Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SelectionDAGBuilder.h"
     15 #include "SDNodeDbgValue.h"
     16 #include "llvm/ADT/BitVector.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/BranchProbabilityInfo.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/CodeGen/Analysis.h"
     24 #include "llvm/CodeGen/FastISel.h"
     25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     26 #include "llvm/CodeGen/GCMetadata.h"
     27 #include "llvm/CodeGen/GCStrategy.h"
     28 #include "llvm/CodeGen/MachineFrameInfo.h"
     29 #include "llvm/CodeGen/MachineFunction.h"
     30 #include "llvm/CodeGen/MachineInstrBuilder.h"
     31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     32 #include "llvm/CodeGen/MachineModuleInfo.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/CodeGen/SelectionDAG.h"
     35 #include "llvm/CodeGen/StackMaps.h"
     36 #include "llvm/IR/CallingConv.h"
     37 #include "llvm/IR/Constants.h"
     38 #include "llvm/IR/DataLayout.h"
     39 #include "llvm/IR/DebugInfo.h"
     40 #include "llvm/IR/DerivedTypes.h"
     41 #include "llvm/IR/Function.h"
     42 #include "llvm/IR/GlobalVariable.h"
     43 #include "llvm/IR/InlineAsm.h"
     44 #include "llvm/IR/Instructions.h"
     45 #include "llvm/IR/IntrinsicInst.h"
     46 #include "llvm/IR/Intrinsics.h"
     47 #include "llvm/IR/LLVMContext.h"
     48 #include "llvm/IR/Module.h"
     49 #include "llvm/Support/CommandLine.h"
     50 #include "llvm/Support/Debug.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/Target/TargetFrameLowering.h"
     55 #include "llvm/Target/TargetInstrInfo.h"
     56 #include "llvm/Target/TargetIntrinsicInfo.h"
     57 #include "llvm/Target/TargetLibraryInfo.h"
     58 #include "llvm/Target/TargetLowering.h"
     59 #include "llvm/Target/TargetOptions.h"
     60 #include "llvm/Target/TargetSelectionDAGInfo.h"
     61 #include <algorithm>
     62 using namespace llvm;
     63 
     64 #define DEBUG_TYPE "isel"
     65 
     66 /// LimitFloatPrecision - Generate low-precision inline sequences for
     67 /// some float libcalls (6, 8 or 12 bits).
     68 static unsigned LimitFloatPrecision;
     69 
     70 static cl::opt<unsigned, true>
     71 LimitFPPrecision("limit-float-precision",
     72                  cl::desc("Generate low-precision inline sequences "
     73                           "for some float libcalls"),
     74                  cl::location(LimitFloatPrecision),
     75                  cl::init(0));
     76 
     77 // Limit the width of DAG chains. This is important in general to prevent
     78 // prevent DAG-based analysis from blowing up. For example, alias analysis and
     79 // load clustering may not complete in reasonable time. It is difficult to
     80 // recognize and avoid this situation within each individual analysis, and
     81 // future analyses are likely to have the same behavior. Limiting DAG width is
     82 // the safe approach, and will be especially important with global DAGs.
     83 //
     84 // MaxParallelChains default is arbitrarily high to avoid affecting
     85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
     86 // sequence over this should have been converted to llvm.memcpy by the
     87 // frontend. It easy to induce this behavior with .ll code such as:
     88 // %buffer = alloca [4096 x i8]
     89 // %data = load [4096 x i8]* %argPtr
     90 // store [4096 x i8] %data, [4096 x i8]* %buffer
     91 static const unsigned MaxParallelChains = 64;
     92 
     93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
     94                                       const SDValue *Parts, unsigned NumParts,
     95                                       MVT PartVT, EVT ValueVT, const Value *V);
     96 
     97 /// getCopyFromParts - Create a value that contains the specified legal parts
     98 /// combined into the value they represent.  If the parts combine to a type
     99 /// larger then ValueVT then AssertOp can be used to specify whether the extra
    100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
    101 /// (ISD::AssertSext).
    102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
    103                                 const SDValue *Parts,
    104                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
    105                                 const Value *V,
    106                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
    107   if (ValueVT.isVector())
    108     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
    109                                   PartVT, ValueVT, V);
    110 
    111   assert(NumParts > 0 && "No parts to assemble!");
    112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    113   SDValue Val = Parts[0];
    114 
    115   if (NumParts > 1) {
    116     // Assemble the value from multiple parts.
    117     if (ValueVT.isInteger()) {
    118       unsigned PartBits = PartVT.getSizeInBits();
    119       unsigned ValueBits = ValueVT.getSizeInBits();
    120 
    121       // Assemble the power of 2 part.
    122       unsigned RoundParts = NumParts & (NumParts - 1) ?
    123         1 << Log2_32(NumParts) : NumParts;
    124       unsigned RoundBits = PartBits * RoundParts;
    125       EVT RoundVT = RoundBits == ValueBits ?
    126         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
    127       SDValue Lo, Hi;
    128 
    129       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
    130 
    131       if (RoundParts > 2) {
    132         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
    133                               PartVT, HalfVT, V);
    134         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
    135                               RoundParts / 2, PartVT, HalfVT, V);
    136       } else {
    137         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
    138         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
    139       }
    140 
    141       if (TLI.isBigEndian())
    142         std::swap(Lo, Hi);
    143 
    144       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
    145 
    146       if (RoundParts < NumParts) {
    147         // Assemble the trailing non-power-of-2 part.
    148         unsigned OddParts = NumParts - RoundParts;
    149         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
    150         Hi = getCopyFromParts(DAG, DL,
    151                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
    152 
    153         // Combine the round and odd parts.
    154         Lo = Val;
    155         if (TLI.isBigEndian())
    156           std::swap(Lo, Hi);
    157         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    158         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
    159         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
    160                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
    161                                          TLI.getPointerTy()));
    162         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
    163         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
    164       }
    165     } else if (PartVT.isFloatingPoint()) {
    166       // FP split into multiple FP parts (for ppcf128)
    167       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
    168              "Unexpected split");
    169       SDValue Lo, Hi;
    170       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
    171       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
    172       if (TLI.hasBigEndianPartOrdering(ValueVT))
    173         std::swap(Lo, Hi);
    174       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
    175     } else {
    176       // FP split into integer parts (soft fp)
    177       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
    178              !PartVT.isVector() && "Unexpected split");
    179       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
    180       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
    181     }
    182   }
    183 
    184   // There is now one part, held in Val.  Correct it to match ValueVT.
    185   EVT PartEVT = Val.getValueType();
    186 
    187   if (PartEVT == ValueVT)
    188     return Val;
    189 
    190   if (PartEVT.isInteger() && ValueVT.isInteger()) {
    191     if (ValueVT.bitsLT(PartEVT)) {
    192       // For a truncate, see if we have any information to
    193       // indicate whether the truncated bits will always be
    194       // zero or sign-extension.
    195       if (AssertOp != ISD::DELETED_NODE)
    196         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
    197                           DAG.getValueType(ValueVT));
    198       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    199     }
    200     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
    201   }
    202 
    203   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    204     // FP_ROUND's are always exact here.
    205     if (ValueVT.bitsLT(Val.getValueType()))
    206       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
    207                          DAG.getTargetConstant(1, TLI.getPointerTy()));
    208 
    209     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
    210   }
    211 
    212   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
    213     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    214 
    215   llvm_unreachable("Unknown mismatch!");
    216 }
    217 
    218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
    219                                               const Twine &ErrMsg) {
    220   const Instruction *I = dyn_cast_or_null<Instruction>(V);
    221   if (!V)
    222     return Ctx.emitError(ErrMsg);
    223 
    224   const char *AsmError = ", possible invalid constraint for vector type";
    225   if (const CallInst *CI = dyn_cast<CallInst>(I))
    226     if (isa<InlineAsm>(CI->getCalledValue()))
    227       return Ctx.emitError(I, ErrMsg + AsmError);
    228 
    229   return Ctx.emitError(I, ErrMsg);
    230 }
    231 
    232 /// getCopyFromPartsVector - Create a value that contains the specified legal
    233 /// parts combined into the value they represent.  If the parts combine to a
    234 /// type larger then ValueVT then AssertOp can be used to specify whether the
    235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
    236 /// ValueVT (ISD::AssertSext).
    237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
    238                                       const SDValue *Parts, unsigned NumParts,
    239                                       MVT PartVT, EVT ValueVT, const Value *V) {
    240   assert(ValueVT.isVector() && "Not a vector value");
    241   assert(NumParts > 0 && "No parts to assemble!");
    242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    243   SDValue Val = Parts[0];
    244 
    245   // Handle a multi-element vector.
    246   if (NumParts > 1) {
    247     EVT IntermediateVT;
    248     MVT RegisterVT;
    249     unsigned NumIntermediates;
    250     unsigned NumRegs =
    251     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
    252                                NumIntermediates, RegisterVT);
    253     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    254     NumParts = NumRegs; // Silence a compiler warning.
    255     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    256     assert(RegisterVT == Parts[0].getSimpleValueType() &&
    257            "Part type doesn't match part!");
    258 
    259     // Assemble the parts into intermediate operands.
    260     SmallVector<SDValue, 8> Ops(NumIntermediates);
    261     if (NumIntermediates == NumParts) {
    262       // If the register was not expanded, truncate or copy the value,
    263       // as appropriate.
    264       for (unsigned i = 0; i != NumParts; ++i)
    265         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
    266                                   PartVT, IntermediateVT, V);
    267     } else if (NumParts > 0) {
    268       // If the intermediate type was expanded, build the intermediate
    269       // operands from the parts.
    270       assert(NumParts % NumIntermediates == 0 &&
    271              "Must expand into a divisible number of parts!");
    272       unsigned Factor = NumParts / NumIntermediates;
    273       for (unsigned i = 0; i != NumIntermediates; ++i)
    274         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
    275                                   PartVT, IntermediateVT, V);
    276     }
    277 
    278     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
    279     // intermediate operands.
    280     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
    281                                                 : ISD::BUILD_VECTOR,
    282                       DL, ValueVT, Ops);
    283   }
    284 
    285   // There is now one part, held in Val.  Correct it to match ValueVT.
    286   EVT PartEVT = Val.getValueType();
    287 
    288   if (PartEVT == ValueVT)
    289     return Val;
    290 
    291   if (PartEVT.isVector()) {
    292     // If the element type of the source/dest vectors are the same, but the
    293     // parts vector has more elements than the value vector, then we have a
    294     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
    295     // elements we want.
    296     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
    297       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
    298              "Cannot narrow, it would be a lossy transformation");
    299       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
    300                          DAG.getConstant(0, TLI.getVectorIdxTy()));
    301     }
    302 
    303     // Vector/Vector bitcast.
    304     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
    305       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    306 
    307     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
    308       "Cannot handle this kind of promotion");
    309     // Promoted vector extract
    310     bool Smaller = ValueVT.bitsLE(PartEVT);
    311     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    312                        DL, ValueVT, Val);
    313 
    314   }
    315 
    316   // Trivial bitcast if the types are the same size and the destination
    317   // vector type is legal.
    318   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
    319       TLI.isTypeLegal(ValueVT))
    320     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    321 
    322   // Handle cases such as i8 -> <1 x i1>
    323   if (ValueVT.getVectorNumElements() != 1) {
    324     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
    325                                       "non-trivial scalar-to-vector conversion");
    326     return DAG.getUNDEF(ValueVT);
    327   }
    328 
    329   if (ValueVT.getVectorNumElements() == 1 &&
    330       ValueVT.getVectorElementType() != PartEVT) {
    331     bool Smaller = ValueVT.bitsLE(PartEVT);
    332     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    333                        DL, ValueVT.getScalarType(), Val);
    334   }
    335 
    336   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
    337 }
    338 
    339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
    340                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    341                                  MVT PartVT, const Value *V);
    342 
    343 /// getCopyToParts - Create a series of nodes that contain the specified value
    344 /// split into legal parts.  If the parts contain more bits than Val, then, for
    345 /// integers, ExtendKind can be used to specify how to generate the extra bits.
