Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenRegisters.h"
     16 #include "CodeGenTarget.h"
     17 #include "llvm/TableGen/Error.h"
     18 #include "llvm/ADT/IntEqClasses.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/ADT/Twine.h"
     23 
     24 using namespace llvm;
     25 
     26 //===----------------------------------------------------------------------===//
     27 //                             CodeGenSubRegIndex
     28 //===----------------------------------------------------------------------===//
     29 
     30 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
     31   : TheDef(R), EnumValue(Enum) {
     32   Name = R->getName();
     33   if (R->getValue("Namespace"))
     34     Namespace = R->getValueAsString("Namespace");
     35 }
     36 
     37 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
     38                                        unsigned Enum)
     39   : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum) {
     40 }
     41 
     42 std::string CodeGenSubRegIndex::getQualifiedName() const {
     43   std::string N = getNamespace();
     44   if (!N.empty())
     45     N += "::";
     46   N += getName();
     47   return N;
     48 }
     49 
     50 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
     51   if (!TheDef)
     52     return;
     53 
     54   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
     55   if (!Comps.empty()) {
     56     if (Comps.size() != 2)
     57       throw TGError(TheDef->getLoc(), "ComposedOf must have exactly two entries");
     58     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
     59     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
     60     CodeGenSubRegIndex *X = A->addComposite(B, this);
     61     if (X)
     62       throw TGError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
     63   }
     64 
     65   std::vector<Record*> Parts =
     66     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
     67   if (!Parts.empty()) {
     68     if (Parts.size() < 2)
     69       throw TGError(TheDef->getLoc(),
     70                     "CoveredBySubRegs must have two or more entries");
     71     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
     72     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
     73       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
     74     RegBank.addConcatSubRegIndex(IdxParts, this);
     75   }
     76 }
     77 
     78 void CodeGenSubRegIndex::cleanComposites() {
     79   // Clean out redundant mappings of the form this+X -> X.
     80   for (CompMap::iterator i = Composed.begin(), e = Composed.end(); i != e;) {
     81     CompMap::iterator j = i;
     82     ++i;
     83     if (j->first == j->second)
     84       Composed.erase(j);
     85   }
     86 }
     87 
     88 //===----------------------------------------------------------------------===//
     89 //                              CodeGenRegister
     90 //===----------------------------------------------------------------------===//
     91 
     92 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
     93   : TheDef(R),
     94     EnumValue(Enum),
     95     CostPerUse(R->getValueAsInt("CostPerUse")),
     96     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
     97     NumNativeRegUnits(0),
     98     SubRegsComplete(false),
     99     SuperRegsComplete(false),
    100     TopoSig(~0u)
    101 {}
    102 
    103 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
    104   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
    105   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
    106 
    107   if (SRIs.size() != SRs.size())
    108     throw TGError(TheDef->getLoc(),
    109                   "SubRegs and SubRegIndices must have the same size");
    110 
    111   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    112     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    113     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
    114   }
    115 
    116   // Also compute leading super-registers. Each register has a list of
    117   // covered-by-subregs super-registers where it appears as the first explicit
    118   // sub-register.
    119   //
    120   // This is used by computeSecondarySubRegs() to find candidates.
    121   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    122     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
    123 
    124   // Add ad hoc alias links. This is a symmetric relationship between two
    125   // registers, so build a symmetric graph by adding links in both ends.
    126   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
    127   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
    128     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
    129     ExplicitAliases.push_back(Reg);
    130     Reg->ExplicitAliases.push_back(this);
    131   }
    132 }
    133 
    134 const std::string &CodeGenRegister::getName() const {
    135   return TheDef->getName();
    136 }
    137 
    138 namespace {
    139 // Iterate over all register units in a set of registers.
    140 class RegUnitIterator {
    141   CodeGenRegister::Set::const_iterator RegI, RegE;
    142   CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
    143 
    144 public:
    145   RegUnitIterator(const CodeGenRegister::Set &Regs):
    146     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
    147 
    148     if (RegI != RegE) {
    149       UnitI = (*RegI)->getRegUnits().begin();
    150       UnitE = (*RegI)->getRegUnits().end();
    151       advance();
    152     }
    153   }
    154 
    155   bool isValid() const { return UnitI != UnitE; }
    156 
    157   unsigned operator* () const { assert(isValid()); return *UnitI; }
    158 
    159   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
    160 
    161   /// Preincrement.  Move to the next unit.
    162   void operator++() {
    163     assert(isValid() && "Cannot advance beyond the last operand");
    164     ++UnitI;
    165     advance();
    166   }
    167 
    168 protected:
    169   void advance() {
    170     while (UnitI == UnitE) {
    171       if (++RegI == RegE)
    172         break;
    173       UnitI = (*RegI)->getRegUnits().begin();
    174       UnitE = (*RegI)->getRegUnits().end();
    175     }
    176   }
    177 };
    178 } // namespace
    179 
    180 // Merge two RegUnitLists maintaining the order and removing duplicates.
    181 // Overwrites MergedRU in the process.
    182 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
    183                           const CodeGenRegister::RegUnitList &RRU) {
    184   CodeGenRegister::RegUnitList LRU = MergedRU;
    185   MergedRU.clear();
    186   std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
    187                  std::back_inserter(MergedRU));
    188 }
    189 
    190 // Return true of this unit appears in RegUnits.
    191 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
    192   return std::count(RegUnits.begin(), RegUnits.end(), Unit);
    193 }
    194 
    195 // Inherit register units from subregisters.
    196 // Return true if the RegUnits changed.
    197 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
    198   unsigned OldNumUnits = RegUnits.size();
    199   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    200        I != E; ++I) {
    201     CodeGenRegister *SR = I->second;
    202     // Merge the subregister's units into this register's RegUnits.
    203     mergeRegUnits(RegUnits, SR->RegUnits);
    204   }
    205   return OldNumUnits != RegUnits.size();
    206 }
    207 
    208 const CodeGenRegister::SubRegMap &
    209 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
    210   // Only compute this map once.
    211   if (SubRegsComplete)
    212     return SubRegs;
    213   SubRegsComplete = true;
    214 
    215   // First insert the explicit subregs and make sure they are fully indexed.
    216   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    217     CodeGenRegister *SR = ExplicitSubRegs[i];
    218     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    219     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
    220       throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
    221                     " appears twice in Register " + getName());
    222     // Map explicit sub-registers first, so the names take precedence.
    223     // The inherited sub-registers are mapped below.
    224     SubReg2Idx.insert(std::make_pair(SR, Idx));
    225   }
    226 
    227   // Keep track of inherited subregs and how they can be reached.
    228   SmallPtrSet<CodeGenRegister*, 8> Orphans;
    229 
    230   // Clone inherited subregs and place duplicate entries in Orphans.
    231   // Here the order is important - earlier subregs take precedence.
    232   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    233     CodeGenRegister *SR = ExplicitSubRegs[i];
    234     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    235 
    236     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    237          ++SI) {
    238       if (!SubRegs.insert(*SI).second)
    239         Orphans.insert(SI->second);
    240     }
    241   }
    242 
    243   // Expand any composed subreg indices.
    244   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
    245   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
    246   // expanded subreg indices recursively.
    247   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
    248   for (unsigned i = 0; i != Indices.size(); ++i) {
    249     CodeGenSubRegIndex *Idx = Indices[i];
    250     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    251     CodeGenRegister *SR = SubRegs[Idx];
    252     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    253 
    254     // Look at the possible compositions of Idx.
    255     // They may not all be supported by SR.
    256     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
    257            E = Comps.end(); I != E; ++I) {
    258       SubRegMap::const_iterator SRI = Map.find(I->first);
    259       if (SRI == Map.end())
    260         continue; // Idx + I->first doesn't exist in SR.
    261       // Add I->second as a name for the subreg SRI->second, assuming it is
    262       // orphaned, and the name isn't already used for something else.
    263       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
    264         continue;
    265       // We found a new name for the orphaned sub-register.
    266       SubRegs.insert(std::make_pair(I->second, SRI->second));
    267       Indices.push_back(I->second);
    268     }
    269   }
    270 
    271   // Now Orphans contains the inherited subregisters without a direct index.
