Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs loop invariant code motion on machine instructions. We
     11 // attempt to remove as much code from the body of a loop as possible.
     12 //
     13 // This pass does not attempt to throttle itself to limit register pressure.
     14 // The register allocation phases are expected to perform rematerialization
     15 // to recover when register pressure is high.
     16 //
     17 // This pass is not intended to be a replacement or a complete alternative
     18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
     19 // constructs that are not exposed before lowering and instruction selection.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #define DEBUG_TYPE "machine-licm"
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/CodeGen/MachineDominators.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineMemOperand.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/PseudoSourceValue.h"
     31 #include "llvm/MC/MCInstrItineraries.h"
     32 #include "llvm/Target/TargetLowering.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/ADT/DenseMap.h"
     38 #include "llvm/ADT/SmallSet.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 using namespace llvm;
     44 
     45 static cl::opt<bool>
     46 AvoidSpeculation("avoid-speculation",
     47                  cl::desc("MachineLICM should avoid speculation"),
     48                  cl::init(false), cl::Hidden);
     49 
     50 STATISTIC(NumHoisted,
     51           "Number of machine instructions hoisted out of loops");
     52 STATISTIC(NumLowRP,
     53           "Number of instructions hoisted in low reg pressure situation");
     54 STATISTIC(NumHighLatency,
     55           "Number of high latency instructions hoisted");
     56 STATISTIC(NumCSEed,
     57           "Number of hoisted machine instructions CSEed");
     58 STATISTIC(NumPostRAHoisted,
     59           "Number of machine instructions hoisted out of loops post regalloc");
     60 
     61 namespace {
     62   class MachineLICM : public MachineFunctionPass {
     63     bool PreRegAlloc;
     64 
     65     const TargetMachine   *TM;
     66     const TargetInstrInfo *TII;
     67     const TargetLowering *TLI;
     68     const TargetRegisterInfo *TRI;
     69     const MachineFrameInfo *MFI;
     70     MachineRegisterInfo *MRI;
     71     const InstrItineraryData *InstrItins;
     72 
     73     // Various analyses that we use...
     74     AliasAnalysis        *AA;      // Alias analysis info.
     75     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
     76     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
     77 
     78     // State that is updated as we process loops
     79     bool         Changed;          // True if a loop is changed.
     80     bool         FirstInLoop;      // True if it's the first LICM in the loop.
     81     MachineLoop *CurLoop;          // The current loop we are working on.
     82     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
     83 
     84     BitVector AllocatableSet;
     85 
     86     // Track 'estimated' register pressure.
     87     SmallSet<unsigned, 32> RegSeen;
     88     SmallVector<unsigned, 8> RegPressure;
     89 
     90     // Register pressure "limit" per register class. If the pressure
     91     // is higher than the limit, then it's considered high.
     92     SmallVector<unsigned, 8> RegLimit;
     93 
     94     // Register pressure on path leading from loop preheader to current BB.
     95     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
     96 
     97     // For each opcode, keep a list of potential CSE instructions.
     98     DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
     99 
    100     enum {
    101       SpeculateFalse   = 0,
    102       SpeculateTrue    = 1,
    103       SpeculateUnknown = 2
    104     };
    105 
    106     // If a MBB does not dominate loop exiting blocks then it may not safe
    107     // to hoist loads from this block.
    108     // Tri-state: 0 - false, 1 - true, 2 - unknown
    109     unsigned SpeculationState;
    110 
    111   public:
    112     static char ID; // Pass identification, replacement for typeid
    113     MachineLICM() :
    114       MachineFunctionPass(ID), PreRegAlloc(true) {
    115         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    116       }
    117 
    118     explicit MachineLICM(bool PreRA) :
    119       MachineFunctionPass(ID), PreRegAlloc(PreRA) {
    120         initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    121       }
    122 
    123     virtual bool runOnMachineFunction(MachineFunction &MF);
    124 
    125     const char *getPassName() const { return "Machine Instruction LICM"; }
    126 
    127     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    128       AU.addRequired<MachineLoopInfo>();
    129       AU.addRequired<MachineDominatorTree>();
    130       AU.addRequired<AliasAnalysis>();
    131       AU.addPreserved<MachineLoopInfo>();
    132       AU.addPreserved<MachineDominatorTree>();
    133       MachineFunctionPass::getAnalysisUsage(AU);
    134     }
    135 
    136     virtual void releaseMemory() {
    137       RegSeen.clear();
    138       RegPressure.clear();
    139       RegLimit.clear();
    140       BackTrace.clear();
    141       for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
    142              CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
    143         CI->second.clear();
    144       CSEMap.clear();
    145     }
    146 
    147   private:
    148     /// CandidateInfo - Keep track of information about hoisting candidates.
    149     struct CandidateInfo {
    150       MachineInstr *MI;
    151       unsigned      Def;
    152       int           FI;
    153       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
    154         : MI(mi), Def(def), FI(fi) {}
    155     };
    156 
    157     /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
    158     /// invariants out to the preheader.
    159     void HoistRegionPostRA();
    160 
    161     /// HoistPostRA - When an instruction is found to only use loop invariant
    162     /// operands that is safe to hoist, this instruction is called to do the
    163     /// dirty work.
    164     void HoistPostRA(MachineInstr *MI, unsigned Def);
    165 
    166     /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
    167     /// gather register def and frame object update information.
    168     void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
    169                    SmallSet<int, 32> &StoredFIs,
    170                    SmallVector<CandidateInfo, 32> &Candidates);
    171 
    172     /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
    173     /// current loop.
    174     void AddToLiveIns(unsigned Reg);
    175 
    176     /// IsLICMCandidate - Returns true if the instruction may be a suitable
    177     /// candidate for LICM. e.g. If the instruction is a call, then it's
    178     /// obviously not safe to hoist it.
    179     bool IsLICMCandidate(MachineInstr &I);
    180 
    181     /// IsLoopInvariantInst - Returns true if the instruction is loop
    182     /// invariant. I.e., all virtual register operands are defined outside of
    183     /// the loop, physical registers aren't accessed (explicitly or implicitly),
    184     /// and the instruction is hoistable.
