Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "arm-isel"
     16 #include "ARM.h"
     17 #include "ARMCallingConv.h"
     18 #include "ARMConstantPoolValue.h"
     19 #include "ARMISelLowering.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "ARMPerfectShuffle.h"
     22 #include "ARMRegisterInfo.h"
     23 #include "ARMSubtarget.h"
     24 #include "ARMTargetMachine.h"
     25 #include "ARMTargetObjectFile.h"
     26 #include "MCTargetDesc/ARMAddressingModes.h"
     27 #include "llvm/CallingConv.h"
     28 #include "llvm/Constants.h"
     29 #include "llvm/Function.h"
     30 #include "llvm/GlobalValue.h"
     31 #include "llvm/Instruction.h"
     32 #include "llvm/Instructions.h"
     33 #include "llvm/Intrinsics.h"
     34 #include "llvm/Type.h"
     35 #include "llvm/CodeGen/CallingConvLower.h"
     36 #include "llvm/CodeGen/IntrinsicLowering.h"
     37 #include "llvm/CodeGen/MachineBasicBlock.h"
     38 #include "llvm/CodeGen/MachineFrameInfo.h"
     39 #include "llvm/CodeGen/MachineFunction.h"
     40 #include "llvm/CodeGen/MachineInstrBuilder.h"
     41 #include "llvm/CodeGen/MachineModuleInfo.h"
     42 #include "llvm/CodeGen/MachineRegisterInfo.h"
     43 #include "llvm/CodeGen/PseudoSourceValue.h"
     44 #include "llvm/CodeGen/SelectionDAG.h"
     45 #include "llvm/MC/MCSectionMachO.h"
     46 #include "llvm/Target/TargetOptions.h"
     47 #include "llvm/ADT/VectorExtras.h"
     48 #include "llvm/ADT/StringExtras.h"
     49 #include "llvm/ADT/Statistic.h"
     50 #include "llvm/Support/CommandLine.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include <sstream>
     55 using namespace llvm;
     56 
     57 STATISTIC(NumTailCalls, "Number of tail calls");
     58 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     59 
     60 // This option should go away when tail calls fully work.
     61 static cl::opt<bool>
     62 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
     63   cl::desc("Generate tail calls (TEMPORARY OPTION)."),
     64   cl::init(false));
     65 
     66 cl::opt<bool>
     67 EnableARMLongCalls("arm-long-calls", cl::Hidden,
     68   cl::desc("Generate calls via indirect call instructions"),
     69   cl::init(false));
     70 
     71 static cl::opt<bool>
     72 ARMInterworking("arm-interworking", cl::Hidden,
     73   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     74   cl::init(true));
     75 
     76 namespace llvm {
     77   class ARMCCState : public CCState {
     78   public:
     79     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     80                const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
     81                LLVMContext &C, ParmContext PC)
     82         : CCState(CC, isVarArg, MF, TM, locs, C) {
     83       assert(((PC == Call) || (PC == Prologue)) &&
     84              "ARMCCState users must specify whether their context is call"
     85              "or prologue generation.");
     86       CallOrPrologue = PC;
     87     }
     88   };
     89 }
     90 
     91 // The APCS parameter registers.
     92 static const unsigned GPRArgRegs[] = {
     93   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     94 };
     95 
     96 void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
     97                                        EVT PromotedBitwiseVT) {
     98   if (VT != PromotedLdStVT) {
     99     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
    100     AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
    101                        PromotedLdStVT.getSimpleVT());
    102 
    103     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
    104     AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
    105                        PromotedLdStVT.getSimpleVT());
    106   }
    107 
    108   EVT ElemTy = VT.getVectorElementType();
    109   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    110     setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
    111   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
    112   if (ElemTy != MVT::i32) {
    113     setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
    114     setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
    115     setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
    116     setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
    117   }
    118   setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
    119   setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
    120   setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
    121   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
    122   setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
    123   setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
    124   if (VT.isInteger()) {
    125     setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
    126     setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
    127     setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
    128     setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
    129     setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
    130     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
    131          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    132       setTruncStoreAction(VT.getSimpleVT(),
    133                           (MVT::SimpleValueType)InnerVT, Expand);
    134   }
    135   setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
    136 
    137   // Promote all bit-wise operations.
    138   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    139     setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
    140     AddPromotedToType (ISD::AND, VT.getSimpleVT(),
    141                        PromotedBitwiseVT.getSimpleVT());
    142     setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
    143     AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
    144                        PromotedBitwiseVT.getSimpleVT());
    145     setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
    146     AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
    147                        PromotedBitwiseVT.getSimpleVT());
    148   }
    149 
    150   // Neon does not support vector divide/remainder operations.
    151   setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
    152   setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
    153   setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
    154   setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
    155   setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
    156   setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
    157 }
    158 
    159 void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
    160   addRegisterClass(VT, ARM::DPRRegisterClass);
    161   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    162 }
    163 
    164 void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
    165   addRegisterClass(VT, ARM::QPRRegisterClass);
    166   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    167 }
    168 
    169 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
    170   if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
    171     return new TargetLoweringObjectFileMachO();
    172 
    173   return new ARMElfTargetObjectFile();
    174 }
    175 
    176 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
    177     : TargetLowering(TM, createTLOF(TM)) {
    178   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    179   RegInfo = TM.getRegisterInfo();
    180   Itins = TM.getInstrItineraryData();
    181 
    182   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    183 
    184   if (Subtarget->isTargetDarwin()) {
    185     // Uses VFP for Thumb libfuncs if available.
    186     if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
    187       // Single-precision floating-point arithmetic.
    188       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
    189       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
    190       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
    191       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
    192 
    193       // Double-precision floating-point arithmetic.
    194       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
    195       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
    196       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
    197       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
    198 
    199       // Single-precision comparisons.
    200       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
    201       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
    202       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
    203       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
    204       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
    205       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
    206       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
    207       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
    208 
    209       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    210       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
    211       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    212       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    213       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    214       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    215       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    216       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    217 
    218       // Double-precision comparisons.
    219       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
    220       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
    221       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
    222       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
    223       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
    224       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
    225       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
    226       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
    227 
    228       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    229       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
    230       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    231       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    232       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    233       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    234       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    235       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    236 
    237       // Floating-point to integer conversions.
    238       // i64 conversions are done via library routines even when generating VFP
    239       // instructions, so use the same ones.
    240       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
    241       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
    242       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
    243       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
    244 
    245       // Conversions between floating types.
    246       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
    247       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
    248 
    249       // Integer to floating-point conversions.
    250       // i64 conversions are done via library routines even when generating VFP
    251       // instructions, so use the same ones.
    252       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    253       // e.g., __floatunsidf vs. __floatunssidfvfp.
    254       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
    255       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
    256       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
    257       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
    258     }
    259   }
    260 
    261   // These libcalls are not available in 32-bit.
    262   setLibcallName(RTLIB::SHL_I128, 0);
    263   setLibcallName(RTLIB::SRL_I128, 0);
    264   setLibcallName(RTLIB::SRA_I128, 0);
    265 
    266   if (Subtarget->isAAPCS_ABI()) {
    267     // Double-precision floating-point arithmetic helper functions
    268     // RTABI chapter 4.1.2, Table 2
    269     setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
    270     setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
    271     setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
    272     setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
    273     setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
    274     setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
    275     setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
    276     setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
    277 
    278     // Double-precision floating-point comparison helper functions
    279     // RTABI chapter 4.1.2, Table 3
    280     setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
    281     setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    282     setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
    283     setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
    284     setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
    285     setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    286     setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
    287     setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    288     setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
    289     setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    290     setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
    291     setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    292     setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
    293     setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    294     setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
    295     setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    296     setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
    297     setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
    298     setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
    299     setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
    300     setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
    301     setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
    302     setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
    303     setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
    304 
    305     // Single-precision floating-point arithmetic helper functions
    306     // RTABI chapter 4.1.2, Table 4
    307     setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
    308     setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
    309     setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
    310     setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
    311     setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
    312     setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
    313     setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
    314     setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
    315 
    316     // Single-precision floating-point comparison helper functions
    317     // RTABI chapter 4.1.2, Table 5
    318     setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
    319     setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    320     setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
    321     setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
    322     setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
    323     setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    324     setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
    325     setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    326     setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
    327     setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    328     setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
    329     setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    330     setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
    331     setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    332     setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
    333     setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    334     setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
    335     setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
    336     setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
    337     setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
    338     setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
    339     setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
    340     setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
    341     setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
    342 
    343     // Floating-point to integer conversions.
    344     // RTABI chapter 4.1.2, Table 6
    345     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
    346     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
    347     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
    348     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
    349     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
    350     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
    351     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
    352     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
    353     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
    354     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
    355     setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
    356     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
    357     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
    358     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
    359     setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
    360     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
    361 
    362     // Conversions between floating types.
    363     // RTABI chapter 4.1.2, Table 7
    364     setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
    365     setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
    366     setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
    367     setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
    368 
    369     // Integer to floating-point conversions.
    370     // RTABI chapter 4.1.2, Table 8
    371     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
    372     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
    373     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
    374     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
    375     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
    376     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
    377     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
    378     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
    379     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
    380     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
    381     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
    382     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
    383     setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
    384     setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
    385     setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
    386     setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
    387 
    388     // Long long helper functions
    389     // RTABI chapter 4.2, Table 9
    390     setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
    391     setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
    392     setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
    393     setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
    394     setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
    395     setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
    396     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
    397     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
    398     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
    399     setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
    400     setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
    401     setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
    402 
    403     // Integer division functions
    404     // RTABI chapter 4.3.1
    405     setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
    406     setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
    407     setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
    408     setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
    409     setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
    410     setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
    411     setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
    412     setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
    413     setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
    414     setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
    415     setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
    416     setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
    417 
    418     // Memory operations
    419     // RTABI chapter 4.3.4
    420     setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
    421     setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
    422     setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
    423   }
    424 
    425   // Use divmod compiler-rt calls for iOS 5.0 and later.
    426   if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
    427       !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
    428     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    429     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    430   }
    431 
    432   if (Subtarget->isThumb1Only())
    433     addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
    434   else
    435     addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
    436   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
    437     addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
    438     if (!Subtarget->isFPOnlySP())
    439       addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
    440 
    441     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    442   }
    443 
    444   if (Subtarget->hasNEON()) {
    445     addDRTypeForNEON(MVT::v2f32);
    446     addDRTypeForNEON(MVT::v8i8);
    447     addDRTypeForNEON(MVT::v4i16);
    448     addDRTypeForNEON(MVT::v2i32);
    449     addDRTypeForNEON(MVT::v1i64);
    450 
    451     addQRTypeForNEON(MVT::v4f32);
    452     addQRTypeForNEON(MVT::v2f64);
    453     addQRTypeForNEON(MVT::v16i8);
    454     addQRTypeForNEON(MVT::v8i16);
    455     addQRTypeForNEON(MVT::v4i32);
    456     addQRTypeForNEON(MVT::v2i64);
    457 
    458     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    459     // neither Neon nor VFP support any arithmetic operations on it.
    460     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    461     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    462     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    463     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    464     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    465     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    466     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    467     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    468     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    469     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    470     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    471     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    472     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    473     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    474     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    475     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    476     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    477     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    478     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    479     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    480     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    481     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    482     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    483     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    484 
    485     setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
    486 
    487     // Neon does not support some operations on v1i64 and v2i64 types.
    488     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    489     // Custom handling for some quad-vector types to detect VMULL.
    490     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    491     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    492     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    493     // Custom handling for some vector types to avoid expensive expansions
    494     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    495     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    496     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    497     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    498     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    499     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    500     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    501     // a destination type that is wider than the source.
    502     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    503     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    504 
    505     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    506     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    507     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    508     setTargetDAGCombine(ISD::SHL);
    509     setTargetDAGCombine(ISD::SRL);
    510     setTargetDAGCombine(ISD::SRA);
    511     setTargetDAGCombine(ISD::SIGN_EXTEND);
    512     setTargetDAGCombine(ISD::ZERO_EXTEND);
    513     setTargetDAGCombine(ISD::ANY_EXTEND);
    514     setTargetDAGCombine(ISD::SELECT_CC);
    515     setTargetDAGCombine(ISD::BUILD_VECTOR);
    516     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    517     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    518     setTargetDAGCombine(ISD::STORE);
    519     setTargetDAGCombine(ISD::FP_TO_SINT);
    520     setTargetDAGCombine(ISD::FP_TO_UINT);
    521     setTargetDAGCombine(ISD::FDIV);
    522 
    523     setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
    524   }
    525 
    526   computeRegisterProperties();
    527 
    528   // ARM does not have f32 extending load.
    529   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    530 
    531   // ARM does not have i1 sign extending load.
    532   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    533 
    534   // ARM supports all 4 flavors of integer indexed load / store.
    535   if (!Subtarget->isThumb1Only()) {
    536     for (unsigned im = (unsigned)ISD::PRE_INC;
    537          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    538       setIndexedLoadAction(im,  MVT::i1,  Legal);
    539       setIndexedLoadAction(im,  MVT::i8,  Legal);
    540       setIndexedLoadAction(im,  MVT::i16, Legal);
    541       setIndexedLoadAction(im,  MVT::i32, Legal);
    542       setIndexedStoreAction(im, MVT::i1,  Legal);
    543       setIndexedStoreAction(im, MVT::i8,  Legal);
    544       setIndexedStoreAction(im, MVT::i16, Legal);
    545       setIndexedStoreAction(im, MVT::i32, Legal);
    546     }
    547   }
    548 
    549   // i64 operation support.
    550   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    551   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    552   if (Subtarget->isThumb1Only()) {
    553     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    554     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    555   }
    556   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    557       || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
    558     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    559 
    560   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    561   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    562   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    563   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    564   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    565 
    566   if (!Subtarget->isThumb1Only()) {
    567     // FIXME: We should do this for Thumb1 as well.
    568     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    569     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    570     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    571     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    572   }
    573 
    574   // ARM does not have ROTL.
    575   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
    576   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    577   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    578   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    579     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    580 
    581   // Only ARMv6 has BSWAP.
    582   if (!Subtarget->hasV6Ops())
    583     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    584 
    585   // These are expanded into libcalls.
    586   if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
    587     // v7M has a hardware divider
    588     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
    589     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
    590   }
    591   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    592   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    593   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    594   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    595 
    596   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    597   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    598   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
    599   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    600   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    601 
    602   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    603 
    604   // Use the default implementation.
    605   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    606   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    607   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    608   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    609   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    610   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    611   setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
    612   setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
    613   setExceptionPointerRegister(ARM::R0);
    614   setExceptionSelectorRegister(ARM::R1);
    615 
    616   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    617   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    618   // the default expansion.
    619   // FIXME: This should be checking for v6k, not just v6.
    620   if (Subtarget->hasDataBarrier() ||
    621       (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
    622     // membarrier needs custom lowering; the rest are legal and handled
    623     // normally.
    624     setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
    625     setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    626     // Custom lowering for 64-bit ops
    627     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
    628     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
    629     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
    630     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
    631     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
    632     setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
    633     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
    634     // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
    635     setInsertFencesForAtomic(true);
    636   } else {
    637     // Set them all for expansion, which will force libcalls.
    638     setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
    639     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
    640     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    641     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    642     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    643     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    644     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    645     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    646     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    647     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    648     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    649     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    650     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    651     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    652     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    653     // Unordered/Monotonic case.
    654     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    655     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    656     // Since the libcalls include locking, fold in the fences
    657     setShouldFoldAtomicFences(true);
    658   }
    659 
    660   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    661 
    662   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    663   if (!Subtarget->hasV6Ops()) {
    664     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    665     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    666   }
    667   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    668 
    669   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
    670     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    671     // iff target supports vfp2.
    672     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    673     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    674   }
    675 
    676   // We want to custom lower some of our intrinsics.
    677   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    678   if (Subtarget->isTargetDarwin()) {
    679     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    680     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    681     setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
    682     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    683   }
    684 
    685   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    686   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    687   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    688   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    689   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    690   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    691   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    692   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    693   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    694 
    695   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    696   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    697   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    698   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    699   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    700 
    701   // We don't support sin/cos/fmod/copysign/pow
    702   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    703   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    704   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    705   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    706   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    707   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    708   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
    709     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    710     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    711   }
    712   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    713   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    714 
    715   setOperationAction(ISD::FMA, MVT::f64, Expand);
    716   setOperationAction(ISD::FMA, MVT::f32, Expand);
    717 
    718   // Various VFP goodness
    719   if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
    720     // int <-> fp are custom expanded into bit_convert + ARMISD ops.
    721     if (Subtarget->hasVFP2()) {
    722       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    723       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    724       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    725       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    726     }
    727     // Special handling for half-precision FP.
    728     if (!Subtarget->hasFP16()) {
    729       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
    730       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
    731     }
    732   }
    733 
    734   // We have target-specific dag combine patterns for the following nodes:
    735   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
    736   setTargetDAGCombine(ISD::ADD);
    737   setTargetDAGCombine(ISD::SUB);
    738   setTargetDAGCombine(ISD::MUL);
    739 
    740   if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
    741     setTargetDAGCombine(ISD::OR);
    742   if (Subtarget->hasNEON())
    743     setTargetDAGCombine(ISD::AND);
    744 
    745   setStackPointerRegisterToSaveRestore(ARM::SP);
    746 
    747   if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
    748     setSchedulingPreference(Sched::RegPressure);
    749   else
    750     setSchedulingPreference(Sched::Hybrid);
    751 
    752   //// temporary - rewrite interface to use type
    753   maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
    754 
    755   // On ARM arguments smaller than 4 bytes are extended, so all arguments
    756   // are at least 4 bytes aligned.
    757   setMinStackArgumentAlignment(4);
    758 
    759   benefitFromCodePlacementOpt = true;
    760 
    761   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
    762 }
    763 
    764 // FIXME: It might make sense to define the representative register class as the
    765 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
    766 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
    767 // SPR's representative would be DPR_VFP2. This should work well if register
    768 // pressure tracking were modified such that a register use would increment the
    769 // pressure of the register class's representative and all of it's super
    770 // classes' representatives transitively. We have not implemented this because
    771 // of the difficulty prior to coalescing of modeling operand register classes
    772 // due to the common occurrence of cross class copies and subregister insertions
    773 // and extractions.
    774 std::pair<const TargetRegisterClass*, uint8_t>
    775 ARMTargetLowering::findRepresentativeClass(EVT VT) const{
    776   const TargetRegisterClass *RRC = 0;
    777   uint8_t Cost = 1;
    778   switch (VT.getSimpleVT().SimpleTy) {
    779   default:
    780     return TargetLowering::findRepresentativeClass(VT);
    781   // Use DPR as representative register class for all floating point
    782   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
    783   // the cost is 1 for both f32 and f64.
    784   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
    785   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
    786     RRC = ARM::DPRRegisterClass;
    787     // When NEON is used for SP, only half of the register file is available
    788     // because operations that define both SP and DP results will be constrained
    789     // to the VFP2 class (D0-D15). We currently model this constraint prior to
    790     // coalescing by double-counting the SP regs. See the FIXME above.
    791     if (Subtarget->useNEONForSinglePrecisionFP())
    792       Cost = 2;
    793     break;
    794   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
    795   case MVT::v4f32: case MVT::v2f64:
    796     RRC = ARM::DPRRegisterClass;
    797     Cost = 2;
    798     break;
    799   case MVT::v4i64:
    800     RRC = ARM::DPRRegisterClass;
    801     Cost = 4;
    802     break;
    803   case MVT::v8i64:
    804     RRC = ARM::DPRRegisterClass;
    805     Cost = 8;
    806     break;
    807   }
    808   return std::make_pair(RRC, Cost);
    809 }
    810 
    811 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
    812   switch (Opcode) {
    813   default: return 0;
    814   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
    815   case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
    816   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
    817   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
    818   case ARMISD::CALL:          return "ARMISD::CALL";
    819   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
    820   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
    821   case ARMISD::tCALL:         return "ARMISD::tCALL";
    822   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
    823   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
    824   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
    825   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
    826   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
    827   case ARMISD::CMP:           return "ARMISD::CMP";
    828   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
    829   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
    830   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
    831   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
    832   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
    833   case ARMISD::CMOV:          return "ARMISD::CMOV";
    834 
    835   case ARMISD::RBIT:          return "ARMISD::RBIT";
    836 
    837   case ARMISD::FTOSI:         return "ARMISD::FTOSI";
    838   case ARMISD::FTOUI:         return "ARMISD::FTOUI";
    839   case ARMISD::SITOF:         return "ARMISD::SITOF";
    840   case ARMISD::UITOF:         return "ARMISD::UITOF";
    841 
    842   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
    843   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
    844   case ARMISD::RRX:           return "ARMISD::RRX";
    845 
    846   case ARMISD::ADDC:          return "ARMISD::ADDC";
    847   case ARMISD::ADDE:          return "ARMISD::ADDE";
    848   case ARMISD::SUBC:          return "ARMISD::SUBC";
    849   case ARMISD::SUBE:          return "ARMISD::SUBE";
    850 
    851   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
    852   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
    853 
    854   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
    855   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
    856   case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
    857 
    858   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
    859 
    860   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
    861 
    862   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
    863 
    864   case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
    865   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
    866 
    867   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
    868 
    869   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
    870   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
    871   case ARMISD::VCGE:          return "ARMISD::VCGE";
    872   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
    873   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
    874   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
    875   case ARMISD::VCGT:          return "ARMISD::VCGT";
    876   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
    877   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
    878   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
    879   case ARMISD::VTST:          return "ARMISD::VTST";
    880 
    881   case ARMISD::VSHL:          return "ARMISD::VSHL";
    882   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
    883   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
    884   case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
    885   case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
    886   case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
    887   case ARMISD::VSHRN:         return "ARMISD::VSHRN";
    888   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
    889   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
    890   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
    891   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
    892   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
    893   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
    894   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
    895   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
    896   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
    897   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
    898   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
    899   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
    900   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
    901   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
    902   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
    903   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
    904   case ARMISD::VDUP:          return "ARMISD::VDUP";
    905   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
    906   case ARMISD::VEXT:          return "ARMISD::VEXT";
    907   case ARMISD::VREV64:        return "ARMISD::VREV64";
    908   case ARMISD::VREV32:        return "ARMISD::VREV32";
    909   case ARMISD::VREV16:        return "ARMISD::VREV16";
    910   case ARMISD::VZIP:          return "ARMISD::VZIP";
    911   case ARMISD::VUZP:          return "ARMISD::VUZP";
    912   case ARMISD::VTRN:          return "ARMISD::VTRN";
    913   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
    914   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
    915   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
    916   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
    917   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
    918   case ARMISD::FMAX:          return "ARMISD::FMAX";
    919   case ARMISD::FMIN:          return "ARMISD::FMIN";
    920   case ARMISD::BFI:           return "ARMISD::BFI";
    921   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
    922   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
    923   case ARMISD::VBSL:          return "ARMISD::VBSL";
    924   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
    925   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
    926   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
    927   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
    928   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
    929   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
    930   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
    931   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
    932   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
    933   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
    934   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
    935   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
    936   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
    937   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
    938   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
    939   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
    940   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
    941   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
    942   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
    943   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
    944   }
    945 }
    946 
    947 EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
    948   if (!VT.isVector()) return getPointerTy();
    949   return VT.changeVectorElementTypeToInteger();
    950 }
    951 
    952 /// getRegClassFor - Return the register class that should be used for the
    953 /// specified value type.
    954 TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
    955   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
    956   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
    957   // load / store 4 to 8 consecutive D registers.
    958   if (Subtarget->hasNEON()) {
    959     if (VT == MVT::v4i64)
    960       return ARM::QQPRRegisterClass;
    961     else if (VT == MVT::v8i64)
    962       return ARM::QQQQPRRegisterClass;
    963   }
    964   return TargetLowering::getRegClassFor(VT);
    965 }
    966 
    967 // Create a fast isel object.
    968 FastISel *
    969 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
    970   return ARM::createFastISel(funcInfo);
    971 }
    972 
    973 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
    974 /// be used for loads / stores from the global.
    975 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
    976   return (Subtarget->isThumb1Only() ? 127 : 4095);
    977 }
    978 
    979 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
    980   unsigned NumVals = N->getNumValues();
    981   if (!NumVals)
    982     return Sched::RegPressure;
    983 
    984   for (unsigned i = 0; i != NumVals; ++i) {
    985     EVT VT = N->getValueType(i);
    986     if (VT == MVT::Glue || VT == MVT::Other)
    987       continue;
    988     if (VT.isFloatingPoint() || VT.isVector())
    989       return Sched::Latency;
    990   }
    991 
    992   if (!N->isMachineOpcode())
    993     return Sched::RegPressure;
    994 
    995   // Load are scheduled for latency even if there instruction itinerary
    996   // is not available.
    997   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    998   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    999 
   1000   if (MCID.getNumDefs() == 0)
   1001     return Sched::RegPressure;
   1002   if (!Itins->isEmpty() &&
   1003       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1004     return Sched::Latency;
   1005 
   1006   return Sched::RegPressure;
   1007 }
   1008 
   1009 //===----------------------------------------------------------------------===//
   1010 // Lowering Code
   1011 //===----------------------------------------------------------------------===//
   1012 
   1013 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1014 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1015   switch (CC) {
   1016   default: llvm_unreachable("Unknown condition code!");
   1017   case ISD::SETNE:  return ARMCC::NE;
   1018   case ISD::SETEQ:  return ARMCC::EQ;
   1019   case ISD::SETGT:  return ARMCC::GT;
   1020   case ISD::SETGE:  return ARMCC::GE;
   1021   case ISD::SETLT:  return ARMCC::LT;
   1022   case ISD::SETLE:  return ARMCC::LE;
   1023   case ISD::SETUGT: return ARMCC::HI;
   1024   case ISD::SETUGE: return ARMCC::HS;
   1025   case ISD::SETULT: return ARMCC::LO;
   1026   case ISD::SETULE: return ARMCC::LS;
   1027   }
   1028 }
   1029 
   1030 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1031 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1032                         ARMCC::CondCodes &CondCode2) {
   1033   CondCode2 = ARMCC::AL;
   1034   switch (CC) {
   1035   default: llvm_unreachable("Unknown FP condition!");
   1036   case ISD::SETEQ:
   1037   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1038   case ISD::SETGT:
   1039   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1040   case ISD::SETGE:
   1041   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1042   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1043   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1044   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1045   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1046   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1047   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1048   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1049   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1050   case ISD::SETLT:
   1051   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1052   case ISD::SETLE:
   1053   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1054   case ISD::SETNE:
   1055   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1056   }
   1057 }
   1058 
   1059 //===----------------------------------------------------------------------===//
   1060 //                      Calling Convention Implementation
   1061 //===----------------------------------------------------------------------===//
   1062 
   1063 #include "ARMGenCallingConv.inc"
   1064 
   1065 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
   1066 /// given CallingConvention value.
   1067 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1068                                                  bool Return,
   1069                                                  bool isVarArg) const {
   1070   switch (CC) {
   1071   default:
   1072     llvm_unreachable("Unsupported calling convention");
   1073   case CallingConv::Fast:
   1074     if (Subtarget->hasVFP2() && !isVarArg) {
   1075       if (!Subtarget->isAAPCS_ABI())
   1076         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1077       // For AAPCS ABI targets, just use VFP variant of the calling convention.
   1078       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1079     }
   1080     // Fallthrough
   1081   case CallingConv::C: {
   1082     // Use target triple & subtarget features to do actual dispatch.
   1083     if (!Subtarget->isAAPCS_ABI())
   1084       return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1085     else if (Subtarget->hasVFP2() &&
   1086              FloatABIType == FloatABI::Hard && !isVarArg)
   1087       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1088     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1089   }
   1090   case CallingConv::ARM_AAPCS_VFP:
   1091     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1092   case CallingConv::ARM_AAPCS:
   1093     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1094   case CallingConv::ARM_APCS:
   1095     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1096   }
   1097 }
   1098 
   1099 /// LowerCallResult - Lower the result values of a call into the
   1100 /// appropriate copies out of appropriate physical registers.
   1101 SDValue
   1102 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1103                                    CallingConv::ID CallConv, bool isVarArg,
   1104                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1105                                    DebugLoc dl, SelectionDAG &DAG,
   1106                                    SmallVectorImpl<SDValue> &InVals) const {
   1107 
   1108   // Assign locations to each value returned by this call.
   1109   SmallVector<CCValAssign, 16> RVLocs;
   1110   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1111                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1112   CCInfo.AnalyzeCallResult(Ins,
   1113                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1114                                              isVarArg));
   1115 
   1116   // Copy all of the result registers out of their specified physreg.
   1117   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1118     CCValAssign VA = RVLocs[i];
   1119 
   1120     SDValue Val;
   1121     if (VA.needsCustom()) {
   1122       // Handle f64 or half of a v2f64.
   1123       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1124                                       InFlag);
   1125       Chain = Lo.getValue(1);
   1126       InFlag = Lo.getValue(2);
   1127       VA = RVLocs[++i]; // skip ahead to next loc
   1128       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1129                                       InFlag);
   1130       Chain = Hi.getValue(1);
   1131       InFlag = Hi.getValue(2);
   1132       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1133 
   1134       if (VA.getLocVT() == MVT::v2f64) {
   1135         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1136         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1137                           DAG.getConstant(0, MVT::i32));
   1138 
   1139         VA = RVLocs[++i]; // skip ahead to next loc
   1140         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1141         Chain = Lo.getValue(1);
   1142         InFlag = Lo.getValue(2);
   1143         VA = RVLocs[++i]; // skip ahead to next loc
   1144         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1145         Chain = Hi.getValue(1);
   1146         InFlag = Hi.getValue(2);
   1147         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1148         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1149                           DAG.getConstant(1, MVT::i32));
   1150       }
   1151     } else {
   1152       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1153                                InFlag);
   1154       Chain = Val.getValue(1);
   1155       InFlag = Val.getValue(2);
   1156     }
   1157 
   1158     switch (VA.getLocInfo()) {
   1159     default: llvm_unreachable("Unknown loc info!");
   1160     case CCValAssign::Full: break;
   1161     case CCValAssign::BCvt:
   1162       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1163       break;
   1164     }
   1165 
   1166     InVals.push_back(Val);
   1167   }
   1168 
   1169   return Chain;
   1170 }
   1171 
   1172 /// LowerMemOpCallTo - Store the argument to the stack.
   1173 SDValue
   1174 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
   1175                                     SDValue StackPtr, SDValue Arg,
   1176                                     DebugLoc dl, SelectionDAG &DAG,
   1177                                     const CCValAssign &VA,
   1178                                     ISD::ArgFlagsTy Flags) const {
   1179   unsigned LocMemOffset = VA.getLocMemOffset();
   1180   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1181   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1182   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1183                       MachinePointerInfo::getStack(LocMemOffset),
   1184                       false, false, 0);
   1185 }
   1186 
   1187 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
   1188                                          SDValue Chain, SDValue &Arg,
   1189                                          RegsToPassVector &RegsToPass,
   1190                                          CCValAssign &VA, CCValAssign &NextVA,
   1191                                          SDValue &StackPtr,
   1192                                          SmallVector<SDValue, 8> &MemOpChains,
   1193                                          ISD::ArgFlagsTy Flags) const {
   1194 
   1195   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1196                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1197   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
   1198 
   1199   if (NextVA.isRegLoc())
   1200     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
   1201   else {
   1202     assert(NextVA.isMemLoc());
   1203     if (StackPtr.getNode() == 0)
   1204       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1205 
   1206     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
   1207                                            dl, DAG, NextVA,
   1208                                            Flags));
   1209   }
   1210 }
   1211 
   1212 /// LowerCall - Lowering a call into a callseq_start <-
   1213 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1214 /// nodes.
   1215 SDValue
   1216 ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
   1217                              CallingConv::ID CallConv, bool isVarArg,
   1218                              bool &isTailCall,
   1219                              const SmallVectorImpl<ISD::OutputArg> &Outs,
   1220                              const SmallVectorImpl<SDValue> &OutVals,
   1221                              const SmallVectorImpl<ISD::InputArg> &Ins,
   1222                              DebugLoc dl, SelectionDAG &DAG,
   1223                              SmallVectorImpl<SDValue> &InVals) const {
   1224   MachineFunction &MF = DAG.getMachineFunction();
   1225   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1226   bool IsSibCall = false;
   1227   // Disable tail calls if they're not supported.
   1228   if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
   1229     isTailCall = false;
   1230   if (isTailCall) {
   1231     // Check if it's really possible to do a tail call.
   1232     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1233                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
   1234                                                    Outs, OutVals, Ins, DAG);
   1235     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1236     // detected sibcalls.
   1237     if (isTailCall) {
   1238       ++NumTailCalls;
   1239       IsSibCall = true;
   1240     }
   1241   }
   1242 
   1243   // Analyze operands of the call, assigning locations to each operand.
   1244   SmallVector<CCValAssign, 16> ArgLocs;
   1245   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1246                  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1247   CCInfo.AnalyzeCallOperands(Outs,
   1248                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1249                                                isVarArg));
   1250 
   1251   // Get a count of how many bytes are to be pushed on the stack.
   1252   unsigned NumBytes = CCInfo.getNextStackOffset();
   1253 
   1254   // For tail calls, memory operands are available in our caller's stack.
   1255   if (IsSibCall)
   1256     NumBytes = 0;
   1257 
   1258   // Adjust the stack pointer for the new arguments...
   1259   // These operations are automatically eliminated by the prolog/epilog pass
   1260   if (!IsSibCall)
   1261     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   1262 
   1263   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1264 
   1265   RegsToPassVector RegsToPass;
   1266   SmallVector<SDValue, 8> MemOpChains;
   1267 
   1268   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1269   // of tail call optimization, arguments are handled later.
   1270   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1271        i != e;
   1272        ++i, ++realArgIdx) {
   1273     CCValAssign &VA = ArgLocs[i];
   1274     SDValue Arg = OutVals[realArgIdx];
   1275     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1276     bool isByVal = Flags.isByVal();
   1277 
   1278     // Promote the value if needed.
   1279     switch (VA.getLocInfo()) {
   1280     default: llvm_unreachable("Unknown loc info!");
   1281     case CCValAssign::Full: break;
   1282     case CCValAssign::SExt:
   1283       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1284       break;
   1285     case CCValAssign::ZExt:
   1286       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1287       break;
   1288     case CCValAssign::AExt:
   1289       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1290       break;
   1291     case CCValAssign::BCvt:
   1292       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1293       break;
   1294     }
   1295 
   1296     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1297     if (VA.needsCustom()) {
   1298       if (VA.getLocVT() == MVT::v2f64) {
   1299         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1300                                   DAG.getConstant(0, MVT::i32));
   1301         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1302                                   DAG.getConstant(1, MVT::i32));
   1303 
   1304         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1305                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1306 
   1307         VA = ArgLocs[++i]; // skip ahead to next loc
   1308         if (VA.isRegLoc()) {
   1309           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1310                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1311         } else {
   1312           assert(VA.isMemLoc());
   1313 
   1314           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1315                                                  dl, DAG, VA, Flags));
   1316         }
   1317       } else {
   1318         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1319                          StackPtr, MemOpChains, Flags);
   1320       }
   1321     } else if (VA.isRegLoc()) {
   1322       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1323     } else if (isByVal) {
   1324       assert(VA.isMemLoc());
   1325       unsigned offset = 0;
   1326 
   1327       // True if this byval aggregate will be split between registers
   1328       // and memory.
   1329       if (CCInfo.isFirstByValRegValid()) {
   1330         EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1331         unsigned int i, j;
   1332         for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
   1333           SDValue Const = DAG.getConstant(4*i, MVT::i32);
   1334           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1335           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1336                                      MachinePointerInfo(),
   1337                                      false, false, 0);
   1338           MemOpChains.push_back(Load.getValue(1));
   1339           RegsToPass.push_back(std::make_pair(j, Load));
   1340         }
   1341         offset = ARM::R4 - CCInfo.getFirstByValReg();
   1342         CCInfo.clearFirstByValReg();
   1343       }
   1344 
   1345       unsigned LocMemOffset = VA.getLocMemOffset();
   1346       SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1347       SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
   1348                                 StkPtrOff);
   1349       SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
   1350       SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
   1351       SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
   1352                                          MVT::i32);
   1353       // TODO: Disable AlwaysInline when it becomes possible
   1354       //       to emit a nested call sequence.