    272   // Create inferred indexes for all missing entries.
    273   // Work backwards in the Indices vector in order to compose subregs bottom-up.
    274   // Consider this subreg sequence:
    275   //
    276   //   qsub_1 -> dsub_0 -> ssub_0
    277   //
    278   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
    279   // can be reached in two different ways:
    280   //
    281   //   qsub_1 -> ssub_0
    282   //   dsub_2 -> ssub_0
    283   //
    284   // We pick the latter composition because another register may have [dsub_0,
    285   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
    286   // dsub_2 -> ssub_0 composition can be shared.
    287   while (!Indices.empty() && !Orphans.empty()) {
    288     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    289     CodeGenRegister *SR = SubRegs[Idx];
    290     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    291     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    292          ++SI)
    293       if (Orphans.erase(SI->second))
    294         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
    295   }
    296 
    297   // Compute the inverse SubReg -> Idx map.
    298   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
    299        SI != SE; ++SI) {
    300     if (SI->second == this) {
    301       ArrayRef<SMLoc> Loc;
    302       if (TheDef)
    303         Loc = TheDef->getLoc();
    304       throw TGError(Loc, "Register " + getName() +
    305                     " has itself as a sub-register");
    306     }
    307     // Ensure that every sub-register has a unique name.
    308     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
    309       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
    310     if (Ins->second == SI->first)
    311       continue;
    312     // Trouble: Two different names for SI->second.
    313     ArrayRef<SMLoc> Loc;
    314     if (TheDef)
    315       Loc = TheDef->getLoc();
    316     throw TGError(Loc, "Sub-register can't have two names: " +
    317                   SI->second->getName() + " available as " +
    318                   SI->first->getName() + " and " + Ins->second->getName());
    319   }
    320 
    321   // Derive possible names for sub-register concatenations from any explicit
    322   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
    323   // that getConcatSubRegIndex() won't invent any concatenated indices that the
    324   // user already specified.
    325   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    326     CodeGenRegister *SR = ExplicitSubRegs[i];
    327     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
    328       continue;
    329 
    330     // SR is composed of multiple sub-regs. Find their names in this register.
    331     SmallVector<CodeGenSubRegIndex*, 8> Parts;
    332     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
    333       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    334 
    335     // Offer this as an existing spelling for the concatenation of Parts.
    336     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
    337   }
    338 
    339   // Initialize RegUnitList. Because getSubRegs is called recursively, this
    340   // processes the register hierarchy in postorder.
    341   //
    342   // Inherit all sub-register units. It is good enough to look at the explicit
    343   // sub-registers, the other registers won't contribute any more units.
    344   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    345     CodeGenRegister *SR = ExplicitSubRegs[i];
    346     // Explicit sub-registers are usually disjoint, so this is a good way of
    347     // computing the union. We may pick up a few duplicates that will be
    348     // eliminated below.
    349     unsigned N = RegUnits.size();
    350     RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
    351     std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
    352   }
    353   RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
    354 
    355   // Absent any ad hoc aliasing, we create one register unit per leaf register.
    356   // These units correspond to the maximal cliques in the register overlap
    357   // graph which is optimal.
    358   //
    359   // When there is ad hoc aliasing, we simply create one unit per edge in the
    360   // undirected ad hoc aliasing graph. Technically, we could do better by
    361   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
    362   // are extremely rare anyway (I've never seen one), so we don't bother with
    363   // the added complexity.
    364   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    365     CodeGenRegister *AR = ExplicitAliases[i];
    366     // Only visit each edge once.
    367     if (AR->SubRegsComplete)
    368       continue;
    369     // Create a RegUnit representing this alias edge, and add it to both
    370     // registers.
    371     unsigned Unit = RegBank.newRegUnit(this, AR);
    372     RegUnits.push_back(Unit);
    373     AR->RegUnits.push_back(Unit);
    374   }
    375 
    376   // Finally, create units for leaf registers without ad hoc aliases. Note that
    377   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
    378   // necessary. This means the aliasing leaf registers can share a single unit.
    379   if (RegUnits.empty())
    380     RegUnits.push_back(RegBank.newRegUnit(this));
    381 
    382   // We have now computed the native register units. More may be adopted later
    383   // for balancing purposes.
    384   NumNativeRegUnits = RegUnits.size();
    385 
    386   return SubRegs;
    387 }
    388 
    389 // In a register that is covered by its sub-registers, try to find redundant
    390 // sub-registers. For example:
    391 //
    392 //   QQ0 = {Q0, Q1}
    393 //   Q0 = {D0, D1}
    394 //   Q1 = {D2, D3}
    395 //
    396 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
    397 // the register definition.
    398 //
    399 // The explicitly specified registers form a tree. This function discovers
    400 // sub-register relationships that would force a DAG.
    401 //
    402 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
    403   // Collect new sub-registers first, add them later.
    404   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
    405 
    406   // Look at the leading super-registers of each sub-register. Those are the
    407   // candidates for new sub-registers, assuming they are fully contained in
    408   // this register.
    409   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
    410     const CodeGenRegister *SubReg = I->second;
    411     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    412     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
    413       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
    414       // Already got this sub-register?
    415       if (Cand == this || getSubRegIndex(Cand))
    416         continue;
    417       // Check if each component of Cand is already a sub-register.
    418       // We know that the first component is I->second, and is present with the
    419       // name I->first.
    420       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
    421       assert(!Cand->ExplicitSubRegs.empty() &&
    422              "Super-register has no sub-registers");
    423       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
    424         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
    425           Parts.push_back(Idx);
    426         else {
    427           // Sub-register doesn't exist.
    428           Parts.clear();
    429           break;
    430         }
    431       }
    432       // If some Cand sub-register is not part of this register, or if Cand only
    433       // has one sub-register, there is nothing to do.
    434       if (Parts.size() <= 1)
    435         continue;
    436 
    437       // Each part of Cand is a sub-register of this. Make the full Cand also
    438       // a sub-register with a concatenated sub-register index.
    439       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
    440       NewSubRegs.push_back(std::make_pair(Concat, Cand));
    441     }
    442   }
    443 
    444   // Now add all the new sub-registers.
    445   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    446     // Don't add Cand if another sub-register is already using the index.
    447     if (!SubRegs.insert(NewSubRegs[i]).second)
    448       continue;
    449 
    450     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    451     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    452     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
    453   }
    454 
    455   // Create sub-register index composition maps for the synthesized indices.
    456   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    457     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    458     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    459     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
    460            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
    461       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
    462       if (!SubIdx)
    463         throw TGError(TheDef->getLoc(), "No SubRegIndex for " +
    464                       SI->second->getName() + " in " + getName());
    465       NewIdx->addComposite(SI->first, SubIdx);
    466     }
    467   }
    468 }
    469 
    470 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
    471   // Only visit each register once.
    472   if (SuperRegsComplete)
    473     return;
    474   SuperRegsComplete = true;
    475 
    476   // Make sure all sub-registers have been visited first, so the super-reg
    477   // lists will be topologically ordered.
    478   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    479        I != E; ++I)
    480     I->second->computeSuperRegs(RegBank);
    481 
    482   // Now add this as a super-register on all sub-registers.
    483   // Also compute the TopoSigId in post-order.
    484   TopoSigId Id;
    485   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    486        I != E; ++I) {
    487     // Topological signature computed from SubIdx, TopoId(SubReg).
    488     // Loops and idempotent indices have TopoSig = ~0u.
    489     Id.push_back(I->first->EnumValue);
    490     Id.push_back(I->second->TopoSig);
    491 
    492     // Don't add duplicate entries.
    493     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
    494       continue;
    495     I->second->SuperRegs.push_back(this);
    496   }
    497   TopoSig = RegBank.getTopoSig(Id);
    498 }
    499 
    500 void
    501 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
    502                                     CodeGenRegBank &RegBank) const {
    503   assert(SubRegsComplete && "Must precompute sub-registers");
    504   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    505     CodeGenRegister *SR = ExplicitSubRegs[i];
    506     if (OSet.insert(SR))
    507       SR->addSubRegsPreOrder(OSet, RegBank);
    508   }
    509   // Add any secondary sub-registers that weren't part of the explicit tree.