    346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
    347                            SDValue Val, SDValue *Parts, unsigned NumParts,
    348                            MVT PartVT, const Value *V,
    349                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
    350   EVT ValueVT = Val.getValueType();
    351 
    352   // Handle the vector case separately.
    353   if (ValueVT.isVector())
    354     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
    355 
    356   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    357   unsigned PartBits = PartVT.getSizeInBits();
    358   unsigned OrigNumParts = NumParts;
    359   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
    360 
    361   if (NumParts == 0)
    362     return;
    363 
    364   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
    365   EVT PartEVT = PartVT;
    366   if (PartEVT == ValueVT) {
    367     assert(NumParts == 1 && "No-op copy with multiple parts!");
    368     Parts[0] = Val;
    369     return;
    370   }
    371 
    372   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
    373     // If the parts cover more bits than the value has, promote the value.
    374     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    375       assert(NumParts == 1 && "Do not know what to promote to!");
    376       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
    377     } else {
    378       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
    379              ValueVT.isInteger() &&
    380              "Unknown mismatch!");
    381       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    382       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
    383       if (PartVT == MVT::x86mmx)
    384         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    385     }
    386   } else if (PartBits == ValueVT.getSizeInBits()) {
    387     // Different types of the same size.
    388     assert(NumParts == 1 && PartEVT != ValueVT);
    389     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    390   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
    391     // If the parts cover less bits than value has, truncate the value.
    392     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
    393            ValueVT.isInteger() &&
    394            "Unknown mismatch!");
    395     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    396     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    397     if (PartVT == MVT::x86mmx)
    398       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    399   }
    400 
    401   // The value may have changed - recompute ValueVT.
    402   ValueVT = Val.getValueType();
    403   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
    404          "Failed to tile the value with PartVT!");
    405 
    406   if (NumParts == 1) {
    407     if (PartEVT != ValueVT)
    408       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
    409                                         "scalar-to-vector conversion failed");
    410 
    411     Parts[0] = Val;
    412     return;
    413   }
    414 
    415   // Expand the value into multiple parts.
    416   if (NumParts & (NumParts - 1)) {
    417     // The number of parts is not a power of 2.  Split off and copy the tail.
    418     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    419            "Do not know what to expand to!");
    420     unsigned RoundParts = 1 << Log2_32(NumParts);
    421     unsigned RoundBits = RoundParts * PartBits;
    422     unsigned OddParts = NumParts - RoundParts;
    423     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
    424                                  DAG.getIntPtrConstant(RoundBits));
    425     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
    426 
    427     if (TLI.isBigEndian())
    428       // The odd parts were reversed by getCopyToParts - unreverse them.
    429       std::reverse(Parts + RoundParts, Parts + NumParts);
    430 
    431     NumParts = RoundParts;
    432     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    433     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    434   }
    435 
    436   // The number of parts is a power of 2.  Repeatedly bisect the value using
    437   // EXTRACT_ELEMENT.
    438   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
    439                          EVT::getIntegerVT(*DAG.getContext(),
    440                                            ValueVT.getSizeInBits()),
    441                          Val);
    442 
    443   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
    444     for (unsigned i = 0; i < NumParts; i += StepSize) {
    445       unsigned ThisBits = StepSize * PartBits / 2;
    446       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
    447       SDValue &Part0 = Parts[i];
    448       SDValue &Part1 = Parts[i+StepSize/2];
    449 
    450       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    451                           ThisVT, Part0, DAG.getIntPtrConstant(1));
    452       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    453                           ThisVT, Part0, DAG.getIntPtrConstant(0));
    454 
    455       if (ThisBits == PartBits && ThisVT != PartVT) {
    456         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
    457         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
    458       }
    459     }
    460   }
    461 
    462   if (TLI.isBigEndian())
    463     std::reverse(Parts, Parts + OrigNumParts);
    464 }
    465 
    466 
    467 /// getCopyToPartsVector - Create a series of nodes that contain the specified
    468 /// value split into legal parts.
    469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
    470                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    471                                  MVT PartVT, const Value *V) {
    472   EVT ValueVT = Val.getValueType();
    473   assert(ValueVT.isVector() && "Not a vector");
    474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    475 
    476   if (NumParts == 1) {
    477     EVT PartEVT = PartVT;
    478     if (PartEVT == ValueVT) {
    479       // Nothing to do.
    480     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
    481       // Bitconvert vector->vector case.
    482       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    483     } else if (PartVT.isVector() &&
    484                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
    485                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
    486       EVT ElementVT = PartVT.getVectorElementType();
    487       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
    488       // undef elements.
    489       SmallVector<SDValue, 16> Ops;
    490       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
    491         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    492                                   ElementVT, Val, DAG.getConstant(i,
    493                                                   TLI.getVectorIdxTy())));
    494 
    495       for (unsigned i = ValueVT.getVectorNumElements(),
    496            e = PartVT.getVectorNumElements(); i != e; ++i)
    497         Ops.push_back(DAG.getUNDEF(ElementVT));
    498 
    499       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
    500 
    501       // FIXME: Use CONCAT for 2x -> 4x.
    502 
    503       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
    504       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
    505     } else if (PartVT.isVector() &&
    506                PartEVT.getVectorElementType().bitsGE(
    507                  ValueVT.getVectorElementType()) &&
    508                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
    509 
    510       // Promoted vector extract
    511       bool Smaller = PartEVT.bitsLE(ValueVT);
    512       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    513                         DL, PartVT, Val);
    514     } else{
    515       // Vector -> scalar conversion.
    516       assert(ValueVT.getVectorNumElements() == 1 &&
    517              "Only trivial vector-to-scalar conversions should get here!");
    518       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    519                         PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
    520 
    521       bool Smaller = ValueVT.bitsLE(PartVT);
    522       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    523                          DL, PartVT, Val);
    524     }
    525 
    526     Parts[0] = Val;
    527     return;
    528   }
    529 
    530   // Handle a multi-element vector.
    531   EVT IntermediateVT;
    532   MVT RegisterVT;
    533   unsigned NumIntermediates;
    534   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
    535                                                 IntermediateVT,
    536                                                 NumIntermediates, RegisterVT);
    537   unsigned NumElements = ValueVT.getVectorNumElements();
    538 
    539   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    540   NumParts = NumRegs; // Silence a compiler warning.
    541   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    542 
    543   // Split the vector into intermediate operands.
    544   SmallVector<SDValue, 8> Ops(NumIntermediates);
    545   for (unsigned i = 0; i != NumIntermediates; ++i) {
    546     if (IntermediateVT.isVector())
    547       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
    548                            IntermediateVT, Val,
    549                    DAG.getConstant(i * (NumElements / NumIntermediates),
    550                                    TLI.getVectorIdxTy()));
    551     else
    552       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    553                            IntermediateVT, Val,
    554                            DAG.getConstant(i, TLI.getVectorIdxTy()));
    555   }
    556 
    557   // Split the intermediate operands into legal parts.
    558   if (NumParts == NumIntermediates) {
    559     // If the register was not expanded, promote or copy the value,
    560     // as appropriate.
    561     for (unsigned i = 0; i != NumParts; ++i)
    562       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
    563   } else if (NumParts > 0) {
    564     // If the intermediate type was expanded, split each the value into
    565     // legal parts.
    566     assert(NumParts % NumIntermediates == 0 &&
    567            "Must expand into a divisible number of parts!");
    568     unsigned Factor = NumParts / NumIntermediates;
    569     for (unsigned i = 0; i != NumIntermediates; ++i)
    570       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
    571   }
    572 }
    573 
    574 namespace {
    575   /// RegsForValue - This struct represents the registers (physical or virtual)
    576   /// that a particular set of values is assigned, and the type information
    577   /// about the value. The most common situation is to represent one value at a
    578   /// time, but struct or array values are handled element-wise as multiple
    579   /// values.  The splitting of aggregates is performed recursively, so that we
    580   /// never have aggregate-typed registers. The values at this point do not
    581   /// necessarily have legal types, so each value may require one or more
    582   /// registers of some legal type.
    583   ///
    584   struct RegsForValue {
    585     /// ValueVTs - The value types of the values, which may not be legal, and
    586     /// may need be promoted or synthesized from one or more registers.
    587     ///
    588     SmallVector<EVT, 4> ValueVTs;
    589 
    590     /// RegVTs - The value types of the registers. This is the same size as
    591     /// ValueVTs and it records, for each value, what the type of the assigned
    592     /// register or registers are. (Individual values are never synthesized
    593     /// from more than one type of register.)
    594     ///
    595     /// With virtual registers, the contents of RegVTs is redundant with TLI's
    596     /// getRegisterType member function, however when with physical registers
    597     /// it is necessary to have a separate record of the types.
    598     ///
    599     SmallVector<MVT, 4> RegVTs;
    600 
    601     /// Regs - This list holds the registers assigned to the values.
    602     /// Each legal or promoted value requires one register, and each
    603     /// expanded value requires multiple registers.
    604     ///
    605     SmallVector<unsigned, 4> Regs;
    606 
    607     RegsForValue() {}
    608 
    609     RegsForValue(const SmallVector<unsigned, 4> &regs,
    610                  MVT regvt, EVT valuevt)
    611       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
    612 
    613     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
    614                  unsigned Reg, Type *Ty) {
    615       ComputeValueVTs(tli, Ty, ValueVTs);
    616 
    617       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    618         EVT ValueVT = ValueVTs[Value];
    619         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
    620         MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
    621         for (unsigned i = 0; i != NumRegs; ++i)
    622           Regs.push_back(Reg + i);
    623         RegVTs.push_back(RegisterVT);
    624         Reg += NumRegs;
    625       }
    626     }
    627 
    628     /// append - Add the specified values to this one.
    629     void append(const RegsForValue &RHS) {
    630       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    631       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    632       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    633     }
    634 
    635     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    636     /// this value and returns the result as a ValueVTs value.  This uses
    637     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    638     /// If the Flag pointer is NULL, no flag is used.
    639     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
    640                             SDLoc dl,
    641                             SDValue &Chain, SDValue *Flag,
    642                             const Value *V = nullptr) const;
    643 
    644     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    645     /// specified value into the registers specified by this object.  This uses
    646     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    647     /// If the Flag pointer is NULL, no flag is used.
    648     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
    649                        SDValue &Chain, SDValue *Flag, const Value *V) const;
    650 
    651     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    652     /// operand list.  This adds the code marker, matching input operand index
    653     /// (if applicable), and includes the number of values added into it.
    654     void AddInlineAsmOperands(unsigned Kind,
    655                               bool HasMatching, unsigned MatchingIdx,
    656                               SelectionDAG &DAG,
    657                               std::vector<SDValue> &Ops) const;
    658   };
    659 }
    660 
    661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    662 /// this value and returns the result as a ValueVT value.  This uses
    663 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    664 /// If the Flag pointer is NULL, no flag is used.
    665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
    666                                       FunctionLoweringInfo &FuncInfo,
    667                                       SDLoc dl,
    668                                       SDValue &Chain, SDValue *Flag,
    669                                       const Value *V) const {
    670   // A Value with type {} or [0 x %t] needs no registers.
    671   if (ValueVTs.empty())
    672     return SDValue();
    673 
    674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    675 
    676   // Assemble the legal parts into the final values.
    677   SmallVector<SDValue, 4> Values(ValueVTs.size());
    678   SmallVector<SDValue, 8> Parts;
    679   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    680     // Copy the legal parts from the registers.
    681     EVT ValueVT = ValueVTs[Value];
    682     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    683     MVT RegisterVT = RegVTs[Value];
    684 
    685     Parts.resize(NumRegs);
    686     for (unsigned i = 0; i != NumRegs; ++i) {
    687       SDValue P;
    688       if (!Flag) {
    689         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
    690       } else {
    691         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
    692         *Flag = P.getValue(2);
    693       }
    694 
    695       Chain = P.getValue(1);
    696       Parts[i] = P;
    697 
    698       // If the source register was virtual and if we know something about it,
    699       // add an assert node.