    185     ///
    186     bool IsLoopInvariantInst(MachineInstr &I);
    187 
    188     /// HasAnyPHIUse - Return true if the specified register is used by any
    189     /// phi node.
    190     bool HasAnyPHIUse(unsigned Reg) const;
    191 
    192     /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
    193     /// and an use in the current loop, return true if the target considered
    194     /// it 'high'.
    195     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
    196                                unsigned Reg) const;
    197 
    198     bool IsCheapInstruction(MachineInstr &MI) const;
    199 
    200     /// CanCauseHighRegPressure - Visit BBs from header to current BB,
    201     /// check if hoisting an instruction of the given cost matrix can cause high
    202     /// register pressure.
    203     bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost);
    204 
    205     /// UpdateBackTraceRegPressure - Traverse the back trace from header to
    206     /// the current block and update their register pressures to reflect the
    207     /// effect of hoisting MI from the current block to the preheader.
    208     void UpdateBackTraceRegPressure(const MachineInstr *MI);
    209 
    210     /// IsProfitableToHoist - Return true if it is potentially profitable to
    211     /// hoist the given loop invariant.
    212     bool IsProfitableToHoist(MachineInstr &MI);
    213 
    214     /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
    215     /// If not then a load from this mbb may not be safe to hoist.
    216     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
    217 
    218     /// HoistRegion - Walk the specified region of the CFG (defined by all
    219     /// blocks dominated by the specified block, and that are in the current
    220     /// loop) in depth first order w.r.t the DominatorTree. This allows us to
    221     /// visit definitions before uses, allowing us to hoist a loop body in one
    222     /// pass without iteration.
    223     ///
    224     void HoistRegion(MachineDomTreeNode *N, bool IsHeader = false);
    225 
    226     /// getRegisterClassIDAndCost - For a given MI, register, and the operand
    227     /// index, return the ID and cost of its representative register class by
    228     /// reference.
    229     void getRegisterClassIDAndCost(const MachineInstr *MI,
    230                                    unsigned Reg, unsigned OpIdx,
    231                                    unsigned &RCId, unsigned &RCCost) const;
    232 
    233     /// InitRegPressure - Find all virtual register references that are liveout
    234     /// of the preheader to initialize the starting "register pressure". Note
    235     /// this does not count live through (livein but not used) registers.
    236     void InitRegPressure(MachineBasicBlock *BB);
    237 
    238     /// UpdateRegPressure - Update estimate of register pressure after the
    239     /// specified instruction.
    240     void UpdateRegPressure(const MachineInstr *MI);
    241 
    242     /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
    243     /// the load itself could be hoisted. Return the unfolded and hoistable
    244     /// load, or null if the load couldn't be unfolded or if it wouldn't
    245     /// be hoistable.
    246     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
    247 
    248     /// LookForDuplicate - Find an instruction amount PrevMIs that is a
    249     /// duplicate of MI. Return this instruction if it's found.
    250     const MachineInstr *LookForDuplicate(const MachineInstr *MI,
    251                                      std::vector<const MachineInstr*> &PrevMIs);
    252 
    253     /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
    254     /// the preheader that compute the same value. If it's found, do a RAU on
    255     /// with the definition of the existing instruction rather than hoisting
    256     /// the instruction to the preheader.
    257     bool EliminateCSE(MachineInstr *MI,
    258            DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
    259 
    260     /// MayCSE - Return true if the given instruction will be CSE'd if it's
    261     /// hoisted out of the loop.
    262     bool MayCSE(MachineInstr *MI);
    263 
    264     /// Hoist - When an instruction is found to only use loop invariant operands
    265     /// that is safe to hoist, this instruction is called to do the dirty work.
    266     /// It returns true if the instruction is hoisted.
    267     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
    268 
    269     /// InitCSEMap - Initialize the CSE map with instructions that are in the
    270     /// current loop preheader that may become duplicates of instructions that
    271     /// are hoisted out of the loop.
    272     void InitCSEMap(MachineBasicBlock *BB);
    273 
    274     /// getCurPreheader - Get the preheader for the current loop, splitting
    275     /// a critical edge if needed.
    276     MachineBasicBlock *getCurPreheader();
    277   };
    278 } // end anonymous namespace
    279 
    280 char MachineLICM::ID = 0;
    281 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
    282                 "Machine Loop Invariant Code Motion", false, false)
    283 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    284 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    285 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    286 INITIALIZE_PASS_END(MachineLICM, "machinelicm",
    287                 "Machine Loop Invariant Code Motion", false, false)
    288 
    289 FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
    290   return new MachineLICM(PreRegAlloc);
    291 }
    292 
    293 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
    294 /// loop that has a unique predecessor.
    295 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
    296   // Check whether this loop even has a unique predecessor.
    297   if (!CurLoop->getLoopPredecessor())
    298     return false;
    299   // Ok, now check to see if any of its outer loops do.
    300   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    301     if (L->getLoopPredecessor())
    302       return false;
    303   // None of them did, so this is the outermost with a unique predecessor.
    304   return true;
    305 }
    306 
    307 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
    308   if (PreRegAlloc)
    309     DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
    310   else
    311     DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
    312   DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
    313 
    314   Changed = FirstInLoop = false;
    315   TM = &MF.getTarget();
    316   TII = TM->getInstrInfo();
    317   TLI = TM->getTargetLowering();
    318   TRI = TM->getRegisterInfo();
    319   MFI = MF.getFrameInfo();
    320   MRI = &MF.getRegInfo();
    321   InstrItins = TM->getInstrItineraryData();
    322   AllocatableSet = TRI->getAllocatableSet(MF);
    323 
    324   if (PreRegAlloc) {
    325     // Estimate register pressure during pre-regalloc pass.
    326     unsigned NumRC = TRI->getNumRegClasses();
    327     RegPressure.resize(NumRC);
    328     std::fill(RegPressure.begin(), RegPressure.end(), 0);
    329     RegLimit.resize(NumRC);
    330     for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
    331            E = TRI->regclass_end(); I != E; ++I)
    332       RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
    333   }
    334 
    335   // Get our Loop information...
