Flag; 1774 1775 // Copy the result values into the output registers. 1776 for (unsigned i = 0, realRVLocIdx = 0; 1777 i != RVLocs.size(); 1778 ++i, ++realRVLocIdx) { 1779 CCValAssign &VA = RVLocs[i]; 1780 assert(VA.isRegLoc() && "Can only return in registers!"); 1781 1782 SDValue Arg = OutVals[realRVLocIdx]; 1783 1784 switch (VA.getLocInfo()) { 1785 default: llvm_unreachable("Unknown loc info!"); 1786 case CCValAssign::Full: break; 1787 case CCValAssign::BCvt: 1788 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 1789 break; 1790 } 1791 1792 if (VA.needsCustom()) { 1793 if (VA.getLocVT() == MVT::v2f64) { 1794 // Extract the first half and return it in two registers. 1795 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1796 DAG.getConstant(0, MVT::i32)); 1797 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, 1798 DAG.getVTList(MVT::i32, MVT::i32), Half); 1799 1800 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); 1801 Flag = Chain.getValue(1); 1802 VA = RVLocs[++i]; // skip ahead to next loc 1803 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 1804 HalfGPRs.getValue(1), Flag); 1805 Flag = Chain.getValue(1); 1806 VA = RVLocs[++i]; // skip ahead to next loc 1807 1808 // Extract the 2nd half and fall through to handle it as an f64 value. 1809 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1810 DAG.getConstant(1, MVT::i32)); 1811 } 1812 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is 1813 // available. 1814 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 1815 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); 1816 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); 1817 Flag = Chain.getValue(1); 1818 VA = RVLocs[++i]; // skip ahead to next loc 1819 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), 1820 Flag); 1821 } else 1822 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 1823 1824 // Guarantee that all emitted copies are 1825 // stuck together, avoiding something bad. 1826 Flag = Chain.getValue(1); 1827 } 1828 1829 SDValue result; 1830 if (Flag.getNode()) 1831 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag); 1832 else // Return Void 1833 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain); 1834 1835 return result; 1836 } 1837 1838 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const { 1839 if (N->getNumValues() != 1) 1840 return false; 1841 if (!N->hasNUsesOfValue(1, 0)) 1842 return false; 1843 1844 unsigned NumCopies = 0; 1845 SDNode* Copies[2]; 1846 SDNode *Use = *N->use_begin(); 1847 if (Use->getOpcode() == ISD::CopyToReg) { 1848 Copies[NumCopies++] = Use; 1849 } else if (Use->getOpcode() == ARMISD::VMOVRRD) { 1850 // f64 returned in a pair of GPRs. 1851 for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end(); 1852 UI != UE; ++UI) { 1853 if (UI->getOpcode() != ISD::CopyToReg) 1854 return false; 1855 Copies[UI.getUse().getResNo()] = *UI; 1856 ++NumCopies; 1857 } 1858 } else if (Use->getOpcode() == ISD::BITCAST) { 1859 // f32 returned in a single GPR. 1860 if (!Use->hasNUsesOfValue(1, 0)) 1861 return false; 1862 Use = *Use->use_begin(); 1863 if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0)) 1864 return false; 1865 Copies[NumCopies++] = Use; 1866 } else { 1867 return false; 1868 } 1869 1870 if (NumCopies != 1 && NumCopies != 2) 1871 return false; 1872 1873 bool HasRet = false; 1874 for (unsigned i = 0; i < NumCopies; ++i) { 1875 SDNode *Copy = Copies[i]; 1876 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); 1877 UI != UE; ++UI) { 1878 if (UI->getOpcode() == ISD::CopyToReg) { 1879 SDNode *Use = *UI; 1880 if (Use == Copies[0] || Use == Copies[1]) 1881 continue; 1882 return false; 1883 } 1884 if (UI->getOpcode() != ARMISD::RET_FLAG) 1885 return false; 1886 HasRet = true; 1887 } 1888 } 1889 1890 return HasRet; 1891 } 1892 1893 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 1894 if (!EnableARMTailCalls) 1895 return false; 1896 1897 if (!CI->isTailCall()) 1898 return false; 1899 1900 return !Subtarget->isThumb1Only(); 1901 } 1902 1903 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 1904 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is 1905 // one of the above mentioned nodes. It has to be wrapped because otherwise 1906 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 1907 // be used to form addressing mode. These wrapped nodes will be selected 1908 // into MOVi. 1909 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { 1910 EVT PtrVT = Op.getValueType(); 1911 // FIXME there is no actual debug info here 1912 DebugLoc dl = Op.getDebugLoc(); 1913 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 1914 SDValue Res; 1915 if (CP->isMachineConstantPoolEntry()) 1916 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 1917 CP->getAlignment()); 1918 else 1919 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 1920 CP->getAlignment()); 1921 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); 1922 } 1923 1924 unsigned ARMTargetLowering::getJumpTableEncoding() const { 1925 return MachineJumpTableInfo::EK_Inline; 1926 } 1927 1928 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, 1929 SelectionDAG &DAG) const { 1930 MachineFunction &MF = DAG.getMachineFunction(); 1931 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1932 unsigned ARMPCLabelIndex = 0; 1933 DebugLoc DL = Op.getDebugLoc(); 1934 EVT PtrVT = getPointerTy(); 1935 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1936 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 1937 SDValue CPAddr; 1938 if (RelocM == Reloc::Static) { 1939 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); 1940 } else { 1941 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 1942 ARMPCLabelIndex = AFI->createPICLabelUId(); 1943 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex, 1944 ARMCP::CPBlockAddress, 1945 PCAdj); 1946 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 1947 } 1948 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); 1949 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, 1950 MachinePointerInfo::getConstantPool(), 1951 false, false, 0); 1952 if (RelocM == Reloc::Static) 1953 return Result; 1954 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1955 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); 1956 } 1957 1958 // Lower ISD::GlobalTLSAddress using the "general dynamic" model 1959 SDValue 1960 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 1961 SelectionDAG &DAG) const { 1962 DebugLoc dl = GA->getDebugLoc(); 1963 EVT PtrVT = getPointerTy(); 1964 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 1965 MachineFunction &MF = DAG.getMachineFunction(); 1966 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1967 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1968 ARMConstantPoolValue *CPV = 1969 new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, 1970 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); 1971 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); 1972 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); 1973 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, 1974 MachinePointerInfo::getConstantPool(), 1975 false, false, 0); 1976 SDValue Chain = Argument.getValue(1); 1977 1978 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1979 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); 1980 1981 // call __tls_get_addr. 1982 ArgListTy Args; 1983 ArgListEntry Entry; 1984 Entry.Node = Argument; 1985 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); 1986 Args.push_back(Entry); 1987 // FIXME: is there useful debug info available here? 1988 std::pair<SDValue, SDValue> CallResult = 1989 LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()), 1990 false, false, false, false, 1991 0, CallingConv::C, false, /*isReturnValueUsed=*/true, 1992 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); 1993 return CallResult.first; 1994 } 1995 1996 // Lower ISD::GlobalTLSAddress using the "initial exec" or 1997 // "local exec" model. 1998 SDValue 1999 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, 2000 SelectionDAG &DAG) const { 2001 const GlobalValue *GV = GA->getGlobal(); 2002 DebugLoc dl = GA->getDebugLoc(); 2003 SDValue Offset; 2004 SDValue Chain = DAG.getEntryNode(); 2005 EVT PtrVT = getPointerTy(); 2006 // Get the Thread Pointer 2007 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2008 2009 if (GV->isDeclaration()) { 2010 MachineFunction &MF = DAG.getMachineFunction(); 2011 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2012 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2013 // Initial exec model. 2014 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2015 ARMConstantPoolValue *CPV = 2016 new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, 2017 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true); 2018 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2019 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2020 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2021 MachinePointerInfo::getConstantPool(), 2022 false, false, 0); 2023 Chain = Offset.getValue(1); 2024 2025 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2026 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); 2027 2028 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2029 MachinePointerInfo::getConstantPool(), 2030 false, false, 0); 2031 } else { 2032 // local exec model 2033 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF); 2034 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2035 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2036 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2037 MachinePointerInfo::getConstantPool(), 2038 false, false, 0); 2039 } 2040 2041 // The address of the thread local variable is the add of the thread 2042 // pointer with the offset of the variable. 2043 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); 2044 } 2045 2046 SDValue 2047 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 2048 // TODO: implement the "local dynamic" model 2049 assert(Subtarget->isTargetELF() && 2050 "TLS not implemented for non-ELF targets"); 2051 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2052 // If the relocation model is PIC, use the "General Dynamic" TLS Model, 2053 // otherwise use the "Local Exec" TLS Model 2054 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) 2055 return LowerToTLSGeneralDynamicModel(GA, DAG); 2056 else 2057 return LowerToTLSExecModels(GA, DAG); 2058 } 2059 2060 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, 2061 SelectionDAG &DAG) const { 2062 EVT PtrVT = getPointerTy(); 2063 DebugLoc dl = Op.getDebugLoc(); 2064 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2065 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2066 if (RelocM == Reloc::PIC_) { 2067 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2068 ARMConstantPoolValue *CPV = 2069 new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2070 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2071 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2072 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 2073 CPAddr, 2074 MachinePointerInfo::getConstantPool(), 2075 false, false, 0); 2076 SDValue Chain = Result.getValue(1); 2077 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2078 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); 2079 if (!UseGOTOFF) 2080 Result = DAG.getLoad(PtrVT, dl, Chain, Result, 2081 MachinePointerInfo::getGOT(), false, false, 0); 2082 return Result; 2083 } 2084 2085 // If we have T2 ops, we can materialize the address directly via movt/movw 2086 // pair. This is always cheaper. 2087 if (Subtarget->useMovt()) { 2088 ++NumMovwMovt; 2089 // FIXME: Once remat is capable of dealing with instructions with register 2090 // operands, expand this into two nodes. 2091 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 2092 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2093 } else { 2094 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); 2095 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2096 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2097 MachinePointerInfo::getConstantPool(), 2098 false, false, 0); 2099 } 2100 } 2101 2102 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, 2103 SelectionDAG &DAG) const { 2104 EVT PtrVT = getPointerTy(); 2105 DebugLoc dl = Op.getDebugLoc(); 2106 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2107 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2108 MachineFunction &MF = DAG.getMachineFunction(); 2109 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2110 2111 // FIXME: Enable this for static codegen when tool issues are fixed. 2112 if (Subtarget->useMovt() && RelocM != Reloc::Static) { 2113 ++NumMovwMovt; 2114 // FIXME: Once remat is capable of dealing with instructions with register 2115 // operands, expand this into two nodes. 2116 if (RelocM == Reloc::Static) 2117 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 2118 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2119 2120 unsigned Wrapper = (RelocM == Reloc::PIC_) 2121 ? ARMISD::WrapperPIC : ARMISD::WrapperDYN; 2122 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, 2123 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2124 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) 2125 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, 2126 MachinePointerInfo::getGOT(), false, false, 0); 2127 return Result; 2128 } 2129 2130 unsigned ARMPCLabelIndex = 0; 2131 SDValue CPAddr; 2132 if (RelocM == Reloc::Static) { 2133 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); 2134 } else { 2135 ARMPCLabelIndex = AFI->createPICLabelUId(); 2136 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8); 2137 ARMConstantPoolValue *CPV = 2138 new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj); 2139 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2140 } 2141 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2142 2143 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2144 MachinePointerInfo::getConstantPool(), 2145 false, false, 0); 2146 SDValue Chain = Result.getValue(1); 2147 2148 if (RelocM == Reloc::PIC_) { 2149 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2150 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2151 } 2152 2153 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) 2154 Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(), 2155 false, false, 0); 2156 2157 return Result; 2158 } 2159 2160 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, 2161 SelectionDAG &DAG) const { 2162 assert(Subtarget->isTargetELF() && 2163 "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); 2164 MachineFunction &MF = DAG.getMachineFunction(); 2165 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2166 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2167 EVT PtrVT = getPointerTy(); 2168 DebugLoc dl = Op.getDebugLoc(); 2169 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2170 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), 2171 "_GLOBAL_OFFSET_TABLE_", 2172 ARMPCLabelIndex, PCAdj); 2173 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2174 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2175 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2176 MachinePointerInfo::getConstantPool(), 2177 false, false, 0); 2178 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2179 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2180 } 2181 2182 SDValue 2183 ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG) 2184 const { 2185 DebugLoc dl = Op.getDebugLoc(); 2186 return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 2187 Op.getOperand(0), Op.getOperand(1)); 2188 } 2189 2190 SDValue 2191 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { 2192 DebugLoc dl = Op.getDebugLoc(); 2193 SDValue Val = DAG.getConstant(0, MVT::i32); 2194 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0), 2195 Op.getOperand(1), Val); 2196 } 2197 2198 SDValue 2199 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { 2200 DebugLoc dl = Op.getDebugLoc(); 2201 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), 2202 Op.getOperand(1), DAG.getConstant(0, MVT::i32)); 2203 } 2204 2205 SDValue 2206 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, 2207 const ARMSubtarget *Subtarget) const { 2208 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2209 DebugLoc dl = Op.getDebugLoc(); 2210 switch (IntNo) { 2211 default: return SDValue(); // Don't custom lower most intrinsics. 2212 case Intrinsic::arm_thread_pointer: { 2213 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2214 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2215 } 2216 case Intrinsic::eh_sjlj_lsda: { 2217 MachineFunction &MF = DAG.getMachineFunction(); 2218 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2219 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2220 EVT PtrVT = getPointerTy(); 2221 DebugLoc dl = Op.getDebugLoc(); 2222 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2223 SDValue CPAddr; 2224 unsigned PCAdj = (RelocM != Reloc::PIC_) 2225 ? 0 : (Subtarget->isThumb() ? 4 : 8); 2226 ARMConstantPoolValue *CPV = 2227 new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex, 2228 ARMCP::CPLSDA, PCAdj); 2229 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2230 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2231 SDValue Result = 2232 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2233 MachinePointerInfo::getConstantPool(), 2234 false, false, 0); 2235 2236 if (RelocM == Reloc::PIC_) { 2237 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2238 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2239 } 2240 return Result; 2241 } 2242 case Intrinsic::arm_neon_vmulls: 2243 case Intrinsic::arm_neon_vmullu: { 2244 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) 2245 ? ARMISD::VMULLs : ARMISD::VMULLu; 2246 return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(), 2247 Op.getOperand(1), Op.getOperand(2)); 2248 } 2249 } 2250 } 2251 2252 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG, 2253 const ARMSubtarget *Subtarget) { 2254 DebugLoc dl = Op.getDebugLoc(); 2255 if (!Subtarget->hasDataBarrier()) { 2256 // Some ARMv6 cpus can support data barriers with an mcr instruction. 2257 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 2258 // here. 2259 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && 2260 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!"); 2261 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), 2262 DAG.getConstant(0, MVT::i32)); 2263 } 2264 2265 SDValue Op5 = Op.getOperand(5); 2266 bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0; 2267 unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 2268 unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2269 bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0); 2270 2271 ARM_MB::MemBOpt DMBOpt; 2272 if (isDeviceBarrier) 2273 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY; 2274 else 2275 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH; 2276 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), 2277 DAG.getConstant(DMBOpt, MVT::i32)); 2278 } 2279 2280 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, 2281 const ARMSubtarget *Subtarget) { 2282 // ARM pre v5TE and Thumb1 does not have preload instructions. 2283 if (!(Subtarget->isThumb2() || 2284 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) 2285 // Just preserve the chain. 2286 return Op.getOperand(0); 2287 2288 DebugLoc dl = Op.getDebugLoc(); 2289 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; 2290 if (!isRead && 2291 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) 2292 // ARMv7 with MP extension has PLDW. 2293 return Op.getOperand(0); 2294 2295 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2296 if (Subtarget->isThumb()) { 2297 // Invert the bits. 2298 isRead = ~isRead & 1; 2299 isData = ~isData & 1; 2300 } 2301 2302 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), 2303 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32), 2304 DAG.getConstant(isData, MVT::i32)); 2305 } 2306 2307 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { 2308 MachineFunction &MF = DAG.getMachineFunction(); 2309 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); 2310 2311 // vastart just stores the address of the VarArgsFrameIndex slot into the 2312 // memory location argument. 2313 DebugLoc dl = Op.getDebugLoc(); 2314 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2315 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2316 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2317 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2318 MachinePointerInfo(SV), false, false, 0); 2319 } 2320 2321 SDValue 2322 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, 2323 SDValue &Root, SelectionDAG &DAG, 2324 DebugLoc dl) const { 2325 MachineFunction &MF = DAG.getMachineFunction(); 2326 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2327 2328 TargetRegisterClass *RC; 2329 if (AFI->isThumb1OnlyFunction()) 2330 RC = ARM::tGPRRegisterClass; 2331 else 2332 RC = ARM::GPRRegisterClass; 2333 2334 // Transform the arguments stored in physical registers into virtual ones. 2335 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2336 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2337 2338 SDValue ArgValue2; 2339 if (NextVA.isMemLoc()) { 2340 MachineFrameInfo *MFI = MF.getFrameInfo(); 2341 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); 2342 2343 // Create load node to retrieve arguments from the stack. 2344 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2345 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, 2346 MachinePointerInfo::getFixedStack(FI), 2347 false, false, 0); 2348 } else { 2349 Reg = MF.addLiveIn(NextVA.getLocReg(), RC); 2350 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2351 } 2352 2353 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); 2354 } 2355 2356 void 2357 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF, 2358 unsigned &VARegSize, unsigned &VARegSaveSize) 2359 const { 2360 unsigned NumGPRs; 2361 if (CCInfo.isFirstByValRegValid()) 2362 NumGPRs = ARM::R4 - CCInfo.getFirstByValReg(); 2363 else { 2364 unsigned int firstUnalloced; 2365 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs, 2366 sizeof(GPRArgRegs) / 2367 sizeof(GPRArgRegs[0])); 2368 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0; 2369 } 2370 2371 unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment(); 2372 VARegSize = NumGPRs * 4; 2373 VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); 2374 } 2375 2376 // The remaining GPRs hold either the beginning of variable-argument 2377 // data, or the beginning of an aggregate passed by value (usuall 2378 // byval). Either way, we allocate stack slots adjacent to the data 2379 // provided by our caller, and store the unallocated registers there. 2380 // If this is a variadic function, the va_list pointer will begin with 2381 // these values; otherwise, this reassembles a (byval) structure that 2382 // was split between registers and memory. 2383 void 2384 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, 2385 DebugLoc dl, SDValue &Chain, 2386 unsigned ArgOffset) const { 2387 MachineFunction &MF = DAG.getMachineFunction(); 2388 MachineFrameInfo *MFI = MF.getFrameInfo(); 2389 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2390 unsigned firstRegToSaveIndex; 2391 if (CCInfo.isFirstByValRegValid()) 2392 firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0; 2393 else { 2394 firstRegToSaveIndex = CCInfo.getFirstUnallocated 2395 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); 2396 } 2397 2398 unsigned VARegSize, VARegSaveSize; 2399 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize); 2400 if (VARegSaveSize) { 2401 // If this function is vararg, store any remaining integer argument regs 2402 // to their spots on the stack so that they may be loaded by deferencing 2403 // the result of va_next. 2404 AFI->setVarArgsRegSaveSize(VARegSaveSize); 2405 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize, 2406 ArgOffset + VARegSaveSize 2407 - VARegSize, 2408 false)); 2409 SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), 2410 getPointerTy()); 2411 2412 SmallVector<SDValue, 4> MemOps; 2413 for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) { 2414 TargetRegisterClass *RC; 2415 if (AFI->isThumb1OnlyFunction()) 2416 RC = ARM::tGPRRegisterClass; 2417 else 2418 RC = ARM::GPRRegisterClass; 2419 2420 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC); 2421 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2422 SDValue Store = 2423 DAG.getStore(Val.getValue(1), dl, Val, FIN, 2424 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()), 2425 false, false, 0); 2426 MemOps.push_back(Store); 2427 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, 2428 DAG.getConstant(4, getPointerTy())); 2429 } 2430 if (!MemOps.empty()) 2431 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2432 &MemOps[0], MemOps.size()); 2433 } else 2434 // This will point to the next argument passed via stack. 2435 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true)); 2436 } 2437 2438 SDValue 2439 ARMTargetLowering::LowerFormalArguments(SDValue Chain, 2440 CallingConv::ID CallConv, bool isVarArg, 2441 const SmallVectorImpl<ISD::InputArg> 2442 &Ins, 2443 DebugLoc dl, SelectionDAG &DAG, 2444 SmallVectorImpl<SDValue> &InVals) 2445 const { 2446 MachineFunction &MF = DAG.getMachineFunction(); 2447 MachineFrameInfo *MFI = MF.getFrameInfo(); 2448 2449 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2450 2451 // Assign locations to all of the incoming arguments. 2452 SmallVector<CCValAssign, 16> ArgLocs; 2453 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2454 getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue); 2455 CCInfo.AnalyzeFormalArguments(Ins, 2456 CCAssignFnForNode(CallConv, /* Return*/ false, 2457 isVarArg)); 2458 2459 SmallVector<SDValue, 16> ArgValues; 2460 int lastInsIndex = -1; 2461 2462 SDValue ArgValue; 2463 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2464 CCValAssign &VA = ArgLocs[i]; 2465 2466 // Arguments stored in registers. 2467 if (VA.isRegLoc()) { 2468 EVT RegVT = VA.getLocVT(); 2469 2470 if (VA.needsCustom()) { 2471 // f64 and vector types are split up into multiple registers or 2472 // combinations of registers and stack slots. 2473 if (VA.getLocVT() == MVT::v2f64) { 2474 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], 2475 Chain, DAG, dl); 2476 VA = ArgLocs[++i]; // skip ahead to next loc 2477 SDValue ArgValue2; 2478 if (VA.isMemLoc()) { 2479 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); 2480 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2481 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, 2482 MachinePointerInfo::getFixedStack(FI), 2483 false, false, 0); 2484 } else { 2485 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], 2486 Chain, DAG, dl); 2487 } 2488 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 2489 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 2490 ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); 2491 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 2492 ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); 2493 } else 2494 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 2495 2496 } else { 2497 TargetRegisterClass *RC; 2498 2499 if (RegVT == MVT::f32) 2500 RC = ARM::SPRRegisterClass; 2501 else if (RegVT == MVT::f64) 2502 RC = ARM::DPRRegisterClass; 2503 else if (RegVT == MVT::v2f64) 2504 RC = ARM::QPRRegisterClass; 2505 else if (RegVT == MVT::i32) 2506 RC = (AFI->isThumb1OnlyFunction() ? 