   1355       MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
   1356                                           Flags.getByValAlign(),
   1357                                           /*isVolatile=*/false,
   1358                                           /*AlwaysInline=*/true,
   1359                                           MachinePointerInfo(0),
   1360                                           MachinePointerInfo(0)));
   1361 
   1362     } else if (!IsSibCall) {
   1363       assert(VA.isMemLoc());
   1364 
   1365       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1366                                              dl, DAG, VA, Flags));
   1367     }
   1368   }
   1369 
   1370   if (!MemOpChains.empty())
   1371     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   1372                         &MemOpChains[0], MemOpChains.size());
   1373 
   1374   // Build a sequence of copy-to-reg nodes chained together with token chain
   1375   // and flag operands which copy the outgoing args into the appropriate regs.
   1376   SDValue InFlag;
   1377   // Tail call byval lowering might overwrite argument registers so in case of
   1378   // tail call optimization the copies to registers are lowered later.
   1379   if (!isTailCall)
   1380     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1381       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1382                                RegsToPass[i].second, InFlag);
   1383       InFlag = Chain.getValue(1);
   1384     }
   1385 
   1386   // For tail calls lower the arguments to the 'real' stack slot.
   1387   if (isTailCall) {
   1388     // Force all the incoming stack arguments to be loaded from the stack
   1389     // before any new outgoing arguments are stored to the stack, because the
   1390     // outgoing stack slots may alias the incoming argument stack slots, and
   1391     // the alias isn't otherwise explicit. This is slightly more conservative
   1392     // than necessary, because it means that each store effectively depends
   1393     // on every argument instead of just those arguments it would clobber.
   1394 
   1395     // Do not flag preceding copytoreg stuff together with the following stuff.
   1396     InFlag = SDValue();
   1397     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1398       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1399                                RegsToPass[i].second, InFlag);
   1400       InFlag = Chain.getValue(1);
   1401     }
   1402     InFlag =SDValue();
   1403   }
   1404 
   1405   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1406   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1407   // node so that legalize doesn't hack it.
   1408   bool isDirect = false;
   1409   bool isARMFunc = false;
   1410   bool isLocalARMFunc = false;
   1411   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1412 
   1413   if (EnableARMLongCalls) {
   1414     assert (getTargetMachine().getRelocationModel() == Reloc::Static
   1415             && "long-calls with non-static relocation model!");
   1416     // Handle a global address or an external symbol. If it's not one of
   1417     // those, the target's already in a register, so we don't need to do
   1418     // anything extra.
   1419     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1420       const GlobalValue *GV = G->getGlobal();
   1421       // Create a constant pool entry for the callee address
   1422       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1423       ARMConstantPoolValue *CPV =
   1424         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1425 
   1426       // Get the address of the callee into a register
   1427       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1428       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1429       Callee = DAG.getLoad(getPointerTy(), dl,
   1430                            DAG.getEntryNode(), CPAddr,
   1431                            MachinePointerInfo::getConstantPool(),
   1432                            false, false, 0);
   1433     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1434       const char *Sym = S->getSymbol();
   1435 
   1436       // Create a constant pool entry for the callee address
   1437       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1438       ARMConstantPoolValue *CPV =
   1439         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1440                                       ARMPCLabelIndex, 0);
   1441       // Get the address of the callee into a register
   1442       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1443       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1444       Callee = DAG.getLoad(getPointerTy(), dl,
   1445                            DAG.getEntryNode(), CPAddr,
   1446                            MachinePointerInfo::getConstantPool(),
   1447                            false, false, 0);
   1448     }
   1449   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1450     const GlobalValue *GV = G->getGlobal();
   1451     isDirect = true;
   1452     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
   1453     bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
   1454                    getTargetMachine().getRelocationModel() != Reloc::Static;
   1455     isARMFunc = !Subtarget->isThumb() || isStub;
   1456     // ARM call to a local ARM function is predicable.
   1457     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
   1458     // tBX takes a register source operand.
   1459     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1460       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1461       ARMConstantPoolValue *CPV =
   1462         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
   1463       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1464       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1465       Callee = DAG.getLoad(getPointerTy(), dl,
   1466                            DAG.getEntryNode(), CPAddr,
   1467                            MachinePointerInfo::getConstantPool(),
   1468                            false, false, 0);
   1469       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1470       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1471                            getPointerTy(), Callee, PICLabel);
   1472     } else {
   1473       // On ELF targets for PIC code, direct calls should go through the PLT
   1474       unsigned OpFlags = 0;
   1475       if (Subtarget->isTargetELF() &&
   1476                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1477         OpFlags = ARMII::MO_PLT;
   1478       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   1479     }
   1480   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1481     isDirect = true;
   1482     bool isStub = Subtarget->isTargetDarwin() &&
   1483                   getTargetMachine().getRelocationModel() != Reloc::Static;
   1484     isARMFunc = !Subtarget->isThumb() || isStub;
   1485     // tBX takes a register source operand.
   1486     const char *Sym = S->getSymbol();
   1487     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1488       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1489       ARMConstantPoolValue *CPV =
   1490         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1491                                       ARMPCLabelIndex, 4);
   1492       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1493       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1494       Callee = DAG.getLoad(getPointerTy(), dl,
   1495                            DAG.getEntryNode(), CPAddr,
   1496                            MachinePointerInfo::getConstantPool(),
   1497                            false, false, 0);
   1498       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1499       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1500                            getPointerTy(), Callee, PICLabel);
   1501     } else {
   1502       unsigned OpFlags = 0;
   1503       // On ELF targets for PIC code, direct calls should go through the PLT
   1504       if (Subtarget->isTargetELF() &&
   1505                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1506         OpFlags = ARMII::MO_PLT;
   1507       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
   1508     }
   1509   }
   1510 
   1511   // FIXME: handle tail calls differently.
   1512   unsigned CallOpc;
   1513   if (Subtarget->isThumb()) {
   1514     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1515       CallOpc = ARMISD::CALL_NOLINK;
   1516     else
   1517       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
   1518   } else {
   1519     CallOpc = (isDirect || Subtarget->hasV5TOps())
   1520       ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
   1521       : ARMISD::CALL_NOLINK;
   1522   }
   1523 
   1524   std::vector<SDValue> Ops;
   1525   Ops.push_back(Chain);
   1526   Ops.push_back(Callee);
   1527 
   1528   // Add argument registers to the end of the list so that they are known live
   1529   // into the call.
   1530   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1531     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1532                                   RegsToPass[i].second.getValueType()));
   1533 
   1534   if (InFlag.getNode())
   1535     Ops.push_back(InFlag);
   1536 
   1537   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1538   if (isTailCall)
   1539     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
   1540 
   1541   // Returns a chain and a flag for retval copy to use.
   1542   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
   1543   InFlag = Chain.getValue(1);
   1544 
   1545   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1546                              DAG.getIntPtrConstant(0, true), InFlag);
   1547   if (!Ins.empty())
   1548     InFlag = Chain.getValue(1);
   1549 
   1550   // Handle result values, copying them out of physregs into vregs that we
   1551   // return.
   1552   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
   1553                          dl, DAG, InVals);
   1554 }
   1555 
   1556 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1557 /// on the stack.  Remember the next parameter register to allocate,
   1558 /// and then confiscate the rest of the parameter registers to insure
   1559 /// this.
   1560 void
   1561 llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
   1562   unsigned reg = State->AllocateReg(GPRArgRegs, 4);
   1563   assert((State->getCallOrPrologue() == Prologue ||
   1564           State->getCallOrPrologue() == Call) &&
   1565          "unhandled ParmContext");
   1566   if ((!State->isFirstByValRegValid()) &&
   1567       (ARM::R0 <= reg) && (reg <= ARM::R3)) {
   1568     State->setFirstByValReg(reg);
   1569     // At a call site, a byval parameter that is split between
   1570     // registers and memory needs its size truncated here.  In a
   1571     // function prologue, such byval parameters are reassembled in
   1572     // memory, and are not truncated.
   1573     if (State->getCallOrPrologue() == Call) {
   1574       unsigned excess = 4 * (ARM::R4 - reg);
   1575       assert(size >= excess && "expected larger existing stack allocation");
   1576       size -= excess;
   1577     }
   1578   }
   1579   // Confiscate any remaining parameter registers to preclude their
   1580   // assignment to subsequent parameters.
   1581   while (State->AllocateReg(GPRArgRegs, 4))
   1582     ;
   1583 }
   1584 
   1585 /// MatchingStackOffset - Return true if the given stack call argument is
   1586 /// already available in the same position (relatively) of the caller's
   1587 /// incoming argument stack.
   1588 static
   1589 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   1590                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   1591                          const ARMInstrInfo *TII) {
   1592   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   1593   int FI = INT_MAX;
   1594   if (Arg.getOpcode() == ISD::CopyFromReg) {
   1595     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   1596     if (!TargetRegisterInfo::isVirtualRegister(VR))
   1597       return false;
   1598     MachineInstr *Def = MRI->getVRegDef(VR);
   1599     if (!Def)
   1600       return false;
   1601     if (!Flags.isByVal()) {
   1602       if (!TII->isLoadFromStackSlot(Def, FI))
   1603         return false;
   1604     } else {
   1605       return false;
   1606     }
   1607   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   1608     if (Flags.isByVal())
   1609       // ByVal argument is passed in as a pointer but it's now being
   1610       // dereferenced. e.g.
   1611       // define @foo(%struct.X* %A) {
   1612       //   tail call @bar(%struct.X* byval %A)
   1613       // }
   1614       return false;
   1615     SDValue Ptr = Ld->getBasePtr();
   1616     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   1617     if (!FINode)
   1618       return false;
   1619     FI = FINode->getIndex();
   1620   } else
   1621     return false;
   1622 
   1623   assert(FI != INT_MAX);
   1624   if (!MFI->isFixedObjectIndex(FI))
   1625     return false;
   1626   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   1627 }
   1628 
   1629 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   1630 /// for tail call optimization. Targets which want to do tail call
   1631 /// optimization should implement this function.
   1632 bool
   1633 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   1634                                                      CallingConv::ID CalleeCC,
   1635                                                      bool isVarArg,
   1636                                                      bool isCalleeStructRet,
   1637                                                      bool isCallerStructRet,
   1638                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1639                                     const SmallVectorImpl<SDValue> &OutVals,
   1640                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1641                                                      SelectionDAG& DAG) const {
   1642   const Function *CallerF = DAG.getMachineFunction().getFunction();
   1643   CallingConv::ID CallerCC = CallerF->getCallingConv();
   1644   bool CCMatch = CallerCC == CalleeCC;
   1645 
   1646   // Look for obvious safe cases to perform tail call optimization that do not
   1647   // require ABI changes. This is what gcc calls sibcall.
   1648 
   1649   // Do not sibcall optimize vararg calls unless the call site is not passing
   1650   // any arguments.
   1651   if (isVarArg && !Outs.empty())
   1652     return false;
   1653 
   1654   // Also avoid sibcall optimization if either caller or callee uses struct
   1655   // return semantics.
   1656   if (isCalleeStructRet || isCallerStructRet)
   1657     return false;
   1658 
   1659   // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
   1660   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
   1661   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
   1662   // support in the assembler and linker to be used. This would need to be
   1663   // fixed to fully support tail calls in Thumb1.
   1664   //
   1665   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
   1666   // LR.  This means if we need to reload LR, it takes an extra instructions,
   1667   // which outweighs the value of the tail call; but here we don't know yet
   1668   // whether LR is going to be used.  Probably the right approach is to
   1669   // generate the tail call here and turn it back into CALL/RET in
   1670   // emitEpilogue if LR is used.
   1671 
   1672   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
   1673   // but we need to make sure there are enough registers; the only valid
   1674   // registers are the 4 used for parameters.  We don't currently do this
   1675   // case.
   1676   if (Subtarget->isThumb1Only())
   1677     return false;
   1678 
   1679   // If the calling conventions do not match, then we'd better make sure the
   1680   // results are returned in the same way as what the caller expects.
   1681   if (!CCMatch) {
   1682     SmallVector<CCValAssign, 16> RVLocs1;
   1683     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   1684                        getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
   1685     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
   1686 
   1687     SmallVector<CCValAssign, 16> RVLocs2;
   1688     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   1689                        getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
   1690     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
   1691 
   1692     if (RVLocs1.size() != RVLocs2.size())
   1693       return false;
   1694     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   1695       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   1696         return false;
   1697       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   1698         return false;
   1699       if (RVLocs1[i].isRegLoc()) {
   1700         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   1701           return false;
   1702       } else {
   1703         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   1704           return false;
   1705       }
   1706     }
   1707   }
   1708 
   1709   // If the callee takes no arguments then go on to check the results of the
   1710   // call.
   1711   if (!Outs.empty()) {
   1712     // Check if stack adjustment is needed. For now, do not do this if any
   1713     // argument is passed on the stack.
   1714     SmallVector<CCValAssign, 16> ArgLocs;
   1715     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   1716                       getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
   1717     CCInfo.AnalyzeCallOperands(Outs,
   1718                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   1719     if (CCInfo.getNextStackOffset()) {
   1720       MachineFunction &MF = DAG.getMachineFunction();
   1721 
   1722       // Check if the arguments are already laid out in the right way as
   1723       // the caller's fixed stack objects.
   1724       MachineFrameInfo *MFI = MF.getFrameInfo();
   1725       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   1726       const ARMInstrInfo *TII =
   1727         ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
   1728       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1729            i != e;
   1730            ++i, ++realArgIdx) {
   1731         CCValAssign &VA = ArgLocs[i];
   1732         EVT RegVT = VA.getLocVT();
   1733         SDValue Arg = OutVals[realArgIdx];
   1734         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1735         if (VA.getLocInfo() == CCValAssign::Indirect)
   1736           return false;
   1737         if (VA.needsCustom()) {
   1738           // f64 and vector types are split into multiple registers or
   1739           // register/stack-slot combinations.  The types will not match
   1740           // the registers; give up on memory f64 refs until we figure
   1741           // out what to do about this.
   1742           if (!VA.isRegLoc())
   1743             return false;
   1744           if (!ArgLocs[++i].isRegLoc())
   1745             return false;
   1746           if (RegVT == MVT::v2f64) {
   1747             if (!ArgLocs[++i].isRegLoc())
   1748               return false;
   1749             if (!ArgLocs[++i].isRegLoc())
   1750               return false;
   1751           }
   1752         } else if (!VA.isRegLoc()) {
   1753           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   1754                                    MFI, MRI, TII))
   1755             return false;
   1756         }
   1757       }
   1758     }
   1759   }
   1760 
   1761   return true;
   1762 }
   1763 
   1764 SDValue
   1765 ARMTargetLowering::LowerReturn(SDValue Chain,
   1766                                CallingConv::ID CallConv, bool isVarArg,
   1767                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1768                                const SmallVectorImpl<SDValue> &OutVals,
   1769                                DebugLoc dl, SelectionDAG &DAG) const {
   1770 
   1771   // CCValAssign - represent the assignment of the return value to a location.
   1772   SmallVector<CCValAssign, 16> RVLocs;
   1773 
   1774   // CCState - Info about the registers and stack slots.
   1775   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1776                     getTargetMachine(), RVLocs, *DAG.getContext(), Call);
   1777 
   1778   // Analyze outgoing return values.
   1779   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   1780                                                isVarArg));
   1781 
   1782   // If this is the first return lowered for this function, add
   1783   // the regs to the liveout set for the function.
   1784   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
   1785     for (unsigned i = 0; i != RVLocs.size(); ++i)
   1786       if (RVLocs[i].isRegLoc())
   1787         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
   1788   }
   1789 
   1790   SDValue Flag;
   1791 
   1792   // Copy the result values into the output registers.
   1793   for (unsigned i = 0, realRVLocIdx = 0;
   1794        i != RVLocs.size();
   1795        ++i, ++realRVLocIdx) {
   1796     CCValAssign &VA = RVLocs[i];
   1797     assert(VA.isRegLoc() && "Can only return in registers!");
   1798 
   1799     SDValue Arg = OutVals[realRVLocIdx];
   1800 
   1801     switch (VA.getLocInfo()) {
   1802     default: llvm_unreachable("Unknown loc info!");
   1803     case CCValAssign::Full: break;
   1804     case CCValAssign::BCvt:
   1805       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1806       break;
   1807     }
   1808 
   1809     if (VA.needsCustom()) {
   1810       if (VA.getLocVT() == MVT::v2f64) {
   1811         // Extract the first half and return it in two registers.
   1812         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1813                                    DAG.getConstant(0, MVT::i32));
   1814         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   1815                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   1816 
   1817         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
   1818         Flag = Chain.getValue(1);
   1819         VA = RVLocs[++i]; // skip ahead to next loc
   1820         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   1821                                  HalfGPRs.getValue(1), Flag);
   1822         Flag = Chain.getValue(1);
   1823         VA = RVLocs[++i]; // skip ahead to next loc
   1824 
   1825         // Extract the 2nd half and fall through to handle it as an f64 value.
   1826         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1827                           DAG.getConstant(1, MVT::i32));
   1828       }
   1829       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   1830       // available.
   1831       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1832                                   DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
   1833       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
   1834       Flag = Chain.getValue(1);
   1835       VA = RVLocs[++i]; // skip ahead to next loc
   1836       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
   1837                                Flag);
   1838     } else
   1839       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   1840 
   1841     // Guarantee that all emitted copies are
   1842     // stuck together, avoiding something bad.
   1843     Flag = Chain.getValue(1);
   1844   }
   1845 
   1846   SDValue result;
   1847   if (Flag.getNode())
   1848     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
   1849   else // Return Void
   1850     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
   1851 
   1852   return result;
   1853 }
   1854 
   1855 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
   1856   if (N->getNumValues() != 1)
   1857     return false;
   1858   if (!N->hasNUsesOfValue(1, 0))
   1859     return false;
   1860 
   1861   unsigned NumCopies = 0;
   1862   SDNode* Copies[2];
   1863   SDNode *Use = *N->use_begin();
   1864   if (Use->getOpcode() == ISD::CopyToReg) {
   1865     Copies[NumCopies++] = Use;
   1866   } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
   1867     // f64 returned in a pair of GPRs.
   1868     for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
   1869          UI != UE; ++UI) {
   1870       if (UI->getOpcode() != ISD::CopyToReg)
   1871         return false;
   1872       Copies[UI.getUse().getResNo()] = *UI;
   1873       ++NumCopies;
   1874     }
   1875   } else if (Use->getOpcode() == ISD::BITCAST) {
   1876     // f32 returned in a single GPR.
   1877     if (!Use->hasNUsesOfValue(1, 0))
   1878       return false;
   1879     Use = *Use->use_begin();
   1880     if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
   1881       return false;
   1882     Copies[NumCopies++] = Use;
   1883   } else {
   1884     return false;
   1885   }
   1886 
   1887   if (NumCopies != 1 && NumCopies != 2)
   1888     return false;
   1889 
   1890   bool HasRet = false;
   1891   for (unsigned i = 0; i < NumCopies; ++i) {
   1892     SDNode *Copy = Copies[i];
   1893     for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1894          UI != UE; ++UI) {
   1895       if (UI->getOpcode() == ISD::CopyToReg) {
   1896         SDNode *Use = *UI;
   1897         if (Use == Copies[0] || Use == Copies[1])
   1898           continue;
   1899         return false;
   1900       }
   1901       if (UI->getOpcode() != ARMISD::RET_FLAG)
   1902         return false;
   1903       HasRet = true;
   1904     }
   1905   }
   1906 
   1907   return HasRet;
   1908 }
   1909 
   1910 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   1911   if (!EnableARMTailCalls)
   1912     return false;
   1913 
   1914   if (!CI->isTailCall())
   1915     return false;
   1916 
   1917   return !Subtarget->isThumb1Only();
   1918 }
   1919 
   1920 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   1921 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   1922 // one of the above mentioned nodes. It has to be wrapped because otherwise
   1923 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   1924 // be used to form addressing mode. These wrapped nodes will be selected
   1925 // into MOVi.
   1926 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   1927   EVT PtrVT = Op.getValueType();
   1928   // FIXME there is no actual debug info here
   1929   DebugLoc dl = Op.getDebugLoc();
   1930   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1931   SDValue Res;
   1932   if (CP->isMachineConstantPoolEntry())
   1933     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   1934                                     CP->getAlignment());
   1935   else
   1936     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   1937                                     CP->getAlignment());
   1938   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   1939 }
   1940 
   1941 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   1942   return MachineJumpTableInfo::EK_Inline;
   1943 }
   1944 
   1945 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   1946                                              SelectionDAG &DAG) const {
   1947   MachineFunction &MF = DAG.getMachineFunction();
   1948   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1949   unsigned ARMPCLabelIndex = 0;
   1950   DebugLoc DL = Op.getDebugLoc();
   1951   EVT PtrVT = getPointerTy();
   1952   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1953   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   1954   SDValue CPAddr;
   1955   if (RelocM == Reloc::Static) {
   1956     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   1957   } else {
   1958     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   1959     ARMPCLabelIndex = AFI->createPICLabelUId();
   1960     ARMConstantPoolValue *CPV =
   1961       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   1962                                       ARMCP::CPBlockAddress, PCAdj);
   1963     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   1964   }
   1965   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   1966   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   1967                                MachinePointerInfo::getConstantPool(),
   1968                                false, false, 0);
   1969   if (RelocM == Reloc::Static)
   1970     return Result;
   1971   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1972   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   1973 }
   1974 
   1975 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   1976 SDValue
   1977 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   1978                                                  SelectionDAG &DAG) const {
   1979   DebugLoc dl = GA->getDebugLoc();
   1980   EVT PtrVT = getPointerTy();
   1981   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   1982   MachineFunction &MF = DAG.getMachineFunction();
   1983   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1984   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1985   ARMConstantPoolValue *CPV =
   1986     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   1987                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   1988   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   1989   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   1990   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   1991                          MachinePointerInfo::getConstantPool(),
   1992                          false, false, 0);
   1993   SDValue Chain = Argument.getValue(1);
   1994 
   1995   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1996   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   1997 
   1998   // call __tls_get_addr.
   1999   ArgListTy Args;
   2000   ArgListEntry Entry;
   2001   Entry.Node = Argument;
   2002   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2003   Args.push_back(Entry);
   2004   // FIXME: is there useful debug info available here?
   2005   std::pair<SDValue, SDValue> CallResult =
   2006     LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
   2007                 false, false, false, false,
   2008                 0, CallingConv::C, false, /*isReturnValueUsed=*/true,
   2009                 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
   2010   return CallResult.first;
   2011 }
   2012 
   2013 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2014 // "local exec" model.
   2015 SDValue
   2016 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2017                                         SelectionDAG &DAG) const {
   2018   const GlobalValue *GV = GA->getGlobal();
   2019   DebugLoc dl = GA->getDebugLoc();
   2020   SDValue Offset;
   2021   SDValue Chain = DAG.getEntryNode();
   2022   EVT PtrVT = getPointerTy();
   2023   // Get the Thread Pointer
   2024   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2025 
   2026   if (GV->isDeclaration()) {
   2027     MachineFunction &MF = DAG.getMachineFunction();
   2028     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2029     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2030     // Initial exec model.
   2031     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2032     ARMConstantPoolValue *CPV =
   2033       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2034                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2035                                       true);
   2036     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2037     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2038     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2039                          MachinePointerInfo::getConstantPool(),
   2040                          false, false, 0);
   2041     Chain = Offset.getValue(1);
   2042 
   2043     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2044     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2045 
   2046     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2047                          MachinePointerInfo::getConstantPool(),
   2048                          false, false, 0);
   2049   } else {
   2050     // local exec model
   2051     ARMConstantPoolValue *CPV =
   2052       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2053     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2054     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2055     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2056                          MachinePointerInfo::getConstantPool(),
   2057                          false, false, 0);
   2058   }
   2059 
   2060   // The address of the thread local variable is the add of the thread
   2061   // pointer with the offset of the variable.
   2062   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2063 }
   2064 
   2065 SDValue
   2066 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2067   // TODO: implement the "local dynamic" model
   2068   assert(Subtarget->isTargetELF() &&
   2069          "TLS not implemented for non-ELF targets");
   2070   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2071   // If the relocation model is PIC, use the "General Dynamic" TLS Model,
   2072   // otherwise use the "Local Exec" TLS Model
   2073   if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
   2074     return LowerToTLSGeneralDynamicModel(GA, DAG);
   2075   else
   2076     return LowerToTLSExecModels(GA, DAG);
   2077 }
   2078 
   2079 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2080                                                  SelectionDAG &DAG) const {
   2081   EVT PtrVT = getPointerTy();
   2082   DebugLoc dl = Op.getDebugLoc();
   2083   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2084   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2085   if (RelocM == Reloc::PIC_) {
   2086     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
   2087     ARMConstantPoolValue *CPV =
   2088       ARMConstantPoolConstant::Create(GV,
   2089                                       UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
   2090     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2091     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2092     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   2093                                  CPAddr,
   2094                                  MachinePointerInfo::getConstantPool(),
   2095                                  false, false, 0);
   2096     SDValue Chain = Result.getValue(1);
   2097     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2098     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
   2099     if (!UseGOTOFF)
   2100       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2101                            MachinePointerInfo::getGOT(), false, false, 0);
   2102     return Result;
   2103   }
   2104 
   2105   // If we have T2 ops, we can materialize the address directly via movt/movw
   2106   // pair. This is always cheaper in terms of performance, but uses at least 2
   2107   // extra bytes.
   2108   if (Subtarget->useMovt() &&
   2109       !DAG.getMachineFunction().getFunction()->hasFnAttr(Attribute::OptimizeForSize)) {
   2110     ++NumMovwMovt;
   2111     // FIXME: Once remat is capable of dealing with instructions with register
   2112     // operands, expand this into two nodes.
   2113     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2114                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2115   } else {
   2116     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2117     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2118     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2119                        MachinePointerInfo::getConstantPool(),
   2120                        false, false, 0);
   2121   }
   2122 }
   2123 
   2124 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2125                                                     SelectionDAG &DAG) const {
   2126   EVT PtrVT = getPointerTy();
   2127   DebugLoc dl = Op.getDebugLoc();
   2128   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2129   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2130   MachineFunction &MF = DAG.getMachineFunction();
   2131   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2132 
   2133   // FIXME: Enable this for static codegen when tool issues are fixed.
   2134   if (Subtarget->useMovt() && RelocM != Reloc::Static &&
   2135       !DAG.getMachineFunction().getFunction()->hasFnAttr(Attribute::OptimizeForSize)) {
   2136     ++NumMovwMovt;
   2137     // FIXME: Once remat is capable of dealing with instructions with register
   2138     // operands, expand this into two nodes.
   2139     if (RelocM == Reloc::Static)
   2140       return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2141                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2142 
   2143     unsigned Wrapper = (RelocM == Reloc::PIC_)
   2144       ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
   2145     SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
   2146                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2147     if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2148       Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2149                            MachinePointerInfo::getGOT(), false, false, 0);
   2150     return Result;
   2151   }
   2152 
   2153   unsigned ARMPCLabelIndex = 0;
   2154   SDValue CPAddr;
   2155   if (RelocM == Reloc::Static) {
   2156     CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2157   } else {
   2158     ARMPCLabelIndex = AFI->createPICLabelUId();
   2159     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
   2160     ARMConstantPoolValue *CPV =
   2161       ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
   2162                                       PCAdj);
   2163     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2164   }
   2165   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2166 
   2167   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2168                                MachinePointerInfo::getConstantPool(),
   2169                                false, false, 0);
   2170   SDValue Chain = Result.getValue(1);
   2171 
   2172   if (RelocM == Reloc::PIC_) {
   2173     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2174     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2175   }
   2176 
   2177   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2178     Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
   2179                          false, false, 0);
   2180 
   2181   return Result;
   2182 }
   2183 
   2184 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
   2185                                                     SelectionDAG &DAG) const {
   2186   assert(Subtarget->isTargetELF() &&
   2187          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
   2188   MachineFunction &MF = DAG.getMachineFunction();
   2189   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2190   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2191   EVT PtrVT = getPointerTy();
   2192   DebugLoc dl = Op.getDebugLoc();
   2193   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2194   ARMConstantPoolValue *CPV =
   2195     ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
   2196                                   ARMPCLabelIndex, PCAdj);
   2197   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2198   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2199   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2200                                MachinePointerInfo::getConstantPool(),
   2201                                false, false, 0);
   2202   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2203   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2204 }
   2205 
   2206 SDValue
   2207 ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
   2208   const {
   2209   DebugLoc dl = Op.getDebugLoc();
   2210   return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
   2211                      Op.getOperand(0), Op.getOperand(1));
   2212 }
   2213 
   2214 SDValue
   2215 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2216   DebugLoc dl = Op.getDebugLoc();
   2217   SDValue Val = DAG.getConstant(0, MVT::i32);
   2218   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2219                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2220                      Op.getOperand(1), Val);
   2221 }
   2222 
   2223 SDValue
   2224 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2225   DebugLoc dl = Op.getDebugLoc();
   2226   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2227                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
   2228 }
   2229 
   2230 SDValue
   2231 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2232                                           const ARMSubtarget *Subtarget) const {
   2233   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2234   DebugLoc dl = Op.getDebugLoc();
   2235   switch (IntNo) {
   2236   default: return SDValue();    // Don't custom lower most intrinsics.
   2237   case Intrinsic::arm_thread_pointer: {
   2238     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2239     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2240   }
   2241   case Intrinsic::eh_sjlj_lsda: {
   2242     MachineFunction &MF = DAG.getMachineFunction();
   2243     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2244     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2245     EVT PtrVT = getPointerTy();
   2246     DebugLoc dl = Op.getDebugLoc();
   2247     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2248     SDValue CPAddr;
   2249     unsigned PCAdj = (RelocM != Reloc::PIC_)
   2250       ? 0 : (Subtarget->isThumb() ? 4 : 8);
   2251     ARMConstantPoolValue *CPV =
   2252       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2253                                       ARMCP::CPLSDA, PCAdj);
   2254     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2255     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2256     SDValue Result =
   2257       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2258                   MachinePointerInfo::getConstantPool(),
   2259                   false, false, 0);
   2260 
   2261     if (RelocM == Reloc::PIC_) {
   2262       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2263       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2264     }
   2265     return Result;
   2266   }
   2267   case Intrinsic::arm_neon_vmulls:
   2268   case Intrinsic::arm_neon_vmullu: {
   2269     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2270       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2271     return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
   2272                        Op.getOperand(1), Op.getOperand(2));
   2273   }
   2274   }
   2275 }
   2276 
   2277 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
   2278                                const ARMSubtarget *Subtarget) {
   2279   DebugLoc dl = Op.getDebugLoc();
   2280   if (!Subtarget->hasDataBarrier()) {
   2281     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2282     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2283     // here.
   2284     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2285            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
   2286     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2287                        DAG.getConstant(0, MVT::i32));
   2288   }
   2289 
   2290   SDValue Op5 = Op.getOperand(5);
   2291   bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
   2292   unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   2293   unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   2294   bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
   2295 
   2296   ARM_MB::MemBOpt DMBOpt;
   2297   if (isDeviceBarrier)
   2298     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
   2299   else
   2300     DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
   2301   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
   2302                      DAG.getConstant(DMBOpt, MVT::i32));
   2303 }
   2304 
   2305 
   2306 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   2307                                  const ARMSubtarget *Subtarget) {
   2308   // FIXME: handle "fence singlethread" more efficiently.
   2309   DebugLoc dl = Op.getDebugLoc();
   2310   if (!Subtarget->hasDataBarrier()) {
   2311     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2312     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2313     // here.
   2314     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2315            "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
   2316     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2317                        DAG.getConstant(0, MVT::i32));
   2318   }
   2319 
   2320   return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
   2321                      DAG.getConstant(ARM_MB::ISH, MVT::i32));
   2322 }
   2323 
   2324 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   2325                              const ARMSubtarget *Subtarget) {
   2326   // ARM pre v5TE and Thumb1 does not have preload instructions.
   2327   if (!(Subtarget->isThumb2() ||
   2328         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   2329     // Just preserve the chain.
   2330     return Op.getOperand(0);
   2331 
   2332   DebugLoc dl = Op.getDebugLoc();
   2333   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   2334   if (!isRead &&
   2335       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   2336     // ARMv7 with MP extension has PLDW.
   2337     return Op.getOperand(0);
   2338 
   2339   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2340   if (Subtarget->isThumb()) {
   2341     // Invert the bits.
   2342     isRead = ~isRead & 1;
   2343     isData = ~isData & 1;
   2344   }
   2345 
   2346   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   2347                      Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
   2348                      DAG.getConstant(isData, MVT::i32));
   2349 }
   2350 
   2351 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   2352   MachineFunction &MF = DAG.getMachineFunction();
   2353   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   2354 
   2355   // vastart just stores the address of the VarArgsFrameIndex slot into the
   2356   // memory location argument.
   2357   DebugLoc dl = Op.getDebugLoc();
   2358   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2359   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2360   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2361   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2362                       MachinePointerInfo(SV), false, false, 0);
   2363 }
   2364 
   2365 SDValue
   2366 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
   2367                                         SDValue &Root, SelectionDAG &DAG,
   2368                                         DebugLoc dl) const {
   2369   MachineFunction &MF = DAG.getMachineFunction();
   2370   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2371 
   2372   TargetRegisterClass *RC;
   2373   if (AFI->isThumb1OnlyFunction())
   2374     RC = ARM::tGPRRegisterClass;
   2375   else
   2376     RC = ARM::GPRRegisterClass;
   2377 
   2378   // Transform the arguments stored in physical registers into virtual ones.
   2379   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2380   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2381 
   2382   SDValue ArgValue2;
   2383   if (NextVA.isMemLoc()) {
   2384     MachineFrameInfo *MFI = MF.getFrameInfo();
   2385     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   2386 
   2387     // Create load node to retrieve arguments from the stack.
   2388     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2389     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
   2390                             MachinePointerInfo::getFixedStack(FI),
   2391                             false, false, 0);
   2392   } else {
   2393     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   2394     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2395   }
   2396 
   2397   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   2398 }
   2399 
   2400 void
   2401 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
   2402                                   unsigned &VARegSize, unsigned &VARegSaveSize)
   2403   const {
   2404   unsigned NumGPRs;
   2405   if (CCInfo.isFirstByValRegValid())
   2406     NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
   2407   else {
   2408     unsigned int firstUnalloced;
   2409     firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
   2410                                                 sizeof(GPRArgRegs) /
   2411                                                 sizeof(GPRArgRegs[0]));
   2412     NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
   2413   }
   2414 
   2415   unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
   2416   VARegSize = NumGPRs * 4;
   2417   VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
   2418 }
   2419 
   2420 // The remaining GPRs hold either the beginning of variable-argument
   2421 // data, or the beginning of an aggregate passed by value (usuall
   2422 // byval).  Either way, we allocate stack slots adjacent to the data
   2423 // provided by our caller, and store the unallocated registers there.
   2424 // If this is a variadic function, the va_list pointer will begin with
   2425 // these values; otherwise, this reassembles a (byval) structure that
   2426 // was split between registers and memory.
   2427 void
   2428 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   2429                                         DebugLoc dl, SDValue &Chain,
   2430                                         unsigned ArgOffset) const {
   2431   MachineFunction &MF = DAG.getMachineFunction();
   2432   MachineFrameInfo *MFI = MF.getFrameInfo();
   2433   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2434   unsigned firstRegToSaveIndex;
   2435   if (CCInfo.isFirstByValRegValid())
   2436     firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
   2437   else {
   2438     firstRegToSaveIndex = CCInfo.getFirstUnallocated
   2439       (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
   2440   }
   2441 
   2442   unsigned VARegSize, VARegSaveSize;
   2443   computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
   2444   if (VARegSaveSize) {
   2445     // If this function is vararg, store any remaining integer argument regs
   2446     // to their spots on the stack so that they may be loaded by deferencing
   2447     // the result of va_next.
