Home | History | Annotate | Download | only in AsmParser
      1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/MC/MCTargetAsmParser.h"
     11 #include "MCTargetDesc/ARMAddressingModes.h"
     12 #include "MCTargetDesc/ARMBaseInfo.h"
     13 #include "MCTargetDesc/ARMMCExpr.h"
     14 #include "llvm/ADT/BitVector.h"
     15 #include "llvm/ADT/OwningPtr.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/ADT/StringSwitch.h"
     19 #include "llvm/ADT/Twine.h"
     20 #include "llvm/MC/MCAsmInfo.h"
     21 #include "llvm/MC/MCAssembler.h"
     22 #include "llvm/MC/MCContext.h"
     23 #include "llvm/MC/MCELFStreamer.h"
     24 #include "llvm/MC/MCExpr.h"
     25 #include "llvm/MC/MCInst.h"
     26 #include "llvm/MC/MCInstrDesc.h"
     27 #include "llvm/MC/MCParser/MCAsmLexer.h"
     28 #include "llvm/MC/MCParser/MCAsmParser.h"
     29 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
     30 #include "llvm/MC/MCRegisterInfo.h"
     31 #include "llvm/MC/MCStreamer.h"
     32 #include "llvm/MC/MCSubtargetInfo.h"
     33 #include "llvm/Support/ELF.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/SourceMgr.h"
     36 #include "llvm/Support/TargetRegistry.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 
     39 using namespace llvm;
     40 
     41 namespace {
     42 
     43 class ARMOperand;
     44 
     45 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
     46 
     47 class ARMAsmParser : public MCTargetAsmParser {
     48   MCSubtargetInfo &STI;
     49   MCAsmParser &Parser;
     50   const MCRegisterInfo *MRI;
     51 
     52   // Unwind directives state
     53   SMLoc FnStartLoc;
     54   SMLoc CantUnwindLoc;
     55   SMLoc PersonalityLoc;
     56   SMLoc HandlerDataLoc;
     57   int FPReg;
     58   void resetUnwindDirectiveParserState() {
     59     FnStartLoc = SMLoc();
     60     CantUnwindLoc = SMLoc();
     61     PersonalityLoc = SMLoc();
     62     HandlerDataLoc = SMLoc();
     63     FPReg = -1;
     64   }
     65 
     66   // Map of register aliases registers via the .req directive.
     67   StringMap<unsigned> RegisterReqs;
     68 
     69   struct {
     70     ARMCC::CondCodes Cond;    // Condition for IT block.
     71     unsigned Mask:4;          // Condition mask for instructions.
     72                               // Starting at first 1 (from lsb).
     73                               //   '1'  condition as indicated in IT.
     74                               //   '0'  inverse of condition (else).
     75                               // Count of instructions in IT block is
     76                               // 4 - trailingzeroes(mask)
     77 
     78     bool FirstCond;           // Explicit flag for when we're parsing the
     79                               // First instruction in the IT block. It's
     80                               // implied in the mask, so needs special
     81                               // handling.
     82 
     83     unsigned CurPosition;     // Current position in parsing of IT
     84                               // block. In range [0,3]. Initialized
     85                               // according to count of instructions in block.
     86                               // ~0U if no active IT block.
     87   } ITState;
     88   bool inITBlock() { return ITState.CurPosition != ~0U;}
     89   void forwardITPosition() {
     90     if (!inITBlock()) return;
     91     // Move to the next instruction in the IT block, if there is one. If not,
     92     // mark the block as done.
     93     unsigned TZ = countTrailingZeros(ITState.Mask);
     94     if (++ITState.CurPosition == 5 - TZ)
     95       ITState.CurPosition = ~0U; // Done with the IT block after this.
     96   }
     97 
     98 
     99   MCAsmParser &getParser() const { return Parser; }
    100   MCAsmLexer &getLexer() const { return Parser.getLexer(); }
    101 
    102   bool Warning(SMLoc L, const Twine &Msg,
    103                ArrayRef<SMRange> Ranges = None) {
    104     return Parser.Warning(L, Msg, Ranges);
    105   }
    106   bool Error(SMLoc L, const Twine &Msg,
    107              ArrayRef<SMRange> Ranges = None) {
    108     return Parser.Error(L, Msg, Ranges);
    109   }
    110 
    111   int tryParseRegister();
    112   bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
    113   int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
    114   bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
    115   bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
    116   bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
    117   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
    118   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
    119                               unsigned &ShiftAmount);
    120   bool parseDirectiveWord(unsigned Size, SMLoc L);
    121   bool parseDirectiveThumb(SMLoc L);
    122   bool parseDirectiveARM(SMLoc L);
    123   bool parseDirectiveThumbFunc(SMLoc L);
    124   bool parseDirectiveCode(SMLoc L);
    125   bool parseDirectiveSyntax(SMLoc L);
    126   bool parseDirectiveReq(StringRef Name, SMLoc L);
    127   bool parseDirectiveUnreq(SMLoc L);
    128   bool parseDirectiveArch(SMLoc L);
    129   bool parseDirectiveEabiAttr(SMLoc L);
    130   bool parseDirectiveFnStart(SMLoc L);
    131   bool parseDirectiveFnEnd(SMLoc L);
    132   bool parseDirectiveCantUnwind(SMLoc L);
    133   bool parseDirectivePersonality(SMLoc L);
    134   bool parseDirectiveHandlerData(SMLoc L);
    135   bool parseDirectiveSetFP(SMLoc L);
    136   bool parseDirectivePad(SMLoc L);
    137   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
    138 
    139   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
    140                           bool &CarrySetting, unsigned &ProcessorIMod,
    141                           StringRef &ITMask);
    142   void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
    143                              bool &CanAcceptPredicationCode);
    144 
    145   bool isThumb() const {
    146     // FIXME: Can tablegen auto-generate this?
    147     return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
    148   }
    149   bool isThumbOne() const {
    150     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
    151   }
    152   bool isThumbTwo() const {
    153     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
    154   }
    155   bool hasThumb() const {
    156     return STI.getFeatureBits() & ARM::HasV4TOps;
    157   }
    158   bool hasV6Ops() const {
    159     return STI.getFeatureBits() & ARM::HasV6Ops;
    160   }
    161   bool hasV7Ops() const {
    162     return STI.getFeatureBits() & ARM::HasV7Ops;
    163   }
    164   bool hasV8Ops() const {
    165     return STI.getFeatureBits() & ARM::HasV8Ops;
    166   }
    167   bool hasARM() const {
    168     return !(STI.getFeatureBits() & ARM::FeatureNoARM);
    169   }
    170 
    171   void SwitchMode() {
    172     unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
    173     setAvailableFeatures(FB);
    174   }
    175   bool isMClass() const {
    176     return STI.getFeatureBits() & ARM::FeatureMClass;
    177   }
    178 
    179   /// @name Auto-generated Match Functions
    180   /// {
    181 
    182 #define GET_ASSEMBLER_HEADER
    183 #include "ARMGenAsmMatcher.inc"
    184 
    185   /// }
    186 
    187   OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
    188   OperandMatchResultTy parseCoprocNumOperand(
    189     SmallVectorImpl<MCParsedAsmOperand*>&);
    190   OperandMatchResultTy parseCoprocRegOperand(
    191     SmallVectorImpl<MCParsedAsmOperand*>&);
    192   OperandMatchResultTy parseCoprocOptionOperand(
    193     SmallVectorImpl<MCParsedAsmOperand*>&);
    194   OperandMatchResultTy parseMemBarrierOptOperand(
    195     SmallVectorImpl<MCParsedAsmOperand*>&);
    196   OperandMatchResultTy parseInstSyncBarrierOptOperand(
    197     SmallVectorImpl<MCParsedAsmOperand*>&);
    198   OperandMatchResultTy parseProcIFlagsOperand(
    199     SmallVectorImpl<MCParsedAsmOperand*>&);
    200   OperandMatchResultTy parseMSRMaskOperand(
    201     SmallVectorImpl<MCParsedAsmOperand*>&);
    202   OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
    203                                    StringRef Op, int Low, int High);
    204   OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
    205     return parsePKHImm(O, "lsl", 0, 31);
    206   }
    207   OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
    208     return parsePKHImm(O, "asr", 1, 32);
    209   }
    210   OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
    211   OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
    212   OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
    213   OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
    214   OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
    215   OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
    216   OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
    217   OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
    218   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
    219                                        SMLoc &EndLoc);
    220 
    221   // Asm Match Converter Methods
    222   void cvtThumbMultiply(MCInst &Inst,
    223                         const SmallVectorImpl<MCParsedAsmOperand*> &);
    224   bool validateInstruction(MCInst &Inst,
    225                            const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
    226   bool processInstruction(MCInst &Inst,
    227                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
    228   bool shouldOmitCCOutOperand(StringRef Mnemonic,
    229                               SmallVectorImpl<MCParsedAsmOperand*> &Operands);
    230   bool shouldOmitPredicateOperand(StringRef Mnemonic,
    231                               SmallVectorImpl<MCParsedAsmOperand*> &Operands);
    232   bool isDeprecated(MCInst &Inst, StringRef &Info);
    233 
    234 public:
    235   enum ARMMatchResultTy {
    236     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
    237     Match_RequiresNotITBlock,
    238     Match_RequiresV6,
    239     Match_RequiresThumb2,
    240 #define GET_OPERAND_DIAGNOSTIC_TYPES
    241 #include "ARMGenAsmMatcher.inc"
    242 
    243   };
    244 
    245   ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
    246     : MCTargetAsmParser(), STI(_STI), Parser(_Parser), FPReg(-1) {
    247     MCAsmParserExtension::Initialize(_Parser);
    248 
    249     // Cache the MCRegisterInfo.
    250     MRI = getContext().getRegisterInfo();
    251 
    252     // Initialize the set of available features.
    253     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
    254 
    255     // Not in an ITBlock to start with.
    256     ITState.CurPosition = ~0U;
    257 
    258     // Set ELF header flags.
    259     // FIXME: This should eventually end up somewhere else where more
    260     // intelligent flag decisions can be made. For now we are just maintaining
    261     // the statu/parseDirects quo for ARM and setting EF_ARM_EABI_VER5 as the default.
    262     if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&Parser.getStreamer()))
    263       MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
    264   }
    265 
    266   // Implementation of the MCTargetAsmParser interface:
    267   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
    268   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
    269                         SMLoc NameLoc,
    270                         SmallVectorImpl<MCParsedAsmOperand*> &Operands);
    271   bool ParseDirective(AsmToken DirectiveID);
    272 
    273   unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
    274   unsigned checkTargetMatchPredicate(MCInst &Inst);
    275 
    276   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
    277                                SmallVectorImpl<MCParsedAsmOperand*> &Operands,
    278                                MCStreamer &Out, unsigned &ErrorInfo,
    279                                bool MatchingInlineAsm);
    280 };
    281 } // end anonymous namespace
    282 
    283 namespace {
    284 
    285 /// ARMOperand - Instances of this class represent a parsed ARM machine
    286 /// operand.
    287 class ARMOperand : public MCParsedAsmOperand {
    288   enum KindTy {
    289     k_CondCode,
    290     k_CCOut,
    291     k_ITCondMask,
    292     k_CoprocNum,
    293     k_CoprocReg,
    294     k_CoprocOption,
    295     k_Immediate,
    296     k_MemBarrierOpt,
    297     k_InstSyncBarrierOpt,
    298     k_Memory,
    299     k_PostIndexRegister,
    300     k_MSRMask,
    301     k_ProcIFlags,
    302     k_VectorIndex,
    303     k_Register,
    304     k_RegisterList,
    305     k_DPRRegisterList,
    306     k_SPRRegisterList,
    307     k_VectorList,
    308     k_VectorListAllLanes,
    309     k_VectorListIndexed,
    310     k_ShiftedRegister,
    311     k_ShiftedImmediate,
    312     k_ShifterImmediate,
    313     k_RotateImmediate,
    314     k_BitfieldDescriptor,
    315     k_Token
    316   } Kind;
    317 
    318   SMLoc StartLoc, EndLoc;
    319   SmallVector<unsigned, 8> Registers;
    320 
    321   struct CCOp {
    322     ARMCC::CondCodes Val;
    323   };
    324 
    325   struct CopOp {
    326     unsigned Val;
    327   };
    328 
    329   struct CoprocOptionOp {
    330     unsigned Val;
    331   };
    332 
    333   struct ITMaskOp {
    334     unsigned Mask:4;
    335   };
    336 
    337   struct MBOptOp {
    338     ARM_MB::MemBOpt Val;
    339   };
    340 
    341   struct ISBOptOp {
    342     ARM_ISB::InstSyncBOpt Val;
    343   };
    344 
    345   struct IFlagsOp {
    346     ARM_PROC::IFlags Val;
    347   };
    348 
    349   struct MMaskOp {
    350     unsigned Val;
    351   };
    352 
    353   struct TokOp {
    354     const char *Data;
    355     unsigned Length;
    356   };
    357 
    358   struct RegOp {
    359     unsigned RegNum;
    360   };
    361 
    362   // A vector register list is a sequential list of 1 to 4 registers.
    363   struct VectorListOp {
    364     unsigned RegNum;
    365     unsigned Count;
    366     unsigned LaneIndex;
    367     bool isDoubleSpaced;
    368   };
    369 
    370   struct VectorIndexOp {
    371     unsigned Val;
    372   };
    373 
    374   struct ImmOp {
    375     const MCExpr *Val;
    376   };
    377 
    378   /// Combined record for all forms of ARM address expressions.
    379   struct MemoryOp {
    380     unsigned BaseRegNum;
    381     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
    382     // was specified.
    383     const MCConstantExpr *OffsetImm;  // Offset immediate value
    384     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
    385     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
    386     unsigned ShiftImm;        // shift for OffsetReg.
    387     unsigned Alignment;       // 0 = no alignment specified
    388     // n = alignment in bytes (2, 4, 8, 16, or 32)
    389     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
    390   };
    391 
    392   struct PostIdxRegOp {
    393     unsigned RegNum;
    394     bool isAdd;
    395     ARM_AM::ShiftOpc ShiftTy;
    396     unsigned ShiftImm;
    397   };
    398 
    399   struct ShifterImmOp {
    400     bool isASR;
    401     unsigned Imm;
    402   };
    403 
    404   struct RegShiftedRegOp {
    405     ARM_AM::ShiftOpc ShiftTy;
    406     unsigned SrcReg;
    407     unsigned ShiftReg;
    408     unsigned ShiftImm;
    409   };
    410 
    411   struct RegShiftedImmOp {
    412     ARM_AM::ShiftOpc ShiftTy;
    413     unsigned SrcReg;
    414     unsigned ShiftImm;
    415   };
    416 
    417   struct RotImmOp {
    418     unsigned Imm;
    419   };
    420 
    421   struct BitfieldOp {
    422     unsigned LSB;
    423     unsigned Width;
    424   };
    425 
    426   union {
    427     struct CCOp CC;
    428     struct CopOp Cop;
    429     struct CoprocOptionOp CoprocOption;
    430     struct MBOptOp MBOpt;
    431     struct ISBOptOp ISBOpt;
    432     struct ITMaskOp ITMask;
    433     struct IFlagsOp IFlags;
    434     struct MMaskOp MMask;
    435     struct TokOp Tok;
    436     struct RegOp Reg;
    437     struct VectorListOp VectorList;
    438     struct VectorIndexOp VectorIndex;
    439     struct ImmOp Imm;
    440     struct MemoryOp Memory;
    441     struct PostIdxRegOp PostIdxReg;
    442     struct ShifterImmOp ShifterImm;
    443     struct RegShiftedRegOp RegShiftedReg;
    444     struct RegShiftedImmOp RegShiftedImm;
    445     struct RotImmOp RotImm;
    446     struct BitfieldOp Bitfield;
    447   };
    448 
    449   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
    450 public:
    451   ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
    452     Kind = o.Kind;
    453     StartLoc = o.StartLoc;
    454     EndLoc = o.EndLoc;
    455     switch (Kind) {
    456     case k_CondCode:
    457       CC = o.CC;
    458       break;
    459     case k_ITCondMask:
    460       ITMask = o.ITMask;
    461       break;
    462     case k_Token:
    463       Tok = o.Tok;
    464       break;
    465     case k_CCOut:
    466     case k_Register:
    467       Reg = o.Reg;
    468       break;
    469     case k_RegisterList:
    470     case k_DPRRegisterList:
    471     case k_SPRRegisterList:
    472       Registers = o.Registers;
    473       break;
    474     case k_VectorList:
    475     case k_VectorListAllLanes:
    476     case k_VectorListIndexed:
    477       VectorList = o.VectorList;
    478       break;
    479     case k_CoprocNum:
    480     case k_CoprocReg:
    481       Cop = o.Cop;
    482       break;
    483     case k_CoprocOption:
    484       CoprocOption = o.CoprocOption;
    485       break;
    486     case k_Immediate:
    487       Imm = o.Imm;
    488       break;
    489     case k_MemBarrierOpt:
    490       MBOpt = o.MBOpt;
    491       break;
    492     case k_InstSyncBarrierOpt:
    493       ISBOpt = o.ISBOpt;
    494     case k_Memory:
    495       Memory = o.Memory;
    496       break;
    497     case k_PostIndexRegister:
    498       PostIdxReg = o.PostIdxReg;
    499       break;
    500     case k_MSRMask:
    501       MMask = o.MMask;
    502       break;
    503     case k_ProcIFlags:
    504       IFlags = o.IFlags;
    505       break;
    506     case k_ShifterImmediate:
    507       ShifterImm = o.ShifterImm;
    508       break;
    509     case k_ShiftedRegister:
    510       RegShiftedReg = o.RegShiftedReg;
    511       break;
    512     case k_ShiftedImmediate:
    513       RegShiftedImm = o.RegShiftedImm;
    514       break;
    515     case k_RotateImmediate:
    516       RotImm = o.RotImm;
    517       break;
    518     case k_BitfieldDescriptor:
    519       Bitfield = o.Bitfield;
    520       break;
    521     case k_VectorIndex:
    522       VectorIndex = o.VectorIndex;
    523       break;
    524     }
    525   }
    526 
    527   /// getStartLoc - Get the location of the first token of this operand.
    528   SMLoc getStartLoc() const { return StartLoc; }
    529   /// getEndLoc - Get the location of the last token of this operand.
    530   SMLoc getEndLoc() const { return EndLoc; }
    531   /// getLocRange - Get the range between the first and last token of this
    532   /// operand.
    533   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
    534 
    535   ARMCC::CondCodes getCondCode() const {
    536     assert(Kind == k_CondCode && "Invalid access!");
    537     return CC.Val;
    538   }
    539 
    540   unsigned getCoproc() const {
    541     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
    542     return Cop.Val;
    543   }
    544 
    545   StringRef getToken() const {
    546     assert(Kind == k_Token && "Invalid access!");
    547     return StringRef(Tok.Data, Tok.Length);
    548   }
    549 
    550   unsigned getReg() const {
    551     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
    552     return Reg.RegNum;
    553   }
    554 
    555   const SmallVectorImpl<unsigned> &getRegList() const {
    556     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
    557             Kind == k_SPRRegisterList) && "Invalid access!");
    558     return Registers;
    559   }
    560 
    561   const MCExpr *getImm() const {
    562     assert(isImm() && "Invalid access!");
    563     return Imm.Val;
    564   }
    565 
    566   unsigned getVectorIndex() const {
    567     assert(Kind == k_VectorIndex && "Invalid access!");
    568     return VectorIndex.Val;
    569   }
    570 
    571   ARM_MB::MemBOpt getMemBarrierOpt() const {
    572     assert(Kind == k_MemBarrierOpt && "Invalid access!");
    573     return MBOpt.Val;
    574   }
    575 
    576   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
    577     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
    578     return ISBOpt.Val;
    579   }
    580 
    581   ARM_PROC::IFlags getProcIFlags() const {
    582     assert(Kind == k_ProcIFlags && "Invalid access!");
    583     return IFlags.Val;
    584   }
    585 
    586   unsigned getMSRMask() const {
    587     assert(Kind == k_MSRMask && "Invalid access!");
    588     return MMask.Val;
    589   }
    590 
    591   bool isCoprocNum() const { return Kind == k_CoprocNum; }
    592   bool isCoprocReg() const { return Kind == k_CoprocReg; }
    593   bool isCoprocOption() const { return Kind == k_CoprocOption; }
    594   bool isCondCode() const { return Kind == k_CondCode; }
    595   bool isCCOut() const { return Kind == k_CCOut; }
    596   bool isITMask() const { return Kind == k_ITCondMask; }
    597   bool isITCondCode() const { return Kind == k_CondCode; }
    598   bool isImm() const { return Kind == k_Immediate; }
    599   // checks whether this operand is an unsigned offset which fits is a field
    600   // of specified width and scaled by a specific number of bits
    601   template<unsigned width, unsigned scale>
    602   bool isUnsignedOffset() const {
    603     if (!isImm()) return false;
    604     if (dyn_cast<MCSymbolRefExpr>(Imm.Val)) return true;
    605     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
    606       int64_t Val = CE->getValue();
    607       int64_t Align = 1LL << scale;
    608       int64_t Max = Align * ((1LL << width) - 1);
    609       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
    610     }
    611     return false;
    612   }
    613   // checks whether this operand is a memory operand computed as an offset
    614   // applied to PC. the offset may have 8 bits of magnitude and is represented
    615   // with two bits of shift. textually it may be either [pc, #imm], #imm or
    616   // relocable expression...
    617   bool isThumbMemPC() const {
    618     int64_t Val = 0;
    619     if (isImm()) {
    620       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    621       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
    622       if (!CE) return false;
    623       Val = CE->getValue();
    624     }
    625     else if (isMem()) {
    626       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
    627       if(Memory.BaseRegNum != ARM::PC) return false;
    628       Val = Memory.OffsetImm->getValue();
    629     }
    630     else return false;
    631     return ((Val % 4) == 0) && (Val >= -1020) && (Val <= 1020);
    632   }
    633   bool isFPImm() const {
    634     if (!isImm()) return false;
    635     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    636     if (!CE) return false;
    637     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    638     return Val != -1;
    639   }
    640   bool isFBits16() const {
    641     if (!isImm()) return false;
    642     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    643     if (!CE) return false;
    644     int64_t Value = CE->getValue();
    645     return Value >= 0 && Value <= 16;
    646   }
    647   bool isFBits32() const {
    648     if (!isImm()) return false;
    649     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    650     if (!CE) return false;
    651     int64_t Value = CE->getValue();
    652     return Value >= 1 && Value <= 32;
    653   }
    654   bool isImm8s4() const {
    655     if (!isImm()) return false;
    656     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    657     if (!CE) return false;
    658     int64_t Value = CE->getValue();
    659     return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
    660   }
    661   bool isImm0_4() const {
    662     if (!isImm()) return false;
    663     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    664     if (!CE) return false;
    665     int64_t Value = CE->getValue();
    666     return Value >= 0 && Value < 5;
    667   }
    668   bool isImm0_1020s4() const {
    669     if (!isImm()) return false;
    670     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    671     if (!CE) return false;
    672     int64_t Value = CE->getValue();
    673     return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
    674   }
    675   bool isImm0_508s4() const {
    676     if (!isImm()) return false;
    677     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    678     if (!CE) return false;
    679     int64_t Value = CE->getValue();
    680     return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
    681   }
    682   bool isImm0_508s4Neg() const {
    683     if (!isImm()) return false;
    684     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    685     if (!CE) return false;
    686     int64_t Value = -CE->getValue();
    687     // explicitly exclude zero. we want that to use the normal 0_508 version.
    688     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
    689   }
    690   bool isImm0_255() const {
    691     if (!isImm()) return false;
    692     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    693     if (!CE) return false;
    694     int64_t Value = CE->getValue();
    695     return Value >= 0 && Value < 256;
    696   }
    697   bool isImm0_4095() const {
    698     if (!isImm()) return false;
    699     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    700     if (!CE) return false;
    701     int64_t Value = CE->getValue();
    702     return Value >= 0 && Value < 4096;
    703   }
    704   bool isImm0_4095Neg() const {
    705     if (!isImm()) return false;
    706     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    707     if (!CE) return false;
    708     int64_t Value = -CE->getValue();
    709     return Value > 0 && Value < 4096;
    710   }
    711   bool isImm0_1() const {
    712     if (!isImm()) return false;
    713     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    714     if (!CE) return false;
    715     int64_t Value = CE->getValue();
    716     return Value >= 0 && Value < 2;
    717   }
    718   bool isImm0_3() const {
    719     if (!isImm()) return false;
    720     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    721     if (!CE) return false;
    722     int64_t Value = CE->getValue();
    723     return Value >= 0 && Value < 4;
    724   }
    725   bool isImm0_7() const {
    726     if (!isImm()) return false;
    727     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    728     if (!CE) return false;
    729     int64_t Value = CE->getValue();
    730     return Value >= 0 && Value < 8;
    731   }
    732   bool isImm0_15() const {
    733     if (!isImm()) return false;
    734     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    735     if (!CE) return false;
    736     int64_t Value = CE->getValue();
    737     return Value >= 0 && Value < 16;
    738   }
    739   bool isImm0_31() const {
    740     if (!isImm()) return false;
    741     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    742     if (!CE) return false;
    743     int64_t Value = CE->getValue();
    744     return Value >= 0 && Value < 32;
    745   }
    746   bool isImm0_63() const {
    747     if (!isImm()) return false;
    748     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    749     if (!CE) return false;
    750     int64_t Value = CE->getValue();
    751     return Value >= 0 && Value < 64;
    752   }
    753   bool isImm8() const {
    754     if (!isImm()) return false;
    755     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    756     if (!CE) return false;
    757     int64_t Value = CE->getValue();
    758     return Value == 8;
    759   }
    760   bool isImm16() const {
    761     if (!isImm()) return false;
    762     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    763     if (!CE) return false;
    764     int64_t Value = CE->getValue();
    765     return Value == 16;
    766   }
    767   bool isImm32() const {
    768     if (!isImm()) return false;
    769     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    770     if (!CE) return false;
    771     int64_t Value = CE->getValue();
    772     return Value == 32;
    773   }
    774   bool isShrImm8() const {
    775     if (!isImm()) return false;
    776     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    777     if (!CE) return false;
    778     int64_t Value = CE->getValue();
    779     return Value > 0 && Value <= 8;
    780   }
    781   bool isShrImm16() const {
    782     if (!isImm()) return false;
    783     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    784     if (!CE) return false;
    785     int64_t Value = CE->getValue();
    786     return Value > 0 && Value <= 16;
    787   }
    788   bool isShrImm32() const {
    789     if (!isImm()) return false;
    790     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    791     if (!CE) return false;
    792     int64_t Value = CE->getValue();
    793     return Value > 0 && Value <= 32;
    794   }
    795   bool isShrImm64() const {
    796     if (!isImm()) return false;
    797     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    798     if (!CE) return false;
    799     int64_t Value = CE->getValue();
    800     return Value > 0 && Value <= 64;
    801   }
    802   bool isImm1_7() const {
    803     if (!isImm()) return false;
    804     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    805     if (!CE) return false;
    806     int64_t Value = CE->getValue();
    807     return Value > 0 && Value < 8;
    808   }
    809   bool isImm1_15() const {
    810     if (!isImm()) return false;
    811     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    812     if (!CE) return false;
    813     int64_t Value = CE->getValue();
    814     return Value > 0 && Value < 16;
    815   }
    816   bool isImm1_31() const {
    817     if (!isImm()) return false;
    818     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    819     if (!CE) return false;
    820     int64_t Value = CE->getValue();
    821     return Value > 0 && Value < 32;
    822   }
    823   bool isImm1_16() const {
    824     if (!isImm()) return false;
    825     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    826     if (!CE) return false;
    827     int64_t Value = CE->getValue();
    828     return Value > 0 && Value < 17;
    829   }
    830   bool isImm1_32() const {
    831     if (!isImm()) return false;
    832     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    833     if (!CE) return false;
    834     int64_t Value = CE->getValue();
    835     return Value > 0 && Value < 33;
    836   }
    837   bool isImm0_32() const {
    838     if (!isImm()) return false;
    839     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    840     if (!CE) return false;
    841     int64_t Value = CE->getValue();
    842     return Value >= 0 && Value < 33;
    843   }
    844   bool isImm0_65535() const {
    845     if (!isImm()) return false;
    846     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    847     if (!CE) return false;
    848     int64_t Value = CE->getValue();
    849     return Value >= 0 && Value < 65536;
    850   }
    851   bool isImm0_65535Expr() const {
    852     if (!isImm()) return false;
    853     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    854     // If it's not a constant expression, it'll generate a fixup and be
    855     // handled later.
    856     if (!CE) return true;
    857     int64_t Value = CE->getValue();
    858     return Value >= 0 && Value < 65536;
    859   }
    860   bool isImm24bit() const {
    861     if (!isImm()) return false;
    862     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    863     if (!CE) return false;
    864     int64_t Value = CE->getValue();
    865     return Value >= 0 && Value <= 0xffffff;
    866   }
    867   bool isImmThumbSR() const {
    868     if (!isImm()) return false;
    869     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    870     if (!CE) return false;
    871     int64_t Value = CE->getValue();
    872     return Value > 0 && Value < 33;
    873   }
    874   bool isPKHLSLImm() const {
    875     if (!isImm()) return false;
    876     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    877     if (!CE) return false;
    878     int64_t Value = CE->getValue();
    879     return Value >= 0 && Value < 32;
    880   }
    881   bool isPKHASRImm() const {
    882     if (!isImm()) return false;
    883     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    884     if (!CE) return false;
    885     int64_t Value = CE->getValue();
    886     return Value > 0 && Value <= 32;
    887   }
    888   bool isAdrLabel() const {
    889     // If we have an immediate that's not a constant, treat it as a label
    890     // reference needing a fixup. If it is a constant, but it can't fit
    891     // into shift immediate encoding, we reject it.
    892     if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
    893     else return (isARMSOImm() || isARMSOImmNeg());
    894   }
    895   bool isARMSOImm() const {
    896     if (!isImm()) return false;
    897     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    898     if (!CE) return false;
    899     int64_t Value = CE->getValue();
    900     return ARM_AM::getSOImmVal(Value) != -1;
    901   }
    902   bool isARMSOImmNot() const {
    903     if (!isImm()) return false;
    904     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    905     if (!CE) return false;
    906     int64_t Value = CE->getValue();
    907     return ARM_AM::getSOImmVal(~Value) != -1;
    908   }
    909   bool isARMSOImmNeg() const {
    910     if (!isImm()) return false;
    911     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    912     if (!CE) return false;
    913     int64_t Value = CE->getValue();
    914     // Only use this when not representable as a plain so_imm.
    915     return ARM_AM::getSOImmVal(Value) == -1 &&
    916       ARM_AM::getSOImmVal(-Value) != -1;
    917   }
    918   bool isT2SOImm() const {
    919     if (!isImm()) return false;
    920     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    921     if (!CE) return false;
    922     int64_t Value = CE->getValue();
    923     return ARM_AM::getT2SOImmVal(Value) != -1;
    924   }
    925   bool isT2SOImmNot() const {
    926     if (!isImm()) return false;
    927     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    928     if (!CE) return false;
    929     int64_t Value = CE->getValue();
    930     return ARM_AM::getT2SOImmVal(~Value) != -1;
    931   }
    932   bool isT2SOImmNeg() const {
    933     if (!isImm()) return false;
    934     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    935     if (!CE) return false;
    936     int64_t Value = CE->getValue();
    937     // Only use this when not representable as a plain so_imm.
    938     return ARM_AM::getT2SOImmVal(Value) == -1 &&
    939       ARM_AM::getT2SOImmVal(-Value) != -1;
    940   }
    941   bool isSetEndImm() const {
    942     if (!isImm()) return false;
    943     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    944     if (!CE) return false;
    945     int64_t Value = CE->getValue();
    946     return Value == 1 || Value == 0;
    947   }
    948   bool isReg() const { return Kind == k_Register; }
    949   bool isRegList() const { return Kind == k_RegisterList; }
    950   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
    951   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
    952   bool isToken() const { return Kind == k_Token; }
    953   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
    954   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
    955   bool isMem() const { return Kind == k_Memory; }
    956   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
    957   bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
    958   bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
    959   bool isRotImm() const { return Kind == k_RotateImmediate; }
    960   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
    961   bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
    962   bool isPostIdxReg() const {
    963     return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
    964   }
    965   bool isMemNoOffset(bool alignOK = false) const {
    966     if (!isMem())
    967       return false;
    968     // No offset of any kind.
    969     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
    970      (alignOK || Memory.Alignment == 0);
    971   }
    972   bool isMemPCRelImm12() const {
    973     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
    974       return false;
    975     // Base register must be PC.
    976     if (Memory.BaseRegNum != ARM::PC)
    977       return false;
    978     // Immediate offset in range [-4095, 4095].
    979     if (!Memory.OffsetImm) return true;
    980     int64_t Val = Memory.OffsetImm->getValue();
    981     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
    982   }
    983   bool isAlignedMemory() const {
    984     return isMemNoOffset(true);
    985   }
    986   bool isAddrMode2() const {
    987     if (!isMem() || Memory.Alignment != 0) return false;
    988     // Check for register offset.
    989     if (Memory.OffsetRegNum) return true;
    990     // Immediate offset in range [-4095, 4095].
    991     if (!Memory.OffsetImm) return true;
    992     int64_t Val = Memory.OffsetImm->getValue();
    993     return Val > -4096 && Val < 4096;
    994   }
    995   bool isAM2OffsetImm() const {
    996     if (!isImm()) return false;
    997     // Immediate offset in range [-4095, 4095].
    998     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    999     if (!CE) return false;
   1000     int64_t Val = CE->getValue();
   1001     return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
   1002   }
   1003   bool isAddrMode3() const {
   1004     // If we have an immediate that's not a constant, treat it as a label
   1005     // reference needing a fixup. If it is a constant, it's something else
   1006     // and we reject it.
   1007     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1008       return true;
   1009     if (!isMem() || Memory.Alignment != 0) return false;
   1010     // No shifts are legal for AM3.
   1011     if (Memory.ShiftType != ARM_AM::no_shift) return false;
   1012     // Check for register offset.
   1013     if (Memory.OffsetRegNum) return true;
   1014     // Immediate offset in range [-255, 255].
   1015     if (!Memory.OffsetImm) return true;
   1016     int64_t Val = Memory.OffsetImm->getValue();
   1017     // The #-0 offset is encoded as INT32_MIN, and we have to check
   1018     // for this too.
   1019     return (Val > -256 && Val < 256) || Val == INT32_MIN;
   1020   }
   1021   bool isAM3Offset() const {
   1022     if (Kind != k_Immediate && Kind != k_PostIndexRegister)
   1023       return false;
   1024     if (Kind == k_PostIndexRegister)
   1025       return PostIdxReg.ShiftTy == ARM_AM::no_shift;
   1026     // Immediate offset in range [-255, 255].
   1027     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1028     if (!CE) return false;
   1029     int64_t Val = CE->getValue();
   1030     // Special case, #-0 is INT32_MIN.
   1031     return (Val > -256 && Val < 256) || Val == INT32_MIN;
   1032   }
   1033   bool isAddrMode5() const {
   1034     // If we have an immediate that's not a constant, treat it as a label
   1035     // reference needing a fixup. If it is a constant, it's something else
   1036     // and we reject it.
   1037     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1038       return true;
   1039     if (!isMem() || Memory.Alignment != 0) return false;
   1040     // Check for register offset.
   1041     if (Memory.OffsetRegNum) return false;
   1042     // Immediate offset in range [-1020, 1020] and a multiple of 4.
   1043     if (!Memory.OffsetImm) return true;
   1044     int64_t Val = Memory.OffsetImm->getValue();
   1045     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
   1046       Val == INT32_MIN;
   1047   }
   1048   bool isMemTBB() const {
   1049     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1050         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
   1051       return false;
   1052     return true;
   1053   }
   1054   bool isMemTBH() const {
   1055     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1056         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
   1057         Memory.Alignment != 0 )
   1058       return false;
   1059     return true;
   1060   }
   1061   bool isMemRegOffset() const {
   1062     if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
   1063       return false;
   1064     return true;
   1065   }
   1066   bool isT2MemRegOffset() const {
   1067     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1068         Memory.Alignment != 0)
   1069       return false;
   1070     // Only lsl #{0, 1, 2, 3} allowed.
   1071     if (Memory.ShiftType == ARM_AM::no_shift)
   1072       return true;
   1073     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
   1074       return false;
   1075     return true;
   1076   }
   1077   bool isMemThumbRR() const {
   1078     // Thumb reg+reg addressing is simple. Just two registers, a base and
   1079     // an offset. No shifts, negations or any other complicating factors.
   1080     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1081         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
   1082       return false;
   1083     return isARMLowRegister(Memory.BaseRegNum) &&
   1084       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
   1085   }
   1086   bool isMemThumbRIs4() const {
   1087     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1088         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1089       return false;
   1090     // Immediate offset, multiple of 4 in range [0, 124].
   1091     if (!Memory.OffsetImm) return true;
   1092     int64_t Val = Memory.OffsetImm->getValue();
   1093     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
   1094   }
   1095   bool isMemThumbRIs2() const {
   1096     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1097         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1098       return false;
   1099     // Immediate offset, multiple of 4 in range [0, 62].
   1100     if (!Memory.OffsetImm) return true;
   1101     int64_t Val = Memory.OffsetImm->getValue();
   1102     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
   1103   }
   1104   bool isMemThumbRIs1() const {
   1105     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1106         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1107       return false;
   1108     // Immediate offset in range [0, 31].
   1109     if (!Memory.OffsetImm) return true;
   1110     int64_t Val = Memory.OffsetImm->getValue();
   1111     return Val >= 0 && Val <= 31;
   1112   }
   1113   bool isMemThumbSPI() const {
   1114     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1115         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
   1116       return false;
   1117     // Immediate offset, multiple of 4 in range [0, 1020].
   1118     if (!Memory.OffsetImm) return true;
   1119     int64_t Val = Memory.OffsetImm->getValue();
   1120     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
   1121   }
   1122   bool isMemImm8s4Offset() const {
   1123     // If we have an immediate that's not a constant, treat it as a label
   1124     // reference needing a fixup. If it is a constant, it's something else
   1125     // and we reject it.
   1126     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1127       return true;
   1128     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1129       return false;
   1130     // Immediate offset a multiple of 4 in range [-1020, 1020].
   1131     if (!Memory.OffsetImm) return true;
   1132     int64_t Val = Memory.OffsetImm->getValue();
   1133     // Special case, #-0 is INT32_MIN.
   1134     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
   1135   }
   1136   bool isMemImm0_1020s4Offset() const {
   1137     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1138       return false;
   1139     // Immediate offset a multiple of 4 in range [0, 1020].
   1140     if (!Memory.OffsetImm) return true;
   1141     int64_t Val = Memory.OffsetImm->getValue();
   1142     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
   1143   }
   1144   bool isMemImm8Offset() const {
   1145     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1146       return false;
   1147     // Base reg of PC isn't allowed for these encodings.
   1148     if (Memory.BaseRegNum == ARM::PC) return false;
   1149     // Immediate offset in range [-255, 255].
   1150     if (!Memory.OffsetImm) return true;
   1151     int64_t Val = Memory.OffsetImm->getValue();
   1152     return (Val == INT32_MIN) || (Val > -256 && Val < 256);
   1153   }
   1154   bool isMemPosImm8Offset() const {
   1155     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1156       return false;
   1157     // Immediate offset in range [0, 255].
   1158     if (!Memory.OffsetImm) return true;
   1159     int64_t Val = Memory.OffsetImm->getValue();
   1160     return Val >= 0 && Val < 256;
   1161   }
   1162   bool isMemNegImm8Offset() const {
   1163     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1164       return false;
   1165     // Base reg of PC isn't allowed for these encodings.
   1166     if (Memory.BaseRegNum == ARM::PC) return false;
   1167     // Immediate offset in range [-255, -1].
   1168     if (!Memory.OffsetImm) return false;
   1169     int64_t Val = Memory.OffsetImm->getValue();
   1170     return (Val == INT32_MIN) || (Val > -256 && Val < 0);
   1171   }
   1172   bool isMemUImm12Offset() const {
   1173     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1174       return false;
   1175     // Immediate offset in range [0, 4095].
   1176     if (!Memory.OffsetImm) return true;
   1177     int64_t Val = Memory.OffsetImm->getValue();
   1178     return (Val >= 0 && Val < 4096);
   1179   }
   1180   bool isMemImm12Offset() const {
   1181     // If we have an immediate that's not a constant, treat it as a label
   1182     // reference needing a fixup. If it is a constant, it's something else
   1183     // and we reject it.
   1184     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1185       return true;
   1186 
   1187     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1188       return false;
   1189     // Immediate offset in range [-4095, 4095].
   1190     if (!Memory.OffsetImm) return true;
   1191     int64_t Val = Memory.OffsetImm->getValue();
   1192     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
   1193   }
   1194   bool isPostIdxImm8() const {
   1195     if (!isImm()) return false;
   1196     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1197     if (!CE) return false;
   1198     int64_t Val = CE->getValue();
   1199     return (Val > -256 && Val < 256) || (Val == INT32_MIN);
   1200   }
   1201   bool isPostIdxImm8s4() const {
   1202     if (!isImm()) return false;
   1203     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1204     if (!CE) return false;
   1205     int64_t Val = CE->getValue();
   1206     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
   1207       (Val == INT32_MIN);
   1208   }
   1209 
   1210   bool isMSRMask() const { return Kind == k_MSRMask; }
   1211   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
   1212 
   1213   // NEON operands.
   1214   bool isSingleSpacedVectorList() const {
   1215     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
   1216   }
   1217   bool isDoubleSpacedVectorList() const {
   1218     return Kind == k_VectorList && VectorList.isDoubleSpaced;
   1219   }
   1220   bool isVecListOneD() const {
   1221     if (!isSingleSpacedVectorList()) return false;
   1222     return VectorList.Count == 1;
   1223   }
   1224 
   1225   bool isVecListDPair() const {
   1226     if (!isSingleSpacedVectorList()) return false;
   1227     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
   1228               .contains(VectorList.RegNum));
   1229   }
   1230 
   1231   bool isVecListThreeD() const {
   1232     if (!isSingleSpacedVectorList()) return false;
   1233     return VectorList.Count == 3;
   1234   }
   1235 
   1236   bool isVecListFourD() const {
   1237     if (!isSingleSpacedVectorList()) return false;
   1238     return VectorList.Count == 4;
   1239   }
   1240 
   1241   bool isVecListDPairSpaced() const {
   1242     if (isSingleSpacedVectorList()) return false;
   1243     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
   1244               .contains(VectorList.RegNum));
   1245   }
   1246 
   1247   bool isVecListThreeQ() const {
   1248     if (!isDoubleSpacedVectorList()) return false;
   1249     return VectorList.Count == 3;
   1250   }
   1251 
   1252   bool isVecListFourQ() const {
   1253     if (!isDoubleSpacedVectorList()) return false;
   1254     return VectorList.Count == 4;
   1255   }
   1256 
   1257   bool isSingleSpacedVectorAllLanes() const {
   1258     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
   1259   }
   1260   bool isDoubleSpacedVectorAllLanes() const {
   1261     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
   1262   }
   1263   bool isVecListOneDAllLanes() const {
   1264     if (!isSingleSpacedVectorAllLanes()) return false;
   1265     return VectorList.Count == 1;
   1266   }
   1267 
   1268   bool isVecListDPairAllLanes() const {
   1269     if (!isSingleSpacedVectorAllLanes()) return false;
   1270     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
   1271               .contains(VectorList.RegNum));
   1272   }
   1273 
   1274   bool isVecListDPairSpacedAllLanes() const {
   1275     if (!isDoubleSpacedVectorAllLanes()) return false;
   1276     return VectorList.Count == 2;
   1277   }
   1278 
   1279   bool isVecListThreeDAllLanes() const {
   1280     if (!isSingleSpacedVectorAllLanes()) return false;
   1281     return VectorList.Count == 3;
   1282   }
   1283 
   1284   bool isVecListThreeQAllLanes() const {
   1285     if (!isDoubleSpacedVectorAllLanes()) return false;
   1286     return VectorList.Count == 3;
   1287   }
   1288 
   1289   bool isVecListFourDAllLanes() const {
   1290     if (!isSingleSpacedVectorAllLanes()) return false;
   1291     return VectorList.Count == 4;
   1292   }
   1293 
   1294   bool isVecListFourQAllLanes() const {
   1295     if (!isDoubleSpacedVectorAllLanes()) return false;
   1296     return VectorList.Count == 4;
   1297   }
   1298 
   1299   bool isSingleSpacedVectorIndexed() const {
   1300     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
   1301   }
   1302   bool isDoubleSpacedVectorIndexed() const {
   1303     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
   1304   }
   1305   bool isVecListOneDByteIndexed() const {
   1306     if (!isSingleSpacedVectorIndexed()) return false;
   1307     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
   1308   }
   1309 
   1310   bool isVecListOneDHWordIndexed() const {
   1311     if (!isSingleSpacedVectorIndexed()) return false;
   1312     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
   1313   }
   1314 
   1315   bool isVecListOneDWordIndexed() const {
   1316     if (!isSingleSpacedVectorIndexed()) return false;
   1317     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
   1318   }
   1319 
   1320   bool isVecListTwoDByteIndexed() const {
   1321     if (!isSingleSpacedVectorIndexed()) return false;
   1322     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
   1323   }
   1324 
   1325   bool isVecListTwoDHWordIndexed() const {
   1326     if (!isSingleSpacedVectorIndexed()) return false;
   1327     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
   1328   }
   1329 
   1330   bool isVecListTwoQWordIndexed() const {
   1331     if (!isDoubleSpacedVectorIndexed()) return false;
   1332     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
   1333   }
   1334 
   1335   bool isVecListTwoQHWordIndexed() const {
   1336     if (!isDoubleSpacedVectorIndexed()) return false;
   1337     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
   1338   }
   1339 
   1340   bool isVecListTwoDWordIndexed() const {
   1341     if (!isSingleSpacedVectorIndexed()) return false;
   1342     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
   1343   }
   1344 
   1345   bool isVecListThreeDByteIndexed() const {
   1346     if (!isSingleSpacedVectorIndexed()) return false;
   1347     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
   1348   }
   1349 
   1350   bool isVecListThreeDHWordIndexed() const {
   1351     if (!isSingleSpacedVectorIndexed()) return false;
   1352     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
   1353   }
   1354 
   1355   bool isVecListThreeQWordIndexed() const {
   1356     if (!isDoubleSpacedVectorIndexed()) return false;
   1357     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
   1358   }
   1359 
   1360   bool isVecListThreeQHWordIndexed() const {
   1361     if (!isDoubleSpacedVectorIndexed()) return false;
   1362     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
   1363   }
   1364 
   1365   bool isVecListThreeDWordIndexed() const {
   1366     if (!isSingleSpacedVectorIndexed()) return false;
   1367     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
   1368   }
   1369 
   1370   bool isVecListFourDByteIndexed() const {
   1371     if (!isSingleSpacedVectorIndexed()) return false;
   1372     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
   1373   }
   1374 
   1375   bool isVecListFourDHWordIndexed() const {
   1376     if (!isSingleSpacedVectorIndexed()) return false;
   1377     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
   1378   }
   1379 
   1380   bool isVecListFourQWordIndexed() const {
   1381     if (!isDoubleSpacedVectorIndexed()) return false;
   1382     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
   1383   }
   1384 
   1385   bool isVecListFourQHWordIndexed() const {
   1386     if (!isDoubleSpacedVectorIndexed()) return false;
   1387     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
   1388   }
   1389 
   1390   bool isVecListFourDWordIndexed() const {
   1391     if (!isSingleSpacedVectorIndexed()) return false;
   1392     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
   1393   }
   1394 
   1395   bool isVectorIndex8() const {
   1396     if (Kind != k_VectorIndex) return false;
   1397     return VectorIndex.Val < 8;
   1398   }
   1399   bool isVectorIndex16() const {
   1400     if (Kind != k_VectorIndex) return false;
   1401     return VectorIndex.Val < 4;
   1402   }
   1403   bool isVectorIndex32() const {
   1404     if (Kind != k_VectorIndex) return false;
   1405     return VectorIndex.Val < 2;
   1406   }
   1407 
   1408   bool isNEONi8splat() const {
   1409     if (!isImm()) return false;
   1410     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1411     // Must be a constant.
   1412     if (!CE) return false;
   1413     int64_t Value = CE->getValue();
   1414     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
   1415     // value.
   1416     return Value >= 0 && Value < 256;
   1417   }
   1418 
   1419   bool isNEONi16splat() const {
   1420     if (!isImm()) return false;
   1421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1422     // Must be a constant.
   1423     if (!CE) return false;
   1424     int64_t Value = CE->getValue();
   1425     // i16 value in the range [0,255] or [0x0100, 0xff00]
   1426     return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
   1427   }
   1428 
   1429   bool isNEONi32splat() const {
   1430     if (!isImm()) return false;
   1431     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1432     // Must be a constant.
   1433     if (!CE) return false;
   1434     int64_t Value = CE->getValue();
   1435     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
   1436     return (Value >= 0 && Value < 256) ||
   1437       (Value >= 0x0100 && Value <= 0xff00) ||
   1438       (Value >= 0x010000 && Value <= 0xff0000) ||
   1439       (Value >= 0x01000000 && Value <= 0xff000000);
   1440   }
   1441 
   1442   bool isNEONi32vmov() const {
   1443     if (!isImm()) return false;
   1444     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1445     // Must be a constant.
   1446     if (!CE) return false;
   1447     int64_t Value = CE->getValue();
   1448     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
   1449     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
   1450     return (Value >= 0 && Value < 256) ||
   1451       (Value >= 0x0100 && Value <= 0xff00) ||
   1452       (Value >= 0x010000 && Value <= 0xff0000) ||
   1453       (Value >= 0x01000000 && Value <= 0xff000000) ||
   1454       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
   1455       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
   1456   }
   1457   bool isNEONi32vmovNeg() const {
   1458     if (!isImm()) return false;
   1459     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1460     // Must be a constant.
   1461     if (!CE) return false;
   1462     int64_t Value = ~CE->getValue();
   1463     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
   1464     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
   1465     return (Value >= 0 && Value < 256) ||
   1466       (Value >= 0x0100 && Value <= 0xff00) ||
   1467       (Value >= 0x010000 && Value <= 0xff0000) ||
   1468       (Value >= 0x01000000 && Value <= 0xff000000) ||
   1469       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
   1470       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
   1471   }
   1472 
   1473   bool isNEONi64splat() const {
   1474     if (!isImm()) return false;
   1475     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1476     // Must be a constant.
   1477     if (!CE) return false;
   1478     uint64_t Value = CE->getValue();
   1479     // i64 value with each byte being either 0 or 0xff.
   1480     for (unsigned i = 0; i < 8; ++i)
   1481       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
   1482     return true;
   1483   }
   1484 
   1485   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
   1486     // Add as immediates when possible.  Null MCExpr = 0.
   1487     if (Expr == 0)
   1488       Inst.addOperand(MCOperand::CreateImm(0));
   1489     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
   1490       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
   1491     else
   1492       Inst.addOperand(MCOperand::CreateExpr(Expr));
   1493   }
   1494 
   1495   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
   1496     assert(N == 2 && "Invalid number of operands!");
   1497     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
   1498     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
   1499     Inst.addOperand(MCOperand::CreateReg(RegNum));
   1500   }
   1501 
   1502   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
   1503     assert(N == 1 && "Invalid number of operands!");
   1504     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
   1505   }
   1506 
   1507   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
   1508     assert(N == 1 && "Invalid number of operands!");
   1509     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
   1510   }
   1511 
   1512   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
   1513     assert(N == 1 && "Invalid number of operands!");
   1514     Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
   1515   }
   1516 
   1517   void addITMaskOperands(MCInst &Inst, unsigned N) const {
   1518     assert(N == 1 && "Invalid number of operands!");
   1519     Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
   1520   }
   1521 
   1522   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
   1523     assert(N == 1 && "Invalid number of operands!");
   1524     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
   1525   }
   1526 
   1527   void addCCOutOperands(MCInst &Inst, unsigned N) const {
   1528     assert(N == 1 && "Invalid number of operands!");
   1529     Inst.addOperand(MCOperand::CreateReg(getReg()));
   1530   }
   1531 
   1532   void addRegOperands(MCInst &Inst, unsigned N) const {
   1533     assert(N == 1 && "Invalid number of operands!");
   1534     Inst.addOperand(MCOperand::CreateReg(getReg()));
   1535   }
   1536 
   1537   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
   1538     assert(N == 3 && "Invalid number of operands!");
   1539     assert(isRegShiftedReg() &&
   1540            "addRegShiftedRegOperands() on non RegShiftedReg!");
   1541     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
   1542     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
   1543     Inst.addOperand(MCOperand::CreateImm(
   1544       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
   1545   }
   1546 
   1547   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
   1548     assert(N == 2 && "Invalid number of operands!");
   1549     assert(isRegShiftedImm() &&
   1550            "addRegShiftedImmOperands() on non RegShiftedImm!");
   1551     Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
   1552     // Shift of #32 is encoded as 0 where permitted
   1553     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
   1554     Inst.addOperand(MCOperand::CreateImm(
   1555       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
   1556   }
   1557 
   1558   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
   1559     assert(N == 1 && "Invalid number of operands!");
   1560     Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
   1561                                          ShifterImm.Imm));
   1562   }
   1563 
   1564   void addRegListOperands(MCInst &Inst, unsigned N) const {
   1565     assert(N == 1 && "Invalid number of operands!");
   1566     const SmallVectorImpl<unsigned> &RegList = getRegList();
   1567     for (SmallVectorImpl<unsigned>::const_iterator
   1568            I = RegList.begin(), E = RegList.end(); I != E; ++I)
   1569       Inst.addOperand(MCOperand::CreateReg(*I));
   1570   }
   1571 
   1572   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
   1573     addRegListOperands(Inst, N);
   1574   }
   1575 
   1576   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
   1577     addRegListOperands(Inst, N);
   1578   }
   1579 
   1580   void addRotImmOperands(MCInst &Inst, unsigned N) const {
   1581     assert(N == 1 && "Invalid number of operands!");
   1582     // Encoded as val>>3. The printer handles display as 8, 16, 24.
   1583     Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
   1584   }
   1585 
   1586   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
   1587     assert(N == 1 && "Invalid number of operands!");
   1588     // Munge the lsb/width into a bitfield mask.
   1589     unsigned lsb = Bitfield.LSB;
   1590     unsigned width = Bitfield.Width;
   1591     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
   1592     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
   1593                       (32 - (lsb + width)));
   1594     Inst.addOperand(MCOperand::CreateImm(Mask));
   1595   }
   1596 
   1597   void addImmOperands(MCInst &Inst, unsigned N) const {
   1598     assert(N == 1 && "Invalid number of operands!");
   1599     addExpr(Inst, getImm());
   1600   }
   1601 
   1602   void addFBits16Operands(MCInst &Inst, unsigned N) const {
   1603     assert(N == 1 && "Invalid number of operands!");
   1604     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1605     Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
   1606   }
   1607 
   1608   void addFBits32Operands(MCInst &Inst, unsigned N) const {
   1609     assert(N == 1 && "Invalid number of operands!");
   1610     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1611     Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
   1612   }
   1613 
   1614   void addFPImmOperands(MCInst &Inst, unsigned N) const {
   1615     assert(N == 1 && "Invalid number of operands!");
   1616     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1617     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
   1618     Inst.addOperand(MCOperand::CreateImm(Val));
   1619   }
   1620 
   1621   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
   1622     assert(N == 1 && "Invalid number of operands!");
   1623     // FIXME: We really want to scale the value here, but the LDRD/STRD
   1624     // instruction don't encode operands that way yet.
   1625     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1626     Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
   1627   }
   1628 
   1629   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
   1630     assert(N == 1 && "Invalid number of operands!");
   1631     // The immediate is scaled by four in the encoding and is stored
   1632     // in the MCInst as such. Lop off the low two bits here.
   1633     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1634     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
   1635   }
   1636 
   1637   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
   1638     assert(N == 1 && "Invalid number of operands!");
   1639     // The immediate is scaled by four in the encoding and is stored
   1640     // in the MCInst as such. Lop off the low two bits here.
   1641     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1642     Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
   1643   }
   1644 
   1645   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
   1646     assert(N == 1 && "Invalid number of operands!");
   1647     // The immediate is scaled by four in the encoding and is stored
   1648     // in the MCInst as such. Lop off the low two bits here.
   1649     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1650     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
   1651   }
   1652 
   1653   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
   1654     assert(N == 1 && "Invalid number of operands!");
   1655     // The constant encodes as the immediate-1, and we store in the instruction
   1656     // the bits as encoded, so subtract off one here.
   1657     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1658     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
   1659   }
   1660 
   1661   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
   1662     assert(N == 1 && "Invalid number of operands!");
   1663     // The constant encodes as the immediate-1, and we store in the instruction
   1664     // the bits as encoded, so subtract off one here.
   1665     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1666     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
   1667   }
   1668 
   1669   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
   1670     assert(N == 1 && "Invalid number of operands!");
   1671     // The constant encodes as the immediate, except for 32, which encodes as
   1672     // zero.
   1673     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1674     unsigned Imm = CE->getValue();
   1675     Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
   1676   }
   1677 
   1678   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
   1679     assert(N == 1 && "Invalid number of operands!");
   1680     // An ASR value of 32 encodes as 0, so that's how we want to add it to
   1681     // the instruction as well.
   1682     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1683     int Val = CE->getValue();
   1684     Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
   1685   }
   1686 
   1687   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
   1688     assert(N == 1 && "Invalid number of operands!");
   1689     // The operand is actually a t2_so_imm, but we have its bitwise
   1690     // negation in the assembly source, so twiddle it here.
   1691     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1692     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
   1693   }
   1694 
   1695   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
   1696     assert(N == 1 && "Invalid number of operands!");
   1697     // The operand is actually a t2_so_imm, but we have its
   1698     // negation in the assembly source, so twiddle it here.
   1699     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1700     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
   1701   }
   1702 
   1703   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
   1704     assert(N == 1 && "Invalid number of operands!");
   1705     // The operand is actually an imm0_4095, but we have its
   1706     // negation in the assembly source, so twiddle it here.
   1707     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1708     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
   1709   }
   1710 
   1711   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
   1712     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
   1713       Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
   1714       return;
   1715     }
   1716 
   1717     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
   1718     assert(SR && "Unknown value type!");
   1719     Inst.addOperand(MCOperand::CreateExpr(SR));
   1720   }
   1721 
   1722   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
   1723     assert(N == 1 && "Invalid number of operands!");
   1724     if (isImm()) {
   1725       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1726       if (CE) {
   1727         Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
   1728         return;
   1729       }
   1730 
   1731       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
   1732       assert(SR && "Unknown value type!");
   1733       Inst.addOperand(MCOperand::CreateExpr(SR));
   1734       return;
   1735     }
   1736 
   1737     assert(isMem()  && "Unknown value type!");
   1738     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
   1739     Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
   1740   }
   1741 
   1742   void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
   1743     assert(N == 1 && "Invalid number of operands!");
   1744     // The operand is actually a so_imm, but we have its bitwise
   1745     // negation in the assembly source, so twiddle it here.
   1746     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1747     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
   1748   }
   1749 
   1750   void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
   1751     assert(N == 1 && "Invalid number of operands!");
   1752     // The operand is actually a so_imm, but we have its
   1753     // negation in the assembly source, so twiddle it here.
   1754     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1755     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
   1756   }
   1757 
   1758   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
   1759     assert(N == 1 && "Invalid number of operands!");
   1760     Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
   1761   }
   1762 
   1763   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
   1764     assert(N == 1 && "Invalid number of operands!");
   1765     Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
   1766   }
   1767 
   1768   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
   1769     assert(N == 1 && "Invalid number of operands!");
   1770     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1771   }
   1772 
   1773   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
   1774     assert(N == 1 && "Invalid number of operands!");
   1775     int32_t Imm = Memory.OffsetImm->getValue();
   1776     // FIXME: Handle #-0
   1777     if (Imm == INT32_MIN) Imm = 0;
   1778     Inst.addOperand(MCOperand::CreateImm(Imm));
   1779   }
   1780 
   1781   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
   1782     assert(N == 1 && "Invalid number of operands!");
   1783     assert(isImm() && "Not an immediate!");
   1784 
   1785     // If we have an immediate that's not a constant, treat it as a label
   1786     // reference needing a fixup.
   1787     if (!isa<MCConstantExpr>(getImm())) {
   1788       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   1789       return;
   1790     }
   1791 
   1792     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1793     int Val = CE->getValue();
   1794     Inst.addOperand(MCOperand::CreateImm(Val));
   1795   }
   1796 
   1797   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
   1798     assert(N == 2 && "Invalid number of operands!");
   1799     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1800     Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
   1801   }
   1802 
   1803   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
   1804     assert(N == 3 && "Invalid number of operands!");
   1805     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   1806     if (!Memory.OffsetRegNum) {
   1807       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   1808       // Special case for #-0
   1809       if (Val == INT32_MIN) Val = 0;
   1810       if (Val < 0) Val = -Val;
   1811       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
   1812     } else {
   1813       // For register offset, we encode the shift type and negation flag
   1814       // here.
   1815       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
   1816                               Memory.ShiftImm, Memory.ShiftType);
   1817     }
   1818     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1819     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   1820     Inst.addOperand(MCOperand::CreateImm(Val));
   1821   }
   1822 
   1823   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
   1824     assert(N == 2 && "Invalid number of operands!");
   1825     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1826     assert(CE && "non-constant AM2OffsetImm operand!");
   1827     int32_t Val = CE->getValue();
   1828     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   1829     // Special case for #-0
   1830     if (Val == INT32_MIN) Val = 0;
   1831     if (Val < 0) Val = -Val;
   1832     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
   1833     Inst.addOperand(MCOperand::CreateReg(0));
   1834     Inst.addOperand(MCOperand::CreateImm(Val));
   1835   }
   1836 
   1837   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
   1838     assert(N == 3 && "Invalid number of operands!");
   1839     // If we have an immediate that's not a constant, treat it as a label
   1840     // reference needing a fixup. If it is a constant, it's something else
   1841     // and we reject it.
   1842     if (isImm()) {
   1843       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   1844       Inst.addOperand(MCOperand::CreateReg(0));
   1845       Inst.addOperand(MCOperand::CreateImm(0));
   1846       return;
   1847     }
   1848 
   1849     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   1850     if (!Memory.OffsetRegNum) {
   1851       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   1852       // Special case for #-0
   1853       if (Val == INT32_MIN) Val = 0;
   1854       if (Val < 0) Val = -Val;
   1855       Val = ARM_AM::getAM3Opc(AddSub, Val);
   1856     } else {
   1857       // For register offset, we encode the shift type and negation flag
   1858       // here.
   1859       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
   1860     }
   1861     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1862     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   1863     Inst.addOperand(MCOperand::CreateImm(Val));
   1864   }
   1865 
   1866   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
   1867     assert(N == 2 && "Invalid number of operands!");
   1868     if (Kind == k_PostIndexRegister) {
   1869       int32_t Val =
   1870         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
   1871       Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
   1872       Inst.addOperand(MCOperand::CreateImm(Val));
   1873       return;
   1874     }
   1875 
   1876     // Constant offset.
   1877     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
   1878     int32_t Val = CE->getValue();
   1879     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   1880     // Special case for #-0
   1881     if (Val == INT32_MIN) Val = 0;
   1882     if (Val < 0) Val = -Val;
   1883     Val = ARM_AM::getAM3Opc(AddSub, Val);
   1884     Inst.addOperand(MCOperand::CreateReg(0));
   1885     Inst.addOperand(MCOperand::CreateImm(Val));
   1886   }
   1887 
   1888   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
   1889     assert(N == 2 && "Invalid number of operands!");
   1890     // If we have an immediate that's not a constant, treat it as a label
   1891     // reference needing a fixup. If it is a constant, it's something else
   1892     // and we reject it.
   1893     if (isImm()) {
   1894       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   1895       Inst.addOperand(MCOperand::CreateImm(0));
   1896       return;
   1897     }
   1898 
   1899     // The lower two bits are always zero and as such are not encoded.
   1900     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
   1901     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   1902     // Special case for #-0
   1903     if (Val == INT32_MIN) Val = 0;
   1904     if (Val < 0) Val = -Val;
   1905     Val = ARM_AM::getAM5Opc(AddSub, Val);
   1906     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1907     Inst.addOperand(MCOperand::CreateImm(Val));
   1908   }
   1909 
   1910   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
   1911     assert(N == 2 && "Invalid number of operands!");
   1912     // If we have an immediate that's not a constant, treat it as a label
   1913     // reference needing a fixup. If it is a constant, it's something else
   1914     // and we reject it.
   1915     if (isImm()) {
   1916       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   1917       Inst.addOperand(MCOperand::CreateImm(0));
   1918       return;
   1919     }
   1920 
   1921     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   1922     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1923     Inst.addOperand(MCOperand::CreateImm(Val));
   1924   }
   1925 
   1926   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
   1927     assert(N == 2 && "Invalid number of operands!");
   1928     // The lower two bits are always zero and as such are not encoded.
   1929     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
   1930     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1931     Inst.addOperand(MCOperand::CreateImm(Val));
   1932   }
   1933 
   1934   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   1935     assert(N == 2 && "Invalid number of operands!");
   1936     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   1937     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1938     Inst.addOperand(MCOperand::CreateImm(Val));
   1939   }
   1940 
   1941   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   1942     addMemImm8OffsetOperands(Inst, N);
   1943   }
   1944 
   1945   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   1946     addMemImm8OffsetOperands(Inst, N);
   1947   }
   1948 
   1949   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
   1950     assert(N == 2 && "Invalid number of operands!");
   1951     // If this is an immediate, it's a label reference.
   1952     if (isImm()) {
   1953       addExpr(Inst, getImm());
   1954       Inst.addOperand(MCOperand::CreateImm(0));
   1955       return;
   1956     }
   1957 
   1958     // Otherwise, it's a normal memory reg+offset.
   1959     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   1960     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1961     Inst.addOperand(MCOperand::CreateImm(Val));
   1962   }
   1963 
   1964   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
   1965     assert(N == 2 && "Invalid number of operands!");
   1966     // If this is an immediate, it's a label reference.
   1967     if (isImm()) {
   1968       addExpr(Inst, getImm());
   1969       Inst.addOperand(MCOperand::CreateImm(0));
   1970       return;
   1971     }
   1972 
   1973     // Otherwise, it's a normal memory reg+offset.
   1974     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   1975     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1976     Inst.addOperand(MCOperand::CreateImm(Val));
   1977   }
   1978 
   1979   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
   1980     assert(N == 2 && "Invalid number of operands!");
   1981     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1982     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   1983   }
   1984 
   1985   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
   1986     assert(N == 2 && "Invalid number of operands!");
   1987     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1988     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   1989   }
   1990 
   1991   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
   1992     assert(N == 3 && "Invalid number of operands!");
   1993     unsigned Val =
   1994       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
   1995                         Memory.ShiftImm, Memory.ShiftType);
   1996     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   1997     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   1998     Inst.addOperand(MCOperand::CreateImm(Val));
   1999   }
   2000 
   2001   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
   2002     assert(N == 3 && "Invalid number of operands!");
   2003     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2004     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2005     Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
   2006   }
   2007 
   2008   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
   2009     assert(N == 2 && "Invalid number of operands!");
   2010     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2011     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2012   }
   2013 
   2014   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
   2015     assert(N == 2 && "Invalid number of operands!");
   2016     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
   2017     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2018     Inst.addOperand(MCOperand::CreateImm(Val));
   2019   }
   2020 
   2021   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
   2022     assert(N == 2 && "Invalid number of operands!");
   2023     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
   2024     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2025     Inst.addOperand(MCOperand::CreateImm(Val));
   2026   }
   2027 
   2028   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
   2029     assert(N == 2 && "Invalid number of operands!");
   2030     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
   2031     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2032     Inst.addOperand(MCOperand::CreateImm(Val));
   2033   }
   2034 
   2035   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
   2036     assert(N == 2 && "Invalid number of operands!");
   2037     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
   2038     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2039     Inst.addOperand(MCOperand::CreateImm(Val));
   2040   }
   2041 
   2042   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
   2043     assert(N == 1 && "Invalid number of operands!");
   2044     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2045     assert(CE && "non-constant post-idx-imm8 operand!");
   2046     int Imm = CE->getValue();
   2047     bool isAdd = Imm >= 0;
   2048     if (Imm == INT32_MIN) Imm = 0;
   2049     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
   2050     Inst.addOperand(MCOperand::CreateImm(Imm));
   2051   }
   2052 
   2053   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
   2054     assert(N == 1 && "Invalid number of operands!");
   2055     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2056     assert(CE && "non-constant post-idx-imm8s4 operand!");
   2057     int Imm = CE->getValue();
   2058     bool isAdd = Imm >= 0;
   2059     if (Imm == INT32_MIN) Imm = 0;
   2060     // Immediate is scaled by 4.
   2061     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
   2062     Inst.addOperand(MCOperand::CreateImm(Imm));
   2063   }
   2064 
   2065   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
   2066     assert(N == 2 && "Invalid number of operands!");
   2067     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
   2068     Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
   2069   }
   2070 
   2071   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
   2072     assert(N == 2 && "Invalid number of operands!");
   2073     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
   2074     // The sign, shift type, and shift amount are encoded in a single operand
   2075     // using the AM2 encoding helpers.
   2076     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
   2077     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
   2078                                      PostIdxReg.ShiftTy);
   2079     Inst.addOperand(MCOperand::CreateImm(Imm));
   2080   }
   2081 
   2082   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
   2083     assert(N == 1 && "Invalid number of operands!");
   2084     Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
   2085   }
   2086 
   2087   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
   2088     assert(N == 1 && "Invalid number of operands!");
   2089     Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
   2090   }
   2091 
   2092   void addVecListOperands(MCInst &Inst, unsigned N) const {
   2093     assert(N == 1 && "Invalid number of operands!");
   2094     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
   2095   }
   2096 
   2097   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
   2098     assert(N == 2 && "Invalid number of operands!");
   2099     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
   2100     Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
   2101   }
   2102 
   2103   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
   2104     assert(N == 1 && "Invalid number of operands!");
   2105     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
   2106   }
   2107 
   2108   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
   2109     assert(N == 1 && "Invalid number of operands!");
   2110     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
   2111   }
   2112 
   2113   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
   2114     assert(N == 1 && "Invalid number of operands!");
   2115     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
   2116   }
   2117 
   2118   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
   2119     assert(N == 1 && "Invalid number of operands!");
   2120     // The immediate encodes the type of constant as well as the value.
   2121     // Mask in that this is an i8 splat.
   2122     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2123     Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
   2124   }
   2125 
   2126   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
   2127     assert(N == 1 && "Invalid number of operands!");
   2128     // The immediate encodes the type of constant as well as the value.
   2129     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2130     unsigned Value = CE->getValue();
   2131     if (Value >= 256)
   2132       Value = (Value >> 8) | 0xa00;
   2133     else
   2134       Value |= 0x800;
   2135     Inst.addOperand(MCOperand::CreateImm(Value));
   2136   }
   2137 
   2138   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
   2139     assert(N == 1 && "Invalid number of operands!");
   2140     // The immediate encodes the type of constant as well as the value.
   2141     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2142     unsigned Value = CE->getValue();
   2143     if (Value >= 256 && Value <= 0xff00)
   2144       Value = (Value >> 8) | 0x200;
   2145     else if (Value > 0xffff && Value <= 0xff0000)
   2146       Value = (Value >> 16) | 0x400;
   2147     else if (Value > 0xffffff)
   2148       Value = (Value >> 24) | 0x600;
   2149     Inst.addOperand(MCOperand::CreateImm(Value));
   2150   }
   2151 
   2152   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
   2153     assert(N == 1 && "Invalid number of operands!");
   2154     // The immediate encodes the type of constant as well as the value.
   2155     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2156     unsigned Value = CE->getValue();
   2157     if (Value >= 256 && Value <= 0xffff)
   2158       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
   2159     else if (Value > 0xffff && Value <= 0xffffff)
   2160       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
   2161     else if (Value > 0xffffff)
   2162       Value = (Value >> 24) | 0x600;
   2163     Inst.addOperand(MCOperand::CreateImm(Value));
   2164   }
   2165 
   2166   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
   2167     assert(N == 1 && "Invalid number of operands!");
   2168     // The immediate encodes the type of constant as well as the value.
   2169     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2170     unsigned Value = ~CE->getValue();
   2171     if (Value >= 256 && Value <= 0xffff)
   2172       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
   2173     else if (Value > 0xffff && Value <= 0xffffff)
   2174       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
   2175     else if (Value > 0xffffff)
   2176       Value = (Value >> 24) | 0x600;
   2177     Inst.addOperand(MCOperand::CreateImm(Value));
   2178   }
   2179 
   2180   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
   2181     assert(N == 1 && "Invalid number of operands!");
   2182     // The immediate encodes the type of constant as well as the value.
   2183     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2184     uint64_t Value = CE->getValue();
   2185     unsigned Imm = 0;
   2186     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
   2187       Imm |= (Value & 1) << i;
   2188     }
   2189     Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
   2190   }
   2191 
   2192   virtual void print(raw_ostream &OS) const;
   2193 
   2194   static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
   2195     ARMOperand *Op = new ARMOperand(k_ITCondMask);
   2196     Op->ITMask.Mask = Mask;
   2197     Op->StartLoc = S;
   2198     Op->EndLoc = S;
   2199     return Op;
   2200   }
   2201 
   2202   static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
   2203     ARMOperand *Op = new ARMOperand(k_CondCode);
   2204     Op->CC.Val = CC;
   2205     Op->StartLoc = S;
   2206     Op->EndLoc = S;
   2207     return Op;
   2208   }
   2209 
   2210   static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
   2211     ARMOperand *Op = new ARMOperand(k_CoprocNum);
   2212     Op->Cop.Val = CopVal;
   2213     Op->StartLoc = S;
   2214     Op->EndLoc = S;
   2215     return Op;
   2216   }
   2217 
   2218   static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
   2219     ARMOperand *Op = new ARMOperand(k_CoprocReg);
   2220     Op->Cop.Val = CopVal;
   2221     Op->StartLoc = S;
   2222     Op->EndLoc = S;
   2223     return Op;
   2224   }
   2225 
   2226   static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
   2227     ARMOperand *Op = new ARMOperand(k_CoprocOption);
   2228     Op->Cop.Val = Val;
   2229     Op->StartLoc = S;
   2230     Op->EndLoc = E;
   2231     return Op;
   2232   }
   2233 
   2234   static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
   2235     ARMOperand *Op = new ARMOperand(k_CCOut);
   2236     Op->Reg.RegNum = RegNum;
   2237     Op->StartLoc = S;
   2238     Op->EndLoc = S;
   2239     return Op;
   2240   }
   2241 
   2242   static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
   2243     ARMOperand *Op = new ARMOperand(k_Token);
   2244     Op->Tok.Data = Str.data();
   2245     Op->Tok.Length = Str.size();
   2246     Op->StartLoc = S;
   2247     Op->EndLoc = S;
   2248     return Op;
   2249   }
   2250 
   2251   static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
   2252     ARMOperand *Op = new ARMOperand(k_Register);
   2253     Op->Reg.RegNum = RegNum;
   2254     Op->StartLoc = S;
   2255     Op->EndLoc = E;
   2256     return Op;
   2257   }
   2258 
   2259   static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
   2260                                            unsigned SrcReg,
   2261                                            unsigned ShiftReg,
   2262                                            unsigned ShiftImm,
   2263                                            SMLoc S, SMLoc E) {
   2264     ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
   2265     Op->RegShiftedReg.ShiftTy = ShTy;
   2266     Op->RegShiftedReg.SrcReg = SrcReg;
   2267     Op->RegShiftedReg.ShiftReg = ShiftReg;
   2268     Op->RegShiftedReg.ShiftImm = ShiftImm;
   2269     Op->StartLoc = S;
   2270     Op->EndLoc = E;
   2271     return Op;
   2272   }
   2273 
   2274   static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
   2275                                             unsigned SrcReg,
   2276                                             unsigned ShiftImm,
   2277                                             SMLoc S, SMLoc E) {
   2278     ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
   2279     Op->RegShiftedImm.ShiftTy = ShTy;
   2280     Op->RegShiftedImm.SrcReg = SrcReg;
   2281     Op->RegShiftedImm.ShiftImm = ShiftImm;
   2282     Op->StartLoc = S;
   2283     Op->EndLoc = E;
   2284     return Op;
   2285   }
   2286 
   2287   static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
   2288                                    SMLoc S, SMLoc E) {
   2289     ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
   2290     Op->ShifterImm.isASR = isASR;
   2291     Op->ShifterImm.Imm = Imm;
   2292     Op->StartLoc = S;
   2293     Op->EndLoc = E;
   2294     return Op;
   2295   }
   2296 
   2297   static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
   2298     ARMOperand *Op = new ARMOperand(k_RotateImmediate);
   2299     Op->RotImm.Imm = Imm;
   2300     Op->StartLoc = S;
   2301     Op->EndLoc = E;
   2302     return Op;
   2303   }
   2304 
   2305   static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
   2306                                     SMLoc S, SMLoc E) {
   2307     ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
   2308     Op->Bitfield.LSB = LSB;
   2309     Op->Bitfield.Width = Width;
   2310     Op->StartLoc = S;
   2311     Op->EndLoc = E;
   2312     return Op;
   2313   }
   2314 
   2315   static ARMOperand *
   2316   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned> > &Regs,
   2317                 SMLoc StartLoc, SMLoc EndLoc) {
   2318     assert (Regs.size() > 0 && "RegList contains no registers?");
   2319     KindTy Kind = k_RegisterList;
   2320 
   2321     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
   2322       Kind = k_DPRRegisterList;
   2323     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
   2324              contains(Regs.front().second))
   2325       Kind = k_SPRRegisterList;
   2326 
   2327     // Sort based on the register encoding values.
   2328     array_pod_sort(Regs.begin(), Regs.end());
   2329 
   2330     ARMOperand *Op = new ARMOperand(Kind);
   2331     for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
   2332            I = Regs.begin(), E = Regs.end(); I != E; ++I)
   2333       Op->Registers.push_back(I->second);
   2334     Op->StartLoc = StartLoc;
   2335     Op->EndLoc = EndLoc;
   2336     return Op;
   2337   }
   2338 
   2339   static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
   2340                                       bool isDoubleSpaced, SMLoc S, SMLoc E) {
   2341     ARMOperand *Op = new ARMOperand(k_VectorList);
   2342     Op->VectorList.RegNum = RegNum;
   2343     Op->VectorList.Count = Count;
   2344     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2345     Op->StartLoc = S;
   2346     Op->EndLoc = E;
   2347     return Op;
   2348   }
   2349 
   2350   static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
   2351                                               bool isDoubleSpaced,
   2352                                               SMLoc S, SMLoc E) {
   2353     ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
   2354     Op->VectorList.RegNum = RegNum;
   2355     Op->VectorList.Count = Count;
   2356     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2357     Op->StartLoc = S;
   2358     Op->EndLoc = E;
   2359     return Op;
   2360   }
   2361 
   2362   static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
   2363                                              unsigned Index,
   2364                                              bool isDoubleSpaced,
   2365                                              SMLoc S, SMLoc E) {
   2366     ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
   2367     Op->VectorList.RegNum = RegNum;
   2368     Op->VectorList.Count = Count;
   2369     Op->VectorList.LaneIndex = Index;
   2370     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2371     Op->StartLoc = S;
   2372     Op->EndLoc = E;
   2373     return Op;
   2374   }
   2375 
   2376   static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
   2377                                        MCContext &Ctx) {
   2378     ARMOperand *Op = new ARMOperand(k_VectorIndex);
   2379     Op->VectorIndex.Val = Idx;
   2380     Op->StartLoc = S;
   2381     Op->EndLoc = E;
   2382     return Op;
   2383   }
   2384 
   2385   static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
   2386     ARMOperand *Op = new ARMOperand(k_Immediate);
   2387     Op->Imm.Val = Val;
   2388     Op->StartLoc = S;
   2389     Op->EndLoc = E;
   2390     return Op;
   2391   }
   2392 
   2393   static ARMOperand *CreateMem(unsigned BaseRegNum,
   2394                                const MCConstantExpr *OffsetImm,
   2395                                unsigned OffsetRegNum,
   2396                                ARM_AM::ShiftOpc ShiftType,
   2397                                unsigned ShiftImm,
   2398                                unsigned Alignment,
   2399                                bool isNegative,
   2400                                SMLoc S, SMLoc E) {
   2401     ARMOperand *Op = new ARMOperand(k_Memory);
   2402     Op->Memory.BaseRegNum = BaseRegNum;
   2403     Op->Memory.OffsetImm = OffsetImm;
   2404     Op->Memory.OffsetRegNum = OffsetRegNum;
   2405     Op->Memory.ShiftType = ShiftType;
   2406     Op->Memory.ShiftImm = ShiftImm;
   2407     Op->Memory.Alignment = Alignment;
   2408     Op->Memory.isNegative = isNegative;
   2409     Op->StartLoc = S;
   2410     Op->EndLoc = E;
   2411     return Op;
   2412   }
   2413 
   2414   static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
   2415                                       ARM_AM::ShiftOpc ShiftTy,
   2416                                       unsigned ShiftImm,
   2417                                       SMLoc S, SMLoc E) {
   2418     ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
   2419     Op->PostIdxReg.RegNum = RegNum;
   2420     Op->PostIdxReg.isAdd = isAdd;
   2421     Op->PostIdxReg.ShiftTy = ShiftTy;
   2422     Op->PostIdxReg.ShiftImm = ShiftImm;
   2423     Op->StartLoc = S;
   2424     Op->EndLoc = E;
   2425     return Op;
   2426   }
   2427 
   2428   static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
   2429     ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
   2430     Op->MBOpt.Val = Opt;
   2431     Op->StartLoc = S;
   2432     Op->EndLoc = S;
   2433     return Op;
   2434   }
   2435 
   2436   static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
   2437                                               SMLoc S) {
   2438     ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
   2439     Op->ISBOpt.Val = Opt;
   2440     Op->StartLoc = S;
   2441     Op->EndLoc = S;
   2442     return Op;
   2443   }
   2444 
   2445   static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
   2446     ARMOperand *Op = new ARMOperand(k_ProcIFlags);
   2447     Op->IFlags.Val = IFlags;
   2448     Op->StartLoc = S;
   2449     Op->EndLoc = S;
   2450     return Op;
   2451   }
   2452 
   2453   static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
   2454     ARMOperand *Op = new ARMOperand(k_MSRMask);
   2455     Op->MMask.Val = MMask;
   2456     Op->StartLoc = S;
   2457     Op->EndLoc = S;
   2458     return Op;
   2459   }
   2460 };
   2461 
   2462 } // end anonymous namespace.
   2463 
   2464 void ARMOperand::print(raw_ostream &OS) const {
   2465   switch (Kind) {
   2466   case k_CondCode:
   2467     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
   2468     break;
   2469   case k_CCOut:
   2470     OS << "<ccout " << getReg() << ">";
   2471     break;
   2472   case k_ITCondMask: {
   2473     static const char *const MaskStr[] = {
   2474       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
   2475       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
   2476     };
   2477     assert((ITMask.Mask & 0xf) == ITMask.Mask);
   2478     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
   2479     break;
   2480   }
   2481   case k_CoprocNum:
   2482     OS << "<coprocessor number: " << getCoproc() << ">";
   2483     break;
   2484   case k_CoprocReg:
   2485     OS << "<coprocessor register: " << getCoproc() << ">";
   2486     break;
   2487   case k_CoprocOption:
   2488     OS << "<coprocessor option: " << CoprocOption.Val << ">";
   2489     break;
   2490   case k_MSRMask:
   2491     OS << "<mask: " << getMSRMask() << ">";
   2492     break;
   2493   case k_Immediate:
   2494     getImm()->print(OS);
   2495     break;
   2496   case k_MemBarrierOpt:
   2497     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
   2498     break;
   2499   case k_InstSyncBarrierOpt:
   2500     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
   2501     break;
   2502   case k_Memory:
   2503     OS << "<memory "
   2504        << " base:" << Memory.BaseRegNum;
   2505     OS << ">";
   2506     break;
   2507   case k_PostIndexRegister:
   2508     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
   2509        << PostIdxReg.RegNum;
   2510     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
   2511       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
   2512          << PostIdxReg.ShiftImm;
   2513     OS << ">";
   2514     break;
   2515   case k_ProcIFlags: {
   2516     OS << "<ARM_PROC::";
   2517     unsigned IFlags = getProcIFlags();
   2518     for (int i=2; i >= 0; --i)
   2519       if (IFlags & (1 << i))
   2520         OS << ARM_PROC::IFlagsToString(1 << i);
   2521     OS << ">";
   2522     break;
   2523   }
   2524   case k_Register:
   2525     OS << "<register " << getReg() << ">";
   2526     break;
   2527   case k_ShifterImmediate:
   2528     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
   2529        << " #" << ShifterImm.Imm << ">";
   2530     break;
   2531   case k_ShiftedRegister:
   2532     OS << "<so_reg_reg "
   2533        << RegShiftedReg.SrcReg << " "
   2534        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
   2535        << " " << RegShiftedReg.ShiftReg << ">";
   2536     break;
   2537   case k_ShiftedImmediate:
   2538     OS << "<so_reg_imm "
   2539        << RegShiftedImm.SrcReg << " "
   2540        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
   2541        << " #" << RegShiftedImm.ShiftImm << ">";
   2542     break;
   2543   case k_RotateImmediate:
   2544     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
   2545     break;
   2546   case k_BitfieldDescriptor:
   2547     OS << "<bitfield " << "lsb: " << Bitfield.LSB
   2548        << ", width: " << Bitfield.Width << ">";
   2549     break;
   2550   case k_RegisterList:
   2551   case k_DPRRegisterList:
   2552   case k_SPRRegisterList: {
   2553     OS << "<register_list ";
   2554 
   2555     const SmallVectorImpl<unsigned> &RegList = getRegList();
   2556     for (SmallVectorImpl<unsigned>::const_iterator
   2557            I = RegList.begin(), E = RegList.end(); I != E; ) {
   2558       OS << *I;
   2559       if (++I < E) OS << ", ";
   2560     }
   2561 
   2562     OS << ">";
   2563     break;
   2564   }
   2565   case k_VectorList:
   2566     OS << "<vector_list " << VectorList.Count << " * "
   2567        << VectorList.RegNum << ">";
   2568     break;
   2569   case k_VectorListAllLanes:
   2570     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
   2571        << VectorList.RegNum << ">";
   2572     break;
   2573   case k_VectorListIndexed:
   2574     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
   2575        << VectorList.Count << " * " << VectorList.RegNum << ">";
   2576     break;
   2577   case k_Token:
   2578     OS << "'" << getToken() << "'";
   2579     break;
   2580   case k_VectorIndex:
   2581     OS << "<vectorindex " << getVectorIndex() << ">";
   2582     break;
   2583   }
   2584 }
   2585 
   2586 /// @name Auto-generated Match Functions
   2587 /// {
   2588 
   2589 static unsigned MatchRegisterName(StringRef Name);
   2590 
   2591 /// }
   2592 
   2593 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
   2594                                  SMLoc &StartLoc, SMLoc &EndLoc) {
   2595   StartLoc = Parser.getTok().getLoc();
   2596   EndLoc = Parser.getTok().getEndLoc();
   2597   RegNo = tryParseRegister();
   2598 
   2599   return (RegNo == (unsigned)-1);
   2600 }
   2601 
   2602 /// Try to parse a register name.  The token must be an Identifier when called,
   2603 /// and if it is a register name the token is eaten and the register number is
   2604 /// returned.  Otherwise return -1.
   2605 ///
   2606 int ARMAsmParser::tryParseRegister() {
   2607   const AsmToken &Tok = Parser.getTok();
   2608   if (Tok.isNot(AsmToken::Identifier)) return -1;
   2609 
   2610   std::string lowerCase = Tok.getString().lower();
   2611   unsigned RegNum = MatchRegisterName(lowerCase);
   2612   if (!RegNum) {
   2613     RegNum = StringSwitch<unsigned>(lowerCase)
   2614       .Case("r13", ARM::SP)
   2615       .Case("r14", ARM::LR)
   2616       .Case("r15", ARM::PC)
   2617       .Case("ip", ARM::R12)
   2618       // Additional register name aliases for 'gas' compatibility.
   2619       .Case("a1", ARM::R0)
   2620       .Case("a2", ARM::R1)
   2621       .Case("a3", ARM::R2)
   2622       .Case("a4", ARM::R3)
   2623       .Case("v1", ARM::R4)
   2624       .Case("v2", ARM::R5)
   2625       .Case("v3", ARM::R6)
   2626       .Case("v4", ARM::R7)
   2627       .Case("v5", ARM::R8)
   2628       .Case("v6", ARM::R9)
   2629       .Case("v7", ARM::R10)
   2630       .Case("v8", ARM::R11)
   2631       .Case("sb", ARM::R9)
   2632       .Case("sl", ARM::R10)
   2633       .Case("fp", ARM::R11)
   2634       .Default(0);
   2635   }
   2636   if (!RegNum) {
   2637     // Check for aliases registered via .req. Canonicalize to lower case.
   2638     // That's more consistent since register names are case insensitive, and
   2639     // it's how the original entry was passed in from MC/MCParser/AsmParser.
   2640     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
   2641     // If no match, return failure.
   2642     if (Entry == RegisterReqs.end())
   2643       return -1;
   2644     Parser.Lex(); // Eat identifier token.
   2645     return Entry->getValue();
   2646   }
   2647 
   2648   Parser.Lex(); // Eat identifier token.
   2649 
   2650   return RegNum;
   2651 }
   2652 
   2653 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
   2654 // If a recoverable error occurs, return 1. If an irrecoverable error
   2655 // occurs, return -1. An irrecoverable error is one where tokens have been
   2656 // consumed in the process of trying to parse the shifter (i.e., when it is
   2657 // indeed a shifter operand, but malformed).
   2658 int ARMAsmParser::tryParseShiftRegister(
   2659                                SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2660   SMLoc S = Parser.getTok().getLoc();
   2661   const AsmToken &Tok = Parser.getTok();
   2662   assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
   2663 
   2664   std::string lowerCase = Tok.getString().lower();
   2665   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
   2666       .Case("asl", ARM_AM::lsl)
   2667       .Case("lsl", ARM_AM::lsl)
   2668       .Case("lsr", ARM_AM::lsr)
   2669       .Case("asr", ARM_AM::asr)
   2670       .Case("ror", ARM_AM::ror)
   2671       .Case("rrx", ARM_AM::rrx)
   2672       .Default(ARM_AM::no_shift);
   2673 
   2674   if (ShiftTy == ARM_AM::no_shift)
   2675     return 1;
   2676 
   2677   Parser.Lex(); // Eat the operator.
   2678 
   2679   // The source register for the shift has already been added to the
   2680   // operand list, so we need to pop it off and combine it into the shifted
   2681   // register operand instead.
   2682   OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
   2683   if (!PrevOp->isReg())
   2684     return Error(PrevOp->getStartLoc(), "shift must be of a register");
   2685   int SrcReg = PrevOp->getReg();
   2686 
   2687   SMLoc EndLoc;
   2688   int64_t Imm = 0;
   2689   int ShiftReg = 0;
   2690   if (ShiftTy == ARM_AM::rrx) {
   2691     // RRX Doesn't have an explicit shift amount. The encoder expects
   2692     // the shift register to be the same as the source register. Seems odd,
   2693     // but OK.
   2694     ShiftReg = SrcReg;
   2695   } else {
   2696     // Figure out if this is shifted by a constant or a register (for non-RRX).
   2697     if (Parser.getTok().is(AsmToken::Hash) ||
   2698         Parser.getTok().is(AsmToken::Dollar)) {
   2699       Parser.Lex(); // Eat hash.
   2700       SMLoc ImmLoc = Parser.getTok().getLoc();
   2701       const MCExpr *ShiftExpr = 0;
   2702       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
   2703         Error(ImmLoc, "invalid immediate shift value");
   2704         return -1;
   2705       }
   2706       // The expression must be evaluatable as an immediate.
   2707       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
   2708       if (!CE) {
   2709         Error(ImmLoc, "invalid immediate shift value");
   2710         return -1;
   2711       }
   2712       // Range check the immediate.
   2713       // lsl, ror: 0 <= imm <= 31
   2714       // lsr, asr: 0 <= imm <= 32
   2715       Imm = CE->getValue();
   2716       if (Imm < 0 ||
   2717           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
   2718           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
   2719         Error(ImmLoc, "immediate shift value out of range");
   2720         return -1;
   2721       }
   2722       // shift by zero is a nop. Always send it through as lsl.
   2723       // ('as' compatibility)
   2724       if (Imm == 0)
   2725         ShiftTy = ARM_AM::lsl;
   2726     } else if (Parser.getTok().is(AsmToken::Identifier)) {
   2727       SMLoc L = Parser.getTok().getLoc();
   2728       EndLoc = Parser.getTok().getEndLoc();
   2729       ShiftReg = tryParseRegister();
   2730       if (ShiftReg == -1) {
   2731         Error (L, "expected immediate or register in shift operand");
   2732         return -1;
   2733       }
   2734     } else {
   2735       Error (Parser.getTok().getLoc(),
   2736                     "expected immediate or register in shift operand");
   2737       return -1;
   2738     }
   2739   }
   2740 
   2741   if (ShiftReg && ShiftTy != ARM_AM::rrx)
   2742     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
   2743                                                          ShiftReg, Imm,
   2744                                                          S, EndLoc));
   2745   else
   2746     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
   2747                                                           S, EndLoc));
   2748 
   2749   return 0;
   2750 }
   2751 
   2752 
   2753 /// Try to parse a register name.  The token must be an Identifier when called.
   2754 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
   2755 /// if there is a "writeback". 'true' if it's not a register.
   2756 ///
   2757 /// TODO this is likely to change to allow different register types and or to
   2758 /// parse for a specific register type.
   2759 bool ARMAsmParser::
   2760 tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2761   const AsmToken &RegTok = Parser.getTok();
   2762   int RegNo = tryParseRegister();
   2763   if (RegNo == -1)
   2764     return true;
   2765 
   2766   Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
   2767                                            RegTok.getEndLoc()));
   2768 
   2769   const AsmToken &ExclaimTok = Parser.getTok();
   2770   if (ExclaimTok.is(AsmToken::Exclaim)) {
   2771     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
   2772                                                ExclaimTok.getLoc()));
   2773     Parser.Lex(); // Eat exclaim token
   2774     return false;
   2775   }
   2776 
   2777   // Also check for an index operand. This is only legal for vector registers,
   2778   // but that'll get caught OK in operand matching, so we don't need to
   2779   // explicitly filter everything else out here.
   2780   if (Parser.getTok().is(AsmToken::LBrac)) {
   2781     SMLoc SIdx = Parser.getTok().getLoc();
   2782     Parser.Lex(); // Eat left bracket token.
   2783 
   2784     const MCExpr *ImmVal;
   2785     if (getParser().parseExpression(ImmVal))
   2786       return true;
   2787     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
   2788     if (!MCE)
   2789       return TokError("immediate value expected for vector index");
   2790 
   2791     if (Parser.getTok().isNot(AsmToken::RBrac))
   2792       return Error(Parser.getTok().getLoc(), "']' expected");
   2793 
   2794     SMLoc E = Parser.getTok().getEndLoc();
   2795     Parser.Lex(); // Eat right bracket token.
   2796 
   2797     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
   2798                                                      SIdx, E,
   2799                                                      getContext()));
   2800   }
   2801 
   2802   return false;
   2803 }
   2804 
   2805 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
   2806 /// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
   2807 /// "c5", ...
   2808 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
   2809   // Use the same layout as the tablegen'erated register name matcher. Ugly,
   2810   // but efficient.
   2811   switch (Name.size()) {
   2812   default: return -1;
   2813   case 2:
   2814     if (Name[0] != CoprocOp)
   2815       return -1;
   2816     switch (Name[1]) {
   2817     default:  return -1;
   2818     case '0': return 0;
   2819     case '1': return 1;
   2820     case '2': return 2;
   2821     case '3': return 3;
   2822     case '4': return 4;
   2823     case '5': return 5;
   2824     case '6': return 6;
   2825     case '7': return 7;
   2826     case '8': return 8;
   2827     case '9': return 9;
   2828     }
   2829   case 3:
   2830     if (Name[0] != CoprocOp || Name[1] != '1')
   2831       return -1;
   2832     switch (Name[2]) {
   2833     default:  return -1;
   2834     case '0': return 10;
   2835     case '1': return 11;
   2836     case '2': return 12;
   2837     case '3': return 13;
   2838     case '4': return 14;
   2839     case '5': return 15;
   2840     }
   2841   }
   2842 }
   2843 
   2844 /// parseITCondCode - Try to parse a condition code for an IT instruction.
   2845 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   2846 parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2847   SMLoc S = Parser.getTok().getLoc();
   2848   const AsmToken &Tok = Parser.getTok();
   2849   if (!Tok.is(AsmToken::Identifier))
   2850     return MatchOperand_NoMatch;
   2851   unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
   2852     .Case("eq", ARMCC::EQ)
   2853     .Case("ne", ARMCC::NE)
   2854     .Case("hs", ARMCC::HS)
   2855     .Case("cs", ARMCC::HS)
   2856     .Case("lo", ARMCC::LO)
   2857     .Case("cc", ARMCC::LO)
   2858     .Case("mi", ARMCC::MI)
   2859     .Case("pl", ARMCC::PL)
   2860     .Case("vs", ARMCC::VS)
   2861     .Case("vc", ARMCC::VC)
   2862     .Case("hi", ARMCC::HI)
   2863     .Case("ls", ARMCC::LS)
   2864     .Case("ge", ARMCC::GE)
   2865     .Case("lt", ARMCC::LT)
   2866     .Case("gt", ARMCC::GT)
   2867     .Case("le", ARMCC::LE)
   2868     .Case("al", ARMCC::AL)
   2869     .Default(~0U);
   2870   if (CC == ~0U)
   2871     return MatchOperand_NoMatch;
   2872   Parser.Lex(); // Eat the token.
   2873 
   2874   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
   2875 
   2876   return MatchOperand_Success;
   2877 }
   2878 
   2879 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
   2880 /// token must be an Identifier when called, and if it is a coprocessor
   2881 /// number, the token is eaten and the operand is added to the operand list.
   2882 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   2883 parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2884   SMLoc S = Parser.getTok().getLoc();
   2885   const AsmToken &Tok = Parser.getTok();
   2886   if (Tok.isNot(AsmToken::Identifier))
   2887     return MatchOperand_NoMatch;
   2888 
   2889   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
   2890   if (Num == -1)
   2891     return MatchOperand_NoMatch;
   2892 
   2893   Parser.Lex(); // Eat identifier token.
   2894   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
   2895   return MatchOperand_Success;
   2896 }
   2897 
   2898 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
   2899 /// token must be an Identifier when called, and if it is a coprocessor
   2900 /// number, the token is eaten and the operand is added to the operand list.
   2901 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   2902 parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2903   SMLoc S = Parser.getTok().getLoc();
   2904   const AsmToken &Tok = Parser.getTok();
   2905   if (Tok.isNot(AsmToken::Identifier))
   2906     return MatchOperand_NoMatch;
   2907 
   2908   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
   2909   if (Reg == -1)
   2910     return MatchOperand_NoMatch;
   2911 
   2912   Parser.Lex(); // Eat identifier token.
   2913   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
   2914   return MatchOperand_Success;
   2915 }
   2916 
   2917 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
   2918 /// coproc_option : '{' imm0_255 '}'
   2919 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   2920 parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2921   SMLoc S = Parser.getTok().getLoc();
   2922 
   2923   // If this isn't a '{', this isn't a coprocessor immediate operand.
   2924   if (Parser.getTok().isNot(AsmToken::LCurly))
   2925     return MatchOperand_NoMatch;
   2926   Parser.Lex(); // Eat the '{'
   2927 
   2928   const MCExpr *Expr;
   2929   SMLoc Loc = Parser.getTok().getLoc();
   2930   if (getParser().parseExpression(Expr)) {
   2931     Error(Loc, "illegal expression");
   2932     return MatchOperand_ParseFail;
   2933   }
   2934   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   2935   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
   2936     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
   2937     return MatchOperand_ParseFail;
   2938   }
   2939   int Val = CE->getValue();
   2940 
   2941   // Check for and consume the closing '}'
   2942   if (Parser.getTok().isNot(AsmToken::RCurly))
   2943     return MatchOperand_ParseFail;
   2944   SMLoc E = Parser.getTok().getEndLoc();
   2945   Parser.Lex(); // Eat the '}'
   2946 
   2947   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
   2948   return MatchOperand_Success;
   2949 }
   2950 
   2951 // For register list parsing, we need to map from raw GPR register numbering
   2952 // to the enumeration values. The enumeration values aren't sorted by
   2953 // register number due to our using "sp", "lr" and "pc" as canonical names.
   2954 static unsigned getNextRegister(unsigned Reg) {
   2955   // If this is a GPR, we need to do it manually, otherwise we can rely
   2956   // on the sort ordering of the enumeration since the other reg-classes
   2957   // are sane.
   2958   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   2959     return Reg + 1;
   2960   switch(Reg) {
   2961   default: llvm_unreachable("Invalid GPR number!");
   2962   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
   2963   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
   2964   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
   2965   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
   2966   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
   2967   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
   2968   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
   2969   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
   2970   }
   2971 }
   2972 
   2973 // Return the low-subreg of a given Q register.
   2974 static unsigned getDRegFromQReg(unsigned QReg) {
   2975   switch (QReg) {
   2976   default: llvm_unreachable("expected a Q register!");
   2977   case ARM::Q0:  return ARM::D0;
   2978   case ARM::Q1:  return ARM::D2;
   2979   case ARM::Q2:  return ARM::D4;
   2980   case ARM::Q3:  return ARM::D6;
   2981   case ARM::Q4:  return ARM::D8;
   2982   case ARM::Q5:  return ARM::D10;
   2983   case ARM::Q6:  return ARM::D12;
   2984   case ARM::Q7:  return ARM::D14;
   2985   case ARM::Q8:  return ARM::D16;
   2986   case ARM::Q9:  return ARM::D18;
   2987   case ARM::Q10: return ARM::D20;
   2988   case ARM::Q11: return ARM::D22;
   2989   case ARM::Q12: return ARM::D24;
   2990   case ARM::Q13: return ARM::D26;
   2991   case ARM::Q14: return ARM::D28;
   2992   case ARM::Q15: return ARM::D30;
   2993   }
   2994 }
   2995 
   2996 /// Parse a register list.
   2997 bool ARMAsmParser::
   2998 parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   2999   assert(Parser.getTok().is(AsmToken::LCurly) &&
   3000          "Token is not a Left Curly Brace");
   3001   SMLoc S = Parser.getTok().getLoc();
   3002   Parser.Lex(); // Eat '{' token.
   3003   SMLoc RegLoc = Parser.getTok().getLoc();
   3004 
   3005   // Check the first register in the list to see what register class
   3006   // this is a list of.
   3007   int Reg = tryParseRegister();
   3008   if (Reg == -1)
   3009     return Error(RegLoc, "register expected");
   3010 
   3011   // The reglist instructions have at most 16 registers, so reserve
   3012   // space for that many.
   3013   int EReg = 0;
   3014   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
   3015 
   3016   // Allow Q regs and just interpret them as the two D sub-registers.
   3017   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3018     Reg = getDRegFromQReg(Reg);
   3019     EReg = MRI->getEncodingValue(Reg);
   3020     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3021     ++Reg;
   3022   }
   3023   const MCRegisterClass *RC;
   3024   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3025     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
   3026   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
   3027     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
   3028   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
   3029     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
   3030   else
   3031     return Error(RegLoc, "invalid register in register list");
   3032 
   3033   // Store the register.
   3034   EReg = MRI->getEncodingValue(Reg);
   3035   Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3036 
   3037   // This starts immediately after the first register token in the list,
   3038   // so we can see either a comma or a minus (range separator) as a legal
   3039   // next token.
   3040   while (Parser.getTok().is(AsmToken::Comma) ||
   3041          Parser.getTok().is(AsmToken::Minus)) {
   3042     if (Parser.getTok().is(AsmToken::Minus)) {
   3043       Parser.Lex(); // Eat the minus.
   3044       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
   3045       int EndReg = tryParseRegister();
   3046       if (EndReg == -1)
   3047         return Error(AfterMinusLoc, "register expected");
   3048       // Allow Q regs and just interpret them as the two D sub-registers.
   3049       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
   3050         EndReg = getDRegFromQReg(EndReg) + 1;
   3051       // If the register is the same as the start reg, there's nothing
   3052       // more to do.
   3053       if (Reg == EndReg)
   3054         continue;
   3055       // The register must be in the same register class as the first.
   3056       if (!RC->contains(EndReg))
   3057         return Error(AfterMinusLoc, "invalid register in register list");
   3058       // Ranges must go from low to high.
   3059       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
   3060         return Error(AfterMinusLoc, "bad range in register list");
   3061 
   3062       // Add all the registers in the range to the register list.
   3063       while (Reg != EndReg) {
   3064         Reg = getNextRegister(Reg);
   3065         EReg = MRI->getEncodingValue(Reg);
   3066         Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3067       }
   3068       continue;
   3069     }
   3070     Parser.Lex(); // Eat the comma.
   3071     RegLoc = Parser.getTok().getLoc();
   3072     int OldReg = Reg;
   3073     const AsmToken RegTok = Parser.getTok();
   3074     Reg = tryParseRegister();
   3075     if (Reg == -1)
   3076       return Error(RegLoc, "register expected");
   3077     // Allow Q regs and just interpret them as the two D sub-registers.
   3078     bool isQReg = false;
   3079     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3080       Reg = getDRegFromQReg(Reg);
   3081       isQReg = true;
   3082     }
   3083     // The register must be in the same register class as the first.
   3084     if (!RC->contains(Reg))
   3085       return Error(RegLoc, "invalid register in register list");
   3086     // List must be monotonically increasing.
   3087     if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
   3088       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3089         Warning(RegLoc, "register list not in ascending order");
   3090       else
   3091         return Error(RegLoc, "register list not in ascending order");
   3092     }
   3093     if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
   3094       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
   3095               ") in register list");
   3096       continue;
   3097     }
   3098     // VFP register lists must also be contiguous.
   3099     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
   3100         Reg != OldReg + 1)
   3101       return Error(RegLoc, "non-contiguous register range");
   3102     EReg = MRI->getEncodingValue(Reg);
   3103     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3104     if (isQReg) {
   3105       EReg = MRI->getEncodingValue(++Reg);
   3106       Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3107     }
   3108   }
   3109 
   3110   if (Parser.getTok().isNot(AsmToken::RCurly))
   3111     return Error(Parser.getTok().getLoc(), "'}' expected");
   3112   SMLoc E = Parser.getTok().getEndLoc();
   3113   Parser.Lex(); // Eat '}' token.
   3114 
   3115   // Push the register list operand.
   3116   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
   3117 
   3118   // The ARM system instruction variants for LDM/STM have a '^' token here.
   3119   if (Parser.getTok().is(AsmToken::Caret)) {
   3120     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
   3121     Parser.Lex(); // Eat '^' token.
   3122   }
   3123 
   3124   return false;
   3125 }
   3126 
   3127 // Helper function to parse the lane index for vector lists.
   3128 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3129 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
   3130   Index = 0; // Always return a defined index value.
   3131   if (Parser.getTok().is(AsmToken::LBrac)) {
   3132     Parser.Lex(); // Eat the '['.
   3133     if (Parser.getTok().is(AsmToken::RBrac)) {
   3134       // "Dn[]" is the 'all lanes' syntax.
   3135       LaneKind = AllLanes;
   3136       EndLoc = Parser.getTok().getEndLoc();
   3137       Parser.Lex(); // Eat the ']'.
   3138       return MatchOperand_Success;
   3139     }
   3140 
   3141     // There's an optional '#' token here. Normally there wouldn't be, but
   3142     // inline assemble puts one in, and it's friendly to accept that.
   3143     if (Parser.getTok().is(AsmToken::Hash))
   3144       Parser.Lex(); // Eat '#' or '$'.
   3145 
   3146     const MCExpr *LaneIndex;
   3147     SMLoc Loc = Parser.getTok().getLoc();
   3148     if (getParser().parseExpression(LaneIndex)) {
   3149       Error(Loc, "illegal expression");
   3150       return MatchOperand_ParseFail;
   3151     }
   3152     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
   3153     if (!CE) {
   3154       Error(Loc, "lane index must be empty or an integer");
   3155       return MatchOperand_ParseFail;
   3156     }
   3157     if (Parser.getTok().isNot(AsmToken::RBrac)) {
   3158       Error(Parser.getTok().getLoc(), "']' expected");
   3159       return MatchOperand_ParseFail;
   3160     }
   3161     EndLoc = Parser.getTok().getEndLoc();
   3162     Parser.Lex(); // Eat the ']'.
   3163     int64_t Val = CE->getValue();
   3164 
   3165     // FIXME: Make this range check context sensitive for .8, .16, .32.
   3166     if (Val < 0 || Val > 7) {
   3167       Error(Parser.getTok().getLoc(), "lane index out of range");
   3168       return MatchOperand_ParseFail;
   3169     }
   3170     Index = Val;
   3171     LaneKind = IndexedLane;
   3172     return MatchOperand_Success;
   3173   }
   3174   LaneKind = NoLanes;
   3175   return MatchOperand_Success;
   3176 }
   3177 
   3178 // parse a vector register list
   3179 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3180 parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3181   VectorLaneTy LaneKind;
   3182   unsigned LaneIndex;
   3183   SMLoc S = Parser.getTok().getLoc();
   3184   // As an extension (to match gas), support a plain D register or Q register
   3185   // (without encosing curly braces) as a single or double entry list,
   3186   // respectively.
   3187   if (Parser.getTok().is(AsmToken::Identifier)) {
   3188     SMLoc E = Parser.getTok().getEndLoc();
   3189     int Reg = tryParseRegister();
   3190     if (Reg == -1)
   3191       return MatchOperand_NoMatch;
   3192     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
   3193       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
   3194       if (Res != MatchOperand_Success)
   3195         return Res;
   3196       switch (LaneKind) {
   3197       case NoLanes:
   3198         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
   3199         break;
   3200       case AllLanes:
   3201         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
   3202                                                                 S, E));
   3203         break;
   3204       case IndexedLane:
   3205         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
   3206                                                                LaneIndex,
   3207                                                                false, S, E));
   3208         break;
   3209       }
   3210       return MatchOperand_Success;
   3211     }
   3212     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3213       Reg = getDRegFromQReg(Reg);
   3214       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
   3215       if (Res != MatchOperand_Success)
   3216         return Res;
   3217       switch (LaneKind) {
   3218       case NoLanes:
   3219         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
   3220                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
   3221         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
   3222         break;
   3223       case AllLanes:
   3224         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
   3225                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
   3226         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
   3227                                                                 S, E));
   3228         break;
   3229       case IndexedLane:
   3230         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
   3231                                                                LaneIndex,
   3232                                                                false, S, E));
   3233         break;
   3234       }
   3235       return MatchOperand_Success;
   3236     }
   3237     Error(S, "vector register expected");
   3238     return MatchOperand_ParseFail;
   3239   }
   3240 
   3241   if (Parser.getTok().isNot(AsmToken::LCurly))
   3242     return MatchOperand_NoMatch;
   3243 
   3244   Parser.Lex(); // Eat '{' token.
   3245   SMLoc RegLoc = Parser.getTok().getLoc();
   3246 
   3247   int Reg = tryParseRegister();
   3248   if (Reg == -1) {
   3249     Error(RegLoc, "register expected");
   3250     return MatchOperand_ParseFail;
   3251   }
   3252   unsigned Count = 1;
   3253   int Spacing = 0;
   3254   unsigned FirstReg = Reg;
   3255   // The list is of D registers, but we also allow Q regs and just interpret
   3256   // them as the two D sub-registers.
   3257   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3258     FirstReg = Reg = getDRegFromQReg(Reg);
   3259     Spacing = 1; // double-spacing requires explicit D registers, otherwise
   3260                  // it's ambiguous with four-register single spaced.
   3261     ++Reg;
   3262     ++Count;
   3263   }
   3264 
   3265   SMLoc E;
   3266   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
   3267     return MatchOperand_ParseFail;
   3268 
   3269   while (Parser.getTok().is(AsmToken::Comma) ||
   3270          Parser.getTok().is(AsmToken::Minus)) {
   3271     if (Parser.getTok().is(AsmToken::Minus)) {
   3272       if (!Spacing)
   3273         Spacing = 1; // Register range implies a single spaced list.
   3274       else if (Spacing == 2) {
   3275         Error(Parser.getTok().getLoc(),
   3276               "sequential registers in double spaced list");
   3277         return MatchOperand_ParseFail;
   3278       }
   3279       Parser.Lex(); // Eat the minus.
   3280       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
   3281       int EndReg = tryParseRegister();
   3282       if (EndReg == -1) {
   3283         Error(AfterMinusLoc, "register expected");
   3284         return MatchOperand_ParseFail;
   3285       }
   3286       // Allow Q regs and just interpret them as the two D sub-registers.
   3287       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
   3288         EndReg = getDRegFromQReg(EndReg) + 1;
   3289       // If the register is the same as the start reg, there's nothing
   3290       // more to do.
   3291       if (Reg == EndReg)
   3292         continue;
   3293       // The register must be in the same register class as the first.
   3294       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
   3295         Error(AfterMinusLoc, "invalid register in register list");
   3296         return MatchOperand_ParseFail;
   3297       }
   3298       // Ranges must go from low to high.
   3299       if (Reg > EndReg) {
   3300         Error(AfterMinusLoc, "bad range in register list");
   3301         return MatchOperand_ParseFail;
   3302       }
   3303       // Parse the lane specifier if present.
   3304       VectorLaneTy NextLaneKind;
   3305       unsigned NextLaneIndex;
   3306       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
   3307           MatchOperand_Success)
   3308         return MatchOperand_ParseFail;
   3309       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3310         Error(AfterMinusLoc, "mismatched lane index in register list");
   3311         return MatchOperand_ParseFail;
   3312       }
   3313 
   3314       // Add all the registers in the range to the register list.
   3315       Count += EndReg - Reg;
   3316       Reg = EndReg;
   3317       continue;
   3318     }
   3319     Parser.Lex(); // Eat the comma.
   3320     RegLoc = Parser.getTok().getLoc();
   3321     int OldReg = Reg;
   3322     Reg = tryParseRegister();
   3323     if (Reg == -1) {
   3324       Error(RegLoc, "register expected");
   3325       return MatchOperand_ParseFail;
   3326     }
   3327     // vector register lists must be contiguous.
   3328     // It's OK to use the enumeration values directly here rather, as the
   3329     // VFP register classes have the enum sorted properly.
   3330     //
   3331     // The list is of D registers, but we also allow Q regs and just interpret
   3332     // them as the two D sub-registers.
   3333     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3334       if (!Spacing)
   3335         Spacing = 1; // Register range implies a single spaced list.
   3336       else if (Spacing == 2) {
   3337         Error(RegLoc,
   3338               "invalid register in double-spaced list (must be 'D' register')");
   3339         return MatchOperand_ParseFail;
   3340       }
   3341       Reg = getDRegFromQReg(Reg);
   3342       if (Reg != OldReg + 1) {
   3343         Error(RegLoc, "non-contiguous register range");
   3344         return MatchOperand_ParseFail;
   3345       }
   3346       ++Reg;
   3347       Count += 2;
   3348       // Parse the lane specifier if present.
   3349       VectorLaneTy NextLaneKind;
   3350       unsigned NextLaneIndex;
   3351       SMLoc LaneLoc = Parser.getTok().getLoc();
   3352       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
   3353           MatchOperand_Success)
   3354         return MatchOperand_ParseFail;
   3355       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3356         Error(LaneLoc, "mismatched lane index in register list");
   3357         return MatchOperand_ParseFail;
   3358       }
   3359       continue;
   3360     }
   3361     // Normal D register.
   3362     // Figure out the register spacing (single or double) of the list if
   3363     // we don't know it already.
   3364     if (!Spacing)
   3365       Spacing = 1 + (Reg == OldReg + 2);
   3366 
   3367     // Just check that it's contiguous and keep going.
   3368     if (Reg != OldReg + Spacing) {
   3369       Error(RegLoc, "non-contiguous register range");
   3370       return MatchOperand_ParseFail;
   3371     }
   3372     ++Count;
   3373     // Parse the lane specifier if present.
   3374     VectorLaneTy NextLaneKind;
   3375     unsigned NextLaneIndex;
   3376     SMLoc EndLoc = Parser.getTok().getLoc();
   3377     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
   3378       return MatchOperand_ParseFail;
   3379     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3380       Error(EndLoc, "mismatched lane index in register list");
   3381       return MatchOperand_ParseFail;
   3382     }
   3383   }
   3384 
   3385   if (Parser.getTok().isNot(AsmToken::RCurly)) {
   3386     Error(Parser.getTok().getLoc(), "'}' expected");
   3387     return MatchOperand_ParseFail;
   3388   }
   3389   E = Parser.getTok().getEndLoc();
   3390   Parser.Lex(); // Eat '}' token.
   3391 
   3392   switch (LaneKind) {
   3393   case NoLanes:
   3394     // Two-register operands have been converted to the
   3395     // composite register classes.
   3396     if (Count == 2) {
   3397       const MCRegisterClass *RC = (Spacing == 1) ?
   3398         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
   3399         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
   3400       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
   3401     }
   3402 
   3403     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
   3404                                                     (Spacing == 2), S, E));
   3405     break;
   3406   case AllLanes:
   3407     // Two-register operands have been converted to the
   3408     // composite register classes.
   3409     if (Count == 2) {
   3410       const MCRegisterClass *RC = (Spacing == 1) ?
   3411         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
   3412         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
   3413       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
   3414     }
   3415     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
   3416                                                             (Spacing == 2),
   3417                                                             S, E));
   3418     break;
   3419   case IndexedLane:
   3420     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
   3421                                                            LaneIndex,
   3422                                                            (Spacing == 2),
   3423                                                            S, E));
   3424     break;
   3425   }
   3426   return MatchOperand_Success;
   3427 }
   3428 
   3429 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
   3430 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3431 parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3432   SMLoc S = Parser.getTok().getLoc();
   3433   const AsmToken &Tok = Parser.getTok();
   3434   unsigned Opt;
   3435 
   3436   if (Tok.is(AsmToken::Identifier)) {
   3437     StringRef OptStr = Tok.getString();
   3438 
   3439     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
   3440       .Case("sy",    ARM_MB::SY)
   3441       .Case("st",    ARM_MB::ST)
   3442       .Case("sh",    ARM_MB::ISH)
   3443       .Case("ish",   ARM_MB::ISH)
   3444       .Case("shst",  ARM_MB::ISHST)
   3445       .Case("ishst", ARM_MB::ISHST)
   3446       .Case("nsh",   ARM_MB::NSH)
   3447       .Case("un",    ARM_MB::NSH)
   3448       .Case("nshst", ARM_MB::NSHST)
   3449       .Case("unst",  ARM_MB::NSHST)
   3450       .Case("osh",   ARM_MB::OSH)
   3451       .Case("oshst", ARM_MB::OSHST)
   3452       .Default(~0U);
   3453 
   3454     if (Opt == ~0U)
   3455       return MatchOperand_NoMatch;
   3456 
   3457     Parser.Lex(); // Eat identifier token.
   3458   } else if (Tok.is(AsmToken::Hash) ||
   3459              Tok.is(AsmToken::Dollar) ||
   3460              Tok.is(AsmToken::Integer)) {
   3461     if (Parser.getTok().isNot(AsmToken::Integer))
   3462       Parser.Lex(); // Eat '#' or '$'.
   3463     SMLoc Loc = Parser.getTok().getLoc();
   3464 
   3465     const MCExpr *MemBarrierID;
   3466     if (getParser().parseExpression(MemBarrierID)) {
   3467       Error(Loc, "illegal expression");
   3468       return MatchOperand_ParseFail;
   3469     }
   3470 
   3471     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
   3472     if (!CE) {
   3473       Error(Loc, "constant expression expected");
   3474       return MatchOperand_ParseFail;
   3475     }
   3476 
   3477     int Val = CE->getValue();
   3478     if (Val & ~0xf) {
   3479       Error(Loc, "immediate value out of range");
   3480       return MatchOperand_ParseFail;
   3481     }
   3482 
   3483     Opt = ARM_MB::RESERVED_0 + Val;
   3484   } else
   3485     return MatchOperand_ParseFail;
   3486 
   3487   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
   3488   return MatchOperand_Success;
   3489 }
   3490 
   3491 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
   3492 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3493 parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3494   SMLoc S = Parser.getTok().getLoc();
   3495   const AsmToken &Tok = Parser.getTok();
   3496   unsigned Opt;
   3497 
   3498   if (Tok.is(AsmToken::Identifier)) {
   3499     StringRef OptStr = Tok.getString();
   3500 
   3501     if (OptStr.lower() == "sy")
   3502       Opt = ARM_ISB::SY;
   3503     else
   3504       return MatchOperand_NoMatch;
   3505 
   3506     Parser.Lex(); // Eat identifier token.
   3507   } else if (Tok.is(AsmToken::Hash) ||
   3508              Tok.is(AsmToken::Dollar) ||
   3509              Tok.is(AsmToken::Integer)) {
   3510     if (Parser.getTok().isNot(AsmToken::Integer))
   3511       Parser.Lex(); // Eat '#' or '$'.
   3512     SMLoc Loc = Parser.getTok().getLoc();
   3513 
   3514     const MCExpr *ISBarrierID;
   3515     if (getParser().parseExpression(ISBarrierID)) {
   3516       Error(Loc, "illegal expression");
   3517       return MatchOperand_ParseFail;
   3518     }
   3519 
   3520     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
   3521     if (!CE) {
   3522       Error(Loc, "constant expression expected");
   3523       return MatchOperand_ParseFail;
   3524     }
   3525 
   3526     int Val = CE->getValue();
   3527     if (Val & ~0xf) {
   3528       Error(Loc, "immediate value out of range");
   3529       return MatchOperand_ParseFail;
   3530     }
   3531 
   3532     Opt = ARM_ISB::RESERVED_0 + Val;
   3533   } else
   3534     return MatchOperand_ParseFail;
   3535 
   3536   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
   3537           (ARM_ISB::InstSyncBOpt)Opt, S));
   3538   return MatchOperand_Success;
   3539 }
   3540 
   3541 
   3542 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
   3543 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3544 parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3545   SMLoc S = Parser.getTok().getLoc();
   3546   const AsmToken &Tok = Parser.getTok();
   3547   if (!Tok.is(AsmToken::Identifier))
   3548     return MatchOperand_NoMatch;
   3549   StringRef IFlagsStr = Tok.getString();
   3550 
   3551   // An iflags string of "none" is interpreted to mean that none of the AIF
   3552   // bits are set.  Not a terribly useful instruction, but a valid encoding.
   3553   unsigned IFlags = 0;
   3554   if (IFlagsStr != "none") {
   3555         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
   3556       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
   3557         .Case("a", ARM_PROC::A)
   3558         .Case("i", ARM_PROC::I)
   3559         .Case("f", ARM_PROC::F)
   3560         .Default(~0U);
   3561 
   3562       // If some specific iflag is already set, it means that some letter is
   3563       // present more than once, this is not acceptable.
   3564       if (Flag == ~0U || (IFlags & Flag))
   3565         return MatchOperand_NoMatch;
   3566 
   3567       IFlags |= Flag;
   3568     }
   3569   }
   3570 
   3571   Parser.Lex(); // Eat identifier token.
   3572   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
   3573   return MatchOperand_Success;
   3574 }
   3575 
   3576 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
   3577 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3578 parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3579   SMLoc S = Parser.getTok().getLoc();
   3580   const AsmToken &Tok = Parser.getTok();
   3581   if (!Tok.is(AsmToken::Identifier))
   3582     return MatchOperand_NoMatch;
   3583   StringRef Mask = Tok.getString();
   3584 
   3585   if (isMClass()) {
   3586     // See ARMv6-M 10.1.1
   3587     std::string Name = Mask.lower();
   3588     unsigned FlagsVal = StringSwitch<unsigned>(Name)
   3589       // Note: in the documentation:
   3590       //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
   3591       //  for MSR APSR_nzcvq.
   3592       // but we do make it an alias here.  This is so to get the "mask encoding"
   3593       // bits correct on MSR APSR writes.
   3594       //
   3595       // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
   3596       // should really only be allowed when writing a special register.  Note
   3597       // they get dropped in the MRS instruction reading a special register as
   3598       // the SYSm field is only 8 bits.
   3599       //
   3600       // FIXME: the _g and _nzcvqg versions are only allowed if the processor
   3601       // includes the DSP extension but that is not checked.
   3602       .Case("apsr", 0x800)
   3603       .Case("apsr_nzcvq", 0x800)
   3604       .Case("apsr_g", 0x400)
   3605       .Case("apsr_nzcvqg", 0xc00)
   3606       .Case("iapsr", 0x801)
   3607       .Case("iapsr_nzcvq", 0x801)
   3608       .Case("iapsr_g", 0x401)
   3609       .Case("iapsr_nzcvqg", 0xc01)
   3610       .Case("eapsr", 0x802)
   3611       .Case("eapsr_nzcvq", 0x802)
   3612       .Case("eapsr_g", 0x402)
   3613       .Case("eapsr_nzcvqg", 0xc02)
   3614       .Case("xpsr", 0x803)
   3615       .Case("xpsr_nzcvq", 0x803)
   3616       .Case("xpsr_g", 0x403)
   3617       .Case("xpsr_nzcvqg", 0xc03)
   3618       .Case("ipsr", 0x805)
   3619       .Case("epsr", 0x806)
   3620       .Case("iepsr", 0x807)
   3621       .Case("msp", 0x808)
   3622       .Case("psp", 0x809)
   3623       .Case("primask", 0x810)
   3624       .Case("basepri", 0x811)
   3625       .Case("basepri_max", 0x812)
   3626       .Case("faultmask", 0x813)
   3627       .Case("control", 0x814)
   3628       .Default(~0U);
   3629 
   3630     if (FlagsVal == ~0U)
   3631       return MatchOperand_NoMatch;
   3632 
   3633     if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
   3634       // basepri, basepri_max and faultmask only valid for V7m.
   3635       return MatchOperand_NoMatch;
   3636 
   3637     Parser.Lex(); // Eat identifier token.
   3638     Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
   3639     return MatchOperand_Success;
   3640   }
   3641 
   3642   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
   3643   size_t Start = 0, Next = Mask.find('_');
   3644   StringRef Flags = "";
   3645   std::string SpecReg = Mask.slice(Start, Next).lower();
   3646   if (Next != StringRef::npos)
   3647     Flags = Mask.slice(Next+1, Mask.size());
   3648 
   3649   // FlagsVal contains the complete mask:
   3650   // 3-0: Mask
   3651   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
   3652   unsigned FlagsVal = 0;
   3653 
   3654   if (SpecReg == "apsr") {
   3655     FlagsVal = StringSwitch<unsigned>(Flags)
   3656     .Case("nzcvq",  0x8) // same as CPSR_f
   3657     .Case("g",      0x4) // same as CPSR_s
   3658     .Case("nzcvqg", 0xc) // same as CPSR_fs
   3659     .Default(~0U);
   3660 
   3661     if (FlagsVal == ~0U) {
   3662       if (!Flags.empty())
   3663         return MatchOperand_NoMatch;
   3664       else
   3665         FlagsVal = 8; // No flag
   3666     }
   3667   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
   3668     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
   3669     if (Flags == "all" || Flags == "")
   3670       Flags = "fc";
   3671     for (int i = 0, e = Flags.size(); i != e; ++i) {
   3672       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
   3673       .Case("c", 1)
   3674       .Case("x", 2)
   3675       .Case("s", 4)
   3676       .Case("f", 8)
   3677       .Default(~0U);
   3678 
   3679       // If some specific flag is already set, it means that some letter is
   3680       // present more than once, this is not acceptable.
   3681       if (FlagsVal == ~0U || (FlagsVal & Flag))
   3682         return MatchOperand_NoMatch;
   3683       FlagsVal |= Flag;
   3684     }
   3685   } else // No match for special register.
   3686     return MatchOperand_NoMatch;
   3687 
   3688   // Special register without flags is NOT equivalent to "fc" flags.
   3689   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
   3690   // two lines would enable gas compatibility at the expense of breaking
   3691   // round-tripping.
   3692   //
   3693   // if (!FlagsVal)
   3694   //  FlagsVal = 0x9;
   3695 
   3696   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
   3697   if (SpecReg == "spsr")
   3698     FlagsVal |= 16;
   3699 
   3700   Parser.Lex(); // Eat identifier token.
   3701   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
   3702   return MatchOperand_Success;
   3703 }
   3704 
   3705 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3706 parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
   3707             int Low, int High) {
   3708   const AsmToken &Tok = Parser.getTok();
   3709   if (Tok.isNot(AsmToken::Identifier)) {
   3710     Error(Parser.getTok().getLoc(), Op + " operand expected.");
   3711     return MatchOperand_ParseFail;
   3712   }
   3713   StringRef ShiftName = Tok.getString();
   3714   std::string LowerOp = Op.lower();
   3715   std::string UpperOp = Op.upper();
   3716   if (ShiftName != LowerOp && ShiftName != UpperOp) {
   3717     Error(Parser.getTok().getLoc(), Op + " operand expected.");
   3718     return MatchOperand_ParseFail;
   3719   }
   3720   Parser.Lex(); // Eat shift type token.
   3721 
   3722   // There must be a '#' and a shift amount.
   3723   if (Parser.getTok().isNot(AsmToken::Hash) &&
   3724       Parser.getTok().isNot(AsmToken::Dollar)) {
   3725     Error(Parser.getTok().getLoc(), "'#' expected");
   3726     return MatchOperand_ParseFail;
   3727   }
   3728   Parser.Lex(); // Eat hash token.
   3729 
   3730   const MCExpr *ShiftAmount;
   3731   SMLoc Loc = Parser.getTok().getLoc();
   3732   SMLoc EndLoc;
   3733   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   3734     Error(Loc, "illegal expression");
   3735     return MatchOperand_ParseFail;
   3736   }
   3737   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   3738   if (!CE) {
   3739     Error(Loc, "constant expression expected");
   3740     return MatchOperand_ParseFail;
   3741   }
   3742   int Val = CE->getValue();
   3743   if (Val < Low || Val > High) {
   3744     Error(Loc, "immediate value out of range");
   3745     return MatchOperand_ParseFail;
   3746   }
   3747 
   3748   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
   3749 
   3750   return MatchOperand_Success;
   3751 }
   3752 
   3753 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3754 parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3755   const AsmToken &Tok = Parser.getTok();
   3756   SMLoc S = Tok.getLoc();
   3757   if (Tok.isNot(AsmToken::Identifier)) {
   3758     Error(S, "'be' or 'le' operand expected");
   3759     return MatchOperand_ParseFail;
   3760   }
   3761   int Val = StringSwitch<int>(Tok.getString().lower())
   3762     .Case("be", 1)
   3763     .Case("le", 0)
   3764     .Default(-1);
   3765   Parser.Lex(); // Eat the token.
   3766 
   3767   if (Val == -1) {
   3768     Error(S, "'be' or 'le' operand expected");
   3769     return MatchOperand_ParseFail;
   3770   }
   3771   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
   3772                                                                   getContext()),
   3773                                            S, Tok.getEndLoc()));
   3774   return MatchOperand_Success;
   3775 }
   3776 
   3777 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
   3778 /// instructions. Legal values are:
   3779 ///     lsl #n  'n' in [0,31]
   3780 ///     asr #n  'n' in [1,32]
   3781 ///             n == 32 encoded as n == 0.
   3782 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3783 parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3784   const AsmToken &Tok = Parser.getTok();
   3785   SMLoc S = Tok.getLoc();
   3786   if (Tok.isNot(AsmToken::Identifier)) {
   3787     Error(S, "shift operator 'asr' or 'lsl' expected");
   3788     return MatchOperand_ParseFail;
   3789   }
   3790   StringRef ShiftName = Tok.getString();
   3791   bool isASR;
   3792   if (ShiftName == "lsl" || ShiftName == "LSL")
   3793     isASR = false;
   3794   else if (ShiftName == "asr" || ShiftName == "ASR")
   3795     isASR = true;
   3796   else {
   3797     Error(S, "shift operator 'asr' or 'lsl' expected");
   3798     return MatchOperand_ParseFail;
   3799   }
   3800   Parser.Lex(); // Eat the operator.
   3801 
   3802   // A '#' and a shift amount.
   3803   if (Parser.getTok().isNot(AsmToken::Hash) &&
   3804       Parser.getTok().isNot(AsmToken::Dollar)) {
   3805     Error(Parser.getTok().getLoc(), "'#' expected");
   3806     return MatchOperand_ParseFail;
   3807   }
   3808   Parser.Lex(); // Eat hash token.
   3809   SMLoc ExLoc = Parser.getTok().getLoc();
   3810 
   3811   const MCExpr *ShiftAmount;
   3812   SMLoc EndLoc;
   3813   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   3814     Error(ExLoc, "malformed shift expression");
   3815     return MatchOperand_ParseFail;
   3816   }
   3817   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   3818   if (!CE) {
   3819     Error(ExLoc, "shift amount must be an immediate");
   3820     return MatchOperand_ParseFail;
   3821   }
   3822 
   3823   int64_t Val = CE->getValue();
   3824   if (isASR) {
   3825     // Shift amount must be in [1,32]
   3826     if (Val < 1 || Val > 32) {
   3827       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
   3828       return MatchOperand_ParseFail;
   3829     }
   3830     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
   3831     if (isThumb() && Val == 32) {
   3832       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
   3833       return MatchOperand_ParseFail;
   3834     }
   3835     if (Val == 32) Val = 0;
   3836   } else {
   3837     // Shift amount must be in [1,32]
   3838     if (Val < 0 || Val > 31) {
   3839       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
   3840       return MatchOperand_ParseFail;
   3841     }
   3842   }
   3843 
   3844   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
   3845 
   3846   return MatchOperand_Success;
   3847 }
   3848 
   3849 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
   3850 /// of instructions. Legal values are:
   3851 ///     ror #n  'n' in {0, 8, 16, 24}
   3852 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3853 parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3854   const AsmToken &Tok = Parser.getTok();
   3855   SMLoc S = Tok.getLoc();
   3856   if (Tok.isNot(AsmToken::Identifier))
   3857     return MatchOperand_NoMatch;
   3858   StringRef ShiftName = Tok.getString();
   3859   if (ShiftName != "ror" && ShiftName != "ROR")
   3860     return MatchOperand_NoMatch;
   3861   Parser.Lex(); // Eat the operator.
   3862 
   3863   // A '#' and a rotate amount.
   3864   if (Parser.getTok().isNot(AsmToken::Hash) &&
   3865       Parser.getTok().isNot(AsmToken::Dollar)) {
   3866     Error(Parser.getTok().getLoc(), "'#' expected");
   3867     return MatchOperand_ParseFail;
   3868   }
   3869   Parser.Lex(); // Eat hash token.
   3870   SMLoc ExLoc = Parser.getTok().getLoc();
   3871 
   3872   const MCExpr *ShiftAmount;
   3873   SMLoc EndLoc;
   3874   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   3875     Error(ExLoc, "malformed rotate expression");
   3876     return MatchOperand_ParseFail;
   3877   }
   3878   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   3879   if (!CE) {
   3880     Error(ExLoc, "rotate amount must be an immediate");
   3881     return MatchOperand_ParseFail;
   3882   }
   3883 
   3884   int64_t Val = CE->getValue();
   3885   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
   3886   // normally, zero is represented in asm by omitting the rotate operand
   3887   // entirely.
   3888   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
   3889     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
   3890     return MatchOperand_ParseFail;
   3891   }
   3892 
   3893   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
   3894 
   3895   return MatchOperand_Success;
   3896 }
   3897 
   3898 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3899 parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3900   SMLoc S = Parser.getTok().getLoc();
   3901   // The bitfield descriptor is really two operands, the LSB and the width.
   3902   if (Parser.getTok().isNot(AsmToken::Hash) &&
   3903       Parser.getTok().isNot(AsmToken::Dollar)) {
   3904     Error(Parser.getTok().getLoc(), "'#' expected");
   3905     return MatchOperand_ParseFail;
   3906   }
   3907   Parser.Lex(); // Eat hash token.
   3908 
   3909   const MCExpr *LSBExpr;
   3910   SMLoc E = Parser.getTok().getLoc();
   3911   if (getParser().parseExpression(LSBExpr)) {
   3912     Error(E, "malformed immediate expression");
   3913     return MatchOperand_ParseFail;
   3914   }
   3915   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
   3916   if (!CE) {
   3917     Error(E, "'lsb' operand must be an immediate");
   3918     return MatchOperand_ParseFail;
   3919   }
   3920 
   3921   int64_t LSB = CE->getValue();
   3922   // The LSB must be in the range [0,31]
   3923   if (LSB < 0 || LSB > 31) {
   3924     Error(E, "'lsb' operand must be in the range [0,31]");
   3925     return MatchOperand_ParseFail;
   3926   }
   3927   E = Parser.getTok().getLoc();
   3928 
   3929   // Expect another immediate operand.
   3930   if (Parser.getTok().isNot(AsmToken::Comma)) {
   3931     Error(Parser.getTok().getLoc(), "too few operands");
   3932     return MatchOperand_ParseFail;
   3933   }
   3934   Parser.Lex(); // Eat hash token.
   3935   if (Parser.getTok().isNot(AsmToken::Hash) &&
   3936       Parser.getTok().isNot(AsmToken::Dollar)) {
   3937     Error(Parser.getTok().getLoc(), "'#' expected");
   3938     return MatchOperand_ParseFail;
   3939   }
   3940   Parser.Lex(); // Eat hash token.
   3941 
   3942   const MCExpr *WidthExpr;
   3943   SMLoc EndLoc;
   3944   if (getParser().parseExpression(WidthExpr, EndLoc)) {
   3945     Error(E, "malformed immediate expression");
   3946     return MatchOperand_ParseFail;
   3947   }
   3948   CE = dyn_cast<MCConstantExpr>(WidthExpr);
   3949   if (!CE) {
   3950     Error(E, "'width' operand must be an immediate");
   3951     return MatchOperand_ParseFail;
   3952   }
   3953 
   3954   int64_t Width = CE->getValue();
   3955   // The LSB must be in the range [1,32-lsb]
   3956   if (Width < 1 || Width > 32 - LSB) {
   3957     Error(E, "'width' operand must be in the range [1,32-lsb]");
   3958     return MatchOperand_ParseFail;
   3959   }
   3960 
   3961   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
   3962 
   3963   return MatchOperand_Success;
   3964 }
   3965 
   3966 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3967 parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   3968   // Check for a post-index addressing register operand. Specifically:
   3969   // postidx_reg := '+' register {, shift}
   3970   //              | '-' register {, shift}
   3971   //              | register {, shift}
   3972 
   3973   // This method must return MatchOperand_NoMatch without consuming any tokens
   3974   // in the case where there is no match, as other alternatives take other
   3975   // parse methods.
   3976   AsmToken Tok = Parser.getTok();
   3977   SMLoc S = Tok.getLoc();
   3978   bool haveEaten = false;
   3979   bool isAdd = true;
   3980   if (Tok.is(AsmToken::Plus)) {
   3981     Parser.Lex(); // Eat the '+' token.
   3982     haveEaten = true;
   3983   } else if (Tok.is(AsmToken::Minus)) {
   3984     Parser.Lex(); // Eat the '-' token.
   3985     isAdd = false;
   3986     haveEaten = true;
   3987   }
   3988 
   3989   SMLoc E = Parser.getTok().getEndLoc();
   3990   int Reg = tryParseRegister();
   3991   if (Reg == -1) {
   3992     if (!haveEaten)
   3993       return MatchOperand_NoMatch;
   3994     Error(Parser.getTok().getLoc(), "register expected");
   3995     return MatchOperand_ParseFail;
   3996   }
   3997 
   3998   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
   3999   unsigned ShiftImm = 0;
   4000   if (Parser.getTok().is(AsmToken::Comma)) {
   4001     Parser.Lex(); // Eat the ','.
   4002     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
   4003       return MatchOperand_ParseFail;
   4004 
   4005     // FIXME: Only approximates end...may include intervening whitespace.
   4006     E = Parser.getTok().getLoc();
   4007   }
   4008 
   4009   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
   4010                                                   ShiftImm, S, E));
   4011 
   4012   return MatchOperand_Success;
   4013 }
   4014 
   4015 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   4016 parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   4017   // Check for a post-index addressing register operand. Specifically:
   4018   // am3offset := '+' register
   4019   //              | '-' register
   4020   //              | register
   4021   //              | # imm
   4022   //              | # + imm
   4023   //              | # - imm
   4024 
   4025   // This method must return MatchOperand_NoMatch without consuming any tokens
   4026   // in the case where there is no match, as other alternatives take other
   4027   // parse methods.
   4028   AsmToken Tok = Parser.getTok();
   4029   SMLoc S = Tok.getLoc();
   4030 
   4031   // Do immediates first, as we always parse those if we have a '#'.
   4032   if (Parser.getTok().is(AsmToken::Hash) ||
   4033       Parser.getTok().is(AsmToken::Dollar)) {
   4034     Parser.Lex(); // Eat '#' or '$'.
   4035     // Explicitly look for a '-', as we need to encode negative zero
   4036     // differently.
   4037     bool isNegative = Parser.getTok().is(AsmToken::Minus);
   4038     const MCExpr *Offset;
   4039     SMLoc E;
   4040     if (getParser().parseExpression(Offset, E))
   4041       return MatchOperand_ParseFail;
   4042     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
   4043     if (!CE) {
   4044       Error(S, "constant expression expected");
   4045       return MatchOperand_ParseFail;
   4046     }
   4047     // Negative zero is encoded as the flag value INT32_MIN.
   4048     int32_t Val = CE->getValue();
   4049     if (isNegative && Val == 0)
   4050       Val = INT32_MIN;
   4051 
   4052     Operands.push_back(
   4053       ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
   4054 
   4055     return MatchOperand_Success;
   4056   }
   4057 
   4058 
   4059   bool haveEaten = false;
   4060   bool isAdd = true;
   4061   if (Tok.is(AsmToken::Plus)) {
   4062     Parser.Lex(); // Eat the '+' token.
   4063     haveEaten = true;
   4064   } else if (Tok.is(AsmToken::Minus)) {
   4065     Parser.Lex(); // Eat the '-' token.
   4066     isAdd = false;
   4067     haveEaten = true;
   4068   }
   4069 
   4070   Tok = Parser.getTok();
   4071   int Reg = tryParseRegister();
   4072   if (Reg == -1) {
   4073     if (!haveEaten)
   4074       return MatchOperand_NoMatch;
   4075     Error(Tok.getLoc(), "register expected");
   4076     return MatchOperand_ParseFail;
   4077   }
   4078 
   4079   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
   4080                                                   0, S, Tok.getEndLoc()));
   4081 
   4082   return MatchOperand_Success;
   4083 }
   4084 
   4085 /// Convert parsed operands to MCInst.  Needed here because this instruction
   4086 /// only has two register operands, but multiplication is commutative so
   4087 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
   4088 void ARMAsmParser::
   4089 cvtThumbMultiply(MCInst &Inst,
   4090            const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   4091   ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
   4092   ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
   4093   // If we have a three-operand form, make sure to set Rn to be the operand
   4094   // that isn't the same as Rd.
   4095   unsigned RegOp = 4;
   4096   if (Operands.size() == 6 &&
   4097       ((ARMOperand*)Operands[4])->getReg() ==
   4098         ((ARMOperand*)Operands[3])->getReg())
   4099     RegOp = 5;
   4100   ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
   4101   Inst.addOperand(Inst.getOperand(0));
   4102   ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
   4103 }
   4104 
   4105 /// Parse an ARM memory expression, return false if successful else return true
   4106 /// or an error.  The first token must be a '[' when called.
   4107 bool ARMAsmParser::
   4108 parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   4109   SMLoc S, E;
   4110   assert(Parser.getTok().is(AsmToken::LBrac) &&
   4111          "Token is not a Left Bracket");
   4112   S = Parser.getTok().getLoc();
   4113   Parser.Lex(); // Eat left bracket token.
   4114 
   4115   const AsmToken &BaseRegTok = Parser.getTok();
   4116   int BaseRegNum = tryParseRegister();
   4117   if (BaseRegNum == -1)
   4118     return Error(BaseRegTok.getLoc(), "register expected");
   4119 
   4120   // The next token must either be a comma, a colon or a closing bracket.
   4121   const AsmToken &Tok = Parser.getTok();
   4122   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
   4123       !Tok.is(AsmToken::RBrac))
   4124     return Error(Tok.getLoc(), "malformed memory operand");
   4125 
   4126   if (Tok.is(AsmToken::RBrac)) {
   4127     E = Tok.getEndLoc();
   4128     Parser.Lex(); // Eat right bracket token.
   4129 
   4130     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
   4131                                              0, 0, false, S, E));
   4132 
   4133     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4134     // operand. It's rather odd, but syntactically valid.
   4135     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4136       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4137       Parser.Lex(); // Eat the '!'.
   4138     }
   4139 
   4140     return false;
   4141   }
   4142 
   4143   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
   4144          "Lost colon or comma in memory operand?!");
   4145   if (Tok.is(AsmToken::Comma)) {
   4146     Parser.Lex(); // Eat the comma.
   4147   }
   4148 
   4149   // If we have a ':', it's an alignment specifier.
   4150   if (Parser.getTok().is(AsmToken::Colon)) {
   4151     Parser.Lex(); // Eat the ':'.
   4152     E = Parser.getTok().getLoc();
   4153 
   4154     const MCExpr *Expr;
   4155     if (getParser().parseExpression(Expr))
   4156      return true;
   4157 
   4158     // The expression has to be a constant. Memory references with relocations
   4159     // don't come through here, as they use the <label> forms of the relevant
   4160     // instructions.
   4161     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   4162     if (!CE)
   4163       return Error (E, "constant expression expected");
   4164 
   4165     unsigned Align = 0;
   4166     switch (CE->getValue()) {
   4167     default:
   4168       return Error(E,
   4169                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
   4170     case 16:  Align = 2; break;
   4171     case 32:  Align = 4; break;
   4172     case 64:  Align = 8; break;
   4173     case 128: Align = 16; break;
   4174     case 256: Align = 32; break;
   4175     }
   4176 
   4177     // Now we should have the closing ']'
   4178     if (Parser.getTok().isNot(AsmToken::RBrac))
   4179       return Error(Parser.getTok().getLoc(), "']' expected");
   4180     E = Parser.getTok().getEndLoc();
   4181     Parser.Lex(); // Eat right bracket token.
   4182 
   4183     // Don't worry about range checking the value here. That's handled by
   4184     // the is*() predicates.
   4185     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
   4186                                              ARM_AM::no_shift, 0, Align,
   4187                                              false, S, E));
   4188 
   4189     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4190     // operand.
   4191     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4192       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4193       Parser.Lex(); // Eat the '!'.
   4194     }
   4195 
   4196     return false;
   4197   }
   4198 
   4199   // If we have a '#', it's an immediate offset, else assume it's a register
   4200   // offset. Be friendly and also accept a plain integer (without a leading
   4201   // hash) for gas compatibility.
   4202   if (Parser.getTok().is(AsmToken::Hash) ||
   4203       Parser.getTok().is(AsmToken::Dollar) ||
   4204       Parser.getTok().is(AsmToken::Integer)) {
   4205     if (Parser.getTok().isNot(AsmToken::Integer))
   4206       Parser.Lex(); // Eat '#' or '$'.
   4207     E = Parser.getTok().getLoc();
   4208 
   4209     bool isNegative = getParser().getTok().is(AsmToken::Minus);
   4210     const MCExpr *Offset;
   4211     if (getParser().parseExpression(Offset))
   4212      return true;
   4213 
   4214     // The expression has to be a constant. Memory references with relocations
   4215     // don't come through here, as they use the <label> forms of the relevant
   4216     // instructions.
   4217     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
   4218     if (!CE)
   4219       return Error (E, "constant expression expected");
   4220 
   4221     // If the constant was #-0, represent it as INT32_MIN.
   4222     int32_t Val = CE->getValue();
   4223     if (isNegative && Val == 0)
   4224       CE = MCConstantExpr::Create(INT32_MIN, getContext());
   4225 
   4226     // Now we should have the closing ']'
   4227     if (Parser.getTok().isNot(AsmToken::RBrac))
   4228       return Error(Parser.getTok().getLoc(), "']' expected");
   4229     E = Parser.getTok().getEndLoc();
   4230     Parser.Lex(); // Eat right bracket token.
   4231 
   4232     // Don't worry about range checking the value here. That's handled by
   4233     // the is*() predicates.
   4234     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
   4235                                              ARM_AM::no_shift, 0, 0,
   4236                                              false, S, E));
   4237 
   4238     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4239     // operand.
   4240     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4241       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4242       Parser.Lex(); // Eat the '!'.
   4243     }
   4244 
   4245     return false;
   4246   }
   4247 
   4248   // The register offset is optionally preceded by a '+' or '-'
   4249   bool isNegative = false;
   4250   if (Parser.getTok().is(AsmToken::Minus)) {
   4251     isNegative = true;
   4252     Parser.Lex(); // Eat the '-'.
   4253   } else if (Parser.getTok().is(AsmToken::Plus)) {
   4254     // Nothing to do.
   4255     Parser.Lex(); // Eat the '+'.
   4256   }
   4257 
   4258   E = Parser.getTok().getLoc();
   4259   int OffsetRegNum = tryParseRegister();
   4260   if (OffsetRegNum == -1)
   4261     return Error(E, "register expected");
   4262 
   4263   // If there's a shift operator, handle it.
   4264   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
   4265   unsigned ShiftImm = 0;
   4266   if (Parser.getTok().is(AsmToken::Comma)) {
   4267     Parser.Lex(); // Eat the ','.
   4268     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
   4269       return true;
   4270   }
   4271 
   4272   // Now we should have the closing ']'
   4273   if (Parser.getTok().isNot(AsmToken::RBrac))
   4274     return Error(Parser.getTok().getLoc(), "']' expected");
   4275   E = Parser.getTok().getEndLoc();
   4276   Parser.Lex(); // Eat right bracket token.
   4277 
   4278   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
   4279                                            ShiftType, ShiftImm, 0, isNegative,
   4280                                            S, E));
   4281 
   4282   // If there's a pre-indexing writeback marker, '!', just add it as a token
   4283   // operand.
   4284   if (Parser.getTok().is(AsmToken::Exclaim)) {
   4285     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4286     Parser.Lex(); // Eat the '!'.
   4287   }
   4288 
   4289   return false;
   4290 }
   4291 
   4292 /// parseMemRegOffsetShift - one of these two:
   4293 ///   ( lsl | lsr | asr | ror ) , # shift_amount
   4294 ///   rrx
   4295 /// return true if it parses a shift otherwise it returns false.
   4296 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
   4297                                           unsigned &Amount) {
   4298   SMLoc Loc = Parser.getTok().getLoc();
   4299   const AsmToken &Tok = Parser.getTok();
   4300   if (Tok.isNot(AsmToken::Identifier))
   4301     return true;
   4302   StringRef ShiftName = Tok.getString();
   4303   if (ShiftName == "lsl" || ShiftName == "LSL" ||
   4304       ShiftName == "asl" || ShiftName == "ASL")
   4305     St = ARM_AM::lsl;
   4306   else if (ShiftName == "lsr" || ShiftName == "LSR")
   4307     St = ARM_AM::lsr;
   4308   else if (ShiftName == "asr" || ShiftName == "ASR")
   4309     St = ARM_AM::asr;
   4310   else if (ShiftName == "ror" || ShiftName == "ROR")
   4311     St = ARM_AM::ror;
   4312   else if (ShiftName == "rrx" || ShiftName == "RRX")
   4313     St = ARM_AM::rrx;
   4314   else
   4315     return Error(Loc, "illegal shift operator");
   4316   Parser.Lex(); // Eat shift type token.
   4317 
   4318   // rrx stands alone.
   4319   Amount = 0;
   4320   if (St != ARM_AM::rrx) {
   4321     Loc = Parser.getTok().getLoc();
   4322     // A '#' and a shift amount.
   4323     const AsmToken &HashTok = Parser.getTok();
   4324     if (HashTok.isNot(AsmToken::Hash) &&
   4325         HashTok.isNot(AsmToken::Dollar))
   4326       return Error(HashTok.getLoc(), "'#' expected");
   4327     Parser.Lex(); // Eat hash token.
   4328 
   4329     const MCExpr *Expr;
   4330     if (getParser().parseExpression(Expr))
   4331       return true;
   4332     // Range check the immediate.
   4333     // lsl, ror: 0 <= imm <= 31
   4334     // lsr, asr: 0 <= imm <= 32
   4335     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   4336     if (!CE)
   4337       return Error(Loc, "shift amount must be an immediate");
   4338     int64_t Imm = CE->getValue();
   4339     if (Imm < 0 ||
   4340         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
   4341         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
   4342       return Error(Loc, "immediate shift value out of range");
   4343     // If <ShiftTy> #0, turn it into a no_shift.
   4344     if (Imm == 0)
   4345       St = ARM_AM::lsl;
   4346     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
   4347     if (Imm == 32)
   4348       Imm = 0;
   4349     Amount = Imm;
   4350   }
   4351 
   4352   return false;
   4353 }
   4354 
   4355 /// parseFPImm - A floating point immediate expression operand.
   4356 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   4357 parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   4358   // Anything that can accept a floating point constant as an operand
   4359   // needs to go through here, as the regular parseExpression is
   4360   // integer only.
   4361   //
   4362   // This routine still creates a generic Immediate operand, containing
   4363   // a bitcast of the 64-bit floating point value. The various operands
   4364   // that accept floats can check whether the value is valid for them
   4365   // via the standard is*() predicates.
   4366 
   4367   SMLoc S = Parser.getTok().getLoc();
   4368 
   4369   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4370       Parser.getTok().isNot(AsmToken::Dollar))
   4371     return MatchOperand_NoMatch;
   4372 
   4373   // Disambiguate the VMOV forms that can accept an FP immediate.
   4374   // vmov.f32 <sreg>, #imm
   4375   // vmov.f64 <dreg>, #imm
   4376   // vmov.f32 <dreg>, #imm  @ vector f32x2
   4377   // vmov.f32 <qreg>, #imm  @ vector f32x4
   4378   //
   4379   // There are also the NEON VMOV instructions which expect an
   4380   // integer constant. Make sure we don't try to parse an FPImm
   4381   // for these:
   4382   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
   4383   ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
   4384   if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
   4385                            TyOp->getToken() != ".f64"))
   4386     return MatchOperand_NoMatch;
   4387 
   4388   Parser.Lex(); // Eat '#' or '$'.
   4389 
   4390   // Handle negation, as that still comes through as a separate token.
   4391   bool isNegative = false;
   4392   if (Parser.getTok().is(AsmToken::Minus)) {
   4393     isNegative = true;
   4394     Parser.Lex();
   4395   }
   4396   const AsmToken &Tok = Parser.getTok();
   4397   SMLoc Loc = Tok.getLoc();
   4398   if (Tok.is(AsmToken::Real)) {
   4399     APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
   4400     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
   4401     // If we had a '-' in front, toggle the sign bit.
   4402     IntVal ^= (uint64_t)isNegative << 31;
   4403     Parser.Lex(); // Eat the token.
   4404     Operands.push_back(ARMOperand::CreateImm(
   4405           MCConstantExpr::Create(IntVal, getContext()),
   4406           S, Parser.getTok().getLoc()));
   4407     return MatchOperand_Success;
   4408   }
   4409   // Also handle plain integers. Instructions which allow floating point
   4410   // immediates also allow a raw encoded 8-bit value.
   4411   if (Tok.is(AsmToken::Integer)) {
   4412     int64_t Val = Tok.getIntVal();
   4413     Parser.Lex(); // Eat the token.
   4414     if (Val > 255 || Val < 0) {
   4415       Error(Loc, "encoded floating point value out of range");
   4416       return MatchOperand_ParseFail;
   4417     }
   4418     double RealVal = ARM_AM::getFPImmFloat(Val);
   4419     Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
   4420     Operands.push_back(ARMOperand::CreateImm(
   4421         MCConstantExpr::Create(Val, getContext()), S,
   4422         Parser.getTok().getLoc()));
   4423     return MatchOperand_Success;
   4424   }
   4425 
   4426   Error(Loc, "invalid floating point immediate");
   4427   return MatchOperand_ParseFail;
   4428 }
   4429 
   4430 /// Parse a arm instruction operand.  For now this parses the operand regardless
   4431 /// of the mnemonic.
   4432 bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
   4433                                 StringRef Mnemonic) {
   4434   SMLoc S, E;
   4435 
   4436   // Check if the current operand has a custom associated parser, if so, try to
   4437   // custom parse the operand, or fallback to the general approach.
   4438   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
   4439   if (ResTy == MatchOperand_Success)
   4440     return false;
   4441   // If there wasn't a custom match, try the generic matcher below. Otherwise,
   4442   // there was a match, but an error occurred, in which case, just return that
   4443   // the operand parsing failed.
   4444   if (ResTy == MatchOperand_ParseFail)
   4445     return true;
   4446 
   4447   switch (getLexer().getKind()) {
   4448   default:
   4449     Error(Parser.getTok().getLoc(), "unexpected token in operand");
   4450     return true;
   4451   case AsmToken::Identifier: {
   4452     // If we've seen a branch mnemonic, the next operand must be a label.  This
   4453     // is true even if the label is a register name.  So "br r1" means branch to
   4454     // label "r1".
   4455     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
   4456     if (!ExpectLabel) {
   4457       if (!tryParseRegisterWithWriteBack(Operands))
   4458         return false;
   4459       int Res = tryParseShiftRegister(Operands);
   4460       if (Res == 0) // success
   4461         return false;
   4462       else if (Res == -1) // irrecoverable error
   4463         return true;
   4464       // If this is VMRS, check for the apsr_nzcv operand.
   4465       if (Mnemonic == "vmrs" &&
   4466           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
   4467         S = Parser.getTok().getLoc();
   4468         Parser.Lex();
   4469         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
   4470         return false;
   4471       }
   4472     }
   4473 
   4474     // Fall though for the Identifier case that is not a register or a
   4475     // special name.
   4476   }
   4477   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
   4478   case AsmToken::Integer: // things like 1f and 2b as a branch targets
   4479   case AsmToken::String:  // quoted label names.
   4480   case AsmToken::Dot: {   // . as a branch target
   4481     // This was not a register so parse other operands that start with an
   4482     // identifier (like labels) as expressions and create them as immediates.
   4483     const MCExpr *IdVal;
   4484     S = Parser.getTok().getLoc();
   4485     if (getParser().parseExpression(IdVal))
   4486       return true;
   4487     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   4488     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
   4489     return false;
   4490   }
   4491   case AsmToken::LBrac:
   4492     return parseMemory(Operands);
   4493   case AsmToken::LCurly:
   4494     return parseRegisterList(Operands);
   4495   case AsmToken::Dollar:
   4496   case AsmToken::Hash: {
   4497     // #42 -> immediate.
   4498     S = Parser.getTok().getLoc();
   4499     Parser.Lex();
   4500 
   4501     if (Parser.getTok().isNot(AsmToken::Colon)) {
   4502       bool isNegative = Parser.getTok().is(AsmToken::Minus);
   4503       const MCExpr *ImmVal;
   4504       if (getParser().parseExpression(ImmVal))
   4505         return true;
   4506       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
   4507       if (CE) {
   4508         int32_t Val = CE->getValue();
   4509         if (isNegative && Val == 0)
   4510           ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
   4511       }
   4512       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   4513       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
   4514 
   4515       // There can be a trailing '!' on operands that we want as a separate
   4516       // '!' Token operand. Handle that here. For example, the compatibilty
   4517       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
   4518       if (Parser.getTok().is(AsmToken::Exclaim)) {
   4519         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
   4520                                                    Parser.getTok().getLoc()));
   4521         Parser.Lex(); // Eat exclaim token
   4522       }
   4523       return false;
   4524     }
   4525     // w/ a ':' after the '#', it's just like a plain ':'.
   4526     // FALLTHROUGH
   4527   }
   4528   case AsmToken::Colon: {
   4529     // ":lower16:" and ":upper16:" expression prefixes
   4530     // FIXME: Check it's an expression prefix,
   4531     // e.g. (FOO - :lower16:BAR) isn't legal.
   4532     ARMMCExpr::VariantKind RefKind;
   4533     if (parsePrefix(RefKind))
   4534       return true;
   4535 
   4536     const MCExpr *SubExprVal;
   4537     if (getParser().parseExpression(SubExprVal))
   4538       return true;
   4539 
   4540     const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
   4541                                               getContext());
   4542     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   4543     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
   4544     return false;
   4545   }
   4546   }
   4547 }
   4548 
   4549 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
   4550 //  :lower16: and :upper16:.
   4551 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
   4552   RefKind = ARMMCExpr::VK_ARM_None;
   4553 
   4554   // :lower16: and :upper16: modifiers
   4555   assert(getLexer().is(AsmToken::Colon) && "expected a :");
   4556   Parser.Lex(); // Eat ':'
   4557 
   4558   if (getLexer().isNot(AsmToken::Identifier)) {
   4559     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
   4560     return true;
   4561   }
   4562 
   4563   StringRef IDVal = Parser.getTok().getIdentifier();
   4564   if (IDVal == "lower16") {
   4565     RefKind = ARMMCExpr::VK_ARM_LO16;
   4566   } else if (IDVal == "upper16") {
   4567     RefKind = ARMMCExpr::VK_ARM_HI16;
   4568   } else {
   4569     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
   4570     return true;
   4571   }
   4572   Parser.Lex();
   4573 
   4574   if (getLexer().isNot(AsmToken::Colon)) {
   4575     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
   4576     return true;
   4577   }
   4578   Parser.Lex(); // Eat the last ':'
   4579   return false;
   4580 }
   4581 
   4582 /// \brief Given a mnemonic, split out possible predication code and carry
   4583 /// setting letters to form a canonical mnemonic and flags.
   4584 //
   4585 // FIXME: Would be nice to autogen this.
   4586 // FIXME: This is a bit of a maze of special cases.
   4587 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
   4588                                       unsigned &PredicationCode,
   4589                                       bool &CarrySetting,
   4590                                       unsigned &ProcessorIMod,
   4591                                       StringRef &ITMask) {
   4592   PredicationCode = ARMCC::AL;
   4593   CarrySetting = false;
   4594   ProcessorIMod = 0;
   4595 
   4596   // Ignore some mnemonics we know aren't predicated forms.
   4597   //
   4598   // FIXME: Would be nice to autogen this.
   4599   if ((Mnemonic == "movs" && isThumb()) ||
   4600       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
   4601       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
   4602       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
   4603       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
   4604       Mnemonic == "vaclt" || Mnemonic == "vacle"  ||
   4605       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
   4606       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
   4607       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
   4608       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
   4609       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
   4610       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
   4611       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
   4612     return Mnemonic;
   4613 
   4614   // First, split out any predication code. Ignore mnemonics we know aren't
   4615   // predicated but do have a carry-set and so weren't caught above.
   4616   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
   4617       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
   4618       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
   4619       Mnemonic != "sbcs" && Mnemonic != "rscs") {
   4620     unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
   4621       .Case("eq", ARMCC::EQ)
   4622       .Case("ne", ARMCC::NE)
   4623       .Case("hs", ARMCC::HS)
   4624       .Case("cs", ARMCC::HS)
   4625       .Case("lo", ARMCC::LO)
   4626       .Case("cc", ARMCC::LO)
   4627       .Case("mi", ARMCC::MI)
   4628       .Case("pl", ARMCC::PL)
   4629       .Case("vs", ARMCC::VS)
   4630       .Case("vc", ARMCC::VC)
   4631       .Case("hi", ARMCC::HI)
   4632       .Case("ls", ARMCC::LS)
   4633       .Case("ge", ARMCC::GE)
   4634       .Case("lt", ARMCC::LT)
   4635       .Case("gt", ARMCC::GT)
   4636       .Case("le", ARMCC::LE)
   4637       .Case("al", ARMCC::AL)
   4638       .Default(~0U);
   4639     if (CC != ~0U) {
   4640       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
   4641       PredicationCode = CC;
   4642     }
   4643   }
   4644 
   4645   // Next, determine if we have a carry setting bit. We explicitly ignore all
   4646   // the instructions we know end in 's'.
   4647   if (Mnemonic.endswith("s") &&
   4648       !(Mnemonic == "cps" || Mnemonic == "mls" ||
   4649         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
   4650         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
   4651         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
   4652         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
   4653         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
   4654         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
   4655         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
   4656         Mnemonic == "vfms" || Mnemonic == "vfnms" ||
   4657         (Mnemonic == "movs" && isThumb()))) {
   4658     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
   4659     CarrySetting = true;
   4660   }
   4661 
   4662   // The "cps" instruction can have a interrupt mode operand which is glued into
   4663   // the mnemonic. Check if this is the case, split it and parse the imod op
   4664   if (Mnemonic.startswith("cps")) {
   4665     // Split out any imod code.
   4666     unsigned IMod =
   4667       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
   4668       .Case("ie", ARM_PROC::IE)
   4669       .Case("id", ARM_PROC::ID)
   4670       .Default(~0U);
   4671     if (IMod != ~0U) {
   4672       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
   4673       ProcessorIMod = IMod;
   4674     }
   4675   }
   4676 
   4677   // The "it" instruction has the condition mask on the end of the mnemonic.
   4678   if (Mnemonic.startswith("it")) {
   4679     ITMask = Mnemonic.slice(2, Mnemonic.size());
   4680     Mnemonic = Mnemonic.slice(0, 2);
   4681   }
   4682 
   4683   return Mnemonic;
   4684 }
   4685 
   4686 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
   4687 /// inclusion of carry set or predication code operands.
   4688 //
   4689 // FIXME: It would be nice to autogen this.
   4690 void ARMAsmParser::
   4691 getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
   4692                       bool &CanAcceptPredicationCode) {
   4693   if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
   4694       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
   4695       Mnemonic == "add" || Mnemonic == "adc" ||
   4696       Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
   4697       Mnemonic == "orr" || Mnemonic == "mvn" ||
   4698       Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
   4699       Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
   4700       Mnemonic == "vfm" || Mnemonic == "vfnm" ||
   4701       (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
   4702                       Mnemonic == "mla" || Mnemonic == "smlal" ||
   4703                       Mnemonic == "umlal" || Mnemonic == "umull"))) {
   4704     CanAcceptCarrySet = true;
   4705   } else
   4706     CanAcceptCarrySet = false;
   4707 
   4708   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
   4709       Mnemonic == "cps" ||  Mnemonic == "it" ||  Mnemonic == "cbz" ||
   4710       Mnemonic == "trap" || Mnemonic == "setend" ||
   4711       Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") ||
   4712       Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
   4713       Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
   4714       Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
   4715       Mnemonic == "vrintm") {
   4716     // These mnemonics are never predicable
   4717     CanAcceptPredicationCode = false;
   4718   } else if (!isThumb()) {
   4719     // Some instructions are only predicable in Thumb mode
   4720     CanAcceptPredicationCode
   4721       = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
   4722         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
   4723         Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
   4724         Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
   4725         Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
   4726         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
   4727         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
   4728   } else if (isThumbOne()) {
   4729     CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
   4730   } else
   4731     CanAcceptPredicationCode = true;
   4732 }
   4733 
   4734 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
   4735                                SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   4736   // FIXME: This is all horribly hacky. We really need a better way to deal
   4737   // with optional operands like this in the matcher table.
   4738 
   4739   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
   4740   // another does not. Specifically, the MOVW instruction does not. So we
   4741   // special case it here and remove the defaulted (non-setting) cc_out
   4742   // operand if that's the instruction we're trying to match.
   4743   //
   4744   // We do this as post-processing of the explicit operands rather than just
   4745   // conditionally adding the cc_out in the first place because we need
   4746   // to check the type of the parsed immediate operand.
   4747   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
   4748       !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
   4749       static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
   4750       static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
   4751     return true;
   4752 
   4753   // Register-register 'add' for thumb does not have a cc_out operand
   4754   // when there are only two register operands.
   4755   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
   4756       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   4757       static_cast<ARMOperand*>(Operands[4])->isReg() &&
   4758       static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
   4759     return true;
   4760   // Register-register 'add' for thumb does not have a cc_out operand
   4761   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
   4762   // have to check the immediate range here since Thumb2 has a variant
   4763   // that can handle a different range and has a cc_out operand.
   4764   if (((isThumb() && Mnemonic == "add") ||
   4765        (isThumbTwo() && Mnemonic == "sub")) &&
   4766       Operands.size() == 6 &&
   4767       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   4768       static_cast<ARMOperand*>(Operands[4])->isReg() &&
   4769       static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
   4770       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
   4771       ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
   4772        static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
   4773     return true;
   4774   // For Thumb2, add/sub immediate does not have a cc_out operand for the
   4775   // imm0_4095 variant. That's the least-preferred variant when
   4776   // selecting via the generic "add" mnemonic, so to know that we
   4777   // should remove the cc_out operand, we have to explicitly check that
   4778   // it's not one of the other variants. Ugh.
   4779   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
   4780       Operands.size() == 6 &&
   4781       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   4782       static_cast<ARMOperand*>(Operands[4])->isReg() &&
   4783       static_cast<ARMOperand*>(Operands[5])->isImm()) {
   4784     // Nest conditions rather than one big 'if' statement for readability.
   4785     //
   4786     // If both registers are low, we're in an IT block, and the immediate is
   4787     // in range, we should use encoding T1 instead, which has a cc_out.
   4788     if (inITBlock() &&
   4789         isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
   4790         isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
   4791         static_cast<ARMOperand*>(Operands[5])->isImm0_7())
   4792       return false;
   4793     // Check against T3. If the second register is the PC, this is an
   4794     // alternate form of ADR, which uses encoding T4, so check for that too.
   4795     if (static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
   4796         static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
   4797       return false;
   4798 
   4799     // Otherwise, we use encoding T4, which does not have a cc_out
   4800     // operand.
   4801     return true;
   4802   }
   4803 
   4804   // The thumb2 multiply instruction doesn't have a CCOut register, so
   4805   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
   4806   // use the 16-bit encoding or not.
   4807   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
   4808       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
   4809       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   4810       static_cast<ARMOperand*>(Operands[4])->isReg() &&
   4811       static_cast<ARMOperand*>(Operands[5])->isReg() &&
   4812       // If the registers aren't low regs, the destination reg isn't the
   4813       // same as one of the source regs, or the cc_out operand is zero
   4814       // outside of an IT block, we have to use the 32-bit encoding, so
   4815       // remove the cc_out operand.
   4816       (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
   4817        !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
   4818        !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
   4819        !inITBlock() ||
   4820        (static_cast<ARMOperand*>(Operands[3])->getReg() !=
   4821         static_cast<ARMOperand*>(Operands[5])->getReg() &&
   4822         static_cast<ARMOperand*>(Operands[3])->getReg() !=
   4823         static_cast<ARMOperand*>(Operands[4])->getReg())))
   4824     return true;
   4825 
   4826   // Also check the 'mul' syntax variant that doesn't specify an explicit
   4827   // destination register.
   4828   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
   4829       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
   4830       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   4831       static_cast<ARMOperand*>(Operands[4])->isReg() &&
   4832       // If the registers aren't low regs  or the cc_out operand is zero
   4833       // outside of an IT block, we have to use the 32-bit encoding, so
   4834       // remove the cc_out operand.
   4835       (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
   4836        !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
   4837        !inITBlock()))
   4838     return true;
   4839 
   4840 
   4841 
   4842   // Register-register 'add/sub' for thumb does not have a cc_out operand
   4843   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
   4844   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
   4845   // right, this will result in better diagnostics (which operand is off)
   4846   // anyway.
   4847   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
   4848       (Operands.size() == 5 || Operands.size() == 6) &&
   4849       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   4850       static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
   4851       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
   4852       (static_cast<ARMOperand*>(Operands[4])->isImm() ||
   4853        (Operands.size() == 6 &&
   4854         static_cast<ARMOperand*>(Operands[5])->isImm())))
   4855     return true;
   4856 
   4857   return false;
   4858 }
   4859 
   4860 bool ARMAsmParser::shouldOmitPredicateOperand(
   4861     StringRef Mnemonic, SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
   4862   // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
   4863   unsigned RegIdx = 3;
   4864   if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
   4865       static_cast<ARMOperand *>(Operands[2])->getToken() == ".f32") {
   4866     if (static_cast<ARMOperand *>(Operands[3])->isToken() &&
   4867         static_cast<ARMOperand *>(Operands[3])->getToken() == ".f32")
   4868       RegIdx = 4;
   4869 
   4870     if (static_cast<ARMOperand *>(Operands[RegIdx])->isReg() &&
   4871         (ARMMCRegisterClasses[ARM::DPRRegClassID]
   4872              .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg()) ||
   4873          ARMMCRegisterClasses[ARM::QPRRegClassID]
   4874              .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg())))
   4875       return true;
   4876   }
   4877   return false;
   4878 }
   4879 
   4880 bool ARMAsmParser::isDeprecated(MCInst &Inst, StringRef &Info) {
   4881   if (hasV8Ops() && Inst.getOpcode() == ARM::SETEND) {
   4882     Info = "armv8";
   4883     return true;
   4884   }
   4885   return false;
   4886 }
   4887 
   4888 static bool isDataTypeToken(StringRef Tok) {
   4889   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
   4890     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
   4891     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
   4892     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
   4893     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
   4894     Tok == ".f" || Tok == ".d";
   4895 }
   4896 
   4897 // FIXME: This bit should probably be handled via an explicit match class
   4898 // in the .td files that matches the suffix instead of having it be
   4899 // a literal string token the way it is now.
   4900 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
   4901   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
   4902 }
   4903 static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
   4904                                  unsigned VariantID);
   4905 /// Parse an arm instruction mnemonic followed by its operands.
   4906 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
   4907                                     SMLoc NameLoc,
   4908                                SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   4909   // Apply mnemonic aliases before doing anything else, as the destination
   4910   // mnemnonic may include suffices and we want to handle them normally.
   4911   // The generic tblgen'erated code does this later, at the start of
   4912   // MatchInstructionImpl(), but that's too late for aliases that include
   4913   // any sort of suffix.
   4914   unsigned AvailableFeatures = getAvailableFeatures();
   4915   unsigned AssemblerDialect = getParser().getAssemblerDialect();
   4916   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
   4917 
   4918   // First check for the ARM-specific .req directive.
   4919   if (Parser.getTok().is(AsmToken::Identifier) &&
   4920       Parser.getTok().getIdentifier() == ".req") {
   4921     parseDirectiveReq(Name, NameLoc);
   4922     // We always return 'error' for this, as we're done with this
   4923     // statement and don't need to match the 'instruction."
   4924     return true;
   4925   }
   4926 
   4927   // Create the leading tokens for the mnemonic, split by '.' characters.
   4928   size_t Start = 0, Next = Name.find('.');
   4929   StringRef Mnemonic = Name.slice(Start, Next);
   4930 
   4931   // Split out the predication code and carry setting flag from the mnemonic.
   4932   unsigned PredicationCode;
   4933   unsigned ProcessorIMod;
   4934   bool CarrySetting;
   4935   StringRef ITMask;
   4936   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
   4937                            ProcessorIMod, ITMask);
   4938 
   4939   // In Thumb1, only the branch (B) instruction can be predicated.
   4940   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
   4941     Parser.eatToEndOfStatement();
   4942     return Error(NameLoc, "conditional execution not supported in Thumb1");
   4943   }
   4944 
   4945   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
   4946 
   4947   // Handle the IT instruction ITMask. Convert it to a bitmask. This
   4948   // is the mask as it will be for the IT encoding if the conditional
   4949   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
   4950   // where the conditional bit0 is zero, the instruction post-processing
   4951   // will adjust the mask accordingly.
   4952   if (Mnemonic == "it") {
   4953     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
   4954     if (ITMask.size() > 3) {
   4955       Parser.eatToEndOfStatement();
   4956       return Error(Loc, "too many conditions on IT instruction");
   4957     }
   4958     unsigned Mask = 8;
   4959     for (unsigned i = ITMask.size(); i != 0; --i) {
   4960       char pos = ITMask[i - 1];
   4961       if (pos != 't' && pos != 'e') {
   4962         Parser.eatToEndOfStatement();
   4963         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
   4964       }
   4965       Mask >>= 1;
   4966       if (ITMask[i - 1] == 't')
   4967         Mask |= 8;
   4968     }
   4969     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
   4970   }
   4971 
   4972   // FIXME: This is all a pretty gross hack. We should automatically handle
   4973   // optional operands like this via tblgen.
   4974 
   4975   // Next, add the CCOut and ConditionCode operands, if needed.
   4976   //
   4977   // For mnemonics which can ever incorporate a carry setting bit or predication
   4978   // code, our matching model involves us always generating CCOut and
   4979   // ConditionCode operands to match the mnemonic "as written" and then we let
   4980   // the matcher deal with finding the right instruction or generating an
   4981   // appropriate error.
   4982   bool CanAcceptCarrySet, CanAcceptPredicationCode;
   4983   getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
   4984 
   4985   // If we had a carry-set on an instruction that can't do that, issue an
   4986   // error.
   4987   if (!CanAcceptCarrySet && CarrySetting) {
   4988     Parser.eatToEndOfStatement();
   4989     return Error(NameLoc, "instruction '" + Mnemonic +
   4990                  "' can not set flags, but 's' suffix specified");
   4991   }
   4992   // If we had a predication code on an instruction that can't do that, issue an
   4993   // error.
   4994   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
   4995     Parser.eatToEndOfStatement();
   4996     return Error(NameLoc, "instruction '" + Mnemonic +
   4997                  "' is not predicable, but condition code specified");
   4998   }
   4999 
   5000   // Add the carry setting operand, if necessary.
   5001   if (CanAcceptCarrySet) {
   5002     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
   5003     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
   5004                                                Loc));
   5005   }
   5006 
   5007   // Add the predication code operand, if necessary.
   5008   if (CanAcceptPredicationCode) {
   5009     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
   5010                                       CarrySetting);
   5011     Operands.push_back(ARMOperand::CreateCondCode(
   5012                          ARMCC::CondCodes(PredicationCode), Loc));
   5013   }
   5014 
   5015   // Add the processor imod operand, if necessary.
   5016   if (ProcessorIMod) {
   5017     Operands.push_back(ARMOperand::CreateImm(
   5018           MCConstantExpr::Create(ProcessorIMod, getContext()),
   5019                                  NameLoc, NameLoc));
   5020   }
   5021 
   5022   // Add the remaining tokens in the mnemonic.
   5023   while (Next != StringRef::npos) {
   5024     Start = Next;
   5025     Next = Name.find('.', Start + 1);
   5026     StringRef ExtraToken = Name.slice(Start, Next);
   5027 
   5028     // Some NEON instructions have an optional datatype suffix that is
   5029     // completely ignored. Check for that.
   5030     if (isDataTypeToken(ExtraToken) &&
   5031         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
   5032       continue;
   5033 
   5034     // For for ARM mode generate an error if the .n qualifier is used.
   5035     if (ExtraToken == ".n" && !isThumb()) {
   5036       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
   5037       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
   5038                    "arm mode");
   5039     }
   5040 
   5041     // The .n qualifier is always discarded as that is what the tables
   5042     // and matcher expect.  In ARM mode the .w qualifier has no effect,
   5043     // so discard it to avoid errors that can be caused by the matcher.
   5044     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
   5045       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
   5046       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
   5047     }
   5048   }
   5049 
   5050   // Read the remaining operands.
   5051   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   5052     // Read the first operand.
   5053     if (parseOperand(Operands, Mnemonic)) {
   5054       Parser.eatToEndOfStatement();
   5055       return true;
   5056     }
   5057 
   5058     while (getLexer().is(AsmToken::Comma)) {
   5059       Parser.Lex();  // Eat the comma.
   5060 
   5061       // Parse and remember the operand.
   5062       if (parseOperand(Operands, Mnemonic)) {
   5063         Parser.eatToEndOfStatement();
   5064         return true;
   5065       }
   5066     }
   5067   }
   5068 
   5069   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   5070     SMLoc Loc = getLexer().getLoc();
   5071     Parser.eatToEndOfStatement();
   5072     return Error(Loc, "unexpected token in argument list");
   5073   }
   5074 
   5075   Parser.Lex(); // Consume the EndOfStatement
   5076 
   5077   // Some instructions, mostly Thumb, have forms for the same mnemonic that
   5078   // do and don't have a cc_out optional-def operand. With some spot-checks
   5079   // of the operand list, we can figure out which variant we're trying to
   5080   // parse and adjust accordingly before actually matching. We shouldn't ever
   5081   // try to remove a cc_out operand that was explicitly set on the the
   5082   // mnemonic, of course (CarrySetting == true). Reason number #317 the
   5083   // table driven matcher doesn't fit well with the ARM instruction set.
   5084   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
   5085     ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
   5086     Operands.erase(Operands.begin() + 1);
   5087     delete Op;
   5088   }
   5089 
   5090   // Some instructions have the same mnemonic, but don't always
   5091   // have a predicate. Distinguish them here and delete the
   5092   // predicate if needed.
   5093   if (shouldOmitPredicateOperand(Mnemonic, Operands)) {
   5094     ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
   5095     Operands.erase(Operands.begin() + 1);
   5096     delete Op;
   5097   }
   5098 
   5099   // ARM mode 'blx' need special handling, as the register operand version
   5100   // is predicable, but the label operand version is not. So, we can't rely
   5101   // on the Mnemonic based checking to correctly figure out when to put
   5102   // a k_CondCode operand in the list. If we're trying to match the label
   5103   // version, remove the k_CondCode operand here.
   5104   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
   5105       static_cast<ARMOperand*>(Operands[2])->isImm()) {
   5106     ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
   5107     Operands.erase(Operands.begin() + 1);
   5108     delete Op;
   5109   }
   5110 
   5111   // Adjust operands of ldrexd/strexd to MCK_GPRPair.
   5112   // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
   5113   // a single GPRPair reg operand is used in the .td file to replace the two
   5114   // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
   5115   // expressed as a GPRPair, so we have to manually merge them.
   5116   // FIXME: We would really like to be able to tablegen'erate this.
   5117   if (!isThumb() && Operands.size() > 4 &&
   5118       (Mnemonic == "ldrexd" || Mnemonic == "strexd")) {
   5119     bool isLoad = (Mnemonic == "ldrexd");
   5120     unsigned Idx = isLoad ? 2 : 3;
   5121     ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
   5122     ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
   5123 
   5124     const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
   5125     // Adjust only if Op1 and Op2 are GPRs.
   5126     if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
   5127         MRC.contains(Op2->getReg())) {
   5128       unsigned Reg1 = Op1->getReg();
   5129       unsigned Reg2 = Op2->getReg();
   5130       unsigned Rt = MRI->getEncodingValue(Reg1);
   5131       unsigned Rt2 = MRI->getEncodingValue(Reg2);
   5132 
   5133       // Rt2 must be Rt + 1 and Rt must be even.
   5134       if (Rt + 1 != Rt2 || (Rt & 1)) {
   5135         Error(Op2->getStartLoc(), isLoad ?
   5136             "destination operands must be sequential" :
   5137             "source operands must be sequential");
   5138         return true;
   5139       }
   5140       unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
   5141           &(MRI->getRegClass(ARM::GPRPairRegClassID)));
   5142       Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
   5143       Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
   5144             NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
   5145       delete Op1;
   5146       delete Op2;
   5147     }
   5148   }
   5149 
   5150   // FIXME: As said above, this is all a pretty gross hack.  This instruction
   5151   // does not fit with other "subs" and tblgen.
   5152   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
   5153   // so the Mnemonic is the original name "subs" and delete the predicate
   5154   // operand so it will match the table entry.
   5155   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
   5156       static_cast<ARMOperand*>(Operands[3])->isReg() &&
   5157       static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::PC &&
   5158       static_cast<ARMOperand*>(Operands[4])->isReg() &&
   5159       static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::LR &&
   5160       static_cast<ARMOperand*>(Operands[5])->isImm()) {
   5161     ARMOperand *Op0 = static_cast<ARMOperand*>(Operands[0]);
   5162     Operands.erase(Operands.begin());
   5163     delete Op0;
   5164     Operands.insert(Operands.begin(), ARMOperand::CreateToken(Name, NameLoc));
   5165 
   5166     ARMOperand *Op1 = static_cast<ARMOperand*>(Operands[1]);
   5167     Operands.erase(Operands.begin() + 1);
   5168     delete Op1;
   5169   }
   5170   return false;
   5171 }
   5172 
   5173 // Validate context-sensitive operand constraints.
   5174 
   5175 // return 'true' if register list contains non-low GPR registers,
   5176 // 'false' otherwise. If Reg is in the register list or is HiReg, set
   5177 // 'containsReg' to true.
   5178 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
   5179                                  unsigned HiReg, bool &containsReg) {
   5180   containsReg = false;
   5181   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
   5182     unsigned OpReg = Inst.getOperand(i).getReg();
   5183     if (OpReg == Reg)
   5184       containsReg = true;
   5185     // Anything other than a low register isn't legal here.
   5186     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
   5187       return true;
   5188   }
   5189   return false;
   5190 }
   5191 
   5192 // Check if the specified regisgter is in the register list of the inst,
   5193 // starting at the indicated operand number.
   5194 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
   5195   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
   5196     unsigned OpReg = Inst.getOperand(i).getReg();
   5197     if (OpReg == Reg)
   5198       return true;
   5199   }
   5200   return false;
   5201 }
   5202 
   5203 // FIXME: We would really prefer to have MCInstrInfo (the wrapper around
   5204 // the ARMInsts array) instead. Getting that here requires awkward
   5205 // API changes, though. Better way?
   5206 namespace llvm {
   5207 extern const MCInstrDesc ARMInsts[];
   5208 }
   5209 static const MCInstrDesc &getInstDesc(unsigned Opcode) {
   5210   return ARMInsts[Opcode];
   5211 }
   5212 
   5213 // FIXME: We would really like to be able to tablegen'erate this.
   5214 bool ARMAsmParser::
   5215 validateInstruction(MCInst &Inst,
   5216                     const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   5217   const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
   5218   SMLoc Loc = Operands[0]->getStartLoc();
   5219   // Check the IT block state first.
   5220   // NOTE: BKPT instruction has the interesting property of being
   5221   // allowed in IT blocks, but not being predicable.  It just always
   5222   // executes.
   5223   if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
   5224       Inst.getOpcode() != ARM::BKPT) {
   5225     unsigned bit = 1;
   5226     if (ITState.FirstCond)
   5227       ITState.FirstCond = false;
   5228     else
   5229       bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
   5230     // The instruction must be predicable.
   5231     if (!MCID.isPredicable())
   5232       return Error(Loc, "instructions in IT block must be predicable");
   5233     unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
   5234     unsigned ITCond = bit ? ITState.Cond :
   5235       ARMCC::getOppositeCondition(ITState.Cond);
   5236     if (Cond != ITCond) {
   5237       // Find the condition code Operand to get its SMLoc information.
   5238       SMLoc CondLoc;
   5239       for (unsigned i = 1; i < Operands.size(); ++i)
   5240         if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
   5241           CondLoc = Operands[i]->getStartLoc();
   5242       return Error(CondLoc, "incorrect condition in IT block; got '" +
   5243                    StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
   5244                    "', but expected '" +
   5245                    ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
   5246     }
   5247   // Check for non-'al' condition codes outside of the IT block.
   5248   } else if (isThumbTwo() && MCID.isPredicable() &&
   5249              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
   5250              ARMCC::AL && Inst.getOpcode() != ARM::tB &&
   5251              Inst.getOpcode() != ARM::t2B)
   5252     return Error(Loc, "predicated instructions must be in IT block");
   5253 
   5254   switch (Inst.getOpcode()) {
   5255   case ARM::LDRD:
   5256   case ARM::LDRD_PRE:
   5257   case ARM::LDRD_POST: {
   5258     // Rt2 must be Rt + 1.
   5259     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   5260     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   5261     if (Rt2 != Rt + 1)
   5262       return Error(Operands[3]->getStartLoc(),
   5263                    "destination operands must be sequential");
   5264     return false;
   5265   }
   5266   case ARM::STRD: {
   5267     // Rt2 must be Rt + 1.
   5268     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   5269     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   5270     if (Rt2 != Rt + 1)
   5271       return Error(Operands[3]->getStartLoc(),
   5272                    "source operands must be sequential");
   5273     return false;
   5274   }
   5275   case ARM::STRD_PRE:
   5276   case ARM::STRD_POST: {
   5277     // Rt2 must be Rt + 1.
   5278     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   5279     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   5280     if (Rt2 != Rt + 1)
   5281       return Error(Operands[3]->getStartLoc(),
   5282                    "source operands must be sequential");
   5283     return false;
   5284   }
   5285   case ARM::SBFX:
   5286   case ARM::UBFX: {
   5287     // width must be in range [1, 32-lsb]
   5288     unsigned lsb = Inst.getOperand(2).getImm();
   5289     unsigned widthm1 = Inst.getOperand(3).getImm();
   5290     if (widthm1 >= 32 - lsb)
   5291       return Error(Operands[5]->getStartLoc(),
   5292                    "bitfield width must be in range [1,32-lsb]");
   5293     return false;
   5294   }
   5295   case ARM::tLDMIA: {
   5296     // If we're parsing Thumb2, the .w variant is available and handles
   5297     // most cases that are normally illegal for a Thumb1 LDM
   5298     // instruction. We'll make the transformation in processInstruction()
   5299     // if necessary.
   5300     //
   5301     // Thumb LDM instructions are writeback iff the base register is not
   5302     // in the register list.
   5303     unsigned Rn = Inst.getOperand(0).getReg();
   5304     bool hasWritebackToken =
   5305       (static_cast<ARMOperand*>(Operands[3])->isToken() &&
   5306        static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
   5307     bool listContainsBase;
   5308     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
   5309       return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
   5310                    "registers must be in range r0-r7");
   5311     // If we should have writeback, then there should be a '!' token.
   5312     if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
   5313       return Error(Operands[2]->getStartLoc(),
   5314                    "writeback operator '!' expected");
   5315     // If we should not have writeback, there must not be a '!'. This is
   5316     // true even for the 32-bit wide encodings.
   5317     if (listContainsBase && hasWritebackToken)
   5318       return Error(Operands[3]->getStartLoc(),
   5319                    "writeback operator '!' not allowed when base register "
   5320                    "in register list");
   5321 
   5322     break;
   5323   }
   5324   case ARM::t2LDMIA_UPD: {
   5325     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
   5326       return Error(Operands[4]->getStartLoc(),
   5327                    "writeback operator '!' not allowed when base register "
   5328                    "in register list");
   5329     break;
   5330   }
   5331   case ARM::tMUL: {
   5332     // The second source operand must be the same register as the destination
   5333     // operand.
   5334     //
   5335     // In this case, we must directly check the parsed operands because the
   5336     // cvtThumbMultiply() function is written in such a way that it guarantees
   5337     // this first statement is always true for the new Inst.  Essentially, the
   5338     // destination is unconditionally copied into the second source operand
   5339     // without checking to see if it matches what we actually parsed.
   5340     if (Operands.size() == 6 &&
   5341         (((ARMOperand*)Operands[3])->getReg() !=
   5342          ((ARMOperand*)Operands[5])->getReg()) &&
   5343         (((ARMOperand*)Operands[3])->getReg() !=
   5344          ((ARMOperand*)Operands[4])->getReg())) {
   5345       return Error(Operands[3]->getStartLoc(),
   5346                    "destination register must match source register");
   5347     }
   5348     break;
   5349   }
   5350   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
   5351   // so only issue a diagnostic for thumb1. The instructions will be
   5352   // switched to the t2 encodings in processInstruction() if necessary.
   5353   case ARM::tPOP: {
   5354     bool listContainsBase;
   5355     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
   5356         !isThumbTwo())
   5357       return Error(Operands[2]->getStartLoc(),
   5358                    "registers must be in range r0-r7 or pc");
   5359     break;
   5360   }
   5361   case ARM::tPUSH: {
   5362     bool listContainsBase;
   5363     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
   5364         !isThumbTwo())
   5365       return Error(Operands[2]->getStartLoc(),
   5366                    "registers must be in range r0-r7 or lr");
   5367     break;
   5368   }
   5369   case ARM::tSTMIA_UPD: {
   5370     bool listContainsBase;
   5371     if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
   5372       return Error(Operands[4]->getStartLoc(),
   5373                    "registers must be in range r0-r7");
   5374     break;
   5375   }
   5376   case ARM::tADDrSP: {
   5377     // If the non-SP source operand and the destination operand are not the
   5378     // same, we need thumb2 (for the wide encoding), or we have an error.
   5379     if (!isThumbTwo() &&
   5380         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
   5381       return Error(Operands[4]->getStartLoc(),
   5382                    "source register must be the same as destination");
   5383     }
   5384     break;
   5385   }
   5386   }
   5387 
   5388   StringRef DepInfo;
   5389   if (isDeprecated(Inst, DepInfo))
   5390     Warning(Loc, "deprecated on " + DepInfo);
   5391 
   5392   return false;
   5393 }
   5394 
   5395 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
   5396   switch(Opc) {
   5397   default: llvm_unreachable("unexpected opcode!");
   5398   // VST1LN
   5399   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
   5400   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
   5401   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
   5402   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
   5403   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
   5404   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
   5405   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
   5406   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
   5407   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
   5408 
   5409   // VST2LN
   5410   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
   5411   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
   5412   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
   5413   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
   5414   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
   5415 
   5416   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
   5417   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
   5418   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
   5419   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
   5420   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
   5421 
   5422   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
   5423   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
   5424   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
   5425   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
   5426   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
   5427 
   5428   // VST3LN
   5429   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
   5430   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
   5431   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
   5432   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
   5433   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
   5434   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
   5435   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
   5436   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
   5437   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
   5438   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
   5439   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
   5440   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
   5441   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
   5442   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
   5443   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
   5444 
   5445   // VST3
   5446   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
   5447   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
   5448   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
   5449   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
   5450   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
   5451   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
   5452   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
   5453   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
   5454   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
   5455   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
   5456   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
   5457   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
   5458   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
   5459   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
   5460   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
   5461   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
   5462   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
   5463   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
   5464 
   5465   // VST4LN
   5466   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
   5467   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
   5468   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
   5469   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
   5470   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
   5471   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
   5472   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
   5473   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
   5474   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
   5475   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
   5476   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
   5477   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
   5478   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
   5479   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
   5480   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
   5481 
   5482   // VST4
   5483   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
   5484   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
   5485   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
   5486   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
   5487   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
   5488   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
   5489   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
   5490   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
   5491   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
   5492   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
   5493   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
   5494   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
   5495   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
   5496   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
   5497   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
   5498   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
   5499   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
   5500   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
   5501   }
   5502 }
   5503 
   5504 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
   5505   switch(Opc) {
   5506   default: llvm_unreachable("unexpected opcode!");
   5507   // VLD1LN
   5508   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
   5509   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
   5510   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
   5511   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
   5512   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
   5513   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
   5514   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
   5515   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
   5516   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
   5517 
   5518   // VLD2LN
   5519   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
   5520   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
   5521   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
   5522   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
   5523   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
   5524   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
   5525   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
   5526   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
   5527   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
   5528   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
   5529   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
   5530   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
   5531   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
   5532   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
   5533   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
   5534 
   5535   // VLD3DUP
   5536   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
   5537   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
   5538   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
   5539   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
   5540   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
   5541   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
   5542   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
   5543   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
   5544   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
   5545   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
   5546   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
   5547   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
   5548   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
   5549   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
   5550   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
   5551   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
   5552   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
   5553   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
   5554 
   5555   // VLD3LN
   5556   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
   5557   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
   5558   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
   5559   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
   5560   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
   5561   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
   5562   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
   5563   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
   5564   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
   5565   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
   5566   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
   5567   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
   5568   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
   5569   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
   5570   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
   5571 
   5572   // VLD3
   5573   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
   5574   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
   5575   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
   5576   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
   5577   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
   5578   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
   5579   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
   5580   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
   5581   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
   5582   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
   5583   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
   5584   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
   5585   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
   5586   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
   5587   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
   5588   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
   5589   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
   5590   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
   5591 
   5592   // VLD4LN
   5593   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
   5594   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
   5595   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
   5596   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
   5597   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
   5598   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
   5599   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
   5600   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
   5601   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
   5602   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
   5603   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
   5604   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
   5605   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
   5606   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
   5607   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
   5608 
   5609   // VLD4DUP
   5610   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
   5611   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
   5612   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
   5613   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
   5614   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
   5615   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
   5616   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
   5617   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
   5618   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
   5619   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
   5620   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
   5621   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
   5622   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
   5623   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
   5624   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
   5625   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
   5626   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
   5627   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
   5628 
   5629   // VLD4
   5630   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
   5631   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
   5632   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
   5633   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
   5634   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
   5635   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
   5636   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
   5637   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
   5638   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
   5639   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
   5640   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
   5641   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
   5642   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
   5643   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
   5644   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
   5645   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
   5646   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
   5647   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
   5648   }
   5649 }
   5650 
   5651 bool ARMAsmParser::
   5652 processInstruction(MCInst &Inst,
   5653                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
   5654   switch (Inst.getOpcode()) {
   5655   // Alias for alternate form of 'ADR Rd, #imm' instruction.
   5656   case ARM::ADDri: {
   5657     if (Inst.getOperand(1).getReg() != ARM::PC ||
   5658         Inst.getOperand(5).getReg() != 0)
   5659       return false;
   5660     MCInst TmpInst;
   5661     TmpInst.setOpcode(ARM::ADR);
   5662     TmpInst.addOperand(Inst.getOperand(0));
   5663     TmpInst.addOperand(Inst.getOperand(2));
   5664     TmpInst.addOperand(Inst.getOperand(3));
   5665     TmpInst.addOperand(Inst.getOperand(4));
   5666     Inst = TmpInst;
   5667     return true;
   5668   }
   5669   // Aliases for alternate PC+imm syntax of LDR instructions.
   5670   case ARM::t2LDRpcrel:
   5671     // Select the narrow version if the immediate will fit.
   5672     if (Inst.getOperand(1).getImm() > 0 &&
   5673         Inst.getOperand(1).getImm() <= 0xff &&
   5674         !(static_cast<ARMOperand*>(Operands[2])->isToken() &&
   5675          static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
   5676       Inst.setOpcode(ARM::tLDRpci);
   5677     else
   5678       Inst.setOpcode(ARM::t2LDRpci);
   5679     return true;
   5680   case ARM::t2LDRBpcrel:
   5681     Inst.setOpcode(ARM::t2LDRBpci);
   5682     return true;
   5683   case ARM::t2LDRHpcrel:
   5684     Inst.setOpcode(ARM::t2LDRHpci);
   5685     return true;
   5686   case ARM::t2LDRSBpcrel:
   5687     Inst.setOpcode(ARM::t2LDRSBpci);
   5688     return true;
   5689   case ARM::t2LDRSHpcrel:
   5690     Inst.setOpcode(ARM::t2LDRSHpci);
   5691     return true;
   5692   // Handle NEON VST complex aliases.
   5693   case ARM::VST1LNdWB_register_Asm_8:
   5694   case ARM::VST1LNdWB_register_Asm_16:
   5695   case ARM::VST1LNdWB_register_Asm_32: {
   5696     MCInst TmpInst;
   5697     // Shuffle the operands around so the lane index operand is in the
   5698     // right place.
   5699     unsigned Spacing;
   5700     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5701     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5702     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5703     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5704     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   5705     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5706     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5707     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   5708     TmpInst.addOperand(Inst.getOperand(6));
   5709     Inst = TmpInst;
   5710     return true;
   5711   }
   5712 
   5713   case ARM::VST2LNdWB_register_Asm_8:
   5714   case ARM::VST2LNdWB_register_Asm_16:
   5715   case ARM::VST2LNdWB_register_Asm_32:
   5716   case ARM::VST2LNqWB_register_Asm_16:
   5717   case ARM::VST2LNqWB_register_Asm_32: {
   5718     MCInst TmpInst;
   5719     // Shuffle the operands around so the lane index operand is in the
   5720     // right place.
   5721     unsigned Spacing;
   5722     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5723     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5724     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5725     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5726     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   5727     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5728     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5729                                             Spacing));
   5730     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5731     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   5732     TmpInst.addOperand(Inst.getOperand(6));
   5733     Inst = TmpInst;
   5734     return true;
   5735   }
   5736 
   5737   case ARM::VST3LNdWB_register_Asm_8:
   5738   case ARM::VST3LNdWB_register_Asm_16:
   5739   case ARM::VST3LNdWB_register_Asm_32:
   5740   case ARM::VST3LNqWB_register_Asm_16:
   5741   case ARM::VST3LNqWB_register_Asm_32: {
   5742     MCInst TmpInst;
   5743     // Shuffle the operands around so the lane index operand is in the
   5744     // right place.
   5745     unsigned Spacing;
   5746     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5747     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5748     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5749     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5750     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   5751     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5752     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5753                                             Spacing));
   5754     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5755                                             Spacing * 2));
   5756     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5757     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   5758     TmpInst.addOperand(Inst.getOperand(6));
   5759     Inst = TmpInst;
   5760     return true;
   5761   }
   5762 
   5763   case ARM::VST4LNdWB_register_Asm_8:
   5764   case ARM::VST4LNdWB_register_Asm_16:
   5765   case ARM::VST4LNdWB_register_Asm_32:
   5766   case ARM::VST4LNqWB_register_Asm_16:
   5767   case ARM::VST4LNqWB_register_Asm_32: {
   5768     MCInst TmpInst;
   5769     // Shuffle the operands around so the lane index operand is in the
   5770     // right place.
   5771     unsigned Spacing;
   5772     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5773     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5774     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5775     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5776     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   5777     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5778     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5779                                             Spacing));
   5780     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5781                                             Spacing * 2));
   5782     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5783                                             Spacing * 3));
   5784     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5785     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   5786     TmpInst.addOperand(Inst.getOperand(6));
   5787     Inst = TmpInst;
   5788     return true;
   5789   }
   5790 
   5791   case ARM::VST1LNdWB_fixed_Asm_8:
   5792   case ARM::VST1LNdWB_fixed_Asm_16:
   5793   case ARM::VST1LNdWB_fixed_Asm_32: {
   5794     MCInst TmpInst;
   5795     // Shuffle the operands around so the lane index operand is in the
   5796     // right place.
   5797     unsigned Spacing;
   5798     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5799     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5800     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5801     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5802     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   5803     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5804     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5805     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5806     TmpInst.addOperand(Inst.getOperand(5));
   5807     Inst = TmpInst;
   5808     return true;
   5809   }
   5810 
   5811   case ARM::VST2LNdWB_fixed_Asm_8:
   5812   case ARM::VST2LNdWB_fixed_Asm_16:
   5813   case ARM::VST2LNdWB_fixed_Asm_32:
   5814   case ARM::VST2LNqWB_fixed_Asm_16:
   5815   case ARM::VST2LNqWB_fixed_Asm_32: {
   5816     MCInst TmpInst;
   5817     // Shuffle the operands around so the lane index operand is in the
   5818     // right place.
   5819     unsigned Spacing;
   5820     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5821     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5822     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5823     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5824     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   5825     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5826     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5827                                             Spacing));
   5828     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5829     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5830     TmpInst.addOperand(Inst.getOperand(5));
   5831     Inst = TmpInst;
   5832     return true;
   5833   }
   5834 
   5835   case ARM::VST3LNdWB_fixed_Asm_8:
   5836   case ARM::VST3LNdWB_fixed_Asm_16:
   5837   case ARM::VST3LNdWB_fixed_Asm_32:
   5838   case ARM::VST3LNqWB_fixed_Asm_16:
   5839   case ARM::VST3LNqWB_fixed_Asm_32: {
   5840     MCInst TmpInst;
   5841     // Shuffle the operands around so the lane index operand is in the
   5842     // right place.
   5843     unsigned Spacing;
   5844     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5845     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5846     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5847     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5848     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   5849     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5850     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5851                                             Spacing));
   5852     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5853                                             Spacing * 2));
   5854     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5855     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5856     TmpInst.addOperand(Inst.getOperand(5));
   5857     Inst = TmpInst;
   5858     return true;
   5859   }
   5860 
   5861   case ARM::VST4LNdWB_fixed_Asm_8:
   5862   case ARM::VST4LNdWB_fixed_Asm_16:
   5863   case ARM::VST4LNdWB_fixed_Asm_32:
   5864   case ARM::VST4LNqWB_fixed_Asm_16:
   5865   case ARM::VST4LNqWB_fixed_Asm_32: {
   5866     MCInst TmpInst;
   5867     // Shuffle the operands around so the lane index operand is in the
   5868     // right place.
   5869     unsigned Spacing;
   5870     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5871     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5872     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5873     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5874     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   5875     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5876     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5877                                             Spacing));
   5878     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5879                                             Spacing * 2));
   5880     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5881                                             Spacing * 3));
   5882     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5883     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5884     TmpInst.addOperand(Inst.getOperand(5));
   5885     Inst = TmpInst;
   5886     return true;
   5887   }
   5888 
   5889   case ARM::VST1LNdAsm_8:
   5890   case ARM::VST1LNdAsm_16:
   5891   case ARM::VST1LNdAsm_32: {
   5892     MCInst TmpInst;
   5893     // Shuffle the operands around so the lane index operand is in the
   5894     // right place.
   5895     unsigned Spacing;
   5896     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5897     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5898     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5899     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5900     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5901     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5902     TmpInst.addOperand(Inst.getOperand(5));
   5903     Inst = TmpInst;
   5904     return true;
   5905   }
   5906 
   5907   case ARM::VST2LNdAsm_8:
   5908   case ARM::VST2LNdAsm_16:
   5909   case ARM::VST2LNdAsm_32:
   5910   case ARM::VST2LNqAsm_16:
   5911   case ARM::VST2LNqAsm_32: {
   5912     MCInst TmpInst;
   5913     // Shuffle the operands around so the lane index operand is in the
   5914     // right place.
   5915     unsigned Spacing;
   5916     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5917     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5918     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5919     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5920     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5921                                             Spacing));
   5922     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5923     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5924     TmpInst.addOperand(Inst.getOperand(5));
   5925     Inst = TmpInst;
   5926     return true;
   5927   }
   5928 
   5929   case ARM::VST3LNdAsm_8:
   5930   case ARM::VST3LNdAsm_16:
   5931   case ARM::VST3LNdAsm_32:
   5932   case ARM::VST3LNqAsm_16:
   5933   case ARM::VST3LNqAsm_32: {
   5934     MCInst TmpInst;
   5935     // Shuffle the operands around so the lane index operand is in the
   5936     // right place.
   5937     unsigned Spacing;
   5938     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5939     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5940     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5941     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5942     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5943                                             Spacing));
   5944     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5945                                             Spacing * 2));
   5946     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5947     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5948     TmpInst.addOperand(Inst.getOperand(5));
   5949     Inst = TmpInst;
   5950     return true;
   5951   }
   5952 
   5953   case ARM::VST4LNdAsm_8:
   5954   case ARM::VST4LNdAsm_16:
   5955   case ARM::VST4LNdAsm_32:
   5956   case ARM::VST4LNqAsm_16:
   5957   case ARM::VST4LNqAsm_32: {
   5958     MCInst TmpInst;
   5959     // Shuffle the operands around so the lane index operand is in the
   5960     // right place.
   5961     unsigned Spacing;
   5962     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   5963     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5964     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5965     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5966     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5967                                             Spacing));
   5968     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5969                                             Spacing * 2));
   5970     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   5971                                             Spacing * 3));
   5972     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5973     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   5974     TmpInst.addOperand(Inst.getOperand(5));
   5975     Inst = TmpInst;
   5976     return true;
   5977   }
   5978 
   5979   // Handle NEON VLD complex aliases.
   5980   case ARM::VLD1LNdWB_register_Asm_8:
   5981   case ARM::VLD1LNdWB_register_Asm_16:
   5982   case ARM::VLD1LNdWB_register_Asm_32: {
   5983     MCInst TmpInst;
   5984     // Shuffle the operands around so the lane index operand is in the
   5985     // right place.
   5986     unsigned Spacing;
   5987     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   5988     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   5989     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   5990     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   5991     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   5992     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   5993     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   5994     TmpInst.addOperand(Inst.getOperand(1)); // lane
   5995     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   5996     TmpInst.addOperand(Inst.getOperand(6));
   5997     Inst = TmpInst;
   5998     return true;
   5999   }
   6000 
   6001   case ARM::VLD2LNdWB_register_Asm_8:
   6002   case ARM::VLD2LNdWB_register_Asm_16:
   6003   case ARM::VLD2LNdWB_register_Asm_32:
   6004   case ARM::VLD2LNqWB_register_Asm_16:
   6005   case ARM::VLD2LNqWB_register_Asm_32: {
   6006     MCInst TmpInst;
   6007     // Shuffle the operands around so the lane index operand is in the
   6008     // right place.
   6009     unsigned Spacing;
   6010     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6011     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6012     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6013                                             Spacing));
   6014     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6015     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6016     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6017     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6018     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6019     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6020                                             Spacing));
   6021     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6022     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6023     TmpInst.addOperand(Inst.getOperand(6));
   6024     Inst = TmpInst;
   6025     return true;
   6026   }
   6027 
   6028   case ARM::VLD3LNdWB_register_Asm_8:
   6029   case ARM::VLD3LNdWB_register_Asm_16:
   6030   case ARM::VLD3LNdWB_register_Asm_32:
   6031   case ARM::VLD3LNqWB_register_Asm_16:
   6032   case ARM::VLD3LNqWB_register_Asm_32: {
   6033     MCInst TmpInst;
   6034     // Shuffle the operands around so the lane index operand is in the
   6035     // right place.
   6036     unsigned Spacing;
   6037     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6038     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6039     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6040                                             Spacing));
   6041     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6042                                             Spacing * 2));
   6043     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6044     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6045     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6046     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6047     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6048     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6049                                             Spacing));
   6050     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6051                                             Spacing * 2));
   6052     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6053     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6054     TmpInst.addOperand(Inst.getOperand(6));
   6055     Inst = TmpInst;
   6056     return true;
   6057   }
   6058 
   6059   case ARM::VLD4LNdWB_register_Asm_8:
   6060   case ARM::VLD4LNdWB_register_Asm_16:
   6061   case ARM::VLD4LNdWB_register_Asm_32:
   6062   case ARM::VLD4LNqWB_register_Asm_16:
   6063   case ARM::VLD4LNqWB_register_Asm_32: {
   6064     MCInst TmpInst;
   6065     // Shuffle the operands around so the lane index operand is in the
   6066     // right place.
   6067     unsigned Spacing;
   6068     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6069     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6070     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6071                                             Spacing));
   6072     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6073                                             Spacing * 2));
   6074     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6075                                             Spacing * 3));
   6076     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6077     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6078     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6079     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6080     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6081     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6082                                             Spacing));
   6083     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6084                                             Spacing * 2));
   6085     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6086                                             Spacing * 3));
   6087     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6088     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6089     TmpInst.addOperand(Inst.getOperand(6));
   6090     Inst = TmpInst;
   6091     return true;
   6092   }
   6093 
   6094   case ARM::VLD1LNdWB_fixed_Asm_8:
   6095   case ARM::VLD1LNdWB_fixed_Asm_16:
   6096   case ARM::VLD1LNdWB_fixed_Asm_32: {
   6097     MCInst TmpInst;
   6098     // Shuffle the operands around so the lane index operand is in the
   6099     // right place.
   6100     unsigned Spacing;
   6101     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6102     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6103     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6104     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6105     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6106     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6107     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6108     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6109     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6110     TmpInst.addOperand(Inst.getOperand(5));
   6111     Inst = TmpInst;
   6112     return true;
   6113   }
   6114 
   6115   case ARM::VLD2LNdWB_fixed_Asm_8:
   6116   case ARM::VLD2LNdWB_fixed_Asm_16:
   6117   case ARM::VLD2LNdWB_fixed_Asm_32:
   6118   case ARM::VLD2LNqWB_fixed_Asm_16:
   6119   case ARM::VLD2LNqWB_fixed_Asm_32: {
   6120     MCInst TmpInst;
   6121     // Shuffle the operands around so the lane index operand is in the
   6122     // right place.
   6123     unsigned Spacing;
   6124     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6125     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6126     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6127                                             Spacing));
   6128     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6129     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6130     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6131     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6132     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6133     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6134                                             Spacing));
   6135     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6136     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6137     TmpInst.addOperand(Inst.getOperand(5));
   6138     Inst = TmpInst;
   6139     return true;
   6140   }
   6141 
   6142   case ARM::VLD3LNdWB_fixed_Asm_8:
   6143   case ARM::VLD3LNdWB_fixed_Asm_16:
   6144   case ARM::VLD3LNdWB_fixed_Asm_32:
   6145   case ARM::VLD3LNqWB_fixed_Asm_16:
   6146   case ARM::VLD3LNqWB_fixed_Asm_32: {
   6147     MCInst TmpInst;
   6148     // Shuffle the operands around so the lane index operand is in the
   6149     // right place.
   6150     unsigned Spacing;
   6151     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6152     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6153     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6154                                             Spacing));
   6155     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6156                                             Spacing * 2));
   6157     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6158     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6159     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6160     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6161     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6162     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6163                                             Spacing));
   6164     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6165                                             Spacing * 2));
   6166     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6167     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6168     TmpInst.addOperand(Inst.getOperand(5));
   6169     Inst = TmpInst;
   6170     return true;
   6171   }
   6172 
   6173   case ARM::VLD4LNdWB_fixed_Asm_8:
   6174   case ARM::VLD4LNdWB_fixed_Asm_16:
   6175   case ARM::VLD4LNdWB_fixed_Asm_32:
   6176   case ARM::VLD4LNqWB_fixed_Asm_16:
   6177   case ARM::VLD4LNqWB_fixed_Asm_32: {
   6178     MCInst TmpInst;
   6179     // Shuffle the operands around so the lane index operand is in the
   6180     // right place.
   6181     unsigned Spacing;
   6182     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6183     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6184     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6185                                             Spacing));
   6186     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6187                                             Spacing * 2));
   6188     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6189                                             Spacing * 3));
   6190     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6191     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6192     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6193     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6194     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6195     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6196                                             Spacing));
   6197     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6198                                             Spacing * 2));
   6199     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6200                                             Spacing * 3));
   6201     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6202     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6203     TmpInst.addOperand(Inst.getOperand(5));
   6204     Inst = TmpInst;
   6205     return true;
   6206   }
   6207 
   6208   case ARM::VLD1LNdAsm_8:
   6209   case ARM::VLD1LNdAsm_16:
   6210   case ARM::VLD1LNdAsm_32: {
   6211     MCInst TmpInst;
   6212     // Shuffle the operands around so the lane index operand is in the
   6213     // right place.
   6214     unsigned Spacing;
   6215     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6216     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6217     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6218     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6219     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6220     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6221     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6222     TmpInst.addOperand(Inst.getOperand(5));
   6223     Inst = TmpInst;
   6224     return true;
   6225   }
   6226 
   6227   case ARM::VLD2LNdAsm_8:
   6228   case ARM::VLD2LNdAsm_16:
   6229   case ARM::VLD2LNdAsm_32:
   6230   case ARM::VLD2LNqAsm_16:
   6231   case ARM::VLD2LNqAsm_32: {
   6232     MCInst TmpInst;
   6233     // Shuffle the operands around so the lane index operand is in the
   6234     // right place.
   6235     unsigned Spacing;
   6236     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6237     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6238     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6239                                             Spacing));
   6240     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6241     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6242     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6243     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6244                                             Spacing));
   6245     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6246     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6247     TmpInst.addOperand(Inst.getOperand(5));
   6248     Inst = TmpInst;
   6249     return true;
   6250   }
   6251 
   6252   case ARM::VLD3LNdAsm_8:
   6253   case ARM::VLD3LNdAsm_16:
   6254   case ARM::VLD3LNdAsm_32:
   6255   case ARM::VLD3LNqAsm_16:
   6256   case ARM::VLD3LNqAsm_32: {
   6257     MCInst TmpInst;
   6258     // Shuffle the operands around so the lane index operand is in the
   6259     // right place.
   6260     unsigned Spacing;
   6261     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6262     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6263     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6264                                             Spacing));
   6265     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6266                                             Spacing * 2));
   6267     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6268     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6269     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6270     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6271                                             Spacing));
   6272     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6273                                             Spacing * 2));
   6274     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6275     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6276     TmpInst.addOperand(Inst.getOperand(5));
   6277     Inst = TmpInst;
   6278     return true;
   6279   }
   6280 
   6281   case ARM::VLD4LNdAsm_8:
   6282   case ARM::VLD4LNdAsm_16:
   6283   case ARM::VLD4LNdAsm_32:
   6284   case ARM::VLD4LNqAsm_16:
   6285   case ARM::VLD4LNqAsm_32: {
   6286     MCInst TmpInst;
   6287     // Shuffle the operands around so the lane index operand is in the
   6288     // right place.
   6289     unsigned Spacing;
   6290     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6291     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6292     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6293                                             Spacing));
   6294     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6295                                             Spacing * 2));
   6296     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6297                                             Spacing * 3));
   6298     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6299     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6300     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   6301     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6302                                             Spacing));
   6303     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6304                                             Spacing * 2));
   6305     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6306                                             Spacing * 3));
   6307     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6308     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6309     TmpInst.addOperand(Inst.getOperand(5));
   6310     Inst = TmpInst;
   6311     return true;
   6312   }
   6313 
   6314   // VLD3DUP single 3-element structure to all lanes instructions.
   6315   case ARM::VLD3DUPdAsm_8:
   6316   case ARM::VLD3DUPdAsm_16:
   6317   case ARM::VLD3DUPdAsm_32:
   6318   case ARM::VLD3DUPqAsm_8:
   6319   case ARM::VLD3DUPqAsm_16:
   6320   case ARM::VLD3DUPqAsm_32: {
   6321     MCInst TmpInst;
   6322     unsigned Spacing;
   6323     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6324     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6325     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6326                                             Spacing));
   6327     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6328                                             Spacing * 2));
   6329     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6330     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6331     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6332     TmpInst.addOperand(Inst.getOperand(4));
   6333     Inst = TmpInst;
   6334     return true;
   6335   }
   6336 
   6337   case ARM::VLD3DUPdWB_fixed_Asm_8:
   6338   case ARM::VLD3DUPdWB_fixed_Asm_16:
   6339   case ARM::VLD3DUPdWB_fixed_Asm_32:
   6340   case ARM::VLD3DUPqWB_fixed_Asm_8:
   6341   case ARM::VLD3DUPqWB_fixed_Asm_16:
   6342   case ARM::VLD3DUPqWB_fixed_Asm_32: {
   6343     MCInst TmpInst;
   6344     unsigned Spacing;
   6345     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6346     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6347     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6348                                             Spacing));
   6349     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6350                                             Spacing * 2));
   6351     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6352     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6353     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6354     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6355     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6356     TmpInst.addOperand(Inst.getOperand(4));
   6357     Inst = TmpInst;
   6358     return true;
   6359   }
   6360 
   6361   case ARM::VLD3DUPdWB_register_Asm_8:
   6362   case ARM::VLD3DUPdWB_register_Asm_16:
   6363   case ARM::VLD3DUPdWB_register_Asm_32:
   6364   case ARM::VLD3DUPqWB_register_Asm_8:
   6365   case ARM::VLD3DUPqWB_register_Asm_16:
   6366   case ARM::VLD3DUPqWB_register_Asm_32: {
   6367     MCInst TmpInst;
   6368     unsigned Spacing;
   6369     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6370     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6371     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6372                                             Spacing));
   6373     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6374                                             Spacing * 2));
   6375     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6376     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6377     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6378     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   6379     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6380     TmpInst.addOperand(Inst.getOperand(5));
   6381     Inst = TmpInst;
   6382     return true;
   6383   }
   6384 
   6385   // VLD3 multiple 3-element structure instructions.
   6386   case ARM::VLD3dAsm_8:
   6387   case ARM::VLD3dAsm_16:
   6388   case ARM::VLD3dAsm_32:
   6389   case ARM::VLD3qAsm_8:
   6390   case ARM::VLD3qAsm_16:
   6391   case ARM::VLD3qAsm_32: {
   6392     MCInst TmpInst;
   6393     unsigned Spacing;
   6394     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6395     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6396     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6397                                             Spacing));
   6398     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6399                                             Spacing * 2));
   6400     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6401     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6402     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6403     TmpInst.addOperand(Inst.getOperand(4));
   6404     Inst = TmpInst;
   6405     return true;
   6406   }
   6407 
   6408   case ARM::VLD3dWB_fixed_Asm_8:
   6409   case ARM::VLD3dWB_fixed_Asm_16:
   6410   case ARM::VLD3dWB_fixed_Asm_32:
   6411   case ARM::VLD3qWB_fixed_Asm_8:
   6412   case ARM::VLD3qWB_fixed_Asm_16:
   6413   case ARM::VLD3qWB_fixed_Asm_32: {
   6414     MCInst TmpInst;
   6415     unsigned Spacing;
   6416     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6417     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6418     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6419                                             Spacing));
   6420     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6421                                             Spacing * 2));
   6422     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6423     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6424     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6425     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6426     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6427     TmpInst.addOperand(Inst.getOperand(4));
   6428     Inst = TmpInst;
   6429     return true;
   6430   }
   6431 
   6432   case ARM::VLD3dWB_register_Asm_8:
   6433   case ARM::VLD3dWB_register_Asm_16:
   6434   case ARM::VLD3dWB_register_Asm_32:
   6435   case ARM::VLD3qWB_register_Asm_8:
   6436   case ARM::VLD3qWB_register_Asm_16:
   6437   case ARM::VLD3qWB_register_Asm_32: {
   6438     MCInst TmpInst;
   6439     unsigned Spacing;
   6440     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6441     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6442     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6443                                             Spacing));
   6444     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6445                                             Spacing * 2));
   6446     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6447     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6448     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6449     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   6450     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6451     TmpInst.addOperand(Inst.getOperand(5));
   6452     Inst = TmpInst;
   6453     return true;
   6454   }
   6455 
   6456   // VLD4DUP single 3-element structure to all lanes instructions.
   6457   case ARM::VLD4DUPdAsm_8:
   6458   case ARM::VLD4DUPdAsm_16:
   6459   case ARM::VLD4DUPdAsm_32:
   6460   case ARM::VLD4DUPqAsm_8:
   6461   case ARM::VLD4DUPqAsm_16:
   6462   case ARM::VLD4DUPqAsm_32: {
   6463     MCInst TmpInst;
   6464     unsigned Spacing;
   6465     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6466     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6467     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6468                                             Spacing));
   6469     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6470                                             Spacing * 2));
   6471     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6472                                             Spacing * 3));
   6473     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6474     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6475     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6476     TmpInst.addOperand(Inst.getOperand(4));
   6477     Inst = TmpInst;
   6478     return true;
   6479   }
   6480 
   6481   case ARM::VLD4DUPdWB_fixed_Asm_8:
   6482   case ARM::VLD4DUPdWB_fixed_Asm_16:
   6483   case ARM::VLD4DUPdWB_fixed_Asm_32:
   6484   case ARM::VLD4DUPqWB_fixed_Asm_8:
   6485   case ARM::VLD4DUPqWB_fixed_Asm_16:
   6486   case ARM::VLD4DUPqWB_fixed_Asm_32: {
   6487     MCInst TmpInst;
   6488     unsigned Spacing;
   6489     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6490     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6491     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6492                                             Spacing));
   6493     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6494                                             Spacing * 2));
   6495     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6496                                             Spacing * 3));
   6497     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6498     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6499     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6500     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6501     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6502     TmpInst.addOperand(Inst.getOperand(4));
   6503     Inst = TmpInst;
   6504     return true;
   6505   }
   6506 
   6507   case ARM::VLD4DUPdWB_register_Asm_8:
   6508   case ARM::VLD4DUPdWB_register_Asm_16:
   6509   case ARM::VLD4DUPdWB_register_Asm_32:
   6510   case ARM::VLD4DUPqWB_register_Asm_8:
   6511   case ARM::VLD4DUPqWB_register_Asm_16:
   6512   case ARM::VLD4DUPqWB_register_Asm_32: {
   6513     MCInst TmpInst;
   6514     unsigned Spacing;
   6515     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6516     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6517     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6518                                             Spacing));
   6519     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6520                                             Spacing * 2));
   6521     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6522                                             Spacing * 3));
   6523     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6524     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6525     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6526     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   6527     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6528     TmpInst.addOperand(Inst.getOperand(5));
   6529     Inst = TmpInst;
   6530     return true;
   6531   }
   6532 
   6533   // VLD4 multiple 4-element structure instructions.
   6534   case ARM::VLD4dAsm_8:
   6535   case ARM::VLD4dAsm_16:
   6536   case ARM::VLD4dAsm_32:
   6537   case ARM::VLD4qAsm_8:
   6538   case ARM::VLD4qAsm_16:
   6539   case ARM::VLD4qAsm_32: {
   6540     MCInst TmpInst;
   6541     unsigned Spacing;
   6542     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6543     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6544     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6545                                             Spacing));
   6546     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6547                                             Spacing * 2));
   6548     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6549                                             Spacing * 3));
   6550     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6551     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6552     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6553     TmpInst.addOperand(Inst.getOperand(4));
   6554     Inst = TmpInst;
   6555     return true;
   6556   }
   6557 
   6558   case ARM::VLD4dWB_fixed_Asm_8:
   6559   case ARM::VLD4dWB_fixed_Asm_16:
   6560   case ARM::VLD4dWB_fixed_Asm_32:
   6561   case ARM::VLD4qWB_fixed_Asm_8:
   6562   case ARM::VLD4qWB_fixed_Asm_16:
   6563   case ARM::VLD4qWB_fixed_Asm_32: {
   6564     MCInst TmpInst;
   6565     unsigned Spacing;
   6566     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6567     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6568     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6569                                             Spacing));
   6570     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6571                                             Spacing * 2));
   6572     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6573                                             Spacing * 3));
   6574     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6575     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6576     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6577     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6578     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6579     TmpInst.addOperand(Inst.getOperand(4));
   6580     Inst = TmpInst;
   6581     return true;
   6582   }
   6583 
   6584   case ARM::VLD4dWB_register_Asm_8:
   6585   case ARM::VLD4dWB_register_Asm_16:
   6586   case ARM::VLD4dWB_register_Asm_32:
   6587   case ARM::VLD4qWB_register_Asm_8:
   6588   case ARM::VLD4qWB_register_Asm_16:
   6589   case ARM::VLD4qWB_register_Asm_32: {
   6590     MCInst TmpInst;
   6591     unsigned Spacing;
   6592     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   6593     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6594     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6595                                             Spacing));
   6596     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6597                                             Spacing * 2));
   6598     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6599                                             Spacing * 3));
   6600     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6601     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6602     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6603     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   6604     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6605     TmpInst.addOperand(Inst.getOperand(5));
   6606     Inst = TmpInst;
   6607     return true;
   6608   }
   6609 
   6610   // VST3 multiple 3-element structure instructions.
   6611   case ARM::VST3dAsm_8:
   6612   case ARM::VST3dAsm_16:
   6613   case ARM::VST3dAsm_32:
   6614   case ARM::VST3qAsm_8:
   6615   case ARM::VST3qAsm_16:
   6616   case ARM::VST3qAsm_32: {
   6617     MCInst TmpInst;
   6618     unsigned Spacing;
   6619     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6620     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6621     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6622     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6623     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6624                                             Spacing));
   6625     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6626                                             Spacing * 2));
   6627     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6628     TmpInst.addOperand(Inst.getOperand(4));
   6629     Inst = TmpInst;
   6630     return true;
   6631   }
   6632 
   6633   case ARM::VST3dWB_fixed_Asm_8:
   6634   case ARM::VST3dWB_fixed_Asm_16:
   6635   case ARM::VST3dWB_fixed_Asm_32:
   6636   case ARM::VST3qWB_fixed_Asm_8:
   6637   case ARM::VST3qWB_fixed_Asm_16:
   6638   case ARM::VST3qWB_fixed_Asm_32: {
   6639     MCInst TmpInst;
   6640     unsigned Spacing;
   6641     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6642     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6643     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6644     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6645     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6646     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6647     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6648                                             Spacing));
   6649     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6650                                             Spacing * 2));
   6651     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6652     TmpInst.addOperand(Inst.getOperand(4));
   6653     Inst = TmpInst;
   6654     return true;
   6655   }
   6656 
   6657   case ARM::VST3dWB_register_Asm_8:
   6658   case ARM::VST3dWB_register_Asm_16:
   6659   case ARM::VST3dWB_register_Asm_32:
   6660   case ARM::VST3qWB_register_Asm_8:
   6661   case ARM::VST3qWB_register_Asm_16:
   6662   case ARM::VST3qWB_register_Asm_32: {
   6663     MCInst TmpInst;
   6664     unsigned Spacing;
   6665     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6666     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6667     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6668     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6669     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   6670     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6671     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6672                                             Spacing));
   6673     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6674                                             Spacing * 2));
   6675     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6676     TmpInst.addOperand(Inst.getOperand(5));
   6677     Inst = TmpInst;
   6678     return true;
   6679   }
   6680 
   6681   // VST4 multiple 3-element structure instructions.
   6682   case ARM::VST4dAsm_8:
   6683   case ARM::VST4dAsm_16:
   6684   case ARM::VST4dAsm_32:
   6685   case ARM::VST4qAsm_8:
   6686   case ARM::VST4qAsm_16:
   6687   case ARM::VST4qAsm_32: {
   6688     MCInst TmpInst;
   6689     unsigned Spacing;
   6690     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6691     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6692     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6693     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6694     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6695                                             Spacing));
   6696     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6697                                             Spacing * 2));
   6698     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6699                                             Spacing * 3));
   6700     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6701     TmpInst.addOperand(Inst.getOperand(4));
   6702     Inst = TmpInst;
   6703     return true;
   6704   }
   6705 
   6706   case ARM::VST4dWB_fixed_Asm_8:
   6707   case ARM::VST4dWB_fixed_Asm_16:
   6708   case ARM::VST4dWB_fixed_Asm_32:
   6709   case ARM::VST4qWB_fixed_Asm_8:
   6710   case ARM::VST4qWB_fixed_Asm_16:
   6711   case ARM::VST4qWB_fixed_Asm_32: {
   6712     MCInst TmpInst;
   6713     unsigned Spacing;
   6714     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6715     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6716     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6717     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6718     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6719     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6720     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6721                                             Spacing));
   6722     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6723                                             Spacing * 2));
   6724     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6725                                             Spacing * 3));
   6726     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6727     TmpInst.addOperand(Inst.getOperand(4));
   6728     Inst = TmpInst;
   6729     return true;
   6730   }
   6731 
   6732   case ARM::VST4dWB_register_Asm_8:
   6733   case ARM::VST4dWB_register_Asm_16:
   6734   case ARM::VST4dWB_register_Asm_32:
   6735   case ARM::VST4qWB_register_Asm_8:
   6736   case ARM::VST4qWB_register_Asm_16:
   6737   case ARM::VST4qWB_register_Asm_32: {
   6738     MCInst TmpInst;
   6739     unsigned Spacing;
   6740     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6741     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6742     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   6743     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   6744     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   6745     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6746     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6747                                             Spacing));
   6748     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6749                                             Spacing * 2));
   6750     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6751                                             Spacing * 3));
   6752     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6753     TmpInst.addOperand(Inst.getOperand(5));
   6754     Inst = TmpInst;
   6755     return true;
   6756   }
   6757 
   6758   // Handle encoding choice for the shift-immediate instructions.
   6759   case ARM::t2LSLri:
   6760   case ARM::t2LSRri:
   6761   case ARM::t2ASRri: {
   6762     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   6763         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   6764         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
   6765         !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
   6766          static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
   6767       unsigned NewOpc;
   6768       switch (Inst.getOpcode()) {
   6769       default: llvm_unreachable("unexpected opcode");
   6770       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
   6771       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
   6772       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
   6773       }
   6774       // The Thumb1 operands aren't in the same order. Awesome, eh?
   6775       MCInst TmpInst;
   6776       TmpInst.setOpcode(NewOpc);
   6777       TmpInst.addOperand(Inst.getOperand(0));
   6778       TmpInst.addOperand(Inst.getOperand(5));
   6779       TmpInst.addOperand(Inst.getOperand(1));
   6780       TmpInst.addOperand(Inst.getOperand(2));
   6781       TmpInst.addOperand(Inst.getOperand(3));
   6782       TmpInst.addOperand(Inst.getOperand(4));
   6783       Inst = TmpInst;
   6784       return true;
   6785     }
   6786     return false;
   6787   }
   6788 
   6789   // Handle the Thumb2 mode MOV complex aliases.
   6790   case ARM::t2MOVsr:
   6791   case ARM::t2MOVSsr: {
   6792     // Which instruction to expand to depends on the CCOut operand and
   6793     // whether we're in an IT block if the register operands are low
   6794     // registers.
   6795     bool isNarrow = false;
   6796     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   6797         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   6798         isARMLowRegister(Inst.getOperand(2).getReg()) &&
   6799         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   6800         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
   6801       isNarrow = true;
   6802     MCInst TmpInst;
   6803     unsigned newOpc;
   6804     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
   6805     default: llvm_unreachable("unexpected opcode!");
   6806     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
   6807     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
   6808     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
   6809     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
   6810     }
   6811     TmpInst.setOpcode(newOpc);
   6812     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   6813     if (isNarrow)
   6814       TmpInst.addOperand(MCOperand::CreateReg(
   6815           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
   6816     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6817     TmpInst.addOperand(Inst.getOperand(2)); // Rm
   6818     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6819     TmpInst.addOperand(Inst.getOperand(5));
   6820     if (!isNarrow)
   6821       TmpInst.addOperand(MCOperand::CreateReg(
   6822           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
   6823     Inst = TmpInst;
   6824     return true;
   6825   }
   6826   case ARM::t2MOVsi:
   6827   case ARM::t2MOVSsi: {
   6828     // Which instruction to expand to depends on the CCOut operand and
   6829     // whether we're in an IT block if the register operands are low
   6830     // registers.
   6831     bool isNarrow = false;
   6832     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   6833         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   6834         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
   6835       isNarrow = true;
   6836     MCInst TmpInst;
   6837     unsigned newOpc;
   6838     switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
   6839     default: llvm_unreachable("unexpected opcode!");
   6840     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
   6841     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
   6842     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
   6843     case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
   6844     case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
   6845     }
   6846     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
   6847     if (Amount == 32) Amount = 0;
   6848     TmpInst.setOpcode(newOpc);
   6849     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   6850     if (isNarrow)
   6851       TmpInst.addOperand(MCOperand::CreateReg(
   6852           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
   6853     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6854     if (newOpc != ARM::t2RRX)
   6855       TmpInst.addOperand(MCOperand::CreateImm(Amount));
   6856     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6857     TmpInst.addOperand(Inst.getOperand(4));
   6858     if (!isNarrow)
   6859       TmpInst.addOperand(MCOperand::CreateReg(
   6860           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
   6861     Inst = TmpInst;
   6862     return true;
   6863   }
   6864   // Handle the ARM mode MOV complex aliases.
   6865   case ARM::ASRr:
   6866   case ARM::LSRr:
   6867   case ARM::LSLr:
   6868   case ARM::RORr: {
   6869     ARM_AM::ShiftOpc ShiftTy;
   6870     switch(Inst.getOpcode()) {
   6871     default: llvm_unreachable("unexpected opcode!");
   6872     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
   6873     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
   6874     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
   6875     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
   6876     }
   6877     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
   6878     MCInst TmpInst;
   6879     TmpInst.setOpcode(ARM::MOVsr);
   6880     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   6881     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6882     TmpInst.addOperand(Inst.getOperand(2)); // Rm
   6883     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
   6884     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6885     TmpInst.addOperand(Inst.getOperand(4));
   6886     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
   6887     Inst = TmpInst;
   6888     return true;
   6889   }
   6890   case ARM::ASRi:
   6891   case ARM::LSRi:
   6892   case ARM::LSLi:
   6893   case ARM::RORi: {
   6894     ARM_AM::ShiftOpc ShiftTy;
   6895     switch(Inst.getOpcode()) {
   6896     default: llvm_unreachable("unexpected opcode!");
   6897     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
   6898     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
   6899     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
   6900     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
   6901     }
   6902     // A shift by zero is a plain MOVr, not a MOVsi.
   6903     unsigned Amt = Inst.getOperand(2).getImm();
   6904     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
   6905     // A shift by 32 should be encoded as 0 when permitted
   6906     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
   6907       Amt = 0;
   6908     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
   6909     MCInst TmpInst;
   6910     TmpInst.setOpcode(Opc);
   6911     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   6912     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6913     if (Opc == ARM::MOVsi)
   6914       TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
   6915     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   6916     TmpInst.addOperand(Inst.getOperand(4));
   6917     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
   6918     Inst = TmpInst;
   6919     return true;
   6920   }
   6921   case ARM::RRXi: {
   6922     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
   6923     MCInst TmpInst;
   6924     TmpInst.setOpcode(ARM::MOVsi);
   6925     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   6926     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6927     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
   6928     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   6929     TmpInst.addOperand(Inst.getOperand(3));
   6930     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
   6931     Inst = TmpInst;
   6932     return true;
   6933   }
   6934   case ARM::t2LDMIA_UPD: {
   6935     // If this is a load of a single register, then we should use
   6936     // a post-indexed LDR instruction instead, per the ARM ARM.
   6937     if (Inst.getNumOperands() != 5)
   6938       return false;
   6939     MCInst TmpInst;
   6940     TmpInst.setOpcode(ARM::t2LDR_POST);
   6941     TmpInst.addOperand(Inst.getOperand(4)); // Rt
   6942     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   6943     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6944     TmpInst.addOperand(MCOperand::CreateImm(4));
   6945     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   6946     TmpInst.addOperand(Inst.getOperand(3));
   6947     Inst = TmpInst;
   6948     return true;
   6949   }
   6950   case ARM::t2STMDB_UPD: {
   6951     // If this is a store of a single register, then we should use
   6952     // a pre-indexed STR instruction instead, per the ARM ARM.
   6953     if (Inst.getNumOperands() != 5)
   6954       return false;
   6955     MCInst TmpInst;
   6956     TmpInst.setOpcode(ARM::t2STR_PRE);
   6957     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   6958     TmpInst.addOperand(Inst.getOperand(4)); // Rt
   6959     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6960     TmpInst.addOperand(MCOperand::CreateImm(-4));
   6961     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   6962     TmpInst.addOperand(Inst.getOperand(3));
   6963     Inst = TmpInst;
   6964     return true;
   6965   }
   6966   case ARM::LDMIA_UPD:
   6967     // If this is a load of a single register via a 'pop', then we should use
   6968     // a post-indexed LDR instruction instead, per the ARM ARM.
   6969     if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
   6970         Inst.getNumOperands() == 5) {
   6971       MCInst TmpInst;
   6972       TmpInst.setOpcode(ARM::LDR_POST_IMM);
   6973       TmpInst.addOperand(Inst.getOperand(4)); // Rt
   6974       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   6975       TmpInst.addOperand(Inst.getOperand(1)); // Rn
   6976       TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
   6977       TmpInst.addOperand(MCOperand::CreateImm(4));
   6978       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   6979       TmpInst.addOperand(Inst.getOperand(3));
   6980       Inst = TmpInst;
   6981       return true;
   6982     }
   6983     break;
   6984   case ARM::STMDB_UPD:
   6985     // If this is a store of a single register via a 'push', then we should use
   6986     // a pre-indexed STR instruction instead, per the ARM ARM.
   6987     if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
   6988         Inst.getNumOperands() == 5) {
   6989       MCInst TmpInst;
   6990       TmpInst.setOpcode(ARM::STR_PRE_IMM);
   6991       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   6992       TmpInst.addOperand(Inst.getOperand(4)); // Rt
   6993       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
   6994       TmpInst.addOperand(MCOperand::CreateImm(-4));
   6995       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   6996       TmpInst.addOperand(Inst.getOperand(3));
   6997       Inst = TmpInst;
   6998     }
   6999     break;
   7000   case ARM::t2ADDri12:
   7001     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
   7002     // mnemonic was used (not "addw"), encoding T3 is preferred.
   7003     if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
   7004         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
   7005       break;
   7006     Inst.setOpcode(ARM::t2ADDri);
   7007     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
   7008     break;
   7009   case ARM::t2SUBri12:
   7010     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
   7011     // mnemonic was used (not "subw"), encoding T3 is preferred.
   7012     if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
   7013         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
   7014       break;
   7015     Inst.setOpcode(ARM::t2SUBri);
   7016     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
   7017     break;
   7018   case ARM::tADDi8:
   7019     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
   7020     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
   7021     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
   7022     // to encoding T1 if <Rd> is omitted."
   7023     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
   7024       Inst.setOpcode(ARM::tADDi3);
   7025       return true;
   7026     }
   7027     break;
   7028   case ARM::tSUBi8:
   7029     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
   7030     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
   7031     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
   7032     // to encoding T1 if <Rd> is omitted."
   7033     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
   7034       Inst.setOpcode(ARM::tSUBi3);
   7035       return true;
   7036     }
   7037     break;
   7038   case ARM::t2ADDri:
   7039   case ARM::t2SUBri: {
   7040     // If the destination and first source operand are the same, and
   7041     // the flags are compatible with the current IT status, use encoding T2
   7042     // instead of T3. For compatibility with the system 'as'. Make sure the
   7043     // wide encoding wasn't explicit.
   7044     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
   7045         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
   7046         (unsigned)Inst.getOperand(2).getImm() > 255 ||
   7047         ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
   7048         (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
   7049         (static_cast<ARMOperand*>(Operands[3])->isToken() &&
   7050          static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
   7051       break;
   7052     MCInst TmpInst;
   7053     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
   7054                       ARM::tADDi8 : ARM::tSUBi8);
   7055     TmpInst.addOperand(Inst.getOperand(0));
   7056     TmpInst.addOperand(Inst.getOperand(5));
   7057     TmpInst.addOperand(Inst.getOperand(0));
   7058     TmpInst.addOperand(Inst.getOperand(2));
   7059     TmpInst.addOperand(Inst.getOperand(3));
   7060     TmpInst.addOperand(Inst.getOperand(4));
   7061     Inst = TmpInst;
   7062     return true;
   7063   }
   7064   case ARM::t2ADDrr: {
   7065     // If the destination and first source operand are the same, and
   7066     // there's no setting of the flags, use encoding T2 instead of T3.
   7067     // Note that this is only for ADD, not SUB. This mirrors the system
   7068     // 'as' behaviour. Make sure the wide encoding wasn't explicit.
   7069     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
   7070         Inst.getOperand(5).getReg() != 0 ||
   7071         (static_cast<ARMOperand*>(Operands[3])->isToken() &&
   7072          static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
   7073       break;
   7074     MCInst TmpInst;
   7075     TmpInst.setOpcode(ARM::tADDhirr);
   7076     TmpInst.addOperand(Inst.getOperand(0));
   7077     TmpInst.addOperand(Inst.getOperand(0));
   7078     TmpInst.addOperand(Inst.getOperand(2));
   7079     TmpInst.addOperand(Inst.getOperand(3));
   7080     TmpInst.addOperand(Inst.getOperand(4));
   7081     Inst = TmpInst;
   7082     return true;
   7083   }
   7084   case ARM::tADDrSP: {
   7085     // If the non-SP source operand and the destination operand are not the
   7086     // same, we need to use the 32-bit encoding if it's available.
   7087     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
   7088       Inst.setOpcode(ARM::t2ADDrr);
   7089       Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
   7090       return true;
   7091     }
   7092     break;
   7093   }
   7094   case ARM::tB:
   7095     // A Thumb conditional branch outside of an IT block is a tBcc.
   7096     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
   7097       Inst.setOpcode(ARM::tBcc);
   7098       return true;
   7099     }
   7100     break;
   7101   case ARM::t2B:
   7102     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
   7103     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
   7104       Inst.setOpcode(ARM::t2Bcc);
   7105       return true;
   7106     }
   7107     break;
   7108   case ARM::t2Bcc:
   7109     // If the conditional is AL or we're in an IT block, we really want t2B.
   7110     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
   7111       Inst.setOpcode(ARM::t2B);
   7112       return true;
   7113     }
   7114     break;
   7115   case ARM::tBcc:
   7116     // If the conditional is AL, we really want tB.
   7117     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
   7118       Inst.setOpcode(ARM::tB);
   7119       return true;
   7120     }
   7121     break;
   7122   case ARM::tLDMIA: {
   7123     // If the register list contains any high registers, or if the writeback
   7124     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
   7125     // instead if we're in Thumb2. Otherwise, this should have generated
   7126     // an error in validateInstruction().
   7127     unsigned Rn = Inst.getOperand(0).getReg();
   7128     bool hasWritebackToken =
   7129       (static_cast<ARMOperand*>(Operands[3])->isToken() &&
   7130        static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
   7131     bool listContainsBase;
   7132     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
   7133         (!listContainsBase && !hasWritebackToken) ||
   7134         (listContainsBase && hasWritebackToken)) {
   7135       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
   7136       assert (isThumbTwo());
   7137       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
   7138       // If we're switching to the updating version, we need to insert
   7139       // the writeback tied operand.
   7140       if (hasWritebackToken)
   7141         Inst.insert(Inst.begin(),
   7142                     MCOperand::CreateReg(Inst.getOperand(0).getReg()));
   7143       return true;
   7144     }
   7145     break;
   7146   }
   7147   case ARM::tSTMIA_UPD: {
   7148     // If the register list contains any high registers, we need to use
   7149     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
   7150     // should have generated an error in validateInstruction().
   7151     unsigned Rn = Inst.getOperand(0).getReg();
   7152     bool listContainsBase;
   7153     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
   7154       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
   7155       assert (isThumbTwo());
   7156       Inst.setOpcode(ARM::t2STMIA_UPD);
   7157       return true;
   7158     }
   7159     break;
   7160   }
   7161   case ARM::tPOP: {
   7162     bool listContainsBase;
   7163     // If the register list contains any high registers, we need to use
   7164     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
   7165     // should have generated an error in validateInstruction().
   7166     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
   7167       return false;
   7168     assert (isThumbTwo());
   7169     Inst.setOpcode(ARM::t2LDMIA_UPD);
   7170     // Add the base register and writeback operands.
   7171     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   7172     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   7173     return true;
   7174   }
   7175   case ARM::tPUSH: {
   7176     bool listContainsBase;
   7177     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
   7178       return false;
   7179     assert (isThumbTwo());
   7180     Inst.setOpcode(ARM::t2STMDB_UPD);
   7181     // Add the base register and writeback operands.
   7182     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   7183     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   7184     return true;
   7185   }
   7186   case ARM::t2MOVi: {
   7187     // If we can use the 16-bit encoding and the user didn't explicitly
   7188     // request the 32-bit variant, transform it here.
   7189     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7190         (unsigned)Inst.getOperand(1).getImm() <= 255 &&
   7191         ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
   7192          Inst.getOperand(4).getReg() == ARM::CPSR) ||
   7193         (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
   7194         (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
   7195          static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
   7196       // The operands aren't in the same order for tMOVi8...
   7197       MCInst TmpInst;
   7198       TmpInst.setOpcode(ARM::tMOVi8);
   7199       TmpInst.addOperand(Inst.getOperand(0));
   7200       TmpInst.addOperand(Inst.getOperand(4));
   7201       TmpInst.addOperand(Inst.getOperand(1));
   7202       TmpInst.addOperand(Inst.getOperand(2));
   7203       TmpInst.addOperand(Inst.getOperand(3));
   7204       Inst = TmpInst;
   7205       return true;
   7206     }
   7207     break;
   7208   }
   7209   case ARM::t2MOVr: {
   7210     // If we can use the 16-bit encoding and the user didn't explicitly
   7211     // request the 32-bit variant, transform it here.
   7212     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7213         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7214         Inst.getOperand(2).getImm() == ARMCC::AL &&
   7215         Inst.getOperand(4).getReg() == ARM::CPSR &&
   7216         (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
   7217          static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
   7218       // The operands aren't the same for tMOV[S]r... (no cc_out)
   7219       MCInst TmpInst;
   7220       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
   7221       TmpInst.addOperand(Inst.getOperand(0));
   7222       TmpInst.addOperand(Inst.getOperand(1));
   7223       TmpInst.addOperand(Inst.getOperand(2));
   7224       TmpInst.addOperand(Inst.getOperand(3));
   7225       Inst = TmpInst;
   7226       return true;
   7227     }
   7228     break;
   7229   }
   7230   case ARM::t2SXTH:
   7231   case ARM::t2SXTB:
   7232   case ARM::t2UXTH:
   7233   case ARM::t2UXTB: {
   7234     // If we can use the 16-bit encoding and the user didn't explicitly
   7235     // request the 32-bit variant, transform it here.
   7236     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7237         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7238         Inst.getOperand(2).getImm() == 0 &&
   7239         (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
   7240          static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
   7241       unsigned NewOpc;
   7242       switch (Inst.getOpcode()) {
   7243       default: llvm_unreachable("Illegal opcode!");
   7244       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
   7245       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
   7246       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
   7247       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
   7248       }
   7249       // The operands aren't the same for thumb1 (no rotate operand).
   7250       MCInst TmpInst;
   7251       TmpInst.setOpcode(NewOpc);
   7252       TmpInst.addOperand(Inst.getOperand(0));
   7253       TmpInst.addOperand(Inst.getOperand(1));
   7254       TmpInst.addOperand(Inst.getOperand(3));
   7255       TmpInst.addOperand(Inst.getOperand(4));
   7256       Inst = TmpInst;
   7257       return true;
   7258     }
   7259     break;
   7260   }
   7261   case ARM::MOVsi: {
   7262     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
   7263     // rrx shifts and asr/lsr of #32 is encoded as 0
   7264     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
   7265       return false;
   7266     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
   7267       // Shifting by zero is accepted as a vanilla 'MOVr'
   7268       MCInst TmpInst;
   7269       TmpInst.setOpcode(ARM::MOVr);
   7270       TmpInst.addOperand(Inst.getOperand(0));
   7271       TmpInst.addOperand(Inst.getOperand(1));
   7272       TmpInst.addOperand(Inst.getOperand(3));
   7273       TmpInst.addOperand(Inst.getOperand(4));
   7274       TmpInst.addOperand(Inst.getOperand(5));
   7275       Inst = TmpInst;
   7276       return true;
   7277     }
   7278     return false;
   7279   }
   7280   case ARM::ANDrsi:
   7281   case ARM::ORRrsi:
   7282   case ARM::EORrsi:
   7283   case ARM::BICrsi:
   7284   case ARM::SUBrsi:
   7285   case ARM::ADDrsi: {
   7286     unsigned newOpc;
   7287     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
   7288     if (SOpc == ARM_AM::rrx) return false;
   7289     switch (Inst.getOpcode()) {
   7290     default: llvm_unreachable("unexpected opcode!");
   7291     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
   7292     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
   7293     case ARM::EORrsi: newOpc = ARM::EORrr; break;
   7294     case ARM::BICrsi: newOpc = ARM::BICrr; break;
   7295     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
   7296     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
   7297     }
   7298     // If the shift is by zero, use the non-shifted instruction definition.
   7299     // The exception is for right shifts, where 0 == 32
   7300     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
   7301         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
   7302       MCInst TmpInst;
   7303       TmpInst.setOpcode(newOpc);
   7304       TmpInst.addOperand(Inst.getOperand(0));
   7305       TmpInst.addOperand(Inst.getOperand(1));
   7306       TmpInst.addOperand(Inst.getOperand(2));
   7307       TmpInst.addOperand(Inst.getOperand(4));
   7308       TmpInst.addOperand(Inst.getOperand(5));
   7309       TmpInst.addOperand(Inst.getOperand(6));
   7310       Inst = TmpInst;
   7311       return true;
   7312     }
   7313     return false;
   7314   }
   7315   case ARM::ITasm:
   7316   case ARM::t2IT: {
   7317     // The mask bits for all but the first condition are represented as
   7318     // the low bit of the condition code value implies 't'. We currently
   7319     // always have 1 implies 't', so XOR toggle the bits if the low bit
   7320     // of the condition code is zero.
   7321     MCOperand &MO = Inst.getOperand(1);
   7322     unsigned Mask = MO.getImm();
   7323     unsigned OrigMask = Mask;
   7324     unsigned TZ = countTrailingZeros(Mask);
   7325     if ((Inst.getOperand(0).getImm() & 1) == 0) {
   7326       assert(Mask && TZ <= 3 && "illegal IT mask value!");
   7327       Mask ^= (0xE << TZ) & 0xF;
   7328     }
   7329     MO.setImm(Mask);
   7330 
   7331     // Set up the IT block state according to the IT instruction we just
   7332     // matched.
   7333     assert(!inITBlock() && "nested IT blocks?!");
   7334     ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
   7335     ITState.Mask = OrigMask; // Use the original mask, not the updated one.
   7336     ITState.CurPosition = 0;
   7337     ITState.FirstCond = true;
   7338     break;
   7339   }
   7340   case ARM::t2LSLrr:
   7341   case ARM::t2LSRrr:
   7342   case ARM::t2ASRrr:
   7343   case ARM::t2SBCrr:
   7344   case ARM::t2RORrr:
   7345   case ARM::t2BICrr:
   7346   {
   7347     // Assemblers should use the narrow encodings of these instructions when permissible.
   7348     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7349          isARMLowRegister(Inst.getOperand(2).getReg())) &&
   7350         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   7351         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
   7352          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
   7353         (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
   7354          !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
   7355       unsigned NewOpc;
   7356       switch (Inst.getOpcode()) {
   7357         default: llvm_unreachable("unexpected opcode");
   7358         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
   7359         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
   7360         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
   7361         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
   7362         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
   7363         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
   7364       }
   7365       MCInst TmpInst;
   7366       TmpInst.setOpcode(NewOpc);
   7367       TmpInst.addOperand(Inst.getOperand(0));
   7368       TmpInst.addOperand(Inst.getOperand(5));
   7369       TmpInst.addOperand(Inst.getOperand(1));
   7370       TmpInst.addOperand(Inst.getOperand(2));
   7371       TmpInst.addOperand(Inst.getOperand(3));
   7372       TmpInst.addOperand(Inst.getOperand(4));
   7373       Inst = TmpInst;
   7374       return true;
   7375     }
   7376     return false;
   7377   }
   7378   case ARM::t2ANDrr:
   7379   case ARM::t2EORrr:
   7380   case ARM::t2ADCrr:
   7381   case ARM::t2ORRrr:
   7382   {
   7383     // Assemblers should use the narrow encodings of these instructions when permissible.
   7384     // These instructions are special in that they are commutable, so shorter encodings
   7385     // are available more often.
   7386     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7387          isARMLowRegister(Inst.getOperand(2).getReg())) &&
   7388         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
   7389          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
   7390         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
   7391          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
   7392         (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
   7393          !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
   7394       unsigned NewOpc;
   7395       switch (Inst.getOpcode()) {
   7396         default: llvm_unreachable("unexpected opcode");
   7397         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
   7398         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
   7399         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
   7400         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
   7401       }
   7402       MCInst TmpInst;
   7403       TmpInst.setOpcode(NewOpc);
   7404       TmpInst.addOperand(Inst.getOperand(0));
   7405       TmpInst.addOperand(Inst.getOperand(5));
   7406       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
   7407         TmpInst.addOperand(Inst.getOperand(1));
   7408         TmpInst.addOperand(Inst.getOperand(2));
   7409       } else {
   7410         TmpInst.addOperand(Inst.getOperand(2));
   7411         TmpInst.addOperand(Inst.getOperand(1));
   7412       }
   7413       TmpInst.addOperand(Inst.getOperand(3));
   7414       TmpInst.addOperand(Inst.getOperand(4));
   7415       Inst = TmpInst;
   7416       return true;
   7417     }
   7418     return false;
   7419   }
   7420   }
   7421   return false;
   7422 }
   7423 
   7424 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
   7425   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
   7426   // suffix depending on whether they're in an IT block or not.
   7427   unsigned Opc = Inst.getOpcode();
   7428   const MCInstrDesc &MCID = getInstDesc(Opc);
   7429   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
   7430     assert(MCID.hasOptionalDef() &&
   7431            "optionally flag setting instruction missing optional def operand");
   7432     assert(MCID.NumOperands == Inst.getNumOperands() &&
   7433            "operand count mismatch!");
   7434     // Find the optional-def operand (cc_out).
   7435     unsigned OpNo;
   7436     for (OpNo = 0;
   7437          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
   7438          ++OpNo)
   7439       ;
   7440     // If we're parsing Thumb1, reject it completely.
   7441     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
   7442       return Match_MnemonicFail;
   7443     // If we're parsing Thumb2, which form is legal depends on whether we're
   7444     // in an IT block.
   7445     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
   7446         !inITBlock())
   7447       return Match_RequiresITBlock;
   7448     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
   7449         inITBlock())
   7450       return Match_RequiresNotITBlock;
   7451   }
   7452   // Some high-register supporting Thumb1 encodings only allow both registers
   7453   // to be from r0-r7 when in Thumb2.
   7454   else if (Opc == ARM::tADDhirr && isThumbOne() &&
   7455            isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7456            isARMLowRegister(Inst.getOperand(2).getReg()))
   7457     return Match_RequiresThumb2;
   7458   // Others only require ARMv6 or later.
   7459   else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
   7460            isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7461            isARMLowRegister(Inst.getOperand(1).getReg()))
   7462     return Match_RequiresV6;
   7463   return Match_Success;
   7464 }
   7465 
   7466 static const char *getSubtargetFeatureName(unsigned Val);
   7467 bool ARMAsmParser::
   7468 MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
   7469                         SmallVectorImpl<MCParsedAsmOperand*> &Operands,
   7470                         MCStreamer &Out, unsigned &ErrorInfo,
   7471                         bool MatchingInlineAsm) {
   7472   MCInst Inst;
   7473   unsigned MatchResult;
   7474 
   7475   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
   7476                                      MatchingInlineAsm);
   7477   switch (MatchResult) {
   7478   default: break;
   7479   case Match_Success:
   7480     // Context sensitive operand constraints aren't handled by the matcher,
   7481     // so check them here.
   7482     if (validateInstruction(Inst, Operands)) {
   7483       // Still progress the IT block, otherwise one wrong condition causes
   7484       // nasty cascading errors.
   7485       forwardITPosition();
   7486       return true;
   7487     }
   7488 
   7489     // Some instructions need post-processing to, for example, tweak which
   7490     // encoding is selected. Loop on it while changes happen so the
   7491     // individual transformations can chain off each other. E.g.,
   7492     // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
   7493     while (processInstruction(Inst, Operands))
   7494       ;
   7495 
   7496     // Only move forward at the very end so that everything in validate
   7497     // and process gets a consistent answer about whether we're in an IT
   7498     // block.
   7499     forwardITPosition();
   7500 
   7501     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
   7502     // doesn't actually encode.
   7503     if (Inst.getOpcode() == ARM::ITasm)
   7504       return false;
   7505 
   7506     Inst.setLoc(IDLoc);
   7507     Out.EmitInstruction(Inst);
   7508     return false;
   7509   case Match_MissingFeature: {
   7510     assert(ErrorInfo && "Unknown missing feature!");
   7511     // Special case the error message for the very common case where only
   7512     // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
   7513     std::string Msg = "instruction requires:";
   7514     unsigned Mask = 1;
   7515     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
   7516       if (ErrorInfo & Mask) {
   7517         Msg += " ";
   7518         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
   7519       }
   7520       Mask <<= 1;
   7521     }
   7522     return Error(IDLoc, Msg);
   7523   }
   7524   case Match_InvalidOperand: {
   7525     SMLoc ErrorLoc = IDLoc;
   7526     if (ErrorInfo != ~0U) {
   7527       if (ErrorInfo >= Operands.size())
   7528         return Error(IDLoc, "too few operands for instruction");
   7529 
   7530       ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
   7531       if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   7532     }
   7533 
   7534     return Error(ErrorLoc, "invalid operand for instruction");
   7535   }
   7536   case Match_MnemonicFail:
   7537     return Error(IDLoc, "invalid instruction",
   7538                  ((ARMOperand*)Operands[0])->getLocRange());
   7539   case Match_RequiresNotITBlock:
   7540     return Error(IDLoc, "flag setting instruction only valid outside IT block");
   7541   case Match_RequiresITBlock:
   7542     return Error(IDLoc, "instruction only valid inside IT block");
   7543   case Match_RequiresV6:
   7544     return Error(IDLoc, "instruction variant requires ARMv6 or later");
   7545   case Match_RequiresThumb2:
   7546     return Error(IDLoc, "instruction variant requires Thumb2");
   7547   case Match_ImmRange0_4: {
   7548     SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
   7549     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   7550     return Error(ErrorLoc, "immediate operand must be in the range [0,4]");
   7551   }
   7552   case Match_ImmRange0_15: {
   7553     SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
   7554     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   7555     return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
   7556   }
   7557   }
   7558 
   7559   llvm_unreachable("Implement any new match types added!");
   7560 }
   7561 
   7562 /// parseDirective parses the arm specific directives
   7563 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
   7564   StringRef IDVal = DirectiveID.getIdentifier();
   7565   if (IDVal == ".word")
   7566     return parseDirectiveWord(4, DirectiveID.getLoc());
   7567   else if (IDVal == ".thumb")
   7568     return parseDirectiveThumb(DirectiveID.getLoc());
   7569   else if (IDVal == ".arm")
   7570     return parseDirectiveARM(DirectiveID.getLoc());
   7571   else if (IDVal == ".thumb_func")
   7572     return parseDirectiveThumbFunc(DirectiveID.getLoc());
   7573   else if (IDVal == ".code")
   7574     return parseDirectiveCode(DirectiveID.getLoc());
   7575   else if (IDVal == ".syntax")
   7576     return parseDirectiveSyntax(DirectiveID.getLoc());
   7577   else if (IDVal == ".unreq")
   7578     return parseDirectiveUnreq(DirectiveID.getLoc());
   7579   else if (IDVal == ".arch")
   7580     return parseDirectiveArch(DirectiveID.getLoc());
   7581   else if (IDVal == ".eabi_attribute")
   7582     return parseDirectiveEabiAttr(DirectiveID.getLoc());
   7583   else if (IDVal == ".fnstart")
   7584     return parseDirectiveFnStart(DirectiveID.getLoc());
   7585   else if (IDVal == ".fnend")
   7586     return parseDirectiveFnEnd(DirectiveID.getLoc());
   7587   else if (IDVal == ".cantunwind")
   7588     return parseDirectiveCantUnwind(DirectiveID.getLoc());
   7589   else if (IDVal == ".personality")
   7590     return parseDirectivePersonality(DirectiveID.getLoc());
   7591   else if (IDVal == ".handlerdata")
   7592     return parseDirectiveHandlerData(DirectiveID.getLoc());
   7593   else if (IDVal == ".setfp")
   7594     return parseDirectiveSetFP(DirectiveID.getLoc());
   7595   else if (IDVal == ".pad")
   7596     return parseDirectivePad(DirectiveID.getLoc());
   7597   else if (IDVal == ".save")
   7598     return parseDirectiveRegSave(DirectiveID.getLoc(), false);
   7599   else if (IDVal == ".vsave")
   7600     return parseDirectiveRegSave(DirectiveID.getLoc(), true);
   7601   return true;
   7602 }
   7603 
   7604 /// parseDirectiveWord
   7605 ///  ::= .word [ expression (, expression)* ]
   7606 bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
   7607   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   7608     for (;;) {
   7609       const MCExpr *Value;
   7610       if (getParser().parseExpression(Value))
   7611         return true;
   7612 
   7613       getParser().getStreamer().EmitValue(Value, Size);
   7614 
   7615       if (getLexer().is(AsmToken::EndOfStatement))
   7616         break;
   7617 
   7618       // FIXME: Improve diagnostic.
   7619       if (getLexer().isNot(AsmToken::Comma))
   7620         return Error(L, "unexpected token in directive");
   7621       Parser.Lex();
   7622     }
   7623   }
   7624 
   7625   Parser.Lex();
   7626   return false;
   7627 }
   7628 
   7629 /// parseDirectiveThumb
   7630 ///  ::= .thumb
   7631 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
   7632   if (getLexer().isNot(AsmToken::EndOfStatement))
   7633     return Error(L, "unexpected token in directive");
   7634   Parser.Lex();
   7635 
   7636   if (!hasThumb())
   7637     return Error(L, "target does not support Thumb mode");
   7638 
   7639   if (!isThumb())
   7640     SwitchMode();
   7641   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
   7642   return false;
   7643 }
   7644 
   7645 /// parseDirectiveARM
   7646 ///  ::= .arm
   7647 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
   7648   if (getLexer().isNot(AsmToken::EndOfStatement))
   7649     return Error(L, "unexpected token in directive");
   7650   Parser.Lex();
   7651 
   7652   if (!hasARM())
   7653     return Error(L, "target does not support ARM mode");
   7654 
   7655   if (isThumb())
   7656     SwitchMode();
   7657   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   7658   return false;
   7659 }
   7660 
   7661 /// parseDirectiveThumbFunc
   7662 ///  ::= .thumbfunc symbol_name
   7663 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
   7664   const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
   7665   bool isMachO = MAI->hasSubsectionsViaSymbols();
   7666   StringRef Name;
   7667   bool needFuncName = true;
   7668 
   7669   // Darwin asm has (optionally) function name after .thumb_func direction
   7670   // ELF doesn't
   7671   if (isMachO) {
   7672     const AsmToken &Tok = Parser.getTok();
   7673     if (Tok.isNot(AsmToken::EndOfStatement)) {
   7674       if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
   7675         return Error(L, "unexpected token in .thumb_func directive");
   7676       Name = Tok.getIdentifier();
   7677       Parser.Lex(); // Consume the identifier token.
   7678       needFuncName = false;
   7679     }
   7680   }
   7681 
   7682   if (getLexer().isNot(AsmToken::EndOfStatement))
   7683     return Error(L, "unexpected token in directive");
   7684 
   7685   // Eat the end of statement and any blank lines that follow.
   7686   while (getLexer().is(AsmToken::EndOfStatement))
   7687     Parser.Lex();
   7688 
   7689   // FIXME: assuming function name will be the line following .thumb_func
   7690   // We really should be checking the next symbol definition even if there's
   7691   // stuff in between.
   7692   if (needFuncName) {
   7693     Name = Parser.getTok().getIdentifier();
   7694   }
   7695 
   7696   // Mark symbol as a thumb symbol.
   7697   MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
   7698   getParser().getStreamer().EmitThumbFunc(Func);
   7699   return false;
   7700 }
   7701 
   7702 /// parseDirectiveSyntax
   7703 ///  ::= .syntax unified | divided
   7704 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
   7705   const AsmToken &Tok = Parser.getTok();
   7706   if (Tok.isNot(AsmToken::Identifier))
   7707     return Error(L, "unexpected token in .syntax directive");
   7708   StringRef Mode = Tok.getString();
   7709   if (Mode == "unified" || Mode == "UNIFIED")
   7710     Parser.Lex();
   7711   else if (Mode == "divided" || Mode == "DIVIDED")
   7712     return Error(L, "'.syntax divided' arm asssembly not supported");
   7713   else
   7714     return Error(L, "unrecognized syntax mode in .syntax directive");
   7715 
   7716   if (getLexer().isNot(AsmToken::EndOfStatement))
   7717     return Error(Parser.getTok().getLoc(), "unexpected token in directive");
   7718   Parser.Lex();
   7719 
   7720   // TODO tell the MC streamer the mode
   7721   // getParser().getStreamer().Emit???();
   7722   return false;
   7723 }
   7724 
   7725 /// parseDirectiveCode
   7726 ///  ::= .code 16 | 32
   7727 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
   7728   const AsmToken &Tok = Parser.getTok();
   7729   if (Tok.isNot(AsmToken::Integer))
   7730     return Error(L, "unexpected token in .code directive");
   7731   int64_t Val = Parser.getTok().getIntVal();
   7732   if (Val == 16)
   7733     Parser.Lex();
   7734   else if (Val == 32)
   7735     Parser.Lex();
   7736   else
   7737     return Error(L, "invalid operand to .code directive");
   7738 
   7739   if (getLexer().isNot(AsmToken::EndOfStatement))
   7740     return Error(Parser.getTok().getLoc(), "unexpected token in directive");
   7741   Parser.Lex();
   7742 
   7743   if (Val == 16) {
   7744     if (!hasThumb())
   7745       return Error(L, "target does not support Thumb mode");
   7746 
   7747     if (!isThumb())
   7748       SwitchMode();
   7749     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
   7750   } else {
   7751     if (!hasARM())
   7752       return Error(L, "target does not support ARM mode");
   7753 
   7754     if (isThumb())
   7755       SwitchMode();
   7756     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   7757   }
   7758 
   7759   return false;
   7760 }
   7761 
   7762 /// parseDirectiveReq
   7763 ///  ::= name .req registername
   7764 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
   7765   Parser.Lex(); // Eat the '.req' token.
   7766   unsigned Reg;
   7767   SMLoc SRegLoc, ERegLoc;
   7768   if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
   7769     Parser.eatToEndOfStatement();
   7770     return Error(SRegLoc, "register name expected");
   7771   }
   7772 
   7773   // Shouldn't be anything else.
   7774   if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
   7775     Parser.eatToEndOfStatement();
   7776     return Error(Parser.getTok().getLoc(),
   7777                  "unexpected input in .req directive.");
   7778   }
   7779 
   7780   Parser.Lex(); // Consume the EndOfStatement
   7781 
   7782   if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
   7783     return Error(SRegLoc, "redefinition of '" + Name +
   7784                           "' does not match original.");
   7785 
   7786   return false;
   7787 }
   7788 
   7789 /// parseDirectiveUneq
   7790 ///  ::= .unreq registername
   7791 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
   7792   if (Parser.getTok().isNot(AsmToken::Identifier)) {
   7793     Parser.eatToEndOfStatement();
   7794     return Error(L, "unexpected input in .unreq directive.");
   7795   }
   7796   RegisterReqs.erase(Parser.getTok().getIdentifier());
   7797   Parser.Lex(); // Eat the identifier.
   7798   return false;
   7799 }
   7800 
   7801 /// parseDirectiveArch
   7802 ///  ::= .arch token
   7803 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
   7804   return true;
   7805 }
   7806 
   7807 /// parseDirectiveEabiAttr
   7808 ///  ::= .eabi_attribute int, int
   7809 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
   7810   return true;
   7811 }
   7812 
   7813 /// parseDirectiveFnStart
   7814 ///  ::= .fnstart
   7815 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
   7816   if (FnStartLoc.isValid()) {
   7817     Error(L, ".fnstart starts before the end of previous one");
   7818     Error(FnStartLoc, "previous .fnstart starts here");
   7819     return true;
   7820   }
   7821 
   7822   FnStartLoc = L;
   7823   getParser().getStreamer().EmitFnStart();
   7824   return false;
   7825 }
   7826 
   7827 /// parseDirectiveFnEnd
   7828 ///  ::= .fnend
   7829 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
   7830   // Check the ordering of unwind directives
   7831   if (!FnStartLoc.isValid())
   7832     return Error(L, ".fnstart must precede .fnend directive");
   7833 
   7834   // Reset the unwind directives parser state
   7835   resetUnwindDirectiveParserState();
   7836 
   7837   getParser().getStreamer().EmitFnEnd();
   7838   return false;
   7839 }
   7840 
   7841 /// parseDirectiveCantUnwind
   7842 ///  ::= .cantunwind
   7843 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
   7844   // Check the ordering of unwind directives
   7845   CantUnwindLoc = L;
   7846   if (!FnStartLoc.isValid())
   7847     return Error(L, ".fnstart must precede .cantunwind directive");
   7848   if (HandlerDataLoc.isValid()) {
   7849     Error(L, ".cantunwind can't be used with .handlerdata directive");
   7850     Error(HandlerDataLoc, ".handlerdata was specified here");
   7851     return true;
   7852   }
   7853   if (PersonalityLoc.isValid()) {
   7854     Error(L, ".cantunwind can't be used with .personality directive");
   7855     Error(PersonalityLoc, ".personality was specified here");
   7856     return true;
   7857   }
   7858 
   7859   getParser().getStreamer().EmitCantUnwind();
   7860   return false;
   7861 }
   7862 
   7863 /// parseDirectivePersonality
   7864 ///  ::= .personality name
   7865 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
   7866   // Check the ordering of unwind directives
   7867   PersonalityLoc = L;
   7868   if (!FnStartLoc.isValid())
   7869     return Error(L, ".fnstart must precede .personality directive");
   7870   if (CantUnwindLoc.isValid()) {
   7871     Error(L, ".personality can't be used with .cantunwind directive");
   7872     Error(CantUnwindLoc, ".cantunwind was specified here");
   7873     return true;
   7874   }
   7875   if (HandlerDataLoc.isValid()) {
   7876     Error(L, ".personality must precede .handlerdata directive");
   7877     Error(HandlerDataLoc, ".handlerdata was specified here");
   7878     return true;
   7879   }
   7880 
   7881   // Parse the name of the personality routine
   7882   if (Parser.getTok().isNot(AsmToken::Identifier)) {
   7883     Parser.eatToEndOfStatement();
   7884     return Error(L, "unexpected input in .personality directive.");
   7885   }
   7886   StringRef Name(Parser.getTok().getIdentifier());
   7887   Parser.Lex();
   7888 
   7889   MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
   7890   getParser().getStreamer().EmitPersonality(PR);
   7891   return false;
   7892 }
   7893 
   7894 /// parseDirectiveHandlerData
   7895 ///  ::= .handlerdata
   7896 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
   7897   // Check the ordering of unwind directives
   7898   HandlerDataLoc = L;
   7899   if (!FnStartLoc.isValid())
   7900     return Error(L, ".fnstart must precede .personality directive");
   7901   if (CantUnwindLoc.isValid()) {
   7902     Error(L, ".handlerdata can't be used with .cantunwind directive");
   7903     Error(CantUnwindLoc, ".cantunwind was specified here");
   7904     return true;
   7905   }
   7906 
   7907   getParser().getStreamer().EmitHandlerData();
   7908   return false;
   7909 }
   7910 
   7911 /// parseDirectiveSetFP
   7912 ///  ::= .setfp fpreg, spreg [, offset]
   7913 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
   7914   // Check the ordering of unwind directives
   7915   if (!FnStartLoc.isValid())
   7916     return Error(L, ".fnstart must precede .setfp directive");
   7917   if (HandlerDataLoc.isValid())
   7918     return Error(L, ".setfp must precede .handlerdata directive");
   7919 
   7920   // Parse fpreg
   7921   SMLoc NewFPRegLoc = Parser.getTok().getLoc();
   7922   int NewFPReg = tryParseRegister();
   7923   if (NewFPReg == -1)
   7924     return Error(NewFPRegLoc, "frame pointer register expected");
   7925 
   7926   // Consume comma
   7927   if (!Parser.getTok().is(AsmToken::Comma))
   7928     return Error(Parser.getTok().getLoc(), "comma expected");
   7929   Parser.Lex(); // skip comma
   7930 
   7931   // Parse spreg
   7932   SMLoc NewSPRegLoc = Parser.getTok().getLoc();
   7933   int NewSPReg = tryParseRegister();
   7934   if (NewSPReg == -1)
   7935     return Error(NewSPRegLoc, "stack pointer register expected");
   7936 
   7937   if (NewSPReg != ARM::SP && NewSPReg != FPReg)
   7938     return Error(NewSPRegLoc,
   7939                  "register should be either $sp or the latest fp register");
   7940 
   7941   // Update the frame pointer register
   7942   FPReg = NewFPReg;
   7943 
   7944   // Parse offset
   7945   int64_t Offset = 0;
   7946   if (Parser.getTok().is(AsmToken::Comma)) {
   7947     Parser.Lex(); // skip comma
   7948 
   7949     if (Parser.getTok().isNot(AsmToken::Hash) &&
   7950         Parser.getTok().isNot(AsmToken::Dollar)) {
   7951       return Error(Parser.getTok().getLoc(), "'#' expected");
   7952     }
   7953     Parser.Lex(); // skip hash token.
   7954 
   7955     const MCExpr *OffsetExpr;
   7956     SMLoc ExLoc = Parser.getTok().getLoc();
   7957     SMLoc EndLoc;
   7958     if (getParser().parseExpression(OffsetExpr, EndLoc))
   7959       return Error(ExLoc, "malformed setfp offset");
   7960     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   7961     if (!CE)
   7962       return Error(ExLoc, "setfp offset must be an immediate");
   7963 
   7964     Offset = CE->getValue();
   7965   }
   7966 
   7967   getParser().getStreamer().EmitSetFP(static_cast<unsigned>(NewFPReg),
   7968                                       static_cast<unsigned>(NewSPReg),
   7969                                       Offset);
   7970   return false;
   7971 }
   7972 
   7973 /// parseDirective
   7974 ///  ::= .pad offset
   7975 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
   7976   // Check the ordering of unwind directives
   7977   if (!FnStartLoc.isValid())
   7978     return Error(L, ".fnstart must precede .pad directive");
   7979   if (HandlerDataLoc.isValid())
   7980     return Error(L, ".pad must precede .handlerdata directive");
   7981 
   7982   // Parse the offset
   7983   if (Parser.getTok().isNot(AsmToken::Hash) &&
   7984       Parser.getTok().isNot(AsmToken::Dollar)) {
   7985     return Error(Parser.getTok().getLoc(), "'#' expected");
   7986   }
   7987   Parser.Lex(); // skip hash token.
   7988 
   7989   const MCExpr *OffsetExpr;
   7990   SMLoc ExLoc = Parser.getTok().getLoc();
   7991   SMLoc EndLoc;
   7992   if (getParser().parseExpression(OffsetExpr, EndLoc))
   7993     return Error(ExLoc, "malformed pad offset");
   7994   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   7995   if (!CE)
   7996     return Error(ExLoc, "pad offset must be an immediate");
   7997 
   7998   getParser().getStreamer().EmitPad(CE->getValue());
   7999   return false;
   8000 }
   8001 
   8002 /// parseDirectiveRegSave
   8003 ///  ::= .save  { registers }
   8004 ///  ::= .vsave { registers }
   8005 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
   8006   // Check the ordering of unwind directives
   8007   if (!FnStartLoc.isValid())
   8008     return Error(L, ".fnstart must precede .save or .vsave directives");
   8009   if (HandlerDataLoc.isValid())
   8010     return Error(L, ".save or .vsave must precede .handlerdata directive");
   8011 
   8012   // RAII object to make sure parsed operands are deleted.
   8013   struct CleanupObject {
   8014     SmallVector<MCParsedAsmOperand *, 1> Operands;
   8015     ~CleanupObject() {
   8016       for (unsigned I = 0, E = Operands.size(); I != E; ++I)
   8017         delete Operands[I];
   8018     }
   8019   } CO;
   8020 
   8021   // Parse the register list
   8022   if (parseRegisterList(CO.Operands))
   8023     return true;
   8024   ARMOperand *Op = (ARMOperand*)CO.Operands[0];
   8025   if (!IsVector && !Op->isRegList())
   8026     return Error(L, ".save expects GPR registers");
   8027   if (IsVector && !Op->isDPRRegList())
   8028     return Error(L, ".vsave expects DPR registers");
   8029 
   8030   getParser().getStreamer().EmitRegSave(Op->getRegList(), IsVector);
   8031   return false;
   8032 }
   8033 
   8034 /// Force static initialization.
   8035 extern "C" void LLVMInitializeARMAsmParser() {
   8036   RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
   8037   RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
   8038 }
   8039 
   8040 #define GET_REGISTER_MATCHER
   8041 #define GET_SUBTARGET_FEATURE_NAME
   8042 #define GET_MATCHER_IMPLEMENTATION
   8043 #include "ARMGenAsmMatcher.inc"
   8044 
   8045 // Define this matcher function after the auto-generated include so we
   8046 // have the match class enum definitions.
   8047 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
   8048                                                   unsigned Kind) {
   8049   ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
   8050   // If the kind is a token for a literal immediate, check if our asm
   8051   // operand matches. This is for InstAliases which have a fixed-value
   8052   // immediate in the syntax.
   8053   if (Kind == MCK__35_0 && Op->isImm()) {
   8054     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
   8055     if (!CE)
   8056       return Match_InvalidOperand;
   8057     if (CE->getValue() == 0)
   8058       return Match_Success;
   8059   }
   8060   return Match_InvalidOperand;
   8061 }
   8062