Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the FastISel class.
     11 //
     12 // "Fast" instruction selection is designed to emit very poor code quickly.
     13 // Also, it is not designed to be able to do much lowering, so most illegal
     14 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
     15 // also not intended to be able to do much optimization, except in a few cases
     16 // where doing optimizations reduces overall compile time.  For example, folding
     17 // constants into immediate fields is often done, because it's cheap and it
     18 // reduces the number of instructions later phases have to examine.
     19 //
     20 // "Fast" instruction selection is able to fail gracefully and transfer
     21 // control to the SelectionDAG selector for operations that it doesn't
     22 // support.  In many cases, this allows us to avoid duplicating a lot of
     23 // the complicated lowering logic that SelectionDAG currently has.
     24 //
     25 // The intended use for "fast" instruction selection is "-O0" mode
     26 // compilation, where the quality of the generated code is irrelevant when
     27 // weighed against the speed at which the code can be generated.  Also,
     28 // at -O0, the LLVM optimizers are not running, and this makes the
     29 // compile time of codegen a much higher portion of the overall compile
     30 // time.  Despite its limitations, "fast" instruction selection is able to
     31 // handle enough code on its own to provide noticeable overall speedups
     32 // in -O0 compiles.
     33 //
     34 // Basic operations are supported in a target-independent way, by reading
     35 // the same instruction descriptions that the SelectionDAG selector reads,
     36 // and identifying simple arithmetic operations that can be directly selected
     37 // from simple operators.  More complicated operations currently require
     38 // target-specific code.
     39 //
     40 //===----------------------------------------------------------------------===//
     41 
     42 #define DEBUG_TYPE "isel"
     43 #include "llvm/DebugInfo.h"
     44 #include "llvm/Function.h"
     45 #include "llvm/GlobalVariable.h"
     46 #include "llvm/Instructions.h"
     47 #include "llvm/IntrinsicInst.h"
     48 #include "llvm/Operator.h"
     49 #include "llvm/CodeGen/Analysis.h"
     50 #include "llvm/CodeGen/FastISel.h"
     51 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     52 #include "llvm/CodeGen/MachineInstrBuilder.h"
     53 #include "llvm/CodeGen/MachineModuleInfo.h"
     54 #include "llvm/CodeGen/MachineRegisterInfo.h"
     55 #include "llvm/Analysis/Loads.h"
     56 #include "llvm/Target/TargetData.h"
     57 #include "llvm/Target/TargetInstrInfo.h"
     58 #include "llvm/Target/TargetLibraryInfo.h"
     59 #include "llvm/Target/TargetLowering.h"
     60 #include "llvm/Target/TargetMachine.h"
     61 #include "llvm/Support/ErrorHandling.h"
     62 #include "llvm/Support/Debug.h"
     63 #include "llvm/ADT/Statistic.h"
     64 using namespace llvm;
     65 
     66 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
     67           "target-independent selector");
     68 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
     69           "target-specific selector");
     70 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
     71 
     72 /// startNewBlock - Set the current block to which generated machine
     73 /// instructions will be appended, and clear the local CSE map.
     74 ///
     75 void FastISel::startNewBlock() {
     76   LocalValueMap.clear();
     77 
     78   EmitStartPt = 0;
     79 
     80   // Advance the emit start point past any EH_LABEL instructions.
     81   MachineBasicBlock::iterator
     82     I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
     83   while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
     84     EmitStartPt = I;
     85     ++I;
     86   }
     87   LastLocalValue = EmitStartPt;
     88 }
     89 
     90 void FastISel::flushLocalValueMap() {
     91   LocalValueMap.clear();
     92   LastLocalValue = EmitStartPt;
     93   recomputeInsertPt();
     94 }
     95 
     96 bool FastISel::hasTrivialKill(const Value *V) const {
     97   // Don't consider constants or arguments to have trivial kills.
     98   const Instruction *I = dyn_cast<Instruction>(V);
     99   if (!I)
    100     return false;
    101 
    102   // No-op casts are trivially coalesced by fast-isel.
    103   if (const CastInst *Cast = dyn_cast<CastInst>(I))
    104     if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
    105         !hasTrivialKill(Cast->getOperand(0)))
    106       return false;
    107 
    108   // GEPs with all zero indices are trivially coalesced by fast-isel.
    109   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    110     if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
    111       return false;
    112 
    113   // Only instructions with a single use in the same basic block are considered
    114   // to have trivial kills.
    115   return I->hasOneUse() &&
    116          !(I->getOpcode() == Instruction::BitCast ||
    117            I->getOpcode() == Instruction::PtrToInt ||
    118            I->getOpcode() == Instruction::IntToPtr) &&
    119          cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
    120 }
    121 
    122 unsigned FastISel::getRegForValue(const Value *V) {
    123   EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
    124   // Don't handle non-simple values in FastISel.
    125   if (!RealVT.isSimple())
    126     return 0;
    127 
    128   // Ignore illegal types. We must do this before looking up the value
    129   // in ValueMap because Arguments are given virtual registers regardless
    130   // of whether FastISel can handle them.
    131   MVT VT = RealVT.getSimpleVT();
    132   if (!TLI.isTypeLegal(VT)) {
    133     // Handle integer promotions, though, because they're common and easy.
    134     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    135       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
    136     else
    137       return 0;
    138   }
    139 
    140   // Look up the value to see if we already have a register for it.
    141   unsigned Reg = lookUpRegForValue(V);
    142   if (Reg != 0)
    143     return Reg;
    144 
    145   // In bottom-up mode, just create the virtual register which will be used
    146   // to hold the value. It will be materialized later.
    147   if (isa<Instruction>(V) &&
    148       (!isa<AllocaInst>(V) ||
    149        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
    150     return FuncInfo.InitializeRegForValue(V);
    151 
    152   SavePoint SaveInsertPt = enterLocalValueArea();
    153 
    154   // Materialize the value in a register. Emit any instructions in the
    155   // local value area.
    156   Reg = materializeRegForValue(V, VT);
    157 
    158   leaveLocalValueArea(SaveInsertPt);
    159 
    160   return Reg;
    161 }
    162 
    163 /// materializeRegForValue - Helper for getRegForValue. This function is
    164 /// called when the value isn't already available in a register and must
    165 /// be materialized with new instructions.
    166 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
    167   unsigned Reg = 0;
    168 
    169   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    170     if (CI->getValue().getActiveBits() <= 64)
    171       Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
    172   } else if (isa<AllocaInst>(V)) {
    173     Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
    174   } else if (isa<ConstantPointerNull>(V)) {
    175     // Translate this as an integer zero so that it can be
    176     // local-CSE'd with actual integer zeros.
    177     Reg =
    178       getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
    179   } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    180     if (CF->isNullValue()) {
    181       Reg = TargetMaterializeFloatZero(CF);
    182     } else {
    183       // Try to emit the constant directly.
    184       Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
    185     }
    186 
    187     if (!Reg) {
    188       // Try to emit the constant by using an integer constant with a cast.
    189       const APFloat &Flt = CF->getValueAPF();
    190       EVT IntVT = TLI.getPointerTy();
    191 
    192       uint64_t x[2];
    193       uint32_t IntBitWidth = IntVT.getSizeInBits();
    194       bool isExact;
    195       (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
    196                                   APFloat::rmTowardZero, &isExact);
    197       if (isExact) {
    198         APInt IntVal(IntBitWidth, x);
    199 
    200         unsigned IntegerReg =
    201           getRegForValue(ConstantInt::get(V->getContext(), IntVal));
    202         if (IntegerReg != 0)
    203           Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
    204                            IntegerReg, /*Kill=*/false);
    205       }
    206     }
    207   } else if (const Operator *Op = dyn_cast<Operator>(V)) {
    208     if (!SelectOperator(Op, Op->getOpcode()))
    209       if (!isa<Instruction>(Op) ||
    210           !TargetSelectInstruction(cast<Instruction>(Op)))
    211         return 0;
    212     Reg = lookUpRegForValue(Op);
    213   } else if (isa<UndefValue>(V)) {
    214     Reg = createResultReg(TLI.getRegClassFor(VT));
    215     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    216             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
    217   }
    218 
    219   // If target-independent code couldn't handle the value, give target-specific
    220   // code a try.
    221   if (!Reg && isa<Constant>(V))
    222     Reg = TargetMaterializeConstant(cast<Constant>(V));
    223 
    224   // Don't cache constant materializations in the general ValueMap.
    225   // To do so would require tracking what uses they dominate.
    226   if (Reg != 0) {
    227     LocalValueMap[V] = Reg;
    228     LastLocalValue = MRI.getVRegDef(Reg);
    229   }
    230   return Reg;
    231 }
    232 
    233 unsigned FastISel::lookUpRegForValue(const Value *V) {
    234   // Look up the value to see if we already have a register for it. We
    235   // cache values defined by Instructions across blocks, and other values
    236   // only locally. This is because Instructions already have the SSA
    237   // def-dominates-use requirement enforced.
    238   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
    239   if (I != FuncInfo.ValueMap.end())
    240     return I->second;
    241   return LocalValueMap[V];
    242 }
    243 
    244 /// UpdateValueMap - Update the value map to include the new mapping for this
    245 /// instruction, or insert an extra copy to get the result in a previous
    246 /// determined register.
    247 /// NOTE: This is only necessary because we might select a block that uses
    248 /// a value before we select the block that defines the value.  It might be
    249 /// possible to fix this by selecting blocks in reverse postorder.
    250 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
    251   if (!isa<Instruction>(I)) {
    252     LocalValueMap[I] = Reg;
    253     return;
    254   }
    255 
    256   unsigned &AssignedReg = FuncInfo.ValueMap[I];
    257   if (AssignedReg == 0)
    258     // Use the new register.
    259     AssignedReg = Reg;
    260   else if (Reg != AssignedReg) {
    261     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
    262     for (unsigned i = 0; i < NumRegs; i++)
    263       FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
    264 
    265     AssignedReg = Reg;
    266   }
    267 }
    268 
    269 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
    270   unsigned IdxN = getRegForValue(Idx);
    271   if (IdxN == 0)
    272     // Unhandled operand. Halt "fast" selection and bail.
    273     return std::pair<unsigned, bool>(0, false);
    274 
    275   bool IdxNIsKill = hasTrivialKill(Idx);
    276 
    277   // If the index is smaller or larger than intptr_t, truncate or extend it.
    278   MVT PtrVT = TLI.getPointerTy();
    279   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
    280   if (IdxVT.bitsLT(PtrVT)) {
    281     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
    282                       IdxN, IdxNIsKill);
    283     IdxNIsKill = true;
    284   }
    285   else if (IdxVT.bitsGT(PtrVT)) {
    286     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
    287                       IdxN, IdxNIsKill);
    288     IdxNIsKill = true;
    289   }
    290   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
    291 }
    292 
    293 void FastISel::recomputeInsertPt() {
    294   if (getLastLocalValue()) {
    295     FuncInfo.InsertPt = getLastLocalValue();
    296     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
    297     ++FuncInfo.InsertPt;
    298   } else
    299     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
    300 
    301   // Now skip past any EH_LABELs, which must remain at the beginning.
    302   while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
    303          FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
    304     ++FuncInfo.InsertPt;
    305 }
    306 
    307 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
    308                               MachineBasicBlock::iterator E) {
    309   assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
    310   while (I != E) {
    311     MachineInstr *Dead = &*I;
    312     ++I;
    313     Dead->eraseFromParent();
    314     ++NumFastIselDead;
    315   }
    316   recomputeInsertPt();
    317 }
    318 
    319 FastISel::SavePoint FastISel::enterLocalValueArea() {
    320   MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
    321   DebugLoc OldDL = DL;
    322   recomputeInsertPt();
    323   DL = DebugLoc();
    324   SavePoint SP = { OldInsertPt, OldDL };
    325   return SP;
    326 }
    327 
    328 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
    329   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
    330     LastLocalValue = llvm::prior(FuncInfo.InsertPt);
    331 
    332   // Restore the previous insert position.
    333   FuncInfo.InsertPt = OldInsertPt.InsertPt;
    334   DL = OldInsertPt.DL;
    335 }
    336 
    337 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
    338 /// which has an opcode which directly corresponds to the given ISD opcode.
    339 ///
    340 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
    341   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
    342   if (VT == MVT::Other || !VT.isSimple())
    343     // Unhandled type. Halt "fast" selection and bail.
    344     return false;
    345 
    346   // We only handle legal types. For example, on x86-32 the instruction
    347   // selector contains all of the 64-bit instructions from x86-64,
    348   // under the assumption that i64 won't be used if the target doesn't
    349   // support it.
    350   if (!TLI.isTypeLegal(VT)) {
    351     // MVT::i1 is special. Allow AND, OR, or XOR because they
    352     // don't require additional zeroing, which makes them easy.
    353     if (VT == MVT::i1 &&
    354         (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
    355          ISDOpcode == ISD::XOR))
    356       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
    357     else
    358       return false;
    359   }
    360 
    361   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
    362   // we don't have anything that canonicalizes operand order.
    363   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
    364     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
    365       unsigned Op1 = getRegForValue(I->getOperand(1));
    366       if (Op1 == 0) return false;
    367 
    368       bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    369 
    370       unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
    371                                         Op1IsKill, CI->getZExtValue(),
    372                                         VT.getSimpleVT());
    373       if (ResultReg == 0) return false;
    374 
    375       // We successfully emitted code for the given LLVM Instruction.
    376       UpdateValueMap(I, ResultReg);
    377       return true;
    378     }
    379 
    380 
    381   unsigned Op0 = getRegForValue(I->getOperand(0));
    382   if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
    383     return false;
    384 
    385   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    386 
    387   // Check if the second operand is a constant and handle it appropriately.
    388   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    389     uint64_t Imm = CI->getZExtValue();
    390 
    391     // Transform "sdiv exact X, 8" -> "sra X, 3".
    392     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
    393         cast<BinaryOperator>(I)->isExact() &&
    394         isPowerOf2_64(Imm)) {
    395       Imm = Log2_64(Imm);
    396       ISDOpcode = ISD::SRA;
    397     }
    398 
    399     // Transform "urem x, pow2" -> "and x, pow2-1".
    400     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
    401         isPowerOf2_64(Imm)) {
    402       --Imm;
    403       ISDOpcode = ISD::AND;
    404     }
    405 
    406     unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
    407                                       Op0IsKill, Imm, VT.getSimpleVT());
    408     if (ResultReg == 0) return false;
    409 
    410     // We successfully emitted code for the given LLVM Instruction.
    411     UpdateValueMap(I, ResultReg);
    412     return true;
    413   }
    414 
    415   // Check if the second operand is a constant float.
    416   if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
    417     unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
    418                                      ISDOpcode, Op0, Op0IsKill, CF);
    419     if (ResultReg != 0) {
    420       // We successfully emitted code for the given LLVM Instruction.
    421       UpdateValueMap(I, ResultReg);
    422       return true;
    423     }
    424   }
    425 
    426   unsigned Op1 = getRegForValue(I->getOperand(1));
    427   if (Op1 == 0)
    428     // Unhandled operand. Halt "fast" selection and bail.
    429     return false;
    430 
    431   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
    432 
    433   // Now we have both operands in registers. Emit the instruction.
    434   unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
    435                                    ISDOpcode,
    436                                    Op0, Op0IsKill,
    437                                    Op1, Op1IsKill);
    438   if (ResultReg == 0)
    439     // Target-specific code wasn't able to find a machine opcode for
    440     // the given ISD opcode and type. Halt "fast" selection and bail.
    441     return false;
    442 
    443   // We successfully emitted code for the given LLVM Instruction.
    444   UpdateValueMap(I, ResultReg);
    445   return true;
    446 }
    447 
    448 bool FastISel::SelectGetElementPtr(const User *I) {
    449   unsigned N = getRegForValue(I->getOperand(0));
    450   if (N == 0)
    451     // Unhandled operand. Halt "fast" selection and bail.
    452     return false;
    453 
    454   bool NIsKill = hasTrivialKill(I->getOperand(0));
    455 
    456   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
    457   // into a single N = N + TotalOffset.
    458   uint64_t TotalOffs = 0;
    459   // FIXME: What's a good SWAG number for MaxOffs?
    460   uint64_t MaxOffs = 2048;
    461   Type *Ty = I->getOperand(0)->getType();
    462   MVT VT = TLI.getPointerTy();
    463   for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
    464        E = I->op_end(); OI != E; ++OI) {
    465     const Value *Idx = *OI;
    466     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
    467       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
    468       if (Field) {
    469         // N = N + Offset
    470         TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
    471         if (TotalOffs >= MaxOffs) {
    472           N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    473           if (N == 0)
    474             // Unhandled operand. Halt "fast" selection and bail.
    475             return false;
    476           NIsKill = true;
    477           TotalOffs = 0;
    478         }
    479       }
    480       Ty = StTy->getElementType(Field);
    481     } else {
    482       Ty = cast<SequentialType>(Ty)->getElementType();
    483 
    484       // If this is a constant subscript, handle it quickly.
    485       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
    486         if (CI->isZero()) continue;
    487         // N = N + Offset
    488         TotalOffs +=
    489           TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
    490         if (TotalOffs >= MaxOffs) {
    491           N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    492           if (N == 0)
    493             // Unhandled operand. Halt "fast" selection and bail.
    494             return false;
    495           NIsKill = true;
    496           TotalOffs = 0;
    497         }
    498         continue;
    499       }
    500       if (TotalOffs) {
    501         N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    502         if (N == 0)
    503           // Unhandled operand. Halt "fast" selection and bail.
    504           return false;
    505         NIsKill = true;
    506         TotalOffs = 0;
    507       }
    508 
    509       // N = N + Idx * ElementSize;
    510       uint64_t ElementSize = TD.getTypeAllocSize(Ty);
    511       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
    512       unsigned IdxN = Pair.first;
    513       bool IdxNIsKill = Pair.second;
    514       if (IdxN == 0)
    515         // Unhandled operand. Halt "fast" selection and bail.
    516         return false;
    517 
    518       if (ElementSize != 1) {
    519         IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
    520         if (IdxN == 0)
    521           // Unhandled operand. Halt "fast" selection and bail.
    522           return false;
    523         IdxNIsKill = true;
    524       }
    525       N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
    526       if (N == 0)
    527         // Unhandled operand. Halt "fast" selection and bail.
    528         return false;
    529     }
    530   }
    531   if (TotalOffs) {
    532     N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    533     if (N == 0)
    534       // Unhandled operand. Halt "fast" selection and bail.
    535       return false;
    536   }
    537 
    538   // We successfully emitted code for the given LLVM Instruction.
    539   UpdateValueMap(I, N);
    540   return true;
    541 }
    542 
    543 bool FastISel::SelectCall(const User *I) {
    544   const CallInst *Call = cast<CallInst>(I);
    545 
    546   // Handle simple inline asms.
    547   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
    548     // Don't attempt to handle constraints.
    549     if (!IA->getConstraintString().empty())
    550       return false;
    551 
    552     unsigned ExtraInfo = 0;
    553     if (IA->hasSideEffects())
    554       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
    555     if (IA->isAlignStack())
    556       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
    557 
    558     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    559             TII.get(TargetOpcode::INLINEASM))
    560       .addExternalSymbol(IA->getAsmString().c_str())
    561       .addImm(ExtraInfo);
    562     return true;
    563   }
    564 
    565   MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
    566   ComputeUsesVAFloatArgument(*Call, &MMI);
    567 
    568   const Function *F = Call->getCalledFunction();
    569   if (!F) return false;
    570 
    571   // Handle selected intrinsic function calls.
    572   switch (F->getIntrinsicID()) {
    573   default: break;
    574     // At -O0 we don't care about the lifetime intrinsics.
    575   case Intrinsic::lifetime_start:
    576   case Intrinsic::lifetime_end:
    577     // The donothing intrinsic does, well, nothing.
    578   case Intrinsic::donothing:
    579     return true;
    580 
    581   case Intrinsic::dbg_declare: {
    582     const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
    583     if (!DIVariable(DI->getVariable()).Verify() ||
    584         !FuncInfo.MF->getMMI().hasDebugInfo()) {
    585       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    586       return true;
    587     }
    588 
    589     const Value *Address = DI->getAddress();
    590     if (!Address || isa<UndefValue>(Address)) {
    591       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    592       return true;
    593     }
    594 
    595     unsigned Reg = 0;
    596     unsigned Offset = 0;
    597     if (const Argument *Arg = dyn_cast<Argument>(Address)) {
    598       // Some arguments' frame index is recorded during argument lowering.
    599       Offset = FuncInfo.getArgumentFrameIndex(Arg);
    600       if (Offset)
    601         Reg = TRI.getFrameRegister(*FuncInfo.MF);
    602     }
    603     if (!Reg)
    604       Reg = lookUpRegForValue(Address);
    605 
    606     // If we have a VLA that has a "use" in a metadata node that's then used
    607     // here but it has no other uses, then we have a problem. E.g.,
    608     //
    609     //   int foo (const int *x) {
    610     //     char a[*x];
    611     //     return 0;
    612     //   }
    613     //
    614     // If we assign 'a' a vreg and fast isel later on has to use the selection
    615     // DAG isel, it will want to copy the value to the vreg. However, there are
    616     // no uses, which goes counter to what selection DAG isel expects.
    617     if (!Reg && !Address->use_empty() && isa<Instruction>(Address) &&
    618         (!isa<AllocaInst>(Address) ||
    619          !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
    620       Reg = FuncInfo.InitializeRegForValue(Address);
    621 
    622     if (Reg)
    623       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    624               TII.get(TargetOpcode::DBG_VALUE))
    625         .addReg(Reg, RegState::Debug).addImm(Offset)
    626         .addMetadata(DI->getVariable());
    627     else
    628       // We can't yet handle anything else here because it would require
    629       // generating code, thus altering codegen because of debug info.
    630       DEBUG(dbgs() << "Dropping debug info for " << DI);
    631     return true;
    632   }
    633   case Intrinsic::dbg_value: {
    634     // This form of DBG_VALUE is target-independent.
    635     const DbgValueInst *DI = cast<DbgValueInst>(Call);
    636     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
    637     const Value *V = DI->getValue();
    638     if (!V) {
    639       // Currently the optimizer can produce this; insert an undef to
    640       // help debugging.  Probably the optimizer should not do this.
    641       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    642         .addReg(0U).addImm(DI->getOffset())
    643         .addMetadata(DI->getVariable());
    644     } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    645       if (CI->getBitWidth() > 64)
    646         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    647           .addCImm(CI).addImm(DI->getOffset())
    648           .addMetadata(DI->getVariable());
    649       else
    650         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    651           .addImm(CI->getZExtValue()).addImm(DI->getOffset())
    652           .addMetadata(DI->getVariable());
    653     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
    654       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    655         .addFPImm(CF).addImm(DI->getOffset())
    656         .addMetadata(DI->getVariable());
    657     } else if (unsigned Reg = lookUpRegForValue(V)) {
    658       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    659         .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
    660         .addMetadata(DI->getVariable());
    661     } else {
    662       // We can't yet handle anything else here because it would require
    663       // generating code, thus altering codegen because of debug info.
    664       DEBUG(dbgs() << "Dropping debug info for " << DI);
    665     }
    666     return true;
    667   }
    668   case Intrinsic::objectsize: {
    669     ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
    670     unsigned long long Res = CI->isZero() ? -1ULL : 0;
    671     Constant *ResCI = ConstantInt::get(Call->getType(), Res);
    672     unsigned ResultReg = getRegForValue(ResCI);
    673     if (ResultReg == 0)
    674       return false;
    675     UpdateValueMap(Call, ResultReg);
    676     return true;
    677   }
    678   }
    679 
    680   // Usually, it does not make sense to initialize a value,
    681   // make an unrelated function call and use the value, because
    682   // it tends to be spilled on the stack. So, we move the pointer
    683   // to the last local value to the beginning of the block, so that
    684   // all the values which have already been materialized,
    685   // appear after the call. It also makes sense to skip intrinsics
    686   // since they tend to be inlined.
    687   if (!isa<IntrinsicInst>(F))
    688     flushLocalValueMap();
    689 
    690   // An arbitrary call. Bail.
    691   return false;
    692 }
    693 
    694 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
    695   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    696   EVT DstVT = TLI.getValueType(I->getType());
    697 
    698   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
    699       DstVT == MVT::Other || !DstVT.isSimple())
    700     // Unhandled type. Halt "fast" selection and bail.
    701     return false;
    702 
    703   // Check if the destination type is legal.
    704   if (!TLI.isTypeLegal(DstVT))
    705     return false;
    706 
    707   // Check if the source operand is legal.
    708   if (!TLI.isTypeLegal(SrcVT))
    709     return false;
    710 
    711   unsigned InputReg = getRegForValue(I->getOperand(0));
    712   if (!InputReg)
    713     // Unhandled operand.  Halt "fast" selection and bail.
    714     return false;
    715 
    716   bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
    717 
    718   unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
    719                                   DstVT.getSimpleVT(),
    720                                   Opcode,
    721                                   InputReg, InputRegIsKill);
    722   if (!ResultReg)
    723     return false;
    724 
    725   UpdateValueMap(I, ResultReg);
    726   return true;
    727 }
    728 
    729 bool FastISel::SelectBitCast(const User *I) {
    730   // If the bitcast doesn't change the type, just use the operand value.
    731   if (I->getType() == I->getOperand(0)->getType()) {
    732     unsigned Reg = getRegForValue(I->getOperand(0));
    733     if (Reg == 0)
    734       return false;
    735     UpdateValueMap(I, Reg);
    736     return true;
    737   }
    738 
    739   // Bitcasts of other values become reg-reg copies or BITCAST operators.
    740   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
    741   EVT DstVT = TLI.getValueType(I->getType());
    742 
    743   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
    744       DstVT == MVT::Other || !DstVT.isSimple() ||
    745       !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
    746     // Unhandled type. Halt "fast" selection and bail.