    510   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    511        I != E; ++I)
    512     OSet.insert(I->second);
    513 }
    514 
    515 // Compute overlapping registers.
    516 //
    517 // The standard set is all super-registers and all sub-registers, but the
    518 // target description can add arbitrary overlapping registers via the 'Aliases'
    519 // field. This complicates things, but we can compute overlapping sets using
    520 // the following rules:
    521 //
    522 // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
    523 //
    524 // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
    525 //
    526 // Alternatively:
    527 //
    528 //    overlap(A, B) iff there exists:
    529 //    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
    530 //    A' = B' or A' in aliases(B') or B' in aliases(A').
    531 //
    532 // Here subregs(A) is the full flattened sub-register set returned by
    533 // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
    534 // description of register A.
    535 //
    536 // This also implies that registers with a common sub-register are considered
    537 // overlapping. This can happen when forming register pairs:
    538 //
    539 //    P0 = (R0, R1)
    540 //    P1 = (R1, R2)
    541 //    P2 = (R2, R3)
    542 //
    543 // In this case, we will infer an overlap between P0 and P1 because of the
    544 // shared sub-register R1. There is no overlap between P0 and P2.
    545 //
    546 void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
    547                                       const CodeGenRegBank &RegBank) const {
    548   assert(!RegUnits.empty() && "Compute register units before overlaps.");
    549 
    550   // Register units are assigned such that the overlapping registers are the
    551   // super-registers of the root registers of the register units.
    552   for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
    553     const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
    554     ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
    555     for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
    556       const CodeGenRegister *Root = Roots[ri];
    557       Overlaps.insert(Root);
    558       ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
    559       Overlaps.insert(Supers.begin(), Supers.end());
    560     }
    561   }
    562 }
    563 
    564 // Get the sum of this register's unit weights.
    565 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
    566   unsigned Weight = 0;
    567   for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
    568        I != E; ++I) {
    569     Weight += RegBank.getRegUnit(*I).Weight;
    570   }
    571   return Weight;
    572 }
    573 
    574 //===----------------------------------------------------------------------===//
    575 //                               RegisterTuples
    576 //===----------------------------------------------------------------------===//
    577 
    578 // A RegisterTuples def is used to generate pseudo-registers from lists of
    579 // sub-registers. We provide a SetTheory expander class that returns the new
    580 // registers.
    581 namespace {
    582 struct TupleExpander : SetTheory::Expander {
    583   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
    584     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    585     unsigned Dim = Indices.size();
    586     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    587     if (Dim != SubRegs->getSize())
    588       throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    589     if (Dim < 2)
    590       throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
    591 
    592     // Evaluate the sub-register lists to be zipped.
    593     unsigned Length = ~0u;
    594     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    595     for (unsigned i = 0; i != Dim; ++i) {
    596       ST.evaluate(SubRegs->getElement(i), Lists[i]);
    597       Length = std::min(Length, unsigned(Lists[i].size()));
    598     }
    599 
    600     if (Length == 0)
    601       return;
    602 
    603     // Precompute some types.
    604     Record *RegisterCl = Def->getRecords().getClass("Register");
    605     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    606     StringInit *BlankName = StringInit::get("");
    607 
    608     // Zip them up.
    609     for (unsigned n = 0; n != Length; ++n) {
    610       std::string Name;
    611       Record *Proto = Lists[0][n];
    612       std::vector<Init*> Tuple;
    613       unsigned CostPerUse = 0;
    614       for (unsigned i = 0; i != Dim; ++i) {
    615         Record *Reg = Lists[i][n];
    616         if (i) Name += '_';
    617         Name += Reg->getName();
    618         Tuple.push_back(DefInit::get(Reg));
    619         CostPerUse = std::max(CostPerUse,
    620                               unsigned(Reg->getValueAsInt("CostPerUse")));
    621       }
    622 
    623       // Create a new Record representing the synthesized register. This record
    624       // is only for consumption by CodeGenRegister, it is not added to the
    625       // RecordKeeper.
    626       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    627       Elts.insert(NewReg);
    628 
    629       // Copy Proto super-classes.
    630       for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
    631         NewReg->addSuperClass(Proto->getSuperClasses()[i]);
    632 
    633       // Copy Proto fields.
    634       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    635         RecordVal RV = Proto->getValues()[i];
    636 
    637         // Skip existing fields, like NAME.
    638         if (NewReg->getValue(RV.getNameInit()))
    639           continue;
    640 
    641         StringRef Field = RV.getName();
    642 
    643         // Replace the sub-register list with Tuple.
    644         if (Field == "SubRegs")
    645           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    646 
    647         // Provide a blank AsmName. MC hacks are required anyway.
    648         if (Field == "AsmName")
    649           RV.setValue(BlankName);
    650 
    651         // CostPerUse is aggregated from all Tuple members.
    652         if (Field == "CostPerUse")
    653           RV.setValue(IntInit::get(CostPerUse));
    654 
    655         // Composite registers are always covered by sub-registers.
    656         if (Field == "CoveredBySubRegs")
    657           RV.setValue(BitInit::get(true));
    658 
    659         // Copy fields from the RegisterTuples def.
    660         if (Field == "SubRegIndices" ||
    661             Field == "CompositeIndices") {
    662           NewReg->addValue(*Def->getValue(Field));
    663           continue;
    664         }
    665 
    666         // Some fields get their default uninitialized value.
    667         if (Field == "DwarfNumbers" ||
    668             Field == "DwarfAlias" ||
    669             Field == "Aliases") {
    670           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
    671             NewReg->addValue(*DefRV);
    672           continue;
    673         }
    674 
    675         // Everything else is copied from Proto.
    676         NewReg->addValue(RV);
    677       }
    678     }
    679   }
    680 };
    681 }
    682 
    683 //===----------------------------------------------------------------------===//
    684 //                            CodeGenRegisterClass
    685 //===----------------------------------------------------------------------===//
    686 
    687 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    688   : TheDef(R),
    689     Name(R->getName()),
    690     TopoSigs(RegBank.getNumTopoSigs()),
    691     EnumValue(-1) {
    692   // Rename anonymous register classes.
    693   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    694     static unsigned AnonCounter = 0;
    695     R->setName("AnonRegClass_"+utostr(AnonCounter++));
    696   }
    697 
    698   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    699   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    700     Record *Type = TypeList[i];
    701     if (!Type->isSubClassOf("ValueType"))
    702       throw "RegTypes list member '" + Type->getName() +
    703         "' does not derive from the ValueType class!";
    704     VTs.push_back(getValueType(Type));
    705   }
    706   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    707 
    708   // Allocation order 0 is the full set. AltOrders provides others.
    709   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    710   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    711   Orders.resize(1 + AltOrders->size());
    712 
    713   // Default allocation order always contains all registers.
    714   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    715     Orders[0].push_back((*Elements)[i]);
    716     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    717     Members.insert(Reg);
    718     TopoSigs.set(Reg->getTopoSig());
    719   }
    720 
    721   // Alternative allocation orders may be subsets.
    722   SetTheory::RecSet Order;
    723   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    724     RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
    725     Orders[1 + i].append(Order.begin(), Order.end());
    726     // Verify that all altorder members are regclass members.
    727     while (!Order.empty()) {
    728       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    729       Order.pop_back();
    730       if (!contains(Reg))
    731         throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
    732                       " is not a class member");
    733     }
    734   }
    735 
    736   // Allow targets to override the size in bits of the RegisterClass.
    737   unsigned Size = R->getValueAsInt("Size");
    738 
    739   Namespace = R->getValueAsString("Namespace");
    740   SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
    741   SpillAlignment = R->getValueAsInt("Alignment");
    742   CopyCost = R->getValueAsInt("CopyCost");
    743   Allocatable = R->getValueAsBit("isAllocatable");
    744   AltOrderSelect = R->getValueAsString("AltOrderSelect");
    745 }
    746 
    747 // Create an inferred register class that was missing from the .td files.
    748 // Most properties will be inherited from the closest super-class after the
    749 // class structure has been computed.