    700       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
    701           !RegisterVT.isInteger() || RegisterVT.isVector())
    702         continue;
    703 
    704       const FunctionLoweringInfo::LiveOutInfo *LOI =
    705         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
    706       if (!LOI)
    707         continue;
    708 
    709       unsigned RegSize = RegisterVT.getSizeInBits();
    710       unsigned NumSignBits = LOI->NumSignBits;
    711       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
    712 
    713       if (NumZeroBits == RegSize) {
    714         // The current value is a zero.
    715         // Explicitly express that as it would be easier for
    716         // optimizations to kick in.
    717         Parts[i] = DAG.getConstant(0, RegisterVT);
    718         continue;
    719       }
    720 
    721       // FIXME: We capture more information than the dag can represent.  For
    722       // now, just use the tightest assertzext/assertsext possible.
    723       bool isSExt = true;
    724       EVT FromVT(MVT::Other);
    725       if (NumSignBits == RegSize)
    726         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
    727       else if (NumZeroBits >= RegSize-1)
    728         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
    729       else if (NumSignBits > RegSize-8)
    730         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
    731       else if (NumZeroBits >= RegSize-8)
    732         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
    733       else if (NumSignBits > RegSize-16)
    734         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
    735       else if (NumZeroBits >= RegSize-16)
    736         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
    737       else if (NumSignBits > RegSize-32)
    738         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
    739       else if (NumZeroBits >= RegSize-32)
    740         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
    741       else
    742         continue;
    743 
    744       // Add an assertion node.
    745       assert(FromVT != MVT::Other);
    746       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
    747                              RegisterVT, P, DAG.getValueType(FromVT));
    748     }
    749 
    750     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
    751                                      NumRegs, RegisterVT, ValueVT, V);
    752     Part += NumRegs;
    753     Parts.clear();
    754   }
    755 
    756   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
    757 }
    758 
    759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    760 /// specified value into the registers specified by this object.  This uses
    761 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    762 /// If the Flag pointer is NULL, no flag is used.
    763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
    764                                  SDValue &Chain, SDValue *Flag,
    765                                  const Value *V) const {
    766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    767 
    768   // Get the list of the values's legal parts.
    769   unsigned NumRegs = Regs.size();
    770   SmallVector<SDValue, 8> Parts(NumRegs);
    771   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    772     EVT ValueVT = ValueVTs[Value];
    773     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    774     MVT RegisterVT = RegVTs[Value];
    775     ISD::NodeType ExtendKind =
    776       TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
    777 
    778     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
    779                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
    780     Part += NumParts;
    781   }
    782 
    783   // Copy the parts into the registers.
    784   SmallVector<SDValue, 8> Chains(NumRegs);
    785   for (unsigned i = 0; i != NumRegs; ++i) {
    786     SDValue Part;
    787     if (!Flag) {
    788       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
    789     } else {
    790       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
    791       *Flag = Part.getValue(1);
    792     }
    793 
    794     Chains[i] = Part.getValue(0);
    795   }
    796 
    797   if (NumRegs == 1 || Flag)
    798     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
    799     // flagged to it. That is the CopyToReg nodes and the user are considered
    800     // a single scheduling unit. If we create a TokenFactor and return it as
    801     // chain, then the TokenFactor is both a predecessor (operand) of the
    802     // user as well as a successor (the TF operands are flagged to the user).
    803     // c1, f1 = CopyToReg
    804     // c2, f2 = CopyToReg
    805     // c3     = TokenFactor c1, c2
    806     // ...
    807     //        = op c3, ..., f2
    808     Chain = Chains[NumRegs-1];
    809   else
    810     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
    811 }
    812 
    813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    814 /// operand list.  This adds the code marker and includes the number of
    815 /// values added into it.
    816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
    817                                         unsigned MatchingIdx,
    818                                         SelectionDAG &DAG,
    819                                         std::vector<SDValue> &Ops) const {
    820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    821 
    822   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
    823   if (HasMatching)
    824     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
    825   else if (!Regs.empty() &&
    826            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
    827     // Put the register class of the virtual registers in the flag word.  That
    828     // way, later passes can recompute register class constraints for inline
    829     // assembly as well as normal instructions.
    830     // Don't do this for tied operands that can use the regclass information
    831     // from the def.
    832     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
    833     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
    834     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
    835   }
    836 
    837   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
    838   Ops.push_back(Res);
    839 
    840   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
    841   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
    842     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
    843     MVT RegisterVT = RegVTs[Value];
    844     for (unsigned i = 0; i != NumRegs; ++i) {
    845       assert(Reg < Regs.size() && "Mismatch in # registers expected");
    846       unsigned TheReg = Regs[Reg++];
    847       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
    848 
    849       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
    850         // If we clobbered the stack pointer, MFI should know about it.
    851         assert(DAG.getMachineFunction().getFrameInfo()->
    852             hasInlineAsmWithSPAdjust());
    853       }
    854     }
    855   }
    856 }
    857 
    858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
    859                                const TargetLibraryInfo *li) {
    860   AA = &aa;
    861   GFI = gfi;
    862   LibInfo = li;
    863   DL = DAG.getTarget().getDataLayout();
    864   Context = DAG.getContext();
    865   LPadToCallSiteMap.clear();
    866 }
    867 
    868 /// clear - Clear out the current SelectionDAG and the associated
    869 /// state and prepare this SelectionDAGBuilder object to be used
    870 /// for a new block. This doesn't clear out information about
    871 /// additional blocks that are needed to complete switch lowering
    872 /// or PHI node updating; that information is cleared out as it is
    873 /// consumed.
    874 void SelectionDAGBuilder::clear() {
    875   NodeMap.clear();
    876   UnusedArgNodeMap.clear();
    877   PendingLoads.clear();
    878   PendingExports.clear();
    879   CurInst = nullptr;
    880   HasTailCall = false;
    881   SDNodeOrder = LowestSDNodeOrder;
    882 }
    883 
    884 /// clearDanglingDebugInfo - Clear the dangling debug information
    885 /// map. This function is separated from the clear so that debug
    886 /// information that is dangling in a basic block can be properly
    887 /// resolved in a different basic block. This allows the
    888 /// SelectionDAG to resolve dangling debug information attached
    889 /// to PHI nodes.
    890 void SelectionDAGBuilder::clearDanglingDebugInfo() {
    891   DanglingDebugInfoMap.clear();
    892 }
    893 
    894 /// getRoot - Return the current virtual root of the Selection DAG,
    895 /// flushing any PendingLoad items. This must be done before emitting
    896 /// a store or any other node that may need to be ordered after any
    897 /// prior load instructions.
    898 ///
    899 SDValue SelectionDAGBuilder::getRoot() {
    900   if (PendingLoads.empty())
    901     return DAG.getRoot();
    902 
    903   if (PendingLoads.size() == 1) {
    904     SDValue Root = PendingLoads[0];
    905     DAG.setRoot(Root);
    906     PendingLoads.clear();
    907     return Root;
    908   }
    909 
    910   // Otherwise, we have to make a token factor node.
    911   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
    912                              PendingLoads);
    913   PendingLoads.clear();
    914   DAG.setRoot(Root);
    915   return Root;
    916 }
    917 
    918 /// getControlRoot - Similar to getRoot, but instead of flushing all the
    919 /// PendingLoad items, flush all the PendingExports items. It is necessary
    920 /// to do this before emitting a terminator instruction.
    921 ///
    922 SDValue SelectionDAGBuilder::getControlRoot() {
    923   SDValue Root = DAG.getRoot();
    924 
    925   if (PendingExports.empty())
    926     return Root;
    927 
    928   // Turn all of the CopyToReg chains into one factored node.
    929   if (Root.getOpcode() != ISD::EntryToken) {
    930     unsigned i = 0, e = PendingExports.size();
    931     for (; i != e; ++i) {
    932       assert(PendingExports[i].getNode()->getNumOperands() > 1);
    933       if (PendingExports[i].getNode()->getOperand(0) == Root)
    934         break;  // Don't add the root if we already indirectly depend on it.
    935     }
    936 
    937     if (i == e)
    938       PendingExports.push_back(Root);
    939   }
    940 
    941   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
    942                      PendingExports);
    943   PendingExports.clear();
    944   DAG.setRoot(Root);
    945   return Root;
    946 }
    947 
    948 void SelectionDAGBuilder::visit(const Instruction &I) {
    949   // Set up outgoing PHI node register values before emitting the terminator.
    950   if (isa<TerminatorInst>(&I))
    951     HandlePHINodesInSuccessorBlocks(I.getParent());
    952 
    953   ++SDNodeOrder;
    954 
    955   CurInst = &I;
    956 
    957   visit(I.getOpcode(), I);
    958 
    959   if (!isa<TerminatorInst>(&I) && !HasTailCall)
    960     CopyToExportRegsIfNeeded(&I);
    961 
    962   CurInst = nullptr;
    963 }
    964 
    965 void SelectionDAGBuilder::visitPHI(const PHINode &) {
    966   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
    967 }
    968 
    969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
    970   // Note: this doesn't use InstVisitor, because it has to work with
    971   // ConstantExpr's in addition to instructions.
    972   switch (Opcode) {
    973   default: llvm_unreachable("Unknown instruction type encountered!");
    974     // Build the switch statement using the Instruction.def file.
    975 #define HANDLE_INST(NUM, OPCODE, CLASS) \
    976     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
    977 #include "llvm/IR/Instruction.def"
    978   }
    979 }
    980 
    981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    982 // generate the debug data structures now that we've seen its definition.
    983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
    984                                                    SDValue Val) {
    985   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
    986   if (DDI.getDI()) {
    987     const DbgValueInst *DI = DDI.getDI();
    988     DebugLoc dl = DDI.getdl();
    989     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
    990     MDNode *Variable = DI->getVariable();
    991     uint64_t Offset = DI->getOffset();
    992     // A dbg.value for an alloca is always indirect.
    993     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
    994     SDDbgValue *SDV;
    995     if (Val.getNode()) {
    996       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) {
    997         SDV = DAG.getDbgValue(Variable, Val.getNode(),
    998                               Val.getResNo(), IsIndirect,
    999 			      Offset, dl, DbgSDNodeOrder);
   1000         DAG.AddDbgValue(SDV, Val.getNode(), false);
   1001       }
   1002     } else
   1003       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
   1004     DanglingDebugInfoMap[V] = DanglingDebugInfo();
   1005   }
   1006 }
   1007 
   1008 /// getValue - Return an SDValue for the given Value.
   1009 SDValue SelectionDAGBuilder::getValue(const Value *V) {
   1010   // If we already have an SDValue for this value, use it. It's important
   1011   // to do this first, so that we don't create a CopyFromReg if we already
   1012   // have a regular SDValue.
   1013   SDValue &N = NodeMap[V];
   1014   if (N.getNode()) return N;
   1015 
   1016   // If there's a virtual register allocated and initialized for this
   1017   // value, use it.
   1018   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
   1019   if (It != FuncInfo.ValueMap.end()) {
   1020     unsigned InReg = It->second;
   1021     RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
   1022                      InReg, V->getType());
   1023     SDValue Chain = DAG.getEntryNode();
   1024     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
   1025     resolveDanglingDebugInfo(V, N);
   1026     return N;
   1027   }
   1028 
   1029   // Otherwise create a new SDValue and remember it.
   1030   SDValue Val = getValueImpl(V);
   1031   NodeMap[V] = Val;
   1032   resolveDanglingDebugInfo(V, Val);
   1033   return Val;
   1034 }
   1035 
   1036 /// getNonRegisterValue - Return an SDValue for the given Value, but
   1037 /// don't look in FuncInfo.ValueMap for a virtual register.
   1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
   1039   // If we already have an SDValue for this value, use it.
   1040   SDValue &N = NodeMap[V];
   1041   if (N.getNode()) return N;
   1042 
   1043   // Otherwise create a new SDValue and remember it.
   1044   SDValue Val = getValueImpl(V);
   1045   NodeMap[V] = Val;
   1046   resolveDanglingDebugInfo(V, Val);
   1047   return Val;
   1048 }
   1049 
   1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
   1051 /// Create an SDValue for the given value.