2507 ARM::tGPRRegisterClass : ARM::GPRRegisterClass); 2508 else 2509 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 2510 2511 // Transform the arguments in physical registers into virtual ones. 2512 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2513 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 2514 } 2515 2516 // If this is an 8 or 16-bit value, it is really passed promoted 2517 // to 32 bits. Insert an assert[sz]ext to capture this, then 2518 // truncate to the right size. 2519 switch (VA.getLocInfo()) { 2520 default: llvm_unreachable("Unknown loc info!"); 2521 case CCValAssign::Full: break; 2522 case CCValAssign::BCvt: 2523 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); 2524 break; 2525 case CCValAssign::SExt: 2526 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 2527 DAG.getValueType(VA.getValVT())); 2528 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 2529 break; 2530 case CCValAssign::ZExt: 2531 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 2532 DAG.getValueType(VA.getValVT())); 2533 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 2534 break; 2535 } 2536 2537 InVals.push_back(ArgValue); 2538 2539 } else { // VA.isRegLoc() 2540 2541 // sanity check 2542 assert(VA.isMemLoc()); 2543 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); 2544 2545 int index = ArgLocs[i].getValNo(); 2546 2547 // Some Ins[] entries become multiple ArgLoc[] entries. 2548 // Process them only once. 2549 if (index != lastInsIndex) 2550 { 2551 ISD::ArgFlagsTy Flags = Ins[index].Flags; 2552 // FIXME: For now, all byval parameter objects are marked mutable. 2553 // This can be changed with more analysis. 2554 // In case of tail call optimization mark all arguments mutable. 2555 // Since they could be overwritten by lowering of arguments in case of 2556 // a tail call. 2557 if (Flags.isByVal()) { 2558 unsigned VARegSize, VARegSaveSize; 2559 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize); 2560 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0); 2561 unsigned Bytes = Flags.getByValSize() - VARegSize; 2562 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. 2563 int FI = MFI->CreateFixedObject(Bytes, 2564 VA.getLocMemOffset(), false); 2565 InVals.push_back(DAG.getFrameIndex(FI, getPointerTy())); 2566 } else { 2567 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, 2568 VA.getLocMemOffset(), true); 2569 2570 // Create load nodes to retrieve arguments from the stack. 2571 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2572 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2573 MachinePointerInfo::getFixedStack(FI), 2574 false, false, 0)); 2575 } 2576 lastInsIndex = index; 2577 } 2578 } 2579 } 2580 2581 // varargs 2582 if (isVarArg) 2583 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset()); 2584 2585 return Chain; 2586 } 2587 2588 /// isFloatingPointZero - Return true if this is +0.0. 2589 static bool isFloatingPointZero(SDValue Op) { 2590 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 2591 return CFP->getValueAPF().isPosZero(); 2592 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 2593 // Maybe this has already been legalized into the constant pool? 2594 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { 2595 SDValue WrapperOp = Op.getOperand(1).getOperand(0); 2596 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) 2597 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 2598 return CFP->getValueAPF().isPosZero(); 2599 } 2600 } 2601 return false; 2602 } 2603 2604 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for 2605 /// the given operands. 2606 SDValue 2607 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2608 SDValue &ARMcc, SelectionDAG &DAG, 2609 DebugLoc dl) const { 2610 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 2611 unsigned C = RHSC->getZExtValue(); 2612 if (!isLegalICmpImmediate(C)) { 2613 // Constant does not fit, try adjusting it by one? 2614 switch (CC) { 2615 default: break; 2616 case ISD::SETLT: 2617 case ISD::SETGE: 2618 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { 2619 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 2620 RHS = DAG.getConstant(C-1, MVT::i32); 2621 } 2622 break; 2623 case ISD::SETULT: 2624 case ISD::SETUGE: 2625 if (C != 0 && isLegalICmpImmediate(C-1)) { 2626 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 2627 RHS = DAG.getConstant(C-1, MVT::i32); 2628 } 2629 break; 2630 case ISD::SETLE: 2631 case ISD::SETGT: 2632 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { 2633 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 2634 RHS = DAG.getConstant(C+1, MVT::i32); 2635 } 2636 break; 2637 case ISD::SETULE: 2638 case ISD::SETUGT: 2639 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { 2640 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2641 RHS = DAG.getConstant(C+1, MVT::i32); 2642 } 2643 break; 2644 } 2645 } 2646 } 2647 2648 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 2649 ARMISD::NodeType CompareType; 2650 switch (CondCode) { 2651 default: 2652 CompareType = ARMISD::CMP; 2653 break; 2654 case ARMCC::EQ: 2655 case ARMCC::NE: 2656 // Uses only Z Flag 2657 CompareType = ARMISD::CMPZ; 2658 break; 2659 } 2660 ARMcc = DAG.getConstant(CondCode, MVT::i32); 2661 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); 2662 } 2663 2664 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. 2665 SDValue 2666 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, 2667 DebugLoc dl) const { 2668 SDValue Cmp; 2669 if (!isFloatingPointZero(RHS)) 2670 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); 2671 else 2672 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); 2673 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); 2674 } 2675 2676 /// duplicateCmp - Glue values can have only one use, so this function 2677 /// duplicates a comparison node. 2678 SDValue 2679 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { 2680 unsigned Opc = Cmp.getOpcode(); 2681 DebugLoc DL = Cmp.getDebugLoc(); 2682 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) 2683 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 2684 2685 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); 2686 Cmp = Cmp.getOperand(0); 2687 Opc = Cmp.getOpcode(); 2688 if (Opc == ARMISD::CMPFP) 2689 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 2690 else { 2691 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); 2692 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); 2693 } 2694 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); 2695 } 2696 2697 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2698 SDValue Cond = Op.getOperand(0); 2699 SDValue SelectTrue = Op.getOperand(1); 2700 SDValue SelectFalse = Op.getOperand(2); 2701 DebugLoc dl = Op.getDebugLoc(); 2702 2703 // Convert: 2704 // 2705 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) 2706 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) 2707 // 2708 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { 2709 const ConstantSDNode *CMOVTrue = 2710 dyn_cast<ConstantSDNode>(Cond.getOperand(0)); 2711 const ConstantSDNode *CMOVFalse = 2712 dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 2713 2714 if (CMOVTrue && CMOVFalse) { 2715 unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); 2716 unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); 2717 2718 SDValue True; 2719 SDValue False; 2720 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { 2721 True = SelectTrue; 2722 False = SelectFalse; 2723 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { 2724 True = SelectFalse; 2725 False = SelectTrue; 2726 } 2727 2728 if (True.getNode() && False.getNode()) { 2729 EVT VT = Op.getValueType(); 2730 SDValue ARMcc = Cond.getOperand(2); 2731 SDValue CCR = Cond.getOperand(3); 2732 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); 2733 assert(True.getValueType() == VT); 2734 return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp); 2735 } 2736 } 2737 } 2738 2739 return DAG.getSelectCC(dl, Cond, 2740 DAG.getConstant(0, Cond.getValueType()), 2741 SelectTrue, SelectFalse, ISD::SETNE); 2742 } 2743 2744 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 2745 EVT VT = Op.getValueType(); 2746 SDValue LHS = Op.getOperand(0); 2747 SDValue RHS = Op.getOperand(1); 2748 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2749 SDValue TrueVal = Op.getOperand(2); 2750 SDValue FalseVal = Op.getOperand(3); 2751 DebugLoc dl = Op.getDebugLoc(); 2752 2753 if (LHS.getValueType() == MVT::i32) { 2754 SDValue ARMcc; 2755 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 2756 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 2757 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp); 2758 } 2759 2760 ARMCC::CondCodes CondCode, CondCode2; 2761 FPCCToARMCC(CC, CondCode, CondCode2); 2762 2763 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); 2764 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 2765 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 2766 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, 2767 ARMcc, CCR, Cmp); 2768 if (CondCode2 != ARMCC::AL) { 2769 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32); 2770 // FIXME: Needs another CMP because flag can have but one use. 2771 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); 2772 Result = DAG.getNode(ARMISD::CMOV, dl, VT, 2773 Result, TrueVal, ARMcc2, CCR, Cmp2); 2774 } 2775 return Result; 2776 } 2777 2778 /// canChangeToInt - Given the fp compare operand, return true if it is suitable 2779 /// to morph to an integer compare sequence. 2780 static bool canChangeToInt(SDValue Op, bool &SeenZero, 2781 const ARMSubtarget *Subtarget) { 2782 SDNode *N = Op.getNode(); 2783 if (!N->hasOneUse()) 2784 // Otherwise it requires moving the value from fp to integer registers. 2785 return false; 2786 if (!N->getNumValues()) 2787 return false; 2788 EVT VT = Op.getValueType(); 2789 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) 2790 // f32 case is generally profitable. f64 case only makes sense when vcmpe + 2791 // vmrs are very slow, e.g. cortex-a8. 2792 return false; 2793 2794 if (isFloatingPointZero(Op)) { 2795 SeenZero = true; 2796 return true; 2797 } 2798 return ISD::isNormalLoad(N); 2799 } 2800 2801 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { 2802 if (isFloatingPointZero(Op)) 2803 return DAG.getConstant(0, MVT::i32); 2804 2805 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) 2806 return DAG.getLoad(MVT::i32, Op.getDebugLoc(), 2807 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), 2808 Ld->isVolatile(), Ld->isNonTemporal(), 2809 Ld->getAlignment()); 2810 2811 llvm_unreachable("Unknown VFP cmp argument!"); 2812 } 2813 2814 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, 2815 SDValue &RetVal1, SDValue &RetVal2) { 2816 if (isFloatingPointZero(Op)) { 2817 RetVal1 = DAG.getConstant(0, MVT::i32); 2818 RetVal2 = DAG.getConstant(0, MVT::i32); 2819 return; 2820 } 2821 2822 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { 2823 SDValue Ptr = Ld->getBasePtr(); 2824 RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(), 2825 Ld->getChain(), Ptr, 2826 Ld->getPointerInfo(), 2827 Ld->isVolatile(), Ld->isNonTemporal(), 2828 Ld->getAlignment()); 2829 2830 EVT PtrType = Ptr.getValueType(); 2831 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); 2832 SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(), 2833 PtrType, Ptr, DAG.getConstant(4, PtrType)); 2834 RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(), 2835 Ld->getChain(), NewPtr, 2836 Ld->getPointerInfo().getWithOffset(4), 2837 Ld->isVolatile(), Ld->isNonTemporal(), 2838 NewAlign); 2839 return; 2840 } 2841 2842 llvm_unreachable("Unknown VFP cmp argument!"); 2843 } 2844 2845 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some 2846 /// f32 and even f64 comparisons to integer ones. 2847 SDValue 2848 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { 2849 SDValue Chain = Op.getOperand(0); 2850 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2851 SDValue LHS = Op.getOperand(2); 2852 SDValue RHS = Op.getOperand(3); 2853 SDValue Dest = Op.getOperand(4); 2854 DebugLoc dl = Op.getDebugLoc(); 2855 2856 bool SeenZero = false; 2857 if (canChangeToInt(LHS, SeenZero, Subtarget) && 2858 canChangeToInt(RHS, SeenZero, Subtarget) && 2859 // If one of the operand is zero, it's safe to ignore the NaN case since 2860 // we only care about equality comparisons. 2861 (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) { 2862 // If unsafe fp math optimization is enabled and there are no other uses of 2863 // the CMP operands, and the condition code is EQ or NE, we can optimize it 2864 // to an integer comparison. 2865 if (CC == ISD::SETOEQ) 2866 CC = ISD::SETEQ; 2867 else if (CC == ISD::SETUNE) 2868 CC = ISD::SETNE; 2869 2870 SDValue ARMcc; 2871 if (LHS.getValueType() == MVT::f32) { 2872 LHS = bitcastf32Toi32(LHS, DAG); 2873 RHS = bitcastf32Toi32(RHS, DAG); 2874 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 2875 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 2876 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 2877 Chain, Dest, ARMcc, CCR, Cmp); 2878 } 2879 2880 SDValue LHS1, LHS2; 2881 SDValue RHS1, RHS2; 2882 expandf64Toi32(LHS, DAG, LHS1, LHS2); 2883 expandf64Toi32(RHS, DAG, RHS1, RHS2); 2884 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 2885 ARMcc = DAG.getConstant(CondCode, MVT::i32); 2886 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 2887 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; 2888 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7); 2889 } 2890 2891 return SDValue(); 2892 } 2893 2894 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2895 SDValue Chain = Op.getOperand(0); 2896 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2897 SDValue LHS = Op.getOperand(2); 2898 SDValue RHS = Op.getOperand(3); 2899 SDValue Dest = Op.getOperand(4); 2900 DebugLoc dl = Op.getDebugLoc(); 2901 2902 if (LHS.getValueType() == MVT::i32) { 2903 SDValue ARMcc; 2904 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 2905 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 2906 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 2907 Chain, Dest, ARMcc, CCR, Cmp); 2908 } 2909 2910 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 2911 2912 if (UnsafeFPMath && 2913 (CC == ISD::SETEQ || CC == ISD::SETOEQ || 2914 CC == ISD::SETNE || CC == ISD::SETUNE)) { 2915 SDValue Result = OptimizeVFPBrcond(Op, DAG); 2916 if (Result.getNode()) 2917 return Result; 2918 } 2919 2920 ARMCC::CondCodes CondCode, CondCode2; 2921 FPCCToARMCC(CC, CondCode, CondCode2); 2922 2923 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); 2924 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 2925 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 2926 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 2927 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; 2928 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); 2929 if (CondCode2 != ARMCC::AL) { 2930 ARMcc = DAG.getConstant(CondCode2, MVT::i32); 2931 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; 2932 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); 2933 } 2934 return Res; 2935 } 2936 2937 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 2938 SDValue Chain = Op.getOperand(0); 2939 SDValue Table = Op.getOperand(1); 2940 SDValue Index = Op.getOperand(2); 2941 DebugLoc dl = Op.getDebugLoc(); 2942 2943 EVT PTy = getPointerTy(); 2944 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 2945 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); 2946 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); 2947 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); 2948 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); 2949 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); 2950 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 2951 if (Subtarget->isThumb2()) { 2952 // Thumb2 uses a two-level jump. That is, it jumps into the jump table 2953 // which does another jump to the destination. This also makes it easier 2954 // to translate it to TBB / TBH later. 2955 // FIXME: This might not work if the function is extremely large. 2956 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, 2957 Addr, Op.getOperand(2), JTI, UId); 2958 } 2959 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2960 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, 2961 MachinePointerInfo::getJumpTable(), 2962 false, false, 0); 2963 Chain = Addr.getValue(1); 2964 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); 2965 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); 2966 } else { 2967 Addr = DAG.getLoad(PTy, dl, Chain, Addr, 2968 MachinePointerInfo::getJumpTable(), false, false, 0); 2969 Chain = Addr.getValue(1); 2970 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); 2971 } 2972 } 2973 2974 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 2975 DebugLoc dl = Op.getDebugLoc(); 2976 unsigned Opc; 2977 2978 switch (Op.getOpcode()) { 2979 default: 2980 assert(0 && "Invalid opcode!"); 2981 case ISD::FP_TO_SINT: 2982 Opc = ARMISD::FTOSI; 2983 break; 2984 case ISD::FP_TO_UINT: 2985 Opc = ARMISD::FTOUI; 2986 break; 2987 } 2988 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); 2989 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 2990 } 2991 2992 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 2993 EVT VT = Op.getValueType(); 2994 DebugLoc dl = Op.getDebugLoc(); 2995 2996 EVT OperandVT = Op.getOperand(0).getValueType(); 2997 assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!"); 2998 if (VT != MVT::v4f32) 2999 return DAG.UnrollVectorOp(Op.getNode()); 3000 3001 unsigned CastOpc; 3002 unsigned Opc; 3003 switch (Op.getOpcode()) { 3004 default: 3005 assert(0 && "Invalid opcode!"); 3006 case ISD::SINT_TO_FP: 3007 CastOpc = ISD::SIGN_EXTEND; 3008 Opc = ISD::SINT_TO_FP; 3009 break; 3010 case ISD::UINT_TO_FP: 3011 CastOpc = ISD::ZERO_EXTEND; 3012 Opc = ISD::UINT_TO_FP; 3013 break; 3014 } 3015 3016 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); 3017 return DAG.getNode(Opc, dl, VT, Op); 3018 } 3019 3020 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 3021 EVT VT = Op.getValueType(); 3022 if (VT.isVector()) 3023 return LowerVectorINT_TO_FP(Op, DAG); 3024 3025 DebugLoc dl = Op.getDebugLoc(); 3026 unsigned Opc; 3027 3028 switch (Op.getOpcode()) { 3029 default: 3030 assert(0 && "Invalid opcode!"); 3031 case ISD::SINT_TO_FP: 3032 Opc = ARMISD::SITOF; 3033 break; 3034 case ISD::UINT_TO_FP: 3035 Opc = ARMISD::UITOF; 3036 break; 3037 } 3038 3039 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0)); 3040 return DAG.getNode(Opc, dl, VT, Op); 3041 } 3042 3043 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 3044 // Implement fcopysign with a fabs and a conditional fneg. 3045 SDValue Tmp0 = Op.getOperand(0); 3046 SDValue Tmp1 = Op.getOperand(1); 3047 DebugLoc dl = Op.getDebugLoc(); 3048 EVT VT = Op.getValueType(); 3049 EVT SrcVT = Tmp1.getValueType(); 3050 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || 3051 Tmp0.getOpcode() == ARMISD::VMOVDRR; 3052 bool UseNEON = !InGPR && Subtarget->hasNEON(); 3053 3054 if (UseNEON) { 3055 // Use VBSL to copy the sign bit. 3056 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); 3057 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, 3058 DAG.getTargetConstant(EncodedVal, MVT::i32)); 3059 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; 3060 if (VT == MVT::f64) 3061 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3062 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), 3063 DAG.getConstant(32, MVT::i32)); 3064 else /*if (VT == MVT::f32)*/ 3065 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); 3066 if (SrcVT == MVT::f32) { 3067 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); 3068 if (VT == MVT::f64) 3069 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3070 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), 3071 DAG.getConstant(32, MVT::i32)); 3072 } else if (VT == MVT::f32) 3073 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, 3074 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), 3075 DAG.getConstant(32, MVT::i32)); 3076 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); 3077 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); 3078 3079 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), 3080 MVT::i32); 3081 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); 3082 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, 3083 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); 3084 3085 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, 3086 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), 3087 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); 3088 if (VT == MVT::f32) { 3089 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); 3090 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, 3091 DAG.getConstant(0, MVT::i32)); 3092 } else { 3093 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); 3094 } 3095 3096 return Res; 3097 } 3098 3099 // Bitcast operand 1 to i32. 3100 if (SrcVT == MVT::f64) 3101 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 3102 &Tmp1, 1).getValue(1); 3103 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); 3104 3105 // Or in the signbit with integer operations. 3106 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32); 3107 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32); 3108 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); 3109 if (VT == MVT::f32) { 3110 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, 3111 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); 3112 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3113 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); 3114 } 3115 3116 // f64: Or the high part with signbit and then combine two parts. 3117 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 3118 &Tmp0, 1); 3119 SDValue Lo = Tmp0.getValue(0); 3120 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); 3121 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); 3122 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 3123 } 3124 3125 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ 3126 MachineFunction &MF = DAG.getMachineFunction(); 3127 MachineFrameInfo *MFI = MF.getFrameInfo(); 3128 MFI->setReturnAddressIsTaken(true); 3129 3130 EVT VT = Op.getValueType(); 3131 DebugLoc dl = Op.getDebugLoc(); 3132 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3133 if (Depth) { 3134 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 3135 SDValue Offset = DAG.getConstant(4, MVT::i32); 3136 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 3137 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 3138 MachinePointerInfo(), false, false, 0); 3139 } 3140 3141 // Return LR, which contains the return address. Mark it an implicit live-in. 3142 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); 3143 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 3144 } 3145 3146 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 3147 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3148 MFI->setFrameAddressIsTaken(true); 3149 3150 EVT VT = Op.getValueType(); 3151 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful 3152 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3153 unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) 3154 ? ARM::R7 : ARM::R11; 3155 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 3156 while (Depth--) 3157 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 3158 MachinePointerInfo(), 3159 false, false, 0); 3160 return FrameAddr; 3161 } 3162 3163 /// ExpandBITCAST - If the target supports VFP, this function is called to 3164 /// expand a bit convert where either the source or destination type is i64 to 3165 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 3166 /// operand type is illegal (e.g., v2f32 for a target that doesn't support 3167 /// vectors), since the legalizer won't know what to do with that. 3168 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { 3169 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3170 DebugLoc dl = N->getDebugLoc(); 3171 SDValue Op = N->getOperand(0); 3172 3173 // This function is only supposed to be called for i64 types, either as the 3174 // source or destination of the bit convert. 3175 EVT SrcVT = Op.getValueType(); 3176 EVT DstVT = N->getValueType(0); 3177 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && 3178 "ExpandBITCAST called for non-i64 type"); 3179 3180 // Turn i64->f64 into VMOVDRR. 3181 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { 3182 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 3183 DAG.getConstant(0, MVT::i32)); 3184 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 3185 DAG.getConstant(1, MVT::i32)); 3186 return DAG.getNode(ISD::BITCAST, dl, DstVT, 3187 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); 3188 } 3189 3190 // Turn f64->i64 into VMOVRRD. 3191 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { 3192 SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 3193 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); 3194 // Merge the pieces into a single i64 value. 3195 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); 3196 } 3197 3198 return SDValue(); 3199 } 3200 3201 /// getZeroVector - Returns a vector of specified type with all zero elements. 3202 /// Zero vectors are used to represent vector negation and in those cases 3203 /// will be implemented with the NEON VNEG instruction. However, VNEG does 3204 /// not support i64 elements, so sometimes the zero vectors will need to be 3205 /// explicitly constructed. Regardless, use a canonical VMOV to create the 3206 /// zero vector. 3207 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3208 assert(VT.isVector() && "Expected a vector type"); 3209 // The canonical modified immediate encoding of a zero vector is....0! 3210 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32); 3211 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 3212 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); 3213 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 3214 } 3215 3216 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 3217 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 3218 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, 3219 SelectionDAG &DAG) const { 3220 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 3221 EVT VT = Op.getValueType(); 3222 unsigned VTBits = VT.getSizeInBits(); 3223 DebugLoc dl = Op.getDebugLoc(); 3224 SDValue ShOpLo = Op.getOperand(0); 3225 SDValue ShOpHi = Op.getOperand(1); 3226 SDValue ShAmt = Op.getOperand(2); 3227 SDValue ARMcc; 3228 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 3229 3230 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 3231 3232 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 3233 DAG.getConstant(VTBits, MVT::i32), ShAmt); 3234 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 3235 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 3236 DAG.getConstant(VTBits, MVT::i32)); 3237 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 3238 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 3239 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 3240 3241 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3242 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, 3243 ARMcc, DAG, dl); 3244 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 3245 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, 3246 CCR, Cmp); 3247 3248 SDValue Ops[2] = { Lo, Hi }; 3249 return DAG.getMergeValues(Ops, 2, dl); 3250 } 3251 3252 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 3253 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 3254 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, 3255 SelectionDAG &DAG) const { 3256 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 3257 EVT VT = Op.getValueType(); 3258 unsigned VTBits = VT.getSizeInBits(); 3259 DebugLoc dl = Op.getDebugLoc(); 3260 SDValue ShOpLo = Op.getOperand(0); 3261 SDValue ShOpHi = Op.getOperand(1); 3262 SDValue ShAmt = Op.getOperand(2); 3263 SDValue ARMcc; 3264 3265 assert(Op.getOpcode() == ISD::SHL_PARTS); 3266 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 3267 DAG.getConstant(VTBits, MVT::i32), ShAmt); 3268 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 3269 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 3270 DAG.getConstant(VTBits, MVT::i32)); 3271 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 3272 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 3273 3274 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 3275 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3276 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, 3277 ARMcc, DAG, dl); 3278 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 3279 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, 3280 CCR, Cmp); 3281 3282 SDValue Ops[2] = { Lo, Hi }; 3283 return DAG.getMergeValues(Ops, 2, dl); 3284 } 3285 3286 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3287 SelectionDAG &DAG) const { 3288 // The rounding mode is in bits 23:22 of the FPSCR. 3289 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 3290 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 3291 // so that the shift + and get folded into a bitfield extract. 3292 DebugLoc dl = Op.getDebugLoc(); 3293 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, 3294 DAG.getConstant(Intrinsic::arm_get_fpscr, 3295 MVT::i32)); 3296 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, 3297 DAG.getConstant(1U << 22, MVT::i32)); 3298 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 3299 DAG.getConstant(22, MVT::i32)); 3300 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 3301 DAG.getConstant(3, MVT::i32)); 3302 } 3303 3304 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, 3305 const ARMSubtarget *ST) { 3306 EVT VT = N->getValueType(0); 3307 DebugLoc dl = N->getDebugLoc(); 3308 3309 if (!ST->hasV6T2Ops()) 3310 return SDValue(); 3311 3312 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); 3313 return DAG.getNode(ISD::CTLZ, dl, VT, rbit); 3314 } 3315 3316 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, 3317 const ARMSubtarget *ST) { 3318 EVT VT = N->getValueType(0); 3319 DebugLoc dl = N->getDebugLoc(); 3320 3321 if (!VT.isVector()) 3322 return SDValue(); 3323 3324 // Lower vector shifts on NEON to use VSHL. 3325 assert(ST->hasNEON() && "unexpected vector shift"); 3326 3327 // Left shifts translate directly to the vshiftu intrinsic. 3328 if (N->getOpcode() == ISD::SHL) 3329 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 3330 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), 3331 N->getOperand(0), N->getOperand(1)); 3332 3333 assert((N->getOpcode() == ISD::SRA || 3334 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); 3335 3336 // NEON uses the same intrinsics for both left and right shifts. For 3337 // right shifts, the shift amounts are negative, so negate the vector of 3338 // shift amounts. 3339 EVT ShiftVT = N->getOperand(1).getValueType(); 3340 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, 3341 getZeroVector(ShiftVT, DAG, dl), 3342 N->getOperand(1)); 3343 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? 3344 Intrinsic::arm_neon_vshifts : 3345 Intrinsic::arm_neon_vshiftu); 3346 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 3347 DAG.getConstant(vshiftInt, MVT::i32), 3348 N->getOperand(0), NegatedCount); 3349 } 3350 3351 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, 3352 const ARMSubtarget *ST) { 3353 EVT VT = N->getValueType(0); 3354 DebugLoc dl = N->getDebugLoc(); 3355 3356 // We can get here for a node like i32 = ISD::SHL i32, i64 3357 if (VT != MVT::i64) 3358 return SDValue(); 3359 3360 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 3361 "Unknown shift to lower!"); 3362 3363 // We only lower SRA, SRL of 1 here, all others use generic lowering. 3364 if (!isa<ConstantSDNode>(N->getOperand(1)) || 3365 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) 3366 return SDValue(); 3367 3368 // If we are in thumb mode, we don't have RRX. 3369 if (ST->isThumb1Only()) return SDValue(); 3370 3371 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. 3372 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 3373 DAG.getConstant(0, MVT::i32)); 3374 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 3375 DAG.getConstant(1, MVT::i32)); 3376 3377 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and 3378 // captures the result into a carry flag. 3379 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; 3380 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1); 3381 3382 // The low part is an ARMISD::RRX operand, which shifts the carry in. 3383 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); 3384 3385 // Merge the pieces into a single i64 value. 3386 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 3387 } 3388 3389 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { 3390 SDValue TmpOp0, TmpOp1; 3391 bool Invert = false; 3392 bool Swap = false; 3393 unsigned Opc = 0; 3394 3395 SDValue Op0 = Op.getOperand(0); 3396 SDValue Op1 = Op.getOperand(1); 3397 SDValue CC = Op.getOperand(2); 3398 EVT VT = Op.getValueType(); 3399 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 3400 DebugLoc dl = Op.getDebugLoc(); 3401 3402 if (Op.getOperand(1).getValueType().isFloatingPoint()) { 3403 switch (SetCCOpcode) { 3404 default: llvm_unreachable("Illegal FP comparison"); break; 3405 case ISD::SETUNE: 3406 case ISD::SETNE: Invert = true; // Fallthrough 3407 case ISD::SETOEQ: 3408 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 3409 case ISD::SETOLT: 3410 case ISD::SETLT: Swap = true; // Fallthrough 3411 case ISD::SETOGT: 3412 case ISD::SETGT: Opc = ARMISD::VCGT; break; 3413 case ISD::SETOLE: 3414 case ISD::SETLE: Swap = true; // Fallthrough 3415 case ISD::SETOGE: 3416 case ISD::SETGE: Opc = ARMISD::VCGE; break; 3417 case ISD::SETUGE: Swap = true; // Fallthrough 3418 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; 3419 case ISD::SETUGT: Swap = true; // Fallthrough 3420 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; 3421 case ISD::SETUEQ: Invert = true; // Fallthrough 3422 case ISD::SETONE: 3423 // Expand this to (OLT | OGT). 3424 TmpOp0 = Op0; 3425 TmpOp1 = Op1; 3426 Opc = ISD::OR; 3427 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); 3428 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); 3429 break; 3430 case ISD::SETUO: Invert = true; // Fallthrough 3431 case ISD::SETO: 3432 // Expand this to (OLT | OGE). 3433 TmpOp0 = Op0; 3434 TmpOp1 = Op1; 3435 Opc = ISD::OR; 3436 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); 3437 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); 3438 break; 3439 } 3440 } else { 3441 // Integer comparisons. 3442 switch (SetCCOpcode) { 3443 default: llvm_unreachable("Illegal integer comparison"); break; 3444 case ISD::SETNE: Invert = true; 3445 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 3446 case ISD::SETLT: Swap = true; 3447 case ISD::SETGT: Opc = ARMISD::VCGT; break; 3448 case ISD::SETLE: Swap = true; 3449 case ISD::SETGE: Opc = ARMISD::VCGE; break; 3450 case ISD::SETULT: Swap = true; 3451 case ISD::SETUGT: Opc = ARMISD::VCGTU; break; 3452 case ISD::SETULE: Swap = true; 3453 case ISD::SETUGE: Opc = ARMISD::VCGEU; break; 3454 } 3455 3456 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). 3457 if (Opc == ARMISD::VCEQ) { 3458 3459 SDValue AndOp; 3460 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 3461 AndOp = Op0; 3462 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) 3463 AndOp = Op1; 3464 3465 // Ignore bitconvert. 3466 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) 3467 AndOp = AndOp.getOperand(0); 3468 3469 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { 3470 Opc = ARMISD::VTST; 3471 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0)); 3472 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1)); 3473 Invert = !Invert; 3474 } 3475 } 3476 } 3477 3478 if (Swap) 3479 std::swap(Op0, Op1); 3480 3481 // If one of the operands is a constant vector zero, attempt to fold the 3482 // comparison to a specialized compare-against-zero form. 3483 SDValue SingleOp; 3484 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 3485 SingleOp = Op0; 3486 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 3487 if (Opc == ARMISD::VCGE) 3488 Opc = ARMISD::VCLEZ; 3489 else if (Opc == ARMISD::VCGT) 3490 Opc = ARMISD::VCLTZ; 3491 SingleOp = Op1; 3492 } 3493 3494 SDValue Result; 3495 if (SingleOp.getNode()) { 3496 switch (Opc) { 3497 case ARMISD::VCEQ: 3498 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break; 3499 case ARMISD::VCGE: 3500 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break; 3501 case ARMISD::VCLEZ: 3502 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break; 3503 case ARMISD::VCGT: 3504 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break; 3505 case ARMISD::VCLTZ: 3506 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break; 3507 default: 3508 Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 3509 } 3510 } else { 3511 Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 3512 } 3513 3514 if (Invert) 3515 Result = DAG.getNOT(dl, Result, VT); 3516 3517 return Result; 3518 } 3519 3520 /// isNEONModifiedImm - Check if the specified splat value corresponds to a 3521 /// valid vector constant for a NEON instruction with a "modified immediate" 3522 /// operand (e.g., VMOV). If so, return the encoded value. 3523 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, 3524 unsigned SplatBitSize, SelectionDAG &DAG, 3525 EVT &VT, bool is128Bits, NEONModImmType type) { 3526 unsigned OpCmode, Imm; 3527 3528 // SplatBitSize is set to the smallest size that splats the vector, so a 3529 // zero vector will always have SplatBitSize == 8. However, NEON modified 3530 // immediate instructions others than VMOV do not support the 8-bit encoding 3531 // of a zero vector, and the default encoding of zero is supposed to be the 3532 // 32-bit version. 3533 if (SplatBits == 0) 3534 SplatBitSize = 32; 3535 3536 switch (SplatBitSize) { 3537 case 8: 3538 if (type != VMOVModImm) 3539 return SDValue(); 3540 // Any 1-byte value is OK. Op=0, Cmode=1110. 3541 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); 3542 OpCmode = 0xe; 3543 Imm = SplatBits; 3544 VT = is128Bits ? MVT::v16i8 : MVT::v8i8; 3545 break; 3546 3547 case 16: 3548 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. 3549 VT = is128Bits ? MVT::v8i16 : MVT::v4i16; 3550 if ((SplatBits & ~0xff) == 0) { 3551 // Value = 0x00nn: Op=x, Cmode=100x. 3552 OpCmode = 0x8; 3553 Imm = SplatBits; 3554 break; 3555 } 3556 if ((SplatBits & ~0xff00) == 0) { 3557 // Value = 0xnn00: Op=x, Cmode=101x. 3558 OpCmode = 0xa; 3559 Imm = SplatBits >> 8; 3560 break; 3561 } 3562 return SDValue(); 3563 3564 case 32: 3565 // NEON's 32-bit VMOV supports splat values where: 3566 // * only one byte is nonzero, or 3567 // * the least significant byte is 0xff and the second byte is nonzero, or 3568 // * the least significant 2 bytes are 0xff and the third is nonzero. 3569 VT = is128Bits ? MVT::v4i32 : MVT::v2i32; 3570 if ((SplatBits & ~0xff) == 0) { 3571 // Value = 0x000000nn: Op=x, Cmode=000x. 3572 OpCmode = 0; 3573 Imm = SplatBits; 3574 break; 3575 } 3576 if ((SplatBits & ~0xff00) == 0) { 3577 // Value = 0x0000nn00: Op=x, Cmode=001x. 3578 OpCmode = 0x2; 3579 Imm = SplatBits >> 8; 3580 break; 3581 } 3582 if ((SplatBits & ~0xff0000) == 0) { 3583 // Value = 0x00nn0000: Op=x, Cmode=010x. 3584 OpCmode = 0x4; 3585 Imm = SplatBits >> 16; 3586 break; 3587 } 3588 if ((SplatBits & ~0xff000000) == 0) { 3589 // Value = 0xnn000000: Op=x, Cmode=011x. 3590 OpCmode = 0x6; 3591 Imm = SplatBits >> 24; 3592 break; 3593 } 3594 3595 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC 3596 if (type == OtherModImm) return SDValue(); 3597 3598 if ((SplatBits & ~0xffff) == 0 && 3599 ((SplatBits | SplatUndef) & 0xff) == 0xff) { 3600 // Value = 0x0000nnff: Op=x, Cmode=1100. 3601 OpCmode = 0xc; 3602 Imm = SplatBits >> 8; 3603 SplatBits |= 0xff; 3604 break; 3605 } 3606 3607 if ((SplatBits & ~0xffffff) == 0 && 3608 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { 3609 // Value = 0x00nnffff: Op=x, Cmode=1101. 3610 OpCmode = 0xd; 3611 Imm = SplatBits >> 16; 3612 SplatBits |= 0xffff; 3613 break; 3614 } 3615 3616 // Note: there are a few 32-bit splat values (specifically: 00ffff00, 3617 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not 3618 // VMOV.I32. A (very) minor optimization would be to replicate the value 3619 // and fall through here to test for a valid 64-bit splat. But, then the 3620 // caller would also need to check and handle the change in size. 3621 return SDValue(); 3622 3623 case 64: { 3624 if (type != VMOVModImm) 3625 return SDValue(); 3626 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. 3627 uint64_t BitMask = 0xff; 3628 uint64_t Val = 0; 3629 unsigned ImmMask = 1; 3630 Imm = 0; 3631 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { 3632 if (((SplatBits | SplatUndef) & BitMask) == BitMask) { 3633 Val |= BitMask; 3634 Imm |= ImmMask; 3635 } else if ((SplatBits & BitMask) != 0) { 3636 return SDValue(); 3637 } 3638 BitMask <<= 8; 3639 ImmMask <<= 1; 3640 } 3641 // Op=1, Cmode=1110. 3642 OpCmode = 0x1e; 3643 SplatBits = Val; 3644 VT = is128Bits ? MVT::v2i64 : MVT::v1i64; 3645 break; 3646 } 3647 3648 default: 3649 llvm_unreachable("unexpected size for isNEONModifiedImm"); 3650 return SDValue(); 3651 } 3652 3653 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); 3654 return DAG.getTargetConstant(EncodedVal, MVT::i32); 3655 } 3656 3657 static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT, 3658 bool &ReverseVEXT, unsigned &Imm) { 3659 unsigned NumElts = VT.getVectorNumElements(); 3660 ReverseVEXT = false; 3661 3662 // Assume that the first shuffle index is not UNDEF. Fail if it is. 3663 if (M[0] < 0) 3664 return false; 3665 3666 Imm = M[0]; 3667 3668 // If this is a VEXT shuffle, the immediate value is the index of the first 3669 // element. The other shuffle indices must be the successive elements after 3670 // the first one. 3671 unsigned ExpectedElt = Imm; 3672 for (unsigned i = 1; i < NumElts; ++i) { 3673 // Increment the expected index. If it wraps around, it may still be 3674 // a VEXT but the source vectors must be swapped. 3675 ExpectedElt += 1; 3676 if (ExpectedElt == NumElts * 2) { 3677 ExpectedElt = 0; 3678 ReverseVEXT = true; 3679 } 3680 3681 if (M[i] < 0) continue; // ignore UNDEF indices 3682 if (ExpectedElt != static_cast<unsigned>(M[i])) 3683 return false; 3684 } 3685 3686 // Adjust the index value if the source operands will be swapped. 3687 if (ReverseVEXT) 3688 Imm -= NumElts; 3689 3690 return true; 3691 } 3692 3693 /// isVREVMask - Check if a vector shuffle corresponds to a VREV 3694 /// instruction with the specified blocksize. (The order of the elements 3695 /// within each block of the vector is reversed.) 3696 static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT, 3697 unsigned BlockSize) { 3698 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && 3699 "Only possible block sizes for VREV are: 16, 32, 64"); 3700 3701 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3702 if (EltSz == 64) 3703 return false; 3704 3705 unsigned NumElts = VT.getVectorNumElements(); 3706 unsigned BlockElts = M[0] + 1; 3707 // If the first shuffle index is UNDEF, be optimistic. 3708 if (M[0] < 0) 3709 BlockElts = BlockSize / EltSz; 3710 3711 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 3712 return false; 3713 3714 for (unsigned i = 0; i < NumElts; ++i) { 3715 if (M[i] < 0) continue; // ignore UNDEF indices 3716 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) 3717 return false; 3718 } 3719 3720 return true; 3721 } 3722 3723 static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) { 3724 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of 3725 // range, then 0 is placed into the resulting vector. So pretty much any mask 3726 // of 8 elements can work here. 3727 return VT == MVT::v8i8 && M.size() == 8; 3728 } 3729 3730 static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT, 3731 unsigned &WhichResult) { 3732 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3733 if (EltSz == 64) 3734 return false; 3735 3736 unsigned NumElts = VT.getVectorNumElements(); 3737 WhichResult = (M[0] == 0 ? 0 : 1); 3738 for (unsigned i = 0; i < NumElts; i += 2) { 3739 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || 3740 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult)) 3741 return false; 3742 } 3743 return true; 3744 } 3745 3746 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of 3747 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 3748 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 3749 static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, 3750 unsigned &WhichResult) { 3751 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3752 if (EltSz == 64) 3753 return false; 3754 3755 unsigned NumElts = VT.getVectorNumElements(); 3756 WhichResult = (M[0] == 0 ? 0 : 1); 3757 for (unsigned i = 0; i < NumElts; i += 2) { 3758 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || 3759 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult)) 3760 return false; 3761 } 3762 return true; 3763 } 3764 3765 static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT, 3766 unsigned &WhichResult) { 3767 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3768 if (EltSz == 64) 3769 return false; 3770 3771 unsigned NumElts = VT.getVectorNumElements(); 3772 WhichResult = (M[0] == 0 ? 0 : 1); 3773 for (unsigned i = 0; i != NumElts; ++i) { 3774 if (M[i] < 0) continue; // ignore UNDEF indices 3775 if ((unsigned) M[i] != 2 * i + WhichResult) 3776 return false; 3777 } 3778 3779 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 3780 if (VT.is64BitVector() && EltSz == 32) 3781 return false; 3782 3783 return true; 3784 } 3785 3786 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of 3787 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 3788 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 3789 static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, 3790 unsigned &WhichResult) { 3791 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3792 if (EltSz == 64) 3793 return false; 3794 3795 unsigned Half = VT.getVectorNumElements() / 2; 3796 WhichResult = (M[0] == 0 ? 0 : 1); 3797 for (unsigned j = 0; j != 2; ++j) { 3798 unsigned Idx = WhichResult; 3799 for (unsigned i = 0; i != Half; ++i) { 3800 int MIdx = M[i + j * Half]; 3801 if (MIdx >= 0 && (unsigned) MIdx != Idx) 3802 return false; 3803 Idx += 2; 3804 } 3805 } 3806 3807 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 3808 if (VT.is64BitVector() && EltSz == 32) 3809 return false; 3810 3811 return true; 3812 } 3813 3814 static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT, 3815 unsigned &WhichResult) { 3816 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3817 if (EltSz == 64) 3818 return false; 3819 3820 unsigned NumElts = VT.getVectorNumElements(); 3821 WhichResult = (M[0] == 0 ? 0 : 1); 3822 unsigned Idx = WhichResult * NumElts / 2; 3823 for (unsigned i = 0; i != NumElts; i += 2) { 3824 if ((M[i] >= 0 && (unsigned) M[i] != Idx) || 3825 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts)) 3826 return false; 3827 Idx += 1; 3828 } 3829 3830 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 3831 if (VT.is64BitVector() && EltSz == 32) 3832 return false; 3833 3834 return true; 3835 } 3836 3837 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of 3838 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 3839 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 3840 static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, 3841 unsigned &WhichResult) { 3842 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 3843 if (EltSz == 64) 3844 return false; 3845 3846 unsigned NumElts = VT.getVectorNumElements(); 3847 WhichResult = (M[0] == 0 ? 0 : 1); 3848 unsigned Idx = WhichResult * NumElts / 2; 3849 for (unsigned i = 0; i != NumElts; i += 2) { 3850 if ((M[i] >= 0 && (unsigned) M[i] != Idx) || 3851 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx)) 3852 return false; 3853 Idx += 1; 3854 } 3855 3856 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 3857 if (VT.is64BitVector() && EltSz == 32) 3858 return false; 3859 3860 return true; 3861 } 3862 3863 // If N is an integer constant that can be moved into a register in one 3864 // instruction, return an SDValue of such a constant (will become a MOV 3865 // instruction). Otherwise return null. 3866 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, 3867 const ARMSubtarget *ST, DebugLoc dl) { 3868 uint64_t Val; 3869 if (!isa<ConstantSDNode>(N)) 3870 return SDValue(); 3871 Val = cast<ConstantSDNode>(N)->getZExtValue(); 3872 3873 if (ST->isThumb1Only()) { 3874 if (Val <= 255 || ~Val <= 255) 3875 return DAG.getConstant(Val, MVT::i32); 3876 } else { 3877 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) 3878 return DAG.getConstant(Val, MVT::i32); 3879 } 3880 return SDValue(); 3881 } 3882 3883 // If this is a case we can't handle, return null and let the default 3884 // expansion code take care of it. 3885 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 3886 const ARMSubtarget *ST) const { 3887 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 3888 DebugLoc dl = Op.getDebugLoc(); 3889 EVT VT = Op.getValueType(); 3890 3891 APInt SplatBits, SplatUndef; 3892 unsigned SplatBitSize; 3893 bool HasAnyUndefs; 3894 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 3895 if (SplatBitSize <= 64) { 3896 // Check if an immediate VMOV works. 3897 EVT VmovVT; 3898 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 3899 SplatUndef.getZExtValue(), SplatBitSize, 3900 DAG, VmovVT, VT.is128BitVector(), 3901 VMOVModImm); 3902 if (Val.getNode()) { 3903 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); 3904 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 3905 } 3906 3907 // Try an immediate VMVN. 3908 uint64_t NegatedImm = (SplatBits.getZExtValue() ^ 3909 ((1LL << SplatBitSize) - 1)); 3910 Val = isNEONModifiedImm(NegatedImm, 3911 SplatUndef.getZExtValue(), SplatBitSize, 3912 DAG, VmovVT, VT.is128BitVector(), 3913 VMVNModImm); 3914 if (Val.getNode()) { 3915 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); 3916 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 3917 } 3918 } 3919 } 3920 3921 // Scan through the operands to see if only one value is used. 3922 unsigned NumElts = VT.getVectorNumElements(); 3923 bool isOnlyLowElement = true; 3924 bool usesOnlyOneValue = true; 3925 bool isConstant = true; 3926 SDValue Value; 3927 for (unsigned i = 0; i < NumElts; ++i) { 3928 SDValue V = Op.getOperand(i); 3929 if (V.getOpcode() == ISD::UNDEF) 3930 continue; 3931 if (i > 0) 3932 isOnlyLowElement = false; 3933 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 3934 isConstant = false; 3935 3936 if (!Value.getNode()) 3937 Value = V; 3938 else if (V != Value) 3939 usesOnlyOneValue = false; 3940 } 3941 3942 if (!Value.getNode()) 3943 return DAG.getUNDEF(VT); 3944 3945 if (isOnlyLowElement) 3946 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 3947 3948 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 3949 3950 // Use VDUP for non-constant splats. For f32 constant splats, reduce to 3951 // i32 and try again. 3952 if (usesOnlyOneValue && EltSize <= 32) { 3953 if (!isConstant) 3954 return DAG.getNode(ARMISD::VDUP, dl, VT, Value); 3955 if (VT.getVectorElementType().isFloatingPoint()) { 3956 SmallVector<SDValue, 8> Ops; 3957 for (unsigned i = 0; i < NumElts; ++i) 3958 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, 3959 Op.getOperand(i))); 3960 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 3961 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts); 3962 Val = LowerBUILD_VECTOR(Val, DAG, ST); 3963 if (Val.getNode()) 3964 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 3965 } 3966 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); 3967 if (Val.getNode()) 3968 return DAG.getNode(ARMISD::VDUP, dl, VT, Val); 3969 } 3970 3971 // If all elements are constants and the case above didn't get hit, fall back 3972 // to the default expansion, which will generate a load from the constant 3973 // pool. 3974 if (isConstant) 3975 return SDValue(); 3976 3977 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 3978 if (NumElts >= 4) { 3979 SDValue shuffle = ReconstructShuffle(Op, DAG); 3980 if (shuffle != SDValue()) 3981 return shuffle; 3982 } 3983 3984 // Vectors with 32- or 64-bit elements can be built by directly assigning 3985 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands 3986 // will be legalized. 3987 if (EltSize >= 32) { 3988 // Do the expansion with floating-point types, since that is what the VFP 3989 // registers are defined to use, and since i64 is not legal. 3990 EVT EltVT = EVT::getFloatingPointVT(EltSize); 3991 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 3992 SmallVector<SDValue, 8> Ops; 3993 for (unsigned i = 0; i < NumElts; ++i) 3994 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); 3995 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); 3996 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 3997 } 3998 3999 return SDValue(); 4000 } 4001 4002 // Gather data to see if the operation can be modelled as a 4003 // shuffle in combination with VEXTs. 4004 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, 4005 SelectionDAG &DAG) const { 4006 DebugLoc dl = Op.getDebugLoc(); 4007 EVT VT = Op.getValueType(); 4008 unsigned NumElts = VT.getVectorNumElements(); 4009 4010 SmallVector<SDValue, 2> SourceVecs; 4011 SmallVector<unsigned, 2> MinElts; 4012 SmallVector<unsigned, 2> MaxElts; 4013 4014 for (unsigned i = 0; i < NumElts; ++i) { 4015 SDValue V = Op.getOperand(i); 4016 if (V.getOpcode() == ISD::UNDEF) 4017 continue; 4018 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { 4019 // A shuffle can only come from building a vector from various 4020 // elements of other vectors. 4021 return SDValue(); 4022 } 4023 4024 // Record this extraction against the appropriate vector if possible... 4025 SDValue SourceVec = V.getOperand(0); 4026 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 4027 bool FoundSource = false; 4028 for (unsigned j = 0; j < SourceVecs.size(); ++j) { 4029 if (SourceVecs[j] == SourceVec) { 4030 if (MinElts[j] > EltNo) 4031 MinElts[j] = EltNo; 4032 if (MaxElts[j] < EltNo) 4033 MaxElts[j] = EltNo; 4034 FoundSource = true; 4035 break; 4036 } 4037 } 4038 4039 // Or record a new source if not... 4040 if (!FoundSource) { 4041 SourceVecs.push_back(SourceVec); 4042 MinElts.push_back(EltNo); 4043 MaxElts.push_back(EltNo); 4044 } 4045 } 4046 4047 // Currently only do something sane when at most two source vectors 4048 // involved. 4049 if (SourceVecs.size() > 2) 4050 return SDValue(); 4051 4052 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; 4053 int VEXTOffsets[2] = {0, 0}; 4054 4055 // This loop extracts the usage patterns of the source vectors 4056 // and prepares appropriate SDValues for a shuffle if possible. 4057 for (unsigned i = 0; i < SourceVecs.size(); ++i) { 4058 if (SourceVecs[i].getValueType() == VT) { 4059 // No VEXT necessary 4060 ShuffleSrcs[i] = SourceVecs[i]; 4061 VEXTOffsets[i] = 0; 4062 continue; 4063 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) { 4064 // It probably isn't worth padding out a smaller vector just to 4065 // break it down again in a shuffle. 4066 return SDValue(); 4067 } 4068 4069 // Since only 64-bit and 128-bit vectors are legal on ARM and 4070 // we've eliminated the other cases... 