Home | History | Annotate | Download | only in CodeGen
      1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Methods common to all machine instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/MachineInstr.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/InlineAsm.h"
     18 #include "llvm/LLVMContext.h"
     19 #include "llvm/Metadata.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Type.h"
     22 #include "llvm/Value.h"
     23 #include "llvm/Assembly/Writer.h"
     24 #include "llvm/CodeGen/MachineConstantPool.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineMemOperand.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/MC/MCInstrDesc.h"
     31 #include "llvm/MC/MCSymbol.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 #include "llvm/Analysis/AliasAnalysis.h"
     36 #include "llvm/Analysis/DebugInfo.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/LeakDetector.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/ADT/FoldingSet.h"
     43 #include "llvm/ADT/Hashing.h"
     44 using namespace llvm;
     45 
     46 //===----------------------------------------------------------------------===//
     47 // MachineOperand Implementation
     48 //===----------------------------------------------------------------------===//
     49 
     50 /// AddRegOperandToRegInfo - Add this register operand to the specified
     51 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
     52 /// explicitly nulled out.
     53 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
     54   assert(isReg() && "Can only add reg operand to use lists");
     55 
     56   // If the reginfo pointer is null, just explicitly null out or next/prev
     57   // pointers, to ensure they are not garbage.
     58   if (RegInfo == 0) {
     59     Contents.Reg.Prev = 0;
     60     Contents.Reg.Next = 0;
     61     return;
     62   }
     63 
     64   // Otherwise, add this operand to the head of the registers use/def list.
     65   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
     66 
     67   // For SSA values, we prefer to keep the definition at the start of the list.
     68   // we do this by skipping over the definition if it is at the head of the
     69   // list.
     70   if (*Head && (*Head)->isDef())
     71     Head = &(*Head)->Contents.Reg.Next;
     72 
     73   Contents.Reg.Next = *Head;
     74   if (Contents.Reg.Next) {
     75     assert(getReg() == Contents.Reg.Next->getReg() &&
     76            "Different regs on the same list!");
     77     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
     78   }
     79 
     80   Contents.Reg.Prev = Head;
     81   *Head = this;
     82 }
     83 
     84 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
     85 /// MachineRegisterInfo it is linked with.
     86 void MachineOperand::RemoveRegOperandFromRegInfo() {
     87   assert(isOnRegUseList() && "Reg operand is not on a use list");
     88   // Unlink this from the doubly linked list of operands.
     89   MachineOperand *NextOp = Contents.Reg.Next;
     90   *Contents.Reg.Prev = NextOp;
     91   if (NextOp) {
     92     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
     93     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
     94   }
     95   Contents.Reg.Prev = 0;
     96   Contents.Reg.Next = 0;
     97 }
     98 
     99 void MachineOperand::setReg(unsigned Reg) {
    100   if (getReg() == Reg) return; // No change.
    101 
    102   // Otherwise, we have to change the register.  If this operand is embedded
    103   // into a machine function, we need to update the old and new register's
    104   // use/def lists.
    105   if (MachineInstr *MI = getParent())
    106     if (MachineBasicBlock *MBB = MI->getParent())
    107       if (MachineFunction *MF = MBB->getParent()) {
    108         RemoveRegOperandFromRegInfo();
    109         SmallContents.RegNo = Reg;
    110         AddRegOperandToRegInfo(&MF->getRegInfo());
    111         return;
    112       }
    113 
    114   // Otherwise, just change the register, no problem.  :)
    115   SmallContents.RegNo = Reg;
    116 }
    117 
    118 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
    119                                   const TargetRegisterInfo &TRI) {
    120   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    121   if (SubIdx && getSubReg())
    122     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
    123   setReg(Reg);
    124   if (SubIdx)
    125     setSubReg(SubIdx);
    126 }
    127 
    128 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
    129   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
    130   if (getSubReg()) {
    131     Reg = TRI.getSubReg(Reg, getSubReg());
    132     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
    133     // That won't happen in legal code.
    134     setSubReg(0);
    135   }
    136   setReg(Reg);
    137 }
    138 
    139 /// ChangeToImmediate - Replace this operand with a new immediate operand of
    140 /// the specified value.  If an operand is known to be an immediate already,
    141 /// the setImm method should be used.
    142 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
    143   // If this operand is currently a register operand, and if this is in a
    144   // function, deregister the operand from the register's use/def list.
    145   if (isReg() && getParent() && getParent()->getParent() &&
    146       getParent()->getParent()->getParent())
    147     RemoveRegOperandFromRegInfo();
    148 
    149   OpKind = MO_Immediate;
    150   Contents.ImmVal = ImmVal;
    151 }
    152 
    153 /// ChangeToRegister - Replace this operand with a new register operand of
    154 /// the specified value.  If an operand is known to be an register already,
    155 /// the setReg method should be used.
    156 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
    157                                       bool isKill, bool isDead, bool isUndef,
    158                                       bool isDebug) {
    159   // If this operand is already a register operand, use setReg to update the
    160   // register's use/def lists.
    161   if (isReg()) {
    162     assert(!isEarlyClobber());
    163     setReg(Reg);
    164   } else {
    165     // Otherwise, change this to a register and set the reg#.
    166     OpKind = MO_Register;
    167     SmallContents.RegNo = Reg;
    168 
    169     // If this operand is embedded in a function, add the operand to the
    170     // register's use/def list.
    171     if (MachineInstr *MI = getParent())
    172       if (MachineBasicBlock *MBB = MI->getParent())
    173         if (MachineFunction *MF = MBB->getParent())
    174           AddRegOperandToRegInfo(&MF->getRegInfo());
    175   }
    176 
    177   IsDef = isDef;
    178   IsImp = isImp;
    179   IsKill = isKill;
    180   IsDead = isDead;
    181   IsUndef = isUndef;
    182   IsInternalRead = false;
    183   IsEarlyClobber = false;
    184   IsDebug = isDebug;
    185   SubReg = 0;
    186 }
    187 
    188 /// isIdenticalTo - Return true if this operand is identical to the specified
    189 /// operand.
    190 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
    191   if (getType() != Other.getType() ||
    192       getTargetFlags() != Other.getTargetFlags())
    193     return false;
    194 
    195   switch (getType()) {
    196   case MachineOperand::MO_Register:
    197     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
    198            getSubReg() == Other.getSubReg();
    199   case MachineOperand::MO_Immediate:
    200     return getImm() == Other.getImm();
    201   case MachineOperand::MO_CImmediate:
    202     return getCImm() == Other.getCImm();
    203   case MachineOperand::MO_FPImmediate:
    204     return getFPImm() == Other.getFPImm();
    205   case MachineOperand::MO_MachineBasicBlock:
    206     return getMBB() == Other.getMBB();
    207   case MachineOperand::MO_FrameIndex:
    208     return getIndex() == Other.getIndex();
    209   case MachineOperand::MO_ConstantPoolIndex:
    210     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
    211   case MachineOperand::MO_JumpTableIndex:
    212     return getIndex() == Other.getIndex();
    213   case MachineOperand::MO_GlobalAddress:
    214     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
    215   case MachineOperand::MO_ExternalSymbol:
    216     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
    217            getOffset() == Other.getOffset();
    218   case MachineOperand::MO_BlockAddress:
    219     return getBlockAddress() == Other.getBlockAddress();
    220   case MO_RegisterMask:
    221     return getRegMask() == Other.getRegMask();
    222   case MachineOperand::MO_MCSymbol:
    223     return getMCSymbol() == Other.getMCSymbol();
    224   case MachineOperand::MO_Metadata:
    225     return getMetadata() == Other.getMetadata();
    226   }
    227   llvm_unreachable("Invalid machine operand type");
    228 }
    229 
    230 /// print - Print the specified machine operand.
    231 ///
    232 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
    233   // If the instruction is embedded into a basic block, we can find the
    234   // target info for the instruction.
    235   if (!TM)
    236     if (const MachineInstr *MI = getParent())
    237       if (const MachineBasicBlock *MBB = MI->getParent())
    238         if (const MachineFunction *MF = MBB->getParent())
    239           TM = &MF->getTarget();
    240   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
    241 
    242   switch (getType()) {
    243   case MachineOperand::MO_Register:
    244     OS << PrintReg(getReg(), TRI, getSubReg());
    245 
    246     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
    247         isInternalRead() || isEarlyClobber()) {
    248       OS << '<';
    249       bool NeedComma = false;
    250       if (isDef()) {
    251         if (NeedComma) OS << ',';
    252         if (isEarlyClobber())
    253           OS << "earlyclobber,";
    254         if (isImplicit())
    255           OS << "imp-";
    256         OS << "def";
    257         NeedComma = true;
    258       } else if (isImplicit()) {
    259           OS << "imp-use";
    260           NeedComma = true;
    261       }
    262 
    263       if (isKill() || isDead() || isUndef() || isInternalRead()) {
    264         if (NeedComma) OS << ',';
    265         NeedComma = false;
    266         if (isKill()) {
    267           OS << "kill";
    268           NeedComma = true;
    269         }
    270         if (isDead()) {
    271           OS << "dead";
    272           NeedComma = true;
    273         }
    274         if (isUndef()) {
    275           if (NeedComma) OS << ',';
    276           OS << "undef";
    277           NeedComma = true;
    278         }
    279         if (isInternalRead()) {
    280           if (NeedComma) OS << ',';
    281           OS << "internal";
    282           NeedComma = true;
    283         }
    284       }
    285       OS << '>';
    286     }
    287     break;
    288   case MachineOperand::MO_Immediate:
    289     OS << getImm();
    290     break;
    291   case MachineOperand::MO_CImmediate:
    292     getCImm()->getValue().print(OS, false);
    293     break;
    294   case MachineOperand::MO_FPImmediate:
    295     if (getFPImm()->getType()->isFloatTy())
    296       OS << getFPImm()->getValueAPF().convertToFloat();
    297     else
    298       OS << getFPImm()->getValueAPF().convertToDouble();
    299     break;
    300   case MachineOperand::MO_MachineBasicBlock:
    301     OS << "<BB#" << getMBB()->getNumber() << ">";
    302     break;
    303   case MachineOperand::MO_FrameIndex:
    304     OS << "<fi#" << getIndex() << '>';
    305     break;
    306   case MachineOperand::MO_ConstantPoolIndex:
    307     OS << "<cp#" << getIndex();
    308     if (getOffset()) OS << "+" << getOffset();
    309     OS << '>';
    310     break;
    311   case MachineOperand::MO_JumpTableIndex:
    312     OS << "<jt#" << getIndex() << '>';
    313     break;
    314   case MachineOperand::MO_GlobalAddress:
    315     OS << "<ga:";
    316     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
    317     if (getOffset()) OS << "+" << getOffset();
    318     OS << '>';
    319     break;
    320   case MachineOperand::MO_ExternalSymbol:
    321     OS << "<es:" << getSymbolName();
    322     if (getOffset()) OS << "+" << getOffset();
    323     OS << '>';
    324     break;
    325   case MachineOperand::MO_BlockAddress:
    326     OS << '<';
    327     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
    328     OS << '>';
    329     break;
    330   case MachineOperand::MO_RegisterMask:
    331     OS << "<regmask>";
    332     break;
    333   case MachineOperand::MO_Metadata:
    334     OS << '<';
    335     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
    336     OS << '>';
    337     break;
    338   case MachineOperand::MO_MCSymbol:
    339     OS << "<MCSym=" << *getMCSymbol() << '>';
    340     break;
    341   }
    342 
    343   if (unsigned TF = getTargetFlags())
    344     OS << "[TF=" << TF << ']';
    345 }
    346 
    347 //===----------------------------------------------------------------------===//
    348 // MachineMemOperand Implementation
    349 //===----------------------------------------------------------------------===//
    350 
    351 /// getAddrSpace - Return the LLVM IR address space number that this pointer
    352 /// points into.
    353 unsigned MachinePointerInfo::getAddrSpace() const {
    354   if (V == 0) return 0;
    355   return cast<PointerType>(V->getType())->getAddressSpace();
    356 }
    357 
    358 /// getConstantPool - Return a MachinePointerInfo record that refers to the
    359 /// constant pool.
    360 MachinePointerInfo MachinePointerInfo::getConstantPool() {
    361   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
    362 }
    363 
    364 /// getFixedStack - Return a MachinePointerInfo record that refers to the
    365 /// the specified FrameIndex.
    366 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
    367   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
    368 }
    369 
    370 MachinePointerInfo MachinePointerInfo::getJumpTable() {
    371   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
    372 }
    373 
    374 MachinePointerInfo MachinePointerInfo::getGOT() {
    375   return MachinePointerInfo(PseudoSourceValue::getGOT());
    376 }
    377 
    378 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
    379   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
    380 }
    381 
    382 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
    383                                      uint64_t s, unsigned int a,
    384                                      const MDNode *TBAAInfo,
    385                                      const MDNode *Ranges)
    386   : PtrInfo(ptrinfo), Size(s),
    387     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
    388     TBAAInfo(TBAAInfo), Ranges(Ranges) {
    389   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
    390          "invalid pointer value");
    391   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
    392   assert((isLoad() || isStore()) && "Not a load/store!");
    393 }
    394 
    395 /// Profile - Gather unique data for the object.
    396 ///
    397 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
    398   ID.AddInteger(getOffset());
    399   ID.AddInteger(Size);
    400   ID.AddPointer(getValue());
    401   ID.AddInteger(Flags);
    402 }
    403 
    404 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
    405   // The Value and Offset may differ due to CSE. But the flags and size
    406   // should be the same.
    407   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
    408   assert(MMO->getSize() == getSize() && "Size mismatch!");
    409 
    410   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
    411     // Update the alignment value.
    412     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
    413       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
    414     // Also update the base and offset, because the new alignment may
    415     // not be applicable with the old ones.
    416     PtrInfo = MMO->PtrInfo;
    417   }
    418 }
    419 
    420 /// getAlignment - Return the minimum known alignment in bytes of the
    421 /// actual memory reference.
    422 uint64_t MachineMemOperand::getAlignment() const {
    423   return MinAlign(getBaseAlignment(), getOffset());
    424 }
    425 
    426 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
    427   assert((MMO.isLoad() || MMO.isStore()) &&
    428          "SV has to be a load, store or both.");
    429 
    430   if (MMO.isVolatile())
    431     OS << "Volatile ";
    432 
    433   if (MMO.isLoad())
    434     OS << "LD";
    435   if (MMO.isStore())
    436     OS << "ST";
    437   OS << MMO.getSize();
    438 
    439   // Print the address information.
    440   OS << "[";
    441   if (!MMO.getValue())
    442     OS << "<unknown>";
    443   else
    444     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
    445 
    446   // If the alignment of the memory reference itself differs from the alignment
    447   // of the base pointer, print the base alignment explicitly, next to the base
    448   // pointer.
    449   if (MMO.getBaseAlignment() != MMO.getAlignment())
    450     OS << "(align=" << MMO.getBaseAlignment() << ")";
    451 
    452   if (MMO.getOffset() != 0)
    453     OS << "+" << MMO.getOffset();
    454   OS << "]";
    455 
    456   // Print the alignment of the reference.
    457   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
    458       MMO.getBaseAlignment() != MMO.getSize())
    459     OS << "(align=" << MMO.getAlignment() << ")";
    460 
    461   // Print TBAA info.
    462   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
    463     OS << "(tbaa=";
    464     if (TBAAInfo->getNumOperands() > 0)
    465       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
    466     else
    467       OS << "<unknown>";
    468     OS << ")";
    469   }
    470 
    471   // Print nontemporal info.
    472   if (MMO.isNonTemporal())
    473     OS << "(nontemporal)";
    474 
    475   return OS;
    476 }
    477 
    478 //===----------------------------------------------------------------------===//
    479 // MachineInstr Implementation
    480 //===----------------------------------------------------------------------===//
    481 
    482 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
    483 /// MCID NULL and no operands.
    484 MachineInstr::MachineInstr()
    485   : MCID(0), Flags(0), AsmPrinterFlags(0),
    486     NumMemRefs(0), MemRefs(0),
    487     Parent(0) {
    488   // Make sure that we get added to a machine basicblock
    489   LeakDetector::addGarbageObject(this);
    490 }
    491 
    492 void MachineInstr::addImplicitDefUseOperands() {
    493   if (MCID->ImplicitDefs)
    494     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
    495       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
    496   if (MCID->ImplicitUses)
    497     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
    498       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
    499 }
    500 
    501 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
    502 /// implicit operands. It reserves space for the number of operands specified by
    503 /// the MCInstrDesc.
    504 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
    505   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    506     NumMemRefs(0), MemRefs(0), Parent(0) {
    507   unsigned NumImplicitOps = 0;
    508   if (!NoImp)
    509     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    510   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    511   if (!NoImp)
    512     addImplicitDefUseOperands();
    513   // Make sure that we get added to a machine basicblock
    514   LeakDetector::addGarbageObject(this);
    515 }
    516 
    517 /// MachineInstr ctor - As above, but with a DebugLoc.
    518 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
    519                            bool NoImp)
    520   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    521     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
    522   unsigned NumImplicitOps = 0;
    523   if (!NoImp)
    524     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    525   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    526   if (!NoImp)
    527     addImplicitDefUseOperands();
    528   // Make sure that we get added to a machine basicblock
    529   LeakDetector::addGarbageObject(this);
    530 }
    531 
    532 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
    533 /// that the MachineInstr is created and added to the end of the specified
    534 /// basic block.
    535 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
    536   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    537     NumMemRefs(0), MemRefs(0), Parent(0) {
    538   assert(MBB && "Cannot use inserting ctor with null basic block!");
    539   unsigned NumImplicitOps =
    540     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    541   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    542   addImplicitDefUseOperands();
    543   // Make sure that we get added to a machine basicblock
    544   LeakDetector::addGarbageObject(this);
    545   MBB->push_back(this);  // Add instruction to end of basic block!
    546 }
    547 
    548 /// MachineInstr ctor - As above, but with a DebugLoc.
    549 ///
    550 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
    551                            const MCInstrDesc &tid)
    552   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    553     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
    554   assert(MBB && "Cannot use inserting ctor with null basic block!");
    555   unsigned NumImplicitOps =
    556     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    557   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    558   addImplicitDefUseOperands();
    559   // Make sure that we get added to a machine basicblock
    560   LeakDetector::addGarbageObject(this);
    561   MBB->push_back(this);  // Add instruction to end of basic block!
    562 }
    563 
    564 /// MachineInstr ctor - Copies MachineInstr arg exactly
    565 ///
    566 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
    567   : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
    568     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
    569     Parent(0), debugLoc(MI.getDebugLoc()) {
    570   Operands.reserve(MI.getNumOperands());
    571 
    572   // Add operands
    573   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
    574     addOperand(MI.getOperand(i));
    575 
    576   // Copy all the flags.
    577   Flags = MI.Flags;
    578 
    579   // Set parent to null.
    580   Parent = 0;
    581 
    582   LeakDetector::addGarbageObject(this);
    583 }
    584 
    585 MachineInstr::~MachineInstr() {
    586   LeakDetector::removeGarbageObject(this);
    587 #ifndef NDEBUG
    588   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    589     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
    590     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
    591            "Reg operand def/use list corrupted");
    592   }
    593 #endif
    594 }
    595 
    596 /// getRegInfo - If this instruction is embedded into a MachineFunction,
    597 /// return the MachineRegisterInfo object for the current function, otherwise
    598 /// return null.
    599 MachineRegisterInfo *MachineInstr::getRegInfo() {
    600   if (MachineBasicBlock *MBB = getParent())
    601     return &MBB->getParent()->getRegInfo();
    602   return 0;
    603 }
    604 
    605 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
    606 /// this instruction from their respective use lists.  This requires that the
    607 /// operands already be on their use lists.
    608 void MachineInstr::RemoveRegOperandsFromUseLists() {
    609   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    610     if (Operands[i].isReg())
    611       Operands[i].RemoveRegOperandFromRegInfo();
    612   }
    613 }
    614 
    615 /// AddRegOperandsToUseLists - Add all of the register operands in
    616 /// this instruction from their respective use lists.  This requires that the
    617 /// operands not be on their use lists yet.
    618 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
    619   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    620     if (Operands[i].isReg())
    621       Operands[i].AddRegOperandToRegInfo(&RegInfo);
    622   }
    623 }
    624 
    625 
    626 /// addOperand - Add the specified operand to the instruction.  If it is an
    627 /// implicit operand, it is added to the end of the operand list.  If it is
    628 /// an explicit operand it is added at the end of the explicit operand list
    629 /// (before the first implicit operand).
    630 void MachineInstr::addOperand(const MachineOperand &Op) {
    631   assert(MCID && "Cannot add operands before providing an instr descriptor");
    632   bool isImpReg = Op.isReg() && Op.isImplicit();
    633   MachineRegisterInfo *RegInfo = getRegInfo();
    634 
    635   // If the Operands backing store is reallocated, all register operands must
    636   // be removed and re-added to RegInfo.  It is storing pointers to operands.
    637   bool Reallocate = RegInfo &&
    638     !Operands.empty() && Operands.size() == Operands.capacity();
    639 
    640   // Find the insert location for the new operand.  Implicit registers go at
    641   // the end, everything goes before the implicit regs.
    642   unsigned OpNo = Operands.size();
    643 
    644   // Remove all the implicit operands from RegInfo if they need to be shifted.
    645   // FIXME: Allow mixed explicit and implicit operands on inline asm.
    646   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
    647   // implicit-defs, but they must not be moved around.  See the FIXME in
    648   // InstrEmitter.cpp.
    649   if (!isImpReg && !isInlineAsm()) {
    650     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
    651       --OpNo;
    652       if (RegInfo)
    653         Operands[OpNo].RemoveRegOperandFromRegInfo();
    654     }
    655   }
    656 
    657   // OpNo now points as the desired insertion point.  Unless this is a variadic
    658   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
    659   assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
    660          "Trying to add an operand to a machine instr that is already done!");
    661 
    662   // All operands from OpNo have been removed from RegInfo.  If the Operands
    663   // backing store needs to be reallocated, we also need to remove any other
    664   // register operands.
    665   if (Reallocate)
    666     for (unsigned i = 0; i != OpNo; ++i)
    667       if (Operands[i].isReg())
    668         Operands[i].RemoveRegOperandFromRegInfo();
    669 
    670   // Insert the new operand at OpNo.
    671   Operands.insert(Operands.begin() + OpNo, Op);
    672   Operands[OpNo].ParentMI = this;
    673 
    674   // The Operands backing store has now been reallocated, so we can re-add the
    675   // operands before OpNo.
    676   if (Reallocate)
    677     for (unsigned i = 0; i != OpNo; ++i)
    678       if (Operands[i].isReg())
    679         Operands[i].AddRegOperandToRegInfo(RegInfo);
    680 
    681   // When adding a register operand, tell RegInfo about it.
    682   if (Operands[OpNo].isReg()) {
    683     // Add the new operand to RegInfo, even when RegInfo is NULL.
    684     // This will initialize the linked list pointers.
    685     Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
    686     // If the register operand is flagged as early, mark the operand as such.
    687     if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    688       Operands[OpNo].setIsEarlyClobber(true);
    689   }
    690 
    691   // Re-add all the implicit ops.
    692   if (RegInfo) {
    693     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
    694       assert(Operands[i].isReg() && "Should only be an implicit reg!");
    695       Operands[i].AddRegOperandToRegInfo(RegInfo);
    696     }
    697   }
    698 }
    699 
    700 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    701 /// fewer operand than it started with.
    702 ///
    703 void MachineInstr::RemoveOperand(unsigned OpNo) {
    704   assert(OpNo < Operands.size() && "Invalid operand number");
    705 
    706   // Special case removing the last one.
    707   if (OpNo == Operands.size()-1) {
    708     // If needed, remove from the reg def/use list.
    709     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
    710       Operands.back().RemoveRegOperandFromRegInfo();
    711 
    712     Operands.pop_back();
    713     return;
    714   }
    715 
    716   // Otherwise, we are removing an interior operand.  If we have reginfo to
    717   // update, remove all operands that will be shifted down from their reg lists,
    718   // move everything down, then re-add them.
    719   MachineRegisterInfo *RegInfo = getRegInfo();
    720   if (RegInfo) {
    721     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    722       if (Operands[i].isReg())
    723         Operands[i].RemoveRegOperandFromRegInfo();
    724     }
    725   }
    726 
    727   Operands.erase(Operands.begin()+OpNo);
    728 
    729   if (RegInfo) {
    730     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    731       if (Operands[i].isReg())
    732         Operands[i].AddRegOperandToRegInfo(RegInfo);
    733     }
    734   }
    735 }
    736 
    737 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    738 /// This function should be used only occasionally. The setMemRefs function
    739 /// is the primary method for setting up a MachineInstr's MemRefs list.