   1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
   1053   const TargetLowering *TLI = TM.getTargetLowering();
   1054 
   1055   if (const Constant *C = dyn_cast<Constant>(V)) {
   1056     EVT VT = TLI->getValueType(V->getType(), true);
   1057 
   1058     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1059       return DAG.getConstant(*CI, VT);
   1060 
   1061     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   1062       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
   1063 
   1064     if (isa<ConstantPointerNull>(C)) {
   1065       unsigned AS = V->getType()->getPointerAddressSpace();
   1066       return DAG.getConstant(0, TLI->getPointerTy(AS));
   1067     }
   1068 
   1069     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   1070       return DAG.getConstantFP(*CFP, VT);
   1071 
   1072     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
   1073       return DAG.getUNDEF(VT);
   1074 
   1075     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1076       visit(CE->getOpcode(), *CE);
   1077       SDValue N1 = NodeMap[V];
   1078       assert(N1.getNode() && "visit didn't populate the NodeMap!");
   1079       return N1;
   1080     }
   1081 
   1082     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
   1083       SmallVector<SDValue, 4> Constants;
   1084       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
   1085            OI != OE; ++OI) {
   1086         SDNode *Val = getValue(*OI).getNode();
   1087         // If the operand is an empty aggregate, there are no values.
   1088         if (!Val) continue;
   1089         // Add each leaf value from the operand to the Constants list
   1090         // to form a flattened list of all the values.
   1091         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1092           Constants.push_back(SDValue(Val, i));
   1093       }
   1094 
   1095       return DAG.getMergeValues(Constants, getCurSDLoc());
   1096     }
   1097 
   1098     if (const ConstantDataSequential *CDS =
   1099           dyn_cast<ConstantDataSequential>(C)) {
   1100       SmallVector<SDValue, 4> Ops;
   1101       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1102         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
   1103         // Add each leaf value from the operand to the Constants list
   1104         // to form a flattened list of all the values.
   1105         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1106           Ops.push_back(SDValue(Val, i));
   1107       }
   1108 
   1109       if (isa<ArrayType>(CDS->getType()))
   1110         return DAG.getMergeValues(Ops, getCurSDLoc());
   1111       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
   1112                                       VT, Ops);
   1113     }
   1114 
   1115     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
   1116       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
   1117              "Unknown struct or array constant!");
   1118 
   1119       SmallVector<EVT, 4> ValueVTs;
   1120       ComputeValueVTs(*TLI, C->getType(), ValueVTs);
   1121       unsigned NumElts = ValueVTs.size();
   1122       if (NumElts == 0)
   1123         return SDValue(); // empty struct
   1124       SmallVector<SDValue, 4> Constants(NumElts);
   1125       for (unsigned i = 0; i != NumElts; ++i) {
   1126         EVT EltVT = ValueVTs[i];
   1127         if (isa<UndefValue>(C))
   1128           Constants[i] = DAG.getUNDEF(EltVT);
   1129         else if (EltVT.isFloatingPoint())
   1130           Constants[i] = DAG.getConstantFP(0, EltVT);
   1131         else
   1132           Constants[i] = DAG.getConstant(0, EltVT);
   1133       }
   1134 
   1135       return DAG.getMergeValues(Constants, getCurSDLoc());
   1136     }
   1137 
   1138     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
   1139       return DAG.getBlockAddress(BA, VT);
   1140 
   1141     VectorType *VecTy = cast<VectorType>(V->getType());
   1142     unsigned NumElements = VecTy->getNumElements();
   1143 
   1144     // Now that we know the number and type of the elements, get that number of
   1145     // elements into the Ops array based on what kind of constant it is.
   1146     SmallVector<SDValue, 16> Ops;
   1147     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
   1148       for (unsigned i = 0; i != NumElements; ++i)
   1149         Ops.push_back(getValue(CV->getOperand(i)));
   1150     } else {
   1151       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
   1152       EVT EltVT = TLI->getValueType(VecTy->getElementType());
   1153 
   1154       SDValue Op;
   1155       if (EltVT.isFloatingPoint())
   1156         Op = DAG.getConstantFP(0, EltVT);
   1157       else
   1158         Op = DAG.getConstant(0, EltVT);
   1159       Ops.assign(NumElements, Op);
   1160     }
   1161 
   1162     // Create a BUILD_VECTOR node.
   1163     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
   1164   }
   1165 
   1166   // If this is a static alloca, generate it as the frameindex instead of
   1167   // computation.
   1168   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
   1169     DenseMap<const AllocaInst*, int>::iterator SI =
   1170       FuncInfo.StaticAllocaMap.find(AI);
   1171     if (SI != FuncInfo.StaticAllocaMap.end())
   1172       return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
   1173   }
   1174 
   1175   // If this is an instruction which fast-isel has deferred, select it now.
   1176   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   1177     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
   1178     RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
   1179     SDValue Chain = DAG.getEntryNode();
   1180     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
   1181   }
   1182 
   1183   llvm_unreachable("Can't get register for value!");
   1184 }
   1185 
   1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
   1187   const TargetLowering *TLI = TM.getTargetLowering();
   1188   SDValue Chain = getControlRoot();
   1189   SmallVector<ISD::OutputArg, 8> Outs;
   1190   SmallVector<SDValue, 8> OutVals;
   1191 
   1192   if (!FuncInfo.CanLowerReturn) {
   1193     unsigned DemoteReg = FuncInfo.DemoteRegister;
   1194     const Function *F = I.getParent()->getParent();
   1195 
   1196     // Emit a store of the return value through the virtual register.
   1197     // Leave Outs empty so that LowerReturn won't try to load return
   1198     // registers the usual way.
   1199     SmallVector<EVT, 1> PtrValueVTs;
   1200     ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
   1201                     PtrValueVTs);
   1202 
   1203     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
   1204     SDValue RetOp = getValue(I.getOperand(0));
   1205 
   1206     SmallVector<EVT, 4> ValueVTs;
   1207     SmallVector<uint64_t, 4> Offsets;
   1208     ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
   1209     unsigned NumValues = ValueVTs.size();
   1210 
   1211     SmallVector<SDValue, 4> Chains(NumValues);
   1212     for (unsigned i = 0; i != NumValues; ++i) {
   1213       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
   1214                                 RetPtr.getValueType(), RetPtr,
   1215                                 DAG.getIntPtrConstant(Offsets[i]));
   1216       Chains[i] =
   1217         DAG.getStore(Chain, getCurSDLoc(),
   1218                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
   1219                      // FIXME: better loc info would be nice.
   1220                      Add, MachinePointerInfo(), false, false, 0);
   1221     }
   1222 
   1223     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
   1224                         MVT::Other, Chains);
   1225   } else if (I.getNumOperands() != 0) {
   1226     SmallVector<EVT, 4> ValueVTs;
   1227     ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
   1228     unsigned NumValues = ValueVTs.size();
   1229     if (NumValues) {
   1230       SDValue RetOp = getValue(I.getOperand(0));
   1231       for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1232         EVT VT = ValueVTs[j];
   1233 
   1234         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1235 
   1236         const Function *F = I.getParent()->getParent();
   1237         if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
   1238                                             Attribute::SExt))
   1239           ExtendKind = ISD::SIGN_EXTEND;
   1240         else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
   1241                                                  Attribute::ZExt))
   1242           ExtendKind = ISD::ZERO_EXTEND;
   1243 
   1244         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
   1245           VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
   1246 
   1247         unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
   1248         MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
   1249         SmallVector<SDValue, 4> Parts(NumParts);
   1250         getCopyToParts(DAG, getCurSDLoc(),
   1251                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
   1252                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
   1253 
   1254         // 'inreg' on function refers to return value
   1255         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1256         if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
   1257                                             Attribute::InReg))
   1258           Flags.setInReg();
   1259 
   1260         // Propagate extension type if any
   1261         if (ExtendKind == ISD::SIGN_EXTEND)
   1262           Flags.setSExt();
   1263         else if (ExtendKind == ISD::ZERO_EXTEND)
   1264           Flags.setZExt();
   1265 
   1266         for (unsigned i = 0; i < NumParts; ++i) {
   1267           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
   1268                                         VT, /*isfixed=*/true, 0, 0));
   1269           OutVals.push_back(Parts[i]);
   1270         }
   1271       }
   1272     }
   1273   }
   1274 
   1275   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
   1276   CallingConv::ID CallConv =
   1277     DAG.getMachineFunction().getFunction()->getCallingConv();
   1278   Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
   1279                                               Outs, OutVals, getCurSDLoc(),
   1280                                               DAG);
   1281 
   1282   // Verify that the target's LowerReturn behaved as expected.
   1283   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   1284          "LowerReturn didn't return a valid chain!");
   1285 
   1286   // Update the DAG with the new chain value resulting from return lowering.
   1287   DAG.setRoot(Chain);
   1288 }
   1289 
   1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
   1291 /// created for it, emit nodes to copy the value into the virtual
   1292 /// registers.
   1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
   1294   // Skip empty types
   1295   if (V->getType()->isEmptyTy())
   1296     return;
   1297 
   1298   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   1299   if (VMI != FuncInfo.ValueMap.end()) {
   1300     assert(!V->use_empty() && "Unused value assigned virtual registers!");
   1301     CopyValueToVirtualRegister(V, VMI->second);
   1302   }
   1303 }
   1304 
   1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
   1306 /// the current basic block, add it to ValueMap now so that we'll get a
   1307 /// CopyTo/FromReg.
   1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
   1309   // No need to export constants.
   1310   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
   1311 
   1312   // Already exported?
   1313   if (FuncInfo.isExportedInst(V)) return;
   1314 
   1315   unsigned Reg = FuncInfo.InitializeRegForValue(V);
   1316   CopyValueToVirtualRegister(V, Reg);
   1317 }
   1318 
   1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
   1320                                                      const BasicBlock *FromBB) {
   1321   // The operands of the setcc have to be in this block.  We don't know
   1322   // how to export them from some other block.
   1323   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
   1324     // Can export from current BB.
   1325     if (VI->getParent() == FromBB)
   1326       return true;
   1327 
   1328     // Is already exported, noop.
   1329     return FuncInfo.isExportedInst(V);
   1330   }
   1331 
   1332   // If this is an argument, we can export it if the BB is the entry block or
   1333   // if it is already exported.
   1334   if (isa<Argument>(V)) {
   1335     if (FromBB == &FromBB->getParent()->getEntryBlock())
   1336       return true;
   1337 
   1338     // Otherwise, can only export this if it is already exported.
   1339     return FuncInfo.isExportedInst(V);
   1340   }
   1341 
   1342   // Otherwise, constants can always be exported.
   1343   return true;
   1344 }
   1345 
   1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
   1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
   1348                                             const MachineBasicBlock *Dst) const {
   1349   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1350   if (!BPI)
   1351     return 0;
   1352   const BasicBlock *SrcBB = Src->getBasicBlock();
   1353   const BasicBlock *DstBB = Dst->getBasicBlock();
   1354   return BPI->getEdgeWeight(SrcBB, DstBB);
   1355 }
   1356 
   1357 void SelectionDAGBuilder::
   1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
   1359                        uint32_t Weight /* = 0 */) {
   1360   if (!Weight)
   1361     Weight = getEdgeWeight(Src, Dst);
   1362   Src->addSuccessor(Dst, Weight);
   1363 }
   1364 
   1365 
   1366 static bool InBlock(const Value *V, const BasicBlock *BB) {
   1367   if (const Instruction *I = dyn_cast<Instruction>(V))
   1368     return I->getParent() == BB;
   1369   return true;
   1370 }
   1371 
   1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
   1373 /// This function emits a branch and is used at the leaves of an OR or an
   1374 /// AND operator tree.
   1375 ///
   1376 void
   1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
   1378                                                   MachineBasicBlock *TBB,
   1379                                                   MachineBasicBlock *FBB,
   1380                                                   MachineBasicBlock *CurBB,
   1381                                                   MachineBasicBlock *SwitchBB,
   1382                                                   uint32_t TWeight,
   1383                                                   uint32_t FWeight) {
   1384   const BasicBlock *BB = CurBB->getBasicBlock();
   1385 
   1386   // If the leaf of the tree is a comparison, merge the condition into
   1387   // the caseblock.