    750 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
    751                                            StringRef Name, Key Props)
    752   : Members(*Props.Members),
    753     TheDef(0),
    754     Name(Name),
    755     TopoSigs(RegBank.getNumTopoSigs()),
    756     EnumValue(-1),
    757     SpillSize(Props.SpillSize),
    758     SpillAlignment(Props.SpillAlignment),
    759     CopyCost(0),
    760     Allocatable(true) {
    761   for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
    762        I != E; ++I)
    763     TopoSigs.set((*I)->getTopoSig());
    764 }
    765 
    766 // Compute inherited propertied for a synthesized register class.
    767 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    768   assert(!getDef() && "Only synthesized classes can inherit properties");
    769   assert(!SuperClasses.empty() && "Synthesized class without super class");
    770 
    771   // The last super-class is the smallest one.
    772   CodeGenRegisterClass &Super = *SuperClasses.back();
    773 
    774   // Most properties are copied directly.
    775   // Exceptions are members, size, and alignment
    776   Namespace = Super.Namespace;
    777   VTs = Super.VTs;
    778   CopyCost = Super.CopyCost;
    779   Allocatable = Super.Allocatable;
    780   AltOrderSelect = Super.AltOrderSelect;
    781 
    782   // Copy all allocation orders, filter out foreign registers from the larger
    783   // super-class.
    784   Orders.resize(Super.Orders.size());
    785   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    786     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    787       if (contains(RegBank.getReg(Super.Orders[i][j])))
    788         Orders[i].push_back(Super.Orders[i][j]);
    789 }
    790 
    791 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    792   return Members.count(Reg);
    793 }
    794 
    795 namespace llvm {
    796   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    797     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    798     for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
    799          E = K.Members->end(); I != E; ++I)
    800       OS << ", " << (*I)->getName();
    801     return OS << " }";
    802   }
    803 }
    804 
    805 // This is a simple lexicographical order that can be used to search for sets.
    806 // It is not the same as the topological order provided by TopoOrderRC.
    807 bool CodeGenRegisterClass::Key::
    808 operator<(const CodeGenRegisterClass::Key &B) const {
    809   assert(Members && B.Members);
    810   if (*Members != *B.Members)
    811     return *Members < *B.Members;
    812   if (SpillSize != B.SpillSize)
    813     return SpillSize < B.SpillSize;
    814   return SpillAlignment < B.SpillAlignment;
    815 }
    816 
    817 // Returns true if RC is a strict subclass.
    818 // RC is a sub-class of this class if it is a valid replacement for any
    819 // instruction operand where a register of this classis required. It must
    820 // satisfy these conditions:
    821 //
    822 // 1. All RC registers are also in this.
    823 // 2. The RC spill size must not be smaller than our spill size.
    824 // 3. RC spill alignment must be compatible with ours.
    825 //
    826 static bool testSubClass(const CodeGenRegisterClass *A,
    827                          const CodeGenRegisterClass *B) {
    828   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    829     A->SpillSize <= B->SpillSize &&
    830     std::includes(A->getMembers().begin(), A->getMembers().end(),
    831                   B->getMembers().begin(), B->getMembers().end(),
    832                   CodeGenRegister::Less());
    833 }
    834 
    835 /// Sorting predicate for register classes.  This provides a topological
    836 /// ordering that arranges all register classes before their sub-classes.
    837 ///
    838 /// Register classes with the same registers, spill size, and alignment form a
    839 /// clique.  They will be ordered alphabetically.
    840 ///
    841 static int TopoOrderRC(const void *PA, const void *PB) {
    842   const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
    843   const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
    844   if (A == B)
    845     return 0;
    846 
    847   // Order by ascending spill size.
    848   if (A->SpillSize < B->SpillSize)
    849     return -1;
    850   if (A->SpillSize > B->SpillSize)
    851     return 1;
    852 
    853   // Order by ascending spill alignment.
    854   if (A->SpillAlignment < B->SpillAlignment)
    855     return -1;
    856   if (A->SpillAlignment > B->SpillAlignment)
    857     return 1;
    858 
    859   // Order by descending set size.  Note that the classes' allocation order may
    860   // not have been computed yet.  The Members set is always vaild.
    861   if (A->getMembers().size() > B->getMembers().size())
    862     return -1;
    863   if (A->getMembers().size() < B->getMembers().size())
    864     return 1;
    865 
    866   // Finally order by name as a tie breaker.
    867   return StringRef(A->getName()).compare(B->getName());
    868 }
    869 
    870 std::string CodeGenRegisterClass::getQualifiedName() const {
    871   if (Namespace.empty())
    872     return getName();
    873   else
    874     return Namespace + "::" + getName();
    875 }
    876 
    877 // Compute sub-classes of all register classes.
    878 // Assume the classes are ordered topologically.
    879 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    880   ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
    881 
    882   // Visit backwards so sub-classes are seen first.
    883   for (unsigned rci = RegClasses.size(); rci; --rci) {
    884     CodeGenRegisterClass &RC = *RegClasses[rci - 1];
    885     RC.SubClasses.resize(RegClasses.size());
    886     RC.SubClasses.set(RC.EnumValue);
    887 
    888     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    889     for (unsigned s = rci; s != RegClasses.size(); ++s) {
    890       if (RC.SubClasses.test(s))
    891         continue;
    892       CodeGenRegisterClass *SubRC = RegClasses[s];
    893       if (!testSubClass(&RC, SubRC))
    894         continue;
    895       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    896       // check them again.
    897       RC.SubClasses |= SubRC->SubClasses;
    898     }
    899 
    900     // Sweep up missed clique members.  They will be immediately preceding RC.
    901     for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
    902       RC.SubClasses.set(s - 1);
    903   }
    904 
    905   // Compute the SuperClasses lists from the SubClasses vectors.
    906   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
    907     const BitVector &SC = RegClasses[rci]->getSubClasses();
    908     for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
    909       if (unsigned(s) == rci)
    910         continue;
    911       RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
    912     }
    913   }
    914 
    915   // With the class hierarchy in place, let synthesized register classes inherit
    916   // properties from their closest super-class. The iteration order here can
    917   // propagate properties down multiple levels.
    918   for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
    919     if (!RegClasses[rci]->getDef())
    920       RegClasses[rci]->inheritProperties(RegBank);
    921 }
    922 
    923 void
    924 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
    925                                          BitVector &Out) const {
    926   DenseMap<CodeGenSubRegIndex*,
    927            SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
    928     FindI = SuperRegClasses.find(SubIdx);
    929   if (FindI == SuperRegClasses.end())
    930     return;
    931   for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
    932        FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
    933     Out.set((*I)->EnumValue);
    934 }
    935 
    936 // Populate a unique sorted list of units from a register set.
    937 void CodeGenRegisterClass::buildRegUnitSet(
    938   std::vector<unsigned> &RegUnits) const {
    939   std::vector<unsigned> TmpUnits;
    940   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
    941     TmpUnits.push_back(*UnitI);
    942   std::sort(TmpUnits.begin(), TmpUnits.end());
    943   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
    944                    std::back_inserter(RegUnits));
    945 }
    946 
    947 //===----------------------------------------------------------------------===//
    948 //                               CodeGenRegBank
    949 //===----------------------------------------------------------------------===//
    950 
    951 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
    952   // Configure register Sets to understand register classes and tuples.
    953   Sets.addFieldExpander("RegisterClass", "MemberList");
    954   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
    955   Sets.addExpander("RegisterTuples", new TupleExpander());
    956 
    957   // Read in the user-defined (named) sub-register indices.
    958   // More indices will be synthesized later.
    959   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
    960   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
    961   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    962     getSubRegIdx(SRIs[i]);
    963   // Build composite maps from ComposedOf fields.
    964   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
    965     SubRegIndices[i]->updateComponents(*this);
    966 
    967   // Read in the register definitions.
    968   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    969   std::sort(Regs.begin(), Regs.end(), LessRecord());
    970   Registers.reserve(Regs.size());
    971   // Assign the enumeration values.
    972   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    973     getReg(Regs[i]);
    974 
    975   // Expand tuples and number the new registers.