    747     return false;
    748 
    749   unsigned Op0 = getRegForValue(I->getOperand(0));
    750   if (Op0 == 0)
    751     // Unhandled operand. Halt "fast" selection and bail.
    752     return false;
    753 
    754   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
    755 
    756   // First, try to perform the bitcast by inserting a reg-reg copy.
    757   unsigned ResultReg = 0;
    758   if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
    759     const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
    760     const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
    761     // Don't attempt a cross-class copy. It will likely fail.
    762     if (SrcClass == DstClass) {
    763       ResultReg = createResultReg(DstClass);
    764       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    765               ResultReg).addReg(Op0);
    766     }
    767   }
    768 
    769   // If the reg-reg copy failed, select a BITCAST opcode.
    770   if (!ResultReg)
    771     ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
    772                            ISD::BITCAST, Op0, Op0IsKill);
    773 
    774   if (!ResultReg)
    775     return false;
    776 
    777   UpdateValueMap(I, ResultReg);
    778   return true;
    779 }
    780 
    781 bool
    782 FastISel::SelectInstruction(const Instruction *I) {
    783   // Just before the terminator instruction, insert instructions to
    784   // feed PHI nodes in successor blocks.
    785   if (isa<TerminatorInst>(I))
    786     if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
    787       return false;
    788 
    789   DL = I->getDebugLoc();
    790 
    791   MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
    792 
    793   // As a special case, don't handle calls to builtin library functions that
    794   // may be translated directly to target instructions.
    795   if (const CallInst *Call = dyn_cast<CallInst>(I)) {
    796     const Function *F = Call->getCalledFunction();
    797     LibFunc::Func Func;
    798     if (F && !F->hasLocalLinkage() && F->hasName() &&
    799         LibInfo->getLibFunc(F->getName(), Func) &&
    800         LibInfo->hasOptimizedCodeGen(Func))
    801       return false;
    802   }
    803 
    804   // First, try doing target-independent selection.
    805   if (SelectOperator(I, I->getOpcode())) {
    806     ++NumFastIselSuccessIndependent;
    807     DL = DebugLoc();
    808     return true;
    809   }
    810   // Remove dead code.  However, ignore call instructions since we've flushed
    811   // the local value map and recomputed the insert point.
    812   if (!isa<CallInst>(I)) {
    813     recomputeInsertPt();
    814     if (SavedInsertPt != FuncInfo.InsertPt)
    815       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
    816   }
    817 
    818   // Next, try calling the target to attempt to handle the instruction.
    819   SavedInsertPt = FuncInfo.InsertPt;
    820   if (TargetSelectInstruction(I)) {
    821     ++NumFastIselSuccessTarget;
    822     DL = DebugLoc();
    823     return true;
    824   }
    825   // Check for dead code and remove as necessary.
    826   recomputeInsertPt();
    827   if (SavedInsertPt != FuncInfo.InsertPt)
    828     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
    829 
    830   DL = DebugLoc();
    831   return false;
    832 }
    833 
    834 /// FastEmitBranch - Emit an unconditional branch to the given block,
    835 /// unless it is the immediate (fall-through) successor, and update
    836 /// the CFG.
    837 void
    838 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
    839 
    840   if (FuncInfo.MBB->getBasicBlock()->size() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
    841     // For more accurate line information if this is the only instruction
    842     // in the block then emit it, otherwise we have the unconditional
    843     // fall-through case, which needs no instructions.
    844   } else {
    845     // The unconditional branch case.
    846     TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
    847                      SmallVector<MachineOperand, 0>(), DL);
    848   }
    849   FuncInfo.MBB->addSuccessor(MSucc);
    850 }
    851 
    852 /// SelectFNeg - Emit an FNeg operation.
    853 ///
    854 bool
    855 FastISel::SelectFNeg(const User *I) {
    856   unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
    857   if (OpReg == 0) return false;
    858 
    859   bool OpRegIsKill = hasTrivialKill(I);
    860 
    861   // If the target has ISD::FNEG, use it.
    862   EVT VT = TLI.getValueType(I->getType());
    863   unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
    864                                   ISD::FNEG, OpReg, OpRegIsKill);
    865   if (ResultReg != 0) {
    866     UpdateValueMap(I, ResultReg);
    867     return true;
    868   }
    869 
    870   // Bitcast the value to integer, twiddle the sign bit with xor,
    871   // and then bitcast it back to floating-point.
    872   if (VT.getSizeInBits() > 64) return false;
    873   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
    874   if (!TLI.isTypeLegal(IntVT))
    875     return false;
    876 
    877   unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
    878                                ISD::BITCAST, OpReg, OpRegIsKill);
    879   if (IntReg == 0)
    880     return false;
    881 
    882   unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
    883                                        IntReg, /*Kill=*/true,
    884                                        UINT64_C(1) << (VT.getSizeInBits()-1),
    885                                        IntVT.getSimpleVT());
    886   if (IntResultReg == 0)
    887     return false;
    888 
    889   ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
    890                          ISD::BITCAST, IntResultReg, /*Kill=*/true);
    891   if (ResultReg == 0)
    892     return false;
    893 
    894   UpdateValueMap(I, ResultReg);
    895   return true;
    896 }
    897 
    898 bool
    899 FastISel::SelectExtractValue(const User *U) {
    900   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
    901   if (!EVI)
    902     return false;
    903 
    904   // Make sure we only try to handle extracts with a legal result.  But also
    905   // allow i1 because it's easy.
    906   EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
    907   if (!RealVT.isSimple())
    908     return false;
    909   MVT VT = RealVT.getSimpleVT();
    910   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
    911     return false;
    912 
    913   const Value *Op0 = EVI->getOperand(0);
    914   Type *AggTy = Op0->getType();
    915 
    916   // Get the base result register.
    917   unsigned ResultReg;
    918   DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
    919   if (I != FuncInfo.ValueMap.end())
    920     ResultReg = I->second;
    921   else if (isa<Instruction>(Op0))
    922     ResultReg = FuncInfo.InitializeRegForValue(Op0);
    923   else
    924     return false; // fast-isel can't handle aggregate constants at the moment
    925 
    926   // Get the actual result register, which is an offset from the base register.
    927   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
    928 
    929   SmallVector<EVT, 4> AggValueVTs;
    930   ComputeValueVTs(TLI, AggTy, AggValueVTs);
    931 
    932   for (unsigned i = 0; i < VTIndex; i++)
    933     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
    934 
    935   UpdateValueMap(EVI, ResultReg);
    936   return true;
    937 }
    938 
    939 bool
    940 FastISel::SelectOperator(const User *I, unsigned Opcode) {
    941   switch (Opcode) {
    942   case Instruction::Add:
    943     return SelectBinaryOp(I, ISD::ADD);
    944   case Instruction::FAdd:
    945     return SelectBinaryOp(I, ISD::FADD);
    946   case Instruction::Sub:
    947     return SelectBinaryOp(I, ISD::SUB);
    948   case Instruction::FSub:
    949     // FNeg is currently represented in LLVM IR as a special case of FSub.
    950     if (BinaryOperator::isFNeg(I))
    951       return SelectFNeg(I);
    952     return SelectBinaryOp(I, ISD::FSUB);
    953   case Instruction::Mul:
    954     return SelectBinaryOp(I, ISD::MUL);
    955   case Instruction::FMul:
    956     return SelectBinaryOp(I, ISD::FMUL);
    957   case Instruction::SDiv:
    958     return SelectBinaryOp(I, ISD::SDIV);
    959   case Instruction::UDiv:
    960     return SelectBinaryOp(I, ISD::UDIV);
    961   case Instruction::FDiv:
    962     return SelectBinaryOp(I, ISD::FDIV);
    963   case Instruction::SRem:
    964     return SelectBinaryOp(I, ISD::SREM);
    965   case Instruction::URem:
    966     return SelectBinaryOp(I, ISD::UREM);
    967   case Instruction::FRem:
    968     return SelectBinaryOp(I, ISD::FREM);
    969   case Instruction::Shl:
    970     return SelectBinaryOp(I, ISD::SHL);
    971   case Instruction::LShr:
    972     return SelectBinaryOp(I, ISD::SRL);
    973   case Instruction::AShr:
    974     return SelectBinaryOp(I, ISD::SRA);
    975   case Instruction::And:
    976     return SelectBinaryOp(I, ISD::AND);
    977   case Instruction::Or:
    978     return SelectBinaryOp(I, ISD::OR);
    979   case Instruction::Xor:
    980     return SelectBinaryOp(I, ISD::XOR);
    981 
    982   case Instruction::GetElementPtr:
    983     return SelectGetElementPtr(I);
    984 
    985   case Instruction::Br: {
    986     const BranchInst *BI = cast<BranchInst>(I);
    987 
    988     if (BI->isUnconditional()) {
    989       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
    990       MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
    991       FastEmitBranch(MSucc, BI->getDebugLoc());
    992       return true;
    993     }
    994 
    995     // Conditional branches are not handed yet.
    996     // Halt "fast" selection and bail.
    997     return false;
    998   }
    999 
   1000   case Instruction::Unreachable:
   1001     // Nothing to emit.
   1002     return true;
   1003 
   1004   case Instruction::Alloca:
   1005     // FunctionLowering has the static-sized case covered.
   1006     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
   1007       return true;
   1008 
   1009     // Dynamic-sized alloca is not handled yet.
   1010     return false;
   1011 
   1012   case Instruction::Call:
   1013     return SelectCall(I);
   1014 
   1015   case Instruction::BitCast:
   1016     return SelectBitCast(I);
   1017 
   1018   case Instruction::FPToSI:
   1019     return SelectCast(I, ISD::FP_TO_SINT);
   1020   case Instruction::ZExt:
   1021     return SelectCast(I, ISD::ZERO_EXTEND);
   1022   case Instruction::SExt:
   1023     return SelectCast(I, ISD::SIGN_EXTEND);
   1024   case Instruction::Trunc:
   1025     return SelectCast(I, ISD::TRUNCATE);
   1026   case Instruction::SIToFP:
   1027     return SelectCast(I, ISD::SINT_TO_FP);
   1028 
   1029   case Instruction::IntToPtr: // Deliberate fall-through.
   1030   case Instruction::PtrToInt: {
   1031     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   1032     EVT DstVT = TLI.getValueType(I->getType());
   1033     if (DstVT.bitsGT(SrcVT))
   1034       return SelectCast(I, ISD::ZERO_EXTEND);
   1035     if (DstVT.bitsLT(SrcVT))
   1036       return SelectCast(I, ISD::TRUNCATE);
   1037     unsigned Reg = getRegForValue(I->getOperand(0));
   1038     if (Reg == 0) return false;
   1039     UpdateValueMap(I, Reg);
   1040     return true;
   1041   }
   1042 
   1043   case Instruction::ExtractValue:
   1044     return SelectExtractValue(I);
   1045 
   1046   case Instruction::PHI:
   1047     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
   1048 
   1049   default:
   1050     // Unhandled instruction. Halt "fast" selection and bail.
   1051     return false;
   1052   }
   1053 }
   1054 
   1055 FastISel::FastISel(FunctionLoweringInfo &funcInfo,
   1056                    const TargetLibraryInfo *libInfo)
   1057   : FuncInfo(funcInfo),
   1058     MRI(FuncInfo.MF->getRegInfo()),
   1059     MFI(*FuncInfo.MF->getFrameInfo()),
   1060     MCP(*FuncInfo.MF->getConstantPool()),
   1061     TM(FuncInfo.MF->getTarget()),
   1062     TD(*TM.getTargetData()),
   1063     TII(*TM.getInstrInfo()),
   1064     TLI(*TM.getTargetLowering()),
   1065     TRI(*TM.getRegisterInfo()),
   1066     LibInfo(libInfo) {
   1067 }
   1068 
   1069 FastISel::~FastISel() {}
   1070 
   1071 unsigned FastISel::FastEmit_(MVT, MVT,
   1072                              unsigned) {
   1073   return 0;
   1074 }
   1075 
   1076 unsigned FastISel::FastEmit_r(MVT, MVT,
   1077                               unsigned,
   1078                               unsigned /*Op0*/, bool /*Op0IsKill*/) {
   1079   return 0;
   1080 }
   1081 
   1082 unsigned FastISel::FastEmit_rr(MVT, MVT,
   1083                                unsigned,
   1084                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1085                                unsigned /*Op1*/, bool /*Op1IsKill*/) {
   1086   return 0;
   1087 }
   1088 
   1089 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
   1090   return 0;
   1091 }
   1092 
   1093 unsigned FastISel::FastEmit_f(MVT, MVT,
   1094                               unsigned, const ConstantFP * /*FPImm*/) {
   1095   return 0;
   1096 }
   1097 
   1098 unsigned FastISel::FastEmit_ri(MVT, MVT,
   1099                                unsigned,
   1100                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1101                                uint64_t /*Imm*/) {
   1102   return 0;
   1103 }
   1104 
   1105 unsigned FastISel::FastEmit_rf(MVT, MVT,
   1106                                unsigned,
   1107                                unsigned /*Op0*/, bool /*Op0IsKill*/,
   1108                                const ConstantFP * /*FPImm*/) {
   1109   return 0;
   1110 }
   1111 
   1112 unsigned FastISel::FastEmit_rri(MVT, MVT,
   1113                                 unsigned,
   1114                                 unsigned /*Op0*/, bool /*Op0IsKill*/,
   1115                                 unsigned /*Op1*/, bool /*Op1IsKill*/,
   1116                                 uint64_t /*Imm*/) {
   1117   return 0;
   1118 }
   1119 
   1120 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
   1121 /// to emit an instruction with an immediate operand using FastEmit_ri.
   1122 /// If that fails, it materializes the immediate into a register and try
   1123 /// FastEmit_rr instead.
   1124 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
   1125                                 unsigned Op0, bool Op0IsKill,
   1126                                 uint64_t Imm, MVT ImmType) {
   1127   // If this is a multiply by a power of two, emit this as a shift left.
   1128   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
   1129     Opcode = ISD::SHL;
   1130     Imm = Log2_64(Imm);
   1131   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
   1132     // div x, 8 -> srl x, 3
   1133     Opcode = ISD::SRL;
   1134     Imm = Log2_64(Imm);
   1135   }
   1136 
   1137   // Horrible hack (to be removed), check to make sure shift amounts are
   1138   // in-range.
   1139   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
   1140       Imm >= VT.getSizeInBits())
   1141     return 0;
   1142 
   1143   // First check if immediate type is legal. If not, we can't use the ri form.
   1144   unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
   1145   if (ResultReg != 0)
   1146     return ResultReg;
   1147   unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
   1148   if (MaterialReg == 0) {
   1149     // This is a bit ugly/slow, but failing here means falling out of
   1150     // fast-isel, which would be very slow.
   1151     IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
   1152                                               VT.getSizeInBits());
   1153     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
   1154   }
   1155   return FastEmit_rr(VT, VT, Opcode,
   1156                      Op0, Op0IsKill,
   1157                      MaterialReg, /*Kill=*/true);
   1158 }
   1159 
   1160 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
   1161   return MRI.createVirtualRegister(RC);
   1162 }
   1163 
   1164 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
   1165                                  const TargetRegisterClass* RC) {
   1166   unsigned ResultReg = createResultReg(RC);
   1167   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1168 
   1169   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
   1170   return ResultReg;
   1171 }
   1172 
   1173 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
   1174                                   const TargetRegisterClass *RC,
   1175                                   unsigned Op0, bool Op0IsKill) {
   1176   unsigned ResultReg = createResultReg(RC);
   1177   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1178 
   1179   if (II.getNumDefs() >= 1)
   1180     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1181       .addReg(Op0, Op0IsKill * RegState::Kill);
   1182   else {
   1183     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1184       .addReg(Op0, Op0IsKill * RegState::Kill);
   1185     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1186             ResultReg).addReg(II.ImplicitDefs[0]);
   1187   }
   1188 
   1189   return ResultReg;
   1190 }
   1191 
   1192 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
   1193                                    const TargetRegisterClass *RC,
   1194                                    unsigned Op0, bool Op0IsKill,
   1195                                    unsigned Op1, bool Op1IsKill) {
   1196   unsigned ResultReg = createResultReg(RC);
   1197   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1198 
   1199   if (II.getNumDefs() >= 1)
   1200     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1201       .addReg(Op0, Op0IsKill * RegState::Kill)
   1202       .addReg(Op1, Op1IsKill * RegState::Kill);
   1203   else {
   1204     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1205       .addReg(Op0, Op0IsKill * RegState::Kill)
   1206       .addReg(Op1, Op1IsKill * RegState::Kill);
   1207     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1208             ResultReg).addReg(II.ImplicitDefs[0]);
   1209   }
   1210   return ResultReg;
   1211 }
   1212 
   1213 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
   1214                                    const TargetRegisterClass *RC,
   1215                                    unsigned Op0, bool Op0IsKill,
   1216                                    unsigned Op1, bool Op1IsKill,
   1217                                    unsigned Op2, bool Op2IsKill) {
   1218   unsigned ResultReg = createResultReg(RC);
   1219   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1220 
   1221   if (II.getNumDefs() >= 1)
   1222     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1223       .addReg(Op0, Op0IsKill * RegState::Kill)
   1224       .addReg(Op1, Op1IsKill * RegState::Kill)
   1225       .addReg(Op2, Op2IsKill * RegState::Kill);
   1226   else {
   1227     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1228       .addReg(Op0, Op0IsKill * RegState::Kill)
   1229       .addReg(Op1, Op1IsKill * RegState::Kill)
   1230       .addReg(Op2, Op2IsKill * RegState::Kill);
   1231     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1232             ResultReg).addReg(II.ImplicitDefs[0]);
   1233   }
   1234   return ResultReg;
   1235 }
   1236 
   1237 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
   1238                                    const TargetRegisterClass *RC,
   1239                                    unsigned Op0, bool Op0IsKill,
   1240                                    uint64_t Imm) {
   1241   unsigned ResultReg = createResultReg(RC);
   1242   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1243 
   1244   if (II.getNumDefs() >= 1)
   1245     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1246       .addReg(Op0, Op0IsKill * RegState::Kill)
   1247       .addImm(Imm);
   1248   else {
   1249     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1250       .addReg(Op0, Op0IsKill * RegState::Kill)
   1251       .addImm(Imm);
   1252     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1253             ResultReg).addReg(II.ImplicitDefs[0]);
   1254   }
   1255   return ResultReg;
   1256 }
   1257 
   1258 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
   1259                                    const TargetRegisterClass *RC,
   1260                                    unsigned Op0, bool Op0IsKill,
   1261                                    uint64_t Imm1, uint64_t Imm2) {
   1262   unsigned ResultReg = createResultReg(RC);
   1263   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1264 
   1265   if (II.getNumDefs() >= 1)
   1266     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1267       .addReg(Op0, Op0IsKill * RegState::Kill)
   1268       .addImm(Imm1)
   1269       .addImm(Imm2);
   1270   else {
   1271     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1272       .addReg(Op0, Op0IsKill * RegState::Kill)
   1273       .addImm(Imm1)
   1274       .addImm(Imm2);
   1275     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1276             ResultReg).addReg(II.ImplicitDefs[0]);
   1277   }
   1278   return ResultReg;
   1279 }
   1280 
   1281 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
   1282                                    const TargetRegisterClass *RC,
   1283                                    unsigned Op0, bool Op0IsKill,
   1284                                    const ConstantFP *FPImm) {
   1285   unsigned ResultReg = createResultReg(RC);
   1286   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1287 
   1288   if (II.getNumDefs() >= 1)
   1289     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1290       .addReg(Op0, Op0IsKill * RegState::Kill)
   1291       .addFPImm(FPImm);
   1292   else {
   1293     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1294       .addReg(Op0, Op0IsKill * RegState::Kill)
   1295       .addFPImm(FPImm);
   1296     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1297             ResultReg).addReg(II.ImplicitDefs[0]);
   1298   }
   1299   return ResultReg;
   1300 }
   1301 
   1302 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
   1303                                     const TargetRegisterClass *RC,
   1304                                     unsigned Op0, bool Op0IsKill,
   1305                                     unsigned Op1, bool Op1IsKill,
   1306                                     uint64_t Imm) {
   1307   unsigned ResultReg = createResultReg(RC);
   1308   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1309 
   1310   if (II.getNumDefs() >= 1)
   1311     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1312       .addReg(Op0, Op0IsKill * RegState::Kill)
   1313       .addReg(Op1, Op1IsKill * RegState::Kill)
   1314       .addImm(Imm);
   1315   else {
   1316     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1317       .addReg(Op0, Op0IsKill * RegState::Kill)
   1318       .addReg(Op1, Op1IsKill * RegState::Kill)
   1319       .addImm(Imm);
   1320     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1321             ResultReg).addReg(II.ImplicitDefs[0]);
   1322   }
   1323   return ResultReg;
   1324 }
   1325 
   1326 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
   1327                                      const TargetRegisterClass *RC,
   1328                                      unsigned Op0, bool Op0IsKill,
   1329                                      unsigned Op1, bool Op1IsKill,
   1330                                      uint64_t Imm1, uint64_t Imm2) {
   1331   unsigned ResultReg = createResultReg(RC);
   1332   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1333 
   1334   if (II.getNumDefs() >= 1)
   1335     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1336       .addReg(Op0, Op0IsKill * RegState::Kill)
   1337       .addReg(Op1, Op1IsKill * RegState::Kill)
   1338       .addImm(Imm1).addImm(Imm2);
   1339   else {
   1340     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
   1341       .addReg(Op0, Op0IsKill * RegState::Kill)
   1342       .addReg(Op1, Op1IsKill * RegState::Kill)
   1343       .addImm(Imm1).addImm(Imm2);
   1344     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1345             ResultReg).addReg(II.ImplicitDefs[0]);
   1346   }
   1347   return ResultReg;
   1348 }
   1349 
   1350 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
   1351                                   const TargetRegisterClass *RC,
   1352                                   uint64_t Imm) {
   1353   unsigned ResultReg = createResultReg(RC);
   1354   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1355 
   1356   if (II.getNumDefs() >= 1)
   1357     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
   1358   else {
   1359     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
   1360     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1361             ResultReg).addReg(II.ImplicitDefs[0]);
   1362   }
   1363   return ResultReg;
   1364 }
   1365 
   1366 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
   1367                                   const TargetRegisterClass *RC,
   1368                                   uint64_t Imm1, uint64_t Imm2) {
   1369   unsigned ResultReg = createResultReg(RC);
   1370   const MCInstrDesc &II = TII.get(MachineInstOpcode);
   1371 
   1372   if (II.getNumDefs() >= 1)
   1373     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
   1374       .addImm(Imm1).addImm(Imm2);
   1375   else {
   1376     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
   1377     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1378             ResultReg).addReg(II.ImplicitDefs[0]);
   1379   }
   1380   return ResultReg;
   1381 }
   1382 
   1383 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
   1384                                               unsigned Op0, bool Op0IsKill,
   1385                                               uint32_t Idx) {
   1386   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
   1387   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
   1388          "Cannot yet extract from physregs");
   1389   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
   1390   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
   1391   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   1392           DL, TII.get(TargetOpcode::COPY), ResultReg)
   1393     .addReg(Op0, getKillRegState(Op0IsKill), Idx);
   1394   return ResultReg;
   1395 }
   1396 
   1397 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
   1398 /// with all but the least significant bit set to zero.
   1399 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
   1400   return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
   1401 }
   1402 
   1403 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
   1404 /// Emit code to ensure constants are copied into registers when needed.
   1405 /// Remember the virtual registers that need to be added to the Machine PHI
   1406 /// nodes as input.  We cannot just directly add them, because expansion
   1407 /// might result in multiple MBB's for one BB.  As such, the start of the
   1408 /// BB might correspond to a different MBB than the end.
   1409 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   1410   const TerminatorInst *TI = LLVMBB->getTerminator();
   1411 
   1412   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   1413   unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
   1414 
   1415   // Check successor nodes' PHI nodes that expect a constant to be available
   1416   // from this block.
   1417   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   1418     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   1419     if (!isa<PHINode>(SuccBB->begin())) continue;
   1420     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   1421 
   1422     // If this terminator has multiple identical successors (common for
   1423     // switches), only handle each succ once.
   1424     if (!SuccsHandled.insert(SuccMBB)) continue;
   1425 
   1426     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   1427 
   1428     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   1429     // nodes and Machine PHI nodes, but the incoming operands have not been
   1430     // emitted yet.
   1431     for (BasicBlock::const_iterator I = SuccBB->begin();
   1432          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1433 
   1434       // Ignore dead phi's.
   1435       if (PN->use_empty()) continue;
   1436 
   1437       // Only handle legal types. Two interesting things to note here. First,
   1438       // by bailing out early, we may leave behind some dead instructions,
   1439       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
   1440       // own moves. Second, this check is necessary because FastISel doesn't
   1441       // use CreateRegs to create registers, so it always creates
   1442       // exactly one register for each non-void instruction.
   1443       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
   1444       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
   1445         // Handle integer promotions, though, because they're common and easy.
   1446         if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
   1447           VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
   1448         else {
   1449           FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
   1450           return false;
   1451         }
   1452       }
   1453 
   1454       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   1455 
   1456       // Set the DebugLoc for the copy. Prefer the location of the operand
   1457       // if there is one; use the location of the PHI otherwise.
   1458       DL = PN->getDebugLoc();
   1459       if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
   1460         DL = Inst->getDebugLoc();
   1461 
   1462       unsigned Reg = getRegForValue(PHIOp);
   1463       if (Reg == 0) {
   1464         FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
   1465         return false;
   1466       }
   1467       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
   1468       DL = DebugLoc();
   1469     }
   1470   }
   1471 
   1472   return true;
   1473 }
   1474