   1388   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
   1389     // The operands of the cmp have to be in this block.  We don't know
   1390     // how to export them from some other block.  If this is the first block
   1391     // of the sequence, no exporting is needed.
   1392     if (CurBB == SwitchBB ||
   1393         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
   1394          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
   1395       ISD::CondCode Condition;
   1396       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
   1397         Condition = getICmpCondCode(IC->getPredicate());
   1398       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
   1399         Condition = getFCmpCondCode(FC->getPredicate());
   1400         if (TM.Options.NoNaNsFPMath)
   1401           Condition = getFCmpCodeWithoutNaN(Condition);
   1402       } else {
   1403         Condition = ISD::SETEQ; // silence warning.
   1404         llvm_unreachable("Unknown compare instruction");
   1405       }
   1406 
   1407       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
   1408                    TBB, FBB, CurBB, TWeight, FWeight);
   1409       SwitchCases.push_back(CB);
   1410       return;
   1411     }
   1412   }
   1413 
   1414   // Create a CaseBlock record representing this branch.
   1415   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
   1416                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
   1417   SwitchCases.push_back(CB);
   1418 }
   1419 
   1420 /// Scale down both weights to fit into uint32_t.
   1421 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
   1422   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
   1423   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
   1424   NewTrue = NewTrue / Scale;
   1425   NewFalse = NewFalse / Scale;
   1426 }
   1427 
   1428 /// FindMergedConditions - If Cond is an expression like
   1429 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
   1430                                                MachineBasicBlock *TBB,
   1431                                                MachineBasicBlock *FBB,
   1432                                                MachineBasicBlock *CurBB,
   1433                                                MachineBasicBlock *SwitchBB,
   1434                                                unsigned Opc, uint32_t TWeight,
   1435                                                uint32_t FWeight) {
   1436   // If this node is not part of the or/and tree, emit it as a branch.
   1437   const Instruction *BOp = dyn_cast<Instruction>(Cond);
   1438   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
   1439       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
   1440       BOp->getParent() != CurBB->getBasicBlock() ||
   1441       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
   1442       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
   1443     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
   1444                                  TWeight, FWeight);
   1445     return;
   1446   }
   1447 
   1448   //  Create TmpBB after CurBB.
   1449   MachineFunction::iterator BBI = CurBB;
   1450   MachineFunction &MF = DAG.getMachineFunction();
   1451   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
   1452   CurBB->getParent()->insert(++BBI, TmpBB);
   1453 
   1454   if (Opc == Instruction::Or) {
   1455     // Codegen X | Y as:
   1456     // BB1:
   1457     //   jmp_if_X TBB
   1458     //   jmp TmpBB
   1459     // TmpBB:
   1460     //   jmp_if_Y TBB
   1461     //   jmp FBB
   1462     //
   1463 
   1464     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
   1465     // The requirement is that
   1466     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
   1467     //     = TrueProb for orignal BB.
   1468     // Assuming the orignal weights are A and B, one choice is to set BB1's
   1469     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
   1470     // assumes that
   1471     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
   1472     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
   1473     // TmpBB, but the math is more complicated.
   1474 
   1475     uint64_t NewTrueWeight = TWeight;
   1476     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
   1477     ScaleWeights(NewTrueWeight, NewFalseWeight);
   1478     // Emit the LHS condition.
   1479     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
   1480                          NewTrueWeight, NewFalseWeight);
   1481 
   1482     NewTrueWeight = TWeight;
   1483     NewFalseWeight = 2 * (uint64_t)FWeight;
   1484     ScaleWeights(NewTrueWeight, NewFalseWeight);
   1485     // Emit the RHS condition into TmpBB.
   1486     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
   1487                          NewTrueWeight, NewFalseWeight);
   1488   } else {
   1489     assert(Opc == Instruction::And && "Unknown merge op!");
   1490     // Codegen X & Y as:
   1491     // BB1:
   1492     //   jmp_if_X TmpBB
   1493     //   jmp FBB
   1494     // TmpBB:
   1495     //   jmp_if_Y TBB
   1496     //   jmp FBB
   1497     //
   1498     //  This requires creation of TmpBB after CurBB.
   1499 
   1500     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
   1501     // The requirement is that
   1502     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
   1503     //     = FalseProb for orignal BB.
   1504     // Assuming the orignal weights are A and B, one choice is to set BB1's
   1505     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
   1506     // assumes that
   1507     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
   1508 
   1509     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
   1510     uint64_t NewFalseWeight = FWeight;
   1511     ScaleWeights(NewTrueWeight, NewFalseWeight);
   1512     // Emit the LHS condition.
   1513     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
   1514                          NewTrueWeight, NewFalseWeight);
   1515 
   1516     NewTrueWeight = 2 * (uint64_t)TWeight;
   1517     NewFalseWeight = FWeight;
   1518     ScaleWeights(NewTrueWeight, NewFalseWeight);
   1519     // Emit the RHS condition into TmpBB.
   1520     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
   1521                          NewTrueWeight, NewFalseWeight);
   1522   }
   1523 }
   1524 
   1525 /// If the set of cases should be emitted as a series of branches, return true.
   1526 /// If we should emit this as a bunch of and/or'd together conditions, return
   1527 /// false.
   1528 bool
   1529 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
   1530   if (Cases.size() != 2) return true;
   1531 
   1532   // If this is two comparisons of the same values or'd or and'd together, they
   1533   // will get folded into a single comparison, so don't emit two blocks.
   1534   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
   1535        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
   1536       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
   1537        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
   1538     return false;
   1539   }
   1540 
   1541   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
   1542   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
   1543   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
   1544       Cases[0].CC == Cases[1].CC &&
   1545       isa<Constant>(Cases[0].CmpRHS) &&
   1546       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
   1547     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
   1548       return false;
   1549     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
   1550       return false;
   1551   }
   1552 
   1553   return true;
   1554 }
   1555 
   1556 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
   1557   MachineBasicBlock *BrMBB = FuncInfo.MBB;
   1558 
   1559   // Update machine-CFG edges.
   1560   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
   1561 
   1562   // Figure out which block is immediately after the current one.
   1563   MachineBasicBlock *NextBlock = nullptr;
   1564   MachineFunction::iterator BBI = BrMBB;
   1565   if (++BBI != FuncInfo.MF->end())
   1566     NextBlock = BBI;
   1567 
   1568   if (I.isUnconditional()) {
   1569     // Update machine-CFG edges.
   1570     BrMBB->addSuccessor(Succ0MBB);
   1571 
   1572     // If this is not a fall-through branch or optimizations are switched off,
   1573     // emit the branch.
   1574     if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
   1575       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
   1576                               MVT::Other, getControlRoot(),
   1577                               DAG.getBasicBlock(Succ0MBB)));
   1578 
   1579     return;
   1580   }
   1581 
   1582   // If this condition is one of the special cases we handle, do special stuff
   1583   // now.
   1584   const Value *CondVal = I.getCondition();
   1585   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
   1586 
   1587   // If this is a series of conditions that are or'd or and'd together, emit
   1588   // this as a sequence of branches instead of setcc's with and/or operations.
   1589   // As long as jumps are not expensive, this should improve performance.
   1590   // For example, instead of something like:
   1591   //     cmp A, B
   1592   //     C = seteq
   1593   //     cmp D, E
   1594   //     F = setle
   1595   //     or C, F
   1596   //     jnz foo
   1597   // Emit:
   1598   //     cmp A, B
   1599   //     je foo
   1600   //     cmp D, E
   1601   //     jle foo
   1602   //
   1603   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
   1604     if (!TM.getTargetLowering()->isJumpExpensive() &&
   1605         BOp->hasOneUse() &&
   1606         (BOp->getOpcode() == Instruction::And ||
   1607          BOp->getOpcode() == Instruction::Or)) {
   1608       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
   1609                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
   1610                            getEdgeWeight(BrMBB, Succ1MBB));
   1611       // If the compares in later blocks need to use values not currently
   1612       // exported from this block, export them now.  This block should always
   1613       // be the first entry.
   1614       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
   1615 
   1616       // Allow some cases to be rejected.
   1617       if (ShouldEmitAsBranches(SwitchCases)) {
   1618         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
   1619           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
   1620           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
   1621         }
   1622 
   1623         // Emit the branch for this block.
   1624         visitSwitchCase(SwitchCases[0], BrMBB);
   1625         SwitchCases.erase(SwitchCases.begin());
   1626         return;
   1627       }
   1628 
   1629       // Okay, we decided not to do this, remove any inserted MBB's and clear
   1630       // SwitchCases.
   1631       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
   1632         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
   1633 
   1634       SwitchCases.clear();
   1635     }
   1636   }
   1637 
   1638   // Create a CaseBlock record representing this branch.
   1639   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
   1640                nullptr, Succ0MBB, Succ1MBB, BrMBB);
   1641 
   1642   // Use visitSwitchCase to actually insert the fast branch sequence for this
   1643   // cond branch.
   1644   visitSwitchCase(CB, BrMBB);
   1645 }
   1646 
   1647 /// visitSwitchCase - Emits the necessary code to represent a single node in
   1648 /// the binary search tree resulting from lowering a switch instruction.
   1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
   1650                                           MachineBasicBlock *SwitchBB) {
   1651   SDValue Cond;
   1652   SDValue CondLHS = getValue(CB.CmpLHS);
   1653   SDLoc dl = getCurSDLoc();
   1654 
   1655   // Build the setcc now.
   1656   if (!CB.CmpMHS) {
   1657     // Fold "(X == true)" to X and "(X == false)" to !X to
   1658     // handle common cases produced by branch lowering.
   1659     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
   1660         CB.CC == ISD::SETEQ)
   1661       Cond = CondLHS;
   1662     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
   1663              CB.CC == ISD::SETEQ) {
   1664       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
   1665       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
   1666     } else
   1667       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
   1668   } else {
   1669     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
   1670 
   1671     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
   1672     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
   1673 
   1674     SDValue CmpOp = getValue(CB.CmpMHS);
   1675     EVT VT = CmpOp.getValueType();
   1676 
   1677     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
   1678       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
   1679                           ISD::SETLE);
   1680     } else {
   1681       SDValue SUB = DAG.getNode(ISD::SUB, dl,
   1682                                 VT, CmpOp, DAG.getConstant(Low, VT));
   1683       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
   1684                           DAG.getConstant(High-Low, VT), ISD::SETULE);
   1685     }
   1686   }
   1687 
   1688   // Update successor info
   1689   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
   1690   // TrueBB and FalseBB are always different unless the incoming IR is
   1691   // degenerate. This only happens when running llc on weird IR.
   1692   if (CB.TrueBB != CB.FalseBB)
   1693     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
   1694 
   1695   // Set NextBlock to be the MBB immediately after the current one, if any.
   1696   // This is used to avoid emitting unnecessary branches to the next block.
   1697   MachineBasicBlock *NextBlock = nullptr;
   1698   MachineFunction::iterator BBI = SwitchBB;
   1699   if (++BBI != FuncInfo.MF->end())
   1700     NextBlock = BBI;
   1701 
   1702   // If the lhs block is the next block, invert the condition so that we can
   1703   // fall through to the lhs instead of the rhs block.
   1704   if (CB.TrueBB == NextBlock) {
   1705     std::swap(CB.TrueBB, CB.FalseBB);
   1706     SDValue True = DAG.getConstant(1, Cond.getValueType());
   1707     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
   1708   }
   1709 
   1710   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1711                                MVT::Other, getControlRoot(), Cond,
   1712                                DAG.getBasicBlock(CB.TrueBB));
   1713 
   1714   // Insert the false branch. Do this even if it's a fall through branch,
   1715   // this makes it easier to do DAG optimizations which require inverting
   1716   // the branch condition.