4071 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && 4072 "unexpected vector sizes in ReconstructShuffle"); 4073 4074 if (MaxElts[i] - MinElts[i] >= NumElts) { 4075 // Span too large for a VEXT to cope 4076 return SDValue(); 4077 } 4078 4079 if (MinElts[i] >= NumElts) { 4080 // The extraction can just take the second half 4081 VEXTOffsets[i] = NumElts; 4082 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4083 SourceVecs[i], 4084 DAG.getIntPtrConstant(NumElts)); 4085 } else if (MaxElts[i] < NumElts) { 4086 // The extraction can just take the first half 4087 VEXTOffsets[i] = 0; 4088 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4089 SourceVecs[i], 4090 DAG.getIntPtrConstant(0)); 4091 } else { 4092 // An actual VEXT is needed 4093 VEXTOffsets[i] = MinElts[i]; 4094 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4095 SourceVecs[i], 4096 DAG.getIntPtrConstant(0)); 4097 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4098 SourceVecs[i], 4099 DAG.getIntPtrConstant(NumElts)); 4100 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2, 4101 DAG.getConstant(VEXTOffsets[i], MVT::i32)); 4102 } 4103 } 4104 4105 SmallVector<int, 8> Mask; 4106 4107 for (unsigned i = 0; i < NumElts; ++i) { 4108 SDValue Entry = Op.getOperand(i); 4109 if (Entry.getOpcode() == ISD::UNDEF) { 4110 Mask.push_back(-1); 4111 continue; 4112 } 4113 4114 SDValue ExtractVec = Entry.getOperand(0); 4115 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i) 4116 .getOperand(1))->getSExtValue(); 4117 if (ExtractVec == SourceVecs[0]) { 4118 Mask.push_back(ExtractElt - VEXTOffsets[0]); 4119 } else { 4120 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]); 4121 } 4122 } 4123 4124 // Final check before we try to produce nonsense... 4125 if (isShuffleMaskLegal(Mask, VT)) 4126 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], 4127 &Mask[0]); 4128 4129 return SDValue(); 4130 } 4131 4132 /// isShuffleMaskLegal - Targets can use this to indicate that they only 4133 /// support *some* VECTOR_SHUFFLE operations, those with specific masks. 4134 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 4135 /// are assumed to be legal. 4136 bool 4137 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 4138 EVT VT) const { 4139 if (VT.getVectorNumElements() == 4 && 4140 (VT.is128BitVector() || VT.is64BitVector())) { 4141 unsigned PFIndexes[4]; 4142 for (unsigned i = 0; i != 4; ++i) { 4143 if (M[i] < 0) 4144 PFIndexes[i] = 8; 4145 else 4146 PFIndexes[i] = M[i]; 4147 } 4148 4149 // Compute the index in the perfect shuffle table. 4150 unsigned PFTableIndex = 4151 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4152 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4153 unsigned Cost = (PFEntry >> 30); 4154 4155 if (Cost <= 4) 4156 return true; 4157 } 4158 4159 bool ReverseVEXT; 4160 unsigned Imm, WhichResult; 4161 4162 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 4163 return (EltSize >= 32 || 4164 ShuffleVectorSDNode::isSplatMask(&M[0], VT) || 4165 isVREVMask(M, VT, 64) || 4166 isVREVMask(M, VT, 32) || 4167 isVREVMask(M, VT, 16) || 4168 isVEXTMask(M, VT, ReverseVEXT, Imm) || 4169 isVTBLMask(M, VT) || 4170 isVTRNMask(M, VT, WhichResult) || 4171 isVUZPMask(M, VT, WhichResult) || 4172 isVZIPMask(M, VT, WhichResult) || 4173 isVTRN_v_undef_Mask(M, VT, WhichResult) || 4174 isVUZP_v_undef_Mask(M, VT, WhichResult) || 4175 isVZIP_v_undef_Mask(M, VT, WhichResult)); 4176 } 4177 4178 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4179 /// the specified operations to build the shuffle. 4180 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4181 SDValue RHS, SelectionDAG &DAG, 4182 DebugLoc dl) { 4183 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4184 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4185 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4186 4187 enum { 4188 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4189 OP_VREV, 4190 OP_VDUP0, 4191 OP_VDUP1, 4192 OP_VDUP2, 4193 OP_VDUP3, 4194 OP_VEXT1, 4195 OP_VEXT2, 4196 OP_VEXT3, 4197 OP_VUZPL, // VUZP, left result 4198 OP_VUZPR, // VUZP, right result 4199 OP_VZIPL, // VZIP, left result 4200 OP_VZIPR, // VZIP, right result 4201 OP_VTRNL, // VTRN, left result 4202 OP_VTRNR // VTRN, right result 4203 }; 4204 4205 if (OpNum == OP_COPY) { 4206 if (LHSID == (1*9+2)*9+3) return LHS; 4207 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4208 return RHS; 4209 } 4210 4211 SDValue OpLHS, OpRHS; 4212 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4213 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4214 EVT VT = OpLHS.getValueType(); 4215 4216 switch (OpNum) { 4217 default: llvm_unreachable("Unknown shuffle opcode!"); 4218 case OP_VREV: 4219 // VREV divides the vector in half and swaps within the half. 4220 if (VT.getVectorElementType() == MVT::i32 || 4221 VT.getVectorElementType() == MVT::f32) 4222 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); 4223 // vrev <4 x i16> -> VREV32 4224 if (VT.getVectorElementType() == MVT::i16) 4225 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); 4226 // vrev <4 x i8> -> VREV16 4227 assert(VT.getVectorElementType() == MVT::i8); 4228 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); 4229 case OP_VDUP0: 4230 case OP_VDUP1: 4231 case OP_VDUP2: 4232 case OP_VDUP3: 4233 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, 4234 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); 4235 case OP_VEXT1: 4236 case OP_VEXT2: 4237 case OP_VEXT3: 4238 return DAG.getNode(ARMISD::VEXT, dl, VT, 4239 OpLHS, OpRHS, 4240 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); 4241 case OP_VUZPL: 4242 case OP_VUZPR: 4243 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 4244 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); 4245 case OP_VZIPL: 4246 case OP_VZIPR: 4247 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 4248 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); 4249 case OP_VTRNL: 4250 case OP_VTRNR: 4251 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 4252 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); 4253 } 4254 } 4255 4256 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, 4257 SmallVectorImpl<int> &ShuffleMask, 4258 SelectionDAG &DAG) { 4259 // Check to see if we can use the VTBL instruction. 4260 SDValue V1 = Op.getOperand(0); 4261 SDValue V2 = Op.getOperand(1); 4262 DebugLoc DL = Op.getDebugLoc(); 4263 4264 SmallVector<SDValue, 8> VTBLMask; 4265 for (SmallVectorImpl<int>::iterator 4266 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) 4267 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32)); 4268 4269 if (V2.getNode()->getOpcode() == ISD::UNDEF) 4270 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, 4271 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, 4272 &VTBLMask[0], 8)); 4273 4274 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, 4275 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, 4276 &VTBLMask[0], 8)); 4277 } 4278 4279 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 4280 SDValue V1 = Op.getOperand(0); 4281 SDValue V2 = Op.getOperand(1); 4282 DebugLoc dl = Op.getDebugLoc(); 4283 EVT VT = Op.getValueType(); 4284 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 4285 SmallVector<int, 8> ShuffleMask; 4286 4287 // Convert shuffles that are directly supported on NEON to target-specific 4288 // DAG nodes, instead of keeping them as shuffles and matching them again 4289 // during code selection. This is more efficient and avoids the possibility 4290 // of inconsistencies between legalization and selection. 4291 // FIXME: floating-point vectors should be canonicalized to integer vectors 4292 // of the same time so that they get CSEd properly. 4293 SVN->getMask(ShuffleMask); 4294 4295 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 4296 if (EltSize <= 32) { 4297 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { 4298 int Lane = SVN->getSplatIndex(); 4299 // If this is undef splat, generate it via "just" vdup, if possible. 4300 if (Lane == -1) Lane = 0; 4301 4302 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { 4303 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 4304 } 4305 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, 4306 DAG.getConstant(Lane, MVT::i32)); 4307 } 4308 4309 bool ReverseVEXT; 4310 unsigned Imm; 4311 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { 4312 if (ReverseVEXT) 4313 std::swap(V1, V2); 4314 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, 4315 DAG.getConstant(Imm, MVT::i32)); 4316 } 4317 4318 if (isVREVMask(ShuffleMask, VT, 64)) 4319 return DAG.getNode(ARMISD::VREV64, dl, VT, V1); 4320 if (isVREVMask(ShuffleMask, VT, 32)) 4321 return DAG.getNode(ARMISD::VREV32, dl, VT, V1); 4322 if (isVREVMask(ShuffleMask, VT, 16)) 4323 return DAG.getNode(ARMISD::VREV16, dl, VT, V1); 4324 4325 // Check for Neon shuffles that modify both input vectors in place. 4326 // If both results are used, i.e., if there are two shuffles with the same 4327 // source operands and with masks corresponding to both results of one of 4328 // these operations, DAG memoization will ensure that a single node is 4329 // used for both shuffles. 4330 unsigned WhichResult; 4331 if (isVTRNMask(ShuffleMask, VT, WhichResult)) 4332 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 4333 V1, V2).getValue(WhichResult); 4334 if (isVUZPMask(ShuffleMask, VT, WhichResult)) 4335 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 4336 V1, V2).getValue(WhichResult); 4337 if (isVZIPMask(ShuffleMask, VT, WhichResult)) 4338 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 4339 V1, V2).getValue(WhichResult); 4340 4341 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) 4342 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 4343 V1, V1).getValue(WhichResult); 4344 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 4345 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 4346 V1, V1).getValue(WhichResult); 4347 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 4348 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 4349 V1, V1).getValue(WhichResult); 4350 } 4351 4352 // If the shuffle is not directly supported and it has 4 elements, use 4353 // the PerfectShuffle-generated table to synthesize it from other shuffles. 4354 unsigned NumElts = VT.getVectorNumElements(); 4355 if (NumElts == 4) { 4356 unsigned PFIndexes[4]; 4357 for (unsigned i = 0; i != 4; ++i) { 4358 if (ShuffleMask[i] < 0) 4359 PFIndexes[i] = 8; 4360 else 4361 PFIndexes[i] = ShuffleMask[i]; 4362 } 4363 4364 // Compute the index in the perfect shuffle table. 4365 unsigned PFTableIndex = 4366 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4367 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4368 unsigned Cost = (PFEntry >> 30); 4369 4370 if (Cost <= 4) 4371 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 4372 } 4373 4374 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. 4375 if (EltSize >= 32) { 4376 // Do the expansion with floating-point types, since that is what the VFP 4377 // registers are defined to use, and since i64 is not legal. 4378 EVT EltVT = EVT::getFloatingPointVT(EltSize); 4379 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 4380 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); 4381 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); 4382 SmallVector<SDValue, 8> Ops; 4383 for (unsigned i = 0; i < NumElts; ++i) { 4384 if (ShuffleMask[i] < 0) 4385 Ops.push_back(DAG.getUNDEF(EltVT)); 4386 else 4387 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 4388 ShuffleMask[i] < (int)NumElts ? V1 : V2, 4389 DAG.getConstant(ShuffleMask[i] & (NumElts-1), 4390 MVT::i32))); 4391 } 4392 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); 4393 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 4394 } 4395 4396 if (VT == MVT::v8i8) { 4397 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); 4398 if (NewOp.getNode()) 4399 return NewOp; 4400 } 4401 4402 return SDValue(); 4403 } 4404 4405 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 4406 // EXTRACT_VECTOR_ELT is legal only for immediate indexes. 4407 SDValue Lane = Op.getOperand(1); 4408 if (!isa<ConstantSDNode>(Lane)) 4409 return SDValue(); 4410 4411 SDValue Vec = Op.getOperand(0); 4412 if (Op.getValueType() == MVT::i32 && 4413 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { 4414 DebugLoc dl = Op.getDebugLoc(); 4415 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); 4416 } 4417 4418 return Op; 4419 } 4420 4421 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { 4422 // The only time a CONCAT_VECTORS operation can have legal types is when 4423 // two 64-bit vectors are concatenated to a 128-bit vector. 4424 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && 4425 "unexpected CONCAT_VECTORS"); 4426 DebugLoc dl = Op.getDebugLoc(); 4427 SDValue Val = DAG.getUNDEF(MVT::v2f64); 4428 SDValue Op0 = Op.getOperand(0); 4429 SDValue Op1 = Op.getOperand(1); 4430 if (Op0.getOpcode() != ISD::UNDEF) 4431 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 4432 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), 4433 DAG.getIntPtrConstant(0)); 4434 if (Op1.getOpcode() != ISD::UNDEF) 4435 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 4436 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), 4437 DAG.getIntPtrConstant(1)); 4438 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); 4439 } 4440 4441 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each 4442 /// element has been zero/sign-extended, depending on the isSigned parameter, 4443 /// from an integer type half its size. 4444 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 4445 bool isSigned) { 4446 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. 4447 EVT VT = N->getValueType(0); 4448 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { 4449 SDNode *BVN = N->getOperand(0).getNode(); 4450 if (BVN->getValueType(0) != MVT::v4i32 || 4451 BVN->getOpcode() != ISD::BUILD_VECTOR) 4452 return false; 4453 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; 4454 unsigned HiElt = 1 - LoElt; 4455 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); 4456 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); 4457 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); 4458 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); 4459 if (!Lo0 || !Hi0 || !Lo1 || !Hi1) 4460 return false; 4461 if (isSigned) { 4462 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && 4463 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) 4464 return true; 4465 } else { 4466 if (Hi0->isNullValue() && Hi1->isNullValue()) 4467 return true; 4468 } 4469 return false; 4470 } 4471 4472 if (N->getOpcode() != ISD::BUILD_VECTOR) 4473 return false; 4474 4475 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 4476 SDNode *Elt = N->getOperand(i).getNode(); 4477 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 4478 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 4479 unsigned HalfSize = EltSize / 2; 4480 if (isSigned) { 4481 int64_t SExtVal = C->getSExtValue(); 4482 if ((SExtVal >> HalfSize) != (SExtVal >> EltSize)) 4483 return false; 4484 } else { 4485 if ((C->getZExtValue() >> HalfSize) != 0) 4486 return false; 4487 } 4488 continue; 4489 } 4490 return false; 4491 } 4492 4493 return true; 4494 } 4495 4496 /// isSignExtended - Check if a node is a vector value that is sign-extended 4497 /// or a constant BUILD_VECTOR with sign-extended elements. 4498 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 4499 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) 4500 return true; 4501 if (isExtendedBUILD_VECTOR(N, DAG, true)) 4502 return true; 4503 return false; 4504 } 4505 4506 /// isZeroExtended - Check if a node is a vector value that is zero-extended 4507 /// or a constant BUILD_VECTOR with zero-extended elements. 4508 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 4509 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) 4510 return true; 4511 if (isExtendedBUILD_VECTOR(N, DAG, false)) 4512 return true; 4513 return false; 4514 } 4515 4516 /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending 4517 /// load, or BUILD_VECTOR with extended elements, return the unextended value. 4518 static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) { 4519 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 4520 return N->getOperand(0); 4521 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) 4522 return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(), 4523 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), 4524 LD->isNonTemporal(), LD->getAlignment()); 4525 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will 4526 // have been legalized as a BITCAST from v4i32. 4527 if (N->getOpcode() == ISD::BITCAST) { 4528 SDNode *BVN = N->getOperand(0).getNode(); 4529 assert(BVN->getOpcode() == ISD::BUILD_VECTOR && 4530 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); 4531 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; 4532 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32, 4533 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); 4534 } 4535 // Construct a new BUILD_VECTOR with elements truncated to half the size. 4536 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 4537 EVT VT = N->getValueType(0); 4538 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; 4539 unsigned NumElts = VT.getVectorNumElements(); 4540 MVT TruncVT = MVT::getIntegerVT(EltSize); 4541 SmallVector<SDValue, 8> Ops; 4542 for (unsigned i = 0; i != NumElts; ++i) { 4543 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 4544 const APInt &CInt = C->getAPIntValue(); 4545 Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT)); 4546 } 4547 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), 4548 MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts); 4549 } 4550 4551 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 4552 unsigned Opcode = N->getOpcode(); 4553 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 4554 SDNode *N0 = N->getOperand(0).getNode(); 4555 SDNode *N1 = N->getOperand(1).getNode(); 4556 return N0->hasOneUse() && N1->hasOneUse() && 4557 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 4558 } 4559 return false; 4560 } 4561 4562 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 4563 unsigned Opcode = N->getOpcode(); 4564 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 4565 SDNode *N0 = N->getOperand(0).getNode(); 4566 SDNode *N1 = N->getOperand(1).getNode(); 4567 return N0->hasOneUse() && N1->hasOneUse() && 4568 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 4569 } 4570 return false; 4571 } 4572 4573 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 4574 // Multiplications are only custom-lowered for 128-bit vectors so that 4575 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 4576 EVT VT = Op.getValueType(); 4577 assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL"); 4578 SDNode *N0 = Op.getOperand(0).getNode(); 4579 SDNode *N1 = Op.getOperand(1).getNode(); 4580 unsigned NewOpc = 0; 4581 bool isMLA = false; 4582 bool isN0SExt = isSignExtended(N0, DAG); 4583 bool isN1SExt = isSignExtended(N1, DAG); 4584 if (isN0SExt && isN1SExt) 4585 NewOpc = ARMISD::VMULLs; 4586 else { 4587 bool isN0ZExt = isZeroExtended(N0, DAG); 4588 bool isN1ZExt = isZeroExtended(N1, DAG); 4589 if (isN0ZExt && isN1ZExt) 4590 NewOpc = ARMISD::VMULLu; 4591 else if (isN1SExt || isN1ZExt) { 4592 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 4593 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 4594 if (isN1SExt && isAddSubSExt(N0, DAG)) { 4595 NewOpc = ARMISD::VMULLs; 4596 isMLA = true; 4597 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 4598 NewOpc = ARMISD::VMULLu; 4599 isMLA = true; 4600 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 4601 std::swap(N0, N1); 4602 NewOpc = ARMISD::VMULLu; 4603 isMLA = true; 4604 } 4605 } 4606 4607 if (!NewOpc) { 4608 if (VT == MVT::v2i64) 4609 // Fall through to expand this. It is not legal. 4610 return SDValue(); 4611 else 4612 // Other vector multiplications are legal. 4613 return Op; 4614 } 4615 } 4616 4617 // Legalize to a VMULL instruction. 4618 DebugLoc DL = Op.getDebugLoc(); 4619 SDValue Op0; 4620 SDValue Op1 = SkipExtension(N1, DAG); 4621 if (!isMLA) { 4622 Op0 = SkipExtension(N0, DAG); 4623 assert(Op0.getValueType().is64BitVector() && 4624 Op1.getValueType().is64BitVector() && 4625 "unexpected types for extended operands to VMULL"); 4626 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 4627 } 4628 4629 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during 4630 // isel lowering to take advantage of no-stall back to back vmul + vmla. 4631 // vmull q0, d4, d6 4632 // vmlal q0, d5, d6 4633 // is faster than 4634 // vaddl q0, d4, d5 4635 // vmovl q1, d6 4636 // vmul q0, q0, q1 4637 SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG); 4638 SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG); 4639 EVT Op1VT = Op1.getValueType(); 4640 return DAG.getNode(N0->getOpcode(), DL, VT, 4641 DAG.getNode(NewOpc, DL, VT, 4642 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 4643 DAG.getNode(NewOpc, DL, VT, 4644 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 4645 } 4646 4647 static SDValue 4648 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) { 4649 // Convert to float 4650 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); 4651 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); 4652 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); 4653 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); 4654 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); 4655 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); 4656 // Get reciprocal estimate. 4657 // float4 recip = vrecpeq_f32(yf); 4658 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 4659 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y); 4660 // Because char has a smaller range than uchar, we can actually get away 4661 // without any newton steps. This requires that we use a weird bias 4662 // of 0xb000, however (again, this has been exhaustively tested). 4663 // float4 result = as_float4(as_int4(xf*recip) + 0xb000); 4664 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); 4665 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); 4666 Y = DAG.getConstant(0xb000, MVT::i32); 4667 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); 4668 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); 4669 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); 4670 // Convert back to short. 4671 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); 4672 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); 4673 return X; 4674 } 4675 4676 static SDValue 4677 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) { 4678 SDValue N2; 4679 // Convert to float. 4680 // float4 yf = vcvt_f32_s32(vmovl_s16(y)); 4681 // float4 xf = vcvt_f32_s32(vmovl_s16(x)); 4682 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); 4683 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); 4684 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 4685 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 4686 4687 // Use reciprocal estimate and one refinement step. 4688 // float4 recip = vrecpeq_f32(yf); 4689 // recip *= vrecpsq_f32(yf, recip); 4690 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 4691 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1); 4692 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 4693 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 4694 N1, N2); 4695 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 4696 // Because short has a smaller range than ushort, we can actually get away 4697 // with only a single newton step. This requires that we use a weird bias 4698 // of 89, however (again, this has been exhaustively tested). 4699 // float4 result = as_float4(as_int4(xf*recip) + 0x89); 4700 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 4701 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 4702 N1 = DAG.getConstant(0x89, MVT::i32); 4703 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 4704 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 4705 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 4706 // Convert back to integer and return. 4707 // return vmovn_s32(vcvt_s32_f32(result)); 4708 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 4709 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 4710 return N0; 4711 } 4712 4713 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { 4714 EVT VT = Op.getValueType(); 4715 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 4716 "unexpected type for custom-lowering ISD::SDIV"); 4717 4718 DebugLoc dl = Op.getDebugLoc(); 4719 SDValue N0 = Op.getOperand(0); 4720 SDValue N1 = Op.getOperand(1); 4721 SDValue N2, N3; 4722 4723 if (VT == MVT::v8i8) { 4724 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); 4725 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); 4726 4727 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 4728 DAG.getIntPtrConstant(4)); 4729 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 4730 DAG.getIntPtrConstant(4)); 4731 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 4732 DAG.getIntPtrConstant(0)); 4733 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 4734 DAG.getIntPtrConstant(0)); 4735 4736 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 4737 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 4738 4739 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 4740 N0 = LowerCONCAT_VECTORS(N0, DAG); 4741 4742 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); 4743 return N0; 4744 } 4745 return LowerSDIV_v4i16(N0, N1, dl, DAG); 4746 } 4747 4748 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { 4749 EVT VT = Op.getValueType(); 4750 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 4751 "unexpected type for custom-lowering ISD::UDIV"); 4752 4753 DebugLoc dl = Op.getDebugLoc(); 4754 SDValue N0 = Op.getOperand(0); 4755 SDValue N1 = Op.getOperand(1); 4756 SDValue N2, N3; 4757 4758 if (VT == MVT::v8i8) { 4759 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); 4760 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); 4761 4762 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 4763 DAG.getIntPtrConstant(4)); 4764 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 4765 DAG.getIntPtrConstant(4)); 4766 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 4767 DAG.getIntPtrConstant(0)); 4768 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 4769 DAG.getIntPtrConstant(0)); 4770 4771 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 4772 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 4773 4774 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 4775 N0 = LowerCONCAT_VECTORS(N0, DAG); 4776 4777 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, 4778 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32), 4779 N0); 4780 return N0; 4781 } 4782 4783 // v4i16 sdiv ... Convert to float. 4784 // float4 yf = vcvt_f32_s32(vmovl_u16(y)); 4785 // float4 xf = vcvt_f32_s32(vmovl_u16(x)); 4786 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); 4787 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); 4788 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 4789 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 4790 4791 // Use reciprocal estimate and two refinement steps. 4792 // float4 recip = vrecpeq_f32(yf); 4793 // recip *= vrecpsq_f32(yf, recip); 4794 // recip *= vrecpsq_f32(yf, recip); 4795 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 4796 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1); 4797 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 4798 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 4799 BN1, N2); 4800 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 4801 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 4802 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 4803 BN1, N2); 4804 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 4805 // Simply multiplying by the reciprocal estimate can leave us a few ulps 4806 // too low, so we add 2 ulps (exhaustive testing shows that this is enough, 4807 // and that it will never cause us to return an answer too large). 4808 // float4 result = as_float4(as_int4(xf*recip) + 2); 4809 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 4810 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 4811 N1 = DAG.getConstant(2, MVT::i32); 4812 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 4813 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 4814 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 4815 // Convert back to integer and return. 4816 // return vmovn_u32(vcvt_s32_f32(result)); 4817 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 4818 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 4819 return N0; 4820 } 4821 4822 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 4823 switch (Op.getOpcode()) { 4824 default: llvm_unreachable("Don't know how to custom lower this!"); 4825 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 4826 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 4827 case ISD::GlobalAddress: 4828 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : 4829 LowerGlobalAddressELF(Op, DAG); 4830 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 4831 case ISD::SELECT: return LowerSELECT(Op, DAG); 4832 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 4833 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 4834 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 4835 case ISD::VASTART: return LowerVASTART(Op, DAG); 4836 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget); 4837 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); 4838 case ISD::SINT_TO_FP: 4839 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 4840 case ISD::FP_TO_SINT: 4841 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); 4842 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 4843 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 4844 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 4845 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 4846 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); 4847 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); 4848 case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG); 4849 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, 4850 Subtarget); 4851 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); 4852 case ISD::SHL: 4853 case ISD::SRL: 4854 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); 4855 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); 4856 case ISD::SRL_PARTS: 4857 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); 4858 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget); 4859 case ISD::VSETCC: return LowerVSETCC(Op, DAG); 4860 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); 4861 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 4862 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 4863 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 4864 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 4865 case ISD::MUL: return LowerMUL(Op, DAG); 4866 case ISD::SDIV: return LowerSDIV(Op, DAG); 4867 case ISD::UDIV: return LowerUDIV(Op, DAG); 4868 } 4869 return SDValue(); 4870 } 4871 4872 /// ReplaceNodeResults - Replace the results of node with an illegal result 4873 /// type with new values built out of custom code. 4874 void ARMTargetLowering::ReplaceNodeResults(SDNode *N, 4875 SmallVectorImpl<SDValue>&Results, 4876 SelectionDAG &DAG) const { 4877 SDValue Res; 4878 switch (N->getOpcode()) { 4879 default: 4880 llvm_unreachable("Don't know how to custom expand this!"); 4881 break; 4882 case ISD::BITCAST: 4883 Res = ExpandBITCAST(N, DAG); 4884 break; 4885 case ISD::SRL: 4886 case ISD::SRA: 4887 Res = Expand64BitShift(N, DAG, Subtarget); 4888 break; 4889 } 4890 if (Res.getNode()) 4891 Results.push_back(Res); 4892 } 4893 4894 //===----------------------------------------------------------------------===// 4895 // ARM Scheduler Hooks 4896 //===----------------------------------------------------------------------===// 4897 4898 MachineBasicBlock * 4899 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, 4900 MachineBasicBlock *BB, 4901 unsigned Size) const { 4902 unsigned dest = MI->getOperand(0).getReg(); 4903 unsigned ptr = MI->getOperand(1).getReg(); 4904 unsigned oldval = MI->getOperand(2).getReg(); 4905 unsigned newval = MI->getOperand(3).getReg(); 4906 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 4907 DebugLoc dl = MI->getDebugLoc(); 4908 bool isThumb2 = Subtarget->isThumb2(); 4909 4910 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 4911 unsigned scratch = 4912 MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass 4913 : ARM::GPRRegisterClass); 4914 4915 if (isThumb2) { 4916 MRI.constrainRegClass(dest, ARM::rGPRRegisterClass); 4917 MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass); 4918 MRI.constrainRegClass(newval, ARM::rGPRRegisterClass); 4919 } 4920 4921 unsigned ldrOpc, strOpc; 4922 switch (Size) { 4923 default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); 4924 case 1: 4925 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; 4926 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; 4927 break; 4928 case 2: 4929 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; 4930 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; 4931 break; 4932 case 4: 4933 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; 4934 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; 4935 break; 4936 } 4937 4938 MachineFunction *MF = BB->getParent(); 4939 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 4940 MachineFunction::iterator It = BB; 4941 ++It; // insert the new blocks after the current block 4942 4943 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); 4944 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); 4945 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 4946 MF->insert(It, loop1MBB); 4947 MF->insert(It, loop2MBB); 4948 MF->insert(It, exitMBB); 4949 4950 // Transfer the remainder of BB and its successor edges to exitMBB. 4951 exitMBB->splice(exitMBB->begin(), BB, 4952 llvm::next(MachineBasicBlock::iterator(MI)), 4953 BB->end()); 4954 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 4955 4956 // thisMBB: 4957 // ... 4958 // fallthrough --> loop1MBB 4959 BB->addSuccessor(loop1MBB); 4960 4961 // loop1MBB: 4962 // ldrex dest, [ptr] 4963 // cmp dest, oldval 4964 // bne exitMBB 4965 BB = loop1MBB; 4966 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); 4967 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 4968 .addReg(dest).addReg(oldval)); 4969 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 4970 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 4971 BB->addSuccessor(loop2MBB); 4972 BB->addSuccessor(exitMBB); 4973 4974 // loop2MBB: 4975 // strex scratch, newval, [ptr] 4976 // cmp scratch, #0 4977 // bne loop1MBB 4978 BB = loop2MBB; 4979 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval) 4980 .addReg(ptr)); 4981 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 4982 .addReg(scratch).addImm(0)); 4983 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 4984 .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 4985 BB->addSuccessor(loop1MBB); 4986 BB->addSuccessor(exitMBB); 4987 4988 // exitMBB: 4989 // ... 4990 BB = exitMBB; 4991 4992 MI->eraseFromParent(); // The instruction is gone now. 4993 4994 return BB; 4995 } 4996 4997 MachineBasicBlock * 4998 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 4999 unsigned Size, unsigned BinOpcode) const { 5000 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 5001 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5002 5003 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5004 MachineFunction *MF = BB->getParent(); 5005 MachineFunction::iterator It = BB; 5006 ++It; 5007 5008 unsigned dest = MI->getOperand(0).getReg(); 5009 unsigned ptr = MI->getOperand(1).getReg(); 5010 unsigned incr = MI->getOperand(2).getReg(); 5011 DebugLoc dl = MI->getDebugLoc(); 5012 bool isThumb2 = Subtarget->isThumb2(); 5013 5014 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5015 if (isThumb2) { 5016 MRI.constrainRegClass(dest, ARM::rGPRRegisterClass); 5017 MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass); 5018 } 5019 5020 unsigned ldrOpc, strOpc; 5021 switch (Size) { 5022 default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); 5023 case 1: 5024 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; 5025 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; 5026 break; 5027 case 2: 5028 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; 5029 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; 5030 break; 5031 case 4: 5032 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; 5033 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; 5034 break; 5035 } 5036 5037 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 5038 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 5039 MF->insert(It, loopMBB); 5040 MF->insert(It, exitMBB); 5041 5042 // Transfer the remainder of BB and its successor edges to exitMBB. 5043 exitMBB->splice(exitMBB->begin(), BB, 5044 llvm::next(MachineBasicBlock::iterator(MI)), 5045 BB->end()); 5046 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5047 5048 TargetRegisterClass *TRC = 5049 isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass; 5050 unsigned scratch = MRI.createVirtualRegister(TRC); 5051 unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); 5052 5053 // thisMBB: 5054 // ... 5055 // fallthrough --> loopMBB 5056 BB->addSuccessor(loopMBB); 5057 5058 // loopMBB: 5059 // ldrex dest, ptr 5060 // <binop> scratch2, dest, incr 5061 // strex scratch, scratch2, ptr 5062 // cmp scratch, #0 5063 // bne- loopMBB 5064 // fallthrough --> exitMBB 5065 BB = loopMBB; 5066 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); 5067 if (BinOpcode) { 5068 // operand order needs to go the other way for NAND 5069 if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr) 5070 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). 5071 addReg(incr).addReg(dest)).addReg(0); 5072 else 5073 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). 5074 addReg(dest).addReg(incr)).addReg(0); 5075 } 5076 5077 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2) 5078 .addReg(ptr)); 5079 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 5080 .addReg(scratch).addImm(0)); 5081 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 5082 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 5083 5084 BB->addSuccessor(loopMBB); 5085 BB->addSuccessor(exitMBB); 5086 5087 // exitMBB: 5088 // ... 5089 BB = exitMBB; 5090 5091 MI->eraseFromParent(); // The instruction is gone now. 5092 5093 return BB; 5094 } 5095 5096 MachineBasicBlock * 5097 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI, 5098 MachineBasicBlock *BB, 5099 unsigned Size, 5100 bool signExtend, 5101 ARMCC::CondCodes Cond) const { 5102 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5103 5104 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5105 MachineFunction *MF = BB->getParent(); 5106 MachineFunction::iterator It = BB; 5107 ++It; 5108 5109 unsigned dest = MI->getOperand(0).getReg(); 5110 unsigned ptr = MI->getOperand(1).getReg(); 5111 unsigned incr = MI->getOperand(2).getReg(); 5112 unsigned oldval = dest; 5113 DebugLoc dl = MI->getDebugLoc(); 5114 bool isThumb2 = Subtarget->isThumb2(); 5115 5116 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5117 if (isThumb2) { 5118 MRI.constrainRegClass(dest, ARM::rGPRRegisterClass); 5119 MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass); 5120 } 5121 5122 unsigned ldrOpc, strOpc, extendOpc; 5123 switch (Size) { 5124 default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); 5125 case 1: 5126 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; 5127 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; 5128 extendOpc = isThumb2 ? ARM::t2SXTBr : ARM::SXTBr; 5129 break; 5130 case 2: 5131 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; 5132 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; 5133 extendOpc = isThumb2 ? ARM::t2SXTHr : ARM::SXTHr; 5134 break; 5135 case 4: 5136 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; 5137 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; 5138 extendOpc = 0; 5139 break; 5140 } 5141 5142 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 5143 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 5144 MF->insert(It, loopMBB); 5145 MF->insert(It, exitMBB); 5146 5147 // Transfer the remainder of BB and its successor edges to exitMBB. 5148 exitMBB->splice(exitMBB->begin(), BB, 5149 llvm::next(MachineBasicBlock::iterator(MI)), 5150 BB->end()); 5151 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5152 5153 TargetRegisterClass *TRC = 5154 isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass; 5155 unsigned scratch = MRI.createVirtualRegister(TRC); 5156 unsigned scratch2 = MRI.createVirtualRegister(TRC); 5157 5158 // thisMBB: 5159 // ... 5160 // fallthrough --> loopMBB 5161 BB->addSuccessor(loopMBB); 5162 5163 // loopMBB: 5164 // ldrex dest, ptr 5165 // (sign extend dest, if required) 5166 // cmp dest, incr 5167 // cmov.cond scratch2, dest, incr 5168 // strex scratch, scratch2, ptr 5169 // cmp scratch, #0 5170 // bne- loopMBB 5171 // fallthrough --> exitMBB 5172 BB = loopMBB; 5173 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); 5174 5175 // Sign extend the value, if necessary. 5176 if (signExtend && extendOpc) { 5177 oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass); 5178 AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval).addReg(dest)); 5179 } 5180 5181 // Build compare and cmov instructions. 5182 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 5183 .addReg(oldval).addReg(incr)); 5184 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2) 5185 .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR); 5186 5187 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2) 5188 .addReg(ptr)); 5189 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 5190 .addReg(scratch).addImm(0)); 5191 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 5192 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 5193 5194 BB->addSuccessor(loopMBB); 5195 BB->addSuccessor(exitMBB); 5196 5197 // exitMBB: 5198 // ... 5199 BB = exitMBB; 5200 5201 MI->eraseFromParent(); // The instruction is gone now. 5202 5203 return BB; 5204 } 5205 5206 static 5207 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { 5208 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 5209 E = MBB->succ_end(); I != E; ++I) 5210 if (*I != Succ) 5211 return *I; 5212 llvm_unreachable("Expecting a BB with two successors!"); 5213 } 5214 5215 // FIXME: This opcode table should obviously be expressed in the target 5216 // description. We probably just need a "machine opcode" value in the pseudo 5217 // instruction. But the ideal solution maybe to simply remove the "S" version 5218 // of the opcode altogether. 5219 struct AddSubFlagsOpcodePair { 5220 unsigned PseudoOpc; 5221 unsigned MachineOpc; 5222 }; 5223 5224 static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 5225 {ARM::ADCSri, ARM::ADCri}, 5226 {ARM::ADCSrr, ARM::ADCrr}, 5227 {ARM::ADCSrs, ARM::ADCrs}, 5228 {ARM::SBCSri, ARM::SBCri}, 5229 {ARM::SBCSrr, ARM::SBCrr}, 5230 {ARM::SBCSrs, ARM::SBCrs}, 5231 {ARM::RSBSri, ARM::RSBri}, 5232 {ARM::RSBSrr, ARM::RSBrr}, 5233 {ARM::RSBSrs, ARM::RSBrs}, 5234 {ARM::RSCSri, ARM::RSCri}, 5235 {ARM::RSCSrs, ARM::RSCrs}, 5236 {ARM::t2ADCSri, ARM::t2ADCri}, 5237 {ARM::t2ADCSrr, ARM::t2ADCrr}, 5238 {ARM::t2ADCSrs, ARM::t2ADCrs}, 5239 {ARM::t2SBCSri, ARM::t2SBCri}, 5240 {ARM::t2SBCSrr, ARM::t2SBCrr}, 5241 {ARM::t2SBCSrs, ARM::t2SBCrs}, 5242 {ARM::t2RSBSri, ARM::t2RSBri}, 5243 {ARM::t2RSBSrs, ARM::t2RSBrs}, 5244 }; 5245 5246 // Convert and Add or Subtract with Carry and Flags to a generic opcode with 5247 // CPSR<def> operand. e.g. ADCS (...) -> ADC (... CPSR<def>). 5248 // 5249 // FIXME: Somewhere we should assert that CPSR<def> is in the correct 5250 // position to be recognized by the target descrition as the 'S' bit. 5251 bool ARMTargetLowering::RemapAddSubWithFlags(MachineInstr *MI, 5252 MachineBasicBlock *BB) const { 5253 unsigned OldOpc = MI->getOpcode(); 5254 unsigned NewOpc = 0; 5255 5256 // This is only called for instructions that need remapping, so iterating over 5257 // the tiny opcode table is not costly. 5258 static const int NPairs = 5259 sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair); 5260 for (AddSubFlagsOpcodePair *Pair = &AddSubFlagsOpcodeMap[0], 5261 *End = &AddSubFlagsOpcodeMap[NPairs]; Pair != End; ++Pair) { 5262 if (OldOpc == Pair->PseudoOpc) { 5263 NewOpc = Pair->MachineOpc; 5264 break; 5265 } 5266 } 5267 if (!NewOpc) 5268 return false; 5269 5270 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5271 DebugLoc dl = MI->getDebugLoc(); 5272 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); 5273 for (unsigned i = 0; i < MI->getNumOperands(); ++i) 5274 MIB.addOperand(MI->getOperand(i)); 5275 AddDefaultPred(MIB); 5276 MIB.addReg(ARM::CPSR, RegState::Define); // S bit 5277 MI->eraseFromParent(); 5278 return true; 5279 } 5280 5281 MachineBasicBlock * 5282 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 5283 MachineBasicBlock *BB) const { 5284 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5285 DebugLoc dl = MI->getDebugLoc(); 5286 bool isThumb2 = Subtarget->isThumb2(); 5287 switch (MI->getOpcode()) { 5288 default: { 5289 if (RemapAddSubWithFlags(MI, BB)) 5290 return BB; 5291 5292 MI->dump(); 5293 llvm_unreachable("Unexpected instr type to insert"); 5294 } 5295 case ARM::ATOMIC_LOAD_ADD_I8: 5296 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); 5297 case ARM::ATOMIC_LOAD_ADD_I16: 5298 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); 5299 case ARM::ATOMIC_LOAD_ADD_I32: 5300 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); 5301 5302 case ARM::ATOMIC_LOAD_AND_I8: 5303 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 5304 case ARM::ATOMIC_LOAD_AND_I16: 5305 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 5306 case ARM::ATOMIC_LOAD_AND_I32: 5307 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 5308 5309 case ARM::ATOMIC_LOAD_OR_I8: 5310 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 5311 case ARM::ATOMIC_LOAD_OR_I16: 5312 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 5313 case ARM::ATOMIC_LOAD_OR_I32: 5314 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 5315 5316 case ARM::ATOMIC_LOAD_XOR_I8: 5317 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr); 5318 case ARM::ATOMIC_LOAD_XOR_I16: 5319 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr); 5320 case ARM::ATOMIC_LOAD_XOR_I32: 5321 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr); 5322 5323 case ARM::ATOMIC_LOAD_NAND_I8: 5324 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr); 5325 case ARM::ATOMIC_LOAD_NAND_I16: 5326 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr); 5327 case ARM::ATOMIC_LOAD_NAND_I32: 5328 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr); 5329 5330 case ARM::ATOMIC_LOAD_SUB_I8: 5331 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); 5332 case ARM::ATOMIC_LOAD_SUB_I16: 5333 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); 5334 case ARM::ATOMIC_LOAD_SUB_I32: 5335 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); 5336 5337 case ARM::ATOMIC_LOAD_MIN_I8: 5338 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT); 5339 case ARM::ATOMIC_LOAD_MIN_I16: 5340 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT); 5341 case ARM::ATOMIC_LOAD_MIN_I32: 5342 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT); 5343 5344 case ARM::ATOMIC_LOAD_MAX_I8: 5345 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT); 5346 case ARM::ATOMIC_LOAD_MAX_I16: 5347 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT); 5348 case ARM::ATOMIC_LOAD_MAX_I32: 5349 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT); 5350 5351 case ARM::ATOMIC_LOAD_UMIN_I8: 5352 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO); 5353 case ARM::ATOMIC_LOAD_UMIN_I16: 5354 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO); 5355 case ARM::ATOMIC_LOAD_UMIN_I32: 5356 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO); 5357 5358 case ARM::ATOMIC_LOAD_UMAX_I8: 5359 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI); 5360 case ARM::ATOMIC_LOAD_UMAX_I16: 5361 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI); 5362 case ARM::ATOMIC_LOAD_UMAX_I32: 5363 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI); 5364 5365 case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0); 5366 case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0); 5367 case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0); 5368 5369 case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1); 5370 case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2); 5371 case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4); 5372 5373 case ARM::tMOVCCr_pseudo: { 5374 // To "insert" a SELECT_CC instruction, we actually have to insert the 5375 // diamond control-flow pattern. The incoming instruction knows the 5376 // destination vreg to set, the condition code register to branch on, the 5377 // true/false values to select between, and a branch opcode to use. 5378 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5379 MachineFunction::iterator It = BB; 5380 ++It; 5381 5382 // thisMBB: 5383 // ... 5384 // TrueVal = ... 5385 // cmpTY ccX, r1, r2 5386 // bCC copy1MBB 5387 // fallthrough --> copy0MBB 5388 MachineBasicBlock *thisMBB = BB; 5389 MachineFunction *F = BB->getParent(); 5390 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 5391 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 5392 F->insert(It, copy0MBB); 5393 F->insert(It, sinkMBB); 5394 5395 // Transfer the remainder of BB and its successor edges to sinkMBB. 5396 sinkMBB->splice(sinkMBB->begin(), BB, 5397 llvm::next(MachineBasicBlock::iterator(MI)), 5398 BB->end()); 5399 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 5400 5401 BB->addSuccessor(copy0MBB); 5402 BB->addSuccessor(sinkMBB); 5403 5404 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) 5405 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); 5406 5407 // copy0MBB: 5408 // %FalseValue = ... 5409 // # fallthrough to sinkMBB 5410 BB = copy0MBB; 5411 5412 // Update machine-CFG edges 5413 BB->addSuccessor(sinkMBB); 5414 5415 // sinkMBB: 5416 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 5417 // ... 5418 BB = sinkMBB; 5419 BuildMI(*BB, BB->begin(), dl, 5420 TII->get(ARM::PHI), MI->getOperand(0).getReg()) 5421 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 5422 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 5423 5424 MI->eraseFromParent(); // The pseudo instruction is gone now. 5425 return BB; 5426 } 5427 5428 case ARM::BCCi64: 5429 case ARM::BCCZi64: { 5430 // If there is an unconditional branch to the other successor, remove it. 5431 BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); 5432 5433 // Compare both parts that make up the double comparison separately for 5434 // equality. 5435 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; 5436 5437 unsigned LHS1 = MI->getOperand(1).getReg(); 5438 unsigned LHS2 = MI->getOperand(2).getReg(); 5439 if (RHSisZero) { 5440 AddDefaultPred(BuildMI(BB, dl, 5441 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 5442 .addReg(LHS1).addImm(0)); 5443 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 5444 .addReg(LHS2).addImm(0) 5445 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 5446 } else { 5447 unsigned RHS1 = MI->getOperand(3).getReg(); 5448 unsigned RHS2 = MI->getOperand(4).getReg(); 5449 AddDefaultPred(BuildMI(BB, dl, 5450 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 5451 .addReg(LHS1).addReg(RHS1)); 5452 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 5453 .addReg(LHS2).addReg(RHS2) 5454 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 5455 } 5456 5457 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); 5458 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); 5459 if (MI->getOperand(0).getImm() == ARMCC::NE) 5460 std::swap(destMBB, exitMBB); 5461 5462 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 5463 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); 5464 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B)) 5465 .addMBB(exitMBB); 5466 5467 MI->eraseFromParent(); // The pseudo instruction is gone now. 5468 return BB; 5469 } 5470 } 5471 } 5472 5473 //===----------------------------------------------------------------------===// 5474 // ARM Optimization Hooks 5475 //===----------------------------------------------------------------------===// 5476 5477 static 5478 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5479 TargetLowering::DAGCombinerInfo &DCI) { 5480 SelectionDAG &DAG = DCI.DAG; 5481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5482 EVT VT = N->getValueType(0); 5483 unsigned Opc = N->getOpcode(); 5484 bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; 5485 SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); 5486 SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); 5487 ISD::CondCode CC = ISD::SETCC_INVALID; 5488 5489 if (isSlctCC) { 5490 CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get(); 5491 } else { 5492 SDValue CCOp = Slct.getOperand(0); 5493 if (CCOp.getOpcode() == ISD::SETCC) 5494 CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get(); 5495 } 5496 5497 bool DoXform = false; 5498 bool InvCC = false; 5499 assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && 5500 "Bad input!"); 5501 5502 if (LHS.getOpcode() == ISD::Constant && 5503 cast<ConstantSDNode>(LHS)->isNullValue()) { 5504 DoXform = true; 5505 } else if (CC != ISD::SETCC_INVALID && 5506 RHS.getOpcode() == ISD::Constant && 5507 cast<ConstantSDNode>(RHS)->isNullValue()) { 5508 std::swap(LHS, RHS); 5509 SDValue Op0 = Slct.getOperand(0); 5510 EVT OpVT = isSlctCC ? Op0.getValueType() : 5511 Op0.getOperand(0).getValueType(); 5512 bool isInt = OpVT.isInteger(); 5513 CC = ISD::getSetCCInverse(CC, isInt); 5514 5515 if (!TLI.isCondCodeLegal(CC, OpVT)) 5516 return SDValue(); // Inverse operator isn't legal. 5517 5518 DoXform = true; 5519 InvCC = true; 5520 } 5521 5522 if (DoXform) { 5523 SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS); 5524 if (isSlctCC) 5525 return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result, 5526 Slct.getOperand(0), Slct.getOperand(1), CC); 5527 SDValue CCOp = Slct.getOperand(0); 5528 if (InvCC) 5529 CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(), 5530 CCOp.getOperand(0), CCOp.getOperand(1), CC); 5531 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, 5532 CCOp, OtherOp, Result); 5533 } 5534 return SDValue(); 5535 } 5536 5537 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction 5538 // (only after legalization). 5539 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, 5540 TargetLowering::DAGCombinerInfo &DCI, 5541 const ARMSubtarget *Subtarget) { 5542 5543 // Only perform optimization if after legalize, and if NEON is available. We 5544 // also expected both operands to be BUILD_VECTORs. 5545 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() 5546 || N0.getOpcode() != ISD::BUILD_VECTOR 5547 || N1.getOpcode() != ISD::BUILD_VECTOR) 5548 return SDValue(); 5549 5550 // Check output type since VPADDL operand elements can only be 8, 16, or 32. 5551 EVT VT = N->getValueType(0); 5552 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) 5553 return SDValue(); 5554 5555 // Check that the vector operands are of the right form. 5556 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR 5557 // operands, where N is the size of the formed vector. 5558 // Each EXTRACT_VECTOR should have the same input vector and odd or even 5559 // index such that we have a pair wise add pattern. 5560 5561 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. 5562 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 5563 return SDValue(); 5564 SDValue Vec = N0->getOperand(0)->getOperand(0); 5565 SDNode *V = Vec.getNode(); 5566 unsigned nextIndex = 0; 5567 5568 // For each operands to the ADD which are BUILD_VECTORs, 5569 // check to see if each of their operands are an EXTRACT_VECTOR with 5570 // the same vector and appropriate index. 5571 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { 5572 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT 5573 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 5574 5575 SDValue ExtVec0 = N0->getOperand(i); 5576 SDValue ExtVec1 = N1->getOperand(i); 5577 5578 // First operand is the vector, verify its the same. 5579 if (V != ExtVec0->getOperand(0).getNode() || 5580 V != ExtVec1->getOperand(0).getNode()) 5581 return SDValue(); 5582 5583 // Second is the constant, verify its correct. 