    976   std::vector<Record*> Tups =
    977     Records.getAllDerivedDefinitions("RegisterTuples");
    978   for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
    979     const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
    980     for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
    981       getReg((*TupRegs)[j]);
    982   }
    983 
    984   // Now all the registers are known. Build the object graph of explicit
    985   // register-register references.
    986   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    987     Registers[i]->buildObjectGraph(*this);
    988 
    989   // Precompute all sub-register maps.
    990   // This will create Composite entries for all inferred sub-register indices.
    991   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    992     Registers[i]->computeSubRegs(*this);
    993 
    994   // Infer even more sub-registers by combining leading super-registers.
    995   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
    996     if (Registers[i]->CoveredBySubRegs)
    997       Registers[i]->computeSecondarySubRegs(*this);
    998 
    999   // After the sub-register graph is complete, compute the topologically
   1000   // ordered SuperRegs list.
   1001   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
   1002     Registers[i]->computeSuperRegs(*this);
   1003 
   1004   // Native register units are associated with a leaf register. They've all been
   1005   // discovered now.
   1006   NumNativeRegUnits = RegUnits.size();
   1007 
   1008   // Read in register class definitions.
   1009   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
   1010   if (RCs.empty())
   1011     throw std::string("No 'RegisterClass' subclasses defined!");
   1012 
   1013   // Allocate user-defined register classes.
   1014   RegClasses.reserve(RCs.size());
   1015   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
   1016     addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
   1017 
   1018   // Infer missing classes to create a full algebra.
   1019   computeInferredRegisterClasses();
   1020 
   1021   // Order register classes topologically and assign enum values.
   1022   array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
   1023   for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
   1024     RegClasses[i]->EnumValue = i;
   1025   CodeGenRegisterClass::computeSubClasses(*this);
   1026 }
   1027 
   1028 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
   1029 CodeGenSubRegIndex*
   1030 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
   1031   CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
   1032                                                    SubRegIndices.size() + 1);
   1033   SubRegIndices.push_back(Idx);
   1034   return Idx;
   1035 }
   1036 
   1037 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
   1038   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
   1039   if (Idx)
   1040     return Idx;
   1041   Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
   1042   SubRegIndices.push_back(Idx);
   1043   return Idx;
   1044 }
   1045 
   1046 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
   1047   CodeGenRegister *&Reg = Def2Reg[Def];
   1048   if (Reg)
   1049     return Reg;
   1050   Reg = new CodeGenRegister(Def, Registers.size() + 1);
   1051   Registers.push_back(Reg);
   1052   return Reg;
   1053 }
   1054 
   1055 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
   1056   RegClasses.push_back(RC);
   1057 
   1058   if (Record *Def = RC->getDef())
   1059     Def2RC.insert(std::make_pair(Def, RC));
   1060 
   1061   // Duplicate classes are rejected by insert().
   1062   // That's OK, we only care about the properties handled by CGRC::Key.
   1063   CodeGenRegisterClass::Key K(*RC);
   1064   Key2RC.insert(std::make_pair(K, RC));
   1065 }
   1066 
   1067 // Create a synthetic sub-class if it is missing.
   1068 CodeGenRegisterClass*
   1069 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
   1070                                     const CodeGenRegister::Set *Members,
   1071                                     StringRef Name) {
   1072   // Synthetic sub-class has the same size and alignment as RC.
   1073   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
   1074   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
   1075   if (FoundI != Key2RC.end())
   1076     return FoundI->second;
   1077 
   1078   // Sub-class doesn't exist, create a new one.
   1079   CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
   1080   addToMaps(NewRC);
   1081   return NewRC;
   1082 }
   1083 
   1084 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
   1085   if (CodeGenRegisterClass *RC = Def2RC[Def])
   1086     return RC;
   1087 
   1088   throw TGError(Def->getLoc(), "Not a known RegisterClass!");
   1089 }
   1090 
   1091 CodeGenSubRegIndex*
   1092 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
   1093                                         CodeGenSubRegIndex *B) {
   1094   // Look for an existing entry.
   1095   CodeGenSubRegIndex *Comp = A->compose(B);
   1096   if (Comp)
   1097     return Comp;
   1098 
   1099   // None exists, synthesize one.
   1100   std::string Name = A->getName() + "_then_" + B->getName();
   1101   Comp = createSubRegIndex(Name, A->getNamespace());
   1102   A->addComposite(B, Comp);
   1103   return Comp;
   1104 }
   1105 
   1106 CodeGenSubRegIndex *CodeGenRegBank::
   1107 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
   1108   assert(Parts.size() > 1 && "Need two parts to concatenate");
   1109 
   1110   // Look for an existing entry.
   1111   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
   1112   if (Idx)
   1113     return Idx;
   1114 
   1115   // None exists, synthesize one.
   1116   std::string Name = Parts.front()->getName();
   1117   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
   1118     Name += '_';
   1119     Name += Parts[i]->getName();
   1120   }
   1121   return Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
   1122 }
   1123 
   1124 void CodeGenRegBank::computeComposites() {
   1125   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
   1126   // and many registers will share TopoSigs on regular architectures.
   1127   BitVector TopoSigs(getNumTopoSigs());
   1128 
   1129   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1130     CodeGenRegister *Reg1 = Registers[i];
   1131 
   1132     // Skip identical subreg structures already processed.
   1133     if (TopoSigs.test(Reg1->getTopoSig()))
   1134       continue;
   1135     TopoSigs.set(Reg1->getTopoSig());
   1136 
   1137     const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
   1138     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
   1139          e1 = SRM1.end(); i1 != e1; ++i1) {
   1140       CodeGenSubRegIndex *Idx1 = i1->first;
   1141       CodeGenRegister *Reg2 = i1->second;
   1142       // Ignore identity compositions.
   1143       if (Reg1 == Reg2)
   1144         continue;
   1145       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
   1146       // Try composing Idx1 with another SubRegIndex.
   1147       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
   1148            e2 = SRM2.end(); i2 != e2; ++i2) {
   1149         CodeGenSubRegIndex *Idx2 = i2->first;
   1150         CodeGenRegister *Reg3 = i2->second;
   1151         // Ignore identity compositions.
   1152         if (Reg2 == Reg3)
   1153           continue;
   1154         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
   1155         CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
   1156         assert(Idx3 && "Sub-register doesn't have an index");
   1157 
   1158         // Conflicting composition? Emit a warning but allow it.
   1159         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
   1160           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
   1161                        " and " + Idx2->getQualifiedName() +
   1162                        " compose ambiguously as " + Prev->getQualifiedName() +
   1163                        " or " + Idx3->getQualifiedName());
   1164       }
   1165     }
   1166   }
   1167 
   1168   // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
   1169   // compositions, so remove any mappings of that form.
   1170   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
   1171     SubRegIndices[i]->cleanComposites();
   1172 }
   1173 
   1174 namespace {
   1175 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
   1176 // the transitive closure of the union of overlapping register
   1177 // classes. Together, the UberRegSets form a partition of the registers. If we
   1178 // consider overlapping register classes to be connected, then each UberRegSet
   1179 // is a set of connected components.
   1180 //
   1181 // An UberRegSet will likely be a horizontal slice of register names of
   1182 // the same width. Nontrivial subregisters should then be in a separate
   1183 // UberRegSet. But this property isn't required for valid computation of
   1184 // register unit weights.
   1185 //
   1186 // A Weight field caches the max per-register unit weight in each UberRegSet.
   1187 //
   1188 // A set of SingularDeterminants flags single units of some register in this set
   1189 // for which the unit weight equals the set weight. These units should not have
   1190 // their weight increased.
   1191 struct UberRegSet {
   1192   CodeGenRegister::Set Regs;
   1193   unsigned Weight;
   1194   CodeGenRegister::RegUnitList SingularDeterminants;
   1195 
   1196   UberRegSet(): Weight(0) {}
   1197 };
   1198 } // namespace
   1199 
   1200 // Partition registers into UberRegSets, where each set is the transitive
   1201 // closure of the union of overlapping register classes.
   1202 //
   1203 // UberRegSets[0] is a special non-allocatable set.