    336   MLI = &getAnalysis<MachineLoopInfo>();
    337   DT  = &getAnalysis<MachineDominatorTree>();
    338   AA  = &getAnalysis<AliasAnalysis>();
    339 
    340   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
    341   while (!Worklist.empty()) {
    342     CurLoop = Worklist.pop_back_val();
    343     CurPreheader = 0;
    344 
    345     // If this is done before regalloc, only visit outer-most preheader-sporting
    346     // loops.
    347     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
    348       Worklist.append(CurLoop->begin(), CurLoop->end());
    349       continue;
    350     }
    351 
    352     if (!PreRegAlloc)
    353       HoistRegionPostRA();
    354     else {
    355       // CSEMap is initialized for loop header when the first instruction is
    356       // being hoisted.
    357       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
    358       FirstInLoop = true;
    359       HoistRegion(N, true);
    360       CSEMap.clear();
    361     }
    362   }
    363 
    364   return Changed;
    365 }
    366 
    367 /// InstructionStoresToFI - Return true if instruction stores to the
    368 /// specified frame.
    369 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
    370   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    371          oe = MI->memoperands_end(); o != oe; ++o) {
    372     if (!(*o)->isStore() || !(*o)->getValue())
    373       continue;
    374     if (const FixedStackPseudoSourceValue *Value =
    375         dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
    376       if (Value->getFrameIndex() == FI)
    377         return true;
    378     }
    379   }
    380   return false;
    381 }
    382 
    383 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
    384 /// gather register def and frame object update information.
    385 void MachineLICM::ProcessMI(MachineInstr *MI,
    386                             unsigned *PhysRegDefs,
    387                             SmallSet<int, 32> &StoredFIs,
    388                             SmallVector<CandidateInfo, 32> &Candidates) {
    389   bool RuledOut = false;
    390   bool HasNonInvariantUse = false;
    391   unsigned Def = 0;
    392   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    393     const MachineOperand &MO = MI->getOperand(i);
    394     if (MO.isFI()) {
    395       // Remember if the instruction stores to the frame index.
    396       int FI = MO.getIndex();
    397       if (!StoredFIs.count(FI) &&
    398           MFI->isSpillSlotObjectIndex(FI) &&
    399           InstructionStoresToFI(MI, FI))
    400         StoredFIs.insert(FI);
    401       HasNonInvariantUse = true;
    402       continue;
    403     }
    404 
    405     if (!MO.isReg())
    406       continue;
    407     unsigned Reg = MO.getReg();
    408     if (!Reg)
    409       continue;
    410     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
    411            "Not expecting virtual register!");
    412 
    413     if (!MO.isDef()) {
    414       if (Reg && PhysRegDefs[Reg])
    415         // If it's using a non-loop-invariant register, then it's obviously not
    416         // safe to hoist.
    417         HasNonInvariantUse = true;
    418       continue;
    419     }
    420 
    421     if (MO.isImplicit()) {
    422       ++PhysRegDefs[Reg];
    423       for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
    424         ++PhysRegDefs[*AS];
    425       if (!MO.isDead())
    426         // Non-dead implicit def? This cannot be hoisted.
    427         RuledOut = true;
    428       // No need to check if a dead implicit def is also defined by
    429       // another instruction.
    430       continue;
    431     }
    432 
    433     // FIXME: For now, avoid instructions with multiple defs, unless
    434     // it's a dead implicit def.
    435     if (Def)
    436       RuledOut = true;
    437     else
    438       Def = Reg;
    439 
    440     // If we have already seen another instruction that defines the same
    441     // register, then this is not safe.
    442     if (++PhysRegDefs[Reg] > 1)
    443       // MI defined register is seen defined by another instruction in
    444       // the loop, it cannot be a LICM candidate.
    445       RuledOut = true;
    446     for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
    447       if (++PhysRegDefs[*AS] > 1)
    448         RuledOut = true;
    449   }
    450 
    451   // Only consider reloads for now and remats which do not have register
    452   // operands. FIXME: Consider unfold load folding instructions.
    453   if (Def && !RuledOut) {
    454     int FI = INT_MIN;
    455     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
    456         (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
    457       Candidates.push_back(CandidateInfo(MI, Def, FI));
    458   }
    459 }
    460 
    461 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
    462 /// invariants out to the preheader.
    463 void MachineLICM::HoistRegionPostRA() {
    464   unsigned NumRegs = TRI->getNumRegs();
    465   unsigned *PhysRegDefs = new unsigned[NumRegs];
    466   std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
    467 
    468   SmallVector<CandidateInfo, 32> Candidates;
    469   SmallSet<int, 32> StoredFIs;
    470 
    471   // Walk the entire region, count number of defs for each register, and
    472   // collect potential LICM candidates.
    473   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
    474   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    475     MachineBasicBlock *BB = Blocks[i];
    476 
    477     // If the header of the loop containing this basic block is a landing pad,
    478     // then don't try to hoist instructions out of this loop.
    479     const MachineLoop *ML = MLI->getLoopFor(BB);
    480     if (ML && ML->getHeader()->isLandingPad()) continue;
    481 
    482     // Conservatively treat live-in's as an external def.
    483     // FIXME: That means a reload that're reused in successor block(s) will not
    484     // be LICM'ed.
    485     for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
    486            E = BB->livein_end(); I != E; ++I) {
    487       unsigned Reg = *I;
    488       ++PhysRegDefs[Reg];
    489       for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
    490         ++PhysRegDefs[*AS];
    491     }
    492 
    493     SpeculationState = SpeculateUnknown;
    494     for (MachineBasicBlock::iterator
    495            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
    496       MachineInstr *MI = &*MII;
    497       ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
    498     }
    499   }
    500 
    501   // Now evaluate whether the potential candidates qualify.
    502   // 1. Check if the candidate defined register is defined by another
    503   //    instruction in the loop.
    504   // 2. If the candidate is a load from stack slot (always true for now),
    505   //    check if the slot is stored anywhere in the loop.