5584 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); 5585 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); 5586 5587 // For the constant, we want to see all the even or all the odd. 5588 if (!C0 || !C1 || C0->getZExtValue() != nextIndex 5589 || C1->getZExtValue() != nextIndex+1) 5590 return SDValue(); 5591 5592 // Increment index. 5593 nextIndex+=2; 5594 } else 5595 return SDValue(); 5596 } 5597 5598 // Create VPADDL node. 5599 SelectionDAG &DAG = DCI.DAG; 5600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5601 5602 // Build operand list. 5603 SmallVector<SDValue, 8> Ops; 5604 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, 5605 TLI.getPointerTy())); 5606 5607 // Input is the vector. 5608 Ops.push_back(Vec); 5609 5610 // Get widened type and narrowed type. 5611 MVT widenType; 5612 unsigned numElem = VT.getVectorNumElements(); 5613 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { 5614 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; 5615 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; 5616 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; 5617 default: 5618 assert(0 && "Invalid vector element type for padd optimization."); 5619 } 5620 5621 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), 5622 widenType, &Ops[0], Ops.size()); 5623 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp); 5624 } 5625 5626 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 5627 /// operands N0 and N1. This is a helper for PerformADDCombine that is 5628 /// called with the default operands, and if that fails, with commuted 5629 /// operands. 5630 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 5631 TargetLowering::DAGCombinerInfo &DCI, 5632 const ARMSubtarget *Subtarget){ 5633 5634 // Attempt to create vpaddl for this add. 5635 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); 5636 if (Result.getNode()) 5637 return Result; 5638 5639 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 5640 if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) { 5641 SDValue Result = combineSelectAndUse(N, N0, N1, DCI); 5642 if (Result.getNode()) return Result; 5643 } 5644 return SDValue(); 5645 } 5646 5647 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 5648 /// 5649 static SDValue PerformADDCombine(SDNode *N, 5650 TargetLowering::DAGCombinerInfo &DCI, 5651 const ARMSubtarget *Subtarget) { 5652 SDValue N0 = N->getOperand(0); 5653 SDValue N1 = N->getOperand(1); 5654 5655 // First try with the default operand order. 5656 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); 5657 if (Result.getNode()) 5658 return Result; 5659 5660 // If that didn't work, try again with the operands commuted. 5661 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); 5662 } 5663 5664 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 5665 /// 5666 static SDValue PerformSUBCombine(SDNode *N, 5667 TargetLowering::DAGCombinerInfo &DCI) { 5668 SDValue N0 = N->getOperand(0); 5669 SDValue N1 = N->getOperand(1); 5670 5671 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 5672 if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { 5673 SDValue Result = combineSelectAndUse(N, N1, N0, DCI); 5674 if (Result.getNode()) return Result; 5675 } 5676 5677 return SDValue(); 5678 } 5679 5680 /// PerformVMULCombine 5681 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the 5682 /// special multiplier accumulator forwarding. 5683 /// vmul d3, d0, d2 5684 /// vmla d3, d1, d2 5685 /// is faster than 5686 /// vadd d3, d0, d1 5687 /// vmul d3, d3, d2 5688 static SDValue PerformVMULCombine(SDNode *N, 5689 TargetLowering::DAGCombinerInfo &DCI, 5690 const ARMSubtarget *Subtarget) { 5691 if (!Subtarget->hasVMLxForwarding()) 5692 return SDValue(); 5693 5694 SelectionDAG &DAG = DCI.DAG; 5695 SDValue N0 = N->getOperand(0); 5696 SDValue N1 = N->getOperand(1); 5697 unsigned Opcode = N0.getOpcode(); 5698 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 5699 Opcode != ISD::FADD && Opcode != ISD::FSUB) { 5700 Opcode = N1.getOpcode(); 5701 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 5702 Opcode != ISD::FADD && Opcode != ISD::FSUB) 5703 return SDValue(); 5704 std::swap(N0, N1); 5705 } 5706 5707 EVT VT = N->getValueType(0); 5708 DebugLoc DL = N->getDebugLoc(); 5709 SDValue N00 = N0->getOperand(0); 5710 SDValue N01 = N0->getOperand(1); 5711 return DAG.getNode(Opcode, DL, VT, 5712 DAG.getNode(ISD::MUL, DL, VT, N00, N1), 5713 DAG.getNode(ISD::MUL, DL, VT, N01, N1)); 5714 } 5715 5716 static SDValue PerformMULCombine(SDNode *N, 5717 TargetLowering::DAGCombinerInfo &DCI, 5718 const ARMSubtarget *Subtarget) { 5719 SelectionDAG &DAG = DCI.DAG; 5720 5721 if (Subtarget->isThumb1Only()) 5722 return SDValue(); 5723 5724 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 5725 return SDValue(); 5726 5727 EVT VT = N->getValueType(0); 5728 if (VT.is64BitVector() || VT.is128BitVector()) 5729 return PerformVMULCombine(N, DCI, Subtarget); 5730 if (VT != MVT::i32) 5731 return SDValue(); 5732 5733 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5734 if (!C) 5735 return SDValue(); 5736 5737 uint64_t MulAmt = C->getZExtValue(); 5738 unsigned ShiftAmt = CountTrailingZeros_64(MulAmt); 5739 ShiftAmt = ShiftAmt & (32 - 1); 5740 SDValue V = N->getOperand(0); 5741 DebugLoc DL = N->getDebugLoc(); 5742 5743 SDValue Res; 5744 MulAmt >>= ShiftAmt; 5745 if (isPowerOf2_32(MulAmt - 1)) { 5746 // (mul x, 2^N + 1) => (add (shl x, N), x) 5747 Res = DAG.getNode(ISD::ADD, DL, VT, 5748 V, DAG.getNode(ISD::SHL, DL, VT, 5749 V, DAG.getConstant(Log2_32(MulAmt-1), 5750 MVT::i32))); 5751 } else if (isPowerOf2_32(MulAmt + 1)) { 5752 // (mul x, 2^N - 1) => (sub (shl x, N), x) 5753 Res = DAG.getNode(ISD::SUB, DL, VT, 5754 DAG.getNode(ISD::SHL, DL, VT, 5755 V, DAG.getConstant(Log2_32(MulAmt+1), 5756 MVT::i32)), 5757 V); 5758 } else 5759 return SDValue(); 5760 5761 if (ShiftAmt != 0) 5762 Res = DAG.getNode(ISD::SHL, DL, VT, Res, 5763 DAG.getConstant(ShiftAmt, MVT::i32)); 5764 5765 // Do not add new nodes to DAG combiner worklist. 5766 DCI.CombineTo(N, Res, false); 5767 return SDValue(); 5768 } 5769 5770 static SDValue PerformANDCombine(SDNode *N, 5771 TargetLowering::DAGCombinerInfo &DCI) { 5772 5773 // Attempt to use immediate-form VBIC 5774 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 5775 DebugLoc dl = N->getDebugLoc(); 5776 EVT VT = N->getValueType(0); 5777 SelectionDAG &DAG = DCI.DAG; 5778 5779 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 5780 return SDValue(); 5781 5782 APInt SplatBits, SplatUndef; 5783 unsigned SplatBitSize; 5784 bool HasAnyUndefs; 5785 if (BVN && 5786 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 5787 if (SplatBitSize <= 64) { 5788 EVT VbicVT; 5789 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), 5790 SplatUndef.getZExtValue(), SplatBitSize, 5791 DAG, VbicVT, VT.is128BitVector(), 5792 OtherModImm); 5793 if (Val.getNode()) { 5794 SDValue Input = 5795 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); 5796 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); 5797 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); 5798 } 5799 } 5800 } 5801 5802 return SDValue(); 5803 } 5804 5805 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR 5806 static SDValue PerformORCombine(SDNode *N, 5807 TargetLowering::DAGCombinerInfo &DCI, 5808 const ARMSubtarget *Subtarget) { 5809 // Attempt to use immediate-form VORR 5810 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 5811 DebugLoc dl = N->getDebugLoc(); 5812 EVT VT = N->getValueType(0); 5813 SelectionDAG &DAG = DCI.DAG; 5814 5815 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 5816 return SDValue(); 5817 5818 APInt SplatBits, SplatUndef; 5819 unsigned SplatBitSize; 5820 bool HasAnyUndefs; 5821 if (BVN && Subtarget->hasNEON() && 5822 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 5823 if (SplatBitSize <= 64) { 5824 EVT VorrVT; 5825 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 5826 SplatUndef.getZExtValue(), SplatBitSize, 5827 DAG, VorrVT, VT.is128BitVector(), 5828 OtherModImm); 5829 if (Val.getNode()) { 5830 SDValue Input = 5831 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); 5832 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); 5833 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); 5834 } 5835 } 5836 } 5837 5838 SDValue N0 = N->getOperand(0); 5839 if (N0.getOpcode() != ISD::AND) 5840 return SDValue(); 5841 SDValue N1 = N->getOperand(1); 5842 5843 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. 5844 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && 5845 DAG.getTargetLoweringInfo().isTypeLegal(VT)) { 5846 APInt SplatUndef; 5847 unsigned SplatBitSize; 5848 bool HasAnyUndefs; 5849 5850 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); 5851 APInt SplatBits0; 5852 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, 5853 HasAnyUndefs) && !HasAnyUndefs) { 5854 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); 5855 APInt SplatBits1; 5856 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, 5857 HasAnyUndefs) && !HasAnyUndefs && 5858 SplatBits0 == ~SplatBits1) { 5859 // Canonicalize the vector type to make instruction selection simpler. 5860 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 5861 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, 5862 N0->getOperand(1), N0->getOperand(0), 5863 N1->getOperand(0)); 5864 return DAG.getNode(ISD::BITCAST, dl, VT, Result); 5865 } 5866 } 5867 } 5868 5869 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when 5870 // reasonable. 5871 5872 // BFI is only available on V6T2+ 5873 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) 5874 return SDValue(); 5875 5876 DebugLoc DL = N->getDebugLoc(); 5877 // 1) or (and A, mask), val => ARMbfi A, val, mask 5878 // iff (val & mask) == val 5879 // 5880 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 5881 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) 5882 // && mask == ~mask2 5883 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) 5884 // && ~mask == mask2 5885 // (i.e., copy a bitfield value into another bitfield of the same width) 5886 5887 if (VT != MVT::i32) 5888 return SDValue(); 5889 5890 SDValue N00 = N0.getOperand(0); 5891 5892 // The value and the mask need to be constants so we can verify this is 5893 // actually a bitfield set. If the mask is 0xffff, we can do better 5894 // via a movt instruction, so don't use BFI in that case. 5895 SDValue MaskOp = N0.getOperand(1); 5896 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); 5897 if (!MaskC) 5898 return SDValue(); 5899 unsigned Mask = MaskC->getZExtValue(); 5900 if (Mask == 0xffff) 5901 return SDValue(); 5902 SDValue Res; 5903 // Case (1): or (and A, mask), val => ARMbfi A, val, mask 5904 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5905 if (N1C) { 5906 unsigned Val = N1C->getZExtValue(); 5907 if ((Val & ~Mask) != Val) 5908 return SDValue(); 5909 5910 if (ARM::isBitFieldInvertedMask(Mask)) { 5911 Val >>= CountTrailingZeros_32(~Mask); 5912 5913 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, 5914 DAG.getConstant(Val, MVT::i32), 5915 DAG.getConstant(Mask, MVT::i32)); 5916 5917 // Do not add new nodes to DAG combiner worklist. 5918 DCI.CombineTo(N, Res, false); 5919 return SDValue(); 5920 } 5921 } else if (N1.getOpcode() == ISD::AND) { 5922 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 5923 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5924 if (!N11C) 5925 return SDValue(); 5926 unsigned Mask2 = N11C->getZExtValue(); 5927 5928 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern 5929 // as is to match. 5930 if (ARM::isBitFieldInvertedMask(Mask) && 5931 (Mask == ~Mask2)) { 5932 // The pack halfword instruction works better for masks that fit it, 5933 // so use that when it's available. 5934 if (Subtarget->hasT2ExtractPack() && 5935 (Mask == 0xffff || Mask == 0xffff0000)) 5936 return SDValue(); 5937 // 2a 5938 unsigned amt = CountTrailingZeros_32(Mask2); 5939 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), 5940 DAG.getConstant(amt, MVT::i32)); 5941 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, 5942 DAG.getConstant(Mask, MVT::i32)); 5943 // Do not add new nodes to DAG combiner worklist. 5944 DCI.CombineTo(N, Res, false); 5945 return SDValue(); 5946 } else if (ARM::isBitFieldInvertedMask(~Mask) && 5947 (~Mask == Mask2)) { 5948 // The pack halfword instruction works better for masks that fit it, 5949 // so use that when it's available. 5950 if (Subtarget->hasT2ExtractPack() && 5951 (Mask2 == 0xffff || Mask2 == 0xffff0000)) 5952 return SDValue(); 5953 // 2b 5954 unsigned lsb = CountTrailingZeros_32(Mask); 5955 Res = DAG.getNode(ISD::SRL, DL, VT, N00, 5956 DAG.getConstant(lsb, MVT::i32)); 5957 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, 5958 DAG.getConstant(Mask2, MVT::i32)); 5959 // Do not add new nodes to DAG combiner worklist. 5960 DCI.CombineTo(N, Res, false); 5961 return SDValue(); 5962 } 5963 } 5964 5965 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && 5966 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && 5967 ARM::isBitFieldInvertedMask(~Mask)) { 5968 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask 5969 // where lsb(mask) == #shamt and masked bits of B are known zero. 5970 SDValue ShAmt = N00.getOperand(1); 5971 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 5972 unsigned LSB = CountTrailingZeros_32(Mask); 5973 if (ShAmtC != LSB) 5974 return SDValue(); 5975 5976 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), 5977 DAG.getConstant(~Mask, MVT::i32)); 5978 5979 // Do not add new nodes to DAG combiner worklist. 5980 DCI.CombineTo(N, Res, false); 5981 } 5982 5983 return SDValue(); 5984 } 5985 5986 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff 5987 /// the bits being cleared by the AND are not demanded by the BFI. 5988 static SDValue PerformBFICombine(SDNode *N, 5989 TargetLowering::DAGCombinerInfo &DCI) { 5990 SDValue N1 = N->getOperand(1); 5991 if (N1.getOpcode() == ISD::AND) { 5992 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 5993 if (!N11C) 5994 return SDValue(); 5995 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 5996 unsigned LSB = CountTrailingZeros_32(~InvMask); 5997 unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB; 5998 unsigned Mask = (1 << Width)-1; 5999 unsigned Mask2 = N11C->getZExtValue(); 6000 if ((Mask & (~Mask2)) == 0) 6001 return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0), 6002 N->getOperand(0), N1.getOperand(0), 6003 N->getOperand(2)); 6004 } 6005 return SDValue(); 6006 } 6007 6008 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for 6009 /// ARMISD::VMOVRRD. 6010 static SDValue PerformVMOVRRDCombine(SDNode *N, 6011 TargetLowering::DAGCombinerInfo &DCI) { 6012 // vmovrrd(vmovdrr x, y) -> x,y 6013 SDValue InDouble = N->getOperand(0); 6014 if (InDouble.getOpcode() == ARMISD::VMOVDRR) 6015 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); 6016 6017 // vmovrrd(load f64) -> (load i32), (load i32) 6018 SDNode *InNode = InDouble.getNode(); 6019 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && 6020 InNode->getValueType(0) == MVT::f64 && 6021 InNode->getOperand(1).getOpcode() == ISD::FrameIndex && 6022 !cast<LoadSDNode>(InNode)->isVolatile()) { 6023 // TODO: Should this be done for non-FrameIndex operands? 6024 LoadSDNode *LD = cast<LoadSDNode>(InNode); 6025 6026 SelectionDAG &DAG = DCI.DAG; 6027 DebugLoc DL = LD->getDebugLoc(); 6028 SDValue BasePtr = LD->getBasePtr(); 6029 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, 6030 LD->getPointerInfo(), LD->isVolatile(), 6031 LD->isNonTemporal(), LD->getAlignment()); 6032 6033 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 6034 DAG.getConstant(4, MVT::i32)); 6035 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, 6036 LD->getPointerInfo(), LD->isVolatile(), 6037 LD->isNonTemporal(), 6038 std::min(4U, LD->getAlignment() / 2)); 6039 6040 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); 6041 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); 6042 DCI.RemoveFromWorklist(LD); 6043 DAG.DeleteNode(LD); 6044 return Result; 6045 } 6046 6047 return SDValue(); 6048 } 6049 6050 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for 6051 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. 6052 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { 6053 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) 6054 SDValue Op0 = N->getOperand(0); 6055 SDValue Op1 = N->getOperand(1); 6056 if (Op0.getOpcode() == ISD::BITCAST) 6057 Op0 = Op0.getOperand(0); 6058 if (Op1.getOpcode() == ISD::BITCAST) 6059 Op1 = Op1.getOperand(0); 6060 if (Op0.getOpcode() == ARMISD::VMOVRRD && 6061 Op0.getNode() == Op1.getNode() && 6062 Op0.getResNo() == 0 && Op1.getResNo() == 1) 6063 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), 6064 N->getValueType(0), Op0.getOperand(0)); 6065 return SDValue(); 6066 } 6067 6068 /// PerformSTORECombine - Target-specific dag combine xforms for 6069 /// ISD::STORE. 6070 static SDValue PerformSTORECombine(SDNode *N, 6071 TargetLowering::DAGCombinerInfo &DCI) { 6072 // Bitcast an i64 store extracted from a vector to f64. 6073 // Otherwise, the i64 value will be legalized to a pair of i32 values. 6074 StoreSDNode *St = cast<StoreSDNode>(N); 6075 SDValue StVal = St->getValue(); 6076 if (!ISD::isNormalStore(St) || St->isVolatile()) 6077 return SDValue(); 6078 6079 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && 6080 StVal.getNode()->hasOneUse() && !St->isVolatile()) { 6081 SelectionDAG &DAG = DCI.DAG; 6082 DebugLoc DL = St->getDebugLoc(); 6083 SDValue BasePtr = St->getBasePtr(); 6084 SDValue NewST1 = DAG.getStore(St->getChain(), DL, 6085 StVal.getNode()->getOperand(0), BasePtr, 6086 St->getPointerInfo(), St->isVolatile(), 6087 St->isNonTemporal(), St->getAlignment()); 6088 6089 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 6090 DAG.getConstant(4, MVT::i32)); 6091 return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1), 6092 OffsetPtr, St->getPointerInfo(), St->isVolatile(), 6093 St->isNonTemporal(), 6094 std::min(4U, St->getAlignment() / 2)); 6095 } 6096 6097 if (StVal.getValueType() != MVT::i64 || 6098 StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 6099 return SDValue(); 6100 6101 SelectionDAG &DAG = DCI.DAG; 6102 DebugLoc dl = StVal.getDebugLoc(); 6103 SDValue IntVec = StVal.getOperand(0); 6104 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 6105 IntVec.getValueType().getVectorNumElements()); 6106 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); 6107 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 6108 Vec, StVal.getOperand(1)); 6109 dl = N->getDebugLoc(); 6110 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); 6111 // Make the DAGCombiner fold the bitcasts. 6112 DCI.AddToWorklist(Vec.getNode()); 6113 DCI.AddToWorklist(ExtElt.getNode()); 6114 DCI.AddToWorklist(V.getNode()); 6115 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), 6116 St->getPointerInfo(), St->isVolatile(), 6117 St->isNonTemporal(), St->getAlignment(), 6118 St->getTBAAInfo()); 6119 } 6120 6121 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node 6122 /// are normal, non-volatile loads. If so, it is profitable to bitcast an 6123 /// i64 vector to have f64 elements, since the value can then be loaded 6124 /// directly into a VFP register. 6125 static bool hasNormalLoadOperand(SDNode *N) { 6126 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 6127 for (unsigned i = 0; i < NumElts; ++i) { 6128 SDNode *Elt = N->getOperand(i).getNode(); 6129 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) 6130 return true; 6131 } 6132 return false; 6133 } 6134 6135 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for 6136 /// ISD::BUILD_VECTOR. 6137 static SDValue PerformBUILD_VECTORCombine(SDNode *N, 6138 TargetLowering::DAGCombinerInfo &DCI){ 6139 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): 6140 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value 6141 // into a pair of GPRs, which is fine when the value is used as a scalar, 6142 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. 6143 SelectionDAG &DAG = DCI.DAG; 6144 if (N->getNumOperands() == 2) { 6145 SDValue RV = PerformVMOVDRRCombine(N, DAG); 6146 if (RV.getNode()) 6147 return RV; 6148 } 6149 6150 // Load i64 elements as f64 values so that type legalization does not split 6151 // them up into i32 values. 6152 EVT VT = N->getValueType(0); 6153 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) 6154 return SDValue(); 6155 DebugLoc dl = N->getDebugLoc(); 6156 SmallVector<SDValue, 8> Ops; 6157 unsigned NumElts = VT.getVectorNumElements(); 6158 for (unsigned i = 0; i < NumElts; ++i) { 6159 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); 6160 Ops.push_back(V); 6161 // Make the DAGCombiner fold the bitcast. 6162 DCI.AddToWorklist(V.getNode()); 6163 } 6164 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); 6165 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts); 6166 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 6167 } 6168 6169 /// PerformInsertEltCombine - Target-specific dag combine xforms for 6170 /// ISD::INSERT_VECTOR_ELT. 6171 static SDValue PerformInsertEltCombine(SDNode *N, 6172 TargetLowering::DAGCombinerInfo &DCI) { 6173 // Bitcast an i64 load inserted into a vector to f64. 6174 // Otherwise, the i64 value will be legalized to a pair of i32 values. 6175 EVT VT = N->getValueType(0); 6176 SDNode *Elt = N->getOperand(1).getNode(); 6177 if (VT.getVectorElementType() != MVT::i64 || 6178 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) 6179 return SDValue(); 6180 6181 SelectionDAG &DAG = DCI.DAG; 6182 DebugLoc dl = N->getDebugLoc(); 6183 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 6184 VT.getVectorNumElements()); 6185 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); 6186 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); 6187 // Make the DAGCombiner fold the bitcasts. 6188 DCI.AddToWorklist(Vec.getNode()); 6189 DCI.AddToWorklist(V.getNode()); 6190 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, 6191 Vec, V, N->getOperand(2)); 6192 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); 6193 } 6194 6195 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for 6196 /// ISD::VECTOR_SHUFFLE. 6197 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { 6198 // The LLVM shufflevector instruction does not require the shuffle mask 6199 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does 6200 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the 6201 // operands do not match the mask length, they are extended by concatenating 6202 // them with undef vectors. That is probably the right thing for other 6203 // targets, but for NEON it is better to concatenate two double-register 6204 // size vector operands into a single quad-register size vector. Do that 6205 // transformation here: 6206 // shuffle(concat(v1, undef), concat(v2, undef)) -> 6207 // shuffle(concat(v1, v2), undef) 6208 SDValue Op0 = N->getOperand(0); 6209 SDValue Op1 = N->getOperand(1); 6210 if (Op0.getOpcode() != ISD::CONCAT_VECTORS || 6211 Op1.getOpcode() != ISD::CONCAT_VECTORS || 6212 Op0.getNumOperands() != 2 || 6213 Op1.getNumOperands() != 2) 6214 return SDValue(); 6215 SDValue Concat0Op1 = Op0.getOperand(1); 6216 SDValue Concat1Op1 = Op1.getOperand(1); 6217 if (Concat0Op1.getOpcode() != ISD::UNDEF || 6218 Concat1Op1.getOpcode() != ISD::UNDEF) 6219 return SDValue(); 6220 // Skip the transformation if any of the types are illegal. 6221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6222 EVT VT = N->getValueType(0); 6223 if (!TLI.isTypeLegal(VT) || 6224 !TLI.isTypeLegal(Concat0Op1.getValueType()) || 6225 !TLI.isTypeLegal(Concat1Op1.getValueType())) 6226 return SDValue(); 6227 6228 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT, 6229 Op0.getOperand(0), Op1.getOperand(0)); 6230 // Translate the shuffle mask. 6231 SmallVector<int, 16> NewMask; 6232 unsigned NumElts = VT.getVectorNumElements(); 6233 unsigned HalfElts = NumElts/2; 6234 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6235 for (unsigned n = 0; n < NumElts; ++n) { 6236 int MaskElt = SVN->getMaskElt(n); 6237 int NewElt = -1; 6238 if (MaskElt < (int)HalfElts) 6239 NewElt = MaskElt; 6240 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) 6241 NewElt = HalfElts + MaskElt - NumElts; 6242 NewMask.push_back(NewElt); 6243 } 6244 return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat, 6245 DAG.getUNDEF(VT), NewMask.data()); 6246 } 6247 6248 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and 6249 /// NEON load/store intrinsics to merge base address updates. 6250 static SDValue CombineBaseUpdate(SDNode *N, 6251 TargetLowering::DAGCombinerInfo &DCI) { 6252 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 6253 return SDValue(); 6254 6255 SelectionDAG &DAG = DCI.DAG; 6256 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || 6257 N->getOpcode() == ISD::INTRINSIC_W_CHAIN); 6258 unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); 6259 SDValue Addr = N->getOperand(AddrOpIdx); 6260 6261 // Search for a use of the address operand that is an increment. 6262 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 6263 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 6264 SDNode *User = *UI; 6265 if (User->getOpcode() != ISD::ADD || 6266 UI.getUse().getResNo() != Addr.getResNo()) 6267 continue; 6268 6269 // Check that the add is independent of the load/store. Otherwise, folding 6270 // it would create a cycle. 6271 if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) 6272 continue; 6273 6274 // Find the new opcode for the updating load/store. 6275 bool isLoad = true; 6276 bool isLaneOp = false; 6277 unsigned NewOpc = 0; 6278 unsigned NumVecs = 0; 6279 if (isIntrinsic) { 6280 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6281 switch (IntNo) { 6282 default: assert(0 && "unexpected intrinsic for Neon base update"); 6283 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; 6284 NumVecs = 1; break; 6285 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; 6286 NumVecs = 2; break; 6287 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; 6288 NumVecs = 3; break; 6289 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; 6290 NumVecs = 4; break; 6291 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; 6292 NumVecs = 2; isLaneOp = true; break; 6293 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; 6294 NumVecs = 3; isLaneOp = true; break; 6295 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; 6296 NumVecs = 4; isLaneOp = true; break; 6297 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; 6298 NumVecs = 1; isLoad = false; break; 6299 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; 6300 NumVecs = 2; isLoad = false; break; 6301 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; 6302 NumVecs = 3; isLoad = false; break; 6303 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; 6304 NumVecs = 4; isLoad = false; break; 6305 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; 6306 NumVecs = 2; isLoad = false; isLaneOp = true; break; 6307 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; 6308 NumVecs = 3; isLoad = false; isLaneOp = true; break; 6309 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; 6310 NumVecs = 4; isLoad = false; isLaneOp = true; break; 6311 } 6312 } else { 6313 isLaneOp = true; 6314 switch (N->getOpcode()) { 6315 default: assert(0 && "unexpected opcode for Neon base update"); 6316 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; 6317 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; 6318 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; 6319 } 6320 } 6321 6322 // Find the size of memory referenced by the load/store. 