   1204 static void computeUberSets(std::vector<UberRegSet> &UberSets,
   1205                             std::vector<UberRegSet*> &RegSets,
   1206                             CodeGenRegBank &RegBank) {
   1207 
   1208   const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
   1209 
   1210   // The Register EnumValue is one greater than its index into Registers.
   1211   assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
   1212          "register enum value mismatch");
   1213 
   1214   // For simplicitly make the SetID the same as EnumValue.
   1215   IntEqClasses UberSetIDs(Registers.size()+1);
   1216   std::set<unsigned> AllocatableRegs;
   1217   for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
   1218 
   1219     CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
   1220     if (!RegClass->Allocatable)
   1221       continue;
   1222 
   1223     const CodeGenRegister::Set &Regs = RegClass->getMembers();
   1224     if (Regs.empty())
   1225       continue;
   1226 
   1227     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
   1228     assert(USetID && "register number 0 is invalid");
   1229 
   1230     AllocatableRegs.insert((*Regs.begin())->EnumValue);
   1231     for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
   1232            E = Regs.end(); I != E; ++I) {
   1233       AllocatableRegs.insert((*I)->EnumValue);
   1234       UberSetIDs.join(USetID, (*I)->EnumValue);
   1235     }
   1236   }
   1237   // Combine non-allocatable regs.
   1238   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1239     unsigned RegNum = Registers[i]->EnumValue;
   1240     if (AllocatableRegs.count(RegNum))
   1241       continue;
   1242 
   1243     UberSetIDs.join(0, RegNum);
   1244   }
   1245   UberSetIDs.compress();
   1246 
   1247   // Make the first UberSet a special unallocatable set.
   1248   unsigned ZeroID = UberSetIDs[0];
   1249 
   1250   // Insert Registers into the UberSets formed by union-find.
   1251   // Do not resize after this.
   1252   UberSets.resize(UberSetIDs.getNumClasses());
   1253   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1254     const CodeGenRegister *Reg = Registers[i];
   1255     unsigned USetID = UberSetIDs[Reg->EnumValue];
   1256     if (!USetID)
   1257       USetID = ZeroID;
   1258     else if (USetID == ZeroID)
   1259       USetID = 0;
   1260 
   1261     UberRegSet *USet = &UberSets[USetID];
   1262     USet->Regs.insert(Reg);
   1263     RegSets[i] = USet;
   1264   }
   1265 }
   1266 
   1267 // Recompute each UberSet weight after changing unit weights.
   1268 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
   1269                                CodeGenRegBank &RegBank) {
   1270   // Skip the first unallocatable set.
   1271   for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
   1272          E = UberSets.end(); I != E; ++I) {
   1273 
   1274     // Initialize all unit weights in this set, and remember the max units/reg.
   1275     const CodeGenRegister *Reg = 0;
   1276     unsigned MaxWeight = 0, Weight = 0;
   1277     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
   1278       if (Reg != UnitI.getReg()) {
   1279         if (Weight > MaxWeight)
   1280           MaxWeight = Weight;
   1281         Reg = UnitI.getReg();
   1282         Weight = 0;
   1283       }
   1284       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
   1285       if (!UWeight) {
   1286         UWeight = 1;
   1287         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
   1288       }
   1289       Weight += UWeight;
   1290     }
   1291     if (Weight > MaxWeight)
   1292       MaxWeight = Weight;
   1293 
   1294     // Update the set weight.
   1295     I->Weight = MaxWeight;
   1296 
   1297     // Find singular determinants.
   1298     for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
   1299            RegE = I->Regs.end(); RegI != RegE; ++RegI) {
   1300       if ((*RegI)->getRegUnits().size() == 1
   1301           && (*RegI)->getWeight(RegBank) == I->Weight)
   1302         mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
   1303     }
   1304   }
   1305 }
   1306 
   1307 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
   1308 // a register and its subregisters so that they have the same weight as their
   1309 // UberSet. Self-recursion processes the subregister tree in postorder so
   1310 // subregisters are normalized first.
   1311 //
   1312 // Side effects:
   1313 // - creates new adopted register units
   1314 // - causes superregisters to inherit adopted units
   1315 // - increases the weight of "singular" units
   1316 // - induces recomputation of UberWeights.
   1317 static bool normalizeWeight(CodeGenRegister *Reg,
   1318                             std::vector<UberRegSet> &UberSets,
   1319                             std::vector<UberRegSet*> &RegSets,
   1320                             std::set<unsigned> &NormalRegs,
   1321                             CodeGenRegister::RegUnitList &NormalUnits,
   1322                             CodeGenRegBank &RegBank) {
   1323   bool Changed = false;
   1324   if (!NormalRegs.insert(Reg->EnumValue).second)
   1325     return Changed;
   1326 
   1327   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
   1328   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
   1329          SRE = SRM.end(); SRI != SRE; ++SRI) {
   1330     if (SRI->second == Reg)
   1331       continue; // self-cycles happen
   1332 
   1333     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
   1334                                NormalRegs, NormalUnits, RegBank);
   1335   }
   1336   // Postorder register normalization.
   1337 
   1338   // Inherit register units newly adopted by subregisters.
   1339   if (Reg->inheritRegUnits(RegBank))
   1340     computeUberWeights(UberSets, RegBank);
   1341 
   1342   // Check if this register is too skinny for its UberRegSet.
   1343   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
   1344 
   1345   unsigned RegWeight = Reg->getWeight(RegBank);
   1346   if (UberSet->Weight > RegWeight) {
   1347     // A register unit's weight can be adjusted only if it is the singular unit
   1348     // for this register, has not been used to normalize a subregister's set,
   1349     // and has not already been used to singularly determine this UberRegSet.
   1350     unsigned AdjustUnit = Reg->getRegUnits().front();
   1351     if (Reg->getRegUnits().size() != 1
   1352         || hasRegUnit(NormalUnits, AdjustUnit)
   1353         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
   1354       // We don't have an adjustable unit, so adopt a new one.
   1355       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
   1356       Reg->adoptRegUnit(AdjustUnit);
   1357       // Adopting a unit does not immediately require recomputing set weights.
   1358     }
   1359     else {
   1360       // Adjust the existing single unit.
   1361       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
   1362       // The unit may be shared among sets and registers within this set.
   1363       computeUberWeights(UberSets, RegBank);
   1364     }
   1365     Changed = true;
   1366   }
   1367 
   1368   // Mark these units normalized so superregisters can't change their weights.
   1369   mergeRegUnits(NormalUnits, Reg->getRegUnits());
   1370 
   1371   return Changed;
   1372 }
   1373 
   1374 // Compute a weight for each register unit created during getSubRegs.
   1375 //
   1376 // The goal is that two registers in the same class will have the same weight,
   1377 // where each register's weight is defined as sum of its units' weights.
   1378 void CodeGenRegBank::computeRegUnitWeights() {
   1379   std::vector<UberRegSet> UberSets;
   1380   std::vector<UberRegSet*> RegSets(Registers.size());
   1381   computeUberSets(UberSets, RegSets, *this);
   1382   // UberSets and RegSets are now immutable.
   1383 
   1384   computeUberWeights(UberSets, *this);
   1385 
   1386   // Iterate over each Register, normalizing the unit weights until reaching
   1387   // a fix point.
   1388   unsigned NumIters = 0;
   1389   for (bool Changed = true; Changed; ++NumIters) {
   1390     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
   1391     Changed = false;
   1392     for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1393       CodeGenRegister::RegUnitList NormalUnits;
   1394       std::set<unsigned> NormalRegs;
   1395       Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
   1396                                  NormalRegs, NormalUnits, *this);
   1397     }
   1398   }
   1399 }
   1400 
   1401 // Find a set in UniqueSets with the same elements as Set.
   1402 // Return an iterator into UniqueSets.
   1403 static std::vector<RegUnitSet>::const_iterator
   1404 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
   1405                const RegUnitSet &Set) {
   1406   std::vector<RegUnitSet>::const_iterator
   1407     I = UniqueSets.begin(), E = UniqueSets.end();
   1408   for(;I != E; ++I) {
   1409     if (I->Units == Set.Units)
   1410       break;
   1411   }
   1412   return I;
   1413 }
   1414 
   1415 // Return true if the RUSubSet is a subset of RUSuperSet.