    506   for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
    507     if (Candidates[i].FI != INT_MIN &&
    508         StoredFIs.count(Candidates[i].FI))
    509       continue;
    510 
    511     if (PhysRegDefs[Candidates[i].Def] == 1) {
    512       bool Safe = true;
    513       MachineInstr *MI = Candidates[i].MI;
    514       for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
    515         const MachineOperand &MO = MI->getOperand(j);
    516         if (!MO.isReg() || MO.isDef() || !MO.getReg())
    517           continue;
    518         if (PhysRegDefs[MO.getReg()]) {
    519           // If it's using a non-loop-invariant register, then it's obviously
    520           // not safe to hoist.
    521           Safe = false;
    522           break;
    523         }
    524       }
    525       if (Safe)
    526         HoistPostRA(MI, Candidates[i].Def);
    527     }
    528   }
    529 
    530   delete[] PhysRegDefs;
    531 }
    532 
    533 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
    534 /// loop, and make sure it is not killed by any instructions in the loop.
    535 void MachineLICM::AddToLiveIns(unsigned Reg) {
    536   const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
    537   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    538     MachineBasicBlock *BB = Blocks[i];
    539     if (!BB->isLiveIn(Reg))
    540       BB->addLiveIn(Reg);
    541     for (MachineBasicBlock::iterator
    542            MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
    543       MachineInstr *MI = &*MII;
    544       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    545         MachineOperand &MO = MI->getOperand(i);
    546         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
    547         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
    548           MO.setIsKill(false);
    549       }
    550     }
    551   }
    552 }
    553 
    554 /// HoistPostRA - When an instruction is found to only use loop invariant
    555 /// operands that is safe to hoist, this instruction is called to do the
    556 /// dirty work.
    557 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
    558   MachineBasicBlock *Preheader = getCurPreheader();
    559   if (!Preheader) return;
    560 
    561   // Now move the instructions to the predecessor, inserting it before any
    562   // terminator instructions.
    563   DEBUG({
    564       dbgs() << "Hoisting " << *MI;
    565       if (Preheader->getBasicBlock())
    566         dbgs() << " to MachineBasicBlock "
    567                << Preheader->getName();
    568       if (MI->getParent()->getBasicBlock())
    569         dbgs() << " from MachineBasicBlock "
    570                << MI->getParent()->getName();
    571       dbgs() << "\n";
    572     });
    573 
    574   // Splice the instruction to the preheader.
    575   MachineBasicBlock *MBB = MI->getParent();
    576   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
    577 
    578   // Add register to livein list to all the BBs in the current loop since a
    579   // loop invariant must be kept live throughout the whole loop. This is
    580   // important to ensure later passes do not scavenge the def register.
    581   AddToLiveIns(Def);
    582 
    583   ++NumPostRAHoisted;
    584   Changed = true;
    585 }
    586 
    587 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
    588 // If not then a load from this mbb may not be safe to hoist.
    589 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
    590   if (SpeculationState != SpeculateUnknown)
    591     return SpeculationState == SpeculateFalse;
    592 
    593   if (BB != CurLoop->getHeader()) {
    594     // Check loop exiting blocks.
    595     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
    596     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
    597     for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
    598       if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
    599         SpeculationState = SpeculateTrue;
    600         return false;
    601       }
    602   }
    603 
    604   SpeculationState = SpeculateFalse;
    605   return true;
    606 }
    607 
    608 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
    609 /// dominated by the specified block, and that are in the current loop) in depth
    610 /// first order w.r.t the DominatorTree. This allows us to visit definitions
    611 /// before uses, allowing us to hoist a loop body in one pass without iteration.
    612 ///
    613 void MachineLICM::HoistRegion(MachineDomTreeNode *N, bool IsHeader) {
    614   assert(N != 0 && "Null dominator tree node?");
    615   MachineBasicBlock *BB = N->getBlock();
    616 
    617   // If the header of the loop containing this basic block is a landing pad,
    618   // then don't try to hoist instructions out of this loop.
    619   const MachineLoop *ML = MLI->getLoopFor(BB);
    620   if (ML && ML->getHeader()->isLandingPad()) return;
    621 
    622   // If this subregion is not in the top level loop at all, exit.
    623   if (!CurLoop->contains(BB)) return;
    624 
    625   MachineBasicBlock *Preheader = getCurPreheader();
    626   if (!Preheader)
    627     return;
    628 
    629   if (IsHeader) {
    630     // Compute registers which are livein into the loop headers.
    631     RegSeen.clear();
    632     BackTrace.clear();
    633     InitRegPressure(Preheader);
    634   }
    635 
    636   // Remember livein register pressure.
    637   BackTrace.push_back(RegPressure);
    638 
    639   SpeculationState = SpeculateUnknown;
    640   for (MachineBasicBlock::iterator
    641          MII = BB->begin(), E = BB->end(); MII != E; ) {
    642     MachineBasicBlock::iterator NextMII = MII; ++NextMII;
    643     MachineInstr *MI = &*MII;
    644     if (!Hoist(MI, Preheader))
    645       UpdateRegPressure(MI);
    646     MII = NextMII;
    647   }
    648 
    649   // Don't hoist things out of a large switch statement.  This often causes
    650   // code to be hoisted that wasn't going to be executed, and increases
    651   // register pressure in a situation where it's likely to matter.
    652   if (BB->succ_size() < 25) {
    653     const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
    654     for (unsigned I = 0, E = Children.size(); I != E; ++I)
    655       HoistRegion(Children[I]);
    656   }
    657 
    658   BackTrace.pop_back();
    659 }
    660 
    661 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
    662   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
    663 }
    664 
    665 /// getRegisterClassIDAndCost - For a given MI, register, and the operand
    666 /// index, return the ID and cost of its representative register class.
    667 void
    668 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
    669                                        unsigned Reg, unsigned OpIdx,
    670                                        unsigned &RCId, unsigned &RCCost) const {
    671   const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    672   EVT VT = *RC->vt_begin();
    673   if (VT == MVT::untyped) {
    674     RCId = RC->getID();
    675     RCCost = 1;
    676   } else {
    677     RCId = TLI->getRepRegClassFor(VT)->getID();
    678     RCCost = TLI->getRepRegClassCostFor(VT);
    679   }
    680 }
    681 
    682 /// InitRegPressure - Find all virtual register references that are liveout of
    683 /// the preheader to initialize the starting "register pressure". Note this
    684 /// does not count live through (livein but not used) registers.
    685 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
    686   std::fill(RegPressure.begin(), RegPressure.end(), 0);
    687 
    688   // If the preheader has only a single predecessor and it ends with a
    689   // fallthrough or an unconditional branch, then scan its predecessor for live
    690   // defs as well. This happens whenever the preheader is created by splitting
    691   // the critical edge from the loop predecessor to the loop header.
    692   if (BB->pred_size() == 1) {
    693     MachineBasicBlock *TBB = 0, *FBB = 0;
    694     SmallVector<MachineOperand, 4> Cond;
    695     if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
    696       InitRegPressure(*BB->pred_begin());
    697   }
    698 
    699   for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
    700        MII != E; ++MII) {
    701     MachineInstr *MI = &*MII;
    702     for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    703       const MachineOperand &MO = MI->getOperand(i);
    704       if (!MO.isReg() || MO.isImplicit())
    705         continue;
    706       unsigned Reg = MO.getReg();
    707       if (!TargetRegisterInfo::isVirtualRegister(Reg))
    708         continue;
    709 
    710       bool isNew = RegSeen.insert(Reg);
    711       unsigned RCId, RCCost;
    712       getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
    713       if (MO.isDef())
    714         RegPressure[RCId] += RCCost;
    715       else {
    716         bool isKill = isOperandKill(MO, MRI);
    717         if (isNew && !isKill)
    718           // Haven't seen this, it must be a livein.
    719           RegPressure[RCId] += RCCost;
    720         else if (!isNew && isKill)
    721           RegPressure[RCId] -= RCCost;
    722       }
    723     }
    724   }
    725 }
    726 
    727 /// UpdateRegPressure - Update estimate of register pressure after the
    728 /// specified instruction.
    729 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
    730   if (MI->isImplicitDef())
    731     return;
    732 
    733   SmallVector<unsigned, 4> Defs;
    734   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    735     const MachineOperand &MO = MI->getOperand(i);
    736     if (!MO.isReg() || MO.isImplicit())
    737       continue;
    738     unsigned Reg = MO.getReg();
    739     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    740       continue;
    741 
    742     bool isNew = RegSeen.insert(Reg);
    743     if (MO.isDef())
    744       Defs.push_back(Reg);
    745     else if (!isNew && isOperandKill(MO, MRI)) {
    746       unsigned RCId, RCCost;
    747       getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
    748       if (RCCost > RegPressure[RCId])
    749         RegPressure[RCId] = 0;
    750       else
    751         RegPressure[RCId] -= RCCost;
    752     }
    753   }
    754 
    755   unsigned Idx = 0;
    756   while (!Defs.empty()) {
    757     unsigned Reg = Defs.pop_back_val();
    758     unsigned RCId, RCCost;
    759     getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
    760     RegPressure[RCId] += RCCost;
    761     ++Idx;
    762   }
    763 }
    764 
    765 /// isLoadFromGOT - Return true if this machine instruction loads from
    766 /// global offset table.
    767 static bool isLoadFromGOT(MachineInstr &MI) {
    768   assert (MI.getDesc().mayLoad() && "Expected MI that loads!");
    769   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
    770 	 E = MI.memoperands_end(); I != E; ++I) {
    771     if (const Value *V = (*I)->getValue()) {
    772       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
    773         if (PSV == PSV->getGOT())
    774 	  return true;
    775     }
    776   }
    777   return false;
    778 }
    779 
    780 /// IsLICMCandidate - Returns true if the instruction may be a suitable
    781 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
    782 /// not safe to hoist it.
    783 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
    784   // Check if it's safe to move the instruction.
    785   bool DontMoveAcrossStore = true;
    786   if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
    787     return false;
    788 
    789   // If it is load then check if it is guaranteed to execute by making sure that
    790   // it dominates all exiting blocks. If it doesn't, then there is a path out of
    791   // the loop which does not execute this load, so we can't hoist it.
    792   // Stores and side effects are already checked by isSafeToMove.
    793   if (I.getDesc().mayLoad() && !isLoadFromGOT(I) &&
    794       !IsGuaranteedToExecute(I.getParent()))
    795     return false;
    796 
    797   return true;
    798 }
    799 
    800 /// IsLoopInvariantInst - Returns true if the instruction is loop
    801 /// invariant. I.e., all virtual register operands are defined outside of the
    802 /// loop, physical registers aren't accessed explicitly, and there are no side
    803 /// effects that aren't captured by the operands or other flags.
    804 ///
    805 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
    806   if (!IsLICMCandidate(I))
    807     return false;
    808 
    809   // The instruction is loop invariant if all of its operands are.
    810   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    811     const MachineOperand &MO = I.getOperand(i);
    812 
    813     if (!MO.isReg())
    814       continue;
    815 
    816     unsigned Reg = MO.getReg();
    817     if (Reg == 0) continue;
    818 
    819     // Don't hoist an instruction that uses or defines a physical register.
    820     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    821       if (MO.isUse()) {
    822         // If the physreg has no defs anywhere, it's just an ambient register
    823         // and we can freely move its uses. Alternatively, if it's allocatable,
    824         // it could get allocated to something with a def during allocation.
    825         if (!MRI->def_empty(Reg))
    826           return false;
    827         if (AllocatableSet.test(Reg))
    828           return false;
    829         // Check for a def among the register's aliases too.
    830         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    831           unsigned AliasReg = *Alias;
    832           if (!MRI->def_empty(AliasReg))
    833             return false;
    834           if (AllocatableSet.test(AliasReg))
    835             return false;
    836         }
    837         // Otherwise it's safe to move.
    838         continue;
    839       } else if (!MO.isDead()) {
    840         // A def that isn't dead. We can't move it.
    841         return false;
    842       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
    843         // If the reg is live into the loop, we can't hoist an instruction
    844         // which would clobber it.
    845         return false;
    846       }
    847     }
    848 
    849     if (!MO.isUse())
    850       continue;
    851 
    852     assert(MRI->getVRegDef(Reg) &&
    853            "Machine instr not mapped for this vreg?!");
    854 
    855     // If the loop contains the definition of an operand, then the instruction
    856     // isn't loop invariant.
    857     if (CurLoop->contains(MRI->getVRegDef(Reg)))
    858       return false;
    859   }
    860 
    861   // If we got this far, the instruction is loop invariant!
    862   return true;
    863 }
    864 
    865 
    866 /// HasAnyPHIUse - Return true if the specified register is used by any
    867 /// phi node.
    868 bool MachineLICM::HasAnyPHIUse(unsigned Reg) const {
    869   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
    870          UE = MRI->use_end(); UI != UE; ++UI) {
    871     MachineInstr *UseMI = &*UI;
    872     if (UseMI->isPHI())
    873       return true;
    874     // Look pass copies as well.
    875     if (UseMI->isCopy()) {
    876       unsigned Def = UseMI->getOperand(0).getReg();
    877       if (TargetRegisterInfo::isVirtualRegister(Def) &&
    878           HasAnyPHIUse(Def))
    879         return true;
    880     }
    881   }
    882   return false;
    883 }
    884 
    885 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
    886 /// and an use in the current loop, return true if the target considered
    887 /// it 'high'.
    888 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
    889                                         unsigned DefIdx, unsigned Reg) const {
    890   if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
    891     return false;
    892 
    893   for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
    894          E = MRI->use_nodbg_end(); I != E; ++I) {
    895     MachineInstr *UseMI = &*I;
    896     if (UseMI->isCopyLike())
    897       continue;
    898     if (!CurLoop->contains(UseMI->getParent()))
    899       continue;
    900     for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
    901       const MachineOperand &MO = UseMI->getOperand(i);
    902       if (!MO.isReg() || !MO.isUse())
    903         continue;
    904       unsigned MOReg = MO.getReg();
    905       if (MOReg != Reg)
    906         continue;
    907 
    908       if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
    909         return true;
    910     }
    911 
    912     // Only look at the first in loop use.
    913     break;
    914   }
    915 
    916   return false;
    917 }
    918 
    919 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or
    920 /// the operand latency between its def and a use is one or less.
    921 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
    922   if (MI.getDesc().isAsCheapAsAMove() || MI.isCopyLike())
    923     return true;
    924   if (!InstrItins || InstrItins->isEmpty())
    925     return false;
    926 
    927   bool isCheap = false;
    928   unsigned NumDefs = MI.getDesc().getNumDefs();
    929   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
    930     MachineOperand &DefMO = MI.getOperand(i);
    931     if (!DefMO.isReg() || !DefMO.isDef())
    932       continue;
    933     --NumDefs;
    934     unsigned Reg = DefMO.getReg();
    935     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    936       continue;
    937 
    938     if (!TII->hasLowDefLatency(InstrItins, &MI, i))
    939       return false;
    940     isCheap = true;
    941   }
    942 
    943   return isCheap;
    944 }
    945 
    946 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check
    947 /// if hoisting an instruction of the given cost matrix can cause high
    948 /// register pressure.
    949 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost) {
    950   for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
    951        CI != CE; ++CI) {
    952     if (CI->second <= 0)
    953       continue;
    954 
    955     unsigned RCId = CI->first;
    956     for (unsigned i = BackTrace.size(); i != 0; --i) {
    957       SmallVector<unsigned, 8> &RP = BackTrace[i-1];
    958       if (RP[RCId] + CI->second >= RegLimit[RCId])
    959         return true;
    960     }
    961   }
    962 
    963   return false;
    964 }
    965 
    966 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the
    967 /// current block and update their register pressures to reflect the effect
    968 /// of hoisting MI from the current block to the preheader.
    969 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
    970   if (MI->isImplicitDef())
    971     return;
    972 
    973   // First compute the 'cost' of the instruction, i.e. its contribution
    974   // to register pressure.
    975   DenseMap<unsigned, int> Cost;
    976   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    977     const MachineOperand &MO = MI->getOperand(i);
    978     if (!MO.isReg() || MO.isImplicit())
    979       continue;
    980     unsigned Reg = MO.getReg();
    981     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    982       continue;
    983 
    984     unsigned RCId, RCCost;
    985     getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
    986     if (MO.isDef()) {
    987       DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
    988       if (CI != Cost.end())
    989         CI->second += RCCost;
    990       else
    991         Cost.insert(std::make_pair(RCId, RCCost));
    992     } else if (isOperandKill(MO, MRI)) {
    993       DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
    994       if (CI != Cost.end())
    995         CI->second -= RCCost;
    996       else
    997         Cost.insert(std::make_pair(RCId, -RCCost));
    998     }
    999   }
   1000 
   1001   // Update register pressure of blocks from loop header to current block.
   1002   for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
   1003     SmallVector<unsigned, 8> &RP = BackTrace[i];
   1004     for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
   1005          CI != CE; ++CI) {
   1006       unsigned RCId = CI->first;
   1007       RP[RCId] += CI->second;
   1008     }
   1009   }
   1010 }
   1011 
   1012 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
   1013 /// the given loop invariant.
   1014 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
   1015   if (MI.isImplicitDef())
   1016     return true;
   1017 
   1018   // If the instruction is cheap, only hoist if it is re-materilizable. LICM
   1019   // will increase register pressure. It's probably not worth it if the
   1020   // instruction is cheap.
   1021   // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
   1022   // these tend to help performance in low register pressure situation. The
   1023   // trade off is it may cause spill in high pressure situation. It will end up
   1024   // adding a store in the loop preheader. But the reload is no more expensive.
   1025   // The side benefit is these loads are frequently CSE'ed.