   1717   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
   1718                        DAG.getBasicBlock(CB.FalseBB));
   1719 
   1720   DAG.setRoot(BrCond);
   1721 }
   1722 
   1723 /// visitJumpTable - Emit JumpTable node in the current MBB
   1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
   1725   // Emit the code for the jump table
   1726   assert(JT.Reg != -1U && "Should lower JT Header first!");
   1727   EVT PTy = TM.getTargetLowering()->getPointerTy();
   1728   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
   1729                                      JT.Reg, PTy);
   1730   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
   1731   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
   1732                                     MVT::Other, Index.getValue(1),
   1733                                     Table, Index);
   1734   DAG.setRoot(BrJumpTable);
   1735 }
   1736 
   1737 /// visitJumpTableHeader - This function emits necessary code to produce index
   1738 /// in the JumpTable from switch case.
   1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
   1740                                                JumpTableHeader &JTH,
   1741                                                MachineBasicBlock *SwitchBB) {
   1742   // Subtract the lowest switch case value from the value being switched on and
   1743   // conditional branch to default mbb if the result is greater than the
   1744   // difference between smallest and largest cases.
   1745   SDValue SwitchOp = getValue(JTH.SValue);
   1746   EVT VT = SwitchOp.getValueType();
   1747   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
   1748                             DAG.getConstant(JTH.First, VT));
   1749 
   1750   // The SDNode we just created, which holds the value being switched on minus
   1751   // the smallest case value, needs to be copied to a virtual register so it
   1752   // can be used as an index into the jump table in a subsequent basic block.
   1753   // This value may be smaller or larger than the target's pointer type, and
   1754   // therefore require extension or truncating.
   1755   const TargetLowering *TLI = TM.getTargetLowering();
   1756   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
   1757 
   1758   unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
   1759   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
   1760                                     JumpTableReg, SwitchOp);
   1761   JT.Reg = JumpTableReg;
   1762 
   1763   // Emit the range check for the jump table, and branch to the default block
   1764   // for the switch statement if the value being switched on exceeds the largest
   1765   // case in the switch.
   1766   SDValue CMP = DAG.getSetCC(getCurSDLoc(),
   1767                              TLI->getSetCCResultType(*DAG.getContext(),
   1768                                                      Sub.getValueType()),
   1769                              Sub,
   1770                              DAG.getConstant(JTH.Last - JTH.First,VT),
   1771                              ISD::SETUGT);
   1772 
   1773   // Set NextBlock to be the MBB immediately after the current one, if any.
   1774   // This is used to avoid emitting unnecessary branches to the next block.
   1775   MachineBasicBlock *NextBlock = nullptr;
   1776   MachineFunction::iterator BBI = SwitchBB;
   1777 
   1778   if (++BBI != FuncInfo.MF->end())
   1779     NextBlock = BBI;
   1780 
   1781   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
   1782                                MVT::Other, CopyTo, CMP,
   1783                                DAG.getBasicBlock(JT.Default));
   1784 
   1785   if (JT.MBB != NextBlock)
   1786     BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
   1787                          DAG.getBasicBlock(JT.MBB));
   1788 
   1789   DAG.setRoot(BrCond);
   1790 }
   1791 
   1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its
   1793 /// tail spliced into a stack protector check success bb.
   1794 ///
   1795 /// For a high level explanation of how this fits into the stack protector
   1796 /// generation see the comment on the declaration of class
   1797 /// StackProtectorDescriptor.
   1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
   1799                                                   MachineBasicBlock *ParentBB) {
   1800 
   1801   // First create the loads to the guard/stack slot for the comparison.
   1802   const TargetLowering *TLI = TM.getTargetLowering();
   1803   EVT PtrTy = TLI->getPointerTy();
   1804 
   1805   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
   1806   int FI = MFI->getStackProtectorIndex();
   1807 
   1808   const Value *IRGuard = SPD.getGuard();
   1809   SDValue GuardPtr = getValue(IRGuard);
   1810   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
   1811 
   1812   unsigned Align =
   1813     TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
   1814   SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
   1815                               GuardPtr, MachinePointerInfo(IRGuard, 0),
   1816                               true, false, false, Align);
   1817 
   1818   SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
   1819                                   StackSlotPtr,
   1820                                   MachinePointerInfo::getFixedStack(FI),
   1821                                   true, false, false, Align);
   1822 
   1823   // Perform the comparison via a subtract/getsetcc.
   1824   EVT VT = Guard.getValueType();
   1825   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
   1826 
   1827   SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
   1828                              TLI->getSetCCResultType(*DAG.getContext(),
   1829                                                      Sub.getValueType()),
   1830                              Sub, DAG.getConstant(0, VT),
   1831                              ISD::SETNE);
   1832 
   1833   // If the sub is not 0, then we know the guard/stackslot do not equal, so
   1834   // branch to failure MBB.
   1835   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
   1836                                MVT::Other, StackSlot.getOperand(0),
   1837                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
   1838   // Otherwise branch to success MBB.
   1839   SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
   1840                            MVT::Other, BrCond,
   1841                            DAG.getBasicBlock(SPD.getSuccessMBB()));
   1842 
   1843   DAG.setRoot(Br);
   1844 }
   1845 
   1846 /// Codegen the failure basic block for a stack protector check.
   1847 ///
   1848 /// A failure stack protector machine basic block consists simply of a call to
   1849 /// __stack_chk_fail().
   1850 ///
   1851 /// For a high level explanation of how this fits into the stack protector
   1852 /// generation see the comment on the declaration of class
   1853 /// StackProtectorDescriptor.
   1854 void
   1855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
   1856   const TargetLowering *TLI = TM.getTargetLowering();
   1857   SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
   1858                                    MVT::isVoid, nullptr, 0, false,
   1859                                    getCurSDLoc(), false, false).second;
   1860   DAG.setRoot(Chain);
   1861 }
   1862 
   1863 /// visitBitTestHeader - This function emits necessary code to produce value
   1864 /// suitable for "bit tests"
   1865 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
   1866                                              MachineBasicBlock *SwitchBB) {
   1867   // Subtract the minimum value
   1868   SDValue SwitchOp = getValue(B.SValue);
   1869   EVT VT = SwitchOp.getValueType();
   1870   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
   1871                             DAG.getConstant(B.First, VT));
   1872 
   1873   // Check range
   1874   const TargetLowering *TLI = TM.getTargetLowering();
   1875   SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
   1876                                   TLI->getSetCCResultType(*DAG.getContext(),
   1877                                                          Sub.getValueType()),
   1878                                   Sub, DAG.getConstant(B.Range, VT),
   1879                                   ISD::SETUGT);
   1880 
   1881   // Determine the type of the test operands.
   1882   bool UsePtrType = false;
   1883   if (!TLI->isTypeLegal(VT))
   1884     UsePtrType = true;
   1885   else {
   1886     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
   1887       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
   1888         // Switch table case range are encoded into series of masks.
   1889         // Just use pointer type, it's guaranteed to fit.
   1890         UsePtrType = true;
   1891         break;
   1892       }
   1893   }
   1894   if (UsePtrType) {
   1895     VT = TLI->getPointerTy();
   1896     Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
   1897   }
   1898 
   1899   B.RegVT = VT.getSimpleVT();
   1900   B.Reg = FuncInfo.CreateReg(B.RegVT);
   1901   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
   1902                                     B.Reg, Sub);
   1903 
   1904   // Set NextBlock to be the MBB immediately after the current one, if any.
   1905   // This is used to avoid emitting unnecessary branches to the next block.
   1906   MachineBasicBlock *NextBlock = nullptr;
   1907   MachineFunction::iterator BBI = SwitchBB;
   1908   if (++BBI != FuncInfo.MF->end())
   1909     NextBlock = BBI;
   1910 
   1911   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
   1912 
   1913   addSuccessorWithWeight(SwitchBB, B.Default);
   1914   addSuccessorWithWeight(SwitchBB, MBB);
   1915 
   1916   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
   1917                                 MVT::Other, CopyTo, RangeCmp,
   1918                                 DAG.getBasicBlock(B.Default));
   1919 
   1920   if (MBB != NextBlock)
   1921     BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
   1922                           DAG.getBasicBlock(MBB));
   1923 
   1924   DAG.setRoot(BrRange);
   1925 }
   1926 
   1927 /// visitBitTestCase - this function produces one "bit test"
   1928 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
   1929                                            MachineBasicBlock* NextMBB,
   1930                                            uint32_t BranchWeightToNext,
   1931                                            unsigned Reg,
   1932                                            BitTestCase &B,
   1933                                            MachineBasicBlock *SwitchBB) {
   1934   MVT VT = BB.RegVT;
   1935   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
   1936                                        Reg, VT);
   1937   SDValue Cmp;
   1938   unsigned PopCount = CountPopulation_64(B.Mask);
   1939   const TargetLowering *TLI = TM.getTargetLowering();
   1940   if (PopCount == 1) {
   1941     // Testing for a single bit; just compare the shift count with what it
   1942     // would need to be to shift a 1 bit in that position.
   1943     Cmp = DAG.getSetCC(getCurSDLoc(),
   1944                        TLI->getSetCCResultType(*DAG.getContext(), VT),
   1945                        ShiftOp,
   1946                        DAG.getConstant(countTrailingZeros(B.Mask), VT),
   1947                        ISD::SETEQ);
   1948   } else if (PopCount == BB.Range) {
   1949     // There is only one zero bit in the range, test for it directly.
   1950     Cmp = DAG.getSetCC(getCurSDLoc(),
   1951                        TLI->getSetCCResultType(*DAG.getContext(), VT),
   1952                        ShiftOp,
   1953                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
   1954                        ISD::SETNE);
   1955   } else {
   1956     // Make desired shift
   1957     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
   1958                                     DAG.getConstant(1, VT), ShiftOp);
   1959 
   1960     // Emit bit tests and jumps
   1961     SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
   1962                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
   1963     Cmp = DAG.getSetCC(getCurSDLoc(),
   1964                        TLI->getSetCCResultType(*DAG.getContext(), VT),
   1965                        AndOp, DAG.getConstant(0, VT),
   1966                        ISD::SETNE);
   1967   }
   1968 
   1969   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
   1970   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
   1971   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
   1972   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
   1973 
   1974   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
   1975                               MVT::Other, getControlRoot(),
   1976                               Cmp, DAG.getBasicBlock(B.TargetBB));
   1977 
   1978   // Set NextBlock to be the MBB immediately after the current one, if any.
   1979   // This is used to avoid emitting unnecessary branches to the next block.
   1980   MachineBasicBlock *NextBlock = nullptr;
   1981   MachineFunction::iterator BBI = SwitchBB;
   1982   if (++BBI != FuncInfo.MF->end())
   1983     NextBlock = BBI;
   1984 
   1985   if (NextMBB != NextBlock)
   1986     BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
   1987                         DAG.getBasicBlock(NextMBB));
   1988 
   1989   DAG.setRoot(BrAnd);
   1990 }
   1991 
   1992 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
   1993   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
   1994 
   1995   // Retrieve successors.
   1996   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
   1997   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
   1998 
   1999   const Value *Callee(I.getCalledValue());
   2000   const Function *Fn = dyn_cast<Function>(Callee);
   2001   if (isa<InlineAsm>(Callee))
   2002     visitInlineAsm(&I);
   2003   else if (Fn && Fn->isIntrinsic()) {
   2004     assert(Fn->getIntrinsicID() == Intrinsic::donothing);
   2005     // Ignore invokes to @llvm.donothing: jump directly to the next BB.
   2006   } else
   2007     LowerCallTo(&I, getValue(Callee), false, LandingPad);
   2008 
   2009   // If the value of the invoke is used outside of its defining block, make it
   2010   // available as a virtual register.
   2011   CopyToExportRegsIfNeeded(&I);
   2012 
   2013   // Update successor info
   2014   addSuccessorWithWeight(InvokeMBB, Return);
   2015   addSuccessorWithWeight(InvokeMBB, LandingPad);
   2016 
   2017   // Drop into normal successor.
   2018   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
   2019                           MVT::Other, getControlRoot(),
   2020                           DAG.getBasicBlock(Return)));
   2021 }
   2022 
   2023 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
   2024   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
   2025 }
   2026 
   2027 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
   2028   assert(FuncInfo.MBB->isLandingPad() &&
   2029          "Call to landingpad not in landing pad!");
   2030 
   2031   MachineBasicBlock *MBB = FuncInfo.MBB;
   2032   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   2033   AddLandingPadInfo(LP, MMI, MBB);
   2034 
   2035   // If there aren't registers to copy the values into (e.g., during SjLj
   2036   // exceptions), then don't bother to create these DAG nodes.