   1416 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
   1417                             const std::vector<unsigned> &RUSuperSet) {
   1418   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
   1419                        RUSubSet.begin(), RUSubSet.end());
   1420 }
   1421 
   1422 // Iteratively prune unit sets.
   1423 void CodeGenRegBank::pruneUnitSets() {
   1424   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
   1425 
   1426   // Form an equivalence class of UnitSets with no significant difference.
   1427   std::vector<unsigned> SuperSetIDs;
   1428   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
   1429        SubIdx != EndIdx; ++SubIdx) {
   1430     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
   1431     unsigned SuperIdx = 0;
   1432     for (; SuperIdx != EndIdx; ++SuperIdx) {
   1433       if (SuperIdx == SubIdx)
   1434         continue;
   1435 
   1436       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
   1437       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
   1438           && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
   1439         break;
   1440       }
   1441     }
   1442     if (SuperIdx == EndIdx)
   1443       SuperSetIDs.push_back(SubIdx);
   1444   }
   1445   // Populate PrunedUnitSets with each equivalence class's superset.
   1446   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
   1447   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
   1448     unsigned SuperIdx = SuperSetIDs[i];
   1449     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
   1450     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
   1451   }
   1452   RegUnitSets.swap(PrunedUnitSets);
   1453 }
   1454 
   1455 // Create a RegUnitSet for each RegClass that contains all units in the class
   1456 // including adopted units that are necessary to model register pressure. Then
   1457 // iteratively compute RegUnitSets such that the union of any two overlapping
   1458 // RegUnitSets is repreresented.
   1459 //
   1460 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
   1461 // RegUnitSet that is a superset of that RegUnitClass.
   1462 void CodeGenRegBank::computeRegUnitSets() {
   1463 
   1464   // Compute a unique RegUnitSet for each RegClass.
   1465   const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
   1466   unsigned NumRegClasses = RegClasses.size();
   1467   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1468     if (!RegClasses[RCIdx]->Allocatable)
   1469       continue;
   1470 
   1471     // Speculatively grow the RegUnitSets to hold the new set.
   1472     RegUnitSets.resize(RegUnitSets.size() + 1);
   1473     RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
   1474 
   1475     // Compute a sorted list of units in this class.
   1476     RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
   1477 
   1478     // Find an existing RegUnitSet.
   1479     std::vector<RegUnitSet>::const_iterator SetI =
   1480       findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1481     if (SetI != llvm::prior(RegUnitSets.end()))
   1482       RegUnitSets.pop_back();
   1483   }
   1484 
   1485   // Iteratively prune unit sets.
   1486   pruneUnitSets();
   1487 
   1488   // Iterate over all unit sets, including new ones added by this loop.
   1489   unsigned NumRegUnitSubSets = RegUnitSets.size();
   1490   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1491     // In theory, this is combinatorial. In practice, it needs to be bounded
   1492     // by a small number of sets for regpressure to be efficient.
   1493     // If the assert is hit, we need to implement pruning.
   1494     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
   1495 
   1496     // Compare new sets with all original classes.
   1497     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
   1498          SearchIdx != EndIdx; ++SearchIdx) {
   1499       std::set<unsigned> Intersection;
   1500       std::set_intersection(RegUnitSets[Idx].Units.begin(),
   1501                             RegUnitSets[Idx].Units.end(),
   1502                             RegUnitSets[SearchIdx].Units.begin(),
   1503                             RegUnitSets[SearchIdx].Units.end(),
   1504                             std::inserter(Intersection, Intersection.begin()));
   1505       if (Intersection.empty())
   1506         continue;
   1507 
   1508       // Speculatively grow the RegUnitSets to hold the new set.
   1509       RegUnitSets.resize(RegUnitSets.size() + 1);
   1510       RegUnitSets.back().Name =
   1511         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
   1512 
   1513       std::set_union(RegUnitSets[Idx].Units.begin(),
   1514                      RegUnitSets[Idx].Units.end(),
   1515                      RegUnitSets[SearchIdx].Units.begin(),
   1516                      RegUnitSets[SearchIdx].Units.end(),
   1517                      std::inserter(RegUnitSets.back().Units,
   1518                                    RegUnitSets.back().Units.begin()));
   1519 
   1520       // Find an existing RegUnitSet, or add the union to the unique sets.
   1521       std::vector<RegUnitSet>::const_iterator SetI =
   1522         findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1523       if (SetI != llvm::prior(RegUnitSets.end()))
   1524         RegUnitSets.pop_back();
   1525     }
   1526   }
   1527 
   1528   // Iteratively prune unit sets after inferring supersets.
   1529   pruneUnitSets();
   1530 
   1531   // For each register class, list the UnitSets that are supersets.
   1532   RegClassUnitSets.resize(NumRegClasses);
   1533   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1534     if (!RegClasses[RCIdx]->Allocatable)
   1535       continue;
   1536 
   1537     // Recompute the sorted list of units in this class.
   1538     std::vector<unsigned> RegUnits;
   1539     RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
   1540 
   1541     // Don't increase pressure for unallocatable regclasses.
   1542     if (RegUnits.empty())
   1543       continue;
   1544 
   1545     // Find all supersets.
   1546     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1547          USIdx != USEnd; ++USIdx) {
   1548       if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
   1549         RegClassUnitSets[RCIdx].push_back(USIdx);
   1550     }
   1551     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
   1552   }
   1553 }
   1554 
   1555 void CodeGenRegBank::computeDerivedInfo() {
   1556   computeComposites();
   1557 
   1558   // Compute a weight for each register unit created during getSubRegs.
   1559   // This may create adopted register units (with unit # >= NumNativeRegUnits).
   1560   computeRegUnitWeights();
   1561 
   1562   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
   1563   // supersets for the union of overlapping sets.
   1564   computeRegUnitSets();
   1565 }
   1566 
   1567 //
   1568 // Synthesize missing register class intersections.
   1569 //
   1570 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
   1571 // returns a maximal register class for all X.
   1572 //
   1573 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
   1574   for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
   1575     CodeGenRegisterClass *RC1 = RC;
   1576     CodeGenRegisterClass *RC2 = RegClasses[rci];
   1577     if (RC1 == RC2)
   1578       continue;
   1579 
   1580     // Compute the set intersection of RC1 and RC2.
   1581     const CodeGenRegister::Set &Memb1 = RC1->getMembers();
   1582     const CodeGenRegister::Set &Memb2 = RC2->getMembers();
   1583     CodeGenRegister::Set Intersection;
   1584     std::set_intersection(Memb1.begin(), Memb1.end(),
   1585                           Memb2.begin(), Memb2.end(),
   1586                           std::inserter(Intersection, Intersection.begin()),
   1587                           CodeGenRegister::Less());
   1588 
   1589     // Skip disjoint class pairs.
   1590     if (Intersection.empty())
   1591       continue;
   1592 
   1593     // If RC1 and RC2 have different spill sizes or alignments, use the
   1594     // larger size for sub-classing.  If they are equal, prefer RC1.
   1595     if (RC2->SpillSize > RC1->SpillSize ||
   1596         (RC2->SpillSize == RC1->SpillSize &&
   1597          RC2->SpillAlignment > RC1->SpillAlignment))
   1598       std::swap(RC1, RC2);
   1599 
   1600     getOrCreateSubClass(RC1, &Intersection,
   1601                         RC1->getName() + "_and_" + RC2->getName());
   1602   }
   1603 }
   1604 
   1605 //
   1606 // Synthesize missing sub-classes for getSubClassWithSubReg().
   1607 //
   1608 // Make sure that the set of registers in RC with a given SubIdx sub-register
   1609 // form a register class.  Update RC->SubClassWithSubReg.
   1610 //
   1611 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
   1612   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
   1613   typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
   1614                    CodeGenSubRegIndex::Less> SubReg2SetMap;
   1615 
   1616   // Compute the set of registers supporting each SubRegIndex.
   1617   SubReg2SetMap SRSets;
   1618   for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1619        RE = RC->getMembers().end(); RI != RE; ++RI) {
   1620     const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
   1621     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1622          E = SRM.end(); I != E; ++I)
   1623       SRSets[I->first].insert(*RI);
   1624   }
   1625 
   1626   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
   1627   // numerical order to visit synthetic indices last.