   1026   if (IsCheapInstruction(MI)) {
   1027     if (!TII->isTriviallyReMaterializable(&MI, AA))
   1028       return false;
   1029   } else {
   1030     // Estimate register pressure to determine whether to LICM the instruction.
   1031     // In low register pressure situation, we can be more aggressive about
   1032     // hoisting. Also, favors hoisting long latency instructions even in
   1033     // moderately high pressure situation.
   1034     // FIXME: If there are long latency loop-invariant instructions inside the
   1035     // loop at this point, why didn't the optimizer's LICM hoist them?
   1036     DenseMap<unsigned, int> Cost;
   1037     for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
   1038       const MachineOperand &MO = MI.getOperand(i);
   1039       if (!MO.isReg() || MO.isImplicit())
   1040         continue;
   1041       unsigned Reg = MO.getReg();
   1042       if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1043         continue;
   1044 
   1045       unsigned RCId, RCCost;
   1046       getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
   1047       if (MO.isDef()) {
   1048         if (HasHighOperandLatency(MI, i, Reg)) {
   1049           ++NumHighLatency;
   1050           return true;
   1051         }
   1052 
   1053         DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
   1054         if (CI != Cost.end())
   1055           CI->second += RCCost;
   1056         else
   1057           Cost.insert(std::make_pair(RCId, RCCost));
   1058       } else if (isOperandKill(MO, MRI)) {
   1059         // Is a virtual register use is a kill, hoisting it out of the loop
   1060         // may actually reduce register pressure or be register pressure
   1061         // neutral.
   1062         DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
   1063         if (CI != Cost.end())
   1064           CI->second -= RCCost;
   1065         else
   1066           Cost.insert(std::make_pair(RCId, -RCCost));
   1067       }
   1068     }
   1069 
   1070     // Visit BBs from header to current BB, if hoisting this doesn't cause
   1071     // high register pressure, then it's safe to proceed.
   1072     if (!CanCauseHighRegPressure(Cost)) {
   1073       ++NumLowRP;
   1074       return true;
   1075     }
   1076 
   1077     // Do not "speculate" in high register pressure situation. If an
   1078     // instruction is not guaranteed to be executed in the loop, it's best to be
   1079     // conservative.
   1080     if (AvoidSpeculation &&
   1081         (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI)))
   1082       return false;
   1083 
   1084     // High register pressure situation, only hoist if the instruction is going to
   1085     // be remat'ed.
   1086     if (!TII->isTriviallyReMaterializable(&MI, AA) &&
   1087         !MI.isInvariantLoad(AA))
   1088       return false;
   1089   }
   1090 
   1091   // If result(s) of this instruction is used by PHIs outside of the loop, then
   1092   // don't hoist it if the instruction because it will introduce an extra copy.
   1093   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1094     const MachineOperand &MO = MI.getOperand(i);
   1095     if (!MO.isReg() || !MO.isDef())
   1096       continue;
   1097     if (HasAnyPHIUse(MO.getReg()))
   1098       return false;
   1099   }
   1100 
   1101   return true;
   1102 }
   1103 
   1104 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
   1105   // Don't unfold simple loads.
   1106   if (MI->getDesc().canFoldAsLoad())
   1107     return 0;
   1108 
   1109   // If not, we may be able to unfold a load and hoist that.
   1110   // First test whether the instruction is loading from an amenable
   1111   // memory location.
   1112   if (!MI->isInvariantLoad(AA))
   1113     return 0;
   1114 
   1115   // Next determine the register class for a temporary register.
   1116   unsigned LoadRegIndex;
   1117   unsigned NewOpc =
   1118     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
   1119                                     /*UnfoldLoad=*/true,
   1120                                     /*UnfoldStore=*/false,
   1121                                     &LoadRegIndex);
   1122   if (NewOpc == 0) return 0;
   1123   const MCInstrDesc &MID = TII->get(NewOpc);
   1124   if (MID.getNumDefs() != 1) return 0;
   1125   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI);
   1126   // Ok, we're unfolding. Create a temporary register and do the unfold.
   1127   unsigned Reg = MRI->createVirtualRegister(RC);
   1128 
   1129   MachineFunction &MF = *MI->getParent()->getParent();
   1130   SmallVector<MachineInstr *, 2> NewMIs;
   1131   bool Success =
   1132     TII->unfoldMemoryOperand(MF, MI, Reg,
   1133                              /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
   1134                              NewMIs);
   1135   (void)Success;
   1136   assert(Success &&
   1137          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
   1138          "succeeded!");
   1139   assert(NewMIs.size() == 2 &&
   1140          "Unfolded a load into multiple instructions!");
   1141   MachineBasicBlock *MBB = MI->getParent();
   1142   MBB->insert(MI, NewMIs[0]);
   1143   MBB->insert(MI, NewMIs[1]);
   1144   // If unfolding produced a load that wasn't loop-invariant or profitable to
   1145   // hoist, discard the new instructions and bail.
   1146   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
   1147     NewMIs[0]->eraseFromParent();
   1148     NewMIs[1]->eraseFromParent();
   1149     return 0;
   1150   }
   1151 
   1152   // Update register pressure for the unfolded instruction.
   1153   UpdateRegPressure(NewMIs[1]);
   1154 
   1155   // Otherwise we successfully unfolded a load that we can hoist.
   1156   MI->eraseFromParent();
   1157   return NewMIs[0];
   1158 }
   1159 
   1160 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
   1161   for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
   1162     const MachineInstr *MI = &*I;
   1163     unsigned Opcode = MI->getOpcode();
   1164     DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1165       CI = CSEMap.find(Opcode);
   1166     if (CI != CSEMap.end())
   1167       CI->second.push_back(MI);
   1168     else {
   1169       std::vector<const MachineInstr*> CSEMIs;
   1170       CSEMIs.push_back(MI);
   1171       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
   1172     }
   1173   }
   1174 }
   1175 
   1176 const MachineInstr*
   1177 MachineLICM::LookForDuplicate(const MachineInstr *MI,
   1178                               std::vector<const MachineInstr*> &PrevMIs) {
   1179   for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
   1180     const MachineInstr *PrevMI = PrevMIs[i];
   1181     if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
   1182       return PrevMI;
   1183   }
   1184   return 0;
   1185 }
   1186 
   1187 bool MachineLICM::EliminateCSE(MachineInstr *MI,
   1188           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
   1189   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
   1190   // the undef property onto uses.
   1191   if (CI == CSEMap.end() || MI->isImplicitDef())
   1192     return false;
   1193 
   1194   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
   1195     DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
   1196 
   1197     // Replace virtual registers defined by MI by their counterparts defined
   1198     // by Dup.
   1199     SmallVector<unsigned, 2> Defs;
   1200     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1201       const MachineOperand &MO = MI->getOperand(i);
   1202 
   1203       // Physical registers may not differ here.
   1204       assert((!MO.isReg() || MO.getReg() == 0 ||
   1205               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
   1206               MO.getReg() == Dup->getOperand(i).getReg()) &&
   1207              "Instructions with different phys regs are not identical!");
   1208 
   1209       if (MO.isReg() && MO.isDef() &&
   1210           !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   1211         Defs.push_back(i);
   1212     }
   1213 
   1214     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
   1215     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1216       unsigned Idx = Defs[i];
   1217       unsigned Reg = MI->getOperand(Idx).getReg();
   1218       unsigned DupReg = Dup->getOperand(Idx).getReg();
   1219       OrigRCs.push_back(MRI->getRegClass(DupReg));
   1220 
   1221       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
   1222         // Restore old RCs if more than one defs.
   1223         for (unsigned j = 0; j != i; ++j)
   1224           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
   1225         return false;
   1226       }
   1227     }
   1228 
   1229     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
   1230       unsigned Idx = Defs[i];
   1231       unsigned Reg = MI->getOperand(Idx).getReg();
   1232       unsigned DupReg = Dup->getOperand(Idx).getReg();
   1233       MRI->replaceRegWith(Reg, DupReg);
   1234       MRI->clearKillFlags(DupReg);
   1235     }
   1236 
   1237     MI->eraseFromParent();
   1238     ++NumCSEed;
   1239     return true;
   1240   }
   1241   return false;
   1242 }
   1243 
   1244 /// MayCSE - Return true if the given instruction will be CSE'd if it's
   1245 /// hoisted out of the loop.
   1246 bool MachineLICM::MayCSE(MachineInstr *MI) {
   1247   unsigned Opcode = MI->getOpcode();
   1248   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1249     CI = CSEMap.find(Opcode);
   1250   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
   1251   // the undef property onto uses.
   1252   if (CI == CSEMap.end() || MI->isImplicitDef())
   1253     return false;
   1254 
   1255   return LookForDuplicate(MI, CI->second) != 0;
   1256 }
   1257 
   1258 /// Hoist - When an instruction is found to use only loop invariant operands
   1259 /// that are safe to hoist, this instruction is called to do the dirty work.
   1260 ///
   1261 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
   1262   // First check whether we should hoist this instruction.
   1263   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
   1264     // If not, try unfolding a hoistable load.
   1265     MI = ExtractHoistableLoad(MI);
   1266     if (!MI) return false;
   1267   }
   1268 
   1269   // Now move the instructions to the predecessor, inserting it before any
   1270   // terminator instructions.
   1271   DEBUG({
   1272       dbgs() << "Hoisting " << *MI;
   1273       if (Preheader->getBasicBlock())
   1274         dbgs() << " to MachineBasicBlock "
   1275                << Preheader->getName();
   1276       if (MI->getParent()->getBasicBlock())
   1277         dbgs() << " from MachineBasicBlock "
   1278                << MI->getParent()->getName();
   1279       dbgs() << "\n";
   1280     });
   1281 
   1282   // If this is the first instruction being hoisted to the preheader,
   1283   // initialize the CSE map with potential common expressions.
   1284   if (FirstInLoop) {
   1285     InitCSEMap(Preheader);
   1286     FirstInLoop = false;
   1287   }
   1288 
   1289   // Look for opportunity to CSE the hoisted instruction.
   1290   unsigned Opcode = MI->getOpcode();
   1291   DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
   1292     CI = CSEMap.find(Opcode);
   1293   if (!EliminateCSE(MI, CI)) {
   1294     // Otherwise, splice the instruction to the preheader.
   1295     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
   1296 
   1297     // Update register pressure for BBs from header to this block.
   1298     UpdateBackTraceRegPressure(MI);
   1299 
   1300     // Clear the kill flags of any register this instruction defines,
   1301     // since they may need to be live throughout the entire loop
   1302     // rather than just live for part of it.
   1303     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1304       MachineOperand &MO = MI->getOperand(i);
   1305       if (MO.isReg() && MO.isDef() && !MO.isDead())
   1306         MRI->clearKillFlags(MO.getReg());
   1307     }
   1308 
   1309     // Add to the CSE map.
   1310     if (CI != CSEMap.end())
   1311       CI->second.push_back(MI);
   1312     else {
   1313       std::vector<const MachineInstr*> CSEMIs;
   1314       CSEMIs.push_back(MI);
   1315       CSEMap.insert(std::make_pair(Opcode, CSEMIs));
   1316     }
   1317   }
   1318 
   1319   ++NumHoisted;
   1320   Changed = true;
   1321 
   1322   return true;
   1323 }
   1324 
   1325 MachineBasicBlock *MachineLICM::getCurPreheader() {
   1326   // Determine the block to which to hoist instructions. If we can't find a
   1327   // suitable loop predecessor, we can't do any hoisting.
   1328 
   1329   // If we've tried to get a preheader and failed, don't try again.
   1330   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
   1331     return 0;
   1332 
   1333   if (!CurPreheader) {
   1334     CurPreheader = CurLoop->getLoopPreheader();
   1335     if (!CurPreheader) {
   1336       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
   1337       if (!Pred) {
   1338         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
   1339         return 0;
   1340       }
   1341 
   1342       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
   1343       if (!CurPreheader) {
   1344         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
   1345         return 0;
   1346       }
   1347     }
   1348   }
   1349   return CurPreheader;
   1350 }
   1351