   2037   const TargetLowering *TLI = TM.getTargetLowering();
   2038   if (TLI->getExceptionPointerRegister() == 0 &&
   2039       TLI->getExceptionSelectorRegister() == 0)
   2040     return;
   2041 
   2042   SmallVector<EVT, 2> ValueVTs;
   2043   ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
   2044   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
   2045 
   2046   // Get the two live-in registers as SDValues. The physregs have already been
   2047   // copied into virtual registers.
   2048   SDValue Ops[2];
   2049   Ops[0] = DAG.getZExtOrTrunc(
   2050     DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
   2051                        FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
   2052     getCurSDLoc(), ValueVTs[0]);
   2053   Ops[1] = DAG.getZExtOrTrunc(
   2054     DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
   2055                        FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
   2056     getCurSDLoc(), ValueVTs[1]);
   2057 
   2058   // Merge into one.
   2059   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   2060                             DAG.getVTList(ValueVTs), Ops);
   2061   setValue(&LP, Res);
   2062 }
   2063 
   2064 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
   2065 /// small case ranges).
   2066 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
   2067                                                  CaseRecVector& WorkList,
   2068                                                  const Value* SV,
   2069                                                  MachineBasicBlock *Default,
   2070                                                  MachineBasicBlock *SwitchBB) {
   2071   // Size is the number of Cases represented by this range.
   2072   size_t Size = CR.Range.second - CR.Range.first;
   2073   if (Size > 3)
   2074     return false;
   2075 
   2076   // Get the MachineFunction which holds the current MBB.  This is used when
   2077   // inserting any additional MBBs necessary to represent the switch.
   2078   MachineFunction *CurMF = FuncInfo.MF;
   2079 
   2080   // Figure out which block is immediately after the current one.
   2081   MachineBasicBlock *NextBlock = nullptr;
   2082   MachineFunction::iterator BBI = CR.CaseBB;
   2083 
   2084   if (++BBI != FuncInfo.MF->end())
   2085     NextBlock = BBI;
   2086 
   2087   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   2088   // If any two of the cases has the same destination, and if one value
   2089   // is the same as the other, but has one bit unset that the other has set,
   2090   // use bit manipulation to do two compares at once.  For example:
   2091   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
   2092   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
   2093   // TODO: Handle cases where CR.CaseBB != SwitchBB.
   2094   if (Size == 2 && CR.CaseBB == SwitchBB) {
   2095     Case &Small = *CR.Range.first;
   2096     Case &Big = *(CR.Range.second-1);
   2097 
   2098     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
   2099       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
   2100       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
   2101 
   2102       // Check that there is only one bit different.
   2103       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
   2104           (SmallValue | BigValue) == BigValue) {
   2105         // Isolate the common bit.
   2106         APInt CommonBit = BigValue & ~SmallValue;
   2107         assert((SmallValue | CommonBit) == BigValue &&
   2108                CommonBit.countPopulation() == 1 && "Not a common bit?");
   2109 
   2110         SDValue CondLHS = getValue(SV);
   2111         EVT VT = CondLHS.getValueType();
   2112         SDLoc DL = getCurSDLoc();
   2113 
   2114         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
   2115                                  DAG.getConstant(CommonBit, VT));
   2116         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
   2117                                     Or, DAG.getConstant(BigValue, VT),
   2118                                     ISD::SETEQ);
   2119 
   2120         // Update successor info.
   2121         // Both Small and Big will jump to Small.BB, so we sum up the weights.
   2122         addSuccessorWithWeight(SwitchBB, Small.BB,
   2123                                Small.ExtraWeight + Big.ExtraWeight);
   2124         addSuccessorWithWeight(SwitchBB, Default,
   2125           // The default destination is the first successor in IR.
   2126           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
   2127 
   2128         // Insert the true branch.
   2129         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
   2130                                      getControlRoot(), Cond,
   2131                                      DAG.getBasicBlock(Small.BB));
   2132 
   2133         // Insert the false branch.
   2134         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
   2135                              DAG.getBasicBlock(Default));
   2136 
   2137         DAG.setRoot(BrCond);
   2138         return true;
   2139       }
   2140     }
   2141   }
   2142 
   2143   // Order cases by weight so the most likely case will be checked first.
   2144   uint32_t UnhandledWeights = 0;
   2145   if (BPI) {
   2146     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
   2147       uint32_t IWeight = I->ExtraWeight;
   2148       UnhandledWeights += IWeight;
   2149       for (CaseItr J = CR.Range.first; J < I; ++J) {
   2150         uint32_t JWeight = J->ExtraWeight;
   2151         if (IWeight > JWeight)
   2152           std::swap(*I, *J);
   2153       }
   2154     }
   2155   }
   2156   // Rearrange the case blocks so that the last one falls through if possible.
   2157   Case &BackCase = *(CR.Range.second-1);
   2158   if (Size > 1 &&
   2159       NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
   2160     // The last case block won't fall through into 'NextBlock' if we emit the
   2161     // branches in this order.  See if rearranging a case value would help.
   2162     // We start at the bottom as it's the case with the least weight.
   2163     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
   2164       if (I->BB == NextBlock) {
   2165         std::swap(*I, BackCase);
   2166         break;
   2167       }
   2168   }
   2169 
   2170   // Create a CaseBlock record representing a conditional branch to
   2171   // the Case's target mbb if the value being switched on SV is equal
   2172   // to C.
   2173   MachineBasicBlock *CurBlock = CR.CaseBB;
   2174   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
   2175     MachineBasicBlock *FallThrough;
   2176     if (I != E-1) {
   2177       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
   2178       CurMF->insert(BBI, FallThrough);
   2179 
   2180       // Put SV in a virtual register to make it available from the new blocks.
   2181       ExportFromCurrentBlock(SV);
   2182     } else {
   2183       // If the last case doesn't match, go to the default block.
   2184       FallThrough = Default;
   2185     }
   2186 
   2187     const Value *RHS, *LHS, *MHS;
   2188     ISD::CondCode CC;
   2189     if (I->High == I->Low) {
   2190       // This is just small small case range :) containing exactly 1 case
   2191       CC = ISD::SETEQ;
   2192       LHS = SV; RHS = I->High; MHS = nullptr;
   2193     } else {
   2194       CC = ISD::SETLE;
   2195       LHS = I->Low; MHS = SV; RHS = I->High;
   2196     }
   2197 
   2198     // The false weight should be sum of all un-handled cases.
   2199     UnhandledWeights -= I->ExtraWeight;
   2200     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
   2201                  /* me */ CurBlock,
   2202                  /* trueweight */ I->ExtraWeight,
   2203                  /* falseweight */ UnhandledWeights);
   2204 
   2205     // If emitting the first comparison, just call visitSwitchCase to emit the
   2206     // code into the current block.  Otherwise, push the CaseBlock onto the
   2207     // vector to be later processed by SDISel, and insert the node's MBB
   2208     // before the next MBB.
   2209     if (CurBlock == SwitchBB)
   2210       visitSwitchCase(CB, SwitchBB);
   2211     else
   2212       SwitchCases.push_back(CB);
   2213 
   2214     CurBlock = FallThrough;
   2215   }
   2216 
   2217   return true;
   2218 }
   2219 
   2220 static inline bool areJTsAllowed(const TargetLowering &TLI) {
   2221   return TLI.supportJumpTables() &&
   2222           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
   2223            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
   2224 }
   2225 
   2226 static APInt ComputeRange(const APInt &First, const APInt &Last) {
   2227   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
   2228   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
   2229   return (LastExt - FirstExt + 1ULL);
   2230 }
   2231 
   2232 /// handleJTSwitchCase - Emit jumptable for current switch case range
   2233 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
   2234                                              CaseRecVector &WorkList,
   2235                                              const Value *SV,
   2236                                              MachineBasicBlock *Default,
   2237                                              MachineBasicBlock *SwitchBB) {
   2238   Case& FrontCase = *CR.Range.first;
   2239   Case& BackCase  = *(CR.Range.second-1);
   2240 
   2241   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2242   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2243 
   2244   APInt TSize(First.getBitWidth(), 0);
   2245   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
   2246     TSize += I->size();
   2247 
   2248   const TargetLowering *TLI = TM.getTargetLowering();
   2249   if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
   2250     return false;
   2251 
   2252   APInt Range = ComputeRange(First, Last);
   2253   // The density is TSize / Range. Require at least 40%.
   2254   // It should not be possible for IntTSize to saturate for sane code, but make
   2255   // sure we handle Range saturation correctly.
   2256   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
   2257   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
   2258   if (IntTSize * 10 < IntRange * 4)
   2259     return false;
   2260 
   2261   DEBUG(dbgs() << "Lowering jump table\n"
   2262                << "First entry: " << First << ". Last entry: " << Last << '\n'
   2263                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
   2264 
   2265   // Get the MachineFunction which holds the current MBB.  This is used when
   2266   // inserting any additional MBBs necessary to represent the switch.
   2267   MachineFunction *CurMF = FuncInfo.MF;
   2268 
   2269   // Figure out which block is immediately after the current one.
   2270   MachineFunction::iterator BBI = CR.CaseBB;
   2271   ++BBI;
   2272 
   2273   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2274 
   2275   // Create a new basic block to hold the code for loading the address
   2276   // of the jump table, and jumping to it.  Update successor information;
   2277   // we will either branch to the default case for the switch, or the jump
   2278   // table.
   2279   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2280   CurMF->insert(BBI, JumpTableBB);
   2281 
   2282   addSuccessorWithWeight(CR.CaseBB, Default);
   2283   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
   2284 
   2285   // Build a vector of destination BBs, corresponding to each target
   2286   // of the jump table. If the value of the jump table slot corresponds to
   2287   // a case statement, push the case's BB onto the vector, otherwise, push
   2288   // the default BB.
   2289   std::vector<MachineBasicBlock*> DestBBs;
   2290   APInt TEI = First;
   2291   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
   2292     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
   2293     const APInt &High = cast<ConstantInt>(I->High)->getValue();
   2294 
   2295     if (Low.sle(TEI) && TEI.sle(High)) {
   2296       DestBBs.push_back(I->BB);
   2297       if (TEI==High)
   2298         ++I;
   2299     } else {
   2300       DestBBs.push_back(Default);
   2301     }
   2302   }
   2303 
   2304   // Calculate weight for each unique destination in CR.
   2305   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
   2306   if (FuncInfo.BPI)
   2307     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
   2308       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
   2309           DestWeights.find(I->BB);
   2310       if (Itr != DestWeights.end())
   2311         Itr->second += I->ExtraWeight;
   2312       else
   2313         DestWeights[I->BB] = I->ExtraWeight;
   2314     }
   2315 
   2316   // Update successor info. Add one edge to each unique successor.
   2317   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
   2318   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
   2319          E = DestBBs.end(); I != E; ++I) {
   2320     if (!SuccsHandled[(*I)->getNumber()]) {
   2321       SuccsHandled[(*I)->getNumber()] = true;
   2322       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
   2323           DestWeights.find(*I);
   2324       addSuccessorWithWeight(JumpTableBB, *I,
   2325                              Itr != DestWeights.end() ? Itr->second : 0);
   2326     }
   2327   }
   2328 
   2329   // Create a jump table index for this jump table.
   2330   unsigned JTEncoding = TLI->getJumpTableEncoding();
   2331   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
   2332                        ->createJumpTableIndex(DestBBs);
   2333 
   2334   // Set the jump table information so that we can codegen it as a second
   2335   // MachineBasicBlock
   2336   JumpTable JT(-1U, JTI, JumpTableBB, Default);
   2337   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
   2338   if (CR.CaseBB == SwitchBB)
   2339     visitJumpTableHeader(JT, JTH, SwitchBB);
   2340 
   2341   JTCases.push_back(JumpTableBlock(JTH, JT));
   2342   return true;
   2343 }
   2344 
   2345 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
   2346 /// 2 subtrees.