   1628   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1629     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1630     SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
   1631     // Unsupported SubRegIndex. Skip it.
   1632     if (I == SRSets.end())
   1633       continue;
   1634     // In most cases, all RC registers support the SubRegIndex.
   1635     if (I->second.size() == RC->getMembers().size()) {
   1636       RC->setSubClassWithSubReg(SubIdx, RC);
   1637       continue;
   1638     }
   1639     // This is a real subset.  See if we have a matching class.
   1640     CodeGenRegisterClass *SubRC =
   1641       getOrCreateSubClass(RC, &I->second,
   1642                           RC->getName() + "_with_" + I->first->getName());
   1643     RC->setSubClassWithSubReg(SubIdx, SubRC);
   1644   }
   1645 }
   1646 
   1647 //
   1648 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
   1649 //
   1650 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
   1651 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
   1652 //
   1653 
   1654 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
   1655                                                 unsigned FirstSubRegRC) {
   1656   SmallVector<std::pair<const CodeGenRegister*,
   1657                         const CodeGenRegister*>, 16> SSPairs;
   1658   BitVector TopoSigs(getNumTopoSigs());
   1659 
   1660   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
   1661   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1662     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1663     // Skip indexes that aren't fully supported by RC's registers. This was
   1664     // computed by inferSubClassWithSubReg() above which should have been
   1665     // called first.
   1666     if (RC->getSubClassWithSubReg(SubIdx) != RC)
   1667       continue;
   1668 
   1669     // Build list of (Super, Sub) pairs for this SubIdx.
   1670     SSPairs.clear();
   1671     TopoSigs.reset();
   1672     for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1673          RE = RC->getMembers().end(); RI != RE; ++RI) {
   1674       const CodeGenRegister *Super = *RI;
   1675       const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
   1676       assert(Sub && "Missing sub-register");
   1677       SSPairs.push_back(std::make_pair(Super, Sub));
   1678       TopoSigs.set(Sub->getTopoSig());
   1679     }
   1680 
   1681     // Iterate over sub-register class candidates.  Ignore classes created by
   1682     // this loop. They will never be useful.
   1683     for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
   1684          ++rci) {
   1685       CodeGenRegisterClass *SubRC = RegClasses[rci];
   1686       // Topological shortcut: SubRC members have the wrong shape.
   1687       if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
   1688         continue;
   1689       // Compute the subset of RC that maps into SubRC.
   1690       CodeGenRegister::Set SubSet;
   1691       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
   1692         if (SubRC->contains(SSPairs[i].second))
   1693           SubSet.insert(SSPairs[i].first);
   1694       if (SubSet.empty())
   1695         continue;
   1696       // RC injects completely into SubRC.
   1697       if (SubSet.size() == SSPairs.size()) {
   1698         SubRC->addSuperRegClass(SubIdx, RC);
   1699         continue;
   1700       }
   1701       // Only a subset of RC maps into SubRC. Make sure it is represented by a
   1702       // class.
   1703       getOrCreateSubClass(RC, &SubSet, RC->getName() +
   1704                           "_with_" + SubIdx->getName() +
   1705                           "_in_" + SubRC->getName());
   1706     }
   1707   }
   1708 }
   1709 
   1710 
   1711 //
   1712 // Infer missing register classes.
   1713 //
   1714 void CodeGenRegBank::computeInferredRegisterClasses() {
   1715   // When this function is called, the register classes have not been sorted
   1716   // and assigned EnumValues yet.  That means getSubClasses(),
   1717   // getSuperClasses(), and hasSubClass() functions are defunct.
   1718   unsigned FirstNewRC = RegClasses.size();
   1719 
   1720   // Visit all register classes, including the ones being added by the loop.
   1721   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
   1722     CodeGenRegisterClass *RC = RegClasses[rci];
   1723 
   1724     // Synthesize answers for getSubClassWithSubReg().
   1725     inferSubClassWithSubReg(RC);
   1726 
   1727     // Synthesize answers for getCommonSubClass().
   1728     inferCommonSubClass(RC);
   1729 
   1730     // Synthesize answers for getMatchingSuperRegClass().
   1731     inferMatchingSuperRegClass(RC);
   1732 
   1733     // New register classes are created while this loop is running, and we need
   1734     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
   1735     // to match old super-register classes with sub-register classes created
   1736     // after inferMatchingSuperRegClass was called.  At this point,
   1737     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
   1738     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
   1739     if (rci + 1 == FirstNewRC) {
   1740       unsigned NextNewRC = RegClasses.size();
   1741       for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
   1742         inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
   1743       FirstNewRC = NextNewRC;
   1744     }
   1745   }
   1746 }
   1747 
   1748 /// getRegisterClassForRegister - Find the register class that contains the
   1749 /// specified physical register.  If the register is not in a register class,
   1750 /// return null. If the register is in multiple classes, and the classes have a
   1751 /// superset-subset relationship and the same set of types, return the
   1752 /// superclass.  Otherwise return null.
   1753 const CodeGenRegisterClass*
   1754 CodeGenRegBank::getRegClassForRegister(Record *R) {
   1755   const CodeGenRegister *Reg = getReg(R);
   1756   ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
   1757   const CodeGenRegisterClass *FoundRC = 0;
   1758   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
   1759     const CodeGenRegisterClass &RC = *RCs[i];
   1760     if (!RC.contains(Reg))
   1761       continue;
   1762 
   1763     // If this is the first class that contains the register,
   1764     // make a note of it and go on to the next class.
   1765     if (!FoundRC) {
   1766       FoundRC = &RC;
   1767       continue;
   1768     }
   1769 
   1770     // If a register's classes have different types, return null.
   1771     if (RC.getValueTypes() != FoundRC->getValueTypes())
   1772       return 0;
   1773 
   1774     // Check to see if the previously found class that contains
   1775     // the register is a subclass of the current class. If so,
   1776     // prefer the superclass.
   1777     if (RC.hasSubClass(FoundRC)) {
   1778       FoundRC = &RC;
   1779       continue;
   1780     }
   1781 
   1782     // Check to see if the previously found class that contains
   1783     // the register is a superclass of the current class. If so,
   1784     // prefer the superclass.
   1785     if (FoundRC->hasSubClass(&RC))
   1786       continue;
   1787 
   1788     // Multiple classes, and neither is a superclass of the other.
   1789     // Return null.
   1790     return 0;
   1791   }
   1792   return FoundRC;
   1793 }
   1794 
   1795 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
   1796   SetVector<const CodeGenRegister*> Set;
   1797 
   1798   // First add Regs with all sub-registers.
   1799   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   1800     CodeGenRegister *Reg = getReg(Regs[i]);
   1801     if (Set.insert(Reg))
   1802       // Reg is new, add all sub-registers.
   1803       // The pre-ordering is not important here.
   1804       Reg->addSubRegsPreOrder(Set, *this);
   1805   }
   1806 
   1807   // Second, find all super-registers that are completely covered by the set.
   1808   for (unsigned i = 0; i != Set.size(); ++i) {
   1809     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
   1810     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
   1811       const CodeGenRegister *Super = SR[j];
   1812       if (!Super->CoveredBySubRegs || Set.count(Super))
   1813         continue;
   1814       // This new super-register is covered by its sub-registers.
   1815       bool AllSubsInSet = true;
   1816       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
   1817       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1818              E = SRM.end(); I != E; ++I)
   1819         if (!Set.count(I->second)) {
   1820           AllSubsInSet = false;
   1821           break;
   1822         }
   1823       // All sub-registers in Set, add Super as well.
   1824       // We will visit Super later to recheck its super-registers.
   1825       if (AllSubsInSet)
   1826         Set.insert(Super);
   1827     }
   1828   }
   1829 
   1830   // Convert to BitVector.
   1831   BitVector BV(Registers.size() + 1);
   1832   for (unsigned i = 0, e = Set.size(); i != e; ++i)
   1833     BV.set(Set[i]->EnumValue);
   1834   return BV;
   1835 }
   1836