6323 EVT VecTy; 6324 if (isLoad) 6325 VecTy = N->getValueType(0); 6326 else 6327 VecTy = N->getOperand(AddrOpIdx+1).getValueType(); 6328 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 6329 if (isLaneOp) 6330 NumBytes /= VecTy.getVectorNumElements(); 6331 6332 // If the increment is a constant, it must match the memory ref size. 6333 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 6334 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 6335 uint64_t IncVal = CInc->getZExtValue(); 6336 if (IncVal != NumBytes) 6337 continue; 6338 } else if (NumBytes >= 3 * 16) { 6339 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two 6340 // separate instructions that make it harder to use a non-constant update. 6341 continue; 6342 } 6343 6344 // Create the new updating load/store node. 6345 EVT Tys[6]; 6346 unsigned NumResultVecs = (isLoad ? NumVecs : 0); 6347 unsigned n; 6348 for (n = 0; n < NumResultVecs; ++n) 6349 Tys[n] = VecTy; 6350 Tys[n++] = MVT::i32; 6351 Tys[n] = MVT::Other; 6352 SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2); 6353 SmallVector<SDValue, 8> Ops; 6354 Ops.push_back(N->getOperand(0)); // incoming chain 6355 Ops.push_back(N->getOperand(AddrOpIdx)); 6356 Ops.push_back(Inc); 6357 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { 6358 Ops.push_back(N->getOperand(i)); 6359 } 6360 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 6361 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys, 6362 Ops.data(), Ops.size(), 6363 MemInt->getMemoryVT(), 6364 MemInt->getMemOperand()); 6365 6366 // Update the uses. 6367 std::vector<SDValue> NewResults; 6368 for (unsigned i = 0; i < NumResultVecs; ++i) { 6369 NewResults.push_back(SDValue(UpdN.getNode(), i)); 6370 } 6371 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain 6372 DCI.CombineTo(N, NewResults); 6373 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 6374 6375 break; 6376 } 6377 return SDValue(); 6378 } 6379 6380 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a 6381 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic 6382 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and 6383 /// return true. 6384 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 6385 SelectionDAG &DAG = DCI.DAG; 6386 EVT VT = N->getValueType(0); 6387 // vldN-dup instructions only support 64-bit vectors for N > 1. 6388 if (!VT.is64BitVector()) 6389 return false; 6390 6391 // Check if the VDUPLANE operand is a vldN-dup intrinsic. 6392 SDNode *VLD = N->getOperand(0).getNode(); 6393 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) 6394 return false; 6395 unsigned NumVecs = 0; 6396 unsigned NewOpc = 0; 6397 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); 6398 if (IntNo == Intrinsic::arm_neon_vld2lane) { 6399 NumVecs = 2; 6400 NewOpc = ARMISD::VLD2DUP; 6401 } else if (IntNo == Intrinsic::arm_neon_vld3lane) { 6402 NumVecs = 3; 6403 NewOpc = ARMISD::VLD3DUP; 6404 } else if (IntNo == Intrinsic::arm_neon_vld4lane) { 6405 NumVecs = 4; 6406 NewOpc = ARMISD::VLD4DUP; 6407 } else { 6408 return false; 6409 } 6410 6411 // First check that all the vldN-lane uses are VDUPLANEs and that the lane 6412 // numbers match the load. 6413 unsigned VLDLaneNo = 6414 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); 6415 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 6416 UI != UE; ++UI) { 6417 // Ignore uses of the chain result. 6418 if (UI.getUse().getResNo() == NumVecs) 6419 continue; 6420 SDNode *User = *UI; 6421 if (User->getOpcode() != ARMISD::VDUPLANE || 6422 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) 6423 return false; 6424 } 6425 6426 // Create the vldN-dup node. 6427 EVT Tys[5]; 6428 unsigned n; 6429 for (n = 0; n < NumVecs; ++n) 6430 Tys[n] = VT; 6431 Tys[n] = MVT::Other; 6432 SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1); 6433 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; 6434 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); 6435 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys, 6436 Ops, 2, VLDMemInt->getMemoryVT(), 6437 VLDMemInt->getMemOperand()); 6438 6439 // Update the uses. 6440 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 6441 UI != UE; ++UI) { 6442 unsigned ResNo = UI.getUse().getResNo(); 6443 // Ignore uses of the chain result. 6444 if (ResNo == NumVecs) 6445 continue; 6446 SDNode *User = *UI; 6447 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); 6448 } 6449 6450 // Now the vldN-lane intrinsic is dead except for its chain result. 6451 // Update uses of the chain. 6452 std::vector<SDValue> VLDDupResults; 6453 for (unsigned n = 0; n < NumVecs; ++n) 6454 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); 6455 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); 6456 DCI.CombineTo(VLD, VLDDupResults); 6457 6458 return true; 6459 } 6460 6461 /// PerformVDUPLANECombine - Target-specific dag combine xforms for 6462 /// ARMISD::VDUPLANE. 6463 static SDValue PerformVDUPLANECombine(SDNode *N, 6464 TargetLowering::DAGCombinerInfo &DCI) { 6465 SDValue Op = N->getOperand(0); 6466 6467 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses 6468 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. 6469 if (CombineVLDDUP(N, DCI)) 6470 return SDValue(N, 0); 6471 6472 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is 6473 // redundant. Ignore bit_converts for now; element sizes are checked below. 6474 while (Op.getOpcode() == ISD::BITCAST) 6475 Op = Op.getOperand(0); 6476 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) 6477 return SDValue(); 6478 6479 // Make sure the VMOV element size is not bigger than the VDUPLANE elements. 6480 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); 6481 // The canonical VMOV for a zero vector uses a 32-bit element size. 6482 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6483 unsigned EltBits; 6484 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) 6485 EltSize = 8; 6486 EVT VT = N->getValueType(0); 6487 if (EltSize > VT.getVectorElementType().getSizeInBits()) 6488 return SDValue(); 6489 6490 return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); 6491 } 6492 6493 // isConstVecPow2 - Return true if each vector element is a power of 2, all 6494 // elements are the same constant, C, and Log2(C) ranges from 1 to 32. 6495 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C) 6496 { 6497 integerPart cN; 6498 integerPart c0 = 0; 6499 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements(); 6500 I != E; I++) { 6501 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I)); 6502 if (!C) 6503 return false; 6504 6505 bool isExact; 6506 APFloat APF = C->getValueAPF(); 6507 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact) 6508 != APFloat::opOK || !isExact) 6509 return false; 6510 6511 c0 = (I == 0) ? cN : c0; 6512 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32) 6513 return false; 6514 } 6515 C = c0; 6516 return true; 6517 } 6518 6519 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) 6520 /// can replace combinations of VMUL and VCVT (floating-point to integer) 6521 /// when the VMUL has a constant operand that is a power of 2. 6522 /// 6523 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 6524 /// vmul.f32 d16, d17, d16 6525 /// vcvt.s32.f32 d16, d16 6526 /// becomes: 6527 /// vcvt.s32.f32 d16, d16, #3 6528 static SDValue PerformVCVTCombine(SDNode *N, 6529 TargetLowering::DAGCombinerInfo &DCI, 6530 const ARMSubtarget *Subtarget) { 6531 SelectionDAG &DAG = DCI.DAG; 6532 SDValue Op = N->getOperand(0); 6533 6534 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() || 6535 Op.getOpcode() != ISD::FMUL) 6536 return SDValue(); 6537 6538 uint64_t C; 6539 SDValue N0 = Op->getOperand(0); 6540 SDValue ConstVec = Op->getOperand(1); 6541 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; 6542 6543 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || 6544 !isConstVecPow2(ConstVec, isSigned, C)) 6545 return SDValue(); 6546 6547 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : 6548 Intrinsic::arm_neon_vcvtfp2fxu; 6549 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), 6550 N->getValueType(0), 6551 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0, 6552 DAG.getConstant(Log2_64(C), MVT::i32)); 6553 } 6554 6555 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) 6556 /// can replace combinations of VCVT (integer to floating-point) and VDIV 6557 /// when the VDIV has a constant operand that is a power of 2. 6558 /// 6559 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 6560 /// vcvt.f32.s32 d16, d16 6561 /// vdiv.f32 d16, d17, d16 6562 /// becomes: 6563 /// vcvt.f32.s32 d16, d16, #3 6564 static SDValue PerformVDIVCombine(SDNode *N, 6565 TargetLowering::DAGCombinerInfo &DCI, 6566 const ARMSubtarget *Subtarget) { 6567 SelectionDAG &DAG = DCI.DAG; 6568 SDValue Op = N->getOperand(0); 6569 unsigned OpOpcode = Op.getNode()->getOpcode(); 6570 6571 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() || 6572 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) 6573 return SDValue(); 6574 6575 uint64_t C; 6576 SDValue ConstVec = N->getOperand(1); 6577 bool isSigned = OpOpcode == ISD::SINT_TO_FP; 6578 6579 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || 6580 !isConstVecPow2(ConstVec, isSigned, C)) 6581 return SDValue(); 6582 6583 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : 6584 Intrinsic::arm_neon_vcvtfxu2fp; 6585 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), 6586 Op.getValueType(), 6587 DAG.getConstant(IntrinsicOpcode, MVT::i32), 6588 Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32)); 6589 } 6590 6591 /// Getvshiftimm - Check if this is a valid build_vector for the immediate 6592 /// operand of a vector shift operation, where all the elements of the 6593 /// build_vector must have the same constant integer value. 6594 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 6595 // Ignore bit_converts. 6596 while (Op.getOpcode() == ISD::BITCAST) 6597 Op = Op.getOperand(0); 6598 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 6599 APInt SplatBits, SplatUndef; 6600 unsigned SplatBitSize; 6601 bool HasAnyUndefs; 6602 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 6603 HasAnyUndefs, ElementBits) || 6604 SplatBitSize > ElementBits) 6605 return false; 6606 Cnt = SplatBits.getSExtValue(); 6607 return true; 6608 } 6609 6610 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 6611 /// operand of a vector shift left operation. That value must be in the range: 6612 /// 0 <= Value < ElementBits for a left shift; or 6613 /// 0 <= Value <= ElementBits for a long left shift. 6614 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 6615 assert(VT.isVector() && "vector shift count is not a vector type"); 6616 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 6617 if (! getVShiftImm(Op, ElementBits, Cnt)) 6618 return false; 6619 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); 6620 } 6621 6622 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 6623 /// operand of a vector shift right operation. For a shift opcode, the value 6624 /// is positive, but for an intrinsic the value count must be negative. The 6625 /// absolute value must be in the range: 6626 /// 1 <= |Value| <= ElementBits for a right shift; or 6627 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. 6628 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, 6629 int64_t &Cnt) { 6630 assert(VT.isVector() && "vector shift count is not a vector type"); 6631 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 6632 if (! getVShiftImm(Op, ElementBits, Cnt)) 6633 return false; 6634 if (isIntrinsic) 6635 Cnt = -Cnt; 6636 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); 6637 } 6638 6639 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. 6640 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { 6641 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 6642 switch (IntNo) { 6643 default: 6644 // Don't do anything for most intrinsics. 6645 break; 6646 6647 // Vector shifts: check for immediate versions and lower them. 6648 // Note: This is done during DAG combining instead of DAG legalizing because 6649 // the build_vectors for 64-bit vector element shift counts are generally 6650 // not legal, and it is hard to see their values after they get legalized to 6651 // loads from a constant pool. 6652 case Intrinsic::arm_neon_vshifts: 6653 case Intrinsic::arm_neon_vshiftu: 6654 case Intrinsic::arm_neon_vshiftls: 6655 case Intrinsic::arm_neon_vshiftlu: 6656 case Intrinsic::arm_neon_vshiftn: 6657 case Intrinsic::arm_neon_vrshifts: 6658 case Intrinsic::arm_neon_vrshiftu: 6659 case Intrinsic::arm_neon_vrshiftn: 6660 case Intrinsic::arm_neon_vqshifts: 6661 case Intrinsic::arm_neon_vqshiftu: 6662 case Intrinsic::arm_neon_vqshiftsu: 6663 case Intrinsic::arm_neon_vqshiftns: 6664 case Intrinsic::arm_neon_vqshiftnu: 6665 case Intrinsic::arm_neon_vqshiftnsu: 6666 case Intrinsic::arm_neon_vqrshiftns: 6667 case Intrinsic::arm_neon_vqrshiftnu: 6668 case Intrinsic::arm_neon_vqrshiftnsu: { 6669 EVT VT = N->getOperand(1).getValueType(); 6670 int64_t Cnt; 6671 unsigned VShiftOpc = 0; 6672 6673 switch (IntNo) { 6674 case Intrinsic::arm_neon_vshifts: 6675 case Intrinsic::arm_neon_vshiftu: 6676 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { 6677 VShiftOpc = ARMISD::VSHL; 6678 break; 6679 } 6680 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { 6681 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? 6682 ARMISD::VSHRs : ARMISD::VSHRu); 6683 break; 6684 } 6685 return SDValue(); 6686 6687 case Intrinsic::arm_neon_vshiftls: 6688 case Intrinsic::arm_neon_vshiftlu: 6689 if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) 6690 break; 6691 llvm_unreachable("invalid shift count for vshll intrinsic"); 6692 6693 case Intrinsic::arm_neon_vrshifts: 6694 case Intrinsic::arm_neon_vrshiftu: 6695 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) 6696 break; 6697 return SDValue(); 6698 6699 case Intrinsic::arm_neon_vqshifts: 6700 case Intrinsic::arm_neon_vqshiftu: 6701 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 6702 break; 6703 return SDValue(); 6704 6705 case Intrinsic::arm_neon_vqshiftsu: 6706 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 6707 break; 6708 llvm_unreachable("invalid shift count for vqshlu intrinsic"); 6709 6710 case Intrinsic::arm_neon_vshiftn: 6711 case Intrinsic::arm_neon_vrshiftn: 6712 case Intrinsic::arm_neon_vqshiftns: 6713 case Intrinsic::arm_neon_vqshiftnu: 6714 case Intrinsic::arm_neon_vqshiftnsu: 6715 case Intrinsic::arm_neon_vqrshiftns: 6716 case Intrinsic::arm_neon_vqrshiftnu: 6717 case Intrinsic::arm_neon_vqrshiftnsu: 6718 // Narrowing shifts require an immediate right shift. 6719 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) 6720 break; 6721 llvm_unreachable("invalid shift count for narrowing vector shift " 6722 "intrinsic"); 6723 6724 default: 6725 llvm_unreachable("unhandled vector shift"); 6726 } 6727 6728 switch (IntNo) { 6729 case Intrinsic::arm_neon_vshifts: 6730 case Intrinsic::arm_neon_vshiftu: 6731 // Opcode already set above. 6732 break; 6733 case Intrinsic::arm_neon_vshiftls: 6734 case Intrinsic::arm_neon_vshiftlu: 6735 if (Cnt == VT.getVectorElementType().getSizeInBits()) 6736 VShiftOpc = ARMISD::VSHLLi; 6737 else 6738 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? 6739 ARMISD::VSHLLs : ARMISD::VSHLLu); 6740 break; 6741 case Intrinsic::arm_neon_vshiftn: 6742 VShiftOpc = ARMISD::VSHRN; break; 6743 case Intrinsic::arm_neon_vrshifts: 6744 VShiftOpc = ARMISD::VRSHRs; break; 6745 case Intrinsic::arm_neon_vrshiftu: 6746 VShiftOpc = ARMISD::VRSHRu; break; 6747 case Intrinsic::arm_neon_vrshiftn: 6748 VShiftOpc = ARMISD::VRSHRN; break; 6749 case Intrinsic::arm_neon_vqshifts: 6750 VShiftOpc = ARMISD::VQSHLs; break; 6751 case Intrinsic::arm_neon_vqshiftu: 6752 VShiftOpc = ARMISD::VQSHLu; break; 6753 case Intrinsic::arm_neon_vqshiftsu: 6754 VShiftOpc = ARMISD::VQSHLsu; break; 6755 case Intrinsic::arm_neon_vqshiftns: 6756 VShiftOpc = ARMISD::VQSHRNs; break; 6757 case Intrinsic::arm_neon_vqshiftnu: 6758 VShiftOpc = ARMISD::VQSHRNu; break; 6759 case Intrinsic::arm_neon_vqshiftnsu: 6760 VShiftOpc = ARMISD::VQSHRNsu; break; 6761 case Intrinsic::arm_neon_vqrshiftns: 6762 VShiftOpc = ARMISD::VQRSHRNs; break; 6763 case Intrinsic::arm_neon_vqrshiftnu: 6764 VShiftOpc = ARMISD::VQRSHRNu; break; 6765 case Intrinsic::arm_neon_vqrshiftnsu: 6766 VShiftOpc = ARMISD::VQRSHRNsu; break; 6767 } 6768 6769 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), 6770 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); 6771 } 6772 6773 case Intrinsic::arm_neon_vshiftins: { 6774 EVT VT = N->getOperand(1).getValueType(); 6775 int64_t Cnt; 6776 unsigned VShiftOpc = 0; 6777 6778 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) 6779 VShiftOpc = ARMISD::VSLI; 6780 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) 6781 VShiftOpc = ARMISD::VSRI; 6782 else { 6783 llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); 6784 } 6785 6786 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), 6787 N->getOperand(1), N->getOperand(2), 6788 DAG.getConstant(Cnt, MVT::i32)); 6789 } 6790 6791 case Intrinsic::arm_neon_vqrshifts: 6792 case Intrinsic::arm_neon_vqrshiftu: 6793 // No immediate versions of these to check for. 6794 break; 6795 } 6796 6797 return SDValue(); 6798 } 6799 6800 /// PerformShiftCombine - Checks for immediate versions of vector shifts and 6801 /// lowers them. As with the vector shift intrinsics, this is done during DAG 6802 /// combining instead of DAG legalizing because the build_vectors for 64-bit 6803 /// vector element shift counts are generally not legal, and it is hard to see 6804 /// their values after they get legalized to loads from a constant pool. 6805 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, 6806 const ARMSubtarget *ST) { 6807 EVT VT = N->getValueType(0); 6808 6809 // Nothing to be done for scalar shifts. 6810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6811 if (!VT.isVector() || !TLI.isTypeLegal(VT)) 6812 return SDValue(); 6813 6814 assert(ST->hasNEON() && "unexpected vector shift"); 6815 int64_t Cnt; 6816 6817 switch (N->getOpcode()) { 6818 default: llvm_unreachable("unexpected shift opcode"); 6819 6820 case ISD::SHL: 6821 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) 6822 return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0), 6823 DAG.getConstant(Cnt, MVT::i32)); 6824 break; 6825 6826 case ISD::SRA: 6827 case ISD::SRL: 6828 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { 6829 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? 6830 ARMISD::VSHRs : ARMISD::VSHRu); 6831 return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0), 6832 DAG.getConstant(Cnt, MVT::i32)); 6833 } 6834 } 6835 return SDValue(); 6836 } 6837 6838 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, 6839 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. 6840 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, 6841 const ARMSubtarget *ST) { 6842 SDValue N0 = N->getOperand(0); 6843 6844 // Check for sign- and zero-extensions of vector extract operations of 8- 6845 // and 16-bit vector elements. NEON supports these directly. They are 6846 // handled during DAG combining because type legalization will promote them 6847 // to 32-bit types and it is messy to recognize the operations after that. 6848 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 6849 SDValue Vec = N0.getOperand(0); 6850 SDValue Lane = N0.getOperand(1); 6851 EVT VT = N->getValueType(0); 6852 EVT EltVT = N0.getValueType(); 6853 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6854 6855 if (VT == MVT::i32 && 6856 (EltVT == MVT::i8 || EltVT == MVT::i16) && 6857 TLI.isTypeLegal(Vec.getValueType()) && 6858 isa<ConstantSDNode>(Lane)) { 6859 6860 unsigned Opc = 0; 6861 switch (N->getOpcode()) { 6862 default: llvm_unreachable("unexpected opcode"); 6863 case ISD::SIGN_EXTEND: 6864 Opc = ARMISD::VGETLANEs; 6865 break; 6866 case ISD::ZERO_EXTEND: 6867 case ISD::ANY_EXTEND: 6868 Opc = ARMISD::VGETLANEu; 6869 break; 6870 } 6871 return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane); 6872 } 6873 } 6874 6875 return SDValue(); 6876 } 6877 6878 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC 6879 /// to match f32 max/min patterns to use NEON vmax/vmin instructions. 6880 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, 6881 const ARMSubtarget *ST) { 6882 // If the target supports NEON, try to use vmax/vmin instructions for f32 6883 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set, 6884 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is 6885 // a NaN; only do the transformation when it matches that behavior. 6886 6887 // For now only do this when using NEON for FP operations; if using VFP, it 6888 // is not obvious that the benefit outweighs the cost of switching to the 6889 // NEON pipeline. 6890 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || 6891 N->getValueType(0) != MVT::f32) 6892 return SDValue(); 6893 6894 SDValue CondLHS = N->getOperand(0); 6895 SDValue CondRHS = N->getOperand(1); 6896 SDValue LHS = N->getOperand(2); 6897 SDValue RHS = N->getOperand(3); 6898 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 6899 6900 unsigned Opcode = 0; 6901 bool IsReversed; 6902 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { 6903 IsReversed = false; // x CC y ? x : y 6904 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { 6905 IsReversed = true ; // x CC y ? y : x 6906 } else { 6907 return SDValue(); 6908 } 6909 6910 bool IsUnordered; 6911 switch (CC) { 6912 default: break; 6913 case ISD::SETOLT: 6914 case ISD::SETOLE: 6915 case ISD::SETLT: 6916 case ISD::SETLE: 6917 case ISD::SETULT: 6918 case ISD::SETULE: 6919 // If LHS is NaN, an ordered comparison will be false and the result will 6920 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS 6921 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. 6922 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); 6923 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) 6924 break; 6925 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin 6926 // will return -0, so vmin can only be used for unsafe math or if one of 6927 // the operands is known to be nonzero. 6928 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && 6929 !UnsafeFPMath && 6930 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 6931 break; 6932 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; 6933 break; 6934 6935 case ISD::SETOGT: 6936 case ISD::SETOGE: 6937 case ISD::SETGT: 6938 case ISD::SETGE: 6939 case ISD::SETUGT: 6940 case ISD::SETUGE: 6941 // If LHS is NaN, an ordered comparison will be false and the result will 6942 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS 6943 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. 6944 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); 6945 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) 6946 break; 6947 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax 6948 // will return +0, so vmax can only be used for unsafe math or if one of 6949 // the operands is known to be nonzero. 6950 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && 6951 !UnsafeFPMath && 6952 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 6953 break; 6954 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; 6955 break; 6956 } 6957 6958 if (!Opcode) 6959 return SDValue(); 6960 return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS); 6961 } 6962 6963 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. 6964 SDValue 6965 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { 6966 SDValue Cmp = N->getOperand(4); 6967 if (Cmp.getOpcode() != ARMISD::CMPZ) 6968 // Only looking at EQ and NE cases. 6969 return SDValue(); 6970 6971 EVT VT = N->getValueType(0); 6972 DebugLoc dl = N->getDebugLoc(); 6973 SDValue LHS = Cmp.getOperand(0); 6974 SDValue RHS = Cmp.getOperand(1); 6975 SDValue FalseVal = N->getOperand(0); 6976 SDValue TrueVal = N->getOperand(1); 6977 SDValue ARMcc = N->getOperand(2); 6978 ARMCC::CondCodes CC = (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); 6979 6980 // Simplify 6981 // mov r1, r0 6982 // cmp r1, x 6983 // mov r0, y 6984 // moveq r0, x 6985 // to 6986 // cmp r0, x 6987 // movne r0, y 6988 // 6989 // mov r1, r0 6990 // cmp r1, x 6991 // mov r0, x 6992 // movne r0, y 6993 // to 6994 // cmp r0, x 6995 // movne r0, y 6996 /// FIXME: Turn this into a target neutral optimization? 6997 SDValue Res; 6998 if (CC == ARMCC::NE && FalseVal == RHS) { 6999 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, 7000 N->getOperand(3), Cmp); 7001 } else if (CC == ARMCC::EQ && TrueVal == RHS) { 7002 SDValue ARMcc; 7003 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); 7004 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, 7005 N->getOperand(3), NewCmp); 7006 } 7007 7008 if (Res.getNode()) { 7009 APInt KnownZero, KnownOne; 7010 APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); 7011 DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne); 7012 // Capture demanded bits information that would be otherwise lost. 7013 if (KnownZero == 0xfffffffe) 7014 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 7015 DAG.getValueType(MVT::i1)); 7016 else if (KnownZero == 0xffffff00) 7017 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 7018 DAG.getValueType(MVT::i8)); 7019 else if (KnownZero == 0xffff0000) 7020 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 7021 DAG.getValueType(MVT::i16)); 7022 } 7023 7024 return Res; 7025 } 7026 7027 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, 7028 DAGCombinerInfo &DCI) const { 7029 switch (N->getOpcode()) { 7030 default: break; 7031 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); 7032 case ISD::SUB: return PerformSUBCombine(N, DCI); 7033 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); 7034 case ISD::OR: return PerformORCombine(N, DCI, Subtarget); 7035 case ISD::AND: return PerformANDCombine(N, DCI); 7036 case ARMISD::BFI: return PerformBFICombine(N, DCI); 7037 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); 7038 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); 7039 case ISD::STORE: return PerformSTORECombine(N, DCI); 7040 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI); 7041 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); 7042 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); 7043 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); 7044 case ISD::FP_TO_SINT: 7045 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget); 7046 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget); 7047 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); 7048 case ISD::SHL: 7049 case ISD::SRA: 7050 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); 7051 case ISD::SIGN_EXTEND: 7052 case ISD::ZERO_EXTEND: 7053 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); 7054 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); 7055 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); 7056 case ARMISD::VLD2DUP: 7057 case ARMISD::VLD3DUP: 7058 case ARMISD::VLD4DUP: 7059 return CombineBaseUpdate(N, DCI); 7060 case ISD::INTRINSIC_VOID: 7061 case ISD::INTRINSIC_W_CHAIN: 7062 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 7063 case Intrinsic::arm_neon_vld1: 7064 case Intrinsic::arm_neon_vld2: 7065 case Intrinsic::arm_neon_vld3: 7066 case Intrinsic::arm_neon_vld4: 7067 case Intrinsic::arm_neon_vld2lane: 7068 case Intrinsic::arm_neon_vld3lane: 7069 case Intrinsic::arm_neon_vld4lane: 7070 case Intrinsic::arm_neon_vst1: 7071 case Intrinsic::arm_neon_vst2: 7072 case Intrinsic::arm_neon_vst3: 7073 case Intrinsic::arm_neon_vst4: 7074 case Intrinsic::arm_neon_vst2lane: 7075 case Intrinsic::arm_neon_vst3lane: 7076 case Intrinsic::arm_neon_vst4lane: 7077 return CombineBaseUpdate(N, DCI); 7078 default: break; 7079 } 7080 break; 7081 } 7082 return SDValue(); 7083 } 7084 7085 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, 7086 EVT VT) const { 7087 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); 7088 } 7089 7090 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const { 7091 if (!Subtarget->allowsUnalignedMem()) 7092 return false; 7093 7094 switch (VT.getSimpleVT().SimpleTy) { 7095 default: 7096 return false; 7097 case MVT::i8: 7098 case MVT::i16: 7099 case MVT::i32: 7100 return true; 7101 // FIXME: VLD1 etc with standard alignment is legal. 7102 } 7103 } 7104 7105 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { 7106 if (V < 0) 7107 return false; 7108 7109 unsigned Scale = 1; 7110 switch (VT.getSimpleVT().SimpleTy) { 7111 default: return false; 7112 case MVT::i1: 7113 case MVT::i8: 7114 // Scale == 1; 7115 break; 7116 case MVT::i16: 7117 // Scale == 2; 7118 Scale = 2; 7119 break; 7120 case MVT::i32: 7121 // Scale == 4; 7122 Scale = 4; 7123 break; 7124 } 7125 7126 if ((V & (Scale - 1)) != 0) 7127 return false; 7128 V /= Scale; 7129 return V == (V & ((1LL << 5) - 1)); 7130 } 7131 7132 static bool isLegalT2AddressImmediate(int64_t V, EVT VT, 7133 const ARMSubtarget *Subtarget) { 7134 bool isNeg = false; 7135 if (V < 0) { 7136 isNeg = true; 7137 V = - V; 7138 } 7139 7140 switch (VT.getSimpleVT().SimpleTy) { 7141 default: return false; 7142 case MVT::i1: 7143 case MVT::i8: 7144 case MVT::i16: 7145 case MVT::i32: 7146 // + imm12 or - imm8 7147 if (isNeg) 7148 return V == (V & ((1LL << 8) - 1)); 7149 return V == (V & ((1LL << 12) - 1)); 7150 case MVT::f32: 7151 case MVT::f64: 7152 // Same as ARM mode. FIXME: NEON? 7153 if (!Subtarget->hasVFP2()) 7154 return false; 7155 if ((V & 3) != 0) 7156 return false; 7157 V >>= 2; 7158 return V == (V & ((1LL << 8) - 1)); 7159 } 7160 } 7161 7162 /// isLegalAddressImmediate - Return true if the integer value can be used 7163 /// as the offset of the target addressing mode for load / store of the 7164 /// given type. 7165 static bool isLegalAddressImmediate(int64_t V, EVT VT, 7166 const ARMSubtarget *Subtarget) { 7167 if (V == 0) 7168 return true; 7169 7170 if (!VT.isSimple()) 7171 return false; 7172 7173 if (Subtarget->isThumb1Only()) 7174 return isLegalT1AddressImmediate(V, VT); 7175 else if (Subtarget->isThumb2()) 7176 return isLegalT2AddressImmediate(V, VT, Subtarget); 7177 7178 // ARM mode. 7179 if (V < 0) 7180 V = - V; 7181 switch (VT.getSimpleVT().SimpleTy) { 7182 default: return false; 7183 case MVT::i1: 7184 case MVT::i8: 7185 case MVT::i32: 7186 // +- imm12 7187 return V == (V & ((1LL << 12) - 1)); 7188 case MVT::i16: 7189 // +- imm8 7190 return V == (V & ((1LL << 8) - 1)); 7191 case MVT::f32: 7192 case MVT::f64: 7193 if (!Subtarget->hasVFP2()) // FIXME: NEON? 7194 return false; 7195 if ((V & 3) != 0) 7196 return false; 7197 V >>= 2; 7198 return V == (V & ((1LL << 8) - 1)); 7199 } 7200 } 7201 7202 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, 7203 EVT VT) const { 7204 int Scale = AM.Scale; 7205 if (Scale < 0) 7206 return false; 7207 7208 switch (VT.getSimpleVT().SimpleTy) { 7209 default: return false; 7210 case MVT::i1: 7211 case MVT::i8: 7212 case MVT::i16: 7213 case MVT::i32: 7214 if (Scale == 1) 7215 return true; 7216 // r + r << imm 7217 Scale = Scale & ~1; 7218 return Scale == 2 || Scale == 4 || Scale == 8; 7219 case MVT::i64: 7220 // r + r 7221 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 7222 return true; 7223 return false; 7224 case MVT::isVoid: 7225 // Note, we allow "void" uses (basically, uses that aren't loads or 7226 // stores), because arm allows folding a scale into many arithmetic 7227 // operations. This should be made more precise and revisited later. 7228 7229 // Allow r << imm, but the imm has to be a multiple of two. 7230 if (Scale & 1) return false; 7231 return isPowerOf2_32(Scale); 7232 } 7233 } 7234 7235 /// isLegalAddressingMode - Return true if the addressing mode represented 7236 /// by AM is legal for this target, for a load/store of the specified type. 7237 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, 7238 Type *Ty) const { 7239 EVT VT = getValueType(Ty, true); 7240 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) 7241 return false; 7242 7243 // Can never fold addr of global into load/store. 7244 if (AM.BaseGV) 7245 return false; 7246 7247 switch (AM.Scale) { 7248 case 0: // no scale reg, must be "r+i" or "r", or "i". 7249 break; 7250 case 1: 7251 if (Subtarget->isThumb1Only()) 7252 return false; 7253 // FALL THROUGH. 7254 default: 7255 // ARM doesn't support any R+R*scale+imm addr modes. 7256 if (AM.BaseOffs) 7257 return false; 7258 7259 if (!VT.isSimple()) 7260 return false; 7261 7262 if (Subtarget->isThumb2()) 7263 return isLegalT2ScaledAddressingMode(AM, VT); 7264 7265 int Scale = AM.Scale; 7266 switch (VT.getSimpleVT().SimpleTy) { 7267 default: return false; 7268 case MVT::i1: 7269 case MVT::i8: 7270 case MVT::i32: 7271 if (Scale < 0) Scale = -Scale; 7272 if (Scale == 1) 7273 return true; 7274 // r + r << imm 7275 return isPowerOf2_32(Scale & ~1); 7276 case MVT::i16: 7277 case MVT::i64: 7278 // r + r 7279 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 7280 return true; 7281 return false; 7282 7283 case MVT::isVoid: 7284 // Note, we allow "void" uses (basically, uses that aren't loads or 7285 // stores), because arm allows folding a scale into many arithmetic 7286 // operations. This should be made more precise and revisited later. 7287 7288 // Allow r << imm, but the imm has to be a multiple of two. 7289 if (Scale & 1) return false; 7290 return isPowerOf2_32(Scale); 7291 } 7292 break; 7293 } 7294 return true; 7295 } 7296 7297 /// isLegalICmpImmediate - Return true if the specified immediate is legal 7298 /// icmp immediate, that is the target has icmp instructions which can compare 7299 /// a register against the immediate without having to materialize the 7300 /// immediate into a register. 7301 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 7302 if (!Subtarget->isThumb()) 7303 return ARM_AM::getSOImmVal(Imm) != -1; 7304 if (Subtarget->isThumb2()) 7305 return ARM_AM::getT2SOImmVal(Imm) != -1; 7306 return Imm >= 0 && Imm <= 255; 7307 } 7308 7309 /// isLegalAddImmediate - Return true if the specified immediate is legal 7310 /// add immediate, that is the target has add instructions which can add 7311 /// a register with the immediate without having to materialize the 7312 /// immediate into a register. 7313 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { 7314 return ARM_AM::getSOImmVal(Imm) != -1; 7315 } 7316 7317 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, 7318 bool isSEXTLoad, SDValue &Base, 7319 SDValue &Offset, bool &isInc, 7320 SelectionDAG &DAG) { 7321 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 7322 return false; 7323 7324 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { 7325 // AddressingMode 3 7326 Base = Ptr->getOperand(0); 7327 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 7328 int RHSC = (int)RHS->getZExtValue(); 7329 if (RHSC < 0 && RHSC > -256) { 7330 assert(Ptr->getOpcode() == ISD::ADD); 7331 isInc = false; 7332 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 7333 return true; 7334 } 7335 } 7336 isInc = (Ptr->getOpcode() == ISD::ADD); 7337 Offset = Ptr->getOperand(1); 7338 return true; 7339 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { 7340 // AddressingMode 2 7341 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 7342 int RHSC = (int)RHS->getZExtValue(); 7343 if (RHSC < 0 && RHSC > -0x1000) { 7344 assert(Ptr->getOpcode() == ISD::ADD); 7345 isInc = false; 7346 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 7347 Base = Ptr->getOperand(0); 7348 return true; 7349 } 7350 } 7351 7352 if (Ptr->getOpcode() == ISD::ADD) { 7353 isInc = true; 7354 ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); 7355 if (ShOpcVal != ARM_AM::no_shift) { 7356 Base = Ptr->getOperand(1); 7357 Offset = Ptr->getOperand(0); 7358 } else { 7359 Base = Ptr->getOperand(0); 7360 Offset = Ptr->getOperand(1); 7361 } 7362 return true; 7363 } 7364 7365 isInc = (Ptr->getOpcode() == ISD::ADD); 7366 Base = Ptr->getOperand(0); 7367 Offset = Ptr->getOperand(1); 7368 return true; 7369 } 7370 7371 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. 7372 return false; 7373 } 7374 7375 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, 7376 bool isSEXTLoad, SDValue &Base, 7377 SDValue &Offset, bool &isInc, 7378 SelectionDAG &DAG) { 7379 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 7380 return false; 7381 7382 Base = Ptr->getOperand(0); 7383 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 7384 int RHSC = (int)RHS->getZExtValue(); 7385 if (RHSC < 0 && RHSC > -0x100) { // 8 bits. 7386 assert(Ptr->getOpcode() == ISD::ADD); 7387 isInc = false; 7388 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 7389 return true; 7390 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. 7391 isInc = Ptr->getOpcode() == ISD::ADD; 7392 Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); 7393 return true; 7394 } 7395 } 7396 7397 return false; 7398 } 7399 7400 /// getPreIndexedAddressParts - returns true by value, base pointer and 7401 /// offset pointer and addressing mode by reference if the node's address 7402 /// can be legally represented as pre-indexed load / store address. 7403 bool 7404 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 7405 SDValue &Offset, 7406 ISD::MemIndexedMode &AM, 7407 SelectionDAG &DAG) const { 7408 if (Subtarget->isThumb1Only()) 7409 return false; 7410 7411 EVT VT; 7412 SDValue Ptr; 7413 bool isSEXTLoad = false; 7414 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 7415 Ptr = LD->getBasePtr(); 7416 VT = LD->getMemoryVT(); 7417 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 7418 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 7419 Ptr = ST->getBasePtr(); 7420 VT = ST->getMemoryVT(); 7421 } else 7422 return false; 7423 7424 bool isInc; 7425 bool isLegal = false; 7426 if (Subtarget->isThumb2()) 7427 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 7428 Offset, isInc, DAG); 7429 else 7430 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 7431 Offset, isInc, DAG); 7432 if (!isLegal) 7433 return false; 7434 7435 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; 7436 return true; 7437 } 7438 7439 /// getPostIndexedAddressParts - returns true by value, base pointer and 7440 /// offset pointer and addressing mode by reference if this node can be 7441 /// combined with a load / store to form a post-indexed load / store. 7442 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 7443 SDValue &Base, 7444 SDValue &Offset, 7445 ISD::MemIndexedMode &AM, 7446 SelectionDAG &DAG) const { 7447 if (Subtarget->isThumb1Only()) 7448 return false; 7449 7450 EVT VT; 7451 SDValue Ptr; 7452 bool isSEXTLoad = false; 7453 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 7454 VT = LD->getMemoryVT(); 7455 Ptr = LD->getBasePtr(); 7456 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 7457 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 7458 VT = ST->getMemoryVT(); 7459 Ptr = ST->getBasePtr(); 7460 } else 7461 return false; 7462 7463 bool isInc; 7464 bool isLegal = false; 7465 if (Subtarget->isThumb2()) 7466 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 7467 isInc, DAG); 7468 else 7469 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 7470 isInc, DAG); 7471 if (!isLegal) 7472 return false; 7473 7474 if (Ptr != Base) { 7475 // Swap base ptr and offset to catch more post-index load / store when 7476 // it's legal. In Thumb2 mode, offset must be an immediate. 7477 if (Ptr == Offset && Op->getOpcode() == ISD::ADD && 7478 !Subtarget->isThumb2()) 7479 std::swap(Base, Offset); 7480 7481 // Post-indexed load / store update the base pointer. 7482 if (Ptr != Base) 7483 return false; 7484 } 7485 7486 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 7487 return true; 7488 } 7489 7490 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 7491 const APInt &Mask, 7492 APInt &KnownZero, 7493 APInt &KnownOne, 7494 const SelectionDAG &DAG, 7495 unsigned Depth) const { 7496 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); 7497 switch (Op.getOpcode()) { 7498 default: break; 7499 case ARMISD::CMOV: { 7500 // Bits are known zero/one if known on the LHS and RHS. 7501 DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); 7502 if (KnownZero == 0 && KnownOne == 0) return; 7503 7504 APInt KnownZeroRHS, KnownOneRHS; 7505 DAG.ComputeMaskedBits(Op.getOperand(1), Mask, 7506 KnownZeroRHS, KnownOneRHS, Depth+1); 7507 KnownZero &= KnownZeroRHS; 7508 KnownOne &= KnownOneRHS; 7509 return; 7510 } 7511 } 7512 } 7513 7514 //===----------------------------------------------------------------------===// 7515 // ARM Inline Assembly Support 7516 //===----------------------------------------------------------------------===// 7517 7518 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { 7519 // Looking for "rev" which is V6+. 7520 if (!Subtarget->hasV6Ops()) 7521 return false; 7522 7523 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 7524 std::string AsmStr = IA->getAsmString(); 7525 SmallVector<StringRef, 4> AsmPieces; 7526 SplitString(AsmStr, AsmPieces, ";\n"); 7527 7528 switch (AsmPieces.size()) { 7529 default: return false; 7530 case 1: 7531 AsmStr = AsmPieces[0]; 7532 AsmPieces.clear(); 7533 SplitString(AsmStr, AsmPieces, " \t,"); 7534 7535 // rev $0, $1 7536 if (AsmPieces.size() == 3 && 7537 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && 7538 IA->getConstraintString().compare(0, 4, "=l,l") == 0) { 7539 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); 7540 if (Ty && Ty->getBitWidth() == 32) 7541 return IntrinsicLowering::LowerToByteSwap(CI); 7542 } 7543 break; 7544 } 7545 7546 return false; 7547 } 7548 7549 /// getConstraintType - Given a constraint letter, return the type of 7550 /// constraint it is for this target. 7551 ARMTargetLowering::ConstraintType 7552 ARMTargetLowering::getConstraintType(const std::string &Constraint) const { 7553 if (Constraint.size() == 1) { 7554 switch (Constraint[0]) { 7555 default: break; 7556 case 'l': return C_RegisterClass; 7557 case 'w': return C_RegisterClass; 7558 case 'h': return C_RegisterClass; 7559 case 'x': return C_RegisterClass; 7560 case 't': return C_RegisterClass; 7561 case 'j': return C_Other; // Constant for movw. 7562 } 7563 } else if (Constraint.size() == 2) { 7564 switch (Constraint[0]) { 7565 default: break; 7566 // All 'U+' constraints are addresses. 7567 case 'U': return C_Memory; 7568 } 7569 } 7570 return TargetLowering::getConstraintType(Constraint); 7571 } 7572 7573 /// Examine constraint type and operand type and determine a weight value. 7574 /// This object must already have been set up with the operand type 7575 /// and the current alternative constraint selected. 7576 TargetLowering::ConstraintWeight 7577 ARMTargetLowering::getSingleConstraintMatchWeight( 7578 AsmOperandInfo &info, const char *constraint) const { 7579 ConstraintWeight weight = CW_Invalid; 7580 Value *CallOperandVal = info.CallOperandVal; 7581 // If we don't have a value, we can't do a match, 7582 // but allow it at the lowest weight. 7583 if (CallOperandVal == NULL) 7584 return CW_Default; 7585 Type *type = CallOperandVal->getType(); 7586 // Look at the constraint type. 7587 switch (*constraint) { 7588 default: 7589 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 7590 break; 7591 case 'l': 7592 if (type->isIntegerTy()) { 7593 if (Subtarget->isThumb()) 7594 weight = CW_SpecificReg; 7595 else 7596 weight = CW_Register; 7597 } 7598 break; 7599 case 'w': 7600 if (type->isFloatingPointTy()) 7601 weight = CW_Register; 7602 break; 7603 } 7604 return weight; 7605 } 7606 7607 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair; 7608 RCPair 7609 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 7610 EVT VT) const { 7611 if (Constraint.size() == 1) { 7612 // GCC ARM Constraint Letters 7613 switch (Constraint[0]) { 7614 case 'l': // Low regs or general regs. 7615 if (Subtarget->isThumb()) 7616 return RCPair(0U, ARM::tGPRRegisterClass); 7617 else 7618 return RCPair(0U, ARM::GPRRegisterClass); 7619 case 'h': // High regs or no regs. 7620 if (Subtarget->isThumb()) 7621 return RCPair(0U, ARM::hGPRRegisterClass); 7622 break; 7623 case 'r': 7624 return RCPair(0U, ARM::GPRRegisterClass); 7625 case 'w': 7626 if (VT == MVT::f32) 7627 return RCPair(0U, ARM::SPRRegisterClass); 7628 if (VT.getSizeInBits() == 64) 7629 return RCPair(0U, ARM::DPRRegisterClass); 7630 if (VT.getSizeInBits() == 128) 7631 return RCPair(0U, ARM::QPRRegisterClass); 7632 break; 7633 case 'x': 7634 if (VT == MVT::f32) 7635 return RCPair(0U, ARM::SPR_8RegisterClass); 7636 if (VT.getSizeInBits() == 64) 7637 return RCPair(0U, ARM::DPR_8RegisterClass); 7638 if (VT.getSizeInBits() == 128) 7639 return RCPair(0U, ARM::QPR_8RegisterClass); 7640 break; 7641 case 't': 7642 if (VT == MVT::f32) 7643 return RCPair(0U, ARM::SPRRegisterClass); 7644 break; 7645 } 7646 } 7647 if (StringRef("{cc}").equals_lower(Constraint)) 7648 return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass); 7649 7650 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 7651 } 7652 7653 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 7654 /// vector. If it is invalid, don't add anything to Ops. 7655 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 7656 std::string &Constraint, 7657 std::vector<SDValue>&Ops, 7658 SelectionDAG &DAG) const { 7659 SDValue Result(0, 0); 7660 7661 // Currently only support length 1 constraints. 7662 if (Constraint.length() != 1) return; 7663 7664 char ConstraintLetter = Constraint[0]; 7665 switch (ConstraintLetter) { 7666 default: break; 7667 case 'j': 7668 case 'I': case 'J': case 'K': case 'L': 7669 case 'M': case 'N': case 'O': 7670 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 7671 if (!C) 7672 return; 7673 7674 int64_t CVal64 = C->getSExtValue(); 7675 int CVal = (int) CVal64; 7676 // None of these constraints allow values larger than 32 bits. Check 7677 // that the value fits in an int. 7678 if (CVal != CVal64) 7679 return; 7680 7681 switch (ConstraintLetter) { 7682 case 'j': 7683 // Constant suitable for movw, must be between 0 and 7684 // 65535. 7685 if (Subtarget->hasV6T2Ops()) 7686 if (CVal >= 0 && CVal <= 65535) 7687 break; 7688 return; 7689 case 'I': 7690 if (Subtarget->isThumb1Only()) { 7691 // This must be a constant between 0 and 255, for ADD 7692 // immediates. 7693 if (CVal >= 0 && CVal <= 255) 7694 break; 7695 } else if (Subtarget->isThumb2()) { 7696 // A constant that can be used as an immediate value in a 7697 // data-processing instruction. 7698 if (ARM_AM::getT2SOImmVal(CVal) != -1) 7699 break; 7700 } else { 7701 // A constant that can be used as an immediate value in a 7702 // data-processing instruction. 7703 if (ARM_AM::getSOImmVal(CVal) != -1) 7704 break; 7705 } 7706 return; 7707 7708 case 'J': 7709 if (Subtarget->isThumb()) { // FIXME thumb2 7710 // This must be a constant between -255 and -1, for negated ADD 7711 // immediates. This can be used in GCC with an "n" modifier that 7712 // prints the negated value, for use with SUB instructions. It is 7713 // not useful otherwise but is implemented for compatibility. 7714 if (CVal >= -255 && CVal <= -1) 7715 break; 7716 } else { 7717 // This must be a constant between -4095 and 4095. It is not clear 7718 // what this constraint is intended for. Implemented for 7719 // compatibility with GCC. 7720 if (CVal >= -4095 && CVal <= 4095) 7721 break; 7722 } 7723 return; 7724 7725 case 'K': 7726 if (Subtarget->isThumb1Only()) { 7727 // A 32-bit value where only one byte has a nonzero value. Exclude 7728 // zero to match GCC. This constraint is used by GCC internally for 7729 // constants that can be loaded with a move/shift combination. 7730 // It is not useful otherwise but is implemented for compatibility. 7731 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) 7732 break; 7733 } else if (Subtarget->isThumb2()) { 7734 // A constant whose bitwise inverse can be used as an immediate 7735 // value in a data-processing instruction. This can be used in GCC 7736 // with a "B" modifier that prints the inverted value, for use with 7737 // BIC and MVN instructions. It is not useful otherwise but is 7738 // implemented for compatibility. 7739 if (ARM_AM::getT2SOImmVal(~CVal) != -1) 7740 break; 7741 } else { 7742 // A constant whose bitwise inverse can be used as an immediate 7743 // value in a data-processing instruction. This can be used in GCC 7744 // with a "B" modifier that prints the inverted value, for use with 7745 // BIC and MVN instructions. It is not useful otherwise but is 7746 // implemented for compatibility. 7747 if (ARM_AM::getSOImmVal(~CVal) != -1) 7748 break; 7749 } 7750 return; 7751 7752 case 'L': 7753 if (Subtarget->isThumb1Only()) { 7754 // This must be a constant between -7 and 7, 7755 // for 3-operand ADD/SUB immediate instructions. 7756 if (CVal >= -7 && CVal < 7) 7757 break; 7758 } else if (Subtarget->isThumb2()) { 7759 // A constant whose negation can be used as an immediate value in a 7760 // data-processing instruction. This can be used in GCC with an "n" 7761 // modifier that prints the negated value, for use with SUB 7762 // instructions. It is not useful otherwise but is implemented for 7763 // compatibility. 7764 if (ARM_AM::getT2SOImmVal(-CVal) != -1) 7765 break; 7766 } else { 7767 // A constant whose negation can be used as an immediate value in a 7768 // data-processing instruction. This can be used in GCC with an "n" 7769 // modifier that prints the negated value, for use with SUB 7770 // instructions. It is not useful otherwise but is implemented for 7771 // compatibility. 7772 if (ARM_AM::getSOImmVal(-CVal) != -1) 7773 break; 7774 } 7775 return; 7776 7777 case 'M': 7778 if (Subtarget->isThumb()) { // FIXME thumb2 7779 // This must be a multiple of 4 between 0 and 1020, for 7780 // ADD sp + immediate. 7781 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) 7782 break; 7783 } else { 7784 // A power of two or a constant between 0 and 32. This is used in 7785 // GCC for the shift amount on shifted register operands, but it is 7786 // useful in general for any shift amounts. 7787 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) 7788 break; 7789 } 7790 return; 7791 7792 case 'N': 7793 if (Subtarget->isThumb()) { // FIXME thumb2 7794 // This must be a constant between 0 and 31, for shift amounts. 7795 if (CVal >= 0 && CVal <= 31) 7796 break; 7797 } 7798 return; 7799 7800 case 'O': 7801 if (Subtarget->isThumb()) { // FIXME thumb2 7802 // This must be a multiple of 4 between -508 and 508, for 7803 // ADD/SUB sp = sp + immediate. 7804 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) 7805 break; 7806 } 7807 return; 7808 } 7809 Result = DAG.getTargetConstant(CVal, Op.getValueType()); 7810 break; 7811 } 7812 7813 if (Result.getNode()) { 7814 Ops.push_back(Result); 7815 return; 7816 } 7817 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 7818 } 7819 7820 bool 7821 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 7822 // The ARM target isn't yet aware of offsets. 7823 return false; 7824 } 7825 7826 int ARM::getVFPf32Imm(const APFloat &FPImm) { 7827 APInt Imm = FPImm.bitcastToAPInt(); 7828 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; 7829 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 7830 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits 7831 7832 // We can handle 4 bits of mantissa. 7833 // mantissa = (16+UInt(e:f:g:h))/16. 7834 if (Mantissa & 0x7ffff) 7835 return -1; 7836 Mantissa >>= 19; 7837 if ((Mantissa & 0xf) != Mantissa) 7838 return -1; 7839 7840 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 7841 if (Exp < -3 || Exp > 4) 7842 return -1; 7843 Exp = ((Exp+3) & 0x7) ^ 4; 7844 7845 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 7846 } 7847 7848 int ARM::getVFPf64Imm(const APFloat &FPImm) { 7849 APInt Imm = FPImm.bitcastToAPInt(); 7850 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; 7851 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 7852 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL; 7853 7854 // We can handle 4 bits of mantissa. 7855 // mantissa = (16+UInt(e:f:g:h))/16. 7856 if (Mantissa & 0xffffffffffffLL) 7857 return -1; 7858 Mantissa >>= 48; 7859 if ((Mantissa & 0xf) != Mantissa) 7860 return -1; 7861 7862 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 7863 if (Exp < -3 || Exp > 4) 7864 return -1; 7865 Exp = ((Exp+3) & 0x7) ^ 4; 7866 7867 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 7868 } 7869 7870 bool ARM::isBitFieldInvertedMask(unsigned v) { 7871 if (v == 0xffffffff) 7872 return 0; 7873 // there can be 1's on either or both "outsides", all the "inside" 7874 // bits must be 0's 7875 unsigned int lsb = 0, msb = 31; 7876 while (v & (1 << msb)) --msb; 7877 while (v & (1 << lsb)) ++lsb; 7878 for (unsigned int i = lsb; i <= msb; ++i) { 7879 if (v & (1 << i)) 7880 return 0; 7881 } 7882 return 1; 7883 } 7884 7885 /// isFPImmLegal - Returns true if the target can instruction select the 7886 /// specified FP immediate natively. If false, the legalizer will 7887 /// materialize the FP immediate as a load from a constant pool. 7888 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 7889 if (!Subtarget->hasVFP3()) 7890 return false; 7891 if (VT == MVT::f32) 7892 return ARM::getVFPf32Imm(Imm) != -1; 7893 if (VT == MVT::f64) 7894 return ARM::getVFPf64Imm(Imm) != -1; 7895 return false; 7896 } 7897 7898 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 7899 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 7900 /// specified in the intrinsic calls. 7901 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 7902 const CallInst &I, 7903 unsigned Intrinsic) const { 7904 switch (Intrinsic) { 7905 case Intrinsic::arm_neon_vld1: 7906 case Intrinsic::arm_neon_vld2: 7907 case Intrinsic::arm_neon_vld3: 7908 case Intrinsic::arm_neon_vld4: 7909 case Intrinsic::arm_neon_vld2lane: 7910 case Intrinsic::arm_neon_vld3lane: 7911 case Intrinsic::arm_neon_vld4lane: { 7912 Info.opc = ISD::INTRINSIC_W_CHAIN; 7913 // Conservatively set memVT to the entire set of vectors loaded. 7914 uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8; 7915 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 7916 Info.ptrVal = I.getArgOperand(0); 7917 Info.offset = 0; 7918 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 7919 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 7920 Info.vol = false; // volatile loads with NEON intrinsics not supported 7921 Info.readMem = true; 7922 Info.writeMem = false; 7923 return true; 7924 } 7925 case Intrinsic::arm_neon_vst1: 7926 case Intrinsic::arm_neon_vst2: 7927 case Intrinsic::arm_neon_vst3: 7928 case Intrinsic::arm_neon_vst4: 7929 case Intrinsic::arm_neon_vst2lane: 7930 case Intrinsic::arm_neon_vst3lane: 7931 case Intrinsic::arm_neon_vst4lane: { 7932 Info.opc = ISD::INTRINSIC_VOID; 7933 // Conservatively set memVT to the entire set of vectors stored. 7934 unsigned NumElts = 0; 7935 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 7936 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 7937 if (!ArgTy->isVectorTy()) 7938 break; 7939 NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8; 7940 } 7941 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 7942 Info.ptrVal = I.getArgOperand(0); 7943 Info.offset = 0; 7944 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 7945 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 7946 Info.vol = false; // volatile stores with NEON intrinsics not supported 7947 Info.readMem = false; 7948 Info.writeMem = true; 7949 return true; 7950 } 7951 case Intrinsic::arm_strexd: { 7952 Info.opc = ISD::INTRINSIC_W_CHAIN; 7953 Info.memVT = MVT::i64; 7954 Info.ptrVal = I.getArgOperand(2); 7955 Info.offset = 0; 7956 Info.align = 8; 7957 Info.vol = true; 7958 Info.readMem = false; 7959 Info.writeMem = true; 7960 return true; 7961 } 7962 case Intrinsic::arm_ldrexd: { 7963 Info.opc = ISD::INTRINSIC_W_CHAIN; 7964 Info.memVT = MVT::i64; 7965 Info.ptrVal = I.getArgOperand(0); 7966 Info.offset = 0; 7967 Info.align = 8; 7968 Info.vol = true; 7969 Info.readMem = true; 7970 Info.writeMem = false; 7971 return true; 7972 } 7973 default: 7974 break; 7975 } 7976 7977 return false; 7978 } 7979