    740 void MachineInstr::addMemOperand(MachineFunction &MF,
    741                                  MachineMemOperand *MO) {
    742   mmo_iterator OldMemRefs = MemRefs;
    743   uint16_t OldNumMemRefs = NumMemRefs;
    744 
    745   uint16_t NewNum = NumMemRefs + 1;
    746   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
    747 
    748   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
    749   NewMemRefs[NewNum - 1] = MO;
    750 
    751   MemRefs = NewMemRefs;
    752   NumMemRefs = NewNum;
    753 }
    754 
    755 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
    756   const MachineBasicBlock *MBB = getParent();
    757   MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
    758   while (MII != MBB->end() && MII->isInsideBundle()) {
    759     if (MII->getDesc().getFlags() & Mask) {
    760       if (Type == AnyInBundle)
    761         return true;
    762     } else {
    763       if (Type == AllInBundle)
    764         return false;
    765     }
    766     ++MII;
    767   }
    768 
    769   return Type == AllInBundle;
    770 }
    771 
    772 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
    773                                  MICheckType Check) const {
    774   // If opcodes or number of operands are not the same then the two
    775   // instructions are obviously not identical.
    776   if (Other->getOpcode() != getOpcode() ||
    777       Other->getNumOperands() != getNumOperands())
    778     return false;
    779 
    780   if (isBundle()) {
    781     // Both instructions are bundles, compare MIs inside the bundle.
    782     MachineBasicBlock::const_instr_iterator I1 = *this;
    783     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
    784     MachineBasicBlock::const_instr_iterator I2 = *Other;
    785     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
    786     while (++I1 != E1 && I1->isInsideBundle()) {
    787       ++I2;
    788       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
    789         return false;
    790     }
    791   }
    792 
    793   // Check operands to make sure they match.
    794   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    795     const MachineOperand &MO = getOperand(i);
    796     const MachineOperand &OMO = Other->getOperand(i);
    797     if (!MO.isReg()) {
    798       if (!MO.isIdenticalTo(OMO))
    799         return false;
    800       continue;
    801     }
    802 
    803     // Clients may or may not want to ignore defs when testing for equality.
    804     // For example, machine CSE pass only cares about finding common
    805     // subexpressions, so it's safe to ignore virtual register defs.
    806     if (MO.isDef()) {
    807       if (Check == IgnoreDefs)
    808         continue;
    809       else if (Check == IgnoreVRegDefs) {
    810         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
    811             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
    812           if (MO.getReg() != OMO.getReg())
    813             return false;
    814       } else {
    815         if (!MO.isIdenticalTo(OMO))
    816           return false;
    817         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
    818           return false;
    819       }
    820     } else {
    821       if (!MO.isIdenticalTo(OMO))
    822         return false;
    823       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
    824         return false;
    825     }
    826   }
    827   // If DebugLoc does not match then two dbg.values are not identical.
    828   if (isDebugValue())
    829     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
    830         && getDebugLoc() != Other->getDebugLoc())
    831       return false;
    832   return true;
    833 }
    834 
    835 /// removeFromParent - This method unlinks 'this' from the containing basic
    836 /// block, and returns it, but does not delete it.
    837 MachineInstr *MachineInstr::removeFromParent() {
    838   assert(getParent() && "Not embedded in a basic block!");
    839 
    840   // If it's a bundle then remove the MIs inside the bundle as well.
    841   if (isBundle()) {
    842     MachineBasicBlock *MBB = getParent();
    843     MachineBasicBlock::instr_iterator MII = *this; ++MII;
    844     MachineBasicBlock::instr_iterator E = MBB->instr_end();
    845     while (MII != E && MII->isInsideBundle()) {
    846       MachineInstr *MI = &*MII;
    847       ++MII;
    848       MBB->remove(MI);
    849     }
    850   }
    851   getParent()->remove(this);
    852   return this;
    853 }
    854 
    855 
    856 /// eraseFromParent - This method unlinks 'this' from the containing basic
    857 /// block, and deletes it.
    858 void MachineInstr::eraseFromParent() {
    859   assert(getParent() && "Not embedded in a basic block!");
    860   // If it's a bundle then remove the MIs inside the bundle as well.
    861   if (isBundle()) {
    862     MachineBasicBlock *MBB = getParent();
    863     MachineBasicBlock::instr_iterator MII = *this; ++MII;
    864     MachineBasicBlock::instr_iterator E = MBB->instr_end();
    865     while (MII != E && MII->isInsideBundle()) {
    866       MachineInstr *MI = &*MII;
    867       ++MII;
    868       MBB->erase(MI);
    869     }
    870   }
    871   getParent()->erase(this);
    872 }
    873 
    874 
    875 /// getNumExplicitOperands - Returns the number of non-implicit operands.
    876 ///
    877 unsigned MachineInstr::getNumExplicitOperands() const {
    878   unsigned NumOperands = MCID->getNumOperands();
    879   if (!MCID->isVariadic())
    880     return NumOperands;
    881 
    882   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
    883     const MachineOperand &MO = getOperand(i);
    884     if (!MO.isReg() || !MO.isImplicit())
    885       NumOperands++;
    886   }
    887   return NumOperands;
    888 }
    889 
    890 /// isBundled - Return true if this instruction part of a bundle. This is true
    891 /// if either itself or its following instruction is marked "InsideBundle".
    892 bool MachineInstr::isBundled() const {
    893   if (isInsideBundle())
    894     return true;
    895   MachineBasicBlock::const_instr_iterator nextMI = this;
    896   ++nextMI;
    897   return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
    898 }
    899 
    900 bool MachineInstr::isStackAligningInlineAsm() const {
    901   if (isInlineAsm()) {
    902     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    903     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
    904       return true;
    905   }
    906   return false;
    907 }
    908 
    909 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
    910                                        unsigned *GroupNo) const {
    911   assert(isInlineAsm() && "Expected an inline asm instruction");
    912   assert(OpIdx < getNumOperands() && "OpIdx out of range");
    913 
    914   // Ignore queries about the initial operands.
    915   if (OpIdx < InlineAsm::MIOp_FirstOperand)
    916     return -1;
    917 
    918   unsigned Group = 0;
    919   unsigned NumOps;
    920   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
    921        i += NumOps) {
    922     const MachineOperand &FlagMO = getOperand(i);
    923     // If we reach the implicit register operands, stop looking.
    924     if (!FlagMO.isImm())
    925       return -1;
    926     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
    927     if (i + NumOps > OpIdx) {
    928       if (GroupNo)
    929         *GroupNo = Group;
    930       return i;
    931     }
    932     ++Group;
    933   }
    934   return -1;
    935 }
    936 
    937 const TargetRegisterClass*
    938 MachineInstr::getRegClassConstraint(unsigned OpIdx,
    939                                     const TargetInstrInfo *TII,
    940                                     const TargetRegisterInfo *TRI) const {
    941   // Most opcodes have fixed constraints in their MCInstrDesc.
    942   if (!isInlineAsm())
    943     return TII->getRegClass(getDesc(), OpIdx, TRI);
    944 
    945   if (!getOperand(OpIdx).isReg())
    946     return NULL;
    947 
    948   // For tied uses on inline asm, get the constraint from the def.
    949   unsigned DefIdx;
    950   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
    951     OpIdx = DefIdx;
    952 
    953   // Inline asm stores register class constraints in the flag word.
    954   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
    955   if (FlagIdx < 0)
    956     return NULL;
    957 
    958   unsigned Flag = getOperand(FlagIdx).getImm();
    959   unsigned RCID;
    960   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
    961     return TRI->getRegClass(RCID);
    962 
    963   // Assume that all registers in a memory operand are pointers.
    964   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
    965     return TRI->getPointerRegClass();
    966 
    967   return NULL;
    968 }
    969 
    970 /// getBundleSize - Return the number of instructions inside the MI bundle.
    971 unsigned MachineInstr::getBundleSize() const {
    972   assert(isBundle() && "Expecting a bundle");
    973 
    974   MachineBasicBlock::const_instr_iterator I = *this;
    975   unsigned Size = 0;
    976   while ((++I)->isInsideBundle()) {
    977     ++Size;
    978   }
    979   assert(Size > 1 && "Malformed bundle");
    980 
    981   return Size;
    982 }
    983 
    984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
    985 /// the specific register or -1 if it is not found. It further tightens
    986 /// the search criteria to a use that kills the register if isKill is true.
    987 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
    988                                           const TargetRegisterInfo *TRI) const {
    989   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    990     const MachineOperand &MO = getOperand(i);
    991     if (!MO.isReg() || !MO.isUse())
    992       continue;
    993     unsigned MOReg = MO.getReg();
    994     if (!MOReg)
    995       continue;
    996     if (MOReg == Reg ||
    997         (TRI &&
    998          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
    999          TargetRegisterInfo::isPhysicalRegister(Reg) &&
   1000          TRI->isSubRegister(MOReg, Reg)))
   1001       if (!isKill || MO.isKill())
   1002         return i;
   1003   }
   1004   return -1;
   1005 }
   1006 
   1007 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
   1008 /// indicating if this instruction reads or writes Reg. This also considers
   1009 /// partial defines.
   1010 std::pair<bool,bool>
   1011 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
   1012                                          SmallVectorImpl<unsigned> *Ops) const {
   1013   bool PartDef = false; // Partial redefine.
   1014   bool FullDef = false; // Full define.
   1015   bool Use = false;
   1016 
   1017   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1018     const MachineOperand &MO = getOperand(i);
   1019     if (!MO.isReg() || MO.getReg() != Reg)
   1020       continue;
   1021     if (Ops)
   1022       Ops->push_back(i);
   1023     if (MO.isUse())
   1024       Use |= !MO.isUndef();
   1025     else if (MO.getSubReg() && !MO.isUndef())
   1026       // A partial <def,undef> doesn't count as reading the register.
   1027       PartDef = true;
   1028     else
   1029       FullDef = true;
   1030   }
   1031   // A partial redefine uses Reg unless there is also a full define.
   1032   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
   1033 }
   1034 
   1035 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
   1036 /// the specified register or -1 if it is not found. If isDead is true, defs
   1037 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
   1038 /// also checks if there is a def of a super-register.
   1039 int
   1040 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
   1041                                         const TargetRegisterInfo *TRI) const {
   1042   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
   1043   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1044     const MachineOperand &MO = getOperand(i);
   1045     // Accept regmask operands when Overlap is set.
   1046     // Ignore them when looking for a specific def operand (Overlap == false).
   1047     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
   1048       return i;
   1049     if (!MO.isReg() || !MO.isDef())
   1050       continue;
   1051     unsigned MOReg = MO.getReg();
   1052     bool Found = (MOReg == Reg);
   1053     if (!Found && TRI && isPhys &&
   1054         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1055       if (Overlap)
   1056         Found = TRI->regsOverlap(MOReg, Reg);
   1057       else
   1058         Found = TRI->isSubRegister(MOReg, Reg);
   1059     }
   1060     if (Found && (!isDead || MO.isDead()))
   1061       return i;
   1062   }
   1063   return -1;
   1064 }
   1065 
   1066 /// findFirstPredOperandIdx() - Find the index of the first operand in the
   1067 /// operand list that is used to represent the predicate. It returns -1 if
   1068 /// none is found.
   1069 int MachineInstr::findFirstPredOperandIdx() const {
   1070   // Don't call MCID.findFirstPredOperandIdx() because this variant
   1071   // is sometimes called on an instruction that's not yet complete, and
   1072   // so the number of operands is less than the MCID indicates. In
   1073   // particular, the PTX target does this.
   1074   const MCInstrDesc &MCID = getDesc();
   1075   if (MCID.isPredicable()) {
   1076     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1077       if (MCID.OpInfo[i].isPredicate())
   1078         return i;
   1079   }
   1080 
   1081   return -1;
   1082 }
   1083 
   1084 /// isRegTiedToUseOperand - Given the index of a register def operand,
   1085 /// check if the register def is tied to a source operand, due to either
   1086 /// two-address elimination or inline assembly constraints. Returns the
   1087 /// first tied use operand index by reference is UseOpIdx is not null.
   1088 bool MachineInstr::
   1089 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
   1090   if (isInlineAsm()) {
   1091     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
   1092     const MachineOperand &MO = getOperand(DefOpIdx);
   1093     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
   1094       return false;
   1095     // Determine the actual operand index that corresponds to this index.
   1096     unsigned DefNo = 0;
   1097     int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
   1098     if (FlagIdx < 0)
   1099       return false;
   1100 
   1101     // Which part of the group is DefOpIdx?
   1102     unsigned DefPart = DefOpIdx - (FlagIdx + 1);
   1103 
   1104     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
   1105          i != e; ++i) {
   1106       const MachineOperand &FMO = getOperand(i);
   1107       if (!FMO.isImm())
   1108         continue;
   1109       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
   1110         continue;
   1111       unsigned Idx;
   1112       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
   1113           Idx == DefNo) {
   1114         if (UseOpIdx)
   1115           *UseOpIdx = (unsigned)i + 1 + DefPart;
   1116         return true;
   1117       }
   1118     }
   1119     return false;
   1120   }
   1121 
   1122   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
   1123   const MCInstrDesc &MCID = getDesc();
   1124   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
   1125     const MachineOperand &MO = getOperand(i);
   1126     if (MO.isReg() && MO.isUse() &&
   1127         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
   1128       if (UseOpIdx)
   1129         *UseOpIdx = (unsigned)i;
   1130       return true;
   1131     }
   1132   }
   1133   return false;
   1134 }
   1135 
   1136 /// isRegTiedToDefOperand - Return true if the operand of the specified index
   1137 /// is a register use and it is tied to an def operand. It also returns the def
   1138 /// operand index by reference.
   1139 bool MachineInstr::
   1140 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
   1141   if (isInlineAsm()) {
   1142     const MachineOperand &MO = getOperand(UseOpIdx);
   1143     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
   1144       return false;
   1145 
   1146     // Find the flag operand corresponding to UseOpIdx
   1147     int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
   1148     if (FlagIdx < 0)
   1149       return false;
   1150 
   1151     const MachineOperand &UFMO = getOperand(FlagIdx);
   1152     unsigned DefNo;
   1153     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
   1154       if (!DefOpIdx)
   1155         return true;
   1156 
   1157       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
   1158       // Remember to adjust the index. First operand is asm string, second is
   1159       // the HasSideEffects and AlignStack bits, then there is a flag for each.
   1160       while (DefNo) {
   1161         const MachineOperand &FMO = getOperand(DefIdx);
   1162         assert(FMO.isImm());
   1163         // Skip over this def.
   1164         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
   1165         --DefNo;
   1166       }
   1167       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
   1168       return true;
   1169     }
   1170     return false;
   1171   }
   1172 
   1173   const MCInstrDesc &MCID = getDesc();
   1174   if (UseOpIdx >= MCID.getNumOperands())
   1175     return false;
   1176   const MachineOperand &MO = getOperand(UseOpIdx);
   1177   if (!MO.isReg() || !MO.isUse())
   1178     return false;
   1179   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
   1180   if (DefIdx == -1)
   1181     return false;
   1182   if (DefOpIdx)
   1183     *DefOpIdx = (unsigned)DefIdx;
   1184   return true;
   1185 }
   1186 
   1187 /// clearKillInfo - Clears kill flags on all operands.
   1188 ///
   1189 void MachineInstr::clearKillInfo() {
   1190   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1191     MachineOperand &MO = getOperand(i);
   1192     if (MO.isReg() && MO.isUse())
   1193       MO.setIsKill(false);
   1194   }
   1195 }
   1196 
   1197 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
   1198 ///
   1199 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
   1200   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1201     const MachineOperand &MO = MI->getOperand(i);
   1202     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
   1203       continue;
   1204     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
   1205       MachineOperand &MOp = getOperand(j);
   1206       if (!MOp.isIdenticalTo(MO))
   1207         continue;
   1208       if (MO.isKill())
   1209         MOp.setIsKill();
   1210       else
   1211         MOp.setIsDead();
   1212       break;
   1213     }
   1214   }
   1215 }
   1216 
   1217 /// copyPredicates - Copies predicate operand(s) from MI.
   1218 void MachineInstr::copyPredicates(const MachineInstr *MI) {
   1219   assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
   1220 
   1221   const MCInstrDesc &MCID = MI->getDesc();
   1222   if (!MCID.isPredicable())
   1223     return;
   1224   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1225     if (MCID.OpInfo[i].isPredicate()) {
   1226       // Predicated operands must be last operands.
   1227       addOperand(MI->getOperand(i));
   1228     }
   1229   }
   1230 }
   1231 
   1232 void MachineInstr::substituteRegister(unsigned FromReg,
   1233                                       unsigned ToReg,
   1234                                       unsigned SubIdx,
   1235                                       const TargetRegisterInfo &RegInfo) {
   1236   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
   1237     if (SubIdx)
   1238       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
   1239     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1240       MachineOperand &MO = getOperand(i);
   1241       if (!MO.isReg() || MO.getReg() != FromReg)
   1242         continue;
   1243       MO.substPhysReg(ToReg, RegInfo);
   1244     }
   1245   } else {
   1246     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1247       MachineOperand &MO = getOperand(i);
   1248       if (!MO.isReg() || MO.getReg() != FromReg)
   1249         continue;
   1250       MO.substVirtReg(ToReg, SubIdx, RegInfo);
   1251     }
   1252   }
   1253 }
   1254 
   1255 /// isSafeToMove - Return true if it is safe to move this instruction. If
   1256 /// SawStore is set to true, it means that there is a store (or call) between
   1257 /// the instruction's location and its intended destination.
   1258 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
   1259                                 AliasAnalysis *AA,
   1260                                 bool &SawStore) const {
   1261   // Ignore stuff that we obviously can't move.
   1262   if (mayStore() || isCall()) {
   1263     SawStore = true;
   1264     return false;
   1265   }
   1266 
   1267   if (isLabel() || isDebugValue() ||
   1268       isTerminator() || hasUnmodeledSideEffects())
   1269     return false;
   1270 
   1271   // See if this instruction does a load.  If so, we have to guarantee that the
   1272   // loaded value doesn't change between the load and the its intended
   1273   // destination. The check for isInvariantLoad gives the targe the chance to
   1274   // classify the load as always returning a constant, e.g. a constant pool
   1275   // load.
   1276   if (mayLoad() && !isInvariantLoad(AA))
   1277     // Otherwise, this is a real load.  If there is a store between the load and
   1278     // end of block, or if the load is volatile, we can't move it.
   1279     return !SawStore && !hasVolatileMemoryRef();
   1280 
   1281   return true;
   1282 }
   1283 
   1284 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
   1285 /// instruction which defined the specified register instead of copying it.
   1286 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
   1287                                  AliasAnalysis *AA,
   1288                                  unsigned DstReg) const {
   1289   bool SawStore = false;
   1290   if (!TII->isTriviallyReMaterializable(this, AA) ||
   1291       !isSafeToMove(TII, AA, SawStore))
   1292     return false;
   1293   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1294     const MachineOperand &MO = getOperand(i);
   1295     if (!MO.isReg())
   1296       continue;
   1297     // FIXME: For now, do not remat any instruction with register operands.
   1298     // Later on, we can loosen the restriction is the register operands have
   1299     // not been modified between the def and use. Note, this is different from
   1300     // MachineSink because the code is no longer in two-address form (at least
   1301     // partially).
   1302     if (MO.isUse())
   1303       return false;
   1304     else if (!MO.isDead() && MO.getReg() != DstReg)
   1305       return false;
   1306   }
   1307   return true;
   1308 }
   1309 
   1310 /// hasVolatileMemoryRef - Return true if this instruction may have a
   1311 /// volatile memory reference, or if the information describing the
   1312 /// memory reference is not available. Return false if it is known to
   1313 /// have no volatile memory references.
   1314 bool MachineInstr::hasVolatileMemoryRef() const {
   1315   // An instruction known never to access memory won't have a volatile access.
   1316   if (!mayStore() &&
   1317       !mayLoad() &&
   1318       !isCall() &&
   1319       !hasUnmodeledSideEffects())
   1320     return false;
   1321 
   1322   // Otherwise, if the instruction has no memory reference information,
   1323   // conservatively assume it wasn't preserved.
   1324   if (memoperands_empty())
   1325     return true;
   1326 
   1327   // Check the memory reference information for volatile references.
   1328   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
   1329     if ((*I)->isVolatile())
   1330       return true;
   1331 
   1332   return false;
   1333 }
   1334 
   1335 /// isInvariantLoad - Return true if this instruction is loading from a
   1336 /// location whose value is invariant across the function.  For example,
   1337 /// loading a value from the constant pool or from the argument area
   1338 /// of a function if it does not change.  This should only return true of
   1339 /// *all* loads the instruction does are invariant (if it does multiple loads).
   1340 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
   1341   // If the instruction doesn't load at all, it isn't an invariant load.
   1342   if (!mayLoad())
   1343     return false;
   1344 
   1345   // If the instruction has lost its memoperands, conservatively assume that
   1346   // it may not be an invariant load.
   1347   if (memoperands_empty())
   1348     return false;
   1349 
   1350   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
   1351 
   1352   for (mmo_iterator I = memoperands_begin(),
   1353        E = memoperands_end(); I != E; ++I) {
   1354     if ((*I)->isVolatile()) return false;
   1355     if ((*I)->isStore()) return false;
   1356     if ((*I)->isInvariant()) return true;
   1357 
   1358     if (const Value *V = (*I)->getValue()) {
   1359       // A load from a constant PseudoSourceValue is invariant.
   1360       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
   1361         if (PSV->isConstant(MFI))
   1362           continue;
   1363       // If we have an AliasAnalysis, ask it whether the memory is constant.
   1364       if (AA && AA->pointsToConstantMemory(
   1365                       AliasAnalysis::Location(V, (*I)->getSize(),
   1366                                               (*I)->getTBAAInfo())))
   1367         continue;
   1368     }
   1369 
   1370     // Otherwise assume conservatively.
   1371     return false;
   1372   }
   1373 
   1374   // Everything checks out.
   1375   return true;
   1376 }
   1377 
   1378 /// isConstantValuePHI - If the specified instruction is a PHI that always
   1379 /// merges together the same virtual register, return the register, otherwise
   1380 /// return 0.
   1381 unsigned MachineInstr::isConstantValuePHI() const {
   1382   if (!isPHI())
   1383     return 0;
   1384   assert(getNumOperands() >= 3 &&
   1385          "It's illegal to have a PHI without source operands");
   1386 
   1387   unsigned Reg = getOperand(1).getReg();
   1388   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
   1389     if (getOperand(i).getReg() != Reg)
   1390       return 0;
   1391   return Reg;
   1392 }
   1393 
   1394 bool MachineInstr::hasUnmodeledSideEffects() const {
   1395   if (hasProperty(MCID::UnmodeledSideEffects))
   1396     return true;
   1397   if (isInlineAsm()) {
   1398     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1399     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1400       return true;
   1401   }
   1402 
   1403   return false;
   1404 }
   1405 
   1406 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1407 ///
   1408 bool MachineInstr::allDefsAreDead() const {
   1409   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
   1410     const MachineOperand &MO = getOperand(i);
   1411     if (!MO.isReg() || MO.isUse())
   1412       continue;
   1413     if (!MO.isDead())
   1414       return false;
   1415   }
   1416   return true;
   1417 }
   1418 
   1419 /// copyImplicitOps - Copy implicit register operands from specified
   1420 /// instruction to this instruction.
   1421 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
   1422   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
   1423        i != e; ++i) {
   1424     const MachineOperand &MO = MI->getOperand(i);
   1425     if (MO.isReg() && MO.isImplicit())
   1426       addOperand(MO);
   1427   }
   1428 }
   1429 
   1430 void MachineInstr::dump() const {
   1431   dbgs() << "  " << *this;
   1432 }
   1433 
   1434 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
   1435                          raw_ostream &CommentOS) {
   1436   const LLVMContext &Ctx = MF->getFunction()->getContext();
   1437   if (!DL.isUnknown()) {          // Print source line info.
   1438     DIScope Scope(DL.getScope(Ctx));
   1439     // Omit the directory, because it's likely to be long and uninteresting.
   1440     if (Scope.Verify())
   1441       CommentOS << Scope.getFilename();
   1442     else
   1443       CommentOS << "<unknown>";
   1444     CommentOS << ':' << DL.getLine();
   1445     if (DL.getCol() != 0)
   1446       CommentOS << ':' << DL.getCol();
   1447     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
   1448     if (!InlinedAtDL.isUnknown()) {
   1449       CommentOS << " @[ ";
   1450       printDebugLoc(InlinedAtDL, MF, CommentOS);
   1451       CommentOS << " ]";
   1452     }
   1453   }
   1454 }
   1455 
   1456 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
   1457   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
   1458   const MachineFunction *MF = 0;
   1459   const MachineRegisterInfo *MRI = 0;
   1460   if (const MachineBasicBlock *MBB = getParent()) {
   1461     MF = MBB->getParent();
   1462     if (!TM && MF)
   1463       TM = &MF->getTarget();
   1464     if (MF)
   1465       MRI = &MF->getRegInfo();
   1466   }
   1467 
   1468   // Save a list of virtual registers.
   1469   SmallVector<unsigned, 8> VirtRegs;
   1470 
   1471   // Print explicitly defined operands on the left of an assignment syntax.
   1472   unsigned StartOp = 0, e = getNumOperands();
   1473   for (; StartOp < e && getOperand(StartOp).isReg() &&
   1474          getOperand(StartOp).isDef() &&
   1475          !getOperand(StartOp).isImplicit();
   1476        ++StartOp) {
   1477     if (StartOp != 0) OS << ", ";
   1478     getOperand(StartOp).print(OS, TM);
   1479     unsigned Reg = getOperand(StartOp).getReg();
   1480     if (TargetRegisterInfo::isVirtualRegister(Reg))
   1481       VirtRegs.push_back(Reg);
   1482   }
   1483 
   1484   if (StartOp != 0)
   1485     OS << " = ";
   1486 
   1487   // Print the opcode name.
   1488   if (TM && TM->getInstrInfo())
   1489     OS << TM->getInstrInfo()->getName(getOpcode());
   1490   else
   1491     OS << "UNKNOWN";
   1492 
   1493   // Print the rest of the operands.
   1494   bool OmittedAnyCallClobbers = false;
   1495   bool FirstOp = true;
   1496   unsigned AsmDescOp = ~0u;
   1497   unsigned AsmOpCount = 0;
   1498 
   1499   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
   1500     // Print asm string.
   1501     OS << " ";
   1502     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
   1503 
   1504     // Print HasSideEffects, IsAlignStack
   1505     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1506     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1507       OS << " [sideeffect]";
   1508     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
   1509       OS << " [alignstack]";
   1510 
   1511     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
   1512     FirstOp = false;
   1513   }
   1514 
   1515 
   1516   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
   1517     const MachineOperand &MO = getOperand(i);
   1518 
   1519     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1520       VirtRegs.push_back(MO.getReg());
   1521 
   1522     // Omit call-clobbered registers which aren't used anywhere. This makes
   1523     // call instructions much less noisy on targets where calls clobber lots
   1524     // of registers. Don't rely on MO.isDead() because we may be called before
   1525     // LiveVariables is run, or we may be looking at a non-allocatable reg.
   1526     if (MF && isCall() &&
   1527         MO.isReg() && MO.isImplicit() && MO.isDef()) {
   1528       unsigned Reg = MO.getReg();
   1529       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1530         const MachineRegisterInfo &MRI = MF->getRegInfo();
   1531         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
   1532           bool HasAliasLive = false;
   1533           for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
   1534                unsigned AliasReg = *Alias; ++Alias)
   1535             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
   1536               HasAliasLive = true;
   1537               break;
   1538             }
   1539           if (!HasAliasLive) {
   1540             OmittedAnyCallClobbers = true;
   1541             continue;
   1542           }
   1543         }
   1544       }
   1545     }
   1546 
   1547     if (FirstOp) FirstOp = false; else OS << ",";
   1548     OS << " ";
   1549     if (i < getDesc().NumOperands) {
   1550       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
   1551       if (MCOI.isPredicate())
   1552         OS << "pred:";
   1553       if (MCOI.isOptionalDef())
   1554         OS << "opt:";
   1555     }
   1556     if (isDebugValue() && MO.isMetadata()) {
   1557       // Pretty print DBG_VALUE instructions.
   1558       const MDNode *MD = MO.getMetadata();
   1559       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
   1560         OS << "!\"" << MDS->getString() << '\"';
   1561       else
   1562         MO.print(OS, TM);
   1563     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
   1564       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
   1565     } else if (i == AsmDescOp && MO.isImm()) {
   1566       // Pretty print the inline asm operand descriptor.
   1567       OS << '$' << AsmOpCount++;
   1568       unsigned Flag = MO.getImm();
   1569       switch (InlineAsm::getKind(Flag)) {
   1570       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
   1571       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
   1572       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
   1573       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
   1574       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
   1575       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
   1576       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
   1577       }
   1578 
   1579       unsigned RCID = 0;
   1580       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
   1581         if (TM)
   1582           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
   1583         else
   1584           OS << ":RC" << RCID;
   1585       }
   1586 
   1587       unsigned TiedTo = 0;
   1588       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
   1589         OS << " tiedto:$" << TiedTo;
   1590 
   1591       OS << ']';
   1592 
   1593       // Compute the index of the next operand descriptor.
   1594       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
   1595     } else
   1596       MO.print(OS, TM);
   1597   }
   1598 
   1599   // Briefly indicate whether any call clobbers were omitted.
   1600   if (OmittedAnyCallClobbers) {
   1601     if (!FirstOp) OS << ",";
   1602     OS << " ...";
   1603   }
   1604 
   1605   bool HaveSemi = false;
   1606   if (Flags) {
   1607     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1608     OS << " flags: ";
   1609 
   1610     if (Flags & FrameSetup)
   1611       OS << "FrameSetup";
   1612   }
   1613 
   1614   if (!memoperands_empty()) {
   1615     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1616 
   1617     OS << " mem:";
   1618     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
   1619          i != e; ++i) {
   1620       OS << **i;
   1621       if (llvm::next(i) != e)
   1622         OS << " ";
   1623     }
   1624   }
   1625 
   1626   // Print the regclass of any virtual registers encountered.
   1627   if (MRI && !VirtRegs.empty()) {
   1628     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1629     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
   1630       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
   1631       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
   1632       for (unsigned j = i+1; j != VirtRegs.size();) {
   1633         if (MRI->getRegClass(VirtRegs[j]) != RC) {
   1634           ++j;
   1635           continue;
   1636         }
   1637         if (VirtRegs[i] != VirtRegs[j])
   1638           OS << "," << PrintReg(VirtRegs[j]);
   1639         VirtRegs.erase(VirtRegs.begin()+j);
   1640       }
   1641     }
   1642   }
   1643 
   1644   // Print debug location information.
   1645   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
   1646     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1647     DIVariable DV(getOperand(e - 1).getMetadata());
   1648     OS << " line no:" <<  DV.getLineNumber();
   1649     if (MDNode *InlinedAt = DV.getInlinedAt()) {
   1650       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
   1651       if (!InlinedAtDL.isUnknown()) {
   1652         OS << " inlined @[ ";
   1653         printDebugLoc(InlinedAtDL, MF, OS);
   1654         OS << " ]";
   1655       }
   1656     }
   1657   } else if (!debugLoc.isUnknown() && MF) {
   1658     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1659     OS << " dbg:";
   1660     printDebugLoc(debugLoc, MF, OS);
   1661   }
   1662 
   1663   OS << '\n';
   1664 }
   1665 
   1666 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
   1667                                      const TargetRegisterInfo *RegInfo,
   1668                                      bool AddIfNotFound) {
   1669   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1670   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
   1671   bool Found = false;
   1672   SmallVector<unsigned,4> DeadOps;
   1673   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1674     MachineOperand &MO = getOperand(i);
   1675     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
   1676       continue;
   1677     unsigned Reg = MO.getReg();
   1678     if (!Reg)
   1679       continue;
   1680 
   1681     if (Reg == IncomingReg) {
   1682       if (!Found) {
   1683         if (MO.isKill())
   1684           // The register is already marked kill.
   1685           return true;
   1686         if (isPhysReg && isRegTiedToDefOperand(i))
   1687           // Two-address uses of physregs must not be marked kill.
   1688           return true;
   1689         MO.setIsKill();
   1690         Found = true;
   1691       }
   1692     } else if (hasAliases && MO.isKill() &&
   1693                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1694       // A super-register kill already exists.
   1695       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1696         return true;
   1697       if (RegInfo->isSubRegister(IncomingReg, Reg))
   1698         DeadOps.push_back(i);
   1699     }
   1700   }
   1701 
   1702   // Trim unneeded kill operands.
   1703   while (!DeadOps.empty()) {
   1704     unsigned OpIdx = DeadOps.back();
   1705     if (getOperand(OpIdx).isImplicit())
   1706       RemoveOperand(OpIdx);
   1707     else
   1708       getOperand(OpIdx).setIsKill(false);
   1709     DeadOps.pop_back();
   1710   }
   1711 
   1712   // If not found, this means an alias of one of the operands is killed. Add a
   1713   // new implicit operand if required.
   1714   if (!Found && AddIfNotFound) {
   1715     addOperand(MachineOperand::CreateReg(IncomingReg,
   1716                                          false /*IsDef*/,
   1717                                          true  /*IsImp*/,
   1718                                          true  /*IsKill*/));
   1719     return true;
   1720   }
   1721   return Found;
   1722 }
   1723 
   1724 void MachineInstr::clearRegisterKills(unsigned Reg,
   1725                                       const TargetRegisterInfo *RegInfo) {
   1726   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
   1727     RegInfo = 0;
   1728   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1729     MachineOperand &MO = getOperand(i);
   1730     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
   1731       continue;
   1732     unsigned OpReg = MO.getReg();
   1733     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
   1734       MO.setIsKill(false);
   1735   }
   1736 }
   1737 
   1738 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
   1739                                    const TargetRegisterInfo *RegInfo,
   1740                                    bool AddIfNotFound) {
   1741   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1742   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
   1743   bool Found = false;
   1744   SmallVector<unsigned,4> DeadOps;
   1745   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1746     MachineOperand &MO = getOperand(i);
   1747     if (!MO.isReg() || !MO.isDef())
   1748       continue;
   1749     unsigned Reg = MO.getReg();
   1750     if (!Reg)
   1751       continue;
   1752 
   1753     if (Reg == IncomingReg) {
   1754       MO.setIsDead();
   1755       Found = true;
   1756     } else if (hasAliases && MO.isDead() &&
   1757                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1758       // There exists a super-register that's marked dead.
   1759       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1760         return true;
   1761       if (RegInfo->getSubRegisters(IncomingReg) &&
   1762           RegInfo->getSuperRegisters(Reg) &&
   1763           RegInfo->isSubRegister(IncomingReg, Reg))
   1764         DeadOps.push_back(i);
   1765     }
   1766   }
   1767 
   1768   // Trim unneeded dead operands.
   1769   while (!DeadOps.empty()) {
   1770     unsigned OpIdx = DeadOps.back();
   1771     if (getOperand(OpIdx).isImplicit())
   1772       RemoveOperand(OpIdx);
   1773     else
   1774       getOperand(OpIdx).setIsDead(false);
   1775     DeadOps.pop_back();
   1776   }
   1777 
   1778   // If not found, this means an alias of one of the operands is dead. Add a
   1779   // new implicit operand if required.
   1780   if (Found || !AddIfNotFound)
   1781     return Found;
   1782 
   1783   addOperand(MachineOperand::CreateReg(IncomingReg,
   1784                                        true  /*IsDef*/,
   1785                                        true  /*IsImp*/,
   1786                                        false /*IsKill*/,
   1787                                        true  /*IsDead*/));
   1788   return true;
   1789 }
   1790 
   1791 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
   1792                                       const TargetRegisterInfo *RegInfo) {
   1793   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
   1794     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
   1795     if (MO)
   1796       return;
   1797   } else {
   1798     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1799       const MachineOperand &MO = getOperand(i);
   1800       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
   1801           MO.getSubReg() == 0)
   1802         return;
   1803     }
   1804   }
   1805   addOperand(MachineOperand::CreateReg(IncomingReg,
   1806                                        true  /*IsDef*/,
   1807                                        true  /*IsImp*/));
   1808 }
   1809 
   1810 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1811                                          const TargetRegisterInfo &TRI) {
   1812   bool HasRegMask = false;
   1813   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1814     MachineOperand &MO = getOperand(i);
   1815     if (MO.isRegMask()) {
   1816       HasRegMask = true;
   1817       continue;
   1818     }
   1819     if (!MO.isReg() || !MO.isDef()) continue;
   1820     unsigned Reg = MO.getReg();
   1821     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
   1822     bool Dead = true;
   1823     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
   1824          I != E; ++I)
   1825       if (TRI.regsOverlap(*I, Reg)) {
   1826         Dead = false;
   1827         break;
   1828       }
   1829     // If there are no uses, including partial uses, the def is dead.
   1830     if (Dead) MO.setIsDead();
   1831   }
   1832 
   1833   // This is a call with a register mask operand.
   1834   // Mask clobbers are always dead, so add defs for the non-dead defines.
   1835   if (HasRegMask)
   1836     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
   1837          I != E; ++I)
   1838       addRegisterDefined(*I, &TRI);
   1839 }
   1840 
   1841 unsigned
   1842 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
   1843   // Build up a buffer of hash code components.
   1844   //
   1845   // FIXME: This is a total hack. We should have a hash_value overload for
   1846   // MachineOperand, but currently that doesn't work because there are many
   1847   // different ideas of "equality" and thus different sets of information that
   1848   // contribute to the hash code. This one happens to want to take a specific
   1849   // subset. And it's still not clear that this routine uses the *correct*
   1850   // subset of information when computing the hash code. The goal is to use the
   1851   // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to
   1852   // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would
   1853   // be very useful to factor the selection of relevant inputs out of the two
   1854   // functions and into a common routine, but it's not clear how that can be
   1855   // done.
   1856   SmallVector<size_t, 8> HashComponents;
   1857   HashComponents.reserve(MI->getNumOperands() + 1);
   1858   HashComponents.push_back(MI->getOpcode());
   1859   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1860     const MachineOperand &MO = MI->getOperand(i);
   1861     switch (MO.getType()) {
   1862     default: break;
   1863     case MachineOperand::MO_Register:
   1864       if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1865         continue;  // Skip virtual register defs.
   1866       HashComponents.push_back(hash_combine(MO.getType(), MO.getReg()));
   1867       break;
   1868     case MachineOperand::MO_Immediate:
   1869       HashComponents.push_back(hash_combine(MO.getType(), MO.getImm()));
   1870       break;
   1871     case MachineOperand::MO_FrameIndex:
   1872     case MachineOperand::MO_ConstantPoolIndex:
   1873     case MachineOperand::MO_JumpTableIndex:
   1874       HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex()));
   1875       break;
   1876     case MachineOperand::MO_MachineBasicBlock:
   1877       HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB()));
   1878       break;
   1879     case MachineOperand::MO_GlobalAddress:
   1880       HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal()));
   1881       break;
   1882     case MachineOperand::MO_BlockAddress:
   1883       HashComponents.push_back(hash_combine(MO.getType(),
   1884                                             MO.getBlockAddress()));
   1885       break;
   1886     case MachineOperand::MO_MCSymbol:
   1887       HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol()));
   1888       break;
   1889     }
   1890   }
   1891   return hash_combine_range(HashComponents.begin(), HashComponents.end());
   1892 }
   1893 
   1894 void MachineInstr::emitError(StringRef Msg) const {
   1895   // Find the source location cookie.
   1896   unsigned LocCookie = 0;
   1897   const MDNode *LocMD = 0;
   1898   for (unsigned i = getNumOperands(); i != 0; --i) {
   1899     if (getOperand(i-1).isMetadata() &&
   1900         (LocMD = getOperand(i-1).getMetadata()) &&
   1901         LocMD->getNumOperands() != 0) {
   1902       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
   1903         LocCookie = CI->getZExtValue();
   1904         break;
   1905       }
   1906     }
   1907   }
   1908 
   1909   if (const MachineBasicBlock *MBB = getParent())
   1910     if (const MachineFunction *MF = MBB->getParent())
   1911       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
   1912   report_fatal_error(Msg);
   1913 }
   1914