   2448     AFI->setVarArgsRegSaveSize(VARegSaveSize);
   2449     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
   2450                                                      ArgOffset + VARegSaveSize
   2451                                                      - VARegSize,
   2452                                                      false));
   2453     SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
   2454                                     getPointerTy());
   2455 
   2456     SmallVector<SDValue, 4> MemOps;
   2457     for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
   2458       TargetRegisterClass *RC;
   2459       if (AFI->isThumb1OnlyFunction())
   2460         RC = ARM::tGPRRegisterClass;
   2461       else
   2462         RC = ARM::GPRRegisterClass;
   2463 
   2464       unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
   2465       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2466       SDValue Store =
   2467         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2468                  MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
   2469                      false, false, 0);
   2470       MemOps.push_back(Store);
   2471       FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
   2472                         DAG.getConstant(4, getPointerTy()));
   2473     }
   2474     if (!MemOps.empty())
   2475       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2476                           &MemOps[0], MemOps.size());
   2477   } else
   2478     // This will point to the next argument passed via stack.
   2479     AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
   2480 }
   2481 
   2482 SDValue
   2483 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
   2484                                         CallingConv::ID CallConv, bool isVarArg,
   2485                                         const SmallVectorImpl<ISD::InputArg>
   2486                                           &Ins,
   2487                                         DebugLoc dl, SelectionDAG &DAG,
   2488                                         SmallVectorImpl<SDValue> &InVals)
   2489                                           const {
   2490   MachineFunction &MF = DAG.getMachineFunction();
   2491   MachineFrameInfo *MFI = MF.getFrameInfo();
   2492 
   2493   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2494 
   2495   // Assign locations to all of the incoming arguments.
   2496   SmallVector<CCValAssign, 16> ArgLocs;
   2497   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2498                     getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
   2499   CCInfo.AnalyzeFormalArguments(Ins,
   2500                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   2501                                                   isVarArg));
   2502 
   2503   SmallVector<SDValue, 16> ArgValues;
   2504   int lastInsIndex = -1;
   2505 
   2506   SDValue ArgValue;
   2507   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2508     CCValAssign &VA = ArgLocs[i];
   2509 
   2510     // Arguments stored in registers.
   2511     if (VA.isRegLoc()) {
   2512       EVT RegVT = VA.getLocVT();
   2513 
   2514       if (VA.needsCustom()) {
   2515         // f64 and vector types are split up into multiple registers or
   2516         // combinations of registers and stack slots.
   2517         if (VA.getLocVT() == MVT::v2f64) {
   2518           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   2519                                                    Chain, DAG, dl);
   2520           VA = ArgLocs[++i]; // skip ahead to next loc
   2521           SDValue ArgValue2;
   2522           if (VA.isMemLoc()) {
   2523             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   2524             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2525             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
   2526                                     MachinePointerInfo::getFixedStack(FI),
   2527                                     false, false, 0);
   2528           } else {
   2529             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   2530                                              Chain, DAG, dl);
   2531           }
   2532           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   2533           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   2534                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
   2535           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   2536                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
   2537         } else
   2538           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   2539 
   2540       } else {
   2541         TargetRegisterClass *RC;
   2542 
   2543         if (RegVT == MVT::f32)
   2544           RC = ARM::SPRRegisterClass;
   2545         else if (RegVT == MVT::f64)
   2546           RC = ARM::DPRRegisterClass;
   2547         else if (RegVT == MVT::v2f64)
   2548           RC = ARM::QPRRegisterClass;
   2549         else if (RegVT == MVT::i32)
   2550           RC = (AFI->isThumb1OnlyFunction() ?
   2551                 ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
   2552         else
   2553           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   2554 
   2555         // Transform the arguments in physical registers into virtual ones.
   2556         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2557         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   2558       }
   2559 
   2560       // If this is an 8 or 16-bit value, it is really passed promoted
   2561       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   2562       // truncate to the right size.
   2563       switch (VA.getLocInfo()) {
   2564       default: llvm_unreachable("Unknown loc info!");
   2565       case CCValAssign::Full: break;
   2566       case CCValAssign::BCvt:
   2567         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   2568         break;
   2569       case CCValAssign::SExt:
   2570         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   2571                                DAG.getValueType(VA.getValVT()));
   2572         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2573         break;
   2574       case CCValAssign::ZExt:
   2575         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   2576                                DAG.getValueType(VA.getValVT()));
   2577         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   2578         break;
   2579       }
   2580 
   2581       InVals.push_back(ArgValue);
   2582 
   2583     } else { // VA.isRegLoc()
   2584 
   2585       // sanity check
   2586       assert(VA.isMemLoc());
   2587       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   2588 
   2589       int index = ArgLocs[i].getValNo();
   2590 
   2591       // Some Ins[] entries become multiple ArgLoc[] entries.
   2592       // Process them only once.
   2593       if (index != lastInsIndex)
   2594         {
   2595           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   2596           // FIXME: For now, all byval parameter objects are marked mutable.
   2597           // This can be changed with more analysis.
   2598           // In case of tail call optimization mark all arguments mutable.
   2599           // Since they could be overwritten by lowering of arguments in case of
   2600           // a tail call.
   2601           if (Flags.isByVal()) {
   2602             unsigned VARegSize, VARegSaveSize;
   2603             computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
   2604             VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
   2605             unsigned Bytes = Flags.getByValSize() - VARegSize;
   2606             if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   2607             int FI = MFI->CreateFixedObject(Bytes,
   2608                                             VA.getLocMemOffset(), false);
   2609             InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
   2610           } else {
   2611             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   2612                                             VA.getLocMemOffset(), true);
   2613 
   2614             // Create load nodes to retrieve arguments from the stack.
   2615             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2616             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2617                                          MachinePointerInfo::getFixedStack(FI),
   2618                                          false, false, 0));
   2619           }
   2620           lastInsIndex = index;
   2621         }
   2622     }
   2623   }
   2624 
   2625   // varargs
   2626   if (isVarArg)
   2627     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
   2628 
   2629   return Chain;
   2630 }
   2631 
   2632 /// isFloatingPointZero - Return true if this is +0.0.
   2633 static bool isFloatingPointZero(SDValue Op) {
   2634   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   2635     return CFP->getValueAPF().isPosZero();
   2636   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   2637     // Maybe this has already been legalized into the constant pool?
   2638     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   2639       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   2640       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   2641         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   2642           return CFP->getValueAPF().isPosZero();
   2643     }
   2644   }
   2645   return false;
   2646 }
   2647 
   2648 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   2649 /// the given operands.
   2650 SDValue
   2651 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   2652                              SDValue &ARMcc, SelectionDAG &DAG,
   2653                              DebugLoc dl) const {
   2654   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   2655     unsigned C = RHSC->getZExtValue();
   2656     if (!isLegalICmpImmediate(C)) {
   2657       // Constant does not fit, try adjusting it by one?
   2658       switch (CC) {
   2659       default: break;
   2660       case ISD::SETLT:
   2661       case ISD::SETGE:
   2662         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   2663           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   2664           RHS = DAG.getConstant(C-1, MVT::i32);
   2665         }
   2666         break;
   2667       case ISD::SETULT:
   2668       case ISD::SETUGE:
   2669         if (C != 0 && isLegalICmpImmediate(C-1)) {
   2670           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   2671           RHS = DAG.getConstant(C-1, MVT::i32);
   2672         }
   2673         break;
   2674       case ISD::SETLE:
   2675       case ISD::SETGT:
   2676         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   2677           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   2678           RHS = DAG.getConstant(C+1, MVT::i32);
   2679         }
   2680         break;
   2681       case ISD::SETULE:
   2682       case ISD::SETUGT:
   2683         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   2684           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   2685           RHS = DAG.getConstant(C+1, MVT::i32);
   2686         }
   2687         break;
   2688       }
   2689     }
   2690   }
   2691 
   2692   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   2693   ARMISD::NodeType CompareType;
   2694   switch (CondCode) {
   2695   default:
   2696     CompareType = ARMISD::CMP;
   2697     break;
   2698   case ARMCC::EQ:
   2699   case ARMCC::NE:
   2700     // Uses only Z Flag
   2701     CompareType = ARMISD::CMPZ;
   2702     break;
   2703   }
   2704   ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2705   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   2706 }
   2707 
   2708 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   2709 SDValue
   2710 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
   2711                              DebugLoc dl) const {
   2712   SDValue Cmp;
   2713   if (!isFloatingPointZero(RHS))
   2714     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   2715   else
   2716     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   2717   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   2718 }
   2719 
   2720 /// duplicateCmp - Glue values can have only one use, so this function
   2721 /// duplicates a comparison node.
   2722 SDValue
   2723 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   2724   unsigned Opc = Cmp.getOpcode();
   2725   DebugLoc DL = Cmp.getDebugLoc();
   2726   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   2727     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   2728 
   2729   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   2730   Cmp = Cmp.getOperand(0);
   2731   Opc = Cmp.getOpcode();
   2732   if (Opc == ARMISD::CMPFP)
   2733     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   2734   else {
   2735     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   2736     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   2737   }
   2738   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   2739 }
   2740 
   2741 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   2742   SDValue Cond = Op.getOperand(0);
   2743   SDValue SelectTrue = Op.getOperand(1);
   2744   SDValue SelectFalse = Op.getOperand(2);
   2745   DebugLoc dl = Op.getDebugLoc();
   2746 
   2747   // Convert:
   2748   //
   2749   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   2750   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   2751   //
   2752   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   2753     const ConstantSDNode *CMOVTrue =
   2754       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   2755     const ConstantSDNode *CMOVFalse =
   2756       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   2757 
   2758     if (CMOVTrue && CMOVFalse) {
   2759       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   2760       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   2761 
   2762       SDValue True;
   2763       SDValue False;
   2764       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   2765         True = SelectTrue;
   2766         False = SelectFalse;
   2767       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   2768         True = SelectFalse;
   2769         False = SelectTrue;
   2770       }
   2771 
   2772       if (True.getNode() && False.getNode()) {
   2773         EVT VT = Op.getValueType();
   2774         SDValue ARMcc = Cond.getOperand(2);
   2775         SDValue CCR = Cond.getOperand(3);
   2776         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   2777         assert(True.getValueType() == VT);
   2778         return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
   2779       }
   2780     }
   2781   }
   2782 
   2783   return DAG.getSelectCC(dl, Cond,
   2784                          DAG.getConstant(0, Cond.getValueType()),
   2785                          SelectTrue, SelectFalse, ISD::SETNE);
   2786 }
   2787 
   2788 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   2789   EVT VT = Op.getValueType();
   2790   SDValue LHS = Op.getOperand(0);
   2791   SDValue RHS = Op.getOperand(1);
   2792   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   2793   SDValue TrueVal = Op.getOperand(2);
   2794   SDValue FalseVal = Op.getOperand(3);
   2795   DebugLoc dl = Op.getDebugLoc();
   2796 
   2797   if (LHS.getValueType() == MVT::i32) {
   2798     SDValue ARMcc;
   2799     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2800     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   2801     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
   2802   }
   2803 
   2804   ARMCC::CondCodes CondCode, CondCode2;
   2805   FPCCToARMCC(CC, CondCode, CondCode2);
   2806 
   2807   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2808   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   2809   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2810   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
   2811                                ARMcc, CCR, Cmp);
   2812   if (CondCode2 != ARMCC::AL) {
   2813     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
   2814     // FIXME: Needs another CMP because flag can have but one use.
   2815     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   2816     Result = DAG.getNode(ARMISD::CMOV, dl, VT,
   2817                          Result, TrueVal, ARMcc2, CCR, Cmp2);
   2818   }
   2819   return Result;
   2820 }
   2821 
   2822 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   2823 /// to morph to an integer compare sequence.
   2824 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   2825                            const ARMSubtarget *Subtarget) {
   2826   SDNode *N = Op.getNode();
   2827   if (!N->hasOneUse())
   2828     // Otherwise it requires moving the value from fp to integer registers.
   2829     return false;
   2830   if (!N->getNumValues())
   2831     return false;
   2832   EVT VT = Op.getValueType();
   2833   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   2834     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   2835     // vmrs are very slow, e.g. cortex-a8.
   2836     return false;
   2837 
   2838   if (isFloatingPointZero(Op)) {
   2839     SeenZero = true;
   2840     return true;
   2841   }
   2842   return ISD::isNormalLoad(N);
   2843 }
   2844 
   2845 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   2846   if (isFloatingPointZero(Op))
   2847     return DAG.getConstant(0, MVT::i32);
   2848 
   2849   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   2850     return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2851                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   2852                        Ld->isVolatile(), Ld->isNonTemporal(),
   2853                        Ld->getAlignment());
   2854 
   2855   llvm_unreachable("Unknown VFP cmp argument!");
   2856 }
   2857 
   2858 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   2859                            SDValue &RetVal1, SDValue &RetVal2) {
   2860   if (isFloatingPointZero(Op)) {
   2861     RetVal1 = DAG.getConstant(0, MVT::i32);
   2862     RetVal2 = DAG.getConstant(0, MVT::i32);
   2863     return;
   2864   }
   2865 
   2866   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   2867     SDValue Ptr = Ld->getBasePtr();
   2868     RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2869                           Ld->getChain(), Ptr,
   2870                           Ld->getPointerInfo(),
   2871                           Ld->isVolatile(), Ld->isNonTemporal(),
   2872                           Ld->getAlignment());
   2873 
   2874     EVT PtrType = Ptr.getValueType();
   2875     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   2876     SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
   2877                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
   2878     RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
   2879                           Ld->getChain(), NewPtr,
   2880                           Ld->getPointerInfo().getWithOffset(4),
   2881                           Ld->isVolatile(), Ld->isNonTemporal(),
   2882                           NewAlign);
   2883     return;
   2884   }
   2885 
   2886   llvm_unreachable("Unknown VFP cmp argument!");
   2887 }
   2888 
   2889 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   2890 /// f32 and even f64 comparisons to integer ones.
   2891 SDValue
   2892 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   2893   SDValue Chain = Op.getOperand(0);
   2894   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   2895   SDValue LHS = Op.getOperand(2);
   2896   SDValue RHS = Op.getOperand(3);
   2897   SDValue Dest = Op.getOperand(4);
   2898   DebugLoc dl = Op.getDebugLoc();
   2899 
   2900   bool SeenZero = false;
   2901   if (canChangeToInt(LHS, SeenZero, Subtarget) &&
   2902       canChangeToInt(RHS, SeenZero, Subtarget) &&
   2903       // If one of the operand is zero, it's safe to ignore the NaN case since
   2904       // we only care about equality comparisons.
   2905       (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
   2906     // If unsafe fp math optimization is enabled and there are no other uses of
   2907     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   2908     // to an integer comparison.
   2909     if (CC == ISD::SETOEQ)
   2910       CC = ISD::SETEQ;
   2911     else if (CC == ISD::SETUNE)
   2912       CC = ISD::SETNE;
   2913 
   2914     SDValue ARMcc;
   2915     if (LHS.getValueType() == MVT::f32) {
   2916       LHS = bitcastf32Toi32(LHS, DAG);
   2917       RHS = bitcastf32Toi32(RHS, DAG);
   2918       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   2919       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2920       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   2921                          Chain, Dest, ARMcc, CCR, Cmp);
   2922     }
   2923 
   2924     SDValue LHS1, LHS2;
   2925     SDValue RHS1, RHS2;
   2926     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   2927     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   2928     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   2929     ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2930     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   2931     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   2932     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
   2933   }
   2934 
   2935   return SDValue();
   2936 }
   2937 
   2938 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   2939   SDValue Chain = Op.getOperand(0);
   2940   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   2941   SDValue LHS = Op.getOperand(2);
   2942   SDValue RHS = Op.getOperand(3);
   2943   SDValue Dest = Op.getOperand(4);
   2944   DebugLoc dl = Op.getDebugLoc();
   2945 
   2946   if (LHS.getValueType() == MVT::i32) {
   2947     SDValue ARMcc;
   2948     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   2949     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2950     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   2951                        Chain, Dest, ARMcc, CCR, Cmp);
   2952   }
   2953 
   2954   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   2955 
   2956   if (UnsafeFPMath &&
   2957       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   2958        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   2959     SDValue Result = OptimizeVFPBrcond(Op, DAG);
   2960     if (Result.getNode())
   2961       return Result;
   2962   }
   2963 
   2964   ARMCC::CondCodes CondCode, CondCode2;
   2965   FPCCToARMCC(CC, CondCode, CondCode2);
   2966 
   2967   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   2968   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   2969   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   2970   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   2971   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   2972   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
   2973   if (CondCode2 != ARMCC::AL) {
   2974     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
   2975     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   2976     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
   2977   }
   2978   return Res;
   2979 }
   2980 
   2981 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   2982   SDValue Chain = Op.getOperand(0);
   2983   SDValue Table = Op.getOperand(1);
   2984   SDValue Index = Op.getOperand(2);
   2985   DebugLoc dl = Op.getDebugLoc();
   2986 
   2987   EVT PTy = getPointerTy();
   2988   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   2989   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
   2990   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
   2991   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   2992   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
   2993   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
   2994   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   2995   if (Subtarget->isThumb2()) {
   2996     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   2997     // which does another jump to the destination. This also makes it easier
   2998     // to translate it to TBB / TBH later.
   2999     // FIXME: This might not work if the function is extremely large.
   3000     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   3001                        Addr, Op.getOperand(2), JTI, UId);
   3002   }
   3003   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   3004     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   3005                        MachinePointerInfo::getJumpTable(),
   3006                        false, false, 0);
   3007     Chain = Addr.getValue(1);
   3008     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   3009     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3010   } else {
   3011     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
   3012                        MachinePointerInfo::getJumpTable(), false, false, 0);
   3013     Chain = Addr.getValue(1);
   3014     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3015   }
   3016 }
   3017 
   3018 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3019   DebugLoc dl = Op.getDebugLoc();
   3020   unsigned Opc;
   3021 
   3022   switch (Op.getOpcode()) {
   3023   default:
   3024     assert(0 && "Invalid opcode!");
   3025   case ISD::FP_TO_SINT:
   3026     Opc = ARMISD::FTOSI;
   3027     break;
   3028   case ISD::FP_TO_UINT:
   3029     Opc = ARMISD::FTOUI;
   3030     break;
   3031   }
   3032   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
   3033   return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3034 }
   3035 
   3036 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3037   EVT VT = Op.getValueType();
   3038   DebugLoc dl = Op.getDebugLoc();
   3039 
   3040   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   3041          "Invalid type for custom lowering!");
   3042   if (VT != MVT::v4f32)
   3043     return DAG.UnrollVectorOp(Op.getNode());
   3044 
   3045   unsigned CastOpc;
   3046   unsigned Opc;
   3047   switch (Op.getOpcode()) {
   3048   default:
   3049     assert(0 && "Invalid opcode!");
   3050   case ISD::SINT_TO_FP:
   3051     CastOpc = ISD::SIGN_EXTEND;
   3052     Opc = ISD::SINT_TO_FP;
   3053     break;
   3054   case ISD::UINT_TO_FP:
   3055     CastOpc = ISD::ZERO_EXTEND;
   3056     Opc = ISD::UINT_TO_FP;
   3057     break;
   3058   }
   3059 
   3060   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   3061   return DAG.getNode(Opc, dl, VT, Op);
   3062 }
   3063 
   3064 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3065   EVT VT = Op.getValueType();
   3066   if (VT.isVector())
   3067     return LowerVectorINT_TO_FP(Op, DAG);
   3068 
   3069   DebugLoc dl = Op.getDebugLoc();
   3070   unsigned Opc;
   3071 
   3072   switch (Op.getOpcode()) {
   3073   default:
   3074     assert(0 && "Invalid opcode!");
   3075   case ISD::SINT_TO_FP:
   3076     Opc = ARMISD::SITOF;
   3077     break;
   3078   case ISD::UINT_TO_FP:
   3079     Opc = ARMISD::UITOF;
   3080     break;
   3081   }
   3082 
   3083   Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
   3084   return DAG.getNode(Opc, dl, VT, Op);
   3085 }
   3086 
   3087 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   3088   // Implement fcopysign with a fabs and a conditional fneg.
   3089   SDValue Tmp0 = Op.getOperand(0);
   3090   SDValue Tmp1 = Op.getOperand(1);
   3091   DebugLoc dl = Op.getDebugLoc();
   3092   EVT VT = Op.getValueType();
   3093   EVT SrcVT = Tmp1.getValueType();
   3094   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   3095     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   3096   bool UseNEON = !InGPR && Subtarget->hasNEON();
   3097 
   3098   if (UseNEON) {
   3099     // Use VBSL to copy the sign bit.
   3100     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   3101     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   3102                                DAG.getTargetConstant(EncodedVal, MVT::i32));
   3103     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   3104     if (VT == MVT::f64)
   3105       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3106                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   3107                          DAG.getConstant(32, MVT::i32));
   3108     else /*if (VT == MVT::f32)*/
   3109       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   3110     if (SrcVT == MVT::f32) {
   3111       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   3112       if (VT == MVT::f64)
   3113         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3114                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   3115                            DAG.getConstant(32, MVT::i32));
   3116     } else if (VT == MVT::f32)
   3117       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   3118                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   3119                          DAG.getConstant(32, MVT::i32));
   3120     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   3121     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   3122 
   3123     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   3124                                             MVT::i32);
   3125     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   3126     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   3127                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   3128 
   3129     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   3130                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   3131                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   3132     if (VT == MVT::f32) {
   3133       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   3134       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   3135                         DAG.getConstant(0, MVT::i32));
   3136     } else {
   3137       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   3138     }
   3139 
   3140     return Res;
   3141   }
   3142 
   3143   // Bitcast operand 1 to i32.
   3144   if (SrcVT == MVT::f64)
   3145     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3146                        &Tmp1, 1).getValue(1);
   3147   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   3148 
   3149   // Or in the signbit with integer operations.
   3150   SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
   3151   SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
   3152   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   3153   if (VT == MVT::f32) {
   3154     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   3155                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   3156     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3157                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   3158   }
   3159 
   3160   // f64: Or the high part with signbit and then combine two parts.
   3161   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3162                      &Tmp0, 1);
   3163   SDValue Lo = Tmp0.getValue(0);
   3164   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   3165   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   3166   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   3167 }
   3168 
   3169 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   3170   MachineFunction &MF = DAG.getMachineFunction();
   3171   MachineFrameInfo *MFI = MF.getFrameInfo();
   3172   MFI->setReturnAddressIsTaken(true);
   3173 
   3174   EVT VT = Op.getValueType();
   3175   DebugLoc dl = Op.getDebugLoc();
   3176   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3177   if (Depth) {
   3178     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   3179     SDValue Offset = DAG.getConstant(4, MVT::i32);
   3180     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   3181                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   3182                        MachinePointerInfo(), false, false, 0);
   3183   }
   3184 
   3185   // Return LR, which contains the return address. Mark it an implicit live-in.
   3186   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   3187   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   3188 }
   3189 
   3190 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   3191   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   3192   MFI->setFrameAddressIsTaken(true);
   3193 
   3194   EVT VT = Op.getValueType();
   3195   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   3196   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3197   unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
   3198     ? ARM::R7 : ARM::R11;
   3199   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   3200   while (Depth--)
   3201     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   3202                             MachinePointerInfo(),
   3203                             false, false, 0);
   3204   return FrameAddr;
   3205 }
   3206 
   3207 /// ExpandBITCAST - If the target supports VFP, this function is called to
   3208 /// expand a bit convert where either the source or destination type is i64 to
   3209 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   3210 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   3211 /// vectors), since the legalizer won't know what to do with that.
   3212 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   3213   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3214   DebugLoc dl = N->getDebugLoc();
   3215   SDValue Op = N->getOperand(0);
   3216 
   3217   // This function is only supposed to be called for i64 types, either as the
   3218   // source or destination of the bit convert.
   3219   EVT SrcVT = Op.getValueType();
   3220   EVT DstVT = N->getValueType(0);
   3221   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   3222          "ExpandBITCAST called for non-i64 type");
   3223 
   3224   // Turn i64->f64 into VMOVDRR.
   3225   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   3226     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3227                              DAG.getConstant(0, MVT::i32));
   3228     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   3229                              DAG.getConstant(1, MVT::i32));
   3230     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   3231                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   3232   }
   3233 
   3234   // Turn f64->i64 into VMOVRRD.
   3235   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   3236     SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   3237                               DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
   3238     // Merge the pieces into a single i64 value.
   3239     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   3240   }
   3241 
   3242   return SDValue();
   3243 }
   3244 
   3245 /// getZeroVector - Returns a vector of specified type with all zero elements.
   3246 /// Zero vectors are used to represent vector negation and in those cases
   3247 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   3248 /// not support i64 elements, so sometimes the zero vectors will need to be
   3249 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   3250 /// zero vector.
   3251 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
   3252   assert(VT.isVector() && "Expected a vector type");
   3253   // The canonical modified immediate encoding of a zero vector is....0!
   3254   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
   3255   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   3256   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   3257   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   3258 }
   3259 
   3260 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   3261 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   3262 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   3263                                                 SelectionDAG &DAG) const {
   3264   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   3265   EVT VT = Op.getValueType();
   3266   unsigned VTBits = VT.getSizeInBits();
   3267   DebugLoc dl = Op.getDebugLoc();
   3268   SDValue ShOpLo = Op.getOperand(0);
   3269   SDValue ShOpHi = Op.getOperand(1);
   3270   SDValue ShAmt  = Op.getOperand(2);
   3271   SDValue ARMcc;
   3272   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   3273 
   3274   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   3275 
   3276   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   3277                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   3278   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   3279   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   3280                                    DAG.getConstant(VTBits, MVT::i32));
   3281   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   3282   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   3283   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   3284 
   3285   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3286   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   3287                           ARMcc, DAG, dl);
   3288   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   3289   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   3290                            CCR, Cmp);
   3291 
   3292   SDValue Ops[2] = { Lo, Hi };
   3293   return DAG.getMergeValues(Ops, 2, dl);
   3294 }
   3295 
   3296 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   3297 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   3298 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   3299                                                SelectionDAG &DAG) const {
   3300   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   3301   EVT VT = Op.getValueType();
   3302   unsigned VTBits = VT.getSizeInBits();
   3303   DebugLoc dl = Op.getDebugLoc();
   3304   SDValue ShOpLo = Op.getOperand(0);
   3305   SDValue ShOpHi = Op.getOperand(1);
   3306   SDValue ShAmt  = Op.getOperand(2);
   3307   SDValue ARMcc;
   3308 
   3309   assert(Op.getOpcode() == ISD::SHL_PARTS);
   3310   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   3311                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   3312   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   3313   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   3314                                    DAG.getConstant(VTBits, MVT::i32));
   3315   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   3316   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   3317 
   3318   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   3319   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3320   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   3321                           ARMcc, DAG, dl);
   3322   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   3323   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   3324                            CCR, Cmp);
   3325 
   3326   SDValue Ops[2] = { Lo, Hi };
   3327   return DAG.getMergeValues(Ops, 2, dl);
   3328 }
   3329 
   3330 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   3331                                             SelectionDAG &DAG) const {
   3332   // The rounding mode is in bits 23:22 of the FPSCR.
   3333   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   3334   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   3335   // so that the shift + and get folded into a bitfield extract.
   3336   DebugLoc dl = Op.getDebugLoc();
   3337   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   3338                               DAG.getConstant(Intrinsic::arm_get_fpscr,
   3339                                               MVT::i32));
   3340   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   3341                                   DAG.getConstant(1U << 22, MVT::i32));
   3342   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   3343                               DAG.getConstant(22, MVT::i32));
   3344   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   3345                      DAG.getConstant(3, MVT::i32));
   3346 }
   3347 
   3348 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   3349                          const ARMSubtarget *ST) {
   3350   EVT VT = N->getValueType(0);
   3351   DebugLoc dl = N->getDebugLoc();
   3352 
   3353   if (!ST->hasV6T2Ops())
   3354     return SDValue();
   3355 
   3356   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
   3357   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   3358 }
   3359 
   3360 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   3361                           const ARMSubtarget *ST) {
   3362   EVT VT = N->getValueType(0);
   3363   DebugLoc dl = N->getDebugLoc();
   3364 
   3365   if (!VT.isVector())
   3366     return SDValue();
   3367 
   3368   // Lower vector shifts on NEON to use VSHL.
   3369   assert(ST->hasNEON() && "unexpected vector shift");
   3370 
   3371   // Left shifts translate directly to the vshiftu intrinsic.
   3372   if (N->getOpcode() == ISD::SHL)
   3373     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   3374                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
   3375                        N->getOperand(0), N->getOperand(1));
   3376 
   3377   assert((N->getOpcode() == ISD::SRA ||
   3378           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   3379 
   3380   // NEON uses the same intrinsics for both left and right shifts.  For
   3381   // right shifts, the shift amounts are negative, so negate the vector of
   3382   // shift amounts.
   3383   EVT ShiftVT = N->getOperand(1).getValueType();
   3384   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   3385                                      getZeroVector(ShiftVT, DAG, dl),
   3386                                      N->getOperand(1));
   3387   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   3388                              Intrinsic::arm_neon_vshifts :
   3389                              Intrinsic::arm_neon_vshiftu);
   3390   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   3391                      DAG.getConstant(vshiftInt, MVT::i32),
   3392                      N->getOperand(0), NegatedCount);
   3393 }
   3394 
   3395 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   3396                                 const ARMSubtarget *ST) {
   3397   EVT VT = N->getValueType(0);
   3398   DebugLoc dl = N->getDebugLoc();
   3399 
   3400   // We can get here for a node like i32 = ISD::SHL i32, i64
   3401   if (VT != MVT::i64)
   3402     return SDValue();
   3403 
   3404   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   3405          "Unknown shift to lower!");
   3406 
   3407   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   3408   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
   3409       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
   3410     return SDValue();
   3411 
   3412   // If we are in thumb mode, we don't have RRX.
   3413   if (ST->isThumb1Only()) return SDValue();
   3414 
   3415   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   3416   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   3417                            DAG.getConstant(0, MVT::i32));
   3418   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   3419                            DAG.getConstant(1, MVT::i32));
   3420 
   3421   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   3422   // captures the result into a carry flag.
   3423   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   3424   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
   3425 
   3426   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   3427   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   3428 
   3429   // Merge the pieces into a single i64 value.
   3430  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   3431 }
   3432 
   3433 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   3434   SDValue TmpOp0, TmpOp1;
   3435   bool Invert = false;
   3436   bool Swap = false;
   3437   unsigned Opc = 0;
   3438 
   3439   SDValue Op0 = Op.getOperand(0);
   3440   SDValue Op1 = Op.getOperand(1);
   3441   SDValue CC = Op.getOperand(2);
   3442   EVT VT = Op.getValueType();
   3443   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   3444   DebugLoc dl = Op.getDebugLoc();
   3445 
   3446   if (Op.getOperand(1).getValueType().isFloatingPoint()) {
   3447     switch (SetCCOpcode) {
   3448     default: llvm_unreachable("Illegal FP comparison"); break;
   3449     case ISD::SETUNE:
   3450     case ISD::SETNE:  Invert = true; // Fallthrough
   3451     case ISD::SETOEQ:
   3452     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   3453     case ISD::SETOLT:
   3454     case ISD::SETLT: Swap = true; // Fallthrough
   3455     case ISD::SETOGT:
   3456     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   3457     case ISD::SETOLE:
   3458     case ISD::SETLE:  Swap = true; // Fallthrough
   3459     case ISD::SETOGE:
   3460     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   3461     case ISD::SETUGE: Swap = true; // Fallthrough
   3462     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   3463     case ISD::SETUGT: Swap = true; // Fallthrough
   3464     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   3465     case ISD::SETUEQ: Invert = true; // Fallthrough
   3466     case ISD::SETONE:
   3467       // Expand this to (OLT | OGT).
   3468       TmpOp0 = Op0;
   3469       TmpOp1 = Op1;
   3470       Opc = ISD::OR;
   3471       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   3472       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
   3473       break;
   3474     case ISD::SETUO: Invert = true; // Fallthrough
   3475     case ISD::SETO:
   3476       // Expand this to (OLT | OGE).
   3477       TmpOp0 = Op0;
   3478       TmpOp1 = Op1;
   3479       Opc = ISD::OR;
   3480       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
   3481       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
   3482       break;
   3483     }
   3484   } else {
   3485     // Integer comparisons.
   3486     switch (SetCCOpcode) {
   3487     default: llvm_unreachable("Illegal integer comparison"); break;
   3488     case ISD::SETNE:  Invert = true;
   3489     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   3490     case ISD::SETLT:  Swap = true;
   3491     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   3492     case ISD::SETLE:  Swap = true;
   3493     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   3494     case ISD::SETULT: Swap = true;
   3495     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   3496     case ISD::SETULE: Swap = true;
   3497     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   3498     }
   3499 
   3500     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   3501     if (Opc == ARMISD::VCEQ) {
   3502 
   3503       SDValue AndOp;
   3504       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   3505         AndOp = Op0;
   3506       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   3507         AndOp = Op1;
   3508 
   3509       // Ignore bitconvert.
   3510       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   3511         AndOp = AndOp.getOperand(0);
   3512 
   3513       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   3514         Opc = ARMISD::VTST;
   3515         Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
   3516         Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
   3517         Invert = !Invert;
   3518       }
   3519     }
   3520   }
   3521 
   3522   if (Swap)
   3523     std::swap(Op0, Op1);
   3524 
   3525   // If one of the operands is a constant vector zero, attempt to fold the
   3526   // comparison to a specialized compare-against-zero form.
   3527   SDValue SingleOp;
   3528   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   3529     SingleOp = Op0;
   3530   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   3531     if (Opc == ARMISD::VCGE)
   3532       Opc = ARMISD::VCLEZ;
   3533     else if (Opc == ARMISD::VCGT)
   3534       Opc = ARMISD::VCLTZ;
   3535     SingleOp = Op1;
   3536   }
   3537 
   3538   SDValue Result;
   3539   if (SingleOp.getNode()) {
   3540     switch (Opc) {
   3541     case ARMISD::VCEQ:
   3542       Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
   3543     case ARMISD::VCGE:
   3544       Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
   3545     case ARMISD::VCLEZ:
   3546       Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
   3547     case ARMISD::VCGT:
   3548       Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
   3549     case ARMISD::VCLTZ:
   3550       Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
   3551     default:
   3552       Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   3553     }
   3554   } else {
   3555      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   3556   }
   3557 
   3558   if (Invert)
   3559     Result = DAG.getNOT(dl, Result, VT);
   3560 
   3561   return Result;
   3562 }
   3563 
   3564 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   3565 /// valid vector constant for a NEON instruction with a "modified immediate"
   3566 /// operand (e.g., VMOV).  If so, return the encoded value.
   3567 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   3568                                  unsigned SplatBitSize, SelectionDAG &DAG,
   3569                                  EVT &VT, bool is128Bits, NEONModImmType type) {
   3570   unsigned OpCmode, Imm;
   3571 
   3572   // SplatBitSize is set to the smallest size that splats the vector, so a
   3573   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   3574   // immediate instructions others than VMOV do not support the 8-bit encoding
   3575   // of a zero vector, and the default encoding of zero is supposed to be the
   3576   // 32-bit version.
   3577   if (SplatBits == 0)
   3578     SplatBitSize = 32;
   3579 
   3580   switch (SplatBitSize) {
   3581   case 8:
   3582     if (type != VMOVModImm)
   3583       return SDValue();
   3584     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   3585     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   3586     OpCmode = 0xe;
   3587     Imm = SplatBits;
   3588     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   3589     break;
   3590 
   3591   case 16:
   3592     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   3593     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   3594     if ((SplatBits & ~0xff) == 0) {
   3595       // Value = 0x00nn: Op=x, Cmode=100x.
   3596       OpCmode = 0x8;
   3597       Imm = SplatBits;
   3598       break;
   3599     }
   3600     if ((SplatBits & ~0xff00) == 0) {
   3601       // Value = 0xnn00: Op=x, Cmode=101x.
   3602       OpCmode = 0xa;
   3603       Imm = SplatBits >> 8;
   3604       break;
   3605     }
   3606     return SDValue();
   3607 
   3608   case 32:
   3609     // NEON's 32-bit VMOV supports splat values where:
   3610     // * only one byte is nonzero, or
   3611     // * the least significant byte is 0xff and the second byte is nonzero, or
   3612     // * the least significant 2 bytes are 0xff and the third is nonzero.
   3613     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   3614     if ((SplatBits & ~0xff) == 0) {
   3615       // Value = 0x000000nn: Op=x, Cmode=000x.
   3616       OpCmode = 0;
   3617       Imm = SplatBits;
   3618       break;
   3619     }
   3620     if ((SplatBits & ~0xff00) == 0) {
   3621       // Value = 0x0000nn00: Op=x, Cmode=001x.
   3622       OpCmode = 0x2;
   3623       Imm = SplatBits >> 8;
   3624       break;
   3625     }
   3626     if ((SplatBits & ~0xff0000) == 0) {
   3627       // Value = 0x00nn0000: Op=x, Cmode=010x.
   3628       OpCmode = 0x4;
   3629       Imm = SplatBits >> 16;
   3630       break;
   3631     }
   3632     if ((SplatBits & ~0xff000000) == 0) {
   3633       // Value = 0xnn000000: Op=x, Cmode=011x.
   3634       OpCmode = 0x6;
   3635       Imm = SplatBits >> 24;
   3636       break;
   3637     }
   3638 
   3639     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   3640     if (type == OtherModImm) return SDValue();
   3641 
   3642     if ((SplatBits & ~0xffff) == 0 &&
   3643         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   3644       // Value = 0x0000nnff: Op=x, Cmode=1100.
   3645       OpCmode = 0xc;
   3646       Imm = SplatBits >> 8;
   3647       SplatBits |= 0xff;
   3648       break;
   3649     }
   3650 
   3651     if ((SplatBits & ~0xffffff) == 0 &&
   3652         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   3653       // Value = 0x00nnffff: Op=x, Cmode=1101.
   3654       OpCmode = 0xd;
   3655       Imm = SplatBits >> 16;
   3656       SplatBits |= 0xffff;
   3657       break;
   3658     }
   3659 
   3660     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   3661     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   3662     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   3663     // and fall through here to test for a valid 64-bit splat.  But, then the
   3664     // caller would also need to check and handle the change in size.
   3665     return SDValue();
   3666 
   3667   case 64: {
   3668     if (type != VMOVModImm)
   3669       return SDValue();
   3670     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   3671     uint64_t BitMask = 0xff;
   3672     uint64_t Val = 0;
   3673     unsigned ImmMask = 1;
   3674     Imm = 0;
   3675     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   3676       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   3677         Val |= BitMask;
   3678         Imm |= ImmMask;
   3679       } else if ((SplatBits & BitMask) != 0) {
   3680         return SDValue();
   3681       }
   3682       BitMask <<= 8;
   3683       ImmMask <<= 1;
   3684     }
   3685     // Op=1, Cmode=1110.
   3686     OpCmode = 0x1e;
   3687     SplatBits = Val;
   3688     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   3689     break;
   3690   }
   3691 
   3692   default:
   3693     llvm_unreachable("unexpected size for isNEONModifiedImm");
   3694     return SDValue();
   3695   }
   3696 
   3697   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   3698   return DAG.getTargetConstant(EncodedVal, MVT::i32);
   3699 }
   3700 
   3701 static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
   3702                        bool &ReverseVEXT, unsigned &Imm) {
   3703   unsigned NumElts = VT.getVectorNumElements();
   3704   ReverseVEXT = false;
   3705 
   3706   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   3707   if (M[0] < 0)
   3708     return false;
   3709 
   3710   Imm = M[0];
   3711 
   3712   // If this is a VEXT shuffle, the immediate value is the index of the first
   3713   // element.  The other shuffle indices must be the successive elements after
   3714   // the first one.
   3715   unsigned ExpectedElt = Imm;
   3716   for (unsigned i = 1; i < NumElts; ++i) {
   3717     // Increment the expected index.  If it wraps around, it may still be
   3718     // a VEXT but the source vectors must be swapped.
   3719     ExpectedElt += 1;
   3720     if (ExpectedElt == NumElts * 2) {
   3721       ExpectedElt = 0;
   3722       ReverseVEXT = true;
   3723     }
   3724 
   3725     if (M[i] < 0) continue; // ignore UNDEF indices
   3726     if (ExpectedElt != static_cast<unsigned>(M[i]))
   3727       return false;
   3728   }
   3729 
   3730   // Adjust the index value if the source operands will be swapped.
   3731   if (ReverseVEXT)
   3732     Imm -= NumElts;
   3733 
   3734   return true;
   3735 }
   3736 
   3737 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   3738 /// instruction with the specified blocksize.  (The order of the elements
   3739 /// within each block of the vector is reversed.)
   3740 static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
   3741                        unsigned BlockSize) {
   3742   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   3743          "Only possible block sizes for VREV are: 16, 32, 64");
   3744 
   3745   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3746   if (EltSz == 64)
   3747     return false;
   3748 
   3749   unsigned NumElts = VT.getVectorNumElements();
   3750   unsigned BlockElts = M[0] + 1;
   3751   // If the first shuffle index is UNDEF, be optimistic.
   3752   if (M[0] < 0)
   3753     BlockElts = BlockSize / EltSz;
   3754 
   3755   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   3756     return false;
   3757 
   3758   for (unsigned i = 0; i < NumElts; ++i) {
   3759     if (M[i] < 0) continue; // ignore UNDEF indices
   3760     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   3761       return false;
   3762   }
   3763 
   3764   return true;
   3765 }
   3766 
   3767 static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
   3768   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   3769   // range, then 0 is placed into the resulting vector. So pretty much any mask
   3770   // of 8 elements can work here.
   3771   return VT == MVT::v8i8 && M.size() == 8;
   3772 }
   3773 
   3774 static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
   3775                        unsigned &WhichResult) {
   3776   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3777   if (EltSz == 64)
   3778     return false;
   3779 
   3780   unsigned NumElts = VT.getVectorNumElements();
   3781   WhichResult = (M[0] == 0 ? 0 : 1);
   3782   for (unsigned i = 0; i < NumElts; i += 2) {
   3783     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   3784         (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
   3785       return false;
   3786   }
   3787   return true;
   3788 }
   3789 
   3790 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   3791 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   3792 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   3793 static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
   3794                                 unsigned &WhichResult) {
   3795   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3796   if (EltSz == 64)
   3797     return false;
   3798 
   3799   unsigned NumElts = VT.getVectorNumElements();
   3800   WhichResult = (M[0] == 0 ? 0 : 1);
   3801   for (unsigned i = 0; i < NumElts; i += 2) {
   3802     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   3803         (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
   3804       return false;
   3805   }
   3806   return true;
   3807 }
   3808 
   3809 static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
   3810                        unsigned &WhichResult) {
   3811   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3812   if (EltSz == 64)
   3813     return false;
   3814 
   3815   unsigned NumElts = VT.getVectorNumElements();
   3816   WhichResult = (M[0] == 0 ? 0 : 1);
   3817   for (unsigned i = 0; i != NumElts; ++i) {
   3818     if (M[i] < 0) continue; // ignore UNDEF indices
   3819     if ((unsigned) M[i] != 2 * i + WhichResult)
   3820       return false;
   3821   }
   3822 
   3823   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   3824   if (VT.is64BitVector() && EltSz == 32)
   3825     return false;
   3826 
   3827   return true;
   3828 }
   3829 
   3830 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   3831 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   3832 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   3833 static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
   3834                                 unsigned &WhichResult) {
   3835   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3836   if (EltSz == 64)
   3837     return false;
   3838 
   3839   unsigned Half = VT.getVectorNumElements() / 2;
   3840   WhichResult = (M[0] == 0 ? 0 : 1);
   3841   for (unsigned j = 0; j != 2; ++j) {
   3842     unsigned Idx = WhichResult;
   3843     for (unsigned i = 0; i != Half; ++i) {
   3844       int MIdx = M[i + j * Half];
   3845       if (MIdx >= 0 && (unsigned) MIdx != Idx)
   3846         return false;
   3847       Idx += 2;
   3848     }
   3849   }
   3850 
   3851   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   3852   if (VT.is64BitVector() && EltSz == 32)
   3853     return false;
   3854 
   3855   return true;
   3856 }
   3857 
   3858 static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
   3859                        unsigned &WhichResult) {
   3860   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3861   if (EltSz == 64)
   3862     return false;
   3863 
   3864   unsigned NumElts = VT.getVectorNumElements();
   3865   WhichResult = (M[0] == 0 ? 0 : 1);
   3866   unsigned Idx = WhichResult * NumElts / 2;
   3867   for (unsigned i = 0; i != NumElts; i += 2) {
   3868     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   3869         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
   3870       return false;
   3871     Idx += 1;
   3872   }
   3873 
   3874   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   3875   if (VT.is64BitVector() && EltSz == 32)
   3876     return false;
   3877 
   3878   return true;
   3879 }
   3880 
   3881 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   3882 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   3883 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   3884 static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
   3885                                 unsigned &WhichResult) {
   3886   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   3887   if (EltSz == 64)
   3888     return false;
   3889 
   3890   unsigned NumElts = VT.getVectorNumElements();
   3891   WhichResult = (M[0] == 0 ? 0 : 1);
   3892   unsigned Idx = WhichResult * NumElts / 2;
   3893   for (unsigned i = 0; i != NumElts; i += 2) {
   3894     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   3895         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
   3896       return false;
   3897     Idx += 1;
   3898   }
   3899 
   3900   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   3901   if (VT.is64BitVector() && EltSz == 32)
   3902     return false;
   3903 
   3904   return true;
   3905 }
   3906 
   3907 // If N is an integer constant that can be moved into a register in one
   3908 // instruction, return an SDValue of such a constant (will become a MOV
   3909 // instruction).  Otherwise return null.
   3910 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   3911                                      const ARMSubtarget *ST, DebugLoc dl) {
   3912   uint64_t Val;
   3913   if (!isa<ConstantSDNode>(N))
   3914     return SDValue();
   3915   Val = cast<ConstantSDNode>(N)->getZExtValue();
   3916 
   3917   if (ST->isThumb1Only()) {
   3918     if (Val <= 255 || ~Val <= 255)
   3919       return DAG.getConstant(Val, MVT::i32);
   3920   } else {
   3921     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   3922       return DAG.getConstant(Val, MVT::i32);
   3923   }
   3924   return SDValue();
   3925 }
   3926 
   3927 // If this is a case we can't handle, return null and let the default
   3928 // expansion code take care of it.
   3929 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   3930                                              const ARMSubtarget *ST) const {
   3931   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   3932   DebugLoc dl = Op.getDebugLoc();
   3933   EVT VT = Op.getValueType();
   3934 
   3935   APInt SplatBits, SplatUndef;
   3936   unsigned SplatBitSize;
   3937   bool HasAnyUndefs;
   3938   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   3939     if (SplatBitSize <= 64) {
   3940       // Check if an immediate VMOV works.
   3941       EVT VmovVT;
   3942       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   3943                                       SplatUndef.getZExtValue(), SplatBitSize,
   3944                                       DAG, VmovVT, VT.is128BitVector(),
   3945                                       VMOVModImm);
   3946       if (Val.getNode()) {
   3947         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   3948         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   3949       }
   3950 
   3951       // Try an immediate VMVN.
   3952       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   3953       Val = isNEONModifiedImm(NegatedImm,
   3954                                       SplatUndef.getZExtValue(), SplatBitSize,
   3955                                       DAG, VmovVT, VT.is128BitVector(),
   3956                                       VMVNModImm);
   3957       if (Val.getNode()) {
   3958         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   3959         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   3960       }
   3961     }
   3962   }
   3963 
   3964   // Scan through the operands to see if only one value is used.
   3965   unsigned NumElts = VT.getVectorNumElements();
   3966   bool isOnlyLowElement = true;
   3967   bool usesOnlyOneValue = true;
   3968   bool isConstant = true;
   3969   SDValue Value;
   3970   for (unsigned i = 0; i < NumElts; ++i) {
   3971     SDValue V = Op.getOperand(i);
   3972     if (V.getOpcode() == ISD::UNDEF)
   3973       continue;
   3974     if (i > 0)
   3975       isOnlyLowElement = false;
   3976     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   3977       isConstant = false;
   3978 
   3979     if (!Value.getNode())
   3980       Value = V;
   3981     else if (V != Value)
   3982       usesOnlyOneValue = false;
   3983   }
   3984 
   3985   if (!Value.getNode())
   3986     return DAG.getUNDEF(VT);
   3987 
   3988   if (isOnlyLowElement)
   3989     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   3990 
   3991   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   3992 
   3993   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   3994   // i32 and try again.
   3995   if (usesOnlyOneValue && EltSize <= 32) {
   3996     if (!isConstant)
   3997       return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   3998     if (VT.getVectorElementType().isFloatingPoint()) {
   3999       SmallVector<SDValue, 8> Ops;
   4000       for (unsigned i = 0; i < NumElts; ++i)
   4001         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   4002                                   Op.getOperand(i)));
   4003       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   4004       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
   4005       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   4006       if (Val.getNode())
   4007         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4008     }
   4009     SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   4010     if (Val.getNode())
   4011       return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   4012   }
   4013 
   4014   // If all elements are constants and the case above didn't get hit, fall back
   4015   // to the default expansion, which will generate a load from the constant
   4016   // pool.
   4017   if (isConstant)
   4018     return SDValue();
   4019 
   4020   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   4021   if (NumElts >= 4) {
   4022     SDValue shuffle = ReconstructShuffle(Op, DAG);
   4023     if (shuffle != SDValue())
   4024       return shuffle;
   4025   }
   4026 
   4027   // Vectors with 32- or 64-bit elements can be built by directly assigning
   4028   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   4029   // will be legalized.
   4030   if (EltSize >= 32) {
   4031     // Do the expansion with floating-point types, since that is what the VFP
   4032     // registers are defined to use, and since i64 is not legal.
   4033     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   4034     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   4035     SmallVector<SDValue, 8> Ops;
   4036     for (unsigned i = 0; i < NumElts; ++i)
   4037       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   4038     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
   4039     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4040   }
   4041 
   4042   return SDValue();
   4043 }
   4044 
   4045 // Gather data to see if the operation can be modelled as a
   4046 // shuffle in combination with VEXTs.
   4047 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   4048                                               SelectionDAG &DAG) const {
   4049   DebugLoc dl = Op.getDebugLoc();
   4050   EVT VT = Op.getValueType();
   4051   unsigned NumElts = VT.getVectorNumElements();
   4052 
   4053   SmallVector<SDValue, 2> SourceVecs;
   4054   SmallVector<unsigned, 2> MinElts;
   4055   SmallVector<unsigned, 2> MaxElts;
   4056 
   4057   for (unsigned i = 0; i < NumElts; ++i) {
   4058     SDValue V = Op.getOperand(i);
   4059     if (V.getOpcode() == ISD::UNDEF)
   4060       continue;
   4061     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   4062       // A shuffle can only come from building a vector from various
   4063       // elements of other vectors.
   4064       return SDValue();
   4065     } else if (V.getOperand(0).getValueType().getVectorElementType() !=
   4066                VT.getVectorElementType()) {
   4067       // This code doesn't know how to handle shuffles where the vector
   4068       // element types do not match (this happens because type legalization
   4069       // promotes the return type of EXTRACT_VECTOR_ELT).
   4070       // FIXME: It might be appropriate to extend this code to handle
   4071       // mismatched types.
   4072       return SDValue();
   4073     }
   4074 
   4075     // Record this extraction against the appropriate vector if possible...
   4076     SDValue SourceVec = V.getOperand(0);
   4077     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   4078     bool FoundSource = false;
   4079     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
   4080       if (SourceVecs[j] == SourceVec) {
   4081         if (MinElts[j] > EltNo)
   4082           MinElts[j] = EltNo;
   4083         if (MaxElts[j] < EltNo)
   4084           MaxElts[j] = EltNo;
   4085         FoundSource = true;
   4086         break;
   4087       }
   4088     }
   4089 
   4090     // Or record a new source if not...
   4091     if (!FoundSource) {
   4092       SourceVecs.push_back(SourceVec);
   4093       MinElts.push_back(EltNo);
   4094       MaxElts.push_back(EltNo);
   4095     }
   4096   }
   4097 
   4098   // Currently only do something sane when at most two source vectors
   4099   // involved.
   4100   if (SourceVecs.size() > 2)
   4101     return SDValue();
   4102 
   4103   SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
   4104   int VEXTOffsets[2] = {0, 0};
   4105 
   4106   // This loop extracts the usage patterns of the source vectors
   4107   // and prepares appropriate SDValues for a shuffle if possible.
   4108   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
   4109     if (SourceVecs[i].getValueType() == VT) {
   4110       // No VEXT necessary
   4111       ShuffleSrcs[i] = SourceVecs[i];
   4112       VEXTOffsets[i] = 0;
   4113       continue;
   4114     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
   4115       // It probably isn't worth padding out a smaller vector just to
   4116       // break it down again in a shuffle.
   4117       return SDValue();
   4118     }
   4119 
   4120     // Since only 64-bit and 128-bit vectors are legal on ARM and
   4121     // we've eliminated the other cases...
   4122     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
   4123            "unexpected vector sizes in ReconstructShuffle");
   4124 
   4125     if (MaxElts[i] - MinElts[i] >= NumElts) {
   4126       // Span too large for a VEXT to cope
   4127       return SDValue();
   4128     }
   4129 
   4130     if (MinElts[i] >= NumElts) {
   4131       // The extraction can just take the second half
   4132       VEXTOffsets[i] = NumElts;
   4133       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4134                                    SourceVecs[i],
   4135                                    DAG.getIntPtrConstant(NumElts));
   4136     } else if (MaxElts[i] < NumElts) {
   4137       // The extraction can just take the first half
   4138       VEXTOffsets[i] = 0;
   4139       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4140                                    SourceVecs[i],
   4141                                    DAG.getIntPtrConstant(0));
   4142     } else {
   4143       // An actual VEXT is needed
   4144       VEXTOffsets[i] = MinElts[i];
   4145       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4146                                      SourceVecs[i],
   4147                                      DAG.getIntPtrConstant(0));
   4148       SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   4149                                      SourceVecs[i],
   4150                                      DAG.getIntPtrConstant(NumElts));
   4151       ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
   4152                                    DAG.getConstant(VEXTOffsets[i], MVT::i32));
   4153     }
   4154   }
   4155 
   4156   SmallVector<int, 8> Mask;
   4157 
   4158   for (unsigned i = 0; i < NumElts; ++i) {
   4159     SDValue Entry = Op.getOperand(i);
   4160     if (Entry.getOpcode() == ISD::UNDEF) {
   4161       Mask.push_back(-1);
   4162       continue;
   4163     }
   4164 
   4165     SDValue ExtractVec = Entry.getOperand(0);
   4166     int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
   4167                                           .getOperand(1))->getSExtValue();
   4168     if (ExtractVec == SourceVecs[0]) {
   4169       Mask.push_back(ExtractElt - VEXTOffsets[0]);
   4170     } else {
   4171       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
   4172     }
   4173   }
   4174 
   4175   // Final check before we try to produce nonsense...
   4176   if (isShuffleMaskLegal(Mask, VT))
   4177     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
   4178                                 &Mask[0]);
   4179 
   4180   return SDValue();
   4181 }
   4182 
   4183 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   4184 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   4185 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   4186 /// are assumed to be legal.
   4187 bool
   4188 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   4189                                       EVT VT) const {
   4190   if (VT.getVectorNumElements() == 4 &&
   4191       (VT.is128BitVector() || VT.is64BitVector())) {
   4192     unsigned PFIndexes[4];
   4193     for (unsigned i = 0; i != 4; ++i) {
   4194       if (M[i] < 0)
   4195         PFIndexes[i] = 8;
   4196       else
   4197         PFIndexes[i] = M[i];
   4198     }
   4199 
   4200     // Compute the index in the perfect shuffle table.
   4201     unsigned PFTableIndex =
   4202       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4203     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4204     unsigned Cost = (PFEntry >> 30);
   4205 
   4206     if (Cost <= 4)
   4207       return true;
   4208   }
   4209 
   4210   bool ReverseVEXT;
   4211   unsigned Imm, WhichResult;
   4212 
   4213   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4214   return (EltSize >= 32 ||
   4215           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   4216           isVREVMask(M, VT, 64) ||
   4217           isVREVMask(M, VT, 32) ||
   4218           isVREVMask(M, VT, 16) ||
   4219           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   4220           isVTBLMask(M, VT) ||
   4221           isVTRNMask(M, VT, WhichResult) ||
   4222           isVUZPMask(M, VT, WhichResult) ||
   4223           isVZIPMask(M, VT, WhichResult) ||
   4224           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
   4225           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
   4226           isVZIP_v_undef_Mask(M, VT, WhichResult));
   4227 }
   4228 
   4229 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   4230 /// the specified operations to build the shuffle.
   4231 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   4232                                       SDValue RHS, SelectionDAG &DAG,
   4233                                       DebugLoc dl) {
   4234   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   4235   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   4236   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   4237 
   4238   enum {
   4239     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   4240     OP_VREV,
   4241     OP_VDUP0,
   4242     OP_VDUP1,
   4243     OP_VDUP2,
   4244     OP_VDUP3,
   4245     OP_VEXT1,
   4246     OP_VEXT2,
   4247     OP_VEXT3,
   4248     OP_VUZPL, // VUZP, left result
   4249     OP_VUZPR, // VUZP, right result
   4250     OP_VZIPL, // VZIP, left result
   4251     OP_VZIPR, // VZIP, right result
   4252     OP_VTRNL, // VTRN, left result
   4253     OP_VTRNR  // VTRN, right result
   4254   };
   4255 
   4256   if (OpNum == OP_COPY) {
   4257     if (LHSID == (1*9+2)*9+3) return LHS;
   4258     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   4259     return RHS;
   4260   }
   4261 
   4262   SDValue OpLHS, OpRHS;
   4263   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   4264   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   4265   EVT VT = OpLHS.getValueType();
   4266 
   4267   switch (OpNum) {
   4268   default: llvm_unreachable("Unknown shuffle opcode!");
   4269   case OP_VREV:
   4270     // VREV divides the vector in half and swaps within the half.
   4271     if (VT.getVectorElementType() == MVT::i32 ||
   4272         VT.getVectorElementType() == MVT::f32)
   4273       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   4274     // vrev <4 x i16> -> VREV32
   4275     if (VT.getVectorElementType() == MVT::i16)
   4276       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   4277     // vrev <4 x i8> -> VREV16
   4278     assert(VT.getVectorElementType() == MVT::i8);
   4279     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   4280   case OP_VDUP0:
   4281   case OP_VDUP1:
   4282   case OP_VDUP2:
   4283   case OP_VDUP3:
   4284     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   4285                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
   4286   case OP_VEXT1:
   4287   case OP_VEXT2:
   4288   case OP_VEXT3:
   4289     return DAG.getNode(ARMISD::VEXT, dl, VT,
   4290                        OpLHS, OpRHS,
   4291                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
   4292   case OP_VUZPL:
   4293   case OP_VUZPR:
   4294     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4295                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   4296   case OP_VZIPL:
   4297   case OP_VZIPR:
   4298     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4299                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   4300   case OP_VTRNL:
   4301   case OP_VTRNR:
   4302     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4303                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   4304   }
   4305 }
   4306 
   4307 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   4308                                        SmallVectorImpl<int> &ShuffleMask,
   4309                                        SelectionDAG &DAG) {
   4310   // Check to see if we can use the VTBL instruction.
   4311   SDValue V1 = Op.getOperand(0);
   4312   SDValue V2 = Op.getOperand(1);
   4313   DebugLoc DL = Op.getDebugLoc();
   4314 
   4315   SmallVector<SDValue, 8> VTBLMask;
   4316   for (SmallVectorImpl<int>::iterator
   4317          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   4318     VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
   4319 
   4320   if (V2.getNode()->getOpcode() == ISD::UNDEF)
   4321     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   4322                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
   4323                                    &VTBLMask[0], 8));
   4324 
   4325   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   4326                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
   4327                                  &VTBLMask[0], 8));
   4328 }
   4329 
   4330 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   4331   SDValue V1 = Op.getOperand(0);
   4332   SDValue V2 = Op.getOperand(1);
   4333   DebugLoc dl = Op.getDebugLoc();
   4334   EVT VT = Op.getValueType();
   4335   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   4336   SmallVector<int, 8> ShuffleMask;
   4337 
   4338   // Convert shuffles that are directly supported on NEON to target-specific
   4339   // DAG nodes, instead of keeping them as shuffles and matching them again
   4340   // during code selection.  This is more efficient and avoids the possibility
   4341   // of inconsistencies between legalization and selection.
   4342   // FIXME: floating-point vectors should be canonicalized to integer vectors
   4343   // of the same time so that they get CSEd properly.
   4344   SVN->getMask(ShuffleMask);
   4345 
   4346   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4347   if (EltSize <= 32) {
   4348     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
   4349       int Lane = SVN->getSplatIndex();
   4350       // If this is undef splat, generate it via "just" vdup, if possible.
   4351       if (Lane == -1) Lane = 0;
   4352 
   4353       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   4354         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   4355       }
   4356       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   4357                          DAG.getConstant(Lane, MVT::i32));
   4358     }
   4359 
   4360     bool ReverseVEXT;
   4361     unsigned Imm;
   4362     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   4363       if (ReverseVEXT)
   4364         std::swap(V1, V2);
   4365       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   4366                          DAG.getConstant(Imm, MVT::i32));
   4367     }
   4368 
   4369     if (isVREVMask(ShuffleMask, VT, 64))
   4370       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   4371     if (isVREVMask(ShuffleMask, VT, 32))
   4372       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   4373     if (isVREVMask(ShuffleMask, VT, 16))
   4374       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   4375 
   4376     // Check for Neon shuffles that modify both input vectors in place.
   4377     // If both results are used, i.e., if there are two shuffles with the same
   4378     // source operands and with masks corresponding to both results of one of
   4379     // these operations, DAG memoization will ensure that a single node is
   4380     // used for both shuffles.
   4381     unsigned WhichResult;
   4382     if (isVTRNMask(ShuffleMask, VT, WhichResult))
   4383       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4384                          V1, V2).getValue(WhichResult);
   4385     if (isVUZPMask(ShuffleMask, VT, WhichResult))
   4386       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4387                          V1, V2).getValue(WhichResult);
   4388     if (isVZIPMask(ShuffleMask, VT, WhichResult))
   4389       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4390                          V1, V2).getValue(WhichResult);
   4391 
   4392     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4393       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   4394                          V1, V1).getValue(WhichResult);
   4395     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4396       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   4397                          V1, V1).getValue(WhichResult);
   4398     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   4399       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   4400                          V1, V1).getValue(WhichResult);
   4401   }
   4402 
   4403   // If the shuffle is not directly supported and it has 4 elements, use
   4404   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   4405   unsigned NumElts = VT.getVectorNumElements();
   4406   if (NumElts == 4) {
   4407     unsigned PFIndexes[4];
   4408     for (unsigned i = 0; i != 4; ++i) {
   4409       if (ShuffleMask[i] < 0)
   4410         PFIndexes[i] = 8;
   4411       else
   4412         PFIndexes[i] = ShuffleMask[i];
   4413     }
   4414 
   4415     // Compute the index in the perfect shuffle table.
   4416     unsigned PFTableIndex =
   4417       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   4418     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   4419     unsigned Cost = (PFEntry >> 30);
   4420 
   4421     if (Cost <= 4)
   4422       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   4423   }
   4424 
   4425   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   4426   if (EltSize >= 32) {
   4427     // Do the expansion with floating-point types, since that is what the VFP
   4428     // registers are defined to use, and since i64 is not legal.
   4429     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   4430     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   4431     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   4432     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   4433     SmallVector<SDValue, 8> Ops;
   4434     for (unsigned i = 0; i < NumElts; ++i) {
   4435       if (ShuffleMask[i] < 0)
   4436         Ops.push_back(DAG.getUNDEF(EltVT));
   4437       else
   4438         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   4439                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   4440                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   4441                                                   MVT::i32)));
   4442     }
   4443     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
   4444     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   4445   }
   4446 
   4447   if (VT == MVT::v8i8) {
   4448     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
   4449     if (NewOp.getNode())
   4450       return NewOp;
   4451   }
   4452 
   4453   return SDValue();
   4454 }
   4455 
   4456 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   4457   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   4458   SDValue Lane = Op.getOperand(1);
   4459   if (!isa<ConstantSDNode>(Lane))
   4460     return SDValue();
   4461 
   4462   SDValue Vec = Op.getOperand(0);
   4463   if (Op.getValueType() == MVT::i32 &&
   4464       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   4465     DebugLoc dl = Op.getDebugLoc();
   4466     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   4467   }
   4468 
   4469   return Op;
   4470 }
   4471 
   4472 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   4473   // The only time a CONCAT_VECTORS operation can have legal types is when
   4474   // two 64-bit vectors are concatenated to a 128-bit vector.
   4475   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   4476          "unexpected CONCAT_VECTORS");
   4477   DebugLoc dl = Op.getDebugLoc();
   4478   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   4479   SDValue Op0 = Op.getOperand(0);
   4480   SDValue Op1 = Op.getOperand(1);
   4481   if (Op0.getOpcode() != ISD::UNDEF)
   4482     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   4483                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   4484                       DAG.getIntPtrConstant(0));
   4485   if (Op1.getOpcode() != ISD::UNDEF)
   4486     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   4487                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   4488                       DAG.getIntPtrConstant(1));
   4489   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   4490 }
   4491 
   4492 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   4493 /// element has been zero/sign-extended, depending on the isSigned parameter,
   4494 /// from an integer type half its size.
   4495 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   4496                                    bool isSigned) {
   4497   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   4498   EVT VT = N->getValueType(0);
   4499   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   4500     SDNode *BVN = N->getOperand(0).getNode();
   4501     if (BVN->getValueType(0) != MVT::v4i32 ||
   4502         BVN->getOpcode() != ISD::BUILD_VECTOR)
   4503       return false;
   4504     unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   4505     unsigned HiElt = 1 - LoElt;
   4506     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   4507     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   4508     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   4509     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   4510     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   4511       return false;
   4512     if (isSigned) {
   4513       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   4514           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   4515         return true;
   4516     } else {
   4517       if (Hi0->isNullValue() && Hi1->isNullValue())
   4518         return true;
   4519     }
   4520     return false;
   4521   }
   4522 
   4523   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4524     return false;
   4525 
   4526   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   4527     SDNode *Elt = N->getOperand(i).getNode();
   4528     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   4529       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   4530       unsigned HalfSize = EltSize / 2;
   4531       if (isSigned) {
   4532         if (!isIntN(HalfSize, C->getSExtValue()))
   4533           return false;
   4534       } else {
   4535         if (!isUIntN(HalfSize, C->getZExtValue()))
   4536           return false;
   4537       }
   4538       continue;
   4539     }
   4540     return false;
   4541   }
   4542 
   4543   return true;
   4544 }
   4545 
   4546 /// isSignExtended - Check if a node is a vector value that is sign-extended
   4547 /// or a constant BUILD_VECTOR with sign-extended elements.
   4548 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   4549   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   4550     return true;
   4551   if (isExtendedBUILD_VECTOR(N, DAG, true))
   4552     return true;
   4553   return false;
   4554 }
   4555 
   4556 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   4557 /// or a constant BUILD_VECTOR with zero-extended elements.
   4558 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   4559   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   4560     return true;
   4561   if (isExtendedBUILD_VECTOR(N, DAG, false))
   4562     return true;
   4563   return false;
   4564 }
   4565 
   4566 /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
   4567 /// load, or BUILD_VECTOR with extended elements, return the unextended value.
   4568 static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
   4569   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   4570     return N->getOperand(0);
   4571   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   4572     return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
   4573                        LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   4574                        LD->isNonTemporal(), LD->getAlignment());
   4575   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   4576   // have been legalized as a BITCAST from v4i32.
   4577   if (N->getOpcode() == ISD::BITCAST) {
   4578     SDNode *BVN = N->getOperand(0).getNode();
   4579     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   4580            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   4581     unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   4582     return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
   4583                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
   4584   }
   4585   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   4586   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   4587   EVT VT = N->getValueType(0);
   4588   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   4589   unsigned NumElts = VT.getVectorNumElements();
   4590   MVT TruncVT = MVT::getIntegerVT(EltSize);
   4591   SmallVector<SDValue, 8> Ops;
   4592   for (unsigned i = 0; i != NumElts; ++i) {
   4593     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   4594     const APInt &CInt = C->getAPIntValue();
   4595     Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
   4596   }
   4597   return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
   4598                      MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
   4599 }
   4600 
   4601 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   4602   unsigned Opcode = N->getOpcode();
   4603   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   4604     SDNode *N0 = N->getOperand(0).getNode();
   4605     SDNode *N1 = N->getOperand(1).getNode();
   4606     return N0->hasOneUse() && N1->hasOneUse() &&
   4607       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   4608   }
   4609   return false;
   4610 }
   4611 
   4612 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   4613   unsigned Opcode = N->getOpcode();
   4614   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   4615     SDNode *N0 = N->getOperand(0).getNode();
   4616     SDNode *N1 = N->getOperand(1).getNode();
   4617     return N0->hasOneUse() && N1->hasOneUse() &&
   4618       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   4619   }
   4620   return false;
   4621 }
   4622 
   4623 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   4624   // Multiplications are only custom-lowered for 128-bit vectors so that
   4625   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   4626   EVT VT = Op.getValueType();
   4627   assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
   4628   SDNode *N0 = Op.getOperand(0).getNode();
   4629   SDNode *N1 = Op.getOperand(1).getNode();
   4630   unsigned NewOpc = 0;
   4631   bool isMLA = false;
   4632   bool isN0SExt = isSignExtended(N0, DAG);
   4633   bool isN1SExt = isSignExtended(N1, DAG);
   4634   if (isN0SExt && isN1SExt)
   4635     NewOpc = ARMISD::VMULLs;
   4636   else {
   4637     bool isN0ZExt = isZeroExtended(N0, DAG);
   4638     bool isN1ZExt = isZeroExtended(N1, DAG);
   4639     if (isN0ZExt && isN1ZExt)
   4640       NewOpc = ARMISD::VMULLu;
   4641     else if (isN1SExt || isN1ZExt) {
   4642       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   4643       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   4644       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   4645         NewOpc = ARMISD::VMULLs;
   4646         isMLA = true;
   4647       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   4648         NewOpc = ARMISD::VMULLu;
   4649         isMLA = true;
   4650       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   4651         std::swap(N0, N1);
   4652         NewOpc = ARMISD::VMULLu;
   4653         isMLA = true;
   4654       }
   4655     }
   4656 
   4657     if (!NewOpc) {
   4658       if (VT == MVT::v2i64)
   4659         // Fall through to expand this.  It is not legal.
   4660         return SDValue();
   4661       else
   4662         // Other vector multiplications are legal.
   4663         return Op;
   4664     }
   4665   }
   4666 
   4667   // Legalize to a VMULL instruction.
   4668   DebugLoc DL = Op.getDebugLoc();
   4669   SDValue Op0;
   4670   SDValue Op1 = SkipExtension(N1, DAG);
   4671   if (!isMLA) {
   4672     Op0 = SkipExtension(N0, DAG);
   4673     assert(Op0.getValueType().is64BitVector() &&
   4674            Op1.getValueType().is64BitVector() &&
   4675            "unexpected types for extended operands to VMULL");
   4676     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   4677   }
   4678 
   4679   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   4680   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   4681   //   vmull q0, d4, d6
   4682   //   vmlal q0, d5, d6
   4683   // is faster than
   4684   //   vaddl q0, d4, d5
   4685   //   vmovl q1, d6
   4686   //   vmul  q0, q0, q1
   4687   SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
   4688   SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
   4689   EVT Op1VT = Op1.getValueType();
   4690   return DAG.getNode(N0->getOpcode(), DL, VT,
   4691                      DAG.getNode(NewOpc, DL, VT,
   4692                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   4693                      DAG.getNode(NewOpc, DL, VT,
   4694                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   4695 }
   4696 
   4697 static SDValue
   4698 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
   4699   // Convert to float
   4700   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   4701   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   4702   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   4703   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   4704   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   4705   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   4706   // Get reciprocal estimate.
   4707   // float4 recip = vrecpeq_f32(yf);
   4708   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4709                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
   4710   // Because char has a smaller range than uchar, we can actually get away
   4711   // without any newton steps.  This requires that we use a weird bias
   4712   // of 0xb000, however (again, this has been exhaustively tested).
   4713   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   4714   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   4715   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   4716   Y = DAG.getConstant(0xb000, MVT::i32);
   4717   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
   4718   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   4719   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   4720   // Convert back to short.
   4721   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   4722   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   4723   return X;
   4724 }
   4725 
   4726 static SDValue
   4727 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
   4728   SDValue N2;
   4729   // Convert to float.
   4730   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   4731   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   4732   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   4733   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   4734   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   4735   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   4736 
   4737   // Use reciprocal estimate and one refinement step.
   4738   // float4 recip = vrecpeq_f32(yf);
   4739   // recip *= vrecpsq_f32(yf, recip);
   4740   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4741                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
   4742   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4743                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   4744                    N1, N2);
   4745   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   4746   // Because short has a smaller range than ushort, we can actually get away
   4747   // with only a single newton step.  This requires that we use a weird bias
   4748   // of 89, however (again, this has been exhaustively tested).
   4749   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   4750   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   4751   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   4752   N1 = DAG.getConstant(0x89, MVT::i32);
   4753   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   4754   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   4755   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   4756   // Convert back to integer and return.
   4757   // return vmovn_s32(vcvt_s32_f32(result));
   4758   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   4759   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   4760   return N0;
   4761 }
   4762 
   4763 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   4764   EVT VT = Op.getValueType();
   4765   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   4766          "unexpected type for custom-lowering ISD::SDIV");
   4767 
   4768   DebugLoc dl = Op.getDebugLoc();
   4769   SDValue N0 = Op.getOperand(0);
   4770   SDValue N1 = Op.getOperand(1);
   4771   SDValue N2, N3;
   4772 
   4773   if (VT == MVT::v8i8) {
   4774     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   4775     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   4776 
   4777     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   4778                      DAG.getIntPtrConstant(4));
   4779     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   4780                      DAG.getIntPtrConstant(4));
   4781     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   4782                      DAG.getIntPtrConstant(0));
   4783     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   4784                      DAG.getIntPtrConstant(0));
   4785 
   4786     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   4787     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   4788 
   4789     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   4790     N0 = LowerCONCAT_VECTORS(N0, DAG);
   4791 
   4792     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   4793     return N0;
   4794   }
   4795   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   4796 }
   4797 
   4798 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   4799   EVT VT = Op.getValueType();
   4800   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   4801          "unexpected type for custom-lowering ISD::UDIV");
   4802 
   4803   DebugLoc dl = Op.getDebugLoc();
   4804   SDValue N0 = Op.getOperand(0);
   4805   SDValue N1 = Op.getOperand(1);
   4806   SDValue N2, N3;
   4807 
   4808   if (VT == MVT::v8i8) {
   4809     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   4810     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   4811 
   4812     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   4813                      DAG.getIntPtrConstant(4));
   4814     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   4815                      DAG.getIntPtrConstant(4));
   4816     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   4817                      DAG.getIntPtrConstant(0));
   4818     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   4819                      DAG.getIntPtrConstant(0));
   4820 
   4821     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   4822     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   4823 
   4824     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   4825     N0 = LowerCONCAT_VECTORS(N0, DAG);
   4826 
   4827     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   4828                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
   4829                      N0);
   4830     return N0;
   4831   }
   4832 
   4833   // v4i16 sdiv ... Convert to float.
   4834   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   4835   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   4836   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   4837   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   4838   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   4839   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   4840 
   4841   // Use reciprocal estimate and two refinement steps.
   4842   // float4 recip = vrecpeq_f32(yf);
   4843   // recip *= vrecpsq_f32(yf, recip);
   4844   // recip *= vrecpsq_f32(yf, recip);
   4845   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4846                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
   4847   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4848                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   4849                    BN1, N2);
   4850   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   4851   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   4852                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   4853                    BN1, N2);
   4854   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   4855   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   4856   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   4857   // and that it will never cause us to return an answer too large).
   4858   // float4 result = as_float4(as_int4(xf*recip) + 2);
   4859   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   4860   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   4861   N1 = DAG.getConstant(2, MVT::i32);
   4862   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   4863   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   4864   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   4865   // Convert back to integer and return.
   4866   // return vmovn_u32(vcvt_s32_f32(result));
   4867   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   4868   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   4869   return N0;
   4870 }
   4871 
   4872 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   4873   EVT VT = Op.getNode()->getValueType(0);
   4874   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   4875 
   4876   unsigned Opc;
   4877   bool ExtraOp = false;
   4878   switch (Op.getOpcode()) {
   4879   default: assert(0 && "Invalid code");
   4880   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   4881   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   4882   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   4883   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   4884   }
   4885 
   4886   if (!ExtraOp)
   4887     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   4888                        Op.getOperand(1));
   4889   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   4890                      Op.getOperand(1), Op.getOperand(2));
   4891 }
   4892 
   4893 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   4894   // Monotonic load/store is legal for all targets
   4895   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
   4896     return Op;
   4897 
   4898   // Aquire/Release load/store is not legal for targets without a
   4899   // dmb or equivalent available.
   4900   return SDValue();
   4901 }
   4902 
   4903 
   4904 static void
   4905 ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
   4906                     SelectionDAG &DAG, unsigned NewOp) {
   4907   DebugLoc dl = Node->getDebugLoc();
   4908   assert (Node->getValueType(0) == MVT::i64 &&
   4909           "Only know how to expand i64 atomics");
   4910 
   4911   SmallVector<SDValue, 6> Ops;
   4912   Ops.push_back(Node->getOperand(0)); // Chain
   4913   Ops.push_back(Node->getOperand(1)); // Ptr
   4914   // Low part of Val1
   4915   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   4916                             Node->getOperand(2), DAG.getIntPtrConstant(0)));
   4917   // High part of Val1
   4918   Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   4919                             Node->getOperand(2), DAG.getIntPtrConstant(1)));
   4920   if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
   4921     // High part of Val1
   4922     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   4923                               Node->getOperand(3), DAG.getIntPtrConstant(0)));
   4924     // High part of Val2
   4925     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   4926                               Node->getOperand(3), DAG.getIntPtrConstant(1)));
   4927   }
   4928   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   4929   SDValue Result =
   4930     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
   4931                             cast<MemSDNode>(Node)->getMemOperand());
   4932   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
   4933   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   4934   Results.push_back(Result.getValue(2));
   4935 }
   4936 
   4937 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   4938   switch (Op.getOpcode()) {
   4939   default: llvm_unreachable("Don't know how to custom lower this!");
   4940   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   4941   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   4942   case ISD::GlobalAddress:
   4943     return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
   4944       LowerGlobalAddressELF(Op, DAG);
   4945   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   4946   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   4947   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   4948   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   4949   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   4950   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   4951   case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
   4952   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   4953   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   4954   case ISD::SINT_TO_FP:
   4955   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   4956   case ISD::FP_TO_SINT:
   4957   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   4958   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   4959   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   4960   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   4961   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
   4962   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   4963   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   4964   case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
   4965   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   4966                                                                Subtarget);
   4967   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   4968   case ISD::SHL:
   4969   case ISD::SRL:
   4970   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   4971   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   4972   case ISD::SRL_PARTS:
   4973   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   4974   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   4975   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   4976   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   4977   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   4978   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   4979   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   4980   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   4981   case ISD::MUL:           return LowerMUL(Op, DAG);
   4982   case ISD::SDIV:          return LowerSDIV(Op, DAG);
   4983   case ISD::UDIV:          return LowerUDIV(Op, DAG);
   4984   case ISD::ADDC:
   4985   case ISD::ADDE:
   4986   case ISD::SUBC:
   4987   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   4988   case ISD::ATOMIC_LOAD:
   4989   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   4990   }
   4991   return SDValue();
   4992 }
   4993 
   4994 /// ReplaceNodeResults - Replace the results of node with an illegal result
   4995 /// type with new values built out of custom code.
   4996 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   4997                                            SmallVectorImpl<SDValue>&Results,
   4998                                            SelectionDAG &DAG) const {
   4999   SDValue Res;
   5000   switch (N->getOpcode()) {
   5001   default:
   5002     llvm_unreachable("Don't know how to custom expand this!");
   5003     break;
   5004   case ISD::BITCAST:
   5005     Res = ExpandBITCAST(N, DAG);
   5006     break;
   5007   case ISD::SRL:
   5008   case ISD::SRA:
   5009     Res = Expand64BitShift(N, DAG, Subtarget);
   5010     break;
   5011   case ISD::ATOMIC_LOAD_ADD:
   5012     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
   5013     return;
   5014   case ISD::ATOMIC_LOAD_AND:
   5015     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
   5016     return;
   5017   case ISD::ATOMIC_LOAD_NAND:
   5018     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
   5019     return;
   5020   case ISD::ATOMIC_LOAD_OR:
   5021     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
   5022     return;
   5023   case ISD::ATOMIC_LOAD_SUB:
   5024     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
   5025     return;
   5026   case ISD::ATOMIC_LOAD_XOR:
   5027     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
   5028     return;
   5029   case ISD::ATOMIC_SWAP:
   5030     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
   5031     return;
   5032   case ISD::ATOMIC_CMP_SWAP:
   5033     ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
   5034     return;
   5035   }
   5036   if (Res.getNode())
   5037     Results.push_back(Res);
   5038 }
   5039 
   5040 //===----------------------------------------------------------------------===//
   5041 //                           ARM Scheduler Hooks
   5042 //===----------------------------------------------------------------------===//
   5043 
   5044 MachineBasicBlock *
   5045 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
   5046                                      MachineBasicBlock *BB,
   5047                                      unsigned Size) const {
   5048   unsigned dest    = MI->getOperand(0).getReg();
   5049   unsigned ptr     = MI->getOperand(1).getReg();
   5050   unsigned oldval  = MI->getOperand(2).getReg();
   5051   unsigned newval  = MI->getOperand(3).getReg();
   5052   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5053   DebugLoc dl = MI->getDebugLoc();
   5054   bool isThumb2 = Subtarget->isThumb2();
   5055 
   5056   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5057   unsigned scratch =
   5058     MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
   5059                                        : ARM::GPRRegisterClass);
   5060 
   5061   if (isThumb2) {
   5062     MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
   5063     MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
   5064     MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
   5065   }
   5066 
   5067   unsigned ldrOpc, strOpc;
   5068   switch (Size) {
   5069   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5070   case 1:
   5071     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5072     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5073     break;
   5074   case 2:
   5075     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5076     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5077     break;
   5078   case 4:
   5079     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5080     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5081     break;
   5082   }
   5083 
   5084   MachineFunction *MF = BB->getParent();
   5085   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5086   MachineFunction::iterator It = BB;
   5087   ++It; // insert the new blocks after the current block
   5088 
   5089   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5090   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5091   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5092   MF->insert(It, loop1MBB);
   5093   MF->insert(It, loop2MBB);
   5094   MF->insert(It, exitMBB);
   5095 
   5096   // Transfer the remainder of BB and its successor edges to exitMBB.
   5097   exitMBB->splice(exitMBB->begin(), BB,
   5098                   llvm::next(MachineBasicBlock::iterator(MI)),
   5099                   BB->end());
   5100   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5101 
   5102   //  thisMBB:
   5103   //   ...
   5104   //   fallthrough --> loop1MBB
   5105   BB->addSuccessor(loop1MBB);
   5106 
   5107   // loop1MBB:
   5108   //   ldrex dest, [ptr]
   5109   //   cmp dest, oldval
   5110   //   bne exitMBB
   5111   BB = loop1MBB;
   5112   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5113   if (ldrOpc == ARM::t2LDREX)
   5114     MIB.addImm(0);
   5115   AddDefaultPred(MIB);
   5116   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   5117                  .addReg(dest).addReg(oldval));
   5118   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5119     .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5120   BB->addSuccessor(loop2MBB);
   5121   BB->addSuccessor(exitMBB);
   5122 
   5123   // loop2MBB:
   5124   //   strex scratch, newval, [ptr]
   5125   //   cmp scratch, #0
   5126   //   bne loop1MBB
   5127   BB = loop2MBB;
   5128   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
   5129   if (strOpc == ARM::t2STREX)
   5130     MIB.addImm(0);
   5131   AddDefaultPred(MIB);
   5132   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5133                  .addReg(scratch).addImm(0));
   5134   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5135     .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5136   BB->addSuccessor(loop1MBB);
   5137   BB->addSuccessor(exitMBB);
   5138 
   5139   //  exitMBB:
   5140   //   ...
   5141   BB = exitMBB;
   5142 
   5143   MI->eraseFromParent();   // The instruction is gone now.
   5144 
   5145   return BB;
   5146 }
   5147 
   5148 MachineBasicBlock *
   5149 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   5150                                     unsigned Size, unsigned BinOpcode) const {
   5151   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   5152   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5153 
   5154   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5155   MachineFunction *MF = BB->getParent();
   5156   MachineFunction::iterator It = BB;
   5157   ++It;
   5158 
   5159   unsigned dest = MI->getOperand(0).getReg();
   5160   unsigned ptr = MI->getOperand(1).getReg();
   5161   unsigned incr = MI->getOperand(2).getReg();
   5162   DebugLoc dl = MI->getDebugLoc();
   5163   bool isThumb2 = Subtarget->isThumb2();
   5164 
   5165   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5166   if (isThumb2) {
   5167     MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
   5168     MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
   5169   }
   5170 
   5171   unsigned ldrOpc, strOpc;
   5172   switch (Size) {
   5173   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5174   case 1:
   5175     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5176     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5177     break;
   5178   case 2:
   5179     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5180     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5181     break;
   5182   case 4:
   5183     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5184     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5185     break;
   5186   }
   5187 
   5188   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5189   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5190   MF->insert(It, loopMBB);
   5191   MF->insert(It, exitMBB);
   5192 
   5193   // Transfer the remainder of BB and its successor edges to exitMBB.
   5194   exitMBB->splice(exitMBB->begin(), BB,
   5195                   llvm::next(MachineBasicBlock::iterator(MI)),
   5196                   BB->end());
   5197   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5198 
   5199   TargetRegisterClass *TRC =
   5200     isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5201   unsigned scratch = MRI.createVirtualRegister(TRC);
   5202   unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
   5203 
   5204   //  thisMBB:
   5205   //   ...
   5206   //   fallthrough --> loopMBB
   5207   BB->addSuccessor(loopMBB);
   5208 
   5209   //  loopMBB:
   5210   //   ldrex dest, ptr
   5211   //   <binop> scratch2, dest, incr
   5212   //   strex scratch, scratch2, ptr
   5213   //   cmp scratch, #0
   5214   //   bne- loopMBB
   5215   //   fallthrough --> exitMBB
   5216   BB = loopMBB;
   5217   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5218   if (ldrOpc == ARM::t2LDREX)
   5219     MIB.addImm(0);
   5220   AddDefaultPred(MIB);
   5221   if (BinOpcode) {
   5222     // operand order needs to go the other way for NAND
   5223     if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
   5224       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
   5225                      addReg(incr).addReg(dest)).addReg(0);
   5226     else
   5227       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
   5228                      addReg(dest).addReg(incr)).addReg(0);
   5229   }
   5230 
   5231   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
   5232   if (strOpc == ARM::t2STREX)
   5233     MIB.addImm(0);
   5234   AddDefaultPred(MIB);
   5235   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5236                  .addReg(scratch).addImm(0));
   5237   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5238     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5239 
   5240   BB->addSuccessor(loopMBB);
   5241   BB->addSuccessor(exitMBB);
   5242 
   5243   //  exitMBB:
   5244   //   ...
   5245   BB = exitMBB;
   5246 
   5247   MI->eraseFromParent();   // The instruction is gone now.
   5248 
   5249   return BB;
   5250 }
   5251 
   5252 MachineBasicBlock *
   5253 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
   5254                                           MachineBasicBlock *BB,
   5255                                           unsigned Size,
   5256                                           bool signExtend,
   5257                                           ARMCC::CondCodes Cond) const {
   5258   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5259 
   5260   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5261   MachineFunction *MF = BB->getParent();
   5262   MachineFunction::iterator It = BB;
   5263   ++It;
   5264 
   5265   unsigned dest = MI->getOperand(0).getReg();
   5266   unsigned ptr = MI->getOperand(1).getReg();
   5267   unsigned incr = MI->getOperand(2).getReg();
   5268   unsigned oldval = dest;
   5269   DebugLoc dl = MI->getDebugLoc();
   5270   bool isThumb2 = Subtarget->isThumb2();
   5271 
   5272   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5273   if (isThumb2) {
   5274     MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
   5275     MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
   5276   }
   5277 
   5278   unsigned ldrOpc, strOpc, extendOpc;
   5279   switch (Size) {
   5280   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
   5281   case 1:
   5282     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
   5283     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
   5284     extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
   5285     break;
   5286   case 2:
   5287     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
   5288     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
   5289     extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
   5290     break;
   5291   case 4:
   5292     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
   5293     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
   5294     extendOpc = 0;
   5295     break;
   5296   }
   5297 
   5298   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5299   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5300   MF->insert(It, loopMBB);
   5301   MF->insert(It, exitMBB);
   5302 
   5303   // Transfer the remainder of BB and its successor edges to exitMBB.
   5304   exitMBB->splice(exitMBB->begin(), BB,
   5305                   llvm::next(MachineBasicBlock::iterator(MI)),
   5306                   BB->end());
   5307   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5308 
   5309   TargetRegisterClass *TRC =
   5310     isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5311   unsigned scratch = MRI.createVirtualRegister(TRC);
   5312   unsigned scratch2 = MRI.createVirtualRegister(TRC);
   5313 
   5314   //  thisMBB:
   5315   //   ...
   5316   //   fallthrough --> loopMBB
   5317   BB->addSuccessor(loopMBB);
   5318 
   5319   //  loopMBB:
   5320   //   ldrex dest, ptr
   5321   //   (sign extend dest, if required)
   5322   //   cmp dest, incr
   5323   //   cmov.cond scratch2, dest, incr
   5324   //   strex scratch, scratch2, ptr
   5325   //   cmp scratch, #0
   5326   //   bne- loopMBB
   5327   //   fallthrough --> exitMBB
   5328   BB = loopMBB;
   5329   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
   5330   if (ldrOpc == ARM::t2LDREX)
   5331     MIB.addImm(0);
   5332   AddDefaultPred(MIB);
   5333 
   5334   // Sign extend the value, if necessary.
   5335   if (signExtend && extendOpc) {
   5336     oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
   5337     AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
   5338                      .addReg(dest)
   5339                      .addImm(0));
   5340   }
   5341 
   5342   // Build compare and cmov instructions.
   5343   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   5344                  .addReg(oldval).addReg(incr));
   5345   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
   5346          .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
   5347 
   5348   MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
   5349   if (strOpc == ARM::t2STREX)
   5350     MIB.addImm(0);
   5351   AddDefaultPred(MIB);
   5352   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5353                  .addReg(scratch).addImm(0));
   5354   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5355     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5356 
   5357   BB->addSuccessor(loopMBB);
   5358   BB->addSuccessor(exitMBB);
   5359 
   5360   //  exitMBB:
   5361   //   ...
   5362   BB = exitMBB;
   5363 
   5364   MI->eraseFromParent();   // The instruction is gone now.
   5365 
   5366   return BB;
   5367 }
   5368 
   5369 MachineBasicBlock *
   5370 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
   5371                                       unsigned Op1, unsigned Op2,
   5372                                       bool NeedsCarry, bool IsCmpxchg) const {
   5373   // This also handles ATOMIC_SWAP, indicated by Op1==0.
   5374   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5375 
   5376   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   5377   MachineFunction *MF = BB->getParent();
   5378   MachineFunction::iterator It = BB;
   5379   ++It;
   5380 
   5381   unsigned destlo = MI->getOperand(0).getReg();
   5382   unsigned desthi = MI->getOperand(1).getReg();
   5383   unsigned ptr = MI->getOperand(2).getReg();
   5384   unsigned vallo = MI->getOperand(3).getReg();
   5385   unsigned valhi = MI->getOperand(4).getReg();
   5386   DebugLoc dl = MI->getDebugLoc();
   5387   bool isThumb2 = Subtarget->isThumb2();
   5388 
   5389   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
   5390   if (isThumb2) {
   5391     MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
   5392     MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
   5393     MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
   5394   }
   5395 
   5396   unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
   5397   unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
   5398 
   5399   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5400   MachineBasicBlock *contBB = 0, *cont2BB = 0;
   5401   if (IsCmpxchg) {
   5402     contBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5403     cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
   5404   }
   5405   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   5406   MF->insert(It, loopMBB);
   5407   if (IsCmpxchg) {
   5408     MF->insert(It, contBB);
   5409     MF->insert(It, cont2BB);
   5410   }
   5411   MF->insert(It, exitMBB);
   5412 
   5413   // Transfer the remainder of BB and its successor edges to exitMBB.
   5414   exitMBB->splice(exitMBB->begin(), BB,
   5415                   llvm::next(MachineBasicBlock::iterator(MI)),
   5416                   BB->end());
   5417   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   5418 
   5419   TargetRegisterClass *TRC =
   5420     isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5421   unsigned storesuccess = MRI.createVirtualRegister(TRC);
   5422 
   5423   //  thisMBB:
   5424   //   ...
   5425   //   fallthrough --> loopMBB
   5426   BB->addSuccessor(loopMBB);
   5427 
   5428   //  loopMBB:
   5429   //   ldrexd r2, r3, ptr
   5430   //   <binopa> r0, r2, incr
   5431   //   <binopb> r1, r3, incr
   5432   //   strexd storesuccess, r0, r1, ptr
   5433   //   cmp storesuccess, #0
   5434   //   bne- loopMBB
   5435   //   fallthrough --> exitMBB
   5436   //
   5437   // Note that the registers are explicitly specified because there is not any
   5438   // way to force the register allocator to allocate a register pair.
   5439   //
   5440   // FIXME: The hardcoded registers are not necessary for Thumb2, but we
   5441   // need to properly enforce the restriction that the two output registers
   5442   // for ldrexd must be different.
   5443   BB = loopMBB;
   5444   // Load
   5445   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
   5446                  .addReg(ARM::R2, RegState::Define)
   5447                  .addReg(ARM::R3, RegState::Define).addReg(ptr));
   5448   // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
   5449   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
   5450   BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
   5451 
   5452   if (IsCmpxchg) {
   5453     // Add early exit
   5454     for (unsigned i = 0; i < 2; i++) {
   5455       AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
   5456                                                          ARM::CMPrr))
   5457                      .addReg(i == 0 ? destlo : desthi)
   5458                      .addReg(i == 0 ? vallo : valhi));
   5459       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5460         .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5461       BB->addSuccessor(exitMBB);
   5462       BB->addSuccessor(i == 0 ? contBB : cont2BB);
   5463       BB = (i == 0 ? contBB : cont2BB);
   5464     }
   5465 
   5466     // Copy to physregs for strexd
   5467     unsigned setlo = MI->getOperand(5).getReg();
   5468     unsigned sethi = MI->getOperand(6).getReg();
   5469     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
   5470     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
   5471   } else if (Op1) {
   5472     // Perform binary operation
   5473     AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
   5474                    .addReg(destlo).addReg(vallo))
   5475         .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
   5476     AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
   5477                    .addReg(desthi).addReg(valhi)).addReg(0);
   5478   } else {
   5479     // Copy to physregs for strexd
   5480     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
   5481     BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
   5482   }
   5483 
   5484   // Store
   5485   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
   5486                  .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
   5487   // Cmp+jump
   5488   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   5489                  .addReg(storesuccess).addImm(0));
   5490   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   5491     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   5492 
   5493   BB->addSuccessor(loopMBB);
   5494   BB->addSuccessor(exitMBB);
   5495 
   5496   //  exitMBB:
   5497   //   ...
   5498   BB = exitMBB;
   5499 
   5500   MI->eraseFromParent();   // The instruction is gone now.
   5501 
   5502   return BB;
   5503 }
   5504 
   5505 /// EmitBasePointerRecalculation - For functions using a base pointer, we
   5506 /// rematerialize it (via the frame pointer).
   5507 void ARMTargetLowering::
   5508 EmitBasePointerRecalculation(MachineInstr *MI, MachineBasicBlock *MBB,
   5509                              MachineBasicBlock *DispatchBB) const {
   5510   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5511   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   5512   MachineFunction &MF = *MI->getParent()->getParent();
   5513   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   5514   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   5515 
   5516   if (!RI.hasBasePointer(MF)) return;
   5517 
   5518   MachineBasicBlock::iterator MBBI = MI;
   5519 
   5520   int32_t NumBytes = AFI->getFramePtrSpillOffset();
   5521   unsigned FramePtr = RI.getFrameRegister(MF);
   5522   assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
   5523          "Base pointer without frame pointer?");
   5524 
   5525   if (AFI->isThumb2Function())
   5526     llvm::emitT2RegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
   5527                                  FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
   5528   else if (AFI->isThumbFunction())
   5529     llvm::emitThumbRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
   5530                                     FramePtr, -NumBytes, *AII, RI);
   5531   else
   5532     llvm::emitARMRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
   5533                                   FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
   5534 
   5535   if (!RI.needsStackRealignment(MF)) return;
   5536 
   5537   // If there's dynamic realignment, adjust for it.
   5538   MachineFrameInfo *MFI = MF.getFrameInfo();
   5539   unsigned MaxAlign = MFI->getMaxAlignment();
   5540   assert(!AFI->isThumb1OnlyFunction());
   5541 
   5542   // Emit bic r6, r6, MaxAlign
   5543   unsigned bicOpc = AFI->isThumbFunction() ? ARM::t2BICri : ARM::BICri;
   5544   AddDefaultCC(
   5545     AddDefaultPred(
   5546       BuildMI(*MBB, MBBI, MI->getDebugLoc(), TII->get(bicOpc), ARM::R6)
   5547       .addReg(ARM::R6, RegState::Kill)
   5548       .addImm(MaxAlign - 1)));
   5549 }
   5550 
   5551 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   5552 /// registers the function context.
   5553 void ARMTargetLowering::
   5554 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
   5555                        MachineBasicBlock *DispatchBB, int FI) const {
   5556   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5557   DebugLoc dl = MI->getDebugLoc();
   5558   MachineFunction *MF = MBB->getParent();
   5559   MachineRegisterInfo *MRI = &MF->getRegInfo();
   5560   MachineConstantPool *MCP = MF->getConstantPool();
   5561   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   5562   const Function *F = MF->getFunction();
   5563 
   5564   bool isThumb = Subtarget->isThumb();
   5565   bool isThumb2 = Subtarget->isThumb2();
   5566 
   5567   unsigned PCLabelId = AFI->createPICLabelUId();
   5568   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   5569   ARMConstantPoolValue *CPV =
   5570     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   5571   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   5572 
   5573   const TargetRegisterClass *TRC =
   5574     isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5575 
   5576   // Grab constant pool and fixed stack memory operands.
   5577   MachineMemOperand *CPMMO =
   5578     MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
   5579                              MachineMemOperand::MOLoad, 4, 4);
   5580 
   5581   MachineMemOperand *FIMMOSt =
   5582     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   5583                              MachineMemOperand::MOStore, 4, 4);
   5584 
   5585   EmitBasePointerRecalculation(MI, MBB, DispatchBB);
   5586 
   5587   // Load the address of the dispatch MBB into the jump buffer.
   5588   if (isThumb2) {
   5589     // Incoming value: jbuf
   5590     //   ldr.n  r5, LCPI1_1
   5591     //   orr    r5, r5, #1
   5592     //   add    r5, pc
   5593     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   5594     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5595     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   5596                    .addConstantPoolIndex(CPI)
   5597                    .addMemOperand(CPMMO));
   5598     // Set the low bit because of thumb mode.
   5599     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5600     AddDefaultCC(
   5601       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   5602                      .addReg(NewVReg1, RegState::Kill)
   5603                      .addImm(0x01)));
   5604     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5605     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   5606       .addReg(NewVReg2, RegState::Kill)
   5607       .addImm(PCLabelId);
   5608     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   5609                    .addReg(NewVReg3, RegState::Kill)
   5610                    .addFrameIndex(FI)
   5611                    .addImm(36)  // &jbuf[1] :: pc
   5612                    .addMemOperand(FIMMOSt));
   5613   } else if (isThumb) {
   5614     // Incoming value: jbuf
   5615     //   ldr.n  r1, LCPI1_4
   5616     //   add    r1, pc
   5617     //   mov    r2, #1
   5618     //   orrs   r1, r2
   5619     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   5620     //   str    r1, [r2]
   5621     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5622     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   5623                    .addConstantPoolIndex(CPI)
   5624                    .addMemOperand(CPMMO));
   5625     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5626     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   5627       .addReg(NewVReg1, RegState::Kill)
   5628       .addImm(PCLabelId);
   5629     // Set the low bit because of thumb mode.
   5630     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5631     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   5632                    .addReg(ARM::CPSR, RegState::Define)
   5633                    .addImm(1));
   5634     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5635     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   5636                    .addReg(ARM::CPSR, RegState::Define)
   5637                    .addReg(NewVReg2, RegState::Kill)
   5638                    .addReg(NewVReg3, RegState::Kill));
   5639     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   5640     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
   5641                    .addFrameIndex(FI)
   5642                    .addImm(36)); // &jbuf[1] :: pc
   5643     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   5644                    .addReg(NewVReg4, RegState::Kill)
   5645                    .addReg(NewVReg5, RegState::Kill)
   5646                    .addImm(0)
   5647                    .addMemOperand(FIMMOSt));
   5648   } else {
   5649     // Incoming value: jbuf
   5650     //   ldr  r1, LCPI1_1
   5651     //   add  r1, pc, r1
   5652     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   5653     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5654     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   5655                    .addConstantPoolIndex(CPI)
   5656                    .addImm(0)
   5657                    .addMemOperand(CPMMO));
   5658     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5659     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   5660                    .addReg(NewVReg1, RegState::Kill)
   5661                    .addImm(PCLabelId));
   5662     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   5663                    .addReg(NewVReg2, RegState::Kill)
   5664                    .addFrameIndex(FI)
   5665                    .addImm(36)  // &jbuf[1] :: pc
   5666                    .addMemOperand(FIMMOSt));
   5667   }
   5668 }
   5669 
   5670 MachineBasicBlock *ARMTargetLowering::
   5671 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
   5672   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   5673   DebugLoc dl = MI->getDebugLoc();
   5674   MachineFunction *MF = MBB->getParent();
   5675   MachineRegisterInfo *MRI = &MF->getRegInfo();
   5676   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   5677   MachineFrameInfo *MFI = MF->getFrameInfo();
   5678   int FI = MFI->getFunctionContextIndex();
   5679 
   5680   const TargetRegisterClass *TRC =
   5681     Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
   5682 
   5683   // Get a mapping of the call site numbers to all of the landing pads they're
   5684   // associated with.
   5685   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   5686   unsigned MaxCSNum = 0;
   5687   MachineModuleInfo &MMI = MF->getMMI();
   5688   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
   5689     if (!BB->isLandingPad()) continue;
   5690 
   5691     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   5692     // pad.
   5693     for (MachineBasicBlock::iterator
   5694            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   5695       if (!II->isEHLabel()) continue;
   5696 
   5697       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   5698       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   5699 
   5700       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   5701       for (SmallVectorImpl<unsigned>::iterator
   5702              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   5703            CSI != CSE; ++CSI) {
   5704         CallSiteNumToLPad[*CSI].push_back(BB);
   5705         MaxCSNum = std::max(MaxCSNum, *CSI);
   5706       }
   5707       break;
   5708     }
   5709   }
   5710 
   5711   // Get an ordered list of the machine basic blocks for the jump table.
   5712   std::vector<MachineBasicBlock*> LPadList;
   5713   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
   5714   LPadList.reserve(CallSiteNumToLPad.size());
   5715   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   5716     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   5717     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   5718            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   5719       LPadList.push_back(*II);
   5720       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   5721     }
   5722   }
   5723 
   5724   assert(!LPadList.empty() &&
   5725          "No landing pad destinations for the dispatch jump table!");
   5726 
   5727   // Create the jump table and associated information.
   5728   MachineJumpTableInfo *JTI =
   5729     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   5730   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   5731   unsigned UId = AFI->createJumpTableUId();
   5732 
   5733   // Create the MBBs for the dispatch code.
   5734 
   5735   // Shove the dispatch's address into the return slot in the function context.
   5736   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   5737   DispatchBB->setIsLandingPad();
   5738 
   5739   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   5740   BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
   5741   DispatchBB->addSuccessor(TrapBB);
   5742 
   5743   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   5744   DispatchBB->addSuccessor(DispContBB);
   5745 
   5746   // Insert and MBBs.
   5747   MF->insert(MF->end(), DispatchBB);
   5748   MF->insert(MF->end(), DispContBB);
   5749   MF->insert(MF->end(), TrapBB);
   5750 
   5751   // Insert code into the entry block that creates and registers the function
   5752   // context.
   5753   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   5754 
   5755   MachineMemOperand *FIMMOLd =
   5756     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   5757                              MachineMemOperand::MOLoad |
   5758                              MachineMemOperand::MOVolatile, 4, 4);
   5759 
   5760   unsigned NumLPads = LPadList.size();
   5761   if (Subtarget->isThumb2()) {
   5762     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5763     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   5764                    .addFrameIndex(FI)
   5765                    .addImm(4)
   5766                    .addMemOperand(FIMMOLd));
   5767 
   5768     if (NumLPads < 256) {
   5769       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   5770                      .addReg(NewVReg1)
   5771                      .addImm(LPadList.size()));
   5772     } else {
   5773       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   5774       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   5775                      .addImm(NumLPads & 0xFFFF));
   5776 
   5777       unsigned VReg2 = VReg1;
   5778       if ((NumLPads & 0xFFFF0000) != 0) {
   5779         VReg2 = MRI->createVirtualRegister(TRC);
   5780         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   5781                        .addReg(VReg1)
   5782                        .addImm(NumLPads >> 16));
   5783       }
   5784 
   5785       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   5786                      .addReg(NewVReg1)
   5787                      .addReg(VReg2));
   5788     }
   5789 
   5790     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   5791       .addMBB(TrapBB)
   5792       .addImm(ARMCC::HI)
   5793       .addReg(ARM::CPSR);
   5794 
   5795     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5796     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   5797                    .addJumpTableIndex(MJTI)
   5798                    .addImm(UId));
   5799 
   5800     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5801     AddDefaultCC(
   5802       AddDefaultPred(
   5803         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   5804         .addReg(NewVReg3, RegState::Kill)
   5805         .addReg(NewVReg1)
   5806         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   5807 
   5808     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   5809       .addReg(NewVReg4, RegState::Kill)
   5810       .addReg(NewVReg1)
   5811       .addJumpTableIndex(MJTI)
   5812       .addImm(UId);
   5813   } else if (Subtarget->isThumb()) {
   5814     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5815     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   5816                    .addFrameIndex(FI)
   5817                    .addImm(1)
   5818                    .addMemOperand(FIMMOLd));
   5819 
   5820     if (NumLPads < 256) {
   5821       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   5822                      .addReg(NewVReg1)
   5823                      .addImm(NumLPads));
   5824     } else {
   5825       MachineConstantPool *ConstantPool = MF->getConstantPool();
   5826       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   5827       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   5828 
   5829       // MachineConstantPool wants an explicit alignment.
   5830       unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   5831       if (Align == 0)
   5832         Align = getTargetData()->getTypeAllocSize(C->getType());
   5833       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   5834 
   5835       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   5836       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   5837                      .addReg(VReg1, RegState::Define)
   5838                      .addConstantPoolIndex(Idx));
   5839       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   5840                      .addReg(NewVReg1)
   5841                      .addReg(VReg1));
   5842     }
   5843 
   5844     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   5845       .addMBB(TrapBB)
   5846       .addImm(ARMCC::HI)
   5847       .addReg(ARM::CPSR);
   5848 
   5849     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   5850     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   5851                    .addReg(ARM::CPSR, RegState::Define)
   5852                    .addReg(NewVReg1)
   5853                    .addImm(2));
   5854 
   5855     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5856     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   5857                    .addJumpTableIndex(MJTI)
   5858                    .addImm(UId));
   5859 
   5860     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5861     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   5862                    .addReg(ARM::CPSR, RegState::Define)
   5863                    .addReg(NewVReg2, RegState::Kill)
   5864                    .addReg(NewVReg3));
   5865 
   5866     MachineMemOperand *JTMMOLd =
   5867       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   5868                                MachineMemOperand::MOLoad, 4, 4);
   5869 
   5870     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   5871     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   5872                    .addReg(NewVReg4, RegState::Kill)
   5873                    .addImm(0)
   5874                    .addMemOperand(JTMMOLd));
   5875 
   5876     unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
   5877     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   5878                    .addReg(ARM::CPSR, RegState::Define)
   5879                    .addReg(NewVReg5, RegState::Kill)
   5880                    .addReg(NewVReg3));
   5881 
   5882     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   5883       .addReg(NewVReg6, RegState::Kill)
   5884       .addJumpTableIndex(MJTI)
   5885       .addImm(UId);
   5886   } else {
   5887     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   5888     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   5889                    .addFrameIndex(FI)
   5890                    .addImm(4)
   5891                    .addMemOperand(FIMMOLd));
   5892 
   5893     if (NumLPads < 256) {
   5894       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   5895                      .addReg(NewVReg1)
   5896                      .addImm(NumLPads));
   5897     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   5898       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   5899       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   5900                      .addImm(NumLPads & 0xFFFF));
   5901 
   5902       unsigned VReg2 = VReg1;
   5903       if ((NumLPads & 0xFFFF0000) != 0) {
   5904         VReg2 = MRI->createVirtualRegister(TRC);
   5905         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   5906                        .addReg(VReg1)
   5907                        .addImm(NumLPads >> 16));
   5908       }
   5909 
   5910       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   5911                      .addReg(NewVReg1)
   5912                      .addReg(VReg2));
   5913     } else {
   5914       MachineConstantPool *ConstantPool = MF->getConstantPool();
   5915       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   5916       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   5917 
   5918       // MachineConstantPool wants an explicit alignment.
   5919       unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
   5920       if (Align == 0)
   5921         Align = getTargetData()->getTypeAllocSize(C->getType());
   5922       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   5923 
   5924       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   5925       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   5926                      .addReg(VReg1, RegState::Define)
   5927                      .addConstantPoolIndex(Idx));
   5928       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   5929                      .addReg(NewVReg1)
   5930                      .addReg(VReg1, RegState::Kill));
   5931     }
   5932 
   5933     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   5934       .addMBB(TrapBB)
   5935       .addImm(ARMCC::HI)
   5936       .addReg(ARM::CPSR);
   5937 
   5938     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   5939     AddDefaultCC(
   5940       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   5941                      .addReg(NewVReg1)
   5942                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   5943     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   5944     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   5945                    .addJumpTableIndex(MJTI)
   5946                    .addImm(UId));
   5947 
   5948     MachineMemOperand *JTMMOLd =
   5949       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   5950                                MachineMemOperand::MOLoad, 4, 4);
   5951     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   5952     AddDefaultPred(
   5953       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   5954       .addReg(NewVReg3, RegState::Kill)
   5955       .addReg(NewVReg4)
   5956       .addImm(0)
   5957       .addMemOperand(JTMMOLd));
   5958 
   5959     BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   5960       .addReg(NewVReg5, RegState::Kill)
   5961       .addReg(NewVReg4)
   5962       .addJumpTableIndex(MJTI)
   5963       .addImm(UId);
   5964   }
   5965 
   5966   // Add the jump table entries as successors to the MBB.
   5967   MachineBasicBlock *PrevMBB = 0;
   5968   for (std::vector<MachineBasicBlock*>::iterator
   5969          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   5970     MachineBasicBlock *CurMBB = *I;
   5971     if (PrevMBB != CurMBB)
   5972       DispContBB->addSuccessor(CurMBB);
   5973     PrevMBB = CurMBB;
   5974   }
   5975 
   5976   // N.B. the order the invoke BBs are processed in doesn't matter here.
   5977   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   5978   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   5979   const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
   5980   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   5981   for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
   5982          I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
   5983     MachineBasicBlock *BB = *I;
   5984 
   5985     // Remove the landing pad successor from the invoke block and replace it
   5986     // with the new dispatch block.
   5987     for (MachineBasicBlock::succ_iterator
   5988            SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) {
   5989       MachineBasicBlock *SMBB = *SI;
   5990       if (SMBB->isLandingPad()) {
   5991         BB->removeSuccessor(SMBB);
   5992         MBBLPads.push_back(SMBB);
   5993       }
   5994     }
   5995 
   5996     BB->addSuccessor(DispatchBB);
   5997 
   5998     // Find the invoke call and mark all of the callee-saved registers as
   5999     // 'implicit defined' so that they're spilled. This prevents code from
   6000     // moving instructions to before the EH block, where they will never be
   6001     // executed.
   6002     for (MachineBasicBlock::reverse_iterator
   6003            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   6004       if (!II->getDesc().isCall()) continue;
   6005 
   6006       DenseMap<unsigned, bool> DefRegs;
   6007       for (MachineInstr::mop_iterator
   6008              OI = II->operands_begin(), OE = II->operands_end();
   6009            OI != OE; ++OI) {
   6010         if (!OI->isReg()) continue;
   6011         DefRegs[OI->getReg()] = true;
   6012       }
   6013 
   6014       MachineInstrBuilder MIB(&*II);
   6015 
   6016       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   6017         if (!TRC->contains(SavedRegs[i])) continue;
   6018         if (!DefRegs[SavedRegs[i]])
   6019           MIB.addReg(SavedRegs[i], RegState::ImplicitDefine | RegState::Dead);
   6020       }
   6021 
   6022       break;
   6023     }
   6024   }
   6025 
   6026   // Mark all former landing pads as non-landing pads. The dispatch is the only
   6027   // landing pad now.
   6028   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6029          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   6030     (*I)->setIsLandingPad(false);
   6031 
   6032   // The instruction is gone now.
   6033   MI->eraseFromParent();
   6034 
   6035   return MBB;
   6036 }
   6037 
   6038 static
   6039 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   6040   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   6041        E = MBB->succ_end(); I != E; ++I)
   6042     if (*I != Succ)
   6043       return *I;
   6044   llvm_unreachable("Expecting a BB with two successors!");
   6045 }
   6046 
   6047 MachineBasicBlock *
   6048 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   6049                                                MachineBasicBlock *BB) const {
   6050   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   6051   DebugLoc dl = MI->getDebugLoc();
   6052   bool isThumb2 = Subtarget->isThumb2();
   6053   switch (MI->getOpcode()) {
   6054   default: {
   6055     MI->dump();
   6056     llvm_unreachable("Unexpected instr type to insert");
   6057   }
   6058   // The Thumb2 pre-indexed stores have the same MI operands, they just
   6059   // define them differently in the .td files from the isel patterns, so
   6060   // they need pseudos.
   6061   case ARM::t2STR_preidx:
   6062     MI->setDesc(TII->get(ARM::t2STR_PRE));
   6063     return BB;
   6064   case ARM::t2STRB_preidx:
   6065     MI->setDesc(TII->get(ARM::t2STRB_PRE));
   6066     return BB;
   6067   case ARM::t2STRH_preidx:
   6068     MI->setDesc(TII->get(ARM::t2STRH_PRE));
   6069     return BB;
   6070 
   6071   case ARM::STRi_preidx:
   6072   case ARM::STRBi_preidx: {
   6073     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
   6074       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
   6075     // Decode the offset.
   6076     unsigned Offset = MI->getOperand(4).getImm();
   6077     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   6078     Offset = ARM_AM::getAM2Offset(Offset);
   6079     if (isSub)
   6080       Offset = -Offset;
   6081 
   6082     MachineMemOperand *MMO = *MI->memoperands_begin();
   6083     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   6084       .addOperand(MI->getOperand(0))  // Rn_wb
   6085       .addOperand(MI->getOperand(1))  // Rt
   6086       .addOperand(MI->getOperand(2))  // Rn
   6087       .addImm(Offset)                 // offset (skip GPR==zero_reg)
   6088       .addOperand(MI->getOperand(5))  // pred
   6089       .addOperand(MI->getOperand(6))
   6090       .addMemOperand(MMO);
   6091     MI->eraseFromParent();
   6092     return BB;
   6093   }
   6094   case ARM::STRr_preidx:
   6095   case ARM::STRBr_preidx:
   6096   case ARM::STRH_preidx: {
   6097     unsigned NewOpc;
   6098     switch (MI->getOpcode()) {
   6099     default: llvm_unreachable("unexpected opcode!");
   6100     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   6101     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   6102     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   6103     }
   6104     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   6105     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
   6106       MIB.addOperand(MI->getOperand(i));
   6107     MI->eraseFromParent();
   6108     return BB;
   6109   }
   6110   case ARM::ATOMIC_LOAD_ADD_I8:
   6111      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6112   case ARM::ATOMIC_LOAD_ADD_I16:
   6113      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6114   case ARM::ATOMIC_LOAD_ADD_I32:
   6115      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
   6116 
   6117   case ARM::ATOMIC_LOAD_AND_I8:
   6118      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6119   case ARM::ATOMIC_LOAD_AND_I16:
   6120      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6121   case ARM::ATOMIC_LOAD_AND_I32:
   6122      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6123 
   6124   case ARM::ATOMIC_LOAD_OR_I8:
   6125      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6126   case ARM::ATOMIC_LOAD_OR_I16:
   6127      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6128   case ARM::ATOMIC_LOAD_OR_I32:
   6129      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6130 
   6131   case ARM::ATOMIC_LOAD_XOR_I8:
   6132      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6133   case ARM::ATOMIC_LOAD_XOR_I16:
   6134      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6135   case ARM::ATOMIC_LOAD_XOR_I32:
   6136      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6137 
   6138   case ARM::ATOMIC_LOAD_NAND_I8:
   6139      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6140   case ARM::ATOMIC_LOAD_NAND_I16:
   6141      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6142   case ARM::ATOMIC_LOAD_NAND_I32:
   6143      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
   6144 
   6145   case ARM::ATOMIC_LOAD_SUB_I8:
   6146      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6147   case ARM::ATOMIC_LOAD_SUB_I16:
   6148      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6149   case ARM::ATOMIC_LOAD_SUB_I32:
   6150      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
   6151 
   6152   case ARM::ATOMIC_LOAD_MIN_I8:
   6153      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
   6154   case ARM::ATOMIC_LOAD_MIN_I16:
   6155      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
   6156   case ARM::ATOMIC_LOAD_MIN_I32:
   6157      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
   6158 
   6159   case ARM::ATOMIC_LOAD_MAX_I8:
   6160      return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
   6161   case ARM::ATOMIC_LOAD_MAX_I16:
   6162      return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
   6163   case ARM::ATOMIC_LOAD_MAX_I32:
   6164      return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
   6165 
   6166   case ARM::ATOMIC_LOAD_UMIN_I8:
   6167      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
   6168   case ARM::ATOMIC_LOAD_UMIN_I16:
   6169      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
   6170   case ARM::ATOMIC_LOAD_UMIN_I32:
   6171      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
   6172 
   6173   case ARM::ATOMIC_LOAD_UMAX_I8:
   6174      return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
   6175   case ARM::ATOMIC_LOAD_UMAX_I16:
   6176      return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
   6177   case ARM::ATOMIC_LOAD_UMAX_I32:
   6178      return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
   6179 
   6180   case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
   6181   case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
   6182   case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
   6183 
   6184   case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
   6185   case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
   6186   case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
   6187 
   6188 
   6189   case ARM::ATOMADD6432:
   6190     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
   6191                               isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
   6192                               /*NeedsCarry*/ true);
   6193   case ARM::ATOMSUB6432:
   6194     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
   6195                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
   6196                               /*NeedsCarry*/ true);
   6197   case ARM::ATOMOR6432:
   6198     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
   6199                               isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
   6200   case ARM::ATOMXOR6432:
   6201     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
   6202                               isThumb2 ? ARM::t2EORrr : ARM::EORrr);
   6203   case ARM::ATOMAND6432:
   6204     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
   6205                               isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
   6206   case ARM::ATOMSWAP6432:
   6207     return EmitAtomicBinary64(MI, BB, 0, 0, false);
   6208   case ARM::ATOMCMPXCHG6432:
   6209     return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
   6210                               isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
   6211                               /*NeedsCarry*/ false, /*IsCmpxchg*/true);
   6212 
   6213   case ARM::tMOVCCr_pseudo: {
   6214     // To "insert" a SELECT_CC instruction, we actually have to insert the
   6215     // diamond control-flow pattern.  The incoming instruction knows the
   6216     // destination vreg to set, the condition code register to branch on, the
   6217     // true/false values to select between, and a branch opcode to use.
   6218     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6219     MachineFunction::iterator It = BB;
   6220     ++It;
   6221 
   6222     //  thisMBB:
   6223     //  ...
   6224     //   TrueVal = ...
   6225     //   cmpTY ccX, r1, r2
   6226     //   bCC copy1MBB
   6227     //   fallthrough --> copy0MBB
   6228     MachineBasicBlock *thisMBB  = BB;
   6229     MachineFunction *F = BB->getParent();
   6230     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   6231     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   6232     F->insert(It, copy0MBB);
   6233     F->insert(It, sinkMBB);
   6234 
   6235     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6236     sinkMBB->splice(sinkMBB->begin(), BB,
   6237                     llvm::next(MachineBasicBlock::iterator(MI)),
   6238                     BB->end());
   6239     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   6240 
   6241     BB->addSuccessor(copy0MBB);
   6242     BB->addSuccessor(sinkMBB);
   6243 
   6244     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
   6245       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
   6246 
   6247     //  copy0MBB:
   6248     //   %FalseValue = ...
   6249     //   # fallthrough to sinkMBB
   6250     BB = copy0MBB;
   6251 
   6252     // Update machine-CFG edges
   6253     BB->addSuccessor(sinkMBB);
   6254 
   6255     //  sinkMBB:
   6256     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   6257     //  ...
   6258     BB = sinkMBB;
   6259     BuildMI(*BB, BB->begin(), dl,
   6260             TII->get(ARM::PHI), MI->getOperand(0).getReg())
   6261       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   6262       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   6263 
   6264     MI->eraseFromParent();   // The pseudo instruction is gone now.
   6265     return BB;
   6266   }
   6267 
   6268   case ARM::BCCi64:
   6269   case ARM::BCCZi64: {
   6270     // If there is an unconditional branch to the other successor, remove it.
   6271     BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
   6272 
   6273     // Compare both parts that make up the double comparison separately for
   6274     // equality.
   6275     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
   6276 
   6277     unsigned LHS1 = MI->getOperand(1).getReg();
   6278     unsigned LHS2 = MI->getOperand(2).getReg();
   6279     if (RHSisZero) {
   6280       AddDefaultPred(BuildMI(BB, dl,
   6281                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6282                      .addReg(LHS1).addImm(0));
   6283       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   6284         .addReg(LHS2).addImm(0)
   6285         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6286     } else {
   6287       unsigned RHS1 = MI->getOperand(3).getReg();
   6288       unsigned RHS2 = MI->getOperand(4).getReg();
   6289       AddDefaultPred(BuildMI(BB, dl,
   6290                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   6291                      .addReg(LHS1).addReg(RHS1));
   6292       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   6293         .addReg(LHS2).addReg(RHS2)
   6294         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6295     }
   6296 
   6297     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
   6298     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   6299     if (MI->getOperand(0).getImm() == ARMCC::NE)
   6300       std::swap(destMBB, exitMBB);
   6301 
   6302     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   6303       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   6304     if (isThumb2)
   6305       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   6306     else
   6307       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   6308 
   6309     MI->eraseFromParent();   // The pseudo instruction is gone now.
   6310     return BB;
   6311   }
   6312 
   6313   case ARM::Int_eh_sjlj_setjmp:
   6314   case ARM::Int_eh_sjlj_setjmp_nofp:
   6315   case ARM::tInt_eh_sjlj_setjmp:
   6316   case ARM::t2Int_eh_sjlj_setjmp:
   6317   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   6318     EmitSjLjDispatchBlock(MI, BB);
   6319     return BB;
   6320 
   6321   case ARM::ABS:
   6322   case ARM::t2ABS: {
   6323     // To insert an ABS instruction, we have to insert the
   6324     // diamond control-flow pattern.  The incoming instruction knows the
   6325     // source vreg to test against 0, the destination vreg to set,
   6326     // the condition code register to branch on, the
   6327     // true/false values to select between, and a branch opcode to use.
   6328     // It transforms
   6329     //     V1 = ABS V0
   6330     // into
   6331     //     V2 = MOVS V0
   6332     //     BCC                      (branch to SinkBB if V0 >= 0)
   6333     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   6334     //     SinkBB: V1 = PHI(V2, V3)
   6335     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   6336     MachineFunction::iterator BBI = BB;
   6337     ++BBI;
   6338     MachineFunction *Fn = BB->getParent();
   6339     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   6340     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   6341     Fn->insert(BBI, RSBBB);
   6342     Fn->insert(BBI, SinkBB);
   6343 
   6344     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
   6345     unsigned int ABSDstReg = MI->getOperand(0).getReg();
   6346     bool isThumb2 = Subtarget->isThumb2();
   6347     MachineRegisterInfo &MRI = Fn->getRegInfo();
   6348     // In Thumb mode S must not be specified if source register is the SP or
   6349     // PC and if destination register is the SP, so restrict register class
   6350     unsigned NewMovDstReg = MRI.createVirtualRegister(
   6351       isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
   6352     unsigned NewRsbDstReg = MRI.createVirtualRegister(
   6353       isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
   6354 
   6355     // Transfer the remainder of BB and its successor edges to sinkMBB.
   6356     SinkBB->splice(SinkBB->begin(), BB,
   6357       llvm::next(MachineBasicBlock::iterator(MI)),
   6358       BB->end());
   6359     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   6360 
   6361     BB->addSuccessor(RSBBB);
   6362     BB->addSuccessor(SinkBB);
   6363 
   6364     // fall through to SinkMBB
   6365     RSBBB->addSuccessor(SinkBB);
   6366 
   6367     // insert a movs at the end of BB
   6368     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
   6369       NewMovDstReg)
   6370       .addReg(ABSSrcReg, RegState::Kill)
   6371       .addImm((unsigned)ARMCC::AL).addReg(0)
   6372       .addReg(ARM::CPSR, RegState::Define);
   6373 
   6374     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   6375     BuildMI(BB, dl,
   6376       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   6377       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   6378 
   6379     // insert rsbri in RSBBB
   6380     // Note: BCC and rsbri will be converted into predicated rsbmi
   6381     // by if-conversion pass
   6382     BuildMI(*RSBBB, RSBBB->begin(), dl,
   6383       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   6384       .addReg(NewMovDstReg, RegState::Kill)
   6385       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   6386 
   6387     // insert PHI in SinkBB,
   6388     // reuse ABSDstReg to not change uses of ABS instruction
   6389     BuildMI(*SinkBB, SinkBB->begin(), dl,
   6390       TII->get(ARM::PHI), ABSDstReg)
   6391       .addReg(NewRsbDstReg).addMBB(RSBBB)
   6392       .addReg(NewMovDstReg).addMBB(BB);
   6393 
   6394     // remove ABS instruction
   6395     MI->eraseFromParent();
   6396 
   6397     // return last added BB
   6398     return SinkBB;
   6399   }
   6400   }
   6401 }
   6402 
   6403 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
   6404                                                       SDNode *Node) const {
   6405   const MCInstrDesc *MCID = &MI->getDesc();
   6406   if (!MCID->hasPostISelHook()) {
   6407     assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
   6408            "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
   6409     return;
   6410   }
   6411 
   6412   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   6413   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   6414   // operand is still set to noreg. If needed, set the optional operand's
   6415   // register to CPSR, and remove the redundant implicit def.
   6416   //
   6417   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   6418 
   6419   // Rename pseudo opcodes.
   6420   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
   6421   if (NewOpc) {
   6422     const ARMBaseInstrInfo *TII =
   6423       static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
   6424     MCID = &TII->get(NewOpc);
   6425 
   6426     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
   6427            "converted opcode should be the same except for cc_out");
   6428 
   6429     MI->setDesc(*MCID);
   6430 
   6431     // Add the optional cc_out operand
   6432     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   6433   }
   6434   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   6435 
   6436   // Any ARM instruction that sets the 's' bit should specify an optional
   6437   // "cc_out" operand in the last operand position.
   6438   if (!MCID->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   6439     assert(!NewOpc && "Optional cc_out operand required");
   6440     return;
   6441   }
   6442   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   6443   // since we already have an optional CPSR def.
   6444   bool definesCPSR = false;
   6445   bool deadCPSR = false;
   6446   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
   6447        i != e; ++i) {
   6448     const MachineOperand &MO = MI->getOperand(i);
   6449     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   6450       definesCPSR = true;
   6451       if (MO.isDead())
   6452         deadCPSR = true;
   6453       MI->RemoveOperand(i);
   6454       break;
   6455     }
   6456   }
   6457   if (!definesCPSR) {
   6458     assert(!NewOpc && "Optional cc_out operand required");
   6459     return;
   6460   }
   6461   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   6462   if (deadCPSR) {
   6463     assert(!MI->getOperand(ccOutIdx).getReg() &&
   6464            "expect uninitialized optional cc_out operand");
   6465     return;
   6466   }
   6467 
   6468   // If this instruction was defined with an optional CPSR def and its dag node
   6469   // had a live implicit CPSR def, then activate the optional CPSR def.
   6470   MachineOperand &MO = MI->getOperand(ccOutIdx);
   6471   MO.setReg(ARM::CPSR);
   6472   MO.setIsDef(true);
   6473 }
   6474 
   6475 //===----------------------------------------------------------------------===//
   6476 //                           ARM Optimization Hooks
   6477 //===----------------------------------------------------------------------===//
   6478 
   6479 static
   6480 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   6481                             TargetLowering::DAGCombinerInfo &DCI) {
   6482   SelectionDAG &DAG = DCI.DAG;
   6483   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6484   EVT VT = N->getValueType(0);
   6485   unsigned Opc = N->getOpcode();
   6486   bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
   6487   SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
   6488   SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
   6489   ISD::CondCode CC = ISD::SETCC_INVALID;
   6490 
   6491   if (isSlctCC) {
   6492     CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
   6493   } else {
   6494     SDValue CCOp = Slct.getOperand(0);
   6495     if (CCOp.getOpcode() == ISD::SETCC)
   6496       CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
   6497   }
   6498 
   6499   bool DoXform = false;
   6500   bool InvCC = false;
   6501   assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
   6502           "Bad input!");
   6503 
   6504   if (LHS.getOpcode() == ISD::Constant &&
   6505       cast<ConstantSDNode>(LHS)->isNullValue()) {
   6506     DoXform = true;
   6507   } else if (CC != ISD::SETCC_INVALID &&
   6508              RHS.getOpcode() == ISD::Constant &&
   6509              cast<ConstantSDNode>(RHS)->isNullValue()) {
   6510     std::swap(LHS, RHS);
   6511     SDValue Op0 = Slct.getOperand(0);
   6512     EVT OpVT = isSlctCC ? Op0.getValueType() :
   6513                           Op0.getOperand(0).getValueType();
   6514     bool isInt = OpVT.isInteger();
   6515     CC = ISD::getSetCCInverse(CC, isInt);
   6516 
   6517     if (!TLI.isCondCodeLegal(CC, OpVT))
   6518       return SDValue();         // Inverse operator isn't legal.
   6519 
   6520     DoXform = true;
   6521     InvCC = true;
   6522   }
   6523 
   6524   if (DoXform) {
   6525     SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
   6526     if (isSlctCC)
   6527       return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
   6528                              Slct.getOperand(0), Slct.getOperand(1), CC);
   6529     SDValue CCOp = Slct.getOperand(0);
   6530     if (InvCC)
   6531       CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
   6532                           CCOp.getOperand(0), CCOp.getOperand(1), CC);
   6533     return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
   6534                        CCOp, OtherOp, Result);
   6535   }
   6536   return SDValue();
   6537 }
   6538 
   6539 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   6540 // (only after legalization).
   6541 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   6542                                  TargetLowering::DAGCombinerInfo &DCI,
   6543                                  const ARMSubtarget *Subtarget) {
   6544 
   6545   // Only perform optimization if after legalize, and if NEON is available. We
   6546   // also expected both operands to be BUILD_VECTORs.
   6547   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   6548       || N0.getOpcode() != ISD::BUILD_VECTOR
   6549       || N1.getOpcode() != ISD::BUILD_VECTOR)
   6550     return SDValue();
   6551 
   6552   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   6553   EVT VT = N->getValueType(0);
   6554   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   6555     return SDValue();
   6556 
   6557   // Check that the vector operands are of the right form.
   6558   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   6559   // operands, where N is the size of the formed vector.
   6560   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   6561   // index such that we have a pair wise add pattern.
   6562 
   6563   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   6564   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   6565     return SDValue();
   6566   SDValue Vec = N0->getOperand(0)->getOperand(0);
   6567   SDNode *V = Vec.getNode();
   6568   unsigned nextIndex = 0;
   6569 
   6570   // For each operands to the ADD which are BUILD_VECTORs,
   6571   // check to see if each of their operands are an EXTRACT_VECTOR with
   6572   // the same vector and appropriate index.
   6573   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   6574     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   6575         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   6576 
   6577       SDValue ExtVec0 = N0->getOperand(i);
   6578       SDValue ExtVec1 = N1->getOperand(i);
   6579 
   6580       // First operand is the vector, verify its the same.
   6581       if (V != ExtVec0->getOperand(0).getNode() ||
   6582           V != ExtVec1->getOperand(0).getNode())
   6583         return SDValue();
   6584 
   6585       // Second is the constant, verify its correct.
   6586       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   6587       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   6588 
   6589       // For the constant, we want to see all the even or all the odd.
   6590       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   6591           || C1->getZExtValue() != nextIndex+1)
   6592         return SDValue();
   6593 
   6594       // Increment index.
   6595       nextIndex+=2;
   6596     } else
   6597       return SDValue();
   6598   }
   6599 
   6600   // Create VPADDL node.
   6601   SelectionDAG &DAG = DCI.DAG;
   6602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6603 
   6604   // Build operand list.
   6605   SmallVector<SDValue, 8> Ops;
   6606   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
   6607                                 TLI.getPointerTy()));
   6608 
   6609   // Input is the vector.
   6610   Ops.push_back(Vec);
   6611 
   6612   // Get widened type and narrowed type.
   6613   MVT widenType;
   6614   unsigned numElem = VT.getVectorNumElements();
   6615   switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
   6616     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   6617     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   6618     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   6619     default:
   6620       assert(0 && "Invalid vector element type for padd optimization.");
   6621   }
   6622 
   6623   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   6624                             widenType, &Ops[0], Ops.size());
   6625   return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
   6626 }
   6627 
   6628 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   6629 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   6630 /// called with the default operands, and if that fails, with commuted
   6631 /// operands.
   6632 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   6633                                           TargetLowering::DAGCombinerInfo &DCI,
   6634                                           const ARMSubtarget *Subtarget){
   6635 
   6636   // Attempt to create vpaddl for this add.
   6637   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
   6638   if (Result.getNode())
   6639     return Result;
   6640 
   6641   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   6642   if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
   6643     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
   6644     if (Result.getNode()) return Result;
   6645   }
   6646   return SDValue();
   6647 }
   6648 
   6649 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   6650 ///
   6651 static SDValue PerformADDCombine(SDNode *N,
   6652                                  TargetLowering::DAGCombinerInfo &DCI,
   6653                                  const ARMSubtarget *Subtarget) {
   6654   SDValue N0 = N->getOperand(0);
   6655   SDValue N1 = N->getOperand(1);
   6656 
   6657   // First try with the default operand order.
   6658   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
   6659   if (Result.getNode())
   6660     return Result;
   6661 
   6662   // If that didn't work, try again with the operands commuted.
   6663   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   6664 }
   6665 
   6666 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   6667 ///
   6668 static SDValue PerformSUBCombine(SDNode *N,
   6669                                  TargetLowering::DAGCombinerInfo &DCI) {
   6670   SDValue N0 = N->getOperand(0);
   6671   SDValue N1 = N->getOperand(1);
   6672 
   6673   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   6674   if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
   6675     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
   6676     if (Result.getNode()) return Result;
   6677   }
   6678 
   6679   return SDValue();
   6680 }
   6681 
   6682 /// PerformVMULCombine
   6683 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   6684 /// special multiplier accumulator forwarding.
   6685 ///   vmul d3, d0, d2
   6686 ///   vmla d3, d1, d2
   6687 /// is faster than
   6688 ///   vadd d3, d0, d1
   6689 ///   vmul d3, d3, d2
   6690 static SDValue PerformVMULCombine(SDNode *N,
   6691                                   TargetLowering::DAGCombinerInfo &DCI,
   6692                                   const ARMSubtarget *Subtarget) {
   6693   if (!Subtarget->hasVMLxForwarding())
   6694     return SDValue();
   6695 
   6696   SelectionDAG &DAG = DCI.DAG;
   6697   SDValue N0 = N->getOperand(0);
   6698   SDValue N1 = N->getOperand(1);
   6699   unsigned Opcode = N0.getOpcode();
   6700   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   6701       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   6702     Opcode = N1.getOpcode();
   6703     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   6704         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   6705       return SDValue();
   6706     std::swap(N0, N1);
   6707   }
   6708 
   6709   EVT VT = N->getValueType(0);
   6710   DebugLoc DL = N->getDebugLoc();
   6711   SDValue N00 = N0->getOperand(0);
   6712   SDValue N01 = N0->getOperand(1);
   6713   return DAG.getNode(Opcode, DL, VT,
   6714                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   6715                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   6716 }
   6717 
   6718 static SDValue PerformMULCombine(SDNode *N,
   6719                                  TargetLowering::DAGCombinerInfo &DCI,
   6720                                  const ARMSubtarget *Subtarget) {
   6721   SelectionDAG &DAG = DCI.DAG;
   6722 
   6723   if (Subtarget->isThumb1Only())
   6724     return SDValue();
   6725 
   6726   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   6727     return SDValue();
   6728 
   6729   EVT VT = N->getValueType(0);
   6730   if (VT.is64BitVector() || VT.is128BitVector())
   6731     return PerformVMULCombine(N, DCI, Subtarget);
   6732   if (VT != MVT::i32)
   6733     return SDValue();
   6734 
   6735   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   6736   if (!C)
   6737     return SDValue();
   6738 
   6739   uint64_t MulAmt = C->getZExtValue();
   6740   unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
   6741   ShiftAmt = ShiftAmt & (32 - 1);
   6742   SDValue V = N->getOperand(0);
   6743   DebugLoc DL = N->getDebugLoc();
   6744 
   6745   SDValue Res;
   6746   MulAmt >>= ShiftAmt;
   6747   if (isPowerOf2_32(MulAmt - 1)) {
   6748     // (mul x, 2^N + 1) => (add (shl x, N), x)
   6749     Res = DAG.getNode(ISD::ADD, DL, VT,
   6750                       V, DAG.getNode(ISD::SHL, DL, VT,
   6751                                      V, DAG.getConstant(Log2_32(MulAmt-1),
   6752                                                         MVT::i32)));
   6753   } else if (isPowerOf2_32(MulAmt + 1)) {
   6754     // (mul x, 2^N - 1) => (sub (shl x, N), x)
   6755     Res = DAG.getNode(ISD::SUB, DL, VT,
   6756                       DAG.getNode(ISD::SHL, DL, VT,
   6757                                   V, DAG.getConstant(Log2_32(MulAmt+1),
   6758                                                      MVT::i32)),
   6759                                                      V);
   6760   } else
   6761     return SDValue();
   6762 
   6763   if (ShiftAmt != 0)
   6764     Res = DAG.getNode(ISD::SHL, DL, VT, Res,
   6765                       DAG.getConstant(ShiftAmt, MVT::i32));
   6766 
   6767   // Do not add new nodes to DAG combiner worklist.
   6768   DCI.CombineTo(N, Res, false);
   6769   return SDValue();
   6770 }
   6771 
   6772 static SDValue PerformANDCombine(SDNode *N,
   6773                                 TargetLowering::DAGCombinerInfo &DCI) {
   6774 
   6775   // Attempt to use immediate-form VBIC
   6776   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   6777   DebugLoc dl = N->getDebugLoc();
   6778   EVT VT = N->getValueType(0);
   6779   SelectionDAG &DAG = DCI.DAG;
   6780 
   6781   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   6782     return SDValue();
   6783 
   6784   APInt SplatBits, SplatUndef;
   6785   unsigned SplatBitSize;
   6786   bool HasAnyUndefs;
   6787   if (BVN &&
   6788       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   6789     if (SplatBitSize <= 64) {
   6790       EVT VbicVT;
   6791       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   6792                                       SplatUndef.getZExtValue(), SplatBitSize,
   6793                                       DAG, VbicVT, VT.is128BitVector(),
   6794                                       OtherModImm);
   6795       if (Val.getNode()) {
   6796         SDValue Input =
   6797           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   6798         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   6799         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   6800       }
   6801     }
   6802   }
   6803 
   6804   return SDValue();
   6805 }
   6806 
   6807 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   6808 static SDValue PerformORCombine(SDNode *N,
   6809                                 TargetLowering::DAGCombinerInfo &DCI,
   6810                                 const ARMSubtarget *Subtarget) {
   6811   // Attempt to use immediate-form VORR
   6812   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   6813   DebugLoc dl = N->getDebugLoc();
   6814   EVT VT = N->getValueType(0);
   6815   SelectionDAG &DAG = DCI.DAG;
   6816 
   6817   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   6818     return SDValue();
   6819 
   6820   APInt SplatBits, SplatUndef;
   6821   unsigned SplatBitSize;
   6822   bool HasAnyUndefs;
   6823   if (BVN && Subtarget->hasNEON() &&
   6824       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   6825     if (SplatBitSize <= 64) {
   6826       EVT VorrVT;
   6827       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   6828                                       SplatUndef.getZExtValue(), SplatBitSize,
   6829                                       DAG, VorrVT, VT.is128BitVector(),
   6830                                       OtherModImm);
   6831       if (Val.getNode()) {
   6832         SDValue Input =
   6833           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   6834         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   6835         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   6836       }
   6837     }
   6838   }
   6839 
   6840   SDValue N0 = N->getOperand(0);
   6841   if (N0.getOpcode() != ISD::AND)
   6842     return SDValue();
   6843   SDValue N1 = N->getOperand(1);
   6844 
   6845   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   6846   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   6847       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   6848     APInt SplatUndef;
   6849     unsigned SplatBitSize;
   6850     bool HasAnyUndefs;
   6851 
   6852     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   6853     APInt SplatBits0;
   6854     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   6855                                   HasAnyUndefs) && !HasAnyUndefs) {
   6856       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   6857       APInt SplatBits1;
   6858       if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   6859                                     HasAnyUndefs) && !HasAnyUndefs &&
   6860           SplatBits0 == ~SplatBits1) {
   6861         // Canonicalize the vector type to make instruction selection simpler.
   6862         EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   6863         SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   6864                                      N0->getOperand(1), N0->getOperand(0),
   6865                                      N1->getOperand(0));
   6866         return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   6867       }
   6868     }
   6869   }
   6870 
   6871   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   6872   // reasonable.
   6873 
   6874   // BFI is only available on V6T2+
   6875   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   6876     return SDValue();
   6877 
   6878   DebugLoc DL = N->getDebugLoc();
   6879   // 1) or (and A, mask), val => ARMbfi A, val, mask
   6880   //      iff (val & mask) == val
   6881   //
   6882   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   6883   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   6884   //          && mask == ~mask2
   6885   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   6886   //          && ~mask == mask2
   6887   //  (i.e., copy a bitfield value into another bitfield of the same width)
   6888 
   6889   if (VT != MVT::i32)
   6890     return SDValue();
   6891 
   6892   SDValue N00 = N0.getOperand(0);
   6893 
   6894   // The value and the mask need to be constants so we can verify this is
   6895   // actually a bitfield set. If the mask is 0xffff, we can do better
   6896   // via a movt instruction, so don't use BFI in that case.
   6897   SDValue MaskOp = N0.getOperand(1);
   6898   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   6899   if (!MaskC)
   6900     return SDValue();
   6901   unsigned Mask = MaskC->getZExtValue();
   6902   if (Mask == 0xffff)
   6903     return SDValue();
   6904   SDValue Res;
   6905   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   6906   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   6907   if (N1C) {
   6908     unsigned Val = N1C->getZExtValue();
   6909     if ((Val & ~Mask) != Val)
   6910       return SDValue();
   6911 
   6912     if (ARM::isBitFieldInvertedMask(Mask)) {
   6913       Val >>= CountTrailingZeros_32(~Mask);
   6914 
   6915       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   6916                         DAG.getConstant(Val, MVT::i32),
   6917                         DAG.getConstant(Mask, MVT::i32));
   6918 
   6919       // Do not add new nodes to DAG combiner worklist.
   6920       DCI.CombineTo(N, Res, false);
   6921       return SDValue();
   6922     }
   6923   } else if (N1.getOpcode() == ISD::AND) {
   6924     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   6925     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   6926     if (!N11C)
   6927       return SDValue();
   6928     unsigned Mask2 = N11C->getZExtValue();
   6929 
   6930     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   6931     // as is to match.
   6932     if (ARM::isBitFieldInvertedMask(Mask) &&
   6933         (Mask == ~Mask2)) {
   6934       // The pack halfword instruction works better for masks that fit it,
   6935       // so use that when it's available.
   6936       if (Subtarget->hasT2ExtractPack() &&
   6937           (Mask == 0xffff || Mask == 0xffff0000))
   6938         return SDValue();
   6939       // 2a
   6940       unsigned amt = CountTrailingZeros_32(Mask2);
   6941       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   6942                         DAG.getConstant(amt, MVT::i32));
   6943       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   6944                         DAG.getConstant(Mask, MVT::i32));
   6945       // Do not add new nodes to DAG combiner worklist.
   6946       DCI.CombineTo(N, Res, false);
   6947       return SDValue();
   6948     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   6949                (~Mask == Mask2)) {
   6950       // The pack halfword instruction works better for masks that fit it,
   6951       // so use that when it's available.
   6952       if (Subtarget->hasT2ExtractPack() &&
   6953           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   6954         return SDValue();
   6955       // 2b
   6956       unsigned lsb = CountTrailingZeros_32(Mask);
   6957       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   6958                         DAG.getConstant(lsb, MVT::i32));
   6959       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   6960                         DAG.getConstant(Mask2, MVT::i32));
   6961       // Do not add new nodes to DAG combiner worklist.
   6962       DCI.CombineTo(N, Res, false);
   6963       return SDValue();
   6964     }
   6965   }
   6966 
   6967   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   6968       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   6969       ARM::isBitFieldInvertedMask(~Mask)) {
   6970     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   6971     // where lsb(mask) == #shamt and masked bits of B are known zero.
   6972     SDValue ShAmt = N00.getOperand(1);
   6973     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   6974     unsigned LSB = CountTrailingZeros_32(Mask);
   6975     if (ShAmtC != LSB)
   6976       return SDValue();
   6977 
   6978     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   6979                       DAG.getConstant(~Mask, MVT::i32));
   6980 
   6981     // Do not add new nodes to DAG combiner worklist.
   6982     DCI.CombineTo(N, Res, false);
   6983   }
   6984 
   6985   return SDValue();
   6986 }
   6987 
   6988 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   6989 /// the bits being cleared by the AND are not demanded by the BFI.
   6990 static SDValue PerformBFICombine(SDNode *N,
   6991                                  TargetLowering::DAGCombinerInfo &DCI) {
   6992   SDValue N1 = N->getOperand(1);
   6993   if (N1.getOpcode() == ISD::AND) {
   6994     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   6995     if (!N11C)
   6996       return SDValue();
   6997     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   6998     unsigned LSB = CountTrailingZeros_32(~InvMask);
   6999     unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
   7000     unsigned Mask = (1 << Width)-1;
   7001     unsigned Mask2 = N11C->getZExtValue();
   7002     if ((Mask & (~Mask2)) == 0)
   7003       return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
   7004                              N->getOperand(0), N1.getOperand(0),
   7005                              N->getOperand(2));
   7006   }
   7007   return SDValue();
   7008 }
   7009 
   7010 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   7011 /// ARMISD::VMOVRRD.
   7012 static SDValue PerformVMOVRRDCombine(SDNode *N,
   7013                                      TargetLowering::DAGCombinerInfo &DCI) {
   7014   // vmovrrd(vmovdrr x, y) -> x,y
   7015   SDValue InDouble = N->getOperand(0);
   7016   if (InDouble.getOpcode() == ARMISD::VMOVDRR)
   7017     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   7018 
   7019   // vmovrrd(load f64) -> (load i32), (load i32)
   7020   SDNode *InNode = InDouble.getNode();
   7021   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   7022       InNode->getValueType(0) == MVT::f64 &&
   7023       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   7024       !cast<LoadSDNode>(InNode)->isVolatile()) {
   7025     // TODO: Should this be done for non-FrameIndex operands?
   7026     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   7027 
   7028     SelectionDAG &DAG = DCI.DAG;
   7029     DebugLoc DL = LD->getDebugLoc();
   7030     SDValue BasePtr = LD->getBasePtr();
   7031     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   7032                                  LD->getPointerInfo(), LD->isVolatile(),
   7033                                  LD->isNonTemporal(), LD->getAlignment());
   7034 
   7035     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   7036                                     DAG.getConstant(4, MVT::i32));
   7037     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   7038                                  LD->getPointerInfo(), LD->isVolatile(),
   7039                                  LD->isNonTemporal(),
   7040                                  std::min(4U, LD->getAlignment() / 2));
   7041 
   7042     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   7043     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   7044     DCI.RemoveFromWorklist(LD);
   7045     DAG.DeleteNode(LD);
   7046     return Result;
   7047   }
   7048 
   7049   return SDValue();
   7050 }
   7051 
   7052 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   7053 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   7054 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   7055   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   7056   SDValue Op0 = N->getOperand(0);
   7057   SDValue Op1 = N->getOperand(1);
   7058   if (Op0.getOpcode() == ISD::BITCAST)
   7059     Op0 = Op0.getOperand(0);
   7060   if (Op1.getOpcode() == ISD::BITCAST)
   7061     Op1 = Op1.getOperand(0);
   7062   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   7063       Op0.getNode() == Op1.getNode() &&
   7064       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   7065     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
   7066                        N->getValueType(0), Op0.getOperand(0));
   7067   return SDValue();
   7068 }
   7069 
   7070 /// PerformSTORECombine - Target-specific dag combine xforms for
   7071 /// ISD::STORE.
   7072 static SDValue PerformSTORECombine(SDNode *N,
   7073                                    TargetLowering::DAGCombinerInfo &DCI) {
   7074   // Bitcast an i64 store extracted from a vector to f64.
   7075   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   7076   StoreSDNode *St = cast<StoreSDNode>(N);
   7077   SDValue StVal = St->getValue();
   7078   if (!ISD::isNormalStore(St) || St->isVolatile())
   7079     return SDValue();
   7080 
   7081   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   7082       StVal.getNode()->hasOneUse() && !St->isVolatile()) {
   7083     SelectionDAG  &DAG = DCI.DAG;
   7084     DebugLoc DL = St->getDebugLoc();
   7085     SDValue BasePtr = St->getBasePtr();
   7086     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   7087                                   StVal.getNode()->getOperand(0), BasePtr,
   7088                                   St->getPointerInfo(), St->isVolatile(),
   7089                                   St->isNonTemporal(), St->getAlignment());
   7090 
   7091     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   7092                                     DAG.getConstant(4, MVT::i32));
   7093     return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
   7094                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   7095                         St->isNonTemporal(),
   7096                         std::min(4U, St->getAlignment() / 2));
   7097   }
   7098 
   7099   if (StVal.getValueType() != MVT::i64 ||
   7100       StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7101     return SDValue();
   7102 
   7103   SelectionDAG &DAG = DCI.DAG;
   7104   DebugLoc dl = StVal.getDebugLoc();
   7105   SDValue IntVec = StVal.getOperand(0);
   7106   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   7107                                  IntVec.getValueType().getVectorNumElements());
   7108   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   7109   SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7110                                Vec, StVal.getOperand(1));
   7111   dl = N->getDebugLoc();
   7112   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   7113   // Make the DAGCombiner fold the bitcasts.
   7114   DCI.AddToWorklist(Vec.getNode());
   7115   DCI.AddToWorklist(ExtElt.getNode());
   7116   DCI.AddToWorklist(V.getNode());
   7117   return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   7118                       St->getPointerInfo(), St->isVolatile(),
   7119                       St->isNonTemporal(), St->getAlignment(),
   7120                       St->getTBAAInfo());
   7121 }
   7122 
   7123 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   7124 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   7125 /// i64 vector to have f64 elements, since the value can then be loaded
   7126 /// directly into a VFP register.
   7127 static bool hasNormalLoadOperand(SDNode *N) {
   7128   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   7129   for (unsigned i = 0; i < NumElts; ++i) {
   7130     SDNode *Elt = N->getOperand(i).getNode();
   7131     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   7132       return true;
   7133   }
   7134   return false;
   7135 }
   7136 
   7137 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   7138 /// ISD::BUILD_VECTOR.
   7139 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   7140                                           TargetLowering::DAGCombinerInfo &DCI){
   7141   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   7142   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   7143   // into a pair of GPRs, which is fine when the value is used as a scalar,
   7144   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   7145   SelectionDAG &DAG = DCI.DAG;
   7146   if (N->getNumOperands() == 2) {
   7147     SDValue RV = PerformVMOVDRRCombine(N, DAG);
   7148     if (RV.getNode())
   7149       return RV;
   7150   }
   7151 
   7152   // Load i64 elements as f64 values so that type legalization does not split
   7153   // them up into i32 values.
   7154   EVT VT = N->getValueType(0);
   7155   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   7156     return SDValue();
   7157   DebugLoc dl = N->getDebugLoc();
   7158   SmallVector<SDValue, 8> Ops;
   7159   unsigned NumElts = VT.getVectorNumElements();
   7160   for (unsigned i = 0; i < NumElts; ++i) {
   7161     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   7162     Ops.push_back(V);
   7163     // Make the DAGCombiner fold the bitcast.
   7164     DCI.AddToWorklist(V.getNode());
   7165   }
   7166   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   7167   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
   7168   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   7169 }
   7170 
   7171 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   7172 /// ISD::INSERT_VECTOR_ELT.
   7173 static SDValue PerformInsertEltCombine(SDNode *N,
   7174                                        TargetLowering::DAGCombinerInfo &DCI) {
   7175   // Bitcast an i64 load inserted into a vector to f64.
   7176   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   7177   EVT VT = N->getValueType(0);
   7178   SDNode *Elt = N->getOperand(1).getNode();
   7179   if (VT.getVectorElementType() != MVT::i64 ||
   7180       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   7181     return SDValue();
   7182 
   7183   SelectionDAG &DAG = DCI.DAG;
   7184   DebugLoc dl = N->getDebugLoc();
   7185   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   7186                                  VT.getVectorNumElements());
   7187   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   7188   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   7189   // Make the DAGCombiner fold the bitcasts.
   7190   DCI.AddToWorklist(Vec.getNode());
   7191   DCI.AddToWorklist(V.getNode());
   7192   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   7193                                Vec, V, N->getOperand(2));
   7194   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   7195 }
   7196 
   7197 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   7198 /// ISD::VECTOR_SHUFFLE.
   7199 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   7200   // The LLVM shufflevector instruction does not require the shuffle mask
   7201   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   7202   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   7203   // operands do not match the mask length, they are extended by concatenating
   7204   // them with undef vectors.  That is probably the right thing for other
   7205   // targets, but for NEON it is better to concatenate two double-register
   7206   // size vector operands into a single quad-register size vector.  Do that
   7207   // transformation here:
   7208   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   7209   //   shuffle(concat(v1, v2), undef)
   7210   SDValue Op0 = N->getOperand(0);
   7211   SDValue Op1 = N->getOperand(1);
   7212   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   7213       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   7214       Op0.getNumOperands() != 2 ||
   7215       Op1.getNumOperands() != 2)
   7216     return SDValue();
   7217   SDValue Concat0Op1 = Op0.getOperand(1);
   7218   SDValue Concat1Op1 = Op1.getOperand(1);
   7219   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
   7220       Concat1Op1.getOpcode() != ISD::UNDEF)
   7221     return SDValue();
   7222   // Skip the transformation if any of the types are illegal.
   7223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7224   EVT VT = N->getValueType(0);
   7225   if (!TLI.isTypeLegal(VT) ||
   7226       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   7227       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   7228     return SDValue();
   7229 
   7230   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
   7231                                   Op0.getOperand(0), Op1.getOperand(0));
   7232   // Translate the shuffle mask.
   7233   SmallVector<int, 16> NewMask;
   7234   unsigned NumElts = VT.getVectorNumElements();
   7235   unsigned HalfElts = NumElts/2;
   7236   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   7237   for (unsigned n = 0; n < NumElts; ++n) {
   7238     int MaskElt = SVN->getMaskElt(n);
   7239     int NewElt = -1;
   7240     if (MaskElt < (int)HalfElts)
   7241       NewElt = MaskElt;
   7242     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   7243       NewElt = HalfElts + MaskElt - NumElts;
   7244     NewMask.push_back(NewElt);
   7245   }
   7246   return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
   7247                               DAG.getUNDEF(VT), NewMask.data());
   7248 }
   7249 
   7250 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
   7251 /// NEON load/store intrinsics to merge base address updates.
   7252 static SDValue CombineBaseUpdate(SDNode *N,
   7253                                  TargetLowering::DAGCombinerInfo &DCI) {
   7254   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   7255     return SDValue();
   7256 
   7257   SelectionDAG &DAG = DCI.DAG;
   7258   bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   7259                       N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   7260   unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
   7261   SDValue Addr = N->getOperand(AddrOpIdx);
   7262 
   7263   // Search for a use of the address operand that is an increment.
   7264   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   7265          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   7266     SDNode *User = *UI;
   7267     if (User->getOpcode() != ISD::ADD ||
   7268         UI.getUse().getResNo() != Addr.getResNo())
   7269       continue;
   7270 
   7271     // Check that the add is independent of the load/store.  Otherwise, folding
   7272     // it would create a cycle.
   7273     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   7274       continue;
   7275 
   7276     // Find the new opcode for the updating load/store.
   7277     bool isLoad = true;
   7278     bool isLaneOp = false;
   7279     unsigned NewOpc = 0;
   7280     unsigned NumVecs = 0;
   7281     if (isIntrinsic) {
   7282       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   7283       switch (IntNo) {
   7284       default: assert(0 && "unexpected intrinsic for Neon base update");
   7285       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   7286         NumVecs = 1; break;
   7287       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   7288         NumVecs = 2; break;
   7289       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   7290         NumVecs = 3; break;
   7291       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   7292         NumVecs = 4; break;
   7293       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   7294         NumVecs = 2; isLaneOp = true; break;
   7295       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   7296         NumVecs = 3; isLaneOp = true; break;
   7297       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   7298         NumVecs = 4; isLaneOp = true; break;
   7299       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   7300         NumVecs = 1; isLoad = false; break;
   7301       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   7302         NumVecs = 2; isLoad = false; break;
   7303       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   7304         NumVecs = 3; isLoad = false; break;
   7305       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   7306         NumVecs = 4; isLoad = false; break;
   7307       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   7308         NumVecs = 2; isLoad = false; isLaneOp = true; break;
   7309       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   7310         NumVecs = 3; isLoad = false; isLaneOp = true; break;
   7311       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   7312         NumVecs = 4; isLoad = false; isLaneOp = true; break;
   7313       }
   7314     } else {
   7315       isLaneOp = true;
   7316       switch (N->getOpcode()) {
   7317       default: assert(0 && "unexpected opcode for Neon base update");
   7318       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   7319       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   7320       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   7321       }
   7322     }
   7323 
   7324     // Find the size of memory referenced by the load/store.
   7325     EVT VecTy;
   7326     if (isLoad)
   7327       VecTy = N->getValueType(0);
   7328     else
   7329       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   7330     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   7331     if (isLaneOp)
   7332       NumBytes /= VecTy.getVectorNumElements();
   7333 
   7334     // If the increment is a constant, it must match the memory ref size.
   7335     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   7336     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   7337       uint64_t IncVal = CInc->getZExtValue();
   7338       if (IncVal != NumBytes)
   7339         continue;
   7340     } else if (NumBytes >= 3 * 16) {
   7341       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   7342       // separate instructions that make it harder to use a non-constant update.
   7343       continue;
   7344     }
   7345 
   7346     // Create the new updating load/store node.
   7347     EVT Tys[6];
   7348     unsigned NumResultVecs = (isLoad ? NumVecs : 0);
   7349     unsigned n;
   7350     for (n = 0; n < NumResultVecs; ++n)
   7351       Tys[n] = VecTy;
   7352     Tys[n++] = MVT::i32;
   7353     Tys[n] = MVT::Other;
   7354     SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
   7355     SmallVector<SDValue, 8> Ops;
   7356     Ops.push_back(N->getOperand(0)); // incoming chain
   7357     Ops.push_back(N->getOperand(AddrOpIdx));
   7358     Ops.push_back(Inc);
   7359     for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
   7360       Ops.push_back(N->getOperand(i));
   7361     }
   7362     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
   7363     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
   7364                                            Ops.data(), Ops.size(),
   7365                                            MemInt->getMemoryVT(),
   7366                                            MemInt->getMemOperand());
   7367 
   7368     // Update the uses.
   7369     std::vector<SDValue> NewResults;
   7370     for (unsigned i = 0; i < NumResultVecs; ++i) {
   7371       NewResults.push_back(SDValue(UpdN.getNode(), i));
   7372     }
   7373     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   7374     DCI.CombineTo(N, NewResults);
   7375     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   7376 
   7377     break;
   7378   }
   7379   return SDValue();
   7380 }
   7381 
   7382 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   7383 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   7384 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   7385 /// return true.
   7386 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   7387   SelectionDAG &DAG = DCI.DAG;
   7388   EVT VT = N->getValueType(0);
   7389   // vldN-dup instructions only support 64-bit vectors for N > 1.
   7390   if (!VT.is64BitVector())
   7391     return false;
   7392 
   7393   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   7394   SDNode *VLD = N->getOperand(0).getNode();
   7395   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   7396     return false;
   7397   unsigned NumVecs = 0;
   7398   unsigned NewOpc = 0;
   7399   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   7400   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   7401     NumVecs = 2;
   7402     NewOpc = ARMISD::VLD2DUP;
   7403   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   7404     NumVecs = 3;
   7405     NewOpc = ARMISD::VLD3DUP;
   7406   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   7407     NumVecs = 4;
   7408     NewOpc = ARMISD::VLD4DUP;
   7409   } else {
   7410     return false;
   7411   }
   7412 
   7413   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   7414   // numbers match the load.
   7415   unsigned VLDLaneNo =
   7416     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   7417   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   7418        UI != UE; ++UI) {
   7419     // Ignore uses of the chain result.
   7420     if (UI.getUse().getResNo() == NumVecs)
   7421       continue;
   7422     SDNode *User = *UI;
   7423     if (User->getOpcode() != ARMISD::VDUPLANE ||
   7424         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   7425       return false;
   7426   }
   7427 
   7428   // Create the vldN-dup node.
   7429   EVT Tys[5];
   7430   unsigned n;
   7431   for (n = 0; n < NumVecs; ++n)
   7432     Tys[n] = VT;
   7433   Tys[n] = MVT::Other;
   7434   SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
   7435   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   7436   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   7437   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
   7438                                            Ops, 2, VLDMemInt->getMemoryVT(),
   7439                                            VLDMemInt->getMemOperand());
   7440 
   7441   // Update the uses.
   7442   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   7443        UI != UE; ++UI) {
   7444     unsigned ResNo = UI.getUse().getResNo();
   7445     // Ignore uses of the chain result.
   7446     if (ResNo == NumVecs)
   7447       continue;
   7448     SDNode *User = *UI;
   7449     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   7450   }
   7451 
   7452   // Now the vldN-lane intrinsic is dead except for its chain result.
   7453   // Update uses of the chain.
   7454   std::vector<SDValue> VLDDupResults;
   7455   for (unsigned n = 0; n < NumVecs; ++n)
   7456     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   7457   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   7458   DCI.CombineTo(VLD, VLDDupResults);
   7459 
   7460   return true;
   7461 }
   7462 
   7463 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   7464 /// ARMISD::VDUPLANE.
   7465 static SDValue PerformVDUPLANECombine(SDNode *N,
   7466                                       TargetLowering::DAGCombinerInfo &DCI) {
   7467   SDValue Op = N->getOperand(0);
   7468 
   7469   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   7470   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   7471   if (CombineVLDDUP(N, DCI))
   7472     return SDValue(N, 0);
   7473 
   7474   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   7475   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   7476   while (Op.getOpcode() == ISD::BITCAST)
   7477     Op = Op.getOperand(0);
   7478   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   7479     return SDValue();
   7480 
   7481   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   7482   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   7483   // The canonical VMOV for a zero vector uses a 32-bit element size.
   7484   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   7485   unsigned EltBits;
   7486   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   7487     EltSize = 8;
   7488   EVT VT = N->getValueType(0);
   7489   if (EltSize > VT.getVectorElementType().getSizeInBits())
   7490     return SDValue();
   7491 
   7492   return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   7493 }
   7494 
   7495 // isConstVecPow2 - Return true if each vector element is a power of 2, all
   7496 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
   7497 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
   7498 {
   7499   integerPart cN;
   7500   integerPart c0 = 0;
   7501   for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
   7502        I != E; I++) {
   7503     ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
   7504     if (!C)
   7505       return false;
   7506 
   7507     bool isExact;
   7508     APFloat APF = C->getValueAPF();
   7509     if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
   7510         != APFloat::opOK || !isExact)
   7511       return false;
   7512 
   7513     c0 = (I == 0) ? cN : c0;
   7514     if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
   7515       return false;
   7516   }
   7517   C = c0;
   7518   return true;
   7519 }
   7520 
   7521 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   7522 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   7523 /// when the VMUL has a constant operand that is a power of 2.
   7524 ///
   7525 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   7526 ///  vmul.f32        d16, d17, d16
   7527 ///  vcvt.s32.f32    d16, d16
   7528 /// becomes:
   7529 ///  vcvt.s32.f32    d16, d16, #3
   7530 static SDValue PerformVCVTCombine(SDNode *N,
   7531                                   TargetLowering::DAGCombinerInfo &DCI,
   7532                                   const ARMSubtarget *Subtarget) {
   7533   SelectionDAG &DAG = DCI.DAG;
   7534   SDValue Op = N->getOperand(0);
   7535 
   7536   if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
   7537       Op.getOpcode() != ISD::FMUL)
   7538     return SDValue();
   7539 
   7540   uint64_t C;
   7541   SDValue N0 = Op->getOperand(0);
   7542   SDValue ConstVec = Op->getOperand(1);
   7543   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   7544 
   7545   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   7546       !isConstVecPow2(ConstVec, isSigned, C))
   7547     return SDValue();
   7548 
   7549   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   7550     Intrinsic::arm_neon_vcvtfp2fxu;
   7551   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   7552                      N->getValueType(0),
   7553                      DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
   7554                      DAG.getConstant(Log2_64(C), MVT::i32));
   7555 }
   7556 
   7557 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   7558 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   7559 /// when the VDIV has a constant operand that is a power of 2.
   7560 ///
   7561 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   7562 ///  vcvt.f32.s32    d16, d16
   7563 ///  vdiv.f32        d16, d17, d16
   7564 /// becomes:
   7565 ///  vcvt.f32.s32    d16, d16, #3
   7566 static SDValue PerformVDIVCombine(SDNode *N,
   7567                                   TargetLowering::DAGCombinerInfo &DCI,
   7568                                   const ARMSubtarget *Subtarget) {
   7569   SelectionDAG &DAG = DCI.DAG;
   7570   SDValue Op = N->getOperand(0);
   7571   unsigned OpOpcode = Op.getNode()->getOpcode();
   7572 
   7573   if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
   7574       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   7575     return SDValue();
   7576 
   7577   uint64_t C;
   7578   SDValue ConstVec = N->getOperand(1);
   7579   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   7580 
   7581   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   7582       !isConstVecPow2(ConstVec, isSigned, C))
   7583     return SDValue();
   7584 
   7585   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   7586     Intrinsic::arm_neon_vcvtfxu2fp;
   7587   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
   7588                      Op.getValueType(),
   7589                      DAG.getConstant(IntrinsicOpcode, MVT::i32),
   7590                      Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
   7591 }
   7592 
   7593 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   7594 /// operand of a vector shift operation, where all the elements of the
   7595 /// build_vector must have the same constant integer value.
   7596 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   7597   // Ignore bit_converts.
   7598   while (Op.getOpcode() == ISD::BITCAST)
   7599     Op = Op.getOperand(0);
   7600   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   7601   APInt SplatBits, SplatUndef;
   7602   unsigned SplatBitSize;
   7603   bool HasAnyUndefs;
   7604   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   7605                                       HasAnyUndefs, ElementBits) ||
   7606       SplatBitSize > ElementBits)
   7607     return false;
   7608   Cnt = SplatBits.getSExtValue();
   7609   return true;
   7610 }
   7611 
   7612 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   7613 /// operand of a vector shift left operation.  That value must be in the range:
   7614 ///   0 <= Value < ElementBits for a left shift; or
   7615 ///   0 <= Value <= ElementBits for a long left shift.
   7616 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   7617   assert(VT.isVector() && "vector shift count is not a vector type");
   7618   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   7619   if (! getVShiftImm(Op, ElementBits, Cnt))
   7620     return false;
   7621   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   7622 }
   7623 
   7624 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   7625 /// operand of a vector shift right operation.  For a shift opcode, the value
   7626 /// is positive, but for an intrinsic the value count must be negative. The
   7627 /// absolute value must be in the range:
   7628 ///   1 <= |Value| <= ElementBits for a right shift; or
   7629 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   7630 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   7631                          int64_t &Cnt) {
   7632   assert(VT.isVector() && "vector shift count is not a vector type");
   7633   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   7634   if (! getVShiftImm(Op, ElementBits, Cnt))
   7635     return false;
   7636   if (isIntrinsic)
   7637     Cnt = -Cnt;
   7638   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   7639 }
   7640 
   7641 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   7642 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   7643   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   7644   switch (IntNo) {
   7645   default:
   7646     // Don't do anything for most intrinsics.
   7647     break;
   7648 
   7649   // Vector shifts: check for immediate versions and lower them.
   7650   // Note: This is done during DAG combining instead of DAG legalizing because
   7651   // the build_vectors for 64-bit vector element shift counts are generally
   7652   // not legal, and it is hard to see their values after they get legalized to
   7653   // loads from a constant pool.
   7654   case Intrinsic::arm_neon_vshifts:
   7655   case Intrinsic::arm_neon_vshiftu:
   7656   case Intrinsic::arm_neon_vshiftls:
   7657   case Intrinsic::arm_neon_vshiftlu:
   7658   case Intrinsic::arm_neon_vshiftn:
   7659   case Intrinsic::arm_neon_vrshifts:
   7660   case Intrinsic::arm_neon_vrshiftu:
   7661   case Intrinsic::arm_neon_vrshiftn:
   7662   case Intrinsic::arm_neon_vqshifts:
   7663   case Intrinsic::arm_neon_vqshiftu:
   7664   case Intrinsic::arm_neon_vqshiftsu:
   7665   case Intrinsic::arm_neon_vqshiftns:
   7666   case Intrinsic::arm_neon_vqshiftnu:
   7667   case Intrinsic::arm_neon_vqshiftnsu:
   7668   case Intrinsic::arm_neon_vqrshiftns:
   7669   case Intrinsic::arm_neon_vqrshiftnu:
   7670   case Intrinsic::arm_neon_vqrshiftnsu: {
   7671     EVT VT = N->getOperand(1).getValueType();
   7672     int64_t Cnt;
   7673     unsigned VShiftOpc = 0;
   7674 
   7675     switch (IntNo) {
   7676     case Intrinsic::arm_neon_vshifts:
   7677     case Intrinsic::arm_neon_vshiftu:
   7678       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   7679         VShiftOpc = ARMISD::VSHL;
   7680         break;
   7681       }
   7682       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   7683         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   7684                      ARMISD::VSHRs : ARMISD::VSHRu);
   7685         break;
   7686       }
   7687       return SDValue();
   7688 
   7689     case Intrinsic::arm_neon_vshiftls:
   7690     case Intrinsic::arm_neon_vshiftlu:
   7691       if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
   7692         break;
   7693       llvm_unreachable("invalid shift count for vshll intrinsic");
   7694 
   7695     case Intrinsic::arm_neon_vrshifts:
   7696     case Intrinsic::arm_neon_vrshiftu:
   7697       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   7698         break;
   7699       return SDValue();
   7700 
   7701     case Intrinsic::arm_neon_vqshifts:
   7702     case Intrinsic::arm_neon_vqshiftu:
   7703       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   7704         break;
   7705       return SDValue();
   7706 
   7707     case Intrinsic::arm_neon_vqshiftsu:
   7708       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   7709         break;
   7710       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   7711 
   7712     case Intrinsic::arm_neon_vshiftn:
   7713     case Intrinsic::arm_neon_vrshiftn:
   7714     case Intrinsic::arm_neon_vqshiftns:
   7715     case Intrinsic::arm_neon_vqshiftnu:
   7716     case Intrinsic::arm_neon_vqshiftnsu:
   7717     case Intrinsic::arm_neon_vqrshiftns:
   7718     case Intrinsic::arm_neon_vqrshiftnu:
   7719     case Intrinsic::arm_neon_vqrshiftnsu:
   7720       // Narrowing shifts require an immediate right shift.
   7721       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   7722         break;
   7723       llvm_unreachable("invalid shift count for narrowing vector shift "
   7724                        "intrinsic");
   7725 
   7726     default:
   7727       llvm_unreachable("unhandled vector shift");
   7728     }
   7729 
   7730     switch (IntNo) {
   7731     case Intrinsic::arm_neon_vshifts:
   7732     case Intrinsic::arm_neon_vshiftu:
   7733       // Opcode already set above.
   7734       break;
   7735     case Intrinsic::arm_neon_vshiftls:
   7736     case Intrinsic::arm_neon_vshiftlu:
   7737       if (Cnt == VT.getVectorElementType().getSizeInBits())
   7738         VShiftOpc = ARMISD::VSHLLi;
   7739       else
   7740         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
   7741                      ARMISD::VSHLLs : ARMISD::VSHLLu);
   7742       break;
   7743     case Intrinsic::arm_neon_vshiftn:
   7744       VShiftOpc = ARMISD::VSHRN; break;
   7745     case Intrinsic::arm_neon_vrshifts:
   7746       VShiftOpc = ARMISD::VRSHRs; break;
   7747     case Intrinsic::arm_neon_vrshiftu:
   7748       VShiftOpc = ARMISD::VRSHRu; break;
   7749     case Intrinsic::arm_neon_vrshiftn:
   7750       VShiftOpc = ARMISD::VRSHRN; break;
   7751     case Intrinsic::arm_neon_vqshifts:
   7752       VShiftOpc = ARMISD::VQSHLs; break;
   7753     case Intrinsic::arm_neon_vqshiftu:
   7754       VShiftOpc = ARMISD::VQSHLu; break;
   7755     case Intrinsic::arm_neon_vqshiftsu:
   7756       VShiftOpc = ARMISD::VQSHLsu; break;
   7757     case Intrinsic::arm_neon_vqshiftns:
   7758       VShiftOpc = ARMISD::VQSHRNs; break;
   7759     case Intrinsic::arm_neon_vqshiftnu:
   7760       VShiftOpc = ARMISD::VQSHRNu; break;
   7761     case Intrinsic::arm_neon_vqshiftnsu:
   7762       VShiftOpc = ARMISD::VQSHRNsu; break;
   7763     case Intrinsic::arm_neon_vqrshiftns:
   7764       VShiftOpc = ARMISD::VQRSHRNs; break;
   7765     case Intrinsic::arm_neon_vqrshiftnu:
   7766       VShiftOpc = ARMISD::VQRSHRNu; break;
   7767     case Intrinsic::arm_neon_vqrshiftnsu:
   7768       VShiftOpc = ARMISD::VQRSHRNsu; break;
   7769     }
   7770 
   7771     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
   7772                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
   7773   }
   7774 
   7775   case Intrinsic::arm_neon_vshiftins: {
   7776     EVT VT = N->getOperand(1).getValueType();
   7777     int64_t Cnt;
   7778     unsigned VShiftOpc = 0;
   7779 
   7780     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   7781       VShiftOpc = ARMISD::VSLI;
   7782     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   7783       VShiftOpc = ARMISD::VSRI;
   7784     else {
   7785       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   7786     }
   7787 
   7788     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
   7789                        N->getOperand(1), N->getOperand(2),
   7790                        DAG.getConstant(Cnt, MVT::i32));
   7791   }
   7792 
   7793   case Intrinsic::arm_neon_vqrshifts:
   7794   case Intrinsic::arm_neon_vqrshiftu:
   7795     // No immediate versions of these to check for.
   7796     break;
   7797   }
   7798 
   7799   return SDValue();
   7800 }
   7801 
   7802 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   7803 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   7804 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   7805 /// vector element shift counts are generally not legal, and it is hard to see
   7806 /// their values after they get legalized to loads from a constant pool.
   7807 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   7808                                    const ARMSubtarget *ST) {
   7809   EVT VT = N->getValueType(0);
   7810 
   7811   // Nothing to be done for scalar shifts.
   7812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7813   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   7814     return SDValue();
   7815 
   7816   assert(ST->hasNEON() && "unexpected vector shift");
   7817   int64_t Cnt;
   7818 
   7819   switch (N->getOpcode()) {
   7820   default: llvm_unreachable("unexpected shift opcode");
   7821 
   7822   case ISD::SHL:
   7823     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
   7824       return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
   7825                          DAG.getConstant(Cnt, MVT::i32));
   7826     break;
   7827 
   7828   case ISD::SRA:
   7829   case ISD::SRL:
   7830     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   7831       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   7832                             ARMISD::VSHRs : ARMISD::VSHRu);
   7833       return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
   7834                          DAG.getConstant(Cnt, MVT::i32));
   7835     }
   7836   }
   7837   return SDValue();
   7838 }
   7839 
   7840 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   7841 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   7842 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   7843                                     const ARMSubtarget *ST) {
   7844   SDValue N0 = N->getOperand(0);
   7845 
   7846   // Check for sign- and zero-extensions of vector extract operations of 8-
   7847   // and 16-bit vector elements.  NEON supports these directly.  They are
   7848   // handled during DAG combining because type legalization will promote them
   7849   // to 32-bit types and it is messy to recognize the operations after that.
   7850   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   7851     SDValue Vec = N0.getOperand(0);
   7852     SDValue Lane = N0.getOperand(1);
   7853     EVT VT = N->getValueType(0);
   7854     EVT EltVT = N0.getValueType();
   7855     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7856 
   7857     if (VT == MVT::i32 &&
   7858         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   7859         TLI.isTypeLegal(Vec.getValueType()) &&
   7860         isa<ConstantSDNode>(Lane)) {
   7861 
   7862       unsigned Opc = 0;
   7863       switch (N->getOpcode()) {
   7864       default: llvm_unreachable("unexpected opcode");
   7865       case ISD::SIGN_EXTEND:
   7866         Opc = ARMISD::VGETLANEs;
   7867         break;
   7868       case ISD::ZERO_EXTEND:
   7869       case ISD::ANY_EXTEND:
   7870         Opc = ARMISD::VGETLANEu;
   7871         break;
   7872       }
   7873       return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
   7874     }
   7875   }
   7876 
   7877   return SDValue();
   7878 }
   7879 
   7880 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
   7881 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
   7882 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
   7883                                        const ARMSubtarget *ST) {
   7884   // If the target supports NEON, try to use vmax/vmin instructions for f32
   7885   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
   7886   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
   7887   // a NaN; only do the transformation when it matches that behavior.
   7888 
   7889   // For now only do this when using NEON for FP operations; if using VFP, it
   7890   // is not obvious that the benefit outweighs the cost of switching to the
   7891   // NEON pipeline.
   7892   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
   7893       N->getValueType(0) != MVT::f32)
   7894     return SDValue();
   7895 
   7896   SDValue CondLHS = N->getOperand(0);
   7897   SDValue CondRHS = N->getOperand(1);
   7898   SDValue LHS = N->getOperand(2);
   7899   SDValue RHS = N->getOperand(3);
   7900   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   7901 
   7902   unsigned Opcode = 0;
   7903   bool IsReversed;
   7904   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
   7905     IsReversed = false; // x CC y ? x : y
   7906   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
   7907     IsReversed = true ; // x CC y ? y : x
   7908   } else {
   7909     return SDValue();
   7910   }
   7911 
   7912   bool IsUnordered;
   7913   switch (CC) {
   7914   default: break;
   7915   case ISD::SETOLT:
   7916   case ISD::SETOLE:
   7917   case ISD::SETLT:
   7918   case ISD::SETLE:
   7919   case ISD::SETULT:
   7920   case ISD::SETULE:
   7921     // If LHS is NaN, an ordered comparison will be false and the result will
   7922     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
   7923     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   7924     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
   7925     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   7926       break;
   7927     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
   7928     // will return -0, so vmin can only be used for unsafe math or if one of
   7929     // the operands is known to be nonzero.
   7930     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
   7931         !UnsafeFPMath &&
   7932         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   7933       break;
   7934     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
   7935     break;
   7936 
   7937   case ISD::SETOGT:
   7938   case ISD::SETOGE:
   7939   case ISD::SETGT:
   7940   case ISD::SETGE:
   7941   case ISD::SETUGT:
   7942   case ISD::SETUGE:
   7943     // If LHS is NaN, an ordered comparison will be false and the result will
   7944     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
   7945     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   7946     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
   7947     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   7948       break;
   7949     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
   7950     // will return +0, so vmax can only be used for unsafe math or if one of
   7951     // the operands is known to be nonzero.
   7952     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
   7953         !UnsafeFPMath &&
   7954         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   7955       break;
   7956     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
   7957     break;
   7958   }
   7959 
   7960   if (!Opcode)
   7961     return SDValue();
   7962   return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
   7963 }
   7964 
   7965 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   7966 SDValue
   7967 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   7968   SDValue Cmp = N->getOperand(4);
   7969   if (Cmp.getOpcode() != ARMISD::CMPZ)
   7970     // Only looking at EQ and NE cases.
   7971     return SDValue();
   7972 
   7973   EVT VT = N->getValueType(0);
   7974   DebugLoc dl = N->getDebugLoc();
   7975   SDValue LHS = Cmp.getOperand(0);
   7976   SDValue RHS = Cmp.getOperand(1);
   7977   SDValue FalseVal = N->getOperand(0);
   7978   SDValue TrueVal = N->getOperand(1);
   7979   SDValue ARMcc = N->getOperand(2);
   7980   ARMCC::CondCodes CC =
   7981     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   7982 
   7983   // Simplify
   7984   //   mov     r1, r0
   7985   //   cmp     r1, x
   7986   //   mov     r0, y
   7987   //   moveq   r0, x
   7988   // to
   7989   //   cmp     r0, x
   7990   //   movne   r0, y
   7991   //
   7992   //   mov     r1, r0
   7993   //   cmp     r1, x
   7994   //   mov     r0, x
   7995   //   movne   r0, y
   7996   // to
   7997   //   cmp     r0, x
   7998   //   movne   r0, y
   7999   /// FIXME: Turn this into a target neutral optimization?
   8000   SDValue Res;
   8001   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   8002     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   8003                       N->getOperand(3), Cmp);
   8004   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   8005     SDValue ARMcc;
   8006     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   8007     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   8008                       N->getOperand(3), NewCmp);
   8009   }
   8010 
   8011   if (Res.getNode()) {
   8012     APInt KnownZero, KnownOne;
   8013     APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
   8014     DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
   8015     // Capture demanded bits information that would be otherwise lost.
   8016     if (KnownZero == 0xfffffffe)
   8017       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8018                         DAG.getValueType(MVT::i1));
   8019     else if (KnownZero == 0xffffff00)
   8020       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8021                         DAG.getValueType(MVT::i8));
   8022     else if (KnownZero == 0xffff0000)
   8023       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   8024                         DAG.getValueType(MVT::i16));
   8025   }
   8026 
   8027   return Res;
   8028 }
   8029 
   8030 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   8031                                              DAGCombinerInfo &DCI) const {
   8032   switch (N->getOpcode()) {
   8033   default: break;
   8034   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   8035   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   8036   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   8037   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   8038   case ISD::AND:        return PerformANDCombine(N, DCI);
   8039   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   8040   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
   8041   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   8042   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   8043   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
   8044   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   8045   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   8046   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   8047   case ISD::FP_TO_SINT:
   8048   case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
   8049   case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
   8050   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   8051   case ISD::SHL:
   8052   case ISD::SRA:
   8053   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   8054   case ISD::SIGN_EXTEND:
   8055   case ISD::ZERO_EXTEND:
   8056   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   8057   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
   8058   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   8059   case ARMISD::VLD2DUP:
   8060   case ARMISD::VLD3DUP:
   8061   case ARMISD::VLD4DUP:
   8062     return CombineBaseUpdate(N, DCI);
   8063   case ISD::INTRINSIC_VOID:
   8064   case ISD::INTRINSIC_W_CHAIN:
   8065     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   8066     case Intrinsic::arm_neon_vld1:
   8067     case Intrinsic::arm_neon_vld2:
   8068     case Intrinsic::arm_neon_vld3:
   8069     case Intrinsic::arm_neon_vld4:
   8070     case Intrinsic::arm_neon_vld2lane:
   8071     case Intrinsic::arm_neon_vld3lane:
   8072     case Intrinsic::arm_neon_vld4lane:
   8073     case Intrinsic::arm_neon_vst1:
   8074     case Intrinsic::arm_neon_vst2:
   8075     case Intrinsic::arm_neon_vst3:
   8076     case Intrinsic::arm_neon_vst4:
   8077     case Intrinsic::arm_neon_vst2lane:
   8078     case Intrinsic::arm_neon_vst3lane:
   8079     case Intrinsic::arm_neon_vst4lane:
   8080       return CombineBaseUpdate(N, DCI);
   8081     default: break;
   8082     }
   8083     break;
   8084   }
   8085   return SDValue();
   8086 }
   8087 
   8088 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   8089                                                           EVT VT) const {
   8090   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   8091 }
   8092 
   8093 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
   8094   if (!Subtarget->allowsUnalignedMem())
   8095     return false;
   8096 
   8097   switch (VT.getSimpleVT().SimpleTy) {
   8098   default:
   8099     return false;
   8100   case MVT::i8:
   8101   case MVT::i16:
   8102   case MVT::i32:
   8103     return true;
   8104   // FIXME: VLD1 etc with standard alignment is legal.
   8105   }
   8106 }
   8107 
   8108 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   8109   if (V < 0)
   8110     return false;
   8111 
   8112   unsigned Scale = 1;
   8113   switch (VT.getSimpleVT().SimpleTy) {
   8114   default: return false;
   8115   case MVT::i1:
   8116   case MVT::i8:
   8117     // Scale == 1;
   8118     break;
   8119   case MVT::i16:
   8120     // Scale == 2;
   8121     Scale = 2;
   8122     break;
   8123   case MVT::i32:
   8124     // Scale == 4;
   8125     Scale = 4;
   8126     break;
   8127   }
   8128 
   8129   if ((V & (Scale - 1)) != 0)
   8130     return false;
   8131   V /= Scale;
   8132   return V == (V & ((1LL << 5) - 1));
   8133 }
   8134 
   8135 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   8136                                       const ARMSubtarget *Subtarget) {
   8137   bool isNeg = false;
   8138   if (V < 0) {
   8139     isNeg = true;
   8140     V = - V;
   8141   }
   8142 
   8143   switch (VT.getSimpleVT().SimpleTy) {
   8144   default: return false;
   8145   case MVT::i1:
   8146   case MVT::i8:
   8147   case MVT::i16:
   8148   case MVT::i32:
   8149     // + imm12 or - imm8
   8150     if (isNeg)
   8151       return V == (V & ((1LL << 8) - 1));
   8152     return V == (V & ((1LL << 12) - 1));
   8153   case MVT::f32:
   8154   case MVT::f64:
   8155     // Same as ARM mode. FIXME: NEON?
   8156     if (!Subtarget->hasVFP2())
   8157       return false;
   8158     if ((V & 3) != 0)
   8159       return false;
   8160     V >>= 2;
   8161     return V == (V & ((1LL << 8) - 1));
   8162   }
   8163 }
   8164 
   8165 /// isLegalAddressImmediate - Return true if the integer value can be used
   8166 /// as the offset of the target addressing mode for load / store of the
   8167 /// given type.
   8168 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   8169                                     const ARMSubtarget *Subtarget) {
   8170   if (V == 0)
   8171     return true;
   8172 
   8173   if (!VT.isSimple())
   8174     return false;
   8175 
   8176   if (Subtarget->isThumb1Only())
   8177     return isLegalT1AddressImmediate(V, VT);
   8178   else if (Subtarget->isThumb2())
   8179     return isLegalT2AddressImmediate(V, VT, Subtarget);
   8180 
   8181   // ARM mode.
   8182   if (V < 0)
   8183     V = - V;
   8184   switch (VT.getSimpleVT().SimpleTy) {
   8185   default: return false;
   8186   case MVT::i1:
   8187   case MVT::i8:
   8188   case MVT::i32:
   8189     // +- imm12
   8190     return V == (V & ((1LL << 12) - 1));
   8191   case MVT::i16:
   8192     // +- imm8
   8193     return V == (V & ((1LL << 8) - 1));
   8194   case MVT::f32:
   8195   case MVT::f64:
   8196     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   8197       return false;
   8198     if ((V & 3) != 0)
   8199       return false;
   8200     V >>= 2;
   8201     return V == (V & ((1LL << 8) - 1));
   8202   }
   8203 }
   8204 
   8205 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   8206                                                       EVT VT) const {
   8207   int Scale = AM.Scale;
   8208   if (Scale < 0)
   8209     return false;
   8210 
   8211   switch (VT.getSimpleVT().SimpleTy) {
   8212   default: return false;
   8213   case MVT::i1:
   8214   case MVT::i8:
   8215   case MVT::i16:
   8216   case MVT::i32:
   8217     if (Scale == 1)
   8218       return true;
   8219     // r + r << imm
   8220     Scale = Scale & ~1;
   8221     return Scale == 2 || Scale == 4 || Scale == 8;
   8222   case MVT::i64:
   8223     // r + r
   8224     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   8225       return true;
   8226     return false;
   8227   case MVT::isVoid:
   8228     // Note, we allow "void" uses (basically, uses that aren't loads or
   8229     // stores), because arm allows folding a scale into many arithmetic
   8230     // operations.  This should be made more precise and revisited later.
   8231 
   8232     // Allow r << imm, but the imm has to be a multiple of two.
   8233     if (Scale & 1) return false;
   8234     return isPowerOf2_32(Scale);
   8235   }
   8236 }
   8237 
   8238 /// isLegalAddressingMode - Return true if the addressing mode represented
   8239 /// by AM is legal for this target, for a load/store of the specified type.
   8240 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   8241                                               Type *Ty) const {
   8242   EVT VT = getValueType(Ty, true);
   8243   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   8244     return false;
   8245 
   8246   // Can never fold addr of global into load/store.
   8247   if (AM.BaseGV)
   8248     return false;
   8249 
   8250   switch (AM.Scale) {
   8251   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   8252     break;
   8253   case 1:
   8254     if (Subtarget->isThumb1Only())
   8255       return false;
   8256     // FALL THROUGH.
   8257   default:
   8258     // ARM doesn't support any R+R*scale+imm addr modes.
   8259     if (AM.BaseOffs)
   8260       return false;
   8261 
   8262     if (!VT.isSimple())
   8263       return false;
   8264 
   8265     if (Subtarget->isThumb2())
   8266       return isLegalT2ScaledAddressingMode(AM, VT);
   8267 
   8268     int Scale = AM.Scale;
   8269     switch (VT.getSimpleVT().SimpleTy) {
   8270     default: return false;
   8271     case MVT::i1:
   8272     case MVT::i8:
   8273     case MVT::i32:
   8274       if (Scale < 0) Scale = -Scale;
   8275       if (Scale == 1)
   8276         return true;
   8277       // r + r << imm
   8278       return isPowerOf2_32(Scale & ~1);
   8279     case MVT::i16:
   8280     case MVT::i64:
   8281       // r + r
   8282       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   8283         return true;
   8284       return false;
   8285 
   8286     case MVT::isVoid:
   8287       // Note, we allow "void" uses (basically, uses that aren't loads or
   8288       // stores), because arm allows folding a scale into many arithmetic
   8289       // operations.  This should be made more precise and revisited later.
   8290 
   8291       // Allow r << imm, but the imm has to be a multiple of two.
   8292       if (Scale & 1) return false;
   8293       return isPowerOf2_32(Scale);
   8294     }
   8295     break;
   8296   }
   8297   return true;
   8298 }
   8299 
   8300 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   8301 /// icmp immediate, that is the target has icmp instructions which can compare
   8302 /// a register against the immediate without having to materialize the
   8303 /// immediate into a register.
   8304 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   8305   if (!Subtarget->isThumb())
   8306     return ARM_AM::getSOImmVal(Imm) != -1;
   8307   if (Subtarget->isThumb2())
   8308     return ARM_AM::getT2SOImmVal(Imm) != -1;
   8309   return Imm >= 0 && Imm <= 255;
   8310 }
   8311 
   8312 /// isLegalAddImmediate - Return true if the specified immediate is legal
   8313 /// add immediate, that is the target has add instructions which can add
   8314 /// a register with the immediate without having to materialize the
   8315 /// immediate into a register.
   8316 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   8317   return ARM_AM::getSOImmVal(Imm) != -1;
   8318 }
   8319 
   8320 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   8321                                       bool isSEXTLoad, SDValue &Base,
   8322                                       SDValue &Offset, bool &isInc,
   8323                                       SelectionDAG &DAG) {
   8324   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   8325     return false;
   8326 
   8327   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   8328     // AddressingMode 3
   8329     Base = Ptr->getOperand(0);
   8330     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   8331       int RHSC = (int)RHS->getZExtValue();
   8332       if (RHSC < 0 && RHSC > -256) {
   8333         assert(Ptr->getOpcode() == ISD::ADD);
   8334         isInc = false;
   8335         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   8336         return true;
   8337       }
   8338     }
   8339     isInc = (Ptr->getOpcode() == ISD::ADD);
   8340     Offset = Ptr->getOperand(1);
   8341     return true;
   8342   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   8343     // AddressingMode 2
   8344     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   8345       int RHSC = (int)RHS->getZExtValue();
   8346       if (RHSC < 0 && RHSC > -0x1000) {
   8347         assert(Ptr->getOpcode() == ISD::ADD);
   8348         isInc = false;
   8349         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   8350         Base = Ptr->getOperand(0);
   8351         return true;
   8352       }
   8353     }
   8354 
   8355     if (Ptr->getOpcode() == ISD::ADD) {
   8356       isInc = true;
   8357       ARM_AM::ShiftOpc ShOpcVal=
   8358         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   8359       if (ShOpcVal != ARM_AM::no_shift) {
   8360         Base = Ptr->getOperand(1);
   8361         Offset = Ptr->getOperand(0);
   8362       } else {
   8363         Base = Ptr->getOperand(0);
   8364         Offset = Ptr->getOperand(1);
   8365       }
   8366       return true;
   8367     }
   8368 
   8369     isInc = (Ptr->getOpcode() == ISD::ADD);
   8370     Base = Ptr->getOperand(0);
   8371     Offset = Ptr->getOperand(1);
   8372     return true;
   8373   }
   8374 
   8375   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   8376   return false;
   8377 }
   8378 
   8379 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   8380                                      bool isSEXTLoad, SDValue &Base,
   8381                                      SDValue &Offset, bool &isInc,
   8382                                      SelectionDAG &DAG) {
   8383   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   8384     return false;
   8385 
   8386   Base = Ptr->getOperand(0);
   8387   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   8388     int RHSC = (int)RHS->getZExtValue();
   8389     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   8390       assert(Ptr->getOpcode() == ISD::ADD);
   8391       isInc = false;
   8392       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   8393       return true;
   8394     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   8395       isInc = Ptr->getOpcode() == ISD::ADD;
   8396       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
   8397       return true;
   8398     }
   8399   }
   8400 
   8401   return false;
   8402 }
   8403 
   8404 /// getPreIndexedAddressParts - returns true by value, base pointer and
   8405 /// offset pointer and addressing mode by reference if the node's address
   8406 /// can be legally represented as pre-indexed load / store address.
   8407 bool
   8408 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   8409                                              SDValue &Offset,
   8410                                              ISD::MemIndexedMode &AM,
   8411                                              SelectionDAG &DAG) const {
   8412   if (Subtarget->isThumb1Only())
   8413     return false;
   8414 
   8415   EVT VT;
   8416   SDValue Ptr;
   8417   bool isSEXTLoad = false;
   8418   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   8419     Ptr = LD->getBasePtr();
   8420     VT  = LD->getMemoryVT();
   8421     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   8422   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   8423     Ptr = ST->getBasePtr();
   8424     VT  = ST->getMemoryVT();
   8425   } else
   8426     return false;
   8427 
   8428   bool isInc;
   8429   bool isLegal = false;
   8430   if (Subtarget->isThumb2())
   8431     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   8432                                        Offset, isInc, DAG);
   8433   else
   8434     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   8435                                         Offset, isInc, DAG);
   8436   if (!isLegal)
   8437     return false;
   8438 
   8439   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   8440   return true;
   8441 }
   8442 
   8443 /// getPostIndexedAddressParts - returns true by value, base pointer and
   8444 /// offset pointer and addressing mode by reference if this node can be
   8445 /// combined with a load / store to form a post-indexed load / store.
   8446 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   8447                                                    SDValue &Base,
   8448                                                    SDValue &Offset,
   8449                                                    ISD::MemIndexedMode &AM,
   8450                                                    SelectionDAG &DAG) const {
   8451   if (Subtarget->isThumb1Only())
   8452     return false;
   8453 
   8454   EVT VT;
   8455   SDValue Ptr;
   8456   bool isSEXTLoad = false;
   8457   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   8458     VT  = LD->getMemoryVT();
   8459     Ptr = LD->getBasePtr();
   8460     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   8461   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   8462     VT  = ST->getMemoryVT();
   8463     Ptr = ST->getBasePtr();
   8464   } else
   8465     return false;
   8466 
   8467   bool isInc;
   8468   bool isLegal = false;
   8469   if (Subtarget->isThumb2())
   8470     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   8471                                        isInc, DAG);
   8472   else
   8473     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   8474                                         isInc, DAG);
   8475   if (!isLegal)
   8476     return false;
   8477 
   8478   if (Ptr != Base) {
   8479     // Swap base ptr and offset to catch more post-index load / store when
   8480     // it's legal. In Thumb2 mode, offset must be an immediate.
   8481     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   8482         !Subtarget->isThumb2())
   8483       std::swap(Base, Offset);
   8484 
   8485     // Post-indexed load / store update the base pointer.
   8486     if (Ptr != Base)
   8487       return false;
   8488   }
   8489 
   8490   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   8491   return true;
   8492 }
   8493 
   8494 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   8495                                                        const APInt &Mask,
   8496                                                        APInt &KnownZero,
   8497                                                        APInt &KnownOne,
   8498                                                        const SelectionDAG &DAG,
   8499                                                        unsigned Depth) const {
   8500   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
   8501   switch (Op.getOpcode()) {
   8502   default: break;
   8503   case ARMISD::CMOV: {
   8504     // Bits are known zero/one if known on the LHS and RHS.
   8505     DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
   8506     if (KnownZero == 0 && KnownOne == 0) return;
   8507 
   8508     APInt KnownZeroRHS, KnownOneRHS;
   8509     DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
   8510                           KnownZeroRHS, KnownOneRHS, Depth+1);
   8511     KnownZero &= KnownZeroRHS;
   8512     KnownOne  &= KnownOneRHS;
   8513     return;
   8514   }
   8515   }
   8516 }
   8517 
   8518 //===----------------------------------------------------------------------===//
   8519 //                           ARM Inline Assembly Support
   8520 //===----------------------------------------------------------------------===//
   8521 
   8522 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   8523   // Looking for "rev" which is V6+.
   8524   if (!Subtarget->hasV6Ops())
   8525     return false;
   8526 
   8527   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   8528   std::string AsmStr = IA->getAsmString();
   8529   SmallVector<StringRef, 4> AsmPieces;
   8530   SplitString(AsmStr, AsmPieces, ";\n");
   8531 
   8532   switch (AsmPieces.size()) {
   8533   default: return false;
   8534   case 1:
   8535     AsmStr = AsmPieces[0];
   8536     AsmPieces.clear();
   8537     SplitString(AsmStr, AsmPieces, " \t,");
   8538 
   8539     // rev $0, $1
   8540     if (AsmPieces.size() == 3 &&
   8541         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   8542         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   8543       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   8544       if (Ty && Ty->getBitWidth() == 32)
   8545         return IntrinsicLowering::LowerToByteSwap(CI);
   8546     }
   8547     break;
   8548   }
   8549 
   8550   return false;
   8551 }
   8552 
   8553 /// getConstraintType - Given a constraint letter, return the type of
   8554 /// constraint it is for this target.
   8555 ARMTargetLowering::ConstraintType
   8556 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
   8557   if (Constraint.size() == 1) {
   8558     switch (Constraint[0]) {
   8559     default:  break;
   8560     case 'l': return C_RegisterClass;
   8561     case 'w': return C_RegisterClass;
   8562     case 'h': return C_RegisterClass;
   8563     case 'x': return C_RegisterClass;
   8564     case 't': return C_RegisterClass;
   8565     case 'j': return C_Other; // Constant for movw.
   8566       // An address with a single base register. Due to the way we
   8567       // currently handle addresses it is the same as an 'r' memory constraint.
   8568     case 'Q': return C_Memory;
   8569     }
   8570   } else if (Constraint.size() == 2) {
   8571     switch (Constraint[0]) {
   8572     default: break;
   8573     // All 'U+' constraints are addresses.
   8574     case 'U': return C_Memory;
   8575     }
   8576   }
   8577   return TargetLowering::getConstraintType(Constraint);
   8578 }
   8579 
   8580 /// Examine constraint type and operand type and determine a weight value.
   8581 /// This object must already have been set up with the operand type
   8582 /// and the current alternative constraint selected.
   8583 TargetLowering::ConstraintWeight
   8584 ARMTargetLowering::getSingleConstraintMatchWeight(
   8585     AsmOperandInfo &info, const char *constraint) const {
   8586   ConstraintWeight weight = CW_Invalid;
   8587   Value *CallOperandVal = info.CallOperandVal;
   8588     // If we don't have a value, we can't do a match,
   8589     // but allow it at the lowest weight.
   8590   if (CallOperandVal == NULL)
   8591     return CW_Default;
   8592   Type *type = CallOperandVal->getType();
   8593   // Look at the constraint type.
   8594   switch (*constraint) {
   8595   default:
   8596     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   8597     break;
   8598   case 'l':
   8599     if (type->isIntegerTy()) {
   8600       if (Subtarget->isThumb())
   8601         weight = CW_SpecificReg;
   8602       else
   8603         weight = CW_Register;
   8604     }
   8605     break;
   8606   case 'w':
   8607     if (type->isFloatingPointTy())
   8608       weight = CW_Register;
   8609     break;
   8610   }
   8611   return weight;
   8612 }
   8613 
   8614 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   8615 RCPair
   8616 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   8617                                                 EVT VT) const {
   8618   if (Constraint.size() == 1) {
   8619     // GCC ARM Constraint Letters
   8620     switch (Constraint[0]) {
   8621     case 'l': // Low regs or general regs.
   8622       if (Subtarget->isThumb())
   8623         return RCPair(0U, ARM::tGPRRegisterClass);
   8624       else
   8625         return RCPair(0U, ARM::GPRRegisterClass);
   8626     case 'h': // High regs or no regs.
   8627       if (Subtarget->isThumb())
   8628         return RCPair(0U, ARM::hGPRRegisterClass);
   8629       break;
   8630     case 'r':
   8631       return RCPair(0U, ARM::GPRRegisterClass);
   8632     case 'w':
   8633       if (VT == MVT::f32)
   8634         return RCPair(0U, ARM::SPRRegisterClass);
   8635       if (VT.getSizeInBits() == 64)
   8636         return RCPair(0U, ARM::DPRRegisterClass);
   8637       if (VT.getSizeInBits() == 128)
   8638         return RCPair(0U, ARM::QPRRegisterClass);
   8639       break;
   8640     case 'x':
   8641       if (VT == MVT::f32)
   8642         return RCPair(0U, ARM::SPR_8RegisterClass);
   8643       if (VT.getSizeInBits() == 64)
   8644         return RCPair(0U, ARM::DPR_8RegisterClass);
   8645       if (VT.getSizeInBits() == 128)
   8646         return RCPair(0U, ARM::QPR_8RegisterClass);
   8647       break;
   8648     case 't':
   8649       if (VT == MVT::f32)
   8650         return RCPair(0U, ARM::SPRRegisterClass);
   8651       break;
   8652     }
   8653   }
   8654   if (StringRef("{cc}").equals_lower(Constraint))
   8655     return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
   8656 
   8657   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   8658 }
   8659 
   8660 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   8661 /// vector.  If it is invalid, don't add anything to Ops.
   8662 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   8663                                                      std::string &Constraint,
   8664                                                      std::vector<SDValue>&Ops,
   8665                                                      SelectionDAG &DAG) const {
   8666   SDValue Result(0, 0);
   8667 
   8668   // Currently only support length 1 constraints.
   8669   if (Constraint.length() != 1) return;
   8670 
   8671   char ConstraintLetter = Constraint[0];
   8672   switch (ConstraintLetter) {
   8673   default: break;
   8674   case 'j':
   8675   case 'I': case 'J': case 'K': case 'L':
   8676   case 'M': case 'N': case 'O':
   8677     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   8678     if (!C)
   8679       return;
   8680 
   8681     int64_t CVal64 = C->getSExtValue();
   8682     int CVal = (int) CVal64;
   8683     // None of these constraints allow values larger than 32 bits.  Check
   8684     // that the value fits in an int.
   8685     if (CVal != CVal64)
   8686       return;
   8687 
   8688     switch (ConstraintLetter) {
   8689       case 'j':
   8690         // Constant suitable for movw, must be between 0 and
   8691         // 65535.
   8692         if (Subtarget->hasV6T2Ops())
   8693           if (CVal >= 0 && CVal <= 65535)
   8694             break;
   8695         return;
   8696       case 'I':
   8697         if (Subtarget->isThumb1Only()) {
   8698           // This must be a constant between 0 and 255, for ADD
   8699           // immediates.
   8700           if (CVal >= 0 && CVal <= 255)
   8701             break;
   8702         } else if (Subtarget->isThumb2()) {
   8703           // A constant that can be used as an immediate value in a
   8704           // data-processing instruction.
   8705           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   8706             break;
   8707         } else {
   8708           // A constant that can be used as an immediate value in a
   8709           // data-processing instruction.
   8710           if (ARM_AM::getSOImmVal(CVal) != -1)
   8711             break;
   8712         }
   8713         return;
   8714 
   8715       case 'J':
   8716         if (Subtarget->isThumb()) {  // FIXME thumb2
   8717           // This must be a constant between -255 and -1, for negated ADD
   8718           // immediates. This can be used in GCC with an "n" modifier that
   8719           // prints the negated value, for use with SUB instructions. It is
   8720           // not useful otherwise but is implemented for compatibility.
   8721           if (CVal >= -255 && CVal <= -1)
   8722             break;
   8723         } else {
   8724           // This must be a constant between -4095 and 4095. It is not clear
   8725           // what this constraint is intended for. Implemented for
   8726           // compatibility with GCC.
   8727           if (CVal >= -4095 && CVal <= 4095)
   8728             break;
   8729         }
   8730         return;
   8731 
   8732       case 'K':
   8733         if (Subtarget->isThumb1Only()) {
   8734           // A 32-bit value where only one byte has a nonzero value. Exclude
   8735           // zero to match GCC. This constraint is used by GCC internally for
   8736           // constants that can be loaded with a move/shift combination.
   8737           // It is not useful otherwise but is implemented for compatibility.
   8738           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   8739             break;
   8740         } else if (Subtarget->isThumb2()) {
   8741           // A constant whose bitwise inverse can be used as an immediate
   8742           // value in a data-processing instruction. This can be used in GCC
   8743           // with a "B" modifier that prints the inverted value, for use with
   8744           // BIC and MVN instructions. It is not useful otherwise but is
   8745           // implemented for compatibility.
   8746           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   8747             break;
   8748         } else {
   8749           // A constant whose bitwise inverse can be used as an immediate
   8750           // value in a data-processing instruction. This can be used in GCC
   8751           // with a "B" modifier that prints the inverted value, for use with
   8752           // BIC and MVN instructions. It is not useful otherwise but is
   8753           // implemented for compatibility.
   8754           if (ARM_AM::getSOImmVal(~CVal) != -1)
   8755             break;
   8756         }
   8757         return;
   8758 
   8759       case 'L':
   8760         if (Subtarget->isThumb1Only()) {
   8761           // This must be a constant between -7 and 7,
   8762           // for 3-operand ADD/SUB immediate instructions.
   8763           if (CVal >= -7 && CVal < 7)
   8764             break;
   8765         } else if (Subtarget->isThumb2()) {
   8766           // A constant whose negation can be used as an immediate value in a
   8767           // data-processing instruction. This can be used in GCC with an "n"
   8768           // modifier that prints the negated value, for use with SUB
   8769           // instructions. It is not useful otherwise but is implemented for
   8770           // compatibility.
   8771           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   8772             break;
   8773         } else {
   8774           // A constant whose negation can be used as an immediate value in a
   8775           // data-processing instruction. This can be used in GCC with an "n"
   8776           // modifier that prints the negated value, for use with SUB
   8777           // instructions. It is not useful otherwise but is implemented for
   8778           // compatibility.
   8779           if (ARM_AM::getSOImmVal(-CVal) != -1)
   8780             break;
   8781         }
   8782         return;
   8783 
   8784       case 'M':
   8785         if (Subtarget->isThumb()) { // FIXME thumb2
   8786           // This must be a multiple of 4 between 0 and 1020, for
   8787           // ADD sp + immediate.
   8788           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   8789             break;
   8790         } else {
   8791           // A power of two or a constant between 0 and 32.  This is used in
   8792           // GCC for the shift amount on shifted register operands, but it is
   8793           // useful in general for any shift amounts.
   8794           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   8795             break;
   8796         }
   8797         return;
   8798 
   8799       case 'N':
   8800         if (Subtarget->isThumb()) {  // FIXME thumb2
   8801           // This must be a constant between 0 and 31, for shift amounts.
   8802           if (CVal >= 0 && CVal <= 31)
   8803             break;
   8804         }
   8805         return;
   8806 
   8807       case 'O':
   8808         if (Subtarget->isThumb()) {  // FIXME thumb2
   8809           // This must be a multiple of 4 between -508 and 508, for
   8810           // ADD/SUB sp = sp + immediate.
   8811           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   8812             break;
   8813         }
   8814         return;
   8815     }
   8816     Result = DAG.getTargetConstant(CVal, Op.getValueType());
   8817     break;
   8818   }
   8819 
   8820   if (Result.getNode()) {
   8821     Ops.push_back(Result);
   8822     return;
   8823   }
   8824   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   8825 }
   8826 
   8827 bool
   8828 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   8829   // The ARM target isn't yet aware of offsets.
   8830   return false;
   8831 }
   8832 
   8833 bool ARM::isBitFieldInvertedMask(unsigned v) {
   8834   if (v == 0xffffffff)
   8835     return 0;
   8836   // there can be 1's on either or both "outsides", all the "inside"
   8837   // bits must be 0's
   8838   unsigned int lsb = 0, msb = 31;
   8839   while (v & (1 << msb)) --msb;
   8840   while (v & (1 << lsb)) ++lsb;
   8841   for (unsigned int i = lsb; i <= msb; ++i) {
   8842     if (v & (1 << i))
   8843       return 0;
   8844   }
   8845   return 1;
   8846 }
   8847 
   8848 /// isFPImmLegal - Returns true if the target can instruction select the
   8849 /// specified FP immediate natively. If false, the legalizer will
   8850 /// materialize the FP immediate as a load from a constant pool.
   8851 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   8852   if (!Subtarget->hasVFP3())
   8853     return false;
   8854   if (VT == MVT::f32)
   8855     return ARM_AM::getFP32Imm(Imm) != -1;
   8856   if (VT == MVT::f64)
   8857     return ARM_AM::getFP64Imm(Imm) != -1;
   8858   return false;
   8859 }
   8860 
   8861 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   8862 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   8863 /// specified in the intrinsic calls.
   8864 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   8865                                            const CallInst &I,
   8866                                            unsigned Intrinsic) const {
   8867   switch (Intrinsic) {
   8868   case Intrinsic::arm_neon_vld1:
   8869   case Intrinsic::arm_neon_vld2:
   8870   case Intrinsic::arm_neon_vld3:
   8871   case Intrinsic::arm_neon_vld4:
   8872   case Intrinsic::arm_neon_vld2lane:
   8873   case Intrinsic::arm_neon_vld3lane:
   8874   case Intrinsic::arm_neon_vld4lane: {
   8875     Info.opc = ISD::INTRINSIC_W_CHAIN;
   8876     // Conservatively set memVT to the entire set of vectors loaded.
   8877     uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
   8878     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   8879     Info.ptrVal = I.getArgOperand(0);
   8880     Info.offset = 0;
   8881     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   8882     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   8883     Info.vol = false; // volatile loads with NEON intrinsics not supported
   8884     Info.readMem = true;
   8885     Info.writeMem = false;
   8886     return true;
   8887   }
   8888   case Intrinsic::arm_neon_vst1:
   8889   case Intrinsic::arm_neon_vst2:
   8890   case Intrinsic::arm_neon_vst3:
   8891   case Intrinsic::arm_neon_vst4:
   8892   case Intrinsic::arm_neon_vst2lane:
   8893   case Intrinsic::arm_neon_vst3lane:
   8894   case Intrinsic::arm_neon_vst4lane: {
   8895     Info.opc = ISD::INTRINSIC_VOID;
   8896     // Conservatively set memVT to the entire set of vectors stored.
   8897     unsigned NumElts = 0;
   8898     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   8899       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   8900       if (!ArgTy->isVectorTy())
   8901         break;
   8902       NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
   8903     }
   8904     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   8905     Info.ptrVal = I.getArgOperand(0);
   8906     Info.offset = 0;
   8907     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   8908     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   8909     Info.vol = false; // volatile stores with NEON intrinsics not supported
   8910     Info.readMem = false;
   8911     Info.writeMem = true;
   8912     return true;
   8913   }
   8914   case Intrinsic::arm_strexd: {
   8915     Info.opc = ISD::INTRINSIC_W_CHAIN;
   8916     Info.memVT = MVT::i64;
   8917     Info.ptrVal = I.getArgOperand(2);
   8918     Info.offset = 0;
   8919     Info.align = 8;
   8920     Info.vol = true;
   8921     Info.readMem = false;
   8922     Info.writeMem = true;
   8923     return true;
   8924   }
   8925   case Intrinsic::arm_ldrexd: {
   8926     Info.opc = ISD::INTRINSIC_W_CHAIN;
   8927     Info.memVT = MVT::i64;
   8928     Info.ptrVal = I.getArgOperand(0);
   8929     Info.offset = 0;
   8930     Info.align = 8;
   8931     Info.vol = true;
   8932     Info.readMem = true;
   8933     Info.writeMem = false;
   8934     return true;
   8935   }
   8936   default:
   8937     break;
   8938   }
   8939 
   8940   return false;
   8941 }
   8942