1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #define DEBUG_TYPE "isel" 43 #include "llvm/CodeGen/FastISel.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/Loads.h" 46 #include "llvm/CodeGen/Analysis.h" 47 #include "llvm/CodeGen/FunctionLoweringInfo.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/DebugInfo.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetLibraryInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetMachine.h" 64 using namespace llvm; 65 66 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 67 "target-independent selector"); 68 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 69 "target-specific selector"); 70 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 71 72 /// startNewBlock - Set the current block to which generated machine 73 /// instructions will be appended, and clear the local CSE map. 74 /// 75 void FastISel::startNewBlock() { 76 LocalValueMap.clear(); 77 78 EmitStartPt = 0; 79 80 // Advance the emit start point past any EH_LABEL instructions. 81 MachineBasicBlock::iterator 82 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); 83 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { 84 EmitStartPt = I; 85 ++I; 86 } 87 LastLocalValue = EmitStartPt; 88 } 89 90 bool FastISel::LowerArguments() { 91 if (!FuncInfo.CanLowerReturn) 92 // Fallback to SDISel argument lowering code to deal with sret pointer 93 // parameter. 94 return false; 95 96 if (!FastLowerArguments()) 97 return false; 98 99 // Enter non-dead arguments into ValueMap for uses in non-entry BBs. 100 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 101 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 102 if (!I->use_empty()) { 103 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 104 assert(VI != LocalValueMap.end() && "Missed an argument?"); 105 FuncInfo.ValueMap[I] = VI->second; 106 } 107 } 108 return true; 109 } 110 111 void FastISel::flushLocalValueMap() { 112 LocalValueMap.clear(); 113 LastLocalValue = EmitStartPt; 114 recomputeInsertPt(); 115 } 116 117 bool FastISel::hasTrivialKill(const Value *V) const { 118 // Don't consider constants or arguments to have trivial kills. 119 const Instruction *I = dyn_cast<Instruction>(V); 120 if (!I) 121 return false; 122 123 // No-op casts are trivially coalesced by fast-isel. 124 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 125 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && 126 !hasTrivialKill(Cast->getOperand(0))) 127 return false; 128 129 // GEPs with all zero indices are trivially coalesced by fast-isel. 130 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 131 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 132 return false; 133 134 // Only instructions with a single use in the same basic block are considered 135 // to have trivial kills. 136 return I->hasOneUse() && 137 !(I->getOpcode() == Instruction::BitCast || 138 I->getOpcode() == Instruction::PtrToInt || 139 I->getOpcode() == Instruction::IntToPtr) && 140 cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); 141 } 142 143 unsigned FastISel::getRegForValue(const Value *V) { 144 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 145 // Don't handle non-simple values in FastISel. 146 if (!RealVT.isSimple()) 147 return 0; 148 149 // Ignore illegal types. We must do this before looking up the value 150 // in ValueMap because Arguments are given virtual registers regardless 151 // of whether FastISel can handle them. 152 MVT VT = RealVT.getSimpleVT(); 153 if (!TLI.isTypeLegal(VT)) { 154 // Handle integer promotions, though, because they're common and easy. 155 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 156 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 157 else 158 return 0; 159 } 160 161 // Look up the value to see if we already have a register for it. 162 unsigned Reg = lookUpRegForValue(V); 163 if (Reg != 0) 164 return Reg; 165 166 // In bottom-up mode, just create the virtual register which will be used 167 // to hold the value. It will be materialized later. 168 if (isa<Instruction>(V) && 169 (!isa<AllocaInst>(V) || 170 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 171 return FuncInfo.InitializeRegForValue(V); 172 173 SavePoint SaveInsertPt = enterLocalValueArea(); 174 175 // Materialize the value in a register. Emit any instructions in the 176 // local value area. 177 Reg = materializeRegForValue(V, VT); 178 179 leaveLocalValueArea(SaveInsertPt); 180 181 return Reg; 182 } 183 184 /// materializeRegForValue - Helper for getRegForValue. This function is 185 /// called when the value isn't already available in a register and must 186 /// be materialized with new instructions. 187 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 188 unsigned Reg = 0; 189 190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 191 if (CI->getValue().getActiveBits() <= 64) 192 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 193 } else if (isa<AllocaInst>(V)) { 194 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 195 } else if (isa<ConstantPointerNull>(V)) { 196 // Translate this as an integer zero so that it can be 197 // local-CSE'd with actual integer zeros. 198 Reg = 199 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); 200 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 201 if (CF->isNullValue()) { 202 Reg = TargetMaterializeFloatZero(CF); 203 } else { 204 // Try to emit the constant directly. 205 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 206 } 207 208 if (!Reg) { 209 // Try to emit the constant by using an integer constant with a cast. 210 const APFloat &Flt = CF->getValueAPF(); 211 EVT IntVT = TLI.getPointerTy(); 212 213 uint64_t x[2]; 214 uint32_t IntBitWidth = IntVT.getSizeInBits(); 215 bool isExact; 216 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 217 APFloat::rmTowardZero, &isExact); 218 if (isExact) { 219 APInt IntVal(IntBitWidth, x); 220 221 unsigned IntegerReg = 222 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 223 if (IntegerReg != 0) 224 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 225 IntegerReg, /*Kill=*/false); 226 } 227 } 228 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 229 if (!SelectOperator(Op, Op->getOpcode())) 230 if (!isa<Instruction>(Op) || 231 !TargetSelectInstruction(cast<Instruction>(Op))) 232 return 0; 233 Reg = lookUpRegForValue(Op); 234 } else if (isa<UndefValue>(V)) { 235 Reg = createResultReg(TLI.getRegClassFor(VT)); 236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 237 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 238 } 239 240 // If target-independent code couldn't handle the value, give target-specific 241 // code a try. 242 if (!Reg && isa<Constant>(V)) 243 Reg = TargetMaterializeConstant(cast<Constant>(V)); 244 245 // Don't cache constant materializations in the general ValueMap. 