   2347 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
   2348                                                   CaseRecVector& WorkList,
   2349                                                   const Value* SV,
   2350                                                   MachineBasicBlock* Default,
   2351                                                   MachineBasicBlock* SwitchBB) {
   2352   // Get the MachineFunction which holds the current MBB.  This is used when
   2353   // inserting any additional MBBs necessary to represent the switch.
   2354   MachineFunction *CurMF = FuncInfo.MF;
   2355 
   2356   // Figure out which block is immediately after the current one.
   2357   MachineFunction::iterator BBI = CR.CaseBB;
   2358   ++BBI;
   2359 
   2360   Case& FrontCase = *CR.Range.first;
   2361   Case& BackCase  = *(CR.Range.second-1);
   2362   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2363 
   2364   // Size is the number of Cases represented by this range.
   2365   unsigned Size = CR.Range.second - CR.Range.first;
   2366 
   2367   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2368   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2369   double FMetric = 0;
   2370   CaseItr Pivot = CR.Range.first + Size/2;
   2371 
   2372   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
   2373   // (heuristically) allow us to emit JumpTable's later.
   2374   APInt TSize(First.getBitWidth(), 0);
   2375   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2376        I!=E; ++I)
   2377     TSize += I->size();
   2378 
   2379   APInt LSize = FrontCase.size();
   2380   APInt RSize = TSize-LSize;
   2381   DEBUG(dbgs() << "Selecting best pivot: \n"
   2382                << "First: " << First << ", Last: " << Last <<'\n'
   2383                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
   2384   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
   2385        J!=E; ++I, ++J) {
   2386     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
   2387     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
   2388     APInt Range = ComputeRange(LEnd, RBegin);
   2389     assert((Range - 2ULL).isNonNegative() &&
   2390            "Invalid case distance");
   2391     // Use volatile double here to avoid excess precision issues on some hosts,
   2392     // e.g. that use 80-bit X87 registers.
   2393     volatile double LDensity =
   2394        (double)LSize.roundToDouble() /
   2395                            (LEnd - First + 1ULL).roundToDouble();
   2396     volatile double RDensity =
   2397       (double)RSize.roundToDouble() /
   2398                            (Last - RBegin + 1ULL).roundToDouble();
   2399     volatile double Metric = Range.logBase2()*(LDensity+RDensity);
   2400     // Should always split in some non-trivial place
   2401     DEBUG(dbgs() <<"=>Step\n"
   2402                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
   2403                  << "LDensity: " << LDensity
   2404                  << ", RDensity: " << RDensity << '\n'
   2405                  << "Metric: " << Metric << '\n');
   2406     if (FMetric < Metric) {
   2407       Pivot = J;
   2408       FMetric = Metric;
   2409       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
   2410     }
   2411 
   2412     LSize += J->size();
   2413     RSize -= J->size();
   2414   }
   2415 
   2416   const TargetLowering *TLI = TM.getTargetLowering();
   2417   if (areJTsAllowed(*TLI)) {
   2418     // If our case is dense we *really* should handle it earlier!
   2419     assert((FMetric > 0) && "Should handle dense range earlier!");
   2420   } else {
   2421     Pivot = CR.Range.first + Size/2;
   2422   }
   2423 
   2424   CaseRange LHSR(CR.Range.first, Pivot);
   2425   CaseRange RHSR(Pivot, CR.Range.second);
   2426   const Constant *C = Pivot->Low;
   2427   MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
   2428 
   2429   // We know that we branch to the LHS if the Value being switched on is
   2430   // less than the Pivot value, C.  We use this to optimize our binary
   2431   // tree a bit, by recognizing that if SV is greater than or equal to the
   2432   // LHS's Case Value, and that Case Value is exactly one less than the
   2433   // Pivot's Value, then we can branch directly to the LHS's Target,
   2434   // rather than creating a leaf node for it.
   2435   if ((LHSR.second - LHSR.first) == 1 &&
   2436       LHSR.first->High == CR.GE &&
   2437       cast<ConstantInt>(C)->getValue() ==
   2438       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
   2439     TrueBB = LHSR.first->BB;
   2440   } else {
   2441     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2442     CurMF->insert(BBI, TrueBB);
   2443     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
   2444 
   2445     // Put SV in a virtual register to make it available from the new blocks.
   2446     ExportFromCurrentBlock(SV);
   2447   }
   2448 
   2449   // Similar to the optimization above, if the Value being switched on is
   2450   // known to be less than the Constant CR.LT, and the current Case Value
   2451   // is CR.LT - 1, then we can branch directly to the target block for
   2452   // the current Case Value, rather than emitting a RHS leaf node for it.
   2453   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
   2454       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
   2455       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
   2456     FalseBB = RHSR.first->BB;
   2457   } else {
   2458     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2459     CurMF->insert(BBI, FalseBB);
   2460     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
   2461 
   2462     // Put SV in a virtual register to make it available from the new blocks.
   2463     ExportFromCurrentBlock(SV);
   2464   }
   2465 
   2466   // Create a CaseBlock record representing a conditional branch to
   2467   // the LHS node if the value being switched on SV is less than C.
   2468   // Otherwise, branch to LHS.
   2469   CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
   2470 
   2471   if (CR.CaseBB == SwitchBB)
   2472     visitSwitchCase(CB, SwitchBB);
   2473   else
   2474     SwitchCases.push_back(CB);
   2475 
   2476   return true;
   2477 }
   2478 
   2479 /// handleBitTestsSwitchCase - if current case range has few destination and
   2480 /// range span less, than machine word bitwidth, encode case range into series
   2481 /// of masks and emit bit tests with these masks.
   2482 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
   2483                                                    CaseRecVector& WorkList,
   2484                                                    const Value* SV,
   2485                                                    MachineBasicBlock* Default,
   2486                                                    MachineBasicBlock* SwitchBB) {
   2487   const TargetLowering *TLI = TM.getTargetLowering();
   2488   EVT PTy = TLI->getPointerTy();
   2489   unsigned IntPtrBits = PTy.getSizeInBits();
   2490 
   2491   Case& FrontCase = *CR.Range.first;
   2492   Case& BackCase  = *(CR.Range.second-1);
   2493 
   2494   // Get the MachineFunction which holds the current MBB.  This is used when
   2495   // inserting any additional MBBs necessary to represent the switch.
   2496   MachineFunction *CurMF = FuncInfo.MF;
   2497 
   2498   // If target does not have legal shift left, do not emit bit tests at all.
   2499   if (!TLI->isOperationLegal(ISD::SHL, PTy))
   2500     return false;
   2501 
   2502   size_t numCmps = 0;
   2503   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2504        I!=E; ++I) {
   2505     // Single case counts one, case range - two.
   2506     numCmps += (I->Low == I->High ? 1 : 2);
   2507   }
   2508 
   2509   // Count unique destinations
   2510   SmallSet<MachineBasicBlock*, 4> Dests;
   2511   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2512     Dests.insert(I->BB);
   2513     if (Dests.size() > 3)
   2514       // Don't bother the code below, if there are too much unique destinations
   2515       return false;
   2516   }
   2517   DEBUG(dbgs() << "Total number of unique destinations: "
   2518         << Dests.size() << '\n'
   2519         << "Total number of comparisons: " << numCmps << '\n');
   2520 
   2521   // Compute span of values.
   2522   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
   2523   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
   2524   APInt cmpRange = maxValue - minValue;
   2525 
   2526   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
   2527                << "Low bound: " << minValue << '\n'
   2528                << "High bound: " << maxValue << '\n');
   2529 
   2530   if (cmpRange.uge(IntPtrBits) ||
   2531       (!(Dests.size() == 1 && numCmps >= 3) &&
   2532        !(Dests.size() == 2 && numCmps >= 5) &&
   2533        !(Dests.size() >= 3 && numCmps >= 6)))
   2534     return false;
   2535 
   2536   DEBUG(dbgs() << "Emitting bit tests\n");
   2537   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
   2538 
   2539   // Optimize the case where all the case values fit in a
   2540   // word without having to subtract minValue. In this case,
   2541   // we can optimize away the subtraction.
   2542   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
   2543     cmpRange = maxValue;
   2544   } else {
   2545     lowBound = minValue;
   2546   }
   2547 
   2548   CaseBitsVector CasesBits;
   2549   unsigned i, count = 0;
   2550 
   2551   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2552     MachineBasicBlock* Dest = I->BB;
   2553     for (i = 0; i < count; ++i)
   2554       if (Dest == CasesBits[i].BB)
   2555         break;
   2556 
   2557     if (i == count) {
   2558       assert((count < 3) && "Too much destinations to test!");
   2559       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
   2560       count++;
   2561     }
   2562 
   2563     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
   2564     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
   2565 
   2566     uint64_t lo = (lowValue - lowBound).getZExtValue();
   2567     uint64_t hi = (highValue - lowBound).getZExtValue();
   2568     CasesBits[i].ExtraWeight += I->ExtraWeight;
   2569 
   2570     for (uint64_t j = lo; j <= hi; j++) {
   2571       CasesBits[i].Mask |=  1ULL << j;
   2572       CasesBits[i].Bits++;
   2573     }
   2574 
   2575   }
   2576   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
   2577 
   2578   BitTestInfo BTC;
   2579 
   2580   // Figure out which block is immediately after the current one.
   2581   MachineFunction::iterator BBI = CR.CaseBB;
   2582   ++BBI;
   2583 
   2584   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2585 
   2586   DEBUG(dbgs() << "Cases:\n");
   2587   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
   2588     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
   2589                  << ", Bits: " << CasesBits[i].Bits
   2590                  << ", BB: " << CasesBits[i].BB << '\n');
   2591 
   2592     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2593     CurMF->insert(BBI, CaseBB);
   2594     BTC.push_back(BitTestCase(CasesBits[i].Mask,
   2595                               CaseBB,
   2596                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
   2597 
   2598     // Put SV in a virtual register to make it available from the new blocks.
   2599     ExportFromCurrentBlock(SV);
   2600   }
   2601 
   2602   BitTestBlock BTB(lowBound, cmpRange, SV,
   2603                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
   2604                    CR.CaseBB, Default, BTC);
   2605 
   2606   if (CR.CaseBB == SwitchBB)
   2607     visitBitTestHeader(BTB, SwitchBB);
   2608 
   2609   BitTestCases.push_back(BTB);
   2610 
   2611   return true;
   2612 }
   2613 
   2614 /// Clusterify - Transform simple list of Cases into list of CaseRange's
   2615 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
   2616                                        const SwitchInst& SI) {
   2617   size_t numCmps = 0;
   2618 
   2619   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   2620   // Start with "simple" cases
   2621   for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   2622        i != e; ++i) {
   2623     const BasicBlock *SuccBB = i.getCaseSuccessor();
   2624     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
   2625 
   2626     uint32_t ExtraWeight =
   2627       BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
   2628 
   2629     Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
   2630                          SMBB, ExtraWeight));
   2631   }
   2632   std::sort(Cases.begin(), Cases.end(), CaseCmp());
   2633 
   2634   // Merge case into clusters
   2635   if (Cases.size() >= 2)
   2636     // Must recompute end() each iteration because it may be
   2637     // invalidated by erase if we hold on to it
   2638     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
   2639          J != Cases.end(); ) {
   2640       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
   2641       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
   2642       MachineBasicBlock* nextBB = J->BB;
   2643       MachineBasicBlock* currentBB = I->BB;
   2644 
   2645       // If the two neighboring cases go to the same destination, merge them
   2646       // into a single case.
   2647       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
   2648         I->High = J->High;
   2649         I->ExtraWeight += J->ExtraWeight;
   2650         J = Cases.erase(J);
   2651       } else {
   2652         I = J++;
   2653       }
   2654     }
   2655 
   2656   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
   2657     if (I->Low != I->High)
   2658       // A range counts double, since it requires two compares.
   2659       ++numCmps;
   2660   }
   2661 
   2662   return numCmps;
   2663 }
   2664 
   2665 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
   2666                                            MachineBasicBlock *Last) {
   2667   // Update JTCases.
   2668   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
   2669     if (JTