Home | History | Annotate | Download | only in Mips
      1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that Mips uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 #include "MipsISelLowering.h"
     15 #include "InstPrinter/MipsInstPrinter.h"
     16 #include "MCTargetDesc/MipsBaseInfo.h"
     17 #include "MipsMachineFunction.h"
     18 #include "MipsSubtarget.h"
     19 #include "MipsTargetMachine.h"
     20 #include "MipsTargetObjectFile.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/ADT/StringSwitch.h"
     23 #include "llvm/CodeGen/CallingConvLower.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/SelectionDAGISel.h"
     29 #include "llvm/CodeGen/ValueTypes.h"
     30 #include "llvm/IR/CallingConv.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include <cctype>
     38 
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "mips-lower"
     42 
     43 STATISTIC(NumTailCalls, "Number of tail calls");
     44 
     45 static cl::opt<bool>
     46 LargeGOT("mxgot", cl::Hidden,
     47          cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
     48 
     49 static cl::opt<bool>
     50 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
     51                cl::desc("MIPS: Don't trap on integer division by zero."),
     52                cl::init(false));
     53 
     54 cl::opt<bool>
     55 EnableMipsFastISel("mips-fast-isel", cl::Hidden,
     56   cl::desc("Allow mips-fast-isel to be used"),
     57   cl::init(false));
     58 
     59 static const MCPhysReg O32IntRegs[4] = {
     60   Mips::A0, Mips::A1, Mips::A2, Mips::A3
     61 };
     62 
     63 static const MCPhysReg Mips64IntRegs[8] = {
     64   Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
     65   Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
     66 };
     67 
     68 static const MCPhysReg Mips64DPRegs[8] = {
     69   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
     70   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
     71 };
     72 
     73 // If I is a shifted mask, set the size (Size) and the first bit of the
     74 // mask (Pos), and return true.
     75 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
     76 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
     77   if (!isShiftedMask_64(I))
     78     return false;
     79 
     80   Size = CountPopulation_64(I);
     81   Pos = countTrailingZeros(I);
     82   return true;
     83 }
     84 
     85 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
     86   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
     87   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
     88 }
     89 
     90 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
     91                                           SelectionDAG &DAG,
     92                                           unsigned Flag) const {
     93   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
     94 }
     95 
     96 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
     97                                           SelectionDAG &DAG,
     98                                           unsigned Flag) const {
     99   return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
    100 }
    101 
    102 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
    103                                           SelectionDAG &DAG,
    104                                           unsigned Flag) const {
    105   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
    106 }
    107 
    108 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
    109                                           SelectionDAG &DAG,
    110                                           unsigned Flag) const {
    111   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
    112 }
    113 
    114 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
    115                                           SelectionDAG &DAG,
    116                                           unsigned Flag) const {
    117   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
    118                                    N->getOffset(), Flag);
    119 }
    120 
    121 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
    122   switch (Opcode) {
    123   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
    124   case MipsISD::TailCall:          return "MipsISD::TailCall";
    125   case MipsISD::Hi:                return "MipsISD::Hi";
    126   case MipsISD::Lo:                return "MipsISD::Lo";
    127   case MipsISD::GPRel:             return "MipsISD::GPRel";
    128   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
    129   case MipsISD::Ret:               return "MipsISD::Ret";
    130   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
    131   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
    132   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
    133   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
    134   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
    135   case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
    136   case MipsISD::MFHI:              return "MipsISD::MFHI";
    137   case MipsISD::MFLO:              return "MipsISD::MFLO";
    138   case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
    139   case MipsISD::Mult:              return "MipsISD::Mult";
    140   case MipsISD::Multu:             return "MipsISD::Multu";
    141   case MipsISD::MAdd:              return "MipsISD::MAdd";
    142   case MipsISD::MAddu:             return "MipsISD::MAddu";
    143   case MipsISD::MSub:              return "MipsISD::MSub";
    144   case MipsISD::MSubu:             return "MipsISD::MSubu";
    145   case MipsISD::DivRem:            return "MipsISD::DivRem";
    146   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
    147   case MipsISD::DivRem16:          return "MipsISD::DivRem16";
    148   case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
    149   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
    150   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
    151   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
    152   case MipsISD::Sync:              return "MipsISD::Sync";
    153   case MipsISD::Ext:               return "MipsISD::Ext";
    154   case MipsISD::Ins:               return "MipsISD::Ins";
    155   case MipsISD::LWL:               return "MipsISD::LWL";
    156   case MipsISD::LWR:               return "MipsISD::LWR";
    157   case MipsISD::SWL:               return "MipsISD::SWL";
    158   case MipsISD::SWR:               return "MipsISD::SWR";
    159   case MipsISD::LDL:               return "MipsISD::LDL";
    160   case MipsISD::LDR:               return "MipsISD::LDR";
    161   case MipsISD::SDL:               return "MipsISD::SDL";
    162   case MipsISD::SDR:               return "MipsISD::SDR";
    163   case MipsISD::EXTP:              return "MipsISD::EXTP";
    164   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
    165   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
    166   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
    167   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
    168   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
    169   case MipsISD::SHILO:             return "MipsISD::SHILO";
    170   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
    171   case MipsISD::MULT:              return "MipsISD::MULT";
    172   case MipsISD::MULTU:             return "MipsISD::MULTU";
    173   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
    174   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
    175   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
    176   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
    177   case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
    178   case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
    179   case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
    180   case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
    181   case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
    182   case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
    183   case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
    184   case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
    185   case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
    186   case MipsISD::VCEQ:              return "MipsISD::VCEQ";
    187   case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
    188   case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
    189   case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
    190   case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
    191   case MipsISD::VSMAX:             return "MipsISD::VSMAX";
    192   case MipsISD::VSMIN:             return "MipsISD::VSMIN";
    193   case MipsISD::VUMAX:             return "MipsISD::VUMAX";
    194   case MipsISD::VUMIN:             return "MipsISD::VUMIN";
    195   case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
    196   case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
    197   case MipsISD::VNOR:              return "MipsISD::VNOR";
    198   case MipsISD::VSHF:              return "MipsISD::VSHF";
    199   case MipsISD::SHF:               return "MipsISD::SHF";
    200   case MipsISD::ILVEV:             return "MipsISD::ILVEV";
    201   case MipsISD::ILVOD:             return "MipsISD::ILVOD";
    202   case MipsISD::ILVL:              return "MipsISD::ILVL";
    203   case MipsISD::ILVR:              return "MipsISD::ILVR";
    204   case MipsISD::PCKEV:             return "MipsISD::PCKEV";
    205   case MipsISD::PCKOD:             return "MipsISD::PCKOD";
    206   case MipsISD::INSVE:             return "MipsISD::INSVE";
    207   default:                         return nullptr;
    208   }
    209 }
    210 
    211 MipsTargetLowering::MipsTargetLowering(MipsTargetMachine &TM)
    212     : TargetLowering(TM, new MipsTargetObjectFile()),
    213       Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
    214   // Mips does not have i1 type, so use i32 for
    215   // setcc operations results (slt, sgt, ...).
    216   setBooleanContents(ZeroOrOneBooleanContent);
    217   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    218   // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
    219   // does. Integer booleans still use 0 and 1.
    220   if (Subtarget->hasMips32r6())
    221     setBooleanContents(ZeroOrOneBooleanContent,
    222                        ZeroOrNegativeOneBooleanContent);
    223 
    224   // Load extented operations for i1 types must be promoted
    225   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
    226   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
    227   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
    228 
    229   // MIPS doesn't have extending float->double load/store
    230   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    231   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    232 
    233   // Used by legalize types to correctly generate the setcc result.
    234   // Without this, every float setcc comes with a AND/OR with the result,
    235   // we don't want this, since the fpcmp result goes to a flag register,
    236   // which is used implicitly by brcond and select operations.
    237   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
    238 
    239   // Mips Custom Operations
    240   setOperationAction(ISD::BR_JT,              MVT::Other, Custom);
    241   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
    242   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
    243   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
    244   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
    245   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
    246   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
    247   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
    248   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
    249   setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
    250   setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
    251   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
    252   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
    253   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
    254   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    255   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
    256   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
    257   setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
    258 
    259   if (Subtarget->isGP64bit()) {
    260     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
    261     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
    262     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
    263     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
    264     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
    265     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
    266     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
    267     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
    268     setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
    269   }
    270 
    271   if (!Subtarget->isGP64bit()) {
    272     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
    273     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
    274     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
    275   }
    276 
    277   setOperationAction(ISD::ADD,                MVT::i32,   Custom);
    278   if (Subtarget->isGP64bit())
    279     setOperationAction(ISD::ADD,                MVT::i64,   Custom);
    280 
    281   setOperationAction(ISD::SDIV, MVT::i32, Expand);
    282   setOperationAction(ISD::SREM, MVT::i32, Expand);
    283   setOperationAction(ISD::UDIV, MVT::i32, Expand);
    284   setOperationAction(ISD::UREM, MVT::i32, Expand);
    285   setOperationAction(ISD::SDIV, MVT::i64, Expand);
    286   setOperationAction(ISD::SREM, MVT::i64, Expand);
    287   setOperationAction(ISD::UDIV, MVT::i64, Expand);
    288   setOperationAction(ISD::UREM, MVT::i64, Expand);
    289 
    290   // Operations not directly supported by Mips.
    291   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
    292   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
    293   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
    294   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
    295   setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
    296   setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
    297   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
    298   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
    299   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
    300   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
    301   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
    302   if (Subtarget->hasCnMips()) {
    303     setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
    304     setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
    305   } else {
    306     setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
    307     setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
    308   }
    309   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
    310   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
    311   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
    312   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
    313   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
    314   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
    315   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
    316   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
    317   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
    318   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
    319 
    320   if (!Subtarget->hasMips32r2())
    321     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
    322 
    323   if (!Subtarget->hasMips64r2())
    324     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
    325 
    326   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
    327   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
    328   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
    329   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
    330   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
    331   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
    332   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
    333   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
    334   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
    335   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
    336   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
    337   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
    338   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
    339   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
    340   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
    341   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
    342   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
    343 
    344   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
    345 
    346   setOperationAction(ISD::VAARG,             MVT::Other, Expand);
    347   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
    348   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
    349 
    350   // Use the default for now
    351   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
    352   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
    353 
    354   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
    355   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
    356   setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
    357   setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
    358 
    359   setInsertFencesForAtomic(true);
    360 
    361   if (!Subtarget->hasMips32r2()) {
    362     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    363     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    364   }
    365 
    366   // MIPS16 lacks MIPS32's clz and clo instructions.
    367   if (!Subtarget->hasMips32() || Subtarget->inMips16Mode())
    368     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    369   if (!Subtarget->hasMips64())
    370     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
    371 
    372   if (!Subtarget->hasMips32r2())
    373     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    374   if (!Subtarget->hasMips64r2())
    375     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
    376 
    377   if (Subtarget->isGP64bit()) {
    378     setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
    379     setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
    380     setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
    381     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
    382   }
    383 
    384   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    385 
    386   setTargetDAGCombine(ISD::SDIVREM);
    387   setTargetDAGCombine(ISD::UDIVREM);
    388   setTargetDAGCombine(ISD::SELECT);
    389   setTargetDAGCombine(ISD::AND);
    390   setTargetDAGCombine(ISD::OR);
    391   setTargetDAGCombine(ISD::ADD);
    392 
    393   setMinFunctionAlignment(Subtarget->isGP64bit() ? 3 : 2);
    394 
    395   setStackPointerRegisterToSaveRestore(Subtarget->isABI_N64() ? Mips::SP_64
    396                                                               : Mips::SP);
    397 
    398   setExceptionPointerRegister(Subtarget->isABI_N64() ? Mips::A0_64 : Mips::A0);
    399   setExceptionSelectorRegister(Subtarget->isABI_N64() ? Mips::A1_64 : Mips::A1);
    400 
    401   MaxStoresPerMemcpy = 16;
    402 
    403   isMicroMips = Subtarget->inMicroMipsMode();
    404 }
    405 
    406 const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
    407   if (TM.getSubtargetImpl()->inMips16Mode())
    408     return llvm::createMips16TargetLowering(TM);
    409 
    410   return llvm::createMipsSETargetLowering(TM);
    411 }
    412 
    413 // Create a fast isel object.
    414 FastISel *
    415 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
    416                                   const TargetLibraryInfo *libInfo) const {
    417   if (!EnableMipsFastISel)
    418     return TargetLowering::createFastISel(funcInfo, libInfo);
    419   return Mips::createFastISel(funcInfo, libInfo);
    420 }
    421 
    422 EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
    423   if (!VT.isVector())
    424     return MVT::i32;
    425   return VT.changeVectorElementTypeToInteger();
    426 }
    427 
    428 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
    429                                     TargetLowering::DAGCombinerInfo &DCI,
    430                                     const MipsSubtarget *Subtarget) {
    431   if (DCI.isBeforeLegalizeOps())
    432     return SDValue();
    433 
    434   EVT Ty = N->getValueType(0);
    435   unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
    436   unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
    437   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
    438                                                   MipsISD::DivRemU16;
    439   SDLoc DL(N);
    440 
    441   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
    442                                N->getOperand(0), N->getOperand(1));
    443   SDValue InChain = DAG.getEntryNode();
    444   SDValue InGlue = DivRem;
    445 
    446   // insert MFLO
    447   if (N->hasAnyUseOfValue(0)) {
    448     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
    449                                             InGlue);
    450     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
    451     InChain = CopyFromLo.getValue(1);
    452     InGlue = CopyFromLo.getValue(2);
    453   }
    454 
    455   // insert MFHI
    456   if (N->hasAnyUseOfValue(1)) {
    457     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
    458                                             HI, Ty, InGlue);
    459     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
    460   }
    461 
    462   return SDValue();
    463 }
    464 
    465 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
    466   switch (CC) {
    467   default: llvm_unreachable("Unknown fp condition code!");
    468   case ISD::SETEQ:
    469   case ISD::SETOEQ: return Mips::FCOND_OEQ;
    470   case ISD::SETUNE: return Mips::FCOND_UNE;
    471   case ISD::SETLT:
    472   case ISD::SETOLT: return Mips::FCOND_OLT;
    473   case ISD::SETGT:
    474   case ISD::SETOGT: return Mips::FCOND_OGT;
    475   case ISD::SETLE:
    476   case ISD::SETOLE: return Mips::FCOND_OLE;
    477   case ISD::SETGE:
    478   case ISD::SETOGE: return Mips::FCOND_OGE;
    479   case ISD::SETULT: return Mips::FCOND_ULT;
    480   case ISD::SETULE: return Mips::FCOND_ULE;
    481   case ISD::SETUGT: return Mips::FCOND_UGT;
    482   case ISD::SETUGE: return Mips::FCOND_UGE;
    483   case ISD::SETUO:  return Mips::FCOND_UN;
    484   case ISD::SETO:   return Mips::FCOND_OR;
    485   case ISD::SETNE:
    486   case ISD::SETONE: return Mips::FCOND_ONE;
    487   case ISD::SETUEQ: return Mips::FCOND_UEQ;
    488   }
    489 }
    490 
    491 
    492 /// This function returns true if the floating point conditional branches and
    493 /// conditional moves which use condition code CC should be inverted.
    494 static bool invertFPCondCodeUser(Mips::CondCode CC) {
    495   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
    496     return false;
    497 
    498   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
    499          "Illegal Condition Code");
    500 
    501   return true;
    502 }
    503 
    504 // Creates and returns an FPCmp node from a setcc node.
    505 // Returns Op if setcc is not a floating point comparison.
    506 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
    507   // must be a SETCC node
    508   if (Op.getOpcode() != ISD::SETCC)
    509     return Op;
    510 
    511   SDValue LHS = Op.getOperand(0);
    512 
    513   if (!LHS.getValueType().isFloatingPoint())
    514     return Op;
    515 
    516   SDValue RHS = Op.getOperand(1);
    517   SDLoc DL(Op);
    518 
    519   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
    520   // node if necessary.
    521   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    522 
    523   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
    524                      DAG.getConstant(condCodeToFCC(CC), MVT::i32));
    525 }
    526 
    527 // Creates and returns a CMovFPT/F node.
    528 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
    529                             SDValue False, SDLoc DL) {
    530   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
    531   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
    532   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
    533 
    534   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
    535                      True.getValueType(), True, FCC0, False, Cond);
    536 }
    537 
    538 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
    539                                     TargetLowering::DAGCombinerInfo &DCI,
    540                                     const MipsSubtarget *Subtarget) {
    541   if (DCI.isBeforeLegalizeOps())
    542     return SDValue();
    543 
    544   SDValue SetCC = N->getOperand(0);
    545 
    546   if ((SetCC.getOpcode() != ISD::SETCC) ||
    547       !SetCC.getOperand(0).getValueType().isInteger())
    548     return SDValue();
    549 
    550   SDValue False = N->getOperand(2);
    551   EVT FalseTy = False.getValueType();
    552 
    553   if (!FalseTy.isInteger())
    554     return SDValue();
    555 
    556   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
    557 
    558   // If the RHS (False) is 0, we swap the order of the operands
    559   // of ISD::SELECT (obviously also inverting the condition) so that we can
    560   // take advantage of conditional moves using the $0 register.
    561   // Example:
    562   //   return (a != 0) ? x : 0;
    563   //     load $reg, x
    564   //     movz $reg, $0, a
    565   if (!FalseC)
    566     return SDValue();
    567 
    568   const SDLoc DL(N);
    569 
    570   if (!FalseC->getZExtValue()) {
    571     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    572     SDValue True = N->getOperand(1);
    573 
    574     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
    575                          SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
    576 
    577     return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
    578   }
    579 
    580   // If both operands are integer constants there's a possibility that we
    581   // can do some interesting optimizations.
    582   SDValue True = N->getOperand(1);
    583   ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
    584 
    585   if (!TrueC || !True.getValueType().isInteger())
    586     return SDValue();
    587 
    588   // We'll also ignore MVT::i64 operands as this optimizations proves
    589   // to be ineffective because of the required sign extensions as the result
    590   // of a SETCC operator is always MVT::i32 for non-vector types.
    591   if (True.getValueType() == MVT::i64)
    592     return SDValue();
    593 
    594   int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
    595 
    596   // 1)  (a < x) ? y : y-1
    597   //  slti $reg1, a, x
    598   //  addiu $reg2, $reg1, y-1
    599   if (Diff == 1)
    600     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
    601 
    602   // 2)  (a < x) ? y-1 : y
    603   //  slti $reg1, a, x
    604   //  xor $reg1, $reg1, 1
    605   //  addiu $reg2, $reg1, y-1
    606   if (Diff == -1) {
    607     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
    608     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
    609                          SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
    610     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
    611   }
    612 
    613   // Couldn't optimize.
    614   return SDValue();
    615 }
    616 
    617 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
    618                                  TargetLowering::DAGCombinerInfo &DCI,
    619                                  const MipsSubtarget *Subtarget) {
    620   // Pattern match EXT.
    621   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
    622   //  => ext $dst, $src, size, pos
    623   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
    624     return SDValue();
    625 
    626   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
    627   unsigned ShiftRightOpc = ShiftRight.getOpcode();
    628 
    629   // Op's first operand must be a shift right.
    630   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
    631     return SDValue();
    632 
    633   // The second operand of the shift must be an immediate.
    634   ConstantSDNode *CN;
    635   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
    636     return SDValue();
    637 
    638   uint64_t Pos = CN->getZExtValue();
    639   uint64_t SMPos, SMSize;
    640 
    641   // Op's second operand must be a shifted mask.
    642   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
    643       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
    644     return SDValue();
    645 
    646   // Return if the shifted mask does not start at bit 0 or the sum of its size
    647   // and Pos exceeds the word's size.
    648   EVT ValTy = N->getValueType(0);
    649   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
    650     return SDValue();
    651 
    652   return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
    653                      ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
    654                      DAG.getConstant(SMSize, MVT::i32));
    655 }
    656 
    657 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
    658                                 TargetLowering::DAGCombinerInfo &DCI,
    659                                 const MipsSubtarget *Subtarget) {
    660   // Pattern match INS.
    661   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
    662   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
    663   //  => ins $dst, $src, size, pos, $src1
    664   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
    665     return SDValue();
    666 
    667   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
    668   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
    669   ConstantSDNode *CN;
    670 
    671   // See if Op's first operand matches (and $src1 , mask0).
    672   if (And0.getOpcode() != ISD::AND)
    673     return SDValue();
    674 
    675   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
    676       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
    677     return SDValue();
    678 
    679   // See if Op's second operand matches (and (shl $src, pos), mask1).
    680   if (And1.getOpcode() != ISD::AND)
    681     return SDValue();
    682 
    683   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
    684       !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
    685     return SDValue();
    686 
    687   // The shift masks must have the same position and size.
    688   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
    689     return SDValue();
    690 
    691   SDValue Shl = And1.getOperand(0);
    692   if (Shl.getOpcode() != ISD::SHL)
    693     return SDValue();
    694 
    695   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
    696     return SDValue();
    697 
    698   unsigned Shamt = CN->getZExtValue();
    699 
    700   // Return if the shift amount and the first bit position of mask are not the
    701   // same.
    702   EVT ValTy = N->getValueType(0);
    703   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
    704     return SDValue();
    705 
    706   return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
    707                      DAG.getConstant(SMPos0, MVT::i32),
    708                      DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
    709 }
    710 
    711 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
    712                                  TargetLowering::DAGCombinerInfo &DCI,
    713                                  const MipsSubtarget *Subtarget) {
    714   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
    715 
    716   if (DCI.isBeforeLegalizeOps())
    717     return SDValue();
    718 
    719   SDValue Add = N->getOperand(1);
    720 
    721   if (Add.getOpcode() != ISD::ADD)
    722     return SDValue();
    723 
    724   SDValue Lo = Add.getOperand(1);
    725 
    726   if ((Lo.getOpcode() != MipsISD::Lo) ||
    727       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
    728     return SDValue();
    729 
    730   EVT ValTy = N->getValueType(0);
    731   SDLoc DL(N);
    732 
    733   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
    734                              Add.getOperand(0));
    735   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
    736 }
    737 
    738 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
    739   const {
    740   SelectionDAG &DAG = DCI.DAG;
    741   unsigned Opc = N->getOpcode();
    742 
    743   switch (Opc) {
    744   default: break;
    745   case ISD::SDIVREM:
    746   case ISD::UDIVREM:
    747     return performDivRemCombine(N, DAG, DCI, Subtarget);
    748   case ISD::SELECT:
    749     return performSELECTCombine(N, DAG, DCI, Subtarget);
    750   case ISD::AND:
    751     return performANDCombine(N, DAG, DCI, Subtarget);
    752   case ISD::OR:
    753     return performORCombine(N, DAG, DCI, Subtarget);
    754   case ISD::ADD:
    755     return performADDCombine(N, DAG, DCI, Subtarget);
    756   }
    757 
    758   return SDValue();
    759 }
    760 
    761 void
    762 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
    763                                           SmallVectorImpl<SDValue> &Results,
    764                                           SelectionDAG &DAG) const {
    765   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
    766 
    767   for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
    768     Results.push_back(Res.getValue(I));
    769 }
    770 
    771 void
    772 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
    773                                        SmallVectorImpl<SDValue> &Results,
    774                                        SelectionDAG &DAG) const {
    775   return LowerOperationWrapper(N, Results, DAG);
    776 }
    777 
    778 SDValue MipsTargetLowering::
    779 LowerOperation(SDValue Op, SelectionDAG &DAG) const
    780 {
    781   switch (Op.getOpcode())
    782   {
    783   case ISD::BR_JT:              return lowerBR_JT(Op, DAG);
    784   case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
    785   case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
    786   case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
    787   case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
    788   case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
    789   case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
    790   case ISD::SELECT:             return lowerSELECT(Op, DAG);
    791   case ISD::SELECT_CC:          return lowerSELECT_CC(Op, DAG);
    792   case ISD::SETCC:              return lowerSETCC(Op, DAG);
    793   case ISD::VASTART:            return lowerVASTART(Op, DAG);
    794   case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
    795   case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
    796   case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
    797   case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
    798   case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
    799   case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
    800   case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
    801   case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
    802   case ISD::LOAD:               return lowerLOAD(Op, DAG);
    803   case ISD::STORE:              return lowerSTORE(Op, DAG);
    804   case ISD::ADD:                return lowerADD(Op, DAG);
    805   case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
    806   }
    807   return SDValue();
    808 }
    809 
    810 //===----------------------------------------------------------------------===//
    811 //  Lower helper functions
    812 //===----------------------------------------------------------------------===//
    813 
    814 // addLiveIn - This helper function adds the specified physical register to the
    815 // MachineFunction as a live in value.  It also creates a corresponding
    816 // virtual register for it.
    817 static unsigned
    818 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
    819 {
    820   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
    821   MF.getRegInfo().addLiveIn(PReg, VReg);
    822   return VReg;
    823 }
    824 
    825 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI,
    826                                               MachineBasicBlock &MBB,
    827                                               const TargetInstrInfo &TII,
    828                                               bool Is64Bit) {
    829   if (NoZeroDivCheck)
    830     return &MBB;
    831 
    832   // Insert instruction "teq $divisor_reg, $zero, 7".
    833   MachineBasicBlock::iterator I(MI);
    834   MachineInstrBuilder MIB;
    835   MachineOperand &Divisor = MI->getOperand(2);
    836   MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
    837     .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
    838     .addReg(Mips::ZERO).addImm(7);
    839 
    840   // Use the 32-bit sub-register if this is a 64-bit division.
    841   if (Is64Bit)
    842     MIB->getOperand(0).setSubReg(Mips::sub_32);
    843 
    844   // Clear Divisor's kill flag.
    845   Divisor.setIsKill(false);
    846 
    847   // We would normally delete the original instruction here but in this case
    848   // we only needed to inject an additional instruction rather than replace it.
    849 
    850   return &MBB;
    851 }
    852 
    853 MachineBasicBlock *
    854 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    855                                                 MachineBasicBlock *BB) const {
    856   switch (MI->getOpcode()) {
    857   default:
    858     llvm_unreachable("Unexpected instr type to insert");
    859   case Mips::ATOMIC_LOAD_ADD_I8:
    860     return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
    861   case Mips::ATOMIC_LOAD_ADD_I16:
    862     return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
    863   case Mips::ATOMIC_LOAD_ADD_I32:
    864     return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
    865   case Mips::ATOMIC_LOAD_ADD_I64:
    866     return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
    867 
    868   case Mips::ATOMIC_LOAD_AND_I8:
    869     return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
    870   case Mips::ATOMIC_LOAD_AND_I16:
    871     return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
    872   case Mips::ATOMIC_LOAD_AND_I32:
    873     return emitAtomicBinary(MI, BB, 4, Mips::AND);
    874   case Mips::ATOMIC_LOAD_AND_I64:
    875     return emitAtomicBinary(MI, BB, 8, Mips::AND64);
    876 
    877   case Mips::ATOMIC_LOAD_OR_I8:
    878     return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
    879   case Mips::ATOMIC_LOAD_OR_I16:
    880     return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
    881   case Mips::ATOMIC_LOAD_OR_I32:
    882     return emitAtomicBinary(MI, BB, 4, Mips::OR);
    883   case Mips::ATOMIC_LOAD_OR_I64:
    884     return emitAtomicBinary(MI, BB, 8, Mips::OR64);
    885 
    886   case Mips::ATOMIC_LOAD_XOR_I8:
    887     return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
    888   case Mips::ATOMIC_LOAD_XOR_I16:
    889     return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
    890   case Mips::ATOMIC_LOAD_XOR_I32:
    891     return emitAtomicBinary(MI, BB, 4, Mips::XOR);
    892   case Mips::ATOMIC_LOAD_XOR_I64:
    893     return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
    894 
    895   case Mips::ATOMIC_LOAD_NAND_I8:
    896     return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
    897   case Mips::ATOMIC_LOAD_NAND_I16:
    898     return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
    899   case Mips::ATOMIC_LOAD_NAND_I32:
    900     return emitAtomicBinary(MI, BB, 4, 0, true);
    901   case Mips::ATOMIC_LOAD_NAND_I64:
    902     return emitAtomicBinary(MI, BB, 8, 0, true);
    903 
    904   case Mips::ATOMIC_LOAD_SUB_I8:
    905     return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
    906   case Mips::ATOMIC_LOAD_SUB_I16:
    907     return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
    908   case Mips::ATOMIC_LOAD_SUB_I32:
    909     return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
    910   case Mips::ATOMIC_LOAD_SUB_I64:
    911     return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
    912 
    913   case Mips::ATOMIC_SWAP_I8:
    914     return emitAtomicBinaryPartword(MI, BB, 1, 0);
    915   case Mips::ATOMIC_SWAP_I16:
    916     return emitAtomicBinaryPartword(MI, BB, 2, 0);
    917   case Mips::ATOMIC_SWAP_I32:
    918     return emitAtomicBinary(MI, BB, 4, 0);
    919   case Mips::ATOMIC_SWAP_I64:
    920     return emitAtomicBinary(MI, BB, 8, 0);
    921 
    922   case Mips::ATOMIC_CMP_SWAP_I8:
    923     return emitAtomicCmpSwapPartword(MI, BB, 1);
    924   case Mips::ATOMIC_CMP_SWAP_I16:
    925     return emitAtomicCmpSwapPartword(MI, BB, 2);
    926   case Mips::ATOMIC_CMP_SWAP_I32:
    927     return emitAtomicCmpSwap(MI, BB, 4);
    928   case Mips::ATOMIC_CMP_SWAP_I64:
    929     return emitAtomicCmpSwap(MI, BB, 8);
    930   case Mips::PseudoSDIV:
    931   case Mips::PseudoUDIV:
    932   case Mips::DIV:
    933   case Mips::DIVU:
    934   case Mips::MOD:
    935   case Mips::MODU:
    936     return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
    937                                false);
    938   case Mips::PseudoDSDIV:
    939   case Mips::PseudoDUDIV:
    940   case Mips::DDIV:
    941   case Mips::DDIVU:
    942   case Mips::DMOD:
    943   case Mips::DMODU:
    944     return insertDivByZeroTrap(MI, *BB, *getTargetMachine().getInstrInfo(),
    945                                true);
    946   case Mips::SEL_D:
    947     return emitSEL_D(MI, BB);
    948   }
    949 }
    950 
    951 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
    952 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
    953 MachineBasicBlock *
    954 MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
    955                                      unsigned Size, unsigned BinOpcode,
    956                                      bool Nand) const {
    957   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
    958 
    959   MachineFunction *MF = BB->getParent();
    960   MachineRegisterInfo &RegInfo = MF->getRegInfo();
    961   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
    962   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
    963   DebugLoc DL = MI->getDebugLoc();
    964   unsigned LL, SC, AND, NOR, ZERO, BEQ;
    965 
    966   if (Size == 4) {
    967     if (isMicroMips) {
    968       LL = Mips::LL_MM;
    969       SC = Mips::SC_MM;
    970     } else {
    971       LL = Subtarget->hasMips32r6() ? Mips::LL : Mips::LL_R6;
    972       SC = Subtarget->hasMips32r6() ? Mips::SC : Mips::SC_R6;
    973     }
    974     AND = Mips::AND;
    975     NOR = Mips::NOR;
    976     ZERO = Mips::ZERO;
    977     BEQ = Mips::BEQ;
    978   } else {
    979     LL = Subtarget->hasMips64r6() ? Mips::LLD : Mips::LLD_R6;
    980     SC = Subtarget->hasMips64r6() ? Mips::SCD : Mips::SCD_R6;
    981     AND = Mips::AND64;
    982     NOR = Mips::NOR64;
    983     ZERO = Mips::ZERO_64;
    984     BEQ = Mips::BEQ64;
    985   }
    986 
    987   unsigned OldVal = MI->getOperand(0).getReg();
    988   unsigned Ptr = MI->getOperand(1).getReg();
    989   unsigned Incr = MI->getOperand(2).getReg();
    990 
    991   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
    992   unsigned AndRes = RegInfo.createVirtualRegister(RC);
    993   unsigned Success = RegInfo.createVirtualRegister(RC);
    994 
    995   // insert new blocks after the current block
    996   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    997   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
    998   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
    999   MachineFunction::iterator It = BB;
   1000   ++It;
   1001   MF->insert(It, loopMBB);
   1002   MF->insert(It, exitMBB);
   1003 
   1004   // Transfer the remainder of BB and its successor edges to exitMBB.
   1005   exitMBB->splice(exitMBB->begin(), BB,
   1006                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1007   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1008 
   1009   //  thisMBB:
   1010   //    ...
   1011   //    fallthrough --> loopMBB
   1012   BB->addSuccessor(loopMBB);
   1013   loopMBB->addSuccessor(loopMBB);
   1014   loopMBB->addSuccessor(exitMBB);
   1015 
   1016   //  loopMBB:
   1017   //    ll oldval, 0(ptr)
   1018   //    <binop> storeval, oldval, incr
   1019   //    sc success, storeval, 0(ptr)
   1020   //    beq success, $0, loopMBB
   1021   BB = loopMBB;
   1022   BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
   1023   if (Nand) {
   1024     //  and andres, oldval, incr
   1025     //  nor storeval, $0, andres
   1026     BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
   1027     BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
   1028   } else if (BinOpcode) {
   1029     //  <binop> storeval, oldval, incr
   1030     BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
   1031   } else {
   1032     StoreVal = Incr;
   1033   }
   1034   BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
   1035   BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
   1036 
   1037   MI->eraseFromParent(); // The instruction is gone now.
   1038 
   1039   return exitMBB;
   1040 }
   1041 
   1042 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
   1043     MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
   1044     unsigned SrcReg) const {
   1045   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1046   DebugLoc DL = MI->getDebugLoc();
   1047 
   1048   if (Subtarget->hasMips32r2() && Size == 1) {
   1049     BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
   1050     return BB;
   1051   }
   1052 
   1053   if (Subtarget->hasMips32r2() && Size == 2) {
   1054     BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
   1055     return BB;
   1056   }
   1057 
   1058   MachineFunction *MF = BB->getParent();
   1059   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1060   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1061   unsigned ScrReg = RegInfo.createVirtualRegister(RC);
   1062 
   1063   assert(Size < 32);
   1064   int64_t ShiftImm = 32 - (Size * 8);
   1065 
   1066   BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
   1067   BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
   1068 
   1069   return BB;
   1070 }
   1071 
   1072 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
   1073     MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
   1074     bool Nand) const {
   1075   assert((Size == 1 || Size == 2) &&
   1076          "Unsupported size for EmitAtomicBinaryPartial.");
   1077 
   1078   MachineFunction *MF = BB->getParent();
   1079   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1080   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1081   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1082   DebugLoc DL = MI->getDebugLoc();
   1083 
   1084   unsigned Dest = MI->getOperand(0).getReg();
   1085   unsigned Ptr = MI->getOperand(1).getReg();
   1086   unsigned Incr = MI->getOperand(2).getReg();
   1087 
   1088   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
   1089   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
   1090   unsigned Mask = RegInfo.createVirtualRegister(RC);
   1091   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
   1092   unsigned NewVal = RegInfo.createVirtualRegister(RC);
   1093   unsigned OldVal = RegInfo.createVirtualRegister(RC);
   1094   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
   1095   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
   1096   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
   1097   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
   1098   unsigned AndRes = RegInfo.createVirtualRegister(RC);
   1099   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
   1100   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
   1101   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1102   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
   1103   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
   1104   unsigned Success = RegInfo.createVirtualRegister(RC);
   1105 
   1106   // insert new blocks after the current block
   1107   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1108   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1109   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1110   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1111   MachineFunction::iterator It = BB;
   1112   ++It;
   1113   MF->insert(It, loopMBB);
   1114   MF->insert(It, sinkMBB);
   1115   MF->insert(It, exitMBB);
   1116 
   1117   // Transfer the remainder of BB and its successor edges to exitMBB.
   1118   exitMBB->splice(exitMBB->begin(), BB,
   1119                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1120   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1121 
   1122   BB->addSuccessor(loopMBB);
   1123   loopMBB->addSuccessor(loopMBB);
   1124   loopMBB->addSuccessor(sinkMBB);
   1125   sinkMBB->addSuccessor(exitMBB);
   1126 
   1127   //  thisMBB:
   1128   //    addiu   masklsb2,$0,-4                # 0xfffffffc
   1129   //    and     alignedaddr,ptr,masklsb2
   1130   //    andi    ptrlsb2,ptr,3
   1131   //    sll     shiftamt,ptrlsb2,3
   1132   //    ori     maskupper,$0,255               # 0xff
   1133   //    sll     mask,maskupper,shiftamt
   1134   //    nor     mask2,$0,mask
   1135   //    sll     incr2,incr,shiftamt
   1136 
   1137   int64_t MaskImm = (Size == 1) ? 255 : 65535;
   1138   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
   1139     .addReg(Mips::ZERO).addImm(-4);
   1140   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
   1141     .addReg(Ptr).addReg(MaskLSB2);
   1142   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
   1143   if (Subtarget->isLittle()) {
   1144     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
   1145   } else {
   1146     unsigned Off = RegInfo.createVirtualRegister(RC);
   1147     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
   1148       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
   1149     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
   1150   }
   1151   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
   1152     .addReg(Mips::ZERO).addImm(MaskImm);
   1153   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
   1154     .addReg(MaskUpper).addReg(ShiftAmt);
   1155   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
   1156   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
   1157 
   1158   // atomic.load.binop
   1159   // loopMBB:
   1160   //   ll      oldval,0(alignedaddr)
   1161   //   binop   binopres,oldval,incr2
   1162   //   and     newval,binopres,mask
   1163   //   and     maskedoldval0,oldval,mask2
   1164   //   or      storeval,maskedoldval0,newval
   1165   //   sc      success,storeval,0(alignedaddr)
   1166   //   beq     success,$0,loopMBB
   1167 
   1168   // atomic.swap
   1169   // loopMBB:
   1170   //   ll      oldval,0(alignedaddr)
   1171   //   and     newval,incr2,mask
   1172   //   and     maskedoldval0,oldval,mask2
   1173   //   or      storeval,maskedoldval0,newval
   1174   //   sc      success,storeval,0(alignedaddr)
   1175   //   beq     success,$0,loopMBB
   1176 
   1177   BB = loopMBB;
   1178   BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
   1179   if (Nand) {
   1180     //  and andres, oldval, incr2
   1181     //  nor binopres, $0, andres
   1182     //  and newval, binopres, mask
   1183     BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
   1184     BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
   1185       .addReg(Mips::ZERO).addReg(AndRes);
   1186     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
   1187   } else if (BinOpcode) {
   1188     //  <binop> binopres, oldval, incr2
   1189     //  and newval, binopres, mask
   1190     BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
   1191     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
   1192   } else { // atomic.swap
   1193     //  and newval, incr2, mask
   1194     BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
   1195   }
   1196 
   1197   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
   1198     .addReg(OldVal).addReg(Mask2);
   1199   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
   1200     .addReg(MaskedOldVal0).addReg(NewVal);
   1201   BuildMI(BB, DL, TII->get(Mips::SC), Success)
   1202     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
   1203   BuildMI(BB, DL, TII->get(Mips::BEQ))
   1204     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
   1205 
   1206   //  sinkMBB:
   1207   //    and     maskedoldval1,oldval,mask
   1208   //    srl     srlres,maskedoldval1,shiftamt
   1209   //    sign_extend dest,srlres
   1210   BB = sinkMBB;
   1211 
   1212   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
   1213     .addReg(OldVal).addReg(Mask);
   1214   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
   1215       .addReg(MaskedOldVal1).addReg(ShiftAmt);
   1216   BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
   1217 
   1218   MI->eraseFromParent(); // The instruction is gone now.
   1219 
   1220   return exitMBB;
   1221 }
   1222 
   1223 MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
   1224                                                           MachineBasicBlock *BB,
   1225                                                           unsigned Size) const {
   1226   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
   1227 
   1228   MachineFunction *MF = BB->getParent();
   1229   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1230   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
   1231   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1232   DebugLoc DL = MI->getDebugLoc();
   1233   unsigned LL, SC, ZERO, BNE, BEQ;
   1234 
   1235   if (Size == 4) {
   1236     LL = isMicroMips ? Mips::LL_MM : Mips::LL;
   1237     SC = isMicroMips ? Mips::SC_MM : Mips::SC;
   1238     ZERO = Mips::ZERO;
   1239     BNE = Mips::BNE;
   1240     BEQ = Mips::BEQ;
   1241   } else {
   1242     LL = Mips::LLD;
   1243     SC = Mips::SCD;
   1244     ZERO = Mips::ZERO_64;
   1245     BNE = Mips::BNE64;
   1246     BEQ = Mips::BEQ64;
   1247   }
   1248 
   1249   unsigned Dest    = MI->getOperand(0).getReg();
   1250   unsigned Ptr     = MI->getOperand(1).getReg();
   1251   unsigned OldVal  = MI->getOperand(2).getReg();
   1252   unsigned NewVal  = MI->getOperand(3).getReg();
   1253 
   1254   unsigned Success = RegInfo.createVirtualRegister(RC);
   1255 
   1256   // insert new blocks after the current block
   1257   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1258   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1259   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1260   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1261   MachineFunction::iterator It = BB;
   1262   ++It;
   1263   MF->insert(It, loop1MBB);
   1264   MF->insert(It, loop2MBB);
   1265   MF->insert(It, exitMBB);
   1266 
   1267   // Transfer the remainder of BB and its successor edges to exitMBB.
   1268   exitMBB->splice(exitMBB->begin(), BB,
   1269                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1270   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1271 
   1272   //  thisMBB:
   1273   //    ...
   1274   //    fallthrough --> loop1MBB
   1275   BB->addSuccessor(loop1MBB);
   1276   loop1MBB->addSuccessor(exitMBB);
   1277   loop1MBB->addSuccessor(loop2MBB);
   1278   loop2MBB->addSuccessor(loop1MBB);
   1279   loop2MBB->addSuccessor(exitMBB);
   1280 
   1281   // loop1MBB:
   1282   //   ll dest, 0(ptr)
   1283   //   bne dest, oldval, exitMBB
   1284   BB = loop1MBB;
   1285   BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
   1286   BuildMI(BB, DL, TII->get(BNE))
   1287     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
   1288 
   1289   // loop2MBB:
   1290   //   sc success, newval, 0(ptr)
   1291   //   beq success, $0, loop1MBB
   1292   BB = loop2MBB;
   1293   BuildMI(BB, DL, TII->get(SC), Success)
   1294     .addReg(NewVal).addReg(Ptr).addImm(0);
   1295   BuildMI(BB, DL, TII->get(BEQ))
   1296     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
   1297 
   1298   MI->eraseFromParent(); // The instruction is gone now.
   1299 
   1300   return exitMBB;
   1301 }
   1302 
   1303 MachineBasicBlock *
   1304 MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
   1305                                               MachineBasicBlock *BB,
   1306                                               unsigned Size) const {
   1307   assert((Size == 1 || Size == 2) &&
   1308       "Unsupported size for EmitAtomicCmpSwapPartial.");
   1309 
   1310   MachineFunction *MF = BB->getParent();
   1311   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1312   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
   1313   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1314   DebugLoc DL = MI->getDebugLoc();
   1315 
   1316   unsigned Dest    = MI->getOperand(0).getReg();
   1317   unsigned Ptr     = MI->getOperand(1).getReg();
   1318   unsigned CmpVal  = MI->getOperand(2).getReg();
   1319   unsigned NewVal  = MI->getOperand(3).getReg();
   1320 
   1321   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
   1322   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
   1323   unsigned Mask = RegInfo.createVirtualRegister(RC);
   1324   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
   1325   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
   1326   unsigned OldVal = RegInfo.createVirtualRegister(RC);
   1327   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
   1328   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
   1329   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
   1330   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
   1331   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
   1332   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
   1333   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
   1334   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
   1335   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
   1336   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
   1337   unsigned Success = RegInfo.createVirtualRegister(RC);
   1338 
   1339   // insert new blocks after the current block
   1340   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1341   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1342   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1343   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1344   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   1345   MachineFunction::iterator It = BB;
   1346   ++It;
   1347   MF->insert(It, loop1MBB);
   1348   MF->insert(It, loop2MBB);
   1349   MF->insert(It, sinkMBB);
   1350   MF->insert(It, exitMBB);
   1351 
   1352   // Transfer the remainder of BB and its successor edges to exitMBB.
   1353   exitMBB->splice(exitMBB->begin(), BB,
   1354                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1355   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   1356 
   1357   BB->addSuccessor(loop1MBB);
   1358   loop1MBB->addSuccessor(sinkMBB);
   1359   loop1MBB->addSuccessor(loop2MBB);
   1360   loop2MBB->addSuccessor(loop1MBB);
   1361   loop2MBB->addSuccessor(sinkMBB);
   1362   sinkMBB->addSuccessor(exitMBB);
   1363 
   1364   // FIXME: computation of newval2 can be moved to loop2MBB.
   1365   //  thisMBB:
   1366   //    addiu   masklsb2,$0,-4                # 0xfffffffc
   1367   //    and     alignedaddr,ptr,masklsb2
   1368   //    andi    ptrlsb2,ptr,3
   1369   //    sll     shiftamt,ptrlsb2,3
   1370   //    ori     maskupper,$0,255               # 0xff
   1371   //    sll     mask,maskupper,shiftamt
   1372   //    nor     mask2,$0,mask
   1373   //    andi    maskedcmpval,cmpval,255
   1374   //    sll     shiftedcmpval,maskedcmpval,shiftamt
   1375   //    andi    maskednewval,newval,255
   1376   //    sll     shiftednewval,maskednewval,shiftamt
   1377   int64_t MaskImm = (Size == 1) ? 255 : 65535;
   1378   BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
   1379     .addReg(Mips::ZERO).addImm(-4);
   1380   BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
   1381     .addReg(Ptr).addReg(MaskLSB2);
   1382   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
   1383   if (Subtarget->isLittle()) {
   1384     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
   1385   } else {
   1386     unsigned Off = RegInfo.createVirtualRegister(RC);
   1387     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
   1388       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
   1389     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
   1390   }
   1391   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
   1392     .addReg(Mips::ZERO).addImm(MaskImm);
   1393   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
   1394     .addReg(MaskUpper).addReg(ShiftAmt);
   1395   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
   1396   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
   1397     .addReg(CmpVal).addImm(MaskImm);
   1398   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
   1399     .addReg(MaskedCmpVal).addReg(ShiftAmt);
   1400   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
   1401     .addReg(NewVal).addImm(MaskImm);
   1402   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
   1403     .addReg(MaskedNewVal).addReg(ShiftAmt);
   1404 
   1405   //  loop1MBB:
   1406   //    ll      oldval,0(alginedaddr)
   1407   //    and     maskedoldval0,oldval,mask
   1408   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
   1409   BB = loop1MBB;
   1410   BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
   1411   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
   1412     .addReg(OldVal).addReg(Mask);
   1413   BuildMI(BB, DL, TII->get(Mips::BNE))
   1414     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
   1415 
   1416   //  loop2MBB:
   1417   //    and     maskedoldval1,oldval,mask2
   1418   //    or      storeval,maskedoldval1,shiftednewval
   1419   //    sc      success,storeval,0(alignedaddr)
   1420   //    beq     success,$0,loop1MBB
   1421   BB = loop2MBB;
   1422   BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
   1423     .addReg(OldVal).addReg(Mask2);
   1424   BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
   1425     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
   1426   BuildMI(BB, DL, TII->get(Mips::SC), Success)
   1427       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
   1428   BuildMI(BB, DL, TII->get(Mips::BEQ))
   1429       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
   1430 
   1431   //  sinkMBB:
   1432   //    srl     srlres,maskedoldval0,shiftamt
   1433   //    sign_extend dest,srlres
   1434   BB = sinkMBB;
   1435 
   1436   BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
   1437       .addReg(MaskedOldVal0).addReg(ShiftAmt);
   1438   BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes);
   1439 
   1440   MI->eraseFromParent();   // The instruction is gone now.
   1441 
   1442   return exitMBB;
   1443 }
   1444 
   1445 MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI,
   1446                                                  MachineBasicBlock *BB) const {
   1447   MachineFunction *MF = BB->getParent();
   1448   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   1449   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   1450   MachineRegisterInfo &RegInfo = MF->getRegInfo();
   1451   DebugLoc DL = MI->getDebugLoc();
   1452   MachineBasicBlock::iterator II(MI);
   1453 
   1454   unsigned Fc = MI->getOperand(1).getReg();
   1455   const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID);
   1456 
   1457   unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass);
   1458 
   1459   BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2)
   1460       .addImm(0)
   1461       .addReg(Fc)
   1462       .addImm(Mips::sub_lo);
   1463 
   1464   // We don't erase the original instruction, we just replace the condition
   1465   // register with the 64-bit super-register.
   1466   MI->getOperand(1).setReg(Fc2);
   1467 
   1468   return BB;
   1469 }
   1470 
   1471 //===----------------------------------------------------------------------===//
   1472 //  Misc Lower Operation implementation
   1473 //===----------------------------------------------------------------------===//
   1474 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   1475   SDValue Chain = Op.getOperand(0);
   1476   SDValue Table = Op.getOperand(1);
   1477   SDValue Index = Op.getOperand(2);
   1478   SDLoc DL(Op);
   1479   EVT PTy = getPointerTy();
   1480   unsigned EntrySize =
   1481     DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
   1482 
   1483   Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
   1484                       DAG.getConstant(EntrySize, PTy));
   1485   SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
   1486 
   1487   EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
   1488   Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
   1489                         MachinePointerInfo::getJumpTable(), MemVT, false, false,
   1490                         0);
   1491   Chain = Addr.getValue(1);
   1492 
   1493   if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) ||
   1494       Subtarget->isABI_N64()) {
   1495     // For PIC, the sequence is:
   1496     // BRIND(load(Jumptable + index) + RelocBase)
   1497     // RelocBase can be JumpTable, GOT or some sort of global base.
   1498     Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
   1499                        getPICJumpTableRelocBase(Table, DAG));
   1500   }
   1501 
   1502   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
   1503 }
   1504 
   1505 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   1506   // The first operand is the chain, the second is the condition, the third is
   1507   // the block to branch to if the condition is true.
   1508   SDValue Chain = Op.getOperand(0);
   1509   SDValue Dest = Op.getOperand(2);
   1510   SDLoc DL(Op);
   1511 
   1512   assert(!Subtarget->hasMips32r6() && !Subtarget->hasMips64r6());
   1513   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
   1514 
   1515   // Return if flag is not set by a floating point comparison.
   1516   if (CondRes.getOpcode() != MipsISD::FPCmp)
   1517     return Op;
   1518 
   1519   SDValue CCNode  = CondRes.getOperand(2);
   1520   Mips::CondCode CC =
   1521     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
   1522   unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
   1523   SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
   1524   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
   1525   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
   1526                      FCC0, Dest, CondRes);
   1527 }
   1528 
   1529 SDValue MipsTargetLowering::
   1530 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
   1531 {
   1532   assert(!Subtarget->hasMips32r6() && !Subtarget->hasMips64r6());
   1533   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
   1534 
   1535   // Return if flag is not set by a floating point comparison.
   1536   if (Cond.getOpcode() != MipsISD::FPCmp)
   1537     return Op;
   1538 
   1539   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
   1540                       SDLoc(Op));
   1541 }
   1542 
   1543 SDValue MipsTargetLowering::
   1544 lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
   1545 {
   1546   SDLoc DL(Op);
   1547   EVT Ty = Op.getOperand(0).getValueType();
   1548   SDValue Cond = DAG.getNode(ISD::SETCC, DL,
   1549                              getSetCCResultType(*DAG.getContext(), Ty),
   1550                              Op.getOperand(0), Op.getOperand(1),
   1551                              Op.getOperand(4));
   1552 
   1553   return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
   1554                      Op.getOperand(3));
   1555 }
   1556 
   1557 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1558   assert(!Subtarget->hasMips32r6() && !Subtarget->hasMips64r6());
   1559   SDValue Cond = createFPCmp(DAG, Op);
   1560 
   1561   assert(Cond.getOpcode() == MipsISD::FPCmp &&
   1562          "Floating point operand expected.");
   1563 
   1564   SDValue True  = DAG.getConstant(1, MVT::i32);
   1565   SDValue False = DAG.getConstant(0, MVT::i32);
   1566 
   1567   return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
   1568 }
   1569 
   1570 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
   1571                                                SelectionDAG &DAG) const {
   1572   // FIXME there isn't actually debug info here
   1573   SDLoc DL(Op);
   1574   EVT Ty = Op.getValueType();
   1575   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
   1576   const GlobalValue *GV = N->getGlobal();
   1577 
   1578   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
   1579       !Subtarget->isABI_N64()) {
   1580     const MipsTargetObjectFile &TLOF =
   1581       (const MipsTargetObjectFile&)getObjFileLowering();
   1582 
   1583     // %gp_rel relocation
   1584     if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
   1585       SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
   1586                                               MipsII::MO_GPREL);
   1587       SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
   1588                                       DAG.getVTList(MVT::i32), GA);
   1589       SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
   1590       return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
   1591     }
   1592 
   1593     // %hi/%lo relocation
   1594     return getAddrNonPIC(N, Ty, DAG);
   1595   }
   1596 
   1597   if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
   1598     return getAddrLocal(N, Ty, DAG,
   1599                         Subtarget->isABI_N32() || Subtarget->isABI_N64());
   1600 
   1601   if (LargeGOT)
   1602     return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
   1603                                  MipsII::MO_GOT_LO16, DAG.getEntryNode(),
   1604                                  MachinePointerInfo::getGOT());
   1605 
   1606   return getAddrGlobal(N, Ty, DAG,
   1607                        (Subtarget->isABI_N32() || Subtarget->isABI_N64())
   1608                            ? MipsII::MO_GOT_DISP
   1609                            : MipsII::MO_GOT16,
   1610                        DAG.getEntryNode(), MachinePointerInfo::getGOT());
   1611 }
   1612 
   1613 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
   1614                                               SelectionDAG &DAG) const {
   1615   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
   1616   EVT Ty = Op.getValueType();
   1617 
   1618   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
   1619       !Subtarget->isABI_N64())
   1620     return getAddrNonPIC(N, Ty, DAG);
   1621 
   1622   return getAddrLocal(N, Ty, DAG,
   1623                       Subtarget->isABI_N32() || Subtarget->isABI_N64());
   1624 }
   1625 
   1626 SDValue MipsTargetLowering::
   1627 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
   1628 {
   1629   // If the relocation model is PIC, use the General Dynamic TLS Model or
   1630   // Local Dynamic TLS model, otherwise use the Initial Exec or
   1631   // Local Exec TLS Model.
   1632 
   1633   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1634   SDLoc DL(GA);
   1635   const GlobalValue *GV = GA->getGlobal();
   1636   EVT PtrVT = getPointerTy();
   1637 
   1638   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
   1639 
   1640   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
   1641     // General Dynamic and Local Dynamic TLS Model.
   1642     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
   1643                                                       : MipsII::MO_TLSGD;
   1644 
   1645     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
   1646     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
   1647                                    getGlobalReg(DAG, PtrVT), TGA);
   1648     unsigned PtrSize = PtrVT.getSizeInBits();
   1649     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
   1650 
   1651     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
   1652 
   1653     ArgListTy Args;
   1654     ArgListEntry Entry;
   1655     Entry.Node = Argument;
   1656     Entry.Ty = PtrTy;
   1657     Args.push_back(Entry);
   1658 
   1659     TargetLowering::CallLoweringInfo CLI(DAG);
   1660     CLI.setDebugLoc(DL).setChain(DAG.getEntryNode())
   1661       .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0);
   1662     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   1663 
   1664     SDValue Ret = CallResult.first;
   1665 
   1666     if (model != TLSModel::LocalDynamic)
   1667       return Ret;
   1668 
   1669     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1670                                                MipsII::MO_DTPREL_HI);
   1671     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
   1672     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1673                                                MipsII::MO_DTPREL_LO);
   1674     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
   1675     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
   1676     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
   1677   }
   1678 
   1679   SDValue Offset;
   1680   if (model == TLSModel::InitialExec) {
   1681     // Initial Exec TLS Model
   1682     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1683                                              MipsII::MO_GOTTPREL);
   1684     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
   1685                       TGA);
   1686     Offset = DAG.getLoad(PtrVT, DL,
   1687                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
   1688                          false, false, false, 0);
   1689   } else {
   1690     // Local Exec TLS Model
   1691     assert(model == TLSModel::LocalExec);
   1692     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1693                                                MipsII::MO_TPREL_HI);
   1694     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   1695                                                MipsII::MO_TPREL_LO);
   1696     SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
   1697     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
   1698     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1699   }
   1700 
   1701   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
   1702   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
   1703 }
   1704 
   1705 SDValue MipsTargetLowering::
   1706 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
   1707 {
   1708   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
   1709   EVT Ty = Op.getValueType();
   1710 
   1711   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
   1712       !Subtarget->isABI_N64())
   1713     return getAddrNonPIC(N, Ty, DAG);
   1714 
   1715   return getAddrLocal(N, Ty, DAG,
   1716                       Subtarget->isABI_N32() || Subtarget->isABI_N64());
   1717 }
   1718 
   1719 SDValue MipsTargetLowering::
   1720 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
   1721 {
   1722   // gp_rel relocation
   1723   // FIXME: we should reference the constant pool using small data sections,
   1724   // but the asm printer currently doesn't support this feature without
   1725   // hacking it. This feature should come soon so we can uncomment the
   1726   // stuff below.
   1727   //if (IsInSmallSection(C->getType())) {
   1728   //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
   1729   //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
   1730   //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
   1731   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
   1732   EVT Ty = Op.getValueType();
   1733 
   1734   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ &&
   1735       !Subtarget->isABI_N64())
   1736     return getAddrNonPIC(N, Ty, DAG);
   1737 
   1738   return getAddrLocal(N, Ty, DAG,
   1739                       Subtarget->isABI_N32() || Subtarget->isABI_N64());
   1740 }
   1741 
   1742 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   1743   MachineFunction &MF = DAG.getMachineFunction();
   1744   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
   1745 
   1746   SDLoc DL(Op);
   1747   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   1748                                  getPointerTy());
   1749 
   1750   // vastart just stores the address of the VarArgsFrameIndex slot into the
   1751   // memory location argument.
   1752   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1753   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
   1754                       MachinePointerInfo(SV), false, false, 0);
   1755 }
   1756 
   1757 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
   1758                                 bool HasExtractInsert) {
   1759   EVT TyX = Op.getOperand(0).getValueType();
   1760   EVT TyY = Op.getOperand(1).getValueType();
   1761   SDValue Const1 = DAG.getConstant(1, MVT::i32);
   1762   SDValue Const31 = DAG.getConstant(31, MVT::i32);
   1763   SDLoc DL(Op);
   1764   SDValue Res;
   1765 
   1766   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
   1767   // to i32.
   1768   SDValue X = (TyX == MVT::f32) ?
   1769     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
   1770     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
   1771                 Const1);
   1772   SDValue Y = (TyY == MVT::f32) ?
   1773     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
   1774     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
   1775                 Const1);
   1776 
   1777   if (HasExtractInsert) {
   1778     // ext  E, Y, 31, 1  ; extract bit31 of Y
   1779     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
   1780     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
   1781     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
   1782   } else {
   1783     // sll SllX, X, 1
   1784     // srl SrlX, SllX, 1
   1785     // srl SrlY, Y, 31
   1786     // sll SllY, SrlX, 31
   1787     // or  Or, SrlX, SllY
   1788     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
   1789     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
   1790     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
   1791     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
   1792     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
   1793   }
   1794 
   1795   if (TyX == MVT::f32)
   1796     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
   1797 
   1798   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1799                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
   1800   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
   1801 }
   1802 
   1803 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
   1804                                 bool HasExtractInsert) {
   1805   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
   1806   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
   1807   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
   1808   SDValue Const1 = DAG.getConstant(1, MVT::i32);
   1809   SDLoc DL(Op);
   1810 
   1811   // Bitcast to integer nodes.
   1812   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
   1813   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
   1814 
   1815   if (HasExtractInsert) {
   1816     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
   1817     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
   1818     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
   1819                             DAG.getConstant(WidthY - 1, MVT::i32), Const1);
   1820 
   1821     if (WidthX > WidthY)
   1822       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
   1823     else if (WidthY > WidthX)
   1824       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
   1825 
   1826     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
   1827                             DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
   1828     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
   1829   }
   1830 
   1831   // (d)sll SllX, X, 1
   1832   // (d)srl SrlX, SllX, 1
   1833   // (d)srl SrlY, Y, width(Y)-1
   1834   // (d)sll SllY, SrlX, width(Y)-1
   1835   // or     Or, SrlX, SllY
   1836   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
   1837   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
   1838   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
   1839                              DAG.getConstant(WidthY - 1, MVT::i32));
   1840 
   1841   if (WidthX > WidthY)
   1842     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
   1843   else if (WidthY > WidthX)
   1844     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
   1845 
   1846   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
   1847                              DAG.getConstant(WidthX - 1, MVT::i32));
   1848   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
   1849   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
   1850 }
   1851 
   1852 SDValue
   1853 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   1854   if (Subtarget->isGP64bit())
   1855     return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasExtractInsert());
   1856 
   1857   return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasExtractInsert());
   1858 }
   1859 
   1860 SDValue MipsTargetLowering::
   1861 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   1862   // check the depth
   1863   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
   1864          "Frame address can only be determined for current frame.");
   1865 
   1866   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1867   MFI->setFrameAddressIsTaken(true);
   1868   EVT VT = Op.getValueType();
   1869   SDLoc DL(Op);
   1870   SDValue FrameAddr =
   1871       DAG.getCopyFromReg(DAG.getEntryNode(), DL,
   1872                          Subtarget->isABI_N64() ? Mips::FP_64 : Mips::FP, VT);
   1873   return FrameAddr;
   1874 }
   1875 
   1876 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
   1877                                             SelectionDAG &DAG) const {
   1878   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   1879     return SDValue();
   1880 
   1881   // check the depth
   1882   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
   1883          "Return address can be determined only for current frame.");
   1884 
   1885   MachineFunction &MF = DAG.getMachineFunction();
   1886   MachineFrameInfo *MFI = MF.getFrameInfo();
   1887   MVT VT = Op.getSimpleValueType();
   1888   unsigned RA = Subtarget->isABI_N64() ? Mips::RA_64 : Mips::RA;
   1889   MFI->setReturnAddressIsTaken(true);
   1890 
   1891   // Return RA, which contains the return address. Mark it an implicit live-in.
   1892   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
   1893   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
   1894 }
   1895 
   1896 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
   1897 // generated from __builtin_eh_return (offset, handler)
   1898 // The effect of this is to adjust the stack pointer by "offset"
   1899 // and then branch to "handler".
   1900 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
   1901                                                                      const {
   1902   MachineFunction &MF = DAG.getMachineFunction();
   1903   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   1904 
   1905   MipsFI->setCallsEhReturn();
   1906   SDValue Chain     = Op.getOperand(0);
   1907   SDValue Offset    = Op.getOperand(1);
   1908   SDValue Handler   = Op.getOperand(2);
   1909   SDLoc DL(Op);
   1910   EVT Ty = Subtarget->isABI_N64() ? MVT::i64 : MVT::i32;
   1911 
   1912   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
   1913   // EH_RETURN nodes, so that instructions are emitted back-to-back.
   1914   unsigned OffsetReg = Subtarget->isABI_N64() ? Mips::V1_64 : Mips::V1;
   1915   unsigned AddrReg = Subtarget->isABI_N64() ? Mips::V0_64 : Mips::V0;
   1916   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
   1917   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
   1918   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
   1919                      DAG.getRegister(OffsetReg, Ty),
   1920                      DAG.getRegister(AddrReg, getPointerTy()),
   1921                      Chain.getValue(1));
   1922 }
   1923 
   1924 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
   1925                                               SelectionDAG &DAG) const {
   1926   // FIXME: Need pseudo-fence for 'singlethread' fences
   1927   // FIXME: Set SType for weaker fences where supported/appropriate.
   1928   unsigned SType = 0;
   1929   SDLoc DL(Op);
   1930   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
   1931                      DAG.getConstant(SType, MVT::i32));
   1932 }
   1933 
   1934 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
   1935                                                 SelectionDAG &DAG) const {
   1936   SDLoc DL(Op);
   1937   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
   1938   SDValue Shamt = Op.getOperand(2);
   1939 
   1940   // if shamt < 32:
   1941   //  lo = (shl lo, shamt)
   1942   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
   1943   // else:
   1944   //  lo = 0
   1945   //  hi = (shl lo, shamt[4:0])
   1946   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
   1947                             DAG.getConstant(-1, MVT::i32));
   1948   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
   1949                                       DAG.getConstant(1, MVT::i32));
   1950   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
   1951                                      Not);
   1952   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
   1953   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
   1954   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
   1955   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
   1956                              DAG.getConstant(0x20, MVT::i32));
   1957   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
   1958                    DAG.getConstant(0, MVT::i32), ShiftLeftLo);
   1959   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
   1960 
   1961   SDValue Ops[2] = {Lo, Hi};
   1962   return DAG.getMergeValues(Ops, DL);
   1963 }
   1964 
   1965 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
   1966                                                  bool IsSRA) const {
   1967   SDLoc DL(Op);
   1968   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
   1969   SDValue Shamt = Op.getOperand(2);
   1970 
   1971   // if shamt < 32:
   1972   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
   1973   //  if isSRA:
   1974   //    hi = (sra hi, shamt)
   1975   //  else:
   1976   //    hi = (srl hi, shamt)
   1977   // else:
   1978   //  if isSRA:
   1979   //   lo = (sra hi, shamt[4:0])
   1980   //   hi = (sra hi, 31)
   1981   //  else:
   1982   //   lo = (srl hi, shamt[4:0])
   1983   //   hi = 0
   1984   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
   1985                             DAG.getConstant(-1, MVT::i32));
   1986   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
   1987                                      DAG.getConstant(1, MVT::i32));
   1988   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
   1989   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
   1990   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
   1991   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
   1992                                      Hi, Shamt);
   1993   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
   1994                              DAG.getConstant(0x20, MVT::i32));
   1995   SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
   1996                                 DAG.getConstant(31, MVT::i32));
   1997   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
   1998   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
   1999                    IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
   2000                    ShiftRightHi);
   2001 
   2002   SDValue Ops[2] = {Lo, Hi};
   2003   return DAG.getMergeValues(Ops, DL);
   2004 }
   2005 
   2006 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
   2007                             SDValue Chain, SDValue Src, unsigned Offset) {
   2008   SDValue Ptr = LD->getBasePtr();
   2009   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
   2010   EVT BasePtrVT = Ptr.getValueType();
   2011   SDLoc DL(LD);
   2012   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
   2013 
   2014   if (Offset)
   2015     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
   2016                       DAG.getConstant(Offset, BasePtrVT));
   2017 
   2018   SDValue Ops[] = { Chain, Ptr, Src };
   2019   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
   2020                                  LD->getMemOperand());
   2021 }
   2022 
   2023 // Expand an unaligned 32 or 64-bit integer load node.
   2024 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   2025   LoadSDNode *LD = cast<LoadSDNode>(Op);
   2026   EVT MemVT = LD->getMemoryVT();
   2027 
   2028   if (Subtarget->systemSupportsUnalignedAccess())
   2029     return Op;
   2030 
   2031   // Return if load is aligned or if MemVT is neither i32 nor i64.
   2032   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
   2033       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
   2034     return SDValue();
   2035 
   2036   bool IsLittle = Subtarget->isLittle();
   2037   EVT VT = Op.getValueType();
   2038   ISD::LoadExtType ExtType = LD->getExtensionType();
   2039   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
   2040 
   2041   assert((VT == MVT::i32) || (VT == MVT::i64));
   2042 
   2043   // Expand
   2044   //  (set dst, (i64 (load baseptr)))
   2045   // to
   2046   //  (set tmp, (ldl (add baseptr, 7), undef))
   2047   //  (set dst, (ldr baseptr, tmp))
   2048   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
   2049     SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
   2050                                IsLittle ? 7 : 0);
   2051     return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
   2052                         IsLittle ? 0 : 7);
   2053   }
   2054 
   2055   SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
   2056                              IsLittle ? 3 : 0);
   2057   SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
   2058                              IsLittle ? 0 : 3);
   2059 
   2060   // Expand
   2061   //  (set dst, (i32 (load baseptr))) or
   2062   //  (set dst, (i64 (sextload baseptr))) or
   2063   //  (set dst, (i64 (extload baseptr)))
   2064   // to
   2065   //  (set tmp, (lwl (add baseptr, 3), undef))
   2066   //  (set dst, (lwr baseptr, tmp))
   2067   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
   2068       (ExtType == ISD::EXTLOAD))
   2069     return LWR;
   2070 
   2071   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
   2072 
   2073   // Expand
   2074   //  (set dst, (i64 (zextload baseptr)))
   2075   // to
   2076   //  (set tmp0, (lwl (add baseptr, 3), undef))
   2077   //  (set tmp1, (lwr baseptr, tmp0))
   2078   //  (set tmp2, (shl tmp1, 32))
   2079   //  (set dst, (srl tmp2, 32))
   2080   SDLoc DL(LD);
   2081   SDValue Const32 = DAG.getConstant(32, MVT::i32);
   2082   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
   2083   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
   2084   SDValue Ops[] = { SRL, LWR.getValue(1) };
   2085   return DAG.getMergeValues(Ops, DL);
   2086 }
   2087 
   2088 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
   2089                              SDValue Chain, unsigned Offset) {
   2090   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
   2091   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
   2092   SDLoc DL(SD);
   2093   SDVTList VTList = DAG.getVTList(MVT::Other);
   2094 
   2095   if (Offset)
   2096     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
   2097                       DAG.getConstant(Offset, BasePtrVT));
   2098 
   2099   SDValue Ops[] = { Chain, Value, Ptr };
   2100   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
   2101                                  SD->getMemOperand());
   2102 }
   2103 
   2104 // Expand an unaligned 32 or 64-bit integer store node.
   2105 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
   2106                                       bool IsLittle) {
   2107   SDValue Value = SD->getValue(), Chain = SD->getChain();
   2108   EVT VT = Value.getValueType();
   2109 
   2110   // Expand
   2111   //  (store val, baseptr) or
   2112   //  (truncstore val, baseptr)
   2113   // to
   2114   //  (swl val, (add baseptr, 3))
   2115   //  (swr val, baseptr)
   2116   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
   2117     SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
   2118                                 IsLittle ? 3 : 0);
   2119     return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
   2120   }
   2121 
   2122   assert(VT == MVT::i64);
   2123 
   2124   // Expand
   2125   //  (store val, baseptr)
   2126   // to
   2127   //  (sdl val, (add baseptr, 7))
   2128   //  (sdr val, baseptr)
   2129   SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
   2130   return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
   2131 }
   2132 
   2133 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
   2134 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
   2135   SDValue Val = SD->getValue();
   2136 
   2137   if (Val.getOpcode() != ISD::FP_TO_SINT)
   2138     return SDValue();
   2139 
   2140   EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
   2141   SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
   2142                            Val.getOperand(0));
   2143 
   2144   return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
   2145                       SD->getPointerInfo(), SD->isVolatile(),
   2146                       SD->isNonTemporal(), SD->getAlignment());
   2147 }
   2148 
   2149 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   2150   StoreSDNode *SD = cast<StoreSDNode>(Op);
   2151   EVT MemVT = SD->getMemoryVT();
   2152 
   2153   // Lower unaligned integer stores.
   2154   if (!Subtarget->systemSupportsUnalignedAccess() &&
   2155       (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
   2156       ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
   2157     return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
   2158 
   2159   return lowerFP_TO_SINT_STORE(SD, DAG);
   2160 }
   2161 
   2162 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
   2163   if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
   2164       || cast<ConstantSDNode>
   2165         (Op->getOperand(0).getOperand(0))->getZExtValue() != 0
   2166       || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
   2167     return SDValue();
   2168 
   2169   // The pattern
   2170   //   (add (frameaddr 0), (frame_to_args_offset))
   2171   // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
   2172   //   (add FrameObject, 0)
   2173   // where FrameObject is a fixed StackObject with offset 0 which points to
   2174   // the old stack pointer.
   2175   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2176   EVT ValTy = Op->getValueType(0);
   2177   int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
   2178   SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
   2179   return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
   2180                      DAG.getConstant(0, ValTy));
   2181 }
   2182 
   2183 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
   2184                                             SelectionDAG &DAG) const {
   2185   EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
   2186   SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
   2187                               Op.getOperand(0));
   2188   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
   2189 }
   2190 
   2191 //===----------------------------------------------------------------------===//
   2192 //                      Calling Convention Implementation
   2193 //===----------------------------------------------------------------------===//
   2194 
   2195 //===----------------------------------------------------------------------===//
   2196 // TODO: Implement a generic logic using tblgen that can support this.
   2197 // Mips O32 ABI rules:
   2198 // ---
   2199 // i32 - Passed in A0, A1, A2, A3 and stack
   2200 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
   2201 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
   2202 // f64 - Only passed in two aliased f32 registers if no int reg has been used
   2203 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
   2204 //       not used, it must be shadowed. If only A3 is avaiable, shadow it and
   2205 //       go to stack.
   2206 //
   2207 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
   2208 //===----------------------------------------------------------------------===//
   2209 
   2210 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
   2211                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
   2212                        CCState &State, const MCPhysReg *F64Regs) {
   2213 
   2214   static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
   2215 
   2216   static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
   2217   static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
   2218 
   2219   // Do not process byval args here.
   2220   if (ArgFlags.isByVal())
   2221     return true;
   2222 
   2223   // Promote i8 and i16
   2224   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
   2225     LocVT = MVT::i32;
   2226     if (ArgFlags.isSExt())
   2227       LocInfo = CCValAssign::SExt;
   2228     else if (ArgFlags.isZExt())
   2229       LocInfo = CCValAssign::ZExt;
   2230     else
   2231       LocInfo = CCValAssign::AExt;
   2232   }
   2233 
   2234   unsigned Reg;
   2235 
   2236   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
   2237   // is true: function is vararg, argument is 3rd or higher, there is previous
   2238   // argument which is not f32 or f64.
   2239   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
   2240       || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
   2241   unsigned OrigAlign = ArgFlags.getOrigAlign();
   2242   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
   2243 
   2244   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
   2245     Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2246     // If this is the first part of an i64 arg,
   2247     // the allocated register must be either A0 or A2.
   2248     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
   2249       Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2250     LocVT = MVT::i32;
   2251   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
   2252     // Allocate int register and shadow next int register. If first
   2253     // available register is Mips::A1 or Mips::A3, shadow it too.
   2254     Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2255     if (Reg == Mips::A1 || Reg == Mips::A3)
   2256       Reg = State.AllocateReg(IntRegs, IntRegsSize);
   2257     State.AllocateReg(IntRegs, IntRegsSize);
   2258     LocVT = MVT::i32;
   2259   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
   2260     // we are guaranteed to find an available float register
   2261     if (ValVT == MVT::f32) {
   2262       Reg = State.AllocateReg(F32Regs, FloatRegsSize);
   2263       // Shadow int register
   2264       State.AllocateReg(IntRegs, IntRegsSize);
   2265     } else {
   2266       Reg = State.AllocateReg(F64Regs, FloatRegsSize);
   2267       // Shadow int registers
   2268       unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
   2269       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
   2270         State.AllocateReg(IntRegs, IntRegsSize);
   2271       State.AllocateReg(IntRegs, IntRegsSize);
   2272     }
   2273   } else
   2274     llvm_unreachable("Cannot handle this ValVT.");
   2275 
   2276   if (!Reg) {
   2277     unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
   2278                                           OrigAlign);
   2279     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
   2280   } else
   2281     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
   2282 
   2283   return false;
   2284 }
   2285 
   2286 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
   2287                             MVT LocVT, CCValAssign::LocInfo LocInfo,
   2288                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
   2289   static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
   2290 
   2291   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
   2292 }
   2293 
   2294 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
   2295                             MVT LocVT, CCValAssign::LocInfo LocInfo,
   2296                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
   2297   static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
   2298 
   2299   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
   2300 }
   2301 
   2302 #include "MipsGenCallingConv.inc"
   2303 
   2304 //===----------------------------------------------------------------------===//
   2305 //                  Call Calling Convention Implementation
   2306 //===----------------------------------------------------------------------===//
   2307 
   2308 // Return next O32 integer argument register.
   2309 static unsigned getNextIntArgReg(unsigned Reg) {
   2310   assert((Reg == Mips::A0) || (Reg == Mips::A2));
   2311   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
   2312 }
   2313 
   2314 SDValue
   2315 MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
   2316                                    SDValue Chain, SDValue Arg, SDLoc DL,
   2317                                    bool IsTailCall, SelectionDAG &DAG) const {
   2318   if (!IsTailCall) {
   2319     SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
   2320                                  DAG.getIntPtrConstant(Offset));
   2321     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
   2322                         false, 0);
   2323   }
   2324 
   2325   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   2326   int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
   2327   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2328   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
   2329                       /*isVolatile=*/ true, false, 0);
   2330 }
   2331 
   2332 void MipsTargetLowering::
   2333 getOpndList(SmallVectorImpl<SDValue> &Ops,
   2334             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   2335             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
   2336             CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
   2337   // Insert node "GP copy globalreg" before call to function.
   2338   //
   2339   // R_MIPS_CALL* operators (emitted when non-internal functions are called
   2340   // in PIC mode) allow symbols to be resolved via lazy binding.
   2341   // The lazy binding stub requires GP to point to the GOT.
   2342   if (IsPICCall && !InternalLinkage) {
   2343     unsigned GPReg = Subtarget->isABI_N64() ? Mips::GP_64 : Mips::GP;
   2344     EVT Ty = Subtarget->isABI_N64() ? MVT::i64 : MVT::i32;
   2345     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
   2346   }
   2347 
   2348   // Build a sequence of copy-to-reg nodes chained together with token
   2349   // chain and flag operands which copy the outgoing args into registers.
   2350   // The InFlag in necessary since all emitted instructions must be
   2351   // stuck together.
   2352   SDValue InFlag;
   2353 
   2354   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2355     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
   2356                                  RegsToPass[i].second, InFlag);
   2357     InFlag = Chain.getValue(1);
   2358   }
   2359 
   2360   // Add argument registers to the end of the list so that they are
   2361   // known live into the call.
   2362   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2363     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
   2364                                       RegsToPass[i].second.getValueType()));
   2365 
   2366   // Add a register mask operand representing the call-preserved registers.
   2367   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   2368   const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
   2369   assert(Mask && "Missing call preserved mask for calling convention");
   2370   if (Subtarget->inMips16HardFloat()) {
   2371     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
   2372       llvm::StringRef Sym = G->getGlobal()->getName();
   2373       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
   2374       if (F && F->hasFnAttribute("__Mips16RetHelper")) {
   2375         Mask = MipsRegisterInfo::getMips16RetHelperMask();
   2376       }
   2377     }
   2378   }
   2379   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
   2380 
   2381   if (InFlag.getNode())
   2382     Ops.push_back(InFlag);
   2383 }
   2384 
   2385 /// LowerCall - functions arguments are copied from virtual regs to
   2386 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
   2387 SDValue
   2388 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   2389                               SmallVectorImpl<SDValue> &InVals) const {
   2390   SelectionDAG &DAG                     = CLI.DAG;
   2391   SDLoc DL                              = CLI.DL;
   2392   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   2393   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   2394   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   2395   SDValue Chain                         = CLI.Chain;
   2396   SDValue Callee                        = CLI.Callee;
   2397   bool &IsTailCall                      = CLI.IsTailCall;
   2398   CallingConv::ID CallConv              = CLI.CallConv;
   2399   bool IsVarArg                         = CLI.IsVarArg;
   2400 
   2401   MachineFunction &MF = DAG.getMachineFunction();
   2402   MachineFrameInfo *MFI = MF.getFrameInfo();
   2403   const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
   2404   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
   2405   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
   2406 
   2407   // Analyze operands of the call, assigning locations to each operand.
   2408   SmallVector<CCValAssign, 16> ArgLocs;
   2409   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
   2410                  getTargetMachine(), ArgLocs, *DAG.getContext());
   2411   MipsCC::SpecialCallingConvType SpecialCallingConv =
   2412     getSpecialCallingConv(Callee);
   2413   MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
   2414                     CCInfo, SpecialCallingConv);
   2415 
   2416   MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
   2417                                  Subtarget->mipsSEUsesSoftFloat(),
   2418                                  Callee.getNode(), CLI.getArgs());
   2419 
   2420   // Get a count of how many bytes are to be pushed on the stack.
   2421   unsigned NextStackOffset = CCInfo.getNextStackOffset();
   2422 
   2423   // Check if it's really possible to do a tail call.
   2424   if (IsTailCall)
   2425     IsTailCall =
   2426       isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
   2427                                         *MF.getInfo<MipsFunctionInfo>());
   2428 
   2429   if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
   2430     report_fatal_error("failed to perform tail call elimination on a call "
   2431                        "site marked musttail");
   2432 
   2433   if (IsTailCall)
   2434     ++NumTailCalls;
   2435 
   2436   // Chain is the output chain of the last Load/Store or CopyToReg node.
   2437   // ByValChain is the output chain of the last Memcpy node created for copying
   2438   // byval arguments to the stack.
   2439   unsigned StackAlignment = TFL->getStackAlignment();
   2440   NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
   2441   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
   2442 
   2443   if (!IsTailCall)
   2444     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
   2445 
   2446   SDValue StackPtr = DAG.getCopyFromReg(
   2447       Chain, DL, Subtarget->isABI_N64() ? Mips::SP_64 : Mips::SP,
   2448       getPointerTy());
   2449 
   2450   // With EABI is it possible to have 16 args on registers.
   2451   std::deque< std::pair<unsigned, SDValue> > RegsToPass;
   2452   SmallVector<SDValue, 8> MemOpChains;
   2453   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
   2454 
   2455   // Walk the register/memloc assignments, inserting copies/loads.
   2456   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2457     SDValue Arg = OutVals[i];
   2458     CCValAssign &VA = ArgLocs[i];
   2459     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
   2460     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2461 
   2462     // ByVal Arg.
   2463     if (Flags.isByVal()) {
   2464       assert(Flags.getByValSize() &&
   2465              "ByVal args of size 0 should have been ignored by front-end.");
   2466       assert(ByValArg != MipsCCInfo.byval_end());
   2467       assert(!IsTailCall &&
   2468              "Do not tail-call optimize if there is a byval argument.");
   2469       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
   2470                    MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
   2471       ++ByValArg;
   2472       continue;
   2473     }
   2474 
   2475     // Promote the value if needed.
   2476     switch (VA.getLocInfo()) {
   2477     default: llvm_unreachable("Unknown loc info!");
   2478     case CCValAssign::Full:
   2479       if (VA.isRegLoc()) {
   2480         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
   2481             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
   2482             (ValVT == MVT::i64 && LocVT == MVT::f64))
   2483           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
   2484         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
   2485           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2486                                    Arg, DAG.getConstant(0, MVT::i32));
   2487           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   2488                                    Arg, DAG.getConstant(1, MVT::i32));
   2489           if (!Subtarget->isLittle())
   2490             std::swap(Lo, Hi);
   2491           unsigned LocRegLo = VA.getLocReg();
   2492           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
   2493           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
   2494           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
   2495           continue;
   2496         }
   2497       }
   2498       break;
   2499     case CCValAssign::SExt:
   2500       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
   2501       break;
   2502     case CCValAssign::ZExt:
   2503       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
   2504       break;
   2505     case CCValAssign::AExt:
   2506       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
   2507       break;
   2508     }
   2509 
   2510     // Arguments that can be passed on register must be kept at
   2511     // RegsToPass vector
   2512     if (VA.isRegLoc()) {
   2513       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2514       continue;
   2515     }
   2516 
   2517     // Register can't get to this point...
   2518     assert(VA.isMemLoc());
   2519 
   2520     // emit ISD::STORE whichs stores the
   2521     // parameter value to a stack Location
   2522     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
   2523                                          Chain, Arg, DL, IsTailCall, DAG));
   2524   }
   2525 
   2526   // Transform all store nodes into one single node because all store
   2527   // nodes are independent of each other.
   2528   if (!MemOpChains.empty())
   2529     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   2530 
   2531   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   2532   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   2533   // node so that legalize doesn't hack it.
   2534   bool IsPICCall =
   2535       (Subtarget->isABI_N64() || IsPIC); // true if calls are translated to
   2536                                          // jalr $25
   2537   bool GlobalOrExternal = false, InternalLinkage = false;
   2538   SDValue CalleeLo;
   2539   EVT Ty = Callee.getValueType();
   2540 
   2541   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2542     if (IsPICCall) {
   2543       const GlobalValue *Val = G->getGlobal();
   2544       InternalLinkage = Val->hasInternalLinkage();
   2545 
   2546       if (InternalLinkage)
   2547         Callee = getAddrLocal(G, Ty, DAG,
   2548                               Subtarget->isABI_N32() || Subtarget->isABI_N64());
   2549       else if (LargeGOT)
   2550         Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
   2551                                        MipsII::MO_CALL_LO16, Chain,
   2552                                        FuncInfo->callPtrInfo(Val));
   2553       else
   2554         Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
   2555                                FuncInfo->callPtrInfo(Val));
   2556     } else
   2557       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
   2558                                           MipsII::MO_NO_FLAG);
   2559     GlobalOrExternal = true;
   2560   }
   2561   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2562     const char *Sym = S->getSymbol();
   2563 
   2564     if (!Subtarget->isABI_N64() && !IsPIC) // !N64 && static
   2565       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
   2566                                             MipsII::MO_NO_FLAG);
   2567     else if (LargeGOT)
   2568       Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
   2569                                      MipsII::MO_CALL_LO16, Chain,
   2570                                      FuncInfo->callPtrInfo(Sym));
   2571     else // N64 || PIC
   2572       Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
   2573                              FuncInfo->callPtrInfo(Sym));
   2574 
   2575     GlobalOrExternal = true;
   2576   }
   2577 
   2578   SmallVector<SDValue, 8> Ops(1, Chain);
   2579   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2580 
   2581   getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
   2582               CLI, Callee, Chain);
   2583 
   2584   if (IsTailCall)
   2585     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
   2586 
   2587   Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
   2588   SDValue InFlag = Chain.getValue(1);
   2589 
   2590   // Create the CALLSEQ_END node.
   2591   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
   2592                              DAG.getIntPtrConstant(0, true), InFlag, DL);
   2593   InFlag = Chain.getValue(1);
   2594 
   2595   // Handle result values, copying them out of physregs into vregs that we
   2596   // return.
   2597   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
   2598                          Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
   2599 }
   2600 
   2601 /// LowerCallResult - Lower the result values of a call into the
   2602 /// appropriate copies out of appropriate physical registers.
   2603 SDValue
   2604 MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   2605                                     CallingConv::ID CallConv, bool IsVarArg,
   2606                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2607                                     SDLoc DL, SelectionDAG &DAG,
   2608                                     SmallVectorImpl<SDValue> &InVals,
   2609                                     const SDNode *CallNode,
   2610                                     const Type *RetTy) const {
   2611   // Assign locations to each value returned by this call.
   2612   SmallVector<CCValAssign, 16> RVLocs;
   2613   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
   2614                  getTargetMachine(), RVLocs, *DAG.getContext());
   2615   MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
   2616                     CCInfo);
   2617 
   2618   MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
   2619                                CallNode, RetTy);
   2620 
   2621   // Copy all of the result registers out of their specified physreg.
   2622   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   2623     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
   2624                                      RVLocs[i].getLocVT(), InFlag);
   2625     Chain = Val.getValue(1);
   2626     InFlag = Val.getValue(2);
   2627 
   2628     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
   2629       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
   2630 
   2631     InVals.push_back(Val);
   2632   }
   2633 
   2634   return Chain;
   2635 }
   2636 
   2637 //===----------------------------------------------------------------------===//
   2638 //             Formal Arguments Calling Convention Implementation
   2639 //===----------------------------------------------------------------------===//
   2640 /// LowerFormalArguments - transform physical registers into virtual registers
   2641 /// and generate load operations for arguments places on the stack.
   2642 SDValue
   2643 MipsTargetLowering::LowerFormalArguments(SDValue Chain,
   2644                                          CallingConv::ID CallConv,
   2645                                          bool IsVarArg,
   2646                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   2647                                          SDLoc DL, SelectionDAG &DAG,
   2648                                          SmallVectorImpl<SDValue> &InVals)
   2649                                           const {
   2650   MachineFunction &MF = DAG.getMachineFunction();
   2651   MachineFrameInfo *MFI = MF.getFrameInfo();
   2652   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   2653 
   2654   MipsFI->setVarArgsFrameIndex(0);
   2655 
   2656   // Used with vargs to acumulate store chains.
   2657   std::vector<SDValue> OutChains;
   2658 
   2659   // Assign locations to all of the incoming arguments.
   2660   SmallVector<CCValAssign, 16> ArgLocs;
   2661   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
   2662                  getTargetMachine(), ArgLocs, *DAG.getContext());
   2663   MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
   2664                     CCInfo);
   2665   Function::const_arg_iterator FuncArg =
   2666     DAG.getMachineFunction().getFunction()->arg_begin();
   2667   bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
   2668 
   2669   MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
   2670   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
   2671                            MipsCCInfo.hasByValArg());
   2672 
   2673   unsigned CurArgIdx = 0;
   2674   MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
   2675 
   2676   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2677     CCValAssign &VA = ArgLocs[i];
   2678     std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
   2679     CurArgIdx = Ins[i].OrigArgIndex;
   2680     EVT ValVT = VA.getValVT();
   2681     ISD::ArgFlagsTy Flags = Ins[i].Flags;
   2682     bool IsRegLoc = VA.isRegLoc();
   2683 
   2684     if (Flags.isByVal()) {
   2685       assert(Flags.getByValSize() &&
   2686              "ByVal args of size 0 should have been ignored by front-end.");
   2687       assert(ByValArg != MipsCCInfo.byval_end());
   2688       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
   2689                     MipsCCInfo, *ByValArg);
   2690       ++ByValArg;
   2691       continue;
   2692     }
   2693 
   2694     // Arguments stored on registers
   2695     if (IsRegLoc) {
   2696       MVT RegVT = VA.getLocVT();
   2697       unsigned ArgReg = VA.getLocReg();
   2698       const TargetRegisterClass *RC = getRegClassFor(RegVT);
   2699 
   2700       // Transform the arguments stored on
   2701       // physical registers into virtual ones
   2702       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
   2703       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
   2704 
   2705       // If this is an 8 or 16-bit value, it has been passed promoted
   2706       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   2707       // truncate to the right size.
   2708       if (VA.getLocInfo() != CCValAssign::Full) {
   2709         unsigned Opcode = 0;
   2710         if (VA.getLocInfo() == CCValAssign::SExt)
   2711           Opcode = ISD::AssertSext;
   2712         else if (VA.getLocInfo() == CCValAssign::ZExt)
   2713           Opcode = ISD::AssertZext;
   2714         if (Opcode)
   2715           ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
   2716                                  DAG.getValueType(ValVT));
   2717         ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
   2718       }
   2719 
   2720       // Handle floating point arguments passed in integer registers and
   2721       // long double arguments passed in floating point registers.
   2722       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
   2723           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
   2724           (RegVT == MVT::f64 && ValVT == MVT::i64))
   2725         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
   2726       else if (Subtarget->isABI_O32() && RegVT == MVT::i32 &&
   2727                ValVT == MVT::f64) {
   2728         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
   2729                                   getNextIntArgReg(ArgReg), RC);
   2730         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
   2731         if (!Subtarget->isLittle())
   2732           std::swap(ArgValue, ArgValue2);
   2733         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
   2734                                ArgValue, ArgValue2);
   2735       }
   2736 
   2737       InVals.push_back(ArgValue);
   2738     } else { // VA.isRegLoc()
   2739 
   2740       // sanity check
   2741       assert(VA.isMemLoc());
   2742 
   2743       // The stack pointer offset is relative to the caller stack frame.
   2744       int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   2745                                       VA.getLocMemOffset(), true);
   2746 
   2747       // Create load nodes to retrieve arguments from the stack
   2748       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2749       SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
   2750                                  MachinePointerInfo::getFixedStack(FI),
   2751                                  false, false, false, 0);
   2752       InVals.push_back(Load);
   2753       OutChains.push_back(Load.getValue(1));
   2754     }
   2755   }
   2756 
   2757   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2758     // The mips ABIs for returning structs by value requires that we copy
   2759     // the sret argument into $v0 for the return. Save the argument into
   2760     // a virtual register so that we can access it from the return points.
   2761     if (Ins[i].Flags.isSRet()) {
   2762       unsigned Reg = MipsFI->getSRetReturnReg();
   2763       if (!Reg) {
   2764         Reg = MF.getRegInfo().createVirtualRegister(
   2765             getRegClassFor(Subtarget->isABI_N64() ? MVT::i64 : MVT::i32));
   2766         MipsFI->setSRetReturnReg(Reg);
   2767       }
   2768       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
   2769       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
   2770       break;
   2771     }
   2772   }
   2773 
   2774   if (IsVarArg)
   2775     writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
   2776 
   2777   // All stores are grouped in one node to allow the matching between
   2778   // the size of Ins and InVals. This only happens when on varg functions
   2779   if (!OutChains.empty()) {
   2780     OutChains.push_back(Chain);
   2781     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
   2782   }
   2783 
   2784   return Chain;
   2785 }
   2786 
   2787 //===----------------------------------------------------------------------===//
   2788 //               Return Value Calling Convention Implementation
   2789 //===----------------------------------------------------------------------===//
   2790 
   2791 bool
   2792 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2793                                    MachineFunction &MF, bool IsVarArg,
   2794                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   2795                                    LLVMContext &Context) const {
   2796   SmallVector<CCValAssign, 16> RVLocs;
   2797   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
   2798                  RVLocs, Context);
   2799   return CCInfo.CheckReturn(Outs, RetCC_Mips);
   2800 }
   2801 
   2802 SDValue
   2803 MipsTargetLowering::LowerReturn(SDValue Chain,
   2804                                 CallingConv::ID CallConv, bool IsVarArg,
   2805                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
   2806                                 const SmallVectorImpl<SDValue> &OutVals,
   2807                                 SDLoc DL, SelectionDAG &DAG) const {
   2808   // CCValAssign - represent the assignment of
   2809   // the return value to a location
   2810   SmallVector<CCValAssign, 16> RVLocs;
   2811   MachineFunction &MF = DAG.getMachineFunction();
   2812 
   2813   // CCState - Info about the registers and stack slot.
   2814   CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
   2815                  *DAG.getContext());
   2816   MipsCC MipsCCInfo(CallConv, Subtarget->isABI_O32(), Subtarget->isFP64bit(),
   2817                     CCInfo);
   2818 
   2819   // Analyze return values.
   2820   MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
   2821                            MF.getFunction()->getReturnType());
   2822 
   2823   SDValue Flag;
   2824   SmallVector<SDValue, 4> RetOps(1, Chain);
   2825 
   2826   // Copy the result values into the output registers.
   2827   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   2828     SDValue Val = OutVals[i];
   2829     CCValAssign &VA = RVLocs[i];
   2830     assert(VA.isRegLoc() && "Can only return in registers!");
   2831 
   2832     if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
   2833       Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
   2834 
   2835     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
   2836 
   2837     // Guarantee that all emitted copies are stuck together with flags.
   2838     Flag = Chain.getValue(1);
   2839     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2840   }
   2841 
   2842   // The mips ABIs for returning structs by value requires that we copy
   2843   // the sret argument into $v0 for the return. We saved the argument into
   2844   // a virtual register in the entry block, so now we copy the value out
   2845   // and into $v0.
   2846   if (MF.getFunction()->hasStructRetAttr()) {
   2847     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   2848     unsigned Reg = MipsFI->getSRetReturnReg();
   2849 
   2850     if (!Reg)
   2851       llvm_unreachable("sret virtual register not created in the entry block");
   2852     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
   2853     unsigned V0 = Subtarget->isABI_N64() ? Mips::V0_64 : Mips::V0;
   2854 
   2855     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
   2856     Flag = Chain.getValue(1);
   2857     RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
   2858   }
   2859 
   2860   RetOps[0] = Chain;  // Update chain.
   2861 
   2862   // Add the flag if we have it.
   2863   if (Flag.getNode())
   2864     RetOps.push_back(Flag);
   2865 
   2866   // Return on Mips is always a "jr $ra"
   2867   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
   2868 }
   2869 
   2870 //===----------------------------------------------------------------------===//
   2871 //                           Mips Inline Assembly Support
   2872 //===----------------------------------------------------------------------===//
   2873 
   2874 /// getConstraintType - Given a constraint letter, return the type of
   2875 /// constraint it is for this target.
   2876 MipsTargetLowering::ConstraintType MipsTargetLowering::
   2877 getConstraintType(const std::string &Constraint) const
   2878 {
   2879   // Mips specific constraints
   2880   // GCC config/mips/constraints.md
   2881   //
   2882   // 'd' : An address register. Equivalent to r
   2883   //       unless generating MIPS16 code.
   2884   // 'y' : Equivalent to r; retained for
   2885   //       backwards compatibility.
   2886   // 'c' : A register suitable for use in an indirect
   2887   //       jump. This will always be $25 for -mabicalls.
   2888   // 'l' : The lo register. 1 word storage.
   2889   // 'x' : The hilo register pair. Double word storage.
   2890   if (Constraint.size() == 1) {
   2891     switch (Constraint[0]) {
   2892       default : break;
   2893       case 'd':
   2894       case 'y':
   2895       case 'f':
   2896       case 'c':
   2897       case 'l':
   2898       case 'x':
   2899         return C_RegisterClass;
   2900       case 'R':
   2901         return C_Memory;
   2902     }
   2903   }
   2904   return TargetLowering::getConstraintType(Constraint);
   2905 }
   2906 
   2907 /// Examine constraint type and operand type and determine a weight value.
   2908 /// This object must already have been set up with the operand type
   2909 /// and the current alternative constraint selected.
   2910 TargetLowering::ConstraintWeight
   2911 MipsTargetLowering::getSingleConstraintMatchWeight(
   2912     AsmOperandInfo &info, const char *constraint) const {
   2913   ConstraintWeight weight = CW_Invalid;
   2914   Value *CallOperandVal = info.CallOperandVal;
   2915     // If we don't have a value, we can't do a match,
   2916     // but allow it at the lowest weight.
   2917   if (!CallOperandVal)
   2918     return CW_Default;
   2919   Type *type = CallOperandVal->getType();
   2920   // Look at the constraint type.
   2921   switch (*constraint) {
   2922   default:
   2923     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   2924     break;
   2925   case 'd':
   2926   case 'y':
   2927     if (type->isIntegerTy())
   2928       weight = CW_Register;
   2929     break;
   2930   case 'f': // FPU or MSA register
   2931     if (Subtarget->hasMSA() && type->isVectorTy() &&
   2932         cast<VectorType>(type)->getBitWidth() == 128)
   2933       weight = CW_Register;
   2934     else if (type->isFloatTy())
   2935       weight = CW_Register;
   2936     break;
   2937   case 'c': // $25 for indirect jumps
   2938   case 'l': // lo register
   2939   case 'x': // hilo register pair
   2940     if (type->isIntegerTy())
   2941       weight = CW_SpecificReg;
   2942     break;
   2943   case 'I': // signed 16 bit immediate
   2944   case 'J': // integer zero
   2945   case 'K': // unsigned 16 bit immediate
   2946   case 'L': // signed 32 bit immediate where lower 16 bits are 0
   2947   case 'N': // immediate in the range of -65535 to -1 (inclusive)
   2948   case 'O': // signed 15 bit immediate (+- 16383)
   2949   case 'P': // immediate in the range of 65535 to 1 (inclusive)
   2950     if (isa<ConstantInt>(CallOperandVal))
   2951       weight = CW_Constant;
   2952     break;
   2953   case 'R':
   2954     weight = CW_Memory;
   2955     break;
   2956   }
   2957   return weight;
   2958 }
   2959 
   2960 /// This is a helper function to parse a physical register string and split it
   2961 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
   2962 /// that is returned indicates whether parsing was successful. The second flag
   2963 /// is true if the numeric part exists.
   2964 static std::pair<bool, bool>
   2965 parsePhysicalReg(const StringRef &C, std::string &Prefix,
   2966                  unsigned long long &Reg) {
   2967   if (C.front() != '{' || C.back() != '}')
   2968     return std::make_pair(false, false);
   2969 
   2970   // Search for the first numeric character.
   2971   StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
   2972   I = std::find_if(B, E, std::ptr_fun(isdigit));
   2973 
   2974   Prefix.assign(B, I - B);
   2975 
   2976   // The second flag is set to false if no numeric characters were found.
   2977   if (I == E)
   2978     return std::make_pair(true, false);
   2979 
   2980   // Parse the numeric characters.
   2981   return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
   2982                         true);
   2983 }
   2984 
   2985 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
   2986 parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
   2987   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   2988   const TargetRegisterClass *RC;
   2989   std::string Prefix;
   2990   unsigned long long Reg;
   2991 
   2992   std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
   2993 
   2994   if (!R.first)
   2995     return std::make_pair(0U, nullptr);
   2996 
   2997   if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
   2998     // No numeric characters follow "hi" or "lo".
   2999     if (R.second)
   3000       return std::make_pair(0U, nullptr);
   3001 
   3002     RC = TRI->getRegClass(Prefix == "hi" ?
   3003                           Mips::HI32RegClassID : Mips::LO32RegClassID);
   3004     return std::make_pair(*(RC->begin()), RC);
   3005   } else if (Prefix.compare(0, 4, "$msa") == 0) {
   3006     // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
   3007 
   3008     // No numeric characters follow the name.
   3009     if (R.second)
   3010       return std::make_pair(0U, nullptr);
   3011 
   3012     Reg = StringSwitch<unsigned long long>(Prefix)
   3013               .Case("$msair", Mips::MSAIR)
   3014               .Case("$msacsr", Mips::MSACSR)
   3015               .Case("$msaaccess", Mips::MSAAccess)
   3016               .Case("$msasave", Mips::MSASave)
   3017               .Case("$msamodify", Mips::MSAModify)
   3018               .Case("$msarequest", Mips::MSARequest)
   3019               .Case("$msamap", Mips::MSAMap)
   3020               .Case("$msaunmap", Mips::MSAUnmap)
   3021               .Default(0);
   3022 
   3023     if (!Reg)
   3024       return std::make_pair(0U, nullptr);
   3025 
   3026     RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
   3027     return std::make_pair(Reg, RC);
   3028   }
   3029 
   3030   if (!R.second)
   3031     return std::make_pair(0U, nullptr);
   3032 
   3033   if (Prefix == "$f") { // Parse $f0-$f31.
   3034     // If the size of FP registers is 64-bit or Reg is an even number, select
   3035     // the 64-bit register class. Otherwise, select the 32-bit register class.
   3036     if (VT == MVT::Other)
   3037       VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
   3038 
   3039     RC = getRegClassFor(VT);
   3040 
   3041     if (RC == &Mips::AFGR64RegClass) {
   3042       assert(Reg % 2 == 0);
   3043       Reg >>= 1;
   3044     }
   3045   } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
   3046     RC = TRI->getRegClass(Mips::FCCRegClassID);
   3047   else if (Prefix == "$w") { // Parse $w0-$w31.
   3048     RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
   3049   } else { // Parse $0-$31.
   3050     assert(Prefix == "$");
   3051     RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
   3052   }
   3053 
   3054   assert(Reg < RC->getNumRegs());
   3055   return std::make_pair(*(RC->begin() + Reg), RC);
   3056 }
   3057 
   3058 /// Given a register class constraint, like 'r', if this corresponds directly
   3059 /// to an LLVM register class, return a register of 0 and the register class
   3060 /// pointer.
   3061 std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
   3062 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
   3063 {
   3064   if (Constraint.size() == 1) {
   3065     switch (Constraint[0]) {
   3066     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
   3067     case 'y': // Same as 'r'. Exists for compatibility.
   3068     case 'r':
   3069       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
   3070         if (Subtarget->inMips16Mode())
   3071           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
   3072         return std::make_pair(0U, &Mips::GPR32RegClass);
   3073       }
   3074       if (VT == MVT::i64 && !Subtarget->isGP64bit())
   3075         return std::make_pair(0U, &Mips::GPR32RegClass);
   3076       if (VT == MVT::i64 && Subtarget->isGP64bit())
   3077         return std::make_pair(0U, &Mips::GPR64RegClass);
   3078       // This will generate an error message
   3079       return std::make_pair(0U, nullptr);
   3080     case 'f': // FPU or MSA register
   3081       if (VT == MVT::v16i8)
   3082         return std::make_pair(0U, &Mips::MSA128BRegClass);
   3083       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
   3084         return std::make_pair(0U, &Mips::MSA128HRegClass);
   3085       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
   3086         return std::make_pair(0U, &Mips::MSA128WRegClass);
   3087       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
   3088         return std::make_pair(0U, &Mips::MSA128DRegClass);
   3089       else if (VT == MVT::f32)
   3090         return std::make_pair(0U, &Mips::FGR32RegClass);
   3091       else if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
   3092         if (Subtarget->isFP64bit())
   3093           return std::make_pair(0U, &Mips::FGR64RegClass);
   3094         return std::make_pair(0U, &Mips::AFGR64RegClass);
   3095       }
   3096       break;
   3097     case 'c': // register suitable for indirect jump
   3098       if (VT == MVT::i32)
   3099         return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
   3100       assert(VT == MVT::i64 && "Unexpected type.");
   3101       return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
   3102     case 'l': // register suitable for indirect jump
   3103       if (VT == MVT::i32)
   3104         return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
   3105       return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
   3106     case 'x': // register suitable for indirect jump
   3107       // Fixme: Not triggering the use of both hi and low
   3108       // This will generate an error message
   3109       return std::make_pair(0U, nullptr);
   3110     }
   3111   }
   3112 
   3113   std::pair<unsigned, const TargetRegisterClass *> R;
   3114   R = parseRegForInlineAsmConstraint(Constraint, VT);
   3115 
   3116   if (R.second)
   3117     return R;
   3118 
   3119   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   3120 }
   3121 
   3122 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   3123 /// vector.  If it is invalid, don't add anything to Ops.
   3124 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   3125                                                      std::string &Constraint,
   3126                                                      std::vector<SDValue>&Ops,
   3127                                                      SelectionDAG &DAG) const {
   3128   SDValue Result;
   3129 
   3130   // Only support length 1 constraints for now.
   3131   if (Constraint.length() > 1) return;
   3132 
   3133   char ConstraintLetter = Constraint[0];
   3134   switch (ConstraintLetter) {
   3135   default: break; // This will fall through to the generic implementation
   3136   case 'I': // Signed 16 bit constant
   3137     // If this fails, the parent routine will give an error
   3138     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3139       EVT Type = Op.getValueType();
   3140       int64_t Val = C->getSExtValue();
   3141       if (isInt<16>(Val)) {
   3142         Result = DAG.getTargetConstant(Val, Type);
   3143         break;
   3144       }
   3145     }
   3146     return;
   3147   case 'J': // integer zero
   3148     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3149       EVT Type = Op.getValueType();
   3150       int64_t Val = C->getZExtValue();
   3151       if (Val == 0) {
   3152         Result = DAG.getTargetConstant(0, Type);
   3153         break;
   3154       }
   3155     }
   3156     return;
   3157   case 'K': // unsigned 16 bit immediate
   3158     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3159       EVT Type = Op.getValueType();
   3160       uint64_t Val = (uint64_t)C->getZExtValue();
   3161       if (isUInt<16>(Val)) {
   3162         Result = DAG.getTargetConstant(Val, Type);
   3163         break;
   3164       }
   3165     }
   3166     return;
   3167   case 'L': // signed 32 bit immediate where lower 16 bits are 0
   3168     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3169       EVT Type = Op.getValueType();
   3170       int64_t Val = C->getSExtValue();
   3171       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
   3172         Result = DAG.getTargetConstant(Val, Type);
   3173         break;
   3174       }
   3175     }
   3176     return;
   3177   case 'N': // immediate in the range of -65535 to -1 (inclusive)
   3178     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3179       EVT Type = Op.getValueType();
   3180       int64_t Val = C->getSExtValue();
   3181       if ((Val >= -65535) && (Val <= -1)) {
   3182         Result = DAG.getTargetConstant(Val, Type);
   3183         break;
   3184       }
   3185     }
   3186     return;
   3187   case 'O': // signed 15 bit immediate
   3188     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3189       EVT Type = Op.getValueType();
   3190       int64_t Val = C->getSExtValue();
   3191       if ((isInt<15>(Val))) {
   3192         Result = DAG.getTargetConstant(Val, Type);
   3193         break;
   3194       }
   3195     }
   3196     return;
   3197   case 'P': // immediate in the range of 1 to 65535 (inclusive)
   3198     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   3199       EVT Type = Op.getValueType();
   3200       int64_t Val = C->getSExtValue();
   3201       if ((Val <= 65535) && (Val >= 1)) {
   3202         Result = DAG.getTargetConstant(Val, Type);
   3203         break;
   3204       }
   3205     }
   3206     return;
   3207   }
   3208 
   3209   if (Result.getNode()) {
   3210     Ops.push_back(Result);
   3211     return;
   3212   }
   3213 
   3214   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   3215 }
   3216 
   3217 bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   3218                                                Type *Ty) const {
   3219   // No global is ever allowed as a base.
   3220   if (AM.BaseGV)
   3221     return false;
   3222 
   3223   switch (AM.Scale) {
   3224   case 0: // "r+i" or just "i", depending on HasBaseReg.
   3225     break;
   3226   case 1:
   3227     if (!AM.HasBaseReg) // allow "r+i".
   3228       break;
   3229     return false; // disallow "r+r" or "r+r+i".
   3230   default:
   3231     return false;
   3232   }
   3233 
   3234   return true;
   3235 }
   3236 
   3237 bool
   3238 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   3239   // The Mips target isn't yet aware of offsets.
   3240   return false;
   3241 }
   3242 
   3243 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
   3244                                             unsigned SrcAlign,
   3245                                             bool IsMemset, bool ZeroMemset,
   3246                                             bool MemcpyStrSrc,
   3247                                             MachineFunction &MF) const {
   3248   if (Subtarget->hasMips64())
   3249     return MVT::i64;
   3250 
   3251   return MVT::i32;
   3252 }
   3253 
   3254 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3255   if (VT != MVT::f32 && VT != MVT::f64)
   3256     return false;
   3257   if (Imm.isNegZero())
   3258     return false;
   3259   return Imm.isZero();
   3260 }
   3261 
   3262 unsigned MipsTargetLowering::getJumpTableEncoding() const {
   3263   if (Subtarget->isABI_N64())
   3264     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
   3265 
   3266   return TargetLowering::getJumpTableEncoding();
   3267 }
   3268 
   3269 /// This function returns true if CallSym is a long double emulation routine.
   3270 static bool isF128SoftLibCall(const char *CallSym) {
   3271   const char *const LibCalls[] =
   3272     {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
   3273      "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
   3274      "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
   3275      "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
   3276      "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
   3277      "__trunctfdf2", "__trunctfsf2", "__unordtf2",
   3278      "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
   3279      "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
   3280      "truncl"};
   3281 
   3282   const char *const *End = LibCalls + array_lengthof(LibCalls);
   3283 
   3284   // Check that LibCalls is sorted alphabetically.
   3285   MipsTargetLowering::LTStr Comp;
   3286 
   3287 #ifndef NDEBUG
   3288   for (const char *const *I = LibCalls; I < End - 1; ++I)
   3289     assert(Comp(*I, *(I + 1)));
   3290 #endif
   3291 
   3292   return std::binary_search(LibCalls, End, CallSym, Comp);
   3293 }
   3294 
   3295 /// This function returns true if Ty is fp128 or i128 which was originally a
   3296 /// fp128.
   3297 static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
   3298   if (Ty->isFP128Ty())
   3299     return true;
   3300 
   3301   const ExternalSymbolSDNode *ES =
   3302     dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
   3303 
   3304   // If the Ty is i128 and the function being called is a long double emulation
   3305   // routine, then the original type is f128.
   3306   return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
   3307 }
   3308 
   3309 MipsTargetLowering::MipsCC::SpecialCallingConvType
   3310   MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
   3311   MipsCC::SpecialCallingConvType SpecialCallingConv =
   3312     MipsCC::NoSpecialCallingConv;
   3313   if (Subtarget->inMips16HardFloat()) {
   3314     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3315       llvm::StringRef Sym = G->getGlobal()->getName();
   3316       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
   3317       if (F && F->hasFnAttribute("__Mips16RetHelper")) {
   3318         SpecialCallingConv = MipsCC::Mips16RetHelperConv;
   3319       }
   3320     }
   3321   }
   3322   return SpecialCallingConv;
   3323 }
   3324 
   3325 MipsTargetLowering::MipsCC::MipsCC(
   3326   CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
   3327   MipsCC::SpecialCallingConvType SpecialCallingConv_)
   3328   : CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
   3329     SpecialCallingConv(SpecialCallingConv_){
   3330   // Pre-allocate reserved argument area.
   3331   CCInfo.AllocateStack(reservedArgArea(), 1);
   3332 }
   3333 
   3334 
   3335 void MipsTargetLowering::MipsCC::
   3336 analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
   3337                     bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
   3338                     std::vector<ArgListEntry> &FuncArgs) {
   3339   assert((CallConv != CallingConv::Fast || !IsVarArg) &&
   3340          "CallingConv::Fast shouldn't be used for vararg functions.");
   3341 
   3342   unsigned NumOpnds = Args.size();
   3343   llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
   3344 
   3345   for (unsigned I = 0; I != NumOpnds; ++I) {
   3346     MVT ArgVT = Args[I].VT;
   3347     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
   3348     bool R;
   3349 
   3350     if (ArgFlags.isByVal()) {
   3351       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
   3352       continue;
   3353     }
   3354 
   3355     if (IsVarArg && !Args[I].IsFixed)
   3356       R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
   3357     else {
   3358       MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
   3359                            IsSoftFloat);
   3360       R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
   3361     }
   3362 
   3363     if (R) {
   3364 #ifndef NDEBUG
   3365       dbgs() << "Call operand #" << I << " has unhandled type "
   3366              << EVT(ArgVT).getEVTString();
   3367 #endif
   3368       llvm_unreachable(nullptr);
   3369     }
   3370   }
   3371 }
   3372 
   3373 void MipsTargetLowering::MipsCC::
   3374 analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
   3375                        bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
   3376   unsigned NumArgs = Args.size();
   3377   llvm::CCAssignFn *FixedFn = fixedArgFn();
   3378   unsigned CurArgIdx = 0;
   3379 
   3380   for (unsigned I = 0; I != NumArgs; ++I) {
   3381     MVT ArgVT = Args[I].VT;
   3382     ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
   3383     std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
   3384     CurArgIdx = Args[I].OrigArgIndex;
   3385 
   3386     if (ArgFlags.isByVal()) {
   3387       handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
   3388       continue;
   3389     }
   3390 
   3391     MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), nullptr, IsSoftFloat);
   3392 
   3393     if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
   3394       continue;
   3395 
   3396 #ifndef NDEBUG
   3397     dbgs() << "Formal Arg #" << I << " has unhandled type "
   3398            << EVT(ArgVT).getEVTString();
   3399 #endif
   3400     llvm_unreachable(nullptr);
   3401   }
   3402 }
   3403 
   3404 template<typename Ty>
   3405 void MipsTargetLowering::MipsCC::
   3406 analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
   3407               const SDNode *CallNode, const Type *RetTy) const {
   3408   CCAssignFn *Fn;
   3409 
   3410   if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
   3411     Fn = RetCC_F128Soft;
   3412   else
   3413     Fn = RetCC_Mips;
   3414 
   3415   for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
   3416     MVT VT = RetVals[I].VT;
   3417     ISD::ArgFlagsTy Flags = RetVals[I].Flags;
   3418     MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
   3419 
   3420     if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
   3421 #ifndef NDEBUG
   3422       dbgs() << "Call result #" << I << " has unhandled type "
   3423              << EVT(VT).getEVTString() << '\n';
   3424 #endif
   3425       llvm_unreachable(nullptr);
   3426     }
   3427   }
   3428 }
   3429 
   3430 void MipsTargetLowering::MipsCC::
   3431 analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
   3432                   const SDNode *CallNode, const Type *RetTy) const {
   3433   analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
   3434 }
   3435 
   3436 void MipsTargetLowering::MipsCC::
   3437 analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
   3438               const Type *RetTy) const {
   3439   analyzeReturn(Outs, IsSoftFloat, nullptr, RetTy);
   3440 }
   3441 
   3442 void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
   3443                                                 MVT LocVT,
   3444                                                 CCValAssign::LocInfo LocInfo,
   3445                                                 ISD::ArgFlagsTy ArgFlags) {
   3446   assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
   3447 
   3448   struct ByValArgInfo ByVal;
   3449   unsigned RegSize = regSize();
   3450   unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
   3451   unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
   3452                             RegSize * 2);
   3453 
   3454   if (useRegsForByval())
   3455     allocateRegs(ByVal, ByValSize, Align);
   3456 
   3457   // Allocate space on caller's stack.
   3458   ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
   3459                                        Align);
   3460   CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
   3461                                     LocInfo));
   3462   ByValArgs.push_back(ByVal);
   3463 }
   3464 
   3465 unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
   3466   return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
   3467 }
   3468 
   3469 unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
   3470   return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
   3471 }
   3472 
   3473 const MCPhysReg *MipsTargetLowering::MipsCC::intArgRegs() const {
   3474   return IsO32 ? O32IntRegs : Mips64IntRegs;
   3475 }
   3476 
   3477 llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
   3478   if (CallConv == CallingConv::Fast)
   3479     return CC_Mips_FastCC;
   3480 
   3481   if (SpecialCallingConv == Mips16RetHelperConv)
   3482     return CC_Mips16RetHelper;
   3483   return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
   3484 }
   3485 
   3486 llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
   3487   return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
   3488 }
   3489 
   3490 const MCPhysReg *MipsTargetLowering::MipsCC::shadowRegs() const {
   3491   return IsO32 ? O32IntRegs : Mips64DPRegs;
   3492 }
   3493 
   3494 void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
   3495                                               unsigned ByValSize,
   3496                                               unsigned Align) {
   3497   unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
   3498   const MCPhysReg *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
   3499   assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
   3500          "Byval argument's size and alignment should be a multiple of"
   3501          "RegSize.");
   3502 
   3503   ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
   3504 
   3505   // If Align > RegSize, the first arg register must be even.
   3506   if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
   3507     CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
   3508     ++ByVal.FirstIdx;
   3509   }
   3510 
   3511   // Mark the registers allocated.
   3512   for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
   3513        ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
   3514     CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
   3515 }
   3516 
   3517 MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
   3518                                          const SDNode *CallNode,
   3519                                          bool IsSoftFloat) const {
   3520   if (IsSoftFloat || IsO32)
   3521     return VT;
   3522 
   3523   // Check if the original type was fp128.
   3524   if (originalTypeIsF128(OrigTy, CallNode)) {
   3525     assert(VT == MVT::i64);
   3526     return MVT::f64;
   3527   }
   3528 
   3529   return VT;
   3530 }
   3531 
   3532 void MipsTargetLowering::
   3533 copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
   3534               SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
   3535               SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
   3536               const MipsCC &CC, const ByValArgInfo &ByVal) const {
   3537   MachineFunction &MF = DAG.getMachineFunction();
   3538   MachineFrameInfo *MFI = MF.getFrameInfo();
   3539   unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
   3540   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
   3541   int FrameObjOffset;
   3542 
   3543   if (RegAreaSize)
   3544     FrameObjOffset = (int)CC.reservedArgArea() -
   3545       (int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
   3546   else
   3547     FrameObjOffset = ByVal.Address;
   3548 
   3549   // Create frame object.
   3550   EVT PtrTy = getPointerTy();
   3551   int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
   3552   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   3553   InVals.push_back(FIN);
   3554 
   3555   if (!ByVal.NumRegs)
   3556     return;
   3557 
   3558   // Copy arg registers.
   3559   MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
   3560   const TargetRegisterClass *RC = getRegClassFor(RegTy);
   3561 
   3562   for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
   3563     unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
   3564     unsigned VReg = addLiveIn(MF, ArgReg, RC);
   3565     unsigned Offset = I * CC.regSize();
   3566     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
   3567                                    DAG.getConstant(Offset, PtrTy));
   3568     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
   3569                                  StorePtr, MachinePointerInfo(FuncArg, Offset),
   3570                                  false, false, 0);
   3571     OutChains.push_back(Store);
   3572   }
   3573 }
   3574 
   3575 // Copy byVal arg to registers and stack.
   3576 void MipsTargetLowering::
   3577 passByValArg(SDValue Chain, SDLoc DL,
   3578              std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   3579              SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
   3580              MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
   3581              const MipsCC &CC, const ByValArgInfo &ByVal,
   3582              const ISD::ArgFlagsTy &Flags, bool isLittle) const {
   3583   unsigned ByValSizeInBytes = Flags.getByValSize();
   3584   unsigned OffsetInBytes = 0; // From beginning of struct
   3585   unsigned RegSizeInBytes = CC.regSize();
   3586   unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
   3587   EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
   3588 
   3589   if (ByVal.NumRegs) {
   3590     const MCPhysReg *ArgRegs = CC.intArgRegs();
   3591     bool LeftoverBytes = (ByVal.NumRegs * RegSizeInBytes > ByValSizeInBytes);
   3592     unsigned I = 0;
   3593 
   3594     // Copy words to registers.
   3595     for (; I < ByVal.NumRegs - LeftoverBytes;
   3596          ++I, OffsetInBytes += RegSizeInBytes) {
   3597       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3598                                     DAG.getConstant(OffsetInBytes, PtrTy));
   3599       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
   3600                                     MachinePointerInfo(), false, false, false,
   3601                                     Alignment);
   3602       MemOpChains.push_back(LoadVal.getValue(1));
   3603       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
   3604       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
   3605     }
   3606 
   3607     // Return if the struct has been fully copied.
   3608     if (ByValSizeInBytes == OffsetInBytes)
   3609       return;
   3610 
   3611     // Copy the remainder of the byval argument with sub-word loads and shifts.
   3612     if (LeftoverBytes) {
   3613       assert((ByValSizeInBytes > OffsetInBytes) &&
   3614              (ByValSizeInBytes < OffsetInBytes + RegSizeInBytes) &&
   3615              "Size of the remainder should be smaller than RegSizeInBytes.");
   3616       SDValue Val;
   3617 
   3618       for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
   3619            OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
   3620         unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
   3621 
   3622         if (RemainingSizeInBytes < LoadSizeInBytes)
   3623           continue;
   3624 
   3625         // Load subword.
   3626         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3627                                       DAG.getConstant(OffsetInBytes, PtrTy));
   3628         SDValue LoadVal = DAG.getExtLoad(
   3629             ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
   3630             MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, Alignment);
   3631         MemOpChains.push_back(LoadVal.getValue(1));
   3632 
   3633         // Shift the loaded value.
   3634         unsigned Shamt;
   3635 
   3636         if (isLittle)
   3637           Shamt = TotalBytesLoaded * 8;
   3638         else
   3639           Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
   3640 
   3641         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
   3642                                     DAG.getConstant(Shamt, MVT::i32));
   3643 
   3644         if (Val.getNode())
   3645           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
   3646         else
   3647           Val = Shift;
   3648 
   3649         OffsetInBytes += LoadSizeInBytes;
   3650         TotalBytesLoaded += LoadSizeInBytes;
   3651         Alignment = std::min(Alignment, LoadSizeInBytes);
   3652       }
   3653 
   3654       unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
   3655       RegsToPass.push_back(std::make_pair(ArgReg, Val));
   3656       return;
   3657     }
   3658   }
   3659 
   3660   // Copy remainder of byval arg to it with memcpy.
   3661   unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
   3662   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
   3663                             DAG.getConstant(OffsetInBytes, PtrTy));
   3664   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
   3665                             DAG.getIntPtrConstant(ByVal.Address));
   3666   Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
   3667                         Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
   3668                         MachinePointerInfo(), MachinePointerInfo());
   3669   MemOpChains.push_back(Chain);
   3670 }
   3671 
   3672 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
   3673                                          const MipsCC &CC, SDValue Chain,
   3674                                          SDLoc DL, SelectionDAG &DAG) const {
   3675   unsigned NumRegs = CC.numIntArgRegs();
   3676   const MCPhysReg *ArgRegs = CC.intArgRegs();
   3677   const CCState &CCInfo = CC.getCCInfo();
   3678   unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
   3679   unsigned RegSize = CC.regSize();
   3680   MVT RegTy = MVT::getIntegerVT(RegSize * 8);
   3681   const TargetRegisterClass *RC = getRegClassFor(RegTy);
   3682   MachineFunction &MF = DAG.getMachineFunction();
   3683   MachineFrameInfo *MFI = MF.getFrameInfo();
   3684   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
   3685 
   3686   // Offset of the first variable argument from stack pointer.
   3687   int VaArgOffset;
   3688 
   3689   if (NumRegs == Idx)
   3690     VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
   3691   else
   3692     VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
   3693 
   3694   // Record the frame index of the first variable argument
   3695   // which is a value necessary to VASTART.
   3696   int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
   3697   MipsFI->setVarArgsFrameIndex(FI);
   3698 
   3699   // Copy the integer registers that have not been used for argument passing
   3700   // to the argument register save area. For O32, the save area is allocated
   3701   // in the caller's stack frame, while for N32/64, it is allocated in the
   3702   // callee's stack frame.
   3703   for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
   3704     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
   3705     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
   3706     FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
   3707     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
   3708     SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
   3709                                  MachinePointerInfo(), false, false, 0);
   3710     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue((Value*)nullptr);
   3711     OutChains.push_back(Store);
   3712   }
   3713 }
   3714