246 // To do so would require tracking what uses they dominate. 247 if (Reg != 0) { 248 LocalValueMap[V] = Reg; 249 LastLocalValue = MRI.getVRegDef(Reg); 250 } 251 return Reg; 252 } 253 254 unsigned FastISel::lookUpRegForValue(const Value *V) { 255 // Look up the value to see if we already have a register for it. We 256 // cache values defined by Instructions across blocks, and other values 257 // only locally. This is because Instructions already have the SSA 258 // def-dominates-use requirement enforced. 259 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 260 if (I != FuncInfo.ValueMap.end()) 261 return I->second; 262 return LocalValueMap[V]; 263 } 264 265 /// UpdateValueMap - Update the value map to include the new mapping for this 266 /// instruction, or insert an extra copy to get the result in a previous 267 /// determined register. 268 /// NOTE: This is only necessary because we might select a block that uses 269 /// a value before we select the block that defines the value. It might be 270 /// possible to fix this by selecting blocks in reverse postorder. 271 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 272 if (!isa<Instruction>(I)) { 273 LocalValueMap[I] = Reg; 274 return; 275 } 276 277 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 278 if (AssignedReg == 0) 279 // Use the new register. 280 AssignedReg = Reg; 281 else if (Reg != AssignedReg) { 282 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 283 for (unsigned i = 0; i < NumRegs; i++) 284 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 285 286 AssignedReg = Reg; 287 } 288 } 289 290 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 291 unsigned IdxN = getRegForValue(Idx); 292 if (IdxN == 0) 293 // Unhandled operand. Halt "fast" selection and bail. 294 return std::pair<unsigned, bool>(0, false); 295 296 bool IdxNIsKill = hasTrivialKill(Idx); 297 298 // If the index is smaller or larger than intptr_t, truncate or extend it. 299 MVT PtrVT = TLI.getPointerTy(); 300 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 301 if (IdxVT.bitsLT(PtrVT)) { 302 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 303 IdxN, IdxNIsKill); 304 IdxNIsKill = true; 305 } 306 else if (IdxVT.bitsGT(PtrVT)) { 307 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 308 IdxN, IdxNIsKill); 309 IdxNIsKill = true; 310 } 311 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 312 } 313 314 void FastISel::recomputeInsertPt() { 315 if (getLastLocalValue()) { 316 FuncInfo.InsertPt = getLastLocalValue(); 317 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 318 ++FuncInfo.InsertPt; 319 } else 320 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 321 322 // Now skip past any EH_LABELs, which must remain at the beginning. 323 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 324 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 325 ++FuncInfo.InsertPt; 326 } 327 328 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 329 MachineBasicBlock::iterator E) { 330 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 331 while (I != E) { 332 MachineInstr *Dead = &*I; 333 ++I; 334 Dead->eraseFromParent(); 335 ++NumFastIselDead; 336 } 337 recomputeInsertPt(); 338 } 339 340 FastISel::SavePoint FastISel::enterLocalValueArea() { 341 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 342 DebugLoc OldDL = DL; 343 recomputeInsertPt(); 344 DL = DebugLoc(); 345 SavePoint SP = { OldInsertPt, OldDL }; 346 return SP; 347 } 348 349 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 350 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 351 LastLocalValue = llvm::prior(FuncInfo.InsertPt); 352 353 // Restore the previous insert position. 354 FuncInfo.InsertPt = OldInsertPt.InsertPt; 355 DL = OldInsertPt.DL; 356 } 357 358 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 359 /// which has an opcode which directly corresponds to the given ISD opcode. 360 /// 361 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 362 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 363 if (VT == MVT::Other || !VT.isSimple()) 364 // Unhandled type. Halt "fast" selection and bail. 365 return false; 366 367 // We only handle legal types. For example, on x86-32 the instruction 368 // selector contains all of the 64-bit instructions from x86-64, 369 // under the assumption that i64 won't be used if the target doesn't 370 // support it. 371 if (!TLI.isTypeLegal(VT)) { 372 // MVT::i1 is special. Allow AND, OR, or XOR because they 373 // don't require additional zeroing, which makes them easy. 374 if (VT == MVT::i1 && 375 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 376 ISDOpcode == ISD::XOR)) 377 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 378 else 379 return false; 380 } 381 382 // Check if the first operand is a constant, and handle it as "ri". At -O0, 383 // we don't have anything that canonicalizes operand order. 384 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 385 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 386 unsigned Op1 = getRegForValue(I->getOperand(1)); 387 if (Op1 == 0) return false; 388 389 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 390 391 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 392 Op1IsKill, CI->getZExtValue(), 393 VT.getSimpleVT()); 394 if (ResultReg == 0) return false; 395 396 // We successfully emitted code for the given LLVM Instruction. 397 UpdateValueMap(I, ResultReg); 398 return true; 399 } 400 401 402 unsigned Op0 = getRegForValue(I->getOperand(0)); 403 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 404 return false; 405 406 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 407 408 // Check if the second operand is a constant and handle it appropriately. 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 410 uint64_t Imm = CI->getZExtValue(); 411 412 // Transform "sdiv exact X, 8" -> "sra X, 3". 413 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 414 cast<BinaryOperator>(I)->isExact() && 415 isPowerOf2_64(Imm)) { 416 Imm = Log2_64(Imm); 417 ISDOpcode = ISD::SRA; 418 } 419 420 // Transform "urem x, pow2" -> "and x, pow2-1". 421 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 422 isPowerOf2_64(Imm)) { 423 --Imm; 424 ISDOpcode = ISD::AND; 425 } 426 427 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 428 Op0IsKill, Imm, VT.getSimpleVT()); 429 if (ResultReg == 0) return false; 430 431 // We successfully emitted code for the given LLVM Instruction. 432 UpdateValueMap(I, ResultReg); 433 return true; 434 } 435 436 // Check if the second operand is a constant float. 437 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 438 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 439 ISDOpcode, Op0, Op0IsKill, CF); 440 if (ResultReg != 0) { 441 // We successfully emitted code for the given LLVM Instruction. 442 UpdateValueMap(I, ResultReg); 443 return true; 444 } 445 } 446 447 unsigned Op1 = getRegForValue(I->getOperand(1)); 448 if (Op1 == 0) 449 // Unhandled operand. Halt "fast" selection and bail. 450 return false; 451 452 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 453 454 // Now we have both operands in registers. Emit the instruction. 455 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 456 ISDOpcode, 457 Op0, Op0IsKill, 458 Op1, Op1IsKill); 459 if (ResultReg == 0) 460 // Target-specific code wasn't able to find a machine opcode for 461 // the given ISD opcode and type. Halt "fast" selection and bail. 462 return false; 463 464 // We successfully emitted code for the given LLVM Instruction. 465 UpdateValueMap(I, ResultReg); 466 return true; 467 } 468 469 bool FastISel::SelectGetElementPtr(const User *I) { 470 unsigned N = getRegForValue(I->getOperand(0)); 471 if (N == 0) 472 // Unhandled operand. Halt "fast" selection and bail. 473 return false; 474 475 bool NIsKill = hasTrivialKill(I->getOperand(0)); 476 477 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 478 // into a single N = N + TotalOffset. 479 uint64_t TotalOffs = 0; 480 // FIXME: What's a good SWAG number for MaxOffs? 481 uint64_t MaxOffs = 2048; 482 Type *Ty = I->getOperand(0)->getType(); 483 MVT VT = TLI.getPointerTy(); 484 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 485 E = I->op_end(); OI != E; ++OI) { 486 const Value *Idx = *OI; 487 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 488 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 489 if (Field) { 490 // N = N + Offset 491 TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); 492 if (TotalOffs >= MaxOffs) { 493 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 494 if (N == 0) 495 // Unhandled operand. Halt "fast" selection and bail. 496 return false; 497 NIsKill = true; 498 TotalOffs = 0; 499 } 500 } 501 Ty = StTy->getElementType(Field); 502 } else { 503 Ty = cast<SequentialType>(Ty)->getElementType(); 504 505 // If this is a constant subscript, handle it quickly. 506 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 507 if (CI->isZero()) continue; 508 // N = N + Offset 509 TotalOffs += 510 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 511 if (TotalOffs >= MaxOffs) { 512 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 513 if (N == 0) 514 // Unhandled operand. Halt "fast" selection and bail. 515 return false; 516 NIsKill = true; 517 TotalOffs = 0; 518 } 519 continue; 520 } 521 if (TotalOffs) { 522 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 523 if (N == 0) 524 // Unhandled operand. Halt "fast" selection and bail. 525 return false; 526 NIsKill = true; 527 TotalOffs = 0; 528 } 529 530 // N = N + Idx * ElementSize; 531 uint64_t ElementSize = TD.getTypeAllocSize(Ty); 532 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 533 unsigned IdxN = Pair.first; 534 bool IdxNIsKill = Pair.second; 535 if (IdxN == 0) 536 // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 539 if (ElementSize != 1) { 540 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 541 if (IdxN == 0) 542 // Unhandled operand. Halt "fast" selection and bail. 543 return false; 544 IdxNIsKill = true; 545 } 546 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 547 if (N == 0) 548 // Unhandled operand. Halt "fast" selection and bail. 549 return false; 550 } 551 } 552 if (TotalOffs) { 553 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 554 if (N == 0) 555 // Unhandled operand. Halt "fast" selection and bail. 556 return false; 557 } 558 559 // We successfully emitted code for the given LLVM Instruction. 560 UpdateValueMap(I, N); 561 return true; 562 } 563 564 bool FastISel::SelectCall(const User *I) { 565 const CallInst *Call = cast<CallInst>(I); 566 567 // Handle simple inline asms. 568 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 569 // Don't attempt to handle constraints. 570 if (!IA->getConstraintString().empty()) 571 return false; 572 573 unsigned ExtraInfo = 0; 574 if (IA->hasSideEffects()) 575 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 576 if (IA->isAlignStack()) 577 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 578 579 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 580 TII.get(TargetOpcode::INLINEASM)) 581 .addExternalSymbol(IA->getAsmString().c_str()) 582 .addImm(ExtraInfo); 583 return true; 584 } 585 586 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 587 ComputeUsesVAFloatArgument(*Call, &MMI); 588 589 const Function *F = Call->getCalledFunction(); 590 if (!F) return false; 591 592 // Handle selected intrinsic function calls. 593 switch (F->getIntrinsicID()) { 594 default: break; 595 // At -O0 we don't care about the lifetime intrinsics. 596 case Intrinsic::lifetime_start: 597 case Intrinsic::lifetime_end: 598 // The donothing intrinsic does, well, nothing. 599 case Intrinsic::donothing: 600 return true; 601 602 case Intrinsic::dbg_declare: { 603 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 604 if (!DIVariable(DI->getVariable()).Verify() || 605 !FuncInfo.MF->getMMI().hasDebugInfo()) { 606 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 607 return true; 608 } 609 610 const Value *Address = DI->getAddress(); 611 if (!Address || isa<UndefValue>(Address)) { 612 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 613 return true; 614 } 615 616 unsigned Reg = 0; 617 unsigned Offset = 0; 618 if (const Argument *Arg = dyn_cast<Argument>(Address)) { 619 // Some arguments' frame index is recorded during argument lowering. 620 Offset = FuncInfo.getArgumentFrameIndex(Arg); 621 if (Offset) 622 Reg = TRI.getFrameRegister(*FuncInfo.MF); 623 } 624 if (!Reg) 625 Reg = lookUpRegForValue(Address); 626 627 // If we have a VLA that has a "use" in a metadata node that's then used 628 // here but it has no other uses, then we have a problem. E.g., 629 // 630 // int foo (const int *x) { 631 // char a[*x]; 632 // return 0; 633 // } 634 // 635 // If we assign 'a' a vreg and fast isel later on has to use the selection 636 // DAG isel, it will want to copy the value to the vreg. However, there are 637 // no uses, which goes counter to what selection DAG isel expects. 638 if (!Reg && !Address->use_empty() && isa<Instruction>(Address) && 639 (!isa<AllocaInst>(Address) || 640 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 641 Reg = FuncInfo.InitializeRegForValue(Address); 642 643 if (Reg) 644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 645 TII.get(TargetOpcode::DBG_VALUE)) 646 .addReg(Reg, RegState::Debug).addImm(Offset) 647 .addMetadata(DI->getVariable()); 648 else 649 // We can't yet handle anything else here because it would require 650 // generating code, thus altering codegen because of debug info. 651 DEBUG(dbgs() << "Dropping debug info for " << DI); 652 return true; 653 } 654 case Intrinsic::dbg_value: { 655 // This form of DBG_VALUE is target-independent. 656 const DbgValueInst *DI = cast<DbgValueInst>(Call); 657 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 658 const Value *V = DI->getValue(); 659 if (!V) { 660 // Currently the optimizer can produce this; insert an undef to 661 // help debugging. Probably the optimizer should not do this. 662 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 663 .addReg(0U).addImm(DI->getOffset()) 664 .addMetadata(DI->getVariable()); 665 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 666 if (CI->getBitWidth() > 64) 667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 668 .addCImm(CI).addImm(DI->getOffset()) 669 .addMetadata(DI->getVariable()); 670 else 671 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 672 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 673 .addMetadata(DI->getVariable()); 674 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 676 .addFPImm(CF).addImm(DI->getOffset()) 677 .addMetadata(DI->getVariable()); 678 } else if (unsigned Reg = lookUpRegForValue(V)) { 679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 680 .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) 681 .addMetadata(DI->getVariable()); 682 } else { 683 // We can't yet handle anything else here because it would require 684 // generating code, thus altering codegen because of debug info. 685 DEBUG(dbgs() << "Dropping debug info for " << DI); 686 } 687 return true; 688 } 689 case Intrinsic::objectsize: { 690 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 691 unsigned long long Res = CI->isZero() ? -1ULL : 0; 692 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 693 unsigned ResultReg = getRegForValue(ResCI); 694 if (ResultReg == 0) 695 return false; 696 UpdateValueMap(Call, ResultReg); 697 return true; 698 } 699 case Intrinsic::expect: { 700 unsigned ResultReg = getRegForValue(Call->getArgOperand(0)); 701 if (ResultReg == 0) 702 return false; 703 UpdateValueMap(Call, ResultReg); 704 return true; 705 } 706 } 707 708 // Usually, it does not make sense to initialize a value, 709 // make an unrelated function call and use the value, because 710 // it tends to be spilled on the stack. So, we move the pointer 711 // to the last local value to the beginning of the block, so that 712 // all the values which have already been materialized, 713 // appear after the call. It also makes sense to skip intrinsics 714 // since they tend to be inlined. 715 if (!isa<IntrinsicInst>(Call)) 716 flushLocalValueMap(); 717 718 // An arbitrary call. Bail. 719 return false; 720 } 721 722 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 723 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 724 EVT DstVT = TLI.getValueType(I->getType()); 725 726 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 727 DstVT == MVT::Other || !DstVT.isSimple()) 728 // Unhandled type. Halt "fast" selection and bail. 729 return false; 730 731 // Check if the destination type is legal. 732 if (!TLI.isTypeLegal(DstVT)) 733 return false; 734 735 // Check if the source operand is legal. 736 if (!TLI.isTypeLegal(SrcVT)) 737 return false; 738 739 unsigned InputReg = getRegForValue(I->getOperand(0)); 740 if (!InputReg) 741 // Unhandled operand. Halt "fast" selection and bail. 742 return false; 743 744 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 745 746 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 747 DstVT.getSimpleVT(), 748 Opcode, 749 InputReg, InputRegIsKill); 750 if (!ResultReg) 751 return false; 752 753 UpdateValueMap(I, ResultReg); 754 return true; 755 } 756 757 bool FastISel::SelectBitCast(const User *I) { 758 // If the bitcast doesn't change the type, just use the operand value. 759 if (I->getType() == I->getOperand(0)->getType()) { 760 unsigned Reg = getRegForValue(I->getOperand(0)); 761 if (Reg == 0) 762 return false; 763 UpdateValueMap(I, Reg); 764 return true; 765 } 766 767 // Bitcasts of other values become reg-reg copies or BITCAST operators. 768 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 769 EVT DstEVT = TLI.getValueType(I->getType()); 770 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 771 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 772 // Unhandled type. Halt "fast" selection and bail. 773 return false; 774 775 MVT SrcVT = SrcEVT.getSimpleVT(); 776 MVT DstVT = DstEVT.getSimpleVT(); 777 unsigned Op0 = getRegForValue(I->getOperand(0)); 778 if (Op0 == 0) 779 // Unhandled operand. Halt "fast" selection and bail. 780 return false; 781 782 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 783 784 // First, try to perform the bitcast by inserting a reg-reg copy. 785 unsigned ResultReg = 0; 786 if (SrcVT == DstVT) { 787 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 788 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 789 // Don't attempt a cross-class copy. It will likely fail. 790 if (SrcClass == DstClass) { 791 ResultReg = createResultReg(DstClass); 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 793 ResultReg).addReg(Op0); 794 } 795 } 796 797 // If the reg-reg copy failed, select a BITCAST opcode. 798 if (!ResultReg) 799 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 800 801 if (!ResultReg) 802 return false; 803 804 UpdateValueMap(I, ResultReg); 805 return true; 806 } 807 808 bool 809 FastISel::SelectInstruction(const Instruction *I) { 810 // Just before the terminator instruction, insert instructions to 811 // feed PHI nodes in successor blocks. 812 if (isa<TerminatorInst>(I)) 813 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 814 return false; 815 816 DL = I->getDebugLoc(); 817 818 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 819 820 // As a special case, don't handle calls to builtin library functions that 821 // may be translated directly to target instructions. 822 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 823 const Function *F = Call->getCalledFunction(); 824 LibFunc::Func Func; 825 if (F && !F->hasLocalLinkage() && F->hasName() && 826 LibInfo->getLibFunc(F->getName(), Func) && 827 LibInfo->hasOptimizedCodeGen(Func)) 828 return false; 829 } 830 831 // First, try doing target-independent selection. 832 if (SelectOperator(I, I->getOpcode())) { 833 ++NumFastIselSuccessIndependent; 834 DL = DebugLoc(); 835 return true; 836 } 837 // Remove dead code. However, ignore call instructions since we've flushed 838 // the local value map and recomputed the insert point. 839 if (!isa<CallInst>(I)) { 840 recomputeInsertPt(); 841 if (SavedInsertPt != FuncInfo.InsertPt) 842 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 843 } 844 845 // Next, try calling the target to attempt to handle the instruction. 846 SavedInsertPt = FuncInfo.InsertPt; 847 if (TargetSelectInstruction(I)) { 848 ++NumFastIselSuccessTarget; 849 DL = DebugLoc(); 850 return true; 851 } 852 // Check for dead code and remove as necessary. 853 recomputeInsertPt(); 854 if (SavedInsertPt != FuncInfo.InsertPt) 855 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 856 857 DL = DebugLoc(); 858 return false; 859 } 860 861 /// FastEmitBranch - Emit an unconditional branch to the given block, 862 /// unless it is the immediate (fall-through) successor, and update 863 /// the CFG. 864 void 865 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { 866 867 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 868 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 869 // For more accurate line information if this is the only instruction 870 // in the block then emit it, otherwise we have the unconditional 871 // fall-through case, which needs no instructions. 872 } else { 873 // The unconditional branch case. 874 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, 875 SmallVector<MachineOperand, 0>(), DL); 876 } 877 FuncInfo.MBB->addSuccessor(MSucc); 878 } 879 880 /// SelectFNeg - Emit an FNeg operation. 881 /// 882 bool 883 FastISel::SelectFNeg(const User *I) { 884 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 885 if (OpReg == 0) return false; 886 887 bool OpRegIsKill = hasTrivialKill(I); 888 889 // If the target has ISD::FNEG, use it. 890 EVT VT = TLI.getValueType(I->getType()); 891 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 892 ISD::FNEG, OpReg, OpRegIsKill); 893 if (ResultReg != 0) { 894 UpdateValueMap(I, ResultReg); 895 return true; 896 } 897 898 // Bitcast the value to integer, twiddle the sign bit with xor, 899 // and then bitcast it back to floating-point. 900 if (VT.getSizeInBits() > 64) return false; 901 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 902 if (!TLI.isTypeLegal(IntVT)) 903 return false; 904 905 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 906 ISD::BITCAST, OpReg, OpRegIsKill); 907 if (IntReg == 0) 908 return false; 909 910 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 911 IntReg, /*Kill=*/true, 912 UINT64_C(1) << (VT.getSizeInBits()-1), 913 IntVT.getSimpleVT()); 914 if (IntResultReg == 0) 915 return false; 916 917 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 918 ISD::BITCAST, IntResultReg, /*Kill=*/true); 919 if (ResultReg == 0) 920 return false; 921 922 UpdateValueMap(I, ResultReg); 923 return true; 924 } 925 926 bool 927 FastISel::SelectExtractValue(const User *U) { 928 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 929 if (!EVI) 930 return false; 931 932 // Make sure we only try to handle extracts with a legal result. But also 933 // allow i1 because it's easy. 934 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 935 if (!RealVT.isSimple()) 936 return false; 937 MVT VT = RealVT.getSimpleVT(); 938 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 939 return false; 940 941 const Value *Op0 = EVI->getOperand(0); 942 Type *AggTy = Op0->getType(); 943 944 // Get the base result register. 945 unsigned ResultReg; 946 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 947 if (I != FuncInfo.ValueMap.end()) 948 ResultReg = I->second; 949 else if (isa<Instruction>(Op0)) 950 ResultReg = FuncInfo.InitializeRegForValue(Op0); 951 else 952 return false; // fast-isel can't handle aggregate constants at the moment 953 954 // Get the actual result register, which is an offset from the base register. 955 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 956 957 SmallVector<EVT, 4> AggValueVTs; 958 ComputeValueVTs(TLI, AggTy, AggValueVTs); 959 960 for (unsigned i = 0; i < VTIndex; i++) 961 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 962 963 UpdateValueMap(EVI, ResultReg); 964 return true; 965 } 966 967 bool 968 FastISel::SelectOperator(const User *I, unsigned Opcode) { 969 switch (Opcode) { 970 case Instruction::Add: 971 return SelectBinaryOp(I, ISD::ADD); 972 case Instruction::FAdd: 973 return SelectBinaryOp(I, ISD::FADD); 974 case Instruction::Sub: 975 return SelectBinaryOp(I, ISD::SUB); 976 case Instruction::FSub: 977 // FNeg is currently represented in LLVM IR as a special case of FSub. 978 if (BinaryOperator::isFNeg(I)) 979 return SelectFNeg(I); 980 return SelectBinaryOp(I, ISD::FSUB); 981 case Instruction::Mul: 982 return SelectBinaryOp(I, ISD::MUL); 983 case Instruction::FMul: 984 return SelectBinaryOp(I, ISD::FMUL); 985 case Instruction::SDiv: 986 return SelectBinaryOp(I, ISD::SDIV); 987 case Instruction::UDiv: 988 return SelectBinaryOp(I, ISD::UDIV); 989 case Instruction::FDiv: 990 return SelectBinaryOp(I, ISD::FDIV); 991 case Instruction::SRem: 992 return SelectBinaryOp(I, ISD::SREM); 993 case Instruction::URem: 994 return SelectBinaryOp(I, ISD::UREM); 995 case Instruction::FRem: 996 return SelectBinaryOp(I, ISD::FREM); 997 case Instruction::Shl: 998 return SelectBinaryOp(I, ISD::SHL); 999 case Instruction::LShr: 1000 return SelectBinaryOp(I, ISD::SRL); 1001 case Instruction::AShr: 1002 return SelectBinaryOp(I, ISD::SRA); 1003 case Instruction::And: 1004 return SelectBinaryOp(I, ISD::AND); 1005 case Instruction::Or: 1006 return SelectBinaryOp(I, ISD::OR); 1007 case Instruction::Xor: 1008 return SelectBinaryOp(I, ISD::XOR); 1009 1010 case Instruction::GetElementPtr: 1011 return SelectGetElementPtr(I); 1012 1013 case Instruction::Br: { 1014 const BranchInst *BI = cast<BranchInst>(I); 1015 1016 if (BI->isUnconditional()) { 1017 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1018 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1019 FastEmitBranch(MSucc, BI->getDebugLoc()); 1020 return true; 1021 } 1022 1023 // Conditional branches are not handed yet. 1024 // Halt "fast" selection and bail. 1025 return false; 1026 } 1027 1028 case Instruction::Unreachable: 1029 // Nothing to emit. 1030 return true; 1031 1032 case Instruction::Alloca: 1033 // FunctionLowering has the static-sized case covered. 1034 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1035 return true; 1036 1037 // Dynamic-sized alloca is not handled yet. 1038 return false; 1039 1040 case Instruction::Call: 1041 return SelectCall(I); 1042 1043 case Instruction::BitCast: 1044 return SelectBitCast(I); 1045 1046 case Instruction::FPToSI: 1047 return SelectCast(I, ISD::FP_TO_SINT); 1048 case Instruction::ZExt: 1049 return SelectCast(I, ISD::ZERO_EXTEND); 1050 case Instruction::SExt: 1051 return SelectCast(I, ISD::SIGN_EXTEND); 1052 case Instruction::Trunc: 1053 return SelectCast(I, ISD::TRUNCATE); 1054 case Instruction::SIToFP: 1055 return SelectCast(I, ISD::SINT_TO_FP); 1056 1057 case Instruction::IntToPtr: // Deliberate fall-through. 1058 case Instruction::PtrToInt: { 1059 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1060 EVT DstVT = TLI.getValueType(I->getType()); 1061 if (DstVT.bitsGT(SrcVT)) 1062 return SelectCast(I, ISD::ZERO_EXTEND); 1063 if (DstVT.bitsLT(SrcVT)) 1064 return SelectCast(I, ISD::TRUNCATE); 1065 unsigned Reg = getRegForValue(I->getOperand(0)); 1066 if (Reg == 0) return false; 1067 UpdateValueMap(I, Reg); 1068 return true; 1069 } 1070 1071 case Instruction::ExtractValue: 1072 return SelectExtractValue(I); 1073 1074 case Instruction::PHI: 1075 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1076 1077 default: 1078 // Unhandled instruction. Halt "fast" selection and bail. 1079 return false; 1080 } 1081 } 1082 1083 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1084 const TargetLibraryInfo *libInfo) 1085 : FuncInfo(funcInfo), 1086 MRI(FuncInfo.MF->getRegInfo()), 1087 MFI(*FuncInfo.MF->getFrameInfo()), 1088 MCP(*FuncInfo.MF->getConstantPool()), 1089 TM(FuncInfo.MF->getTarget()), 1090 TD(*TM.getDataLayout()), 1091 TII(*TM.getInstrInfo()), 1092 TLI(*TM.getTargetLowering()), 1093 TRI(*TM.getRegisterInfo()), 1094 LibInfo(libInfo) { 1095 } 1096 1097 FastISel::~FastISel() {} 1098 1099 bool FastISel::FastLowerArguments() { 1100 return false; 1101 } 1102 1103 unsigned FastISel::FastEmit_(MVT, MVT, 1104 unsigned) { 1105 return 0; 1106 } 1107 1108 unsigned FastISel::FastEmit_r(MVT, MVT, 1109 unsigned, 1110 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1111 return 0; 1112 } 1113 1114 unsigned FastISel::FastEmit_rr(MVT, MVT, 1115 unsigned, 1116 unsigned /*Op0*/, bool /*Op0IsKill*/, 1117 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1118 return 0; 1119 } 1120 1121 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1122 return 0; 1123 } 1124 1125 unsigned FastISel::FastEmit_f(MVT, MVT, 1126 unsigned, const ConstantFP * /*FPImm*/) { 1127 return 0; 1128 } 1129 1130 unsigned FastISel::FastEmit_ri(MVT, MVT, 1131 unsigned, 1132 unsigned /*Op0*/, bool /*Op0IsKill*/, 1133 uint64_t /*Imm*/) { 1134 return 0; 1135 } 1136 1137 unsigned FastISel::FastEmit_rf(MVT, MVT, 1138 unsigned, 1139 unsigned /*Op0*/, bool /*Op0IsKill*/, 1140 const ConstantFP * /*FPImm*/) { 1141 return 0; 1142 } 1143 1144 unsigned FastISel::FastEmit_rri(MVT, MVT, 1145 unsigned, 1146 unsigned /*Op0*/, bool /*Op0IsKill*/, 1147 unsigned /*Op1*/, bool /*Op1IsKill*/, 1148 uint64_t /*Imm*/) { 1149 return 0; 1150 } 1151 1152 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1153 /// to emit an instruction with an immediate operand using FastEmit_ri. 1154 /// If that fails, it materializes the immediate into a register and try 1155 /// FastEmit_rr instead. 1156 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1157 unsigned Op0, bool Op0IsKill, 1158 uint64_t Imm, MVT ImmType) { 1159 // If this is a multiply by a power of two, emit this as a shift left. 1160 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1161 Opcode = ISD::SHL; 1162 Imm = Log2_64(Imm); 1163 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1164 // div x, 8 -> srl x, 3 1165 Opcode = ISD::SRL; 1166 Imm = Log2_64(Imm); 1167 } 1168 1169 // Horrible hack (to be removed), check to make sure shift amounts are 1170 // in-range. 1171 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1172 Imm >= VT.getSizeInBits()) 1173 return 0; 1174 1175 // First check if immediate type is legal. If not, we can't use the ri form. 1176 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1177 if (ResultReg != 0) 1178 return ResultReg; 1179 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1180 if (MaterialReg == 0) { 1181 // This is a bit ugly/slow, but failing here means falling out of 1182 // fast-isel, which would be very slow. 1183 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1184 VT.getSizeInBits()); 1185 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1186 } 1187 return FastEmit_rr(VT, VT, Opcode, 1188 Op0, Op0IsKill, 1189 MaterialReg, /*Kill=*/true); 1190 } 1191 1192 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1193 return MRI.createVirtualRegister(RC); 1194 } 1195 1196 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1197 const TargetRegisterClass* RC) { 1198 unsigned ResultReg = createResultReg(RC); 1199 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1200 1201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); 1202 return ResultReg; 1203 } 1204 1205 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1206 const TargetRegisterClass *RC, 1207 unsigned Op0, bool Op0IsKill) { 1208 unsigned ResultReg = createResultReg(RC); 1209 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1210 1211 if (II.getNumDefs() >= 1) 1212 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1213 .addReg(Op0, Op0IsKill * RegState::Kill); 1214 else { 1215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1216 .addReg(Op0, Op0IsKill * RegState::Kill); 1217 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1218 ResultReg).addReg(II.ImplicitDefs[0]); 1219 } 1220 1221 return ResultReg; 1222 } 1223 1224 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1225 const TargetRegisterClass *RC, 1226 unsigned Op0, bool Op0IsKill, 1227 unsigned Op1, bool Op1IsKill) { 1228 unsigned ResultReg = createResultReg(RC); 1229 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1230 1231 if (II.getNumDefs() >= 1) 1232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1233 .addReg(Op0, Op0IsKill * RegState::Kill) 1234 .addReg(Op1, Op1IsKill * RegState::Kill); 1235 else { 1236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1237 .addReg(Op0, Op0IsKill * RegState::Kill) 1238 .addReg(Op1, Op1IsKill * RegState::Kill); 1239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1240 ResultReg).addReg(II.ImplicitDefs[0]); 1241 } 1242 return ResultReg; 1243 } 1244 1245 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1246 const TargetRegisterClass *RC, 1247 unsigned Op0, bool Op0IsKill, 1248 unsigned Op1, bool Op1IsKill, 1249 unsigned Op2, bool Op2IsKill) { 1250 unsigned ResultReg = createResultReg(RC); 1251 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1252 1253 if (II.getNumDefs() >= 1) 1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1255 .addReg(Op0, Op0IsKill * RegState::Kill) 1256 .addReg(Op1, Op1IsKill * RegState::Kill) 1257 .addReg(Op2, Op2IsKill * RegState::Kill); 1258 else { 1259 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1260 .addReg(Op0, Op0IsKill * RegState::Kill) 1261 .addReg(Op1, Op1IsKill * RegState::Kill) 1262 .addReg(Op2, Op2IsKill * RegState::Kill); 1263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1264 ResultReg).addReg(II.ImplicitDefs[0]); 1265 } 1266 return ResultReg; 1267 } 1268 1269 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1270 const TargetRegisterClass *RC, 1271 unsigned Op0, bool Op0IsKill, 1272 uint64_t Imm) { 1273 unsigned ResultReg = createResultReg(RC); 1274 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1275 1276 if (II.getNumDefs() >= 1) 1277 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1278 .addReg(Op0, Op0IsKill * RegState::Kill) 1279 .addImm(Imm); 1280 else { 1281 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1282 .addReg(Op0, Op0IsKill * RegState::Kill) 1283 .addImm(Imm); 1284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1285 ResultReg).addReg(II.ImplicitDefs[0]); 1286 } 1287 return ResultReg; 1288 } 1289 1290 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1291 const TargetRegisterClass *RC, 1292 unsigned Op0, bool Op0IsKill, 1293 uint64_t Imm1, uint64_t Imm2) { 1294 unsigned ResultReg = createResultReg(RC); 1295 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1296 1297 if (II.getNumDefs() >= 1) 1298 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1299 .addReg(Op0, Op0IsKill * RegState::Kill) 1300 .addImm(Imm1) 1301 .addImm(Imm2); 1302 else { 1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1304 .addReg(Op0, Op0IsKill * RegState::Kill) 1305 .addImm(Imm1) 1306 .addImm(Imm2); 1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1308 ResultReg).addReg(II.ImplicitDefs[0]); 1309 } 1310 return ResultReg; 1311 } 1312 1313 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1314 const TargetRegisterClass *RC, 1315 unsigned Op0, bool Op0IsKill, 1316 const ConstantFP *FPImm) { 1317 unsigned ResultReg = createResultReg(RC); 1318 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1319 1320 if (II.getNumDefs() >= 1) 1321 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1322 .addReg(Op0, Op0IsKill * RegState::Kill) 1323 .addFPImm(FPImm); 1324 else { 1325 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1326 .addReg(Op0, Op0IsKill * RegState::Kill) 1327 .addFPImm(FPImm); 1328 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1329 ResultReg).addReg(II.ImplicitDefs[0]); 1330 } 1331 return ResultReg; 1332 } 1333 1334 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1335 const TargetRegisterClass *RC, 1336 unsigned Op0, bool Op0IsKill, 1337 unsigned Op1, bool Op1IsKill, 1338 uint64_t Imm) { 1339 unsigned ResultReg = createResultReg(RC); 1340 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1341 1342 if (II.getNumDefs() >= 1) 1343 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1344 .addReg(Op0, Op0IsKill * RegState::Kill) 1345 .addReg(Op1, Op1IsKill * RegState::Kill) 1346 .addImm(Imm); 1347 else { 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1349 .addReg(Op0, Op0IsKill * RegState::Kill) 1350 .addReg(Op1, Op1IsKill * RegState::Kill) 1351 .addImm(Imm); 1352 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1353 ResultReg).addReg(II.ImplicitDefs[0]); 1354 } 1355 return ResultReg; 1356 } 1357 1358 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1359 const TargetRegisterClass *RC, 1360 unsigned Op0, bool Op0IsKill, 1361 unsigned Op1, bool Op1IsKill, 1362 uint64_t Imm1, uint64_t Imm2) { 1363 unsigned ResultReg = createResultReg(RC); 1364 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1365 1366 if (II.getNumDefs() >= 1) 1367 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1368 .addReg(Op0, Op0IsKill * RegState::Kill) 1369 .addReg(Op1, Op1IsKill * RegState::Kill) 1370 .addImm(Imm1).addImm(Imm2); 1371 else { 1372 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1373 .addReg(Op0, Op0IsKill * RegState::Kill) 1374 .addReg(Op1, Op1IsKill * RegState::Kill) 1375 .addImm(Imm1).addImm(Imm2); 1376 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1377 ResultReg).addReg(II.ImplicitDefs[0]); 1378 } 1379 return ResultReg; 1380 } 1381 1382 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1383 const TargetRegisterClass *RC, 1384 uint64_t Imm) { 1385 unsigned ResultReg = createResultReg(RC); 1386 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1387 1388 if (II.getNumDefs() >= 1) 1389 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); 1390 else { 1391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); 1392 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1393 ResultReg).addReg(II.ImplicitDefs[0]); 1394 } 1395 return ResultReg; 1396 } 1397 1398 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1399 const TargetRegisterClass *RC, 1400 uint64_t Imm1, uint64_t Imm2) { 1401 unsigned ResultReg = createResultReg(RC); 1402 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1403 1404 if (II.getNumDefs() >= 1) 1405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 1406 .addImm(Imm1).addImm(Imm2); 1407 else { 1408 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); 1409 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1410 ResultReg).addReg(II.ImplicitDefs[0]); 1411 } 1412 return ResultReg; 1413 } 1414 1415 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1416 unsigned Op0, bool Op0IsKill, 1417 uint32_t Idx) { 1418 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1419 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1420 "Cannot yet extract from physregs"); 1421 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1422 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1424 DL, TII.get(TargetOpcode::COPY), ResultReg) 1425 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1426 return ResultReg; 1427 } 1428 1429 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1430 /// with all but the least significant bit set to zero. 1431 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1432 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1433 } 1434 1435 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1436 /// Emit code to ensure constants are copied into registers when needed. 1437 /// Remember the virtual registers that need to be added to the Machine PHI 1438 /// nodes as input. We cannot just directly add them, because expansion 1439 /// might result in multiple MBB's for one BB. As such, the start of the 1440 /// BB might correspond to a different MBB than the end. 1441 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1442 const TerminatorInst *TI = LLVMBB->getTerminator(); 1443 1444 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1445 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1446 1447 // Check successor nodes' PHI nodes that expect a constant to be available 1448 // from this block. 1449 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1450 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1451 if (!isa<PHINode>(SuccBB->begin())) continue; 1452 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1453 1454 // If this terminator has multiple identical successors (common for 1455 // switches), only handle each succ once. 1456 if (!SuccsHandled.insert(SuccMBB)) continue; 1457 1458 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1459 1460 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1461 // nodes and Machine PHI nodes, but the incoming operands have not been 1462 // emitted yet. 1463 for (BasicBlock::const_iterator I = SuccBB->begin(); 1464 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1465 1466 // Ignore dead phi's. 1467 if (PN->use_empty()) continue; 1468 1469 // Only handle legal types. Two interesting things to note here. First, 1470 // by bailing out early, we may leave behind some dead instructions, 1471 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1472 // own moves. Second, this check is necessary because FastISel doesn't 1473 // use CreateRegs to create registers, so it always creates 1474 // exactly one register for each non-void instruction. 1475 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1476 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1477 // Handle integer promotions, though, because they're common and easy. 1478 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1479 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1480 else { 1481 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1482 return false; 1483 } 1484 } 1485 1486 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1487 1488 // Set the DebugLoc for the copy. Prefer the location of the operand 1489 // if there is one; use the location of the PHI otherwise. 1490 DL = PN->getDebugLoc(); 1491 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1492 DL = Inst->getDebugLoc(); 1493 1494 unsigned Reg = getRegForValue(PHIOp); 1495 if (Reg == 0) { 1496 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1497 return false; 1498 } 1499 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1500 DL = DebugLoc(); 1501 } 1502 } 1503 1504 return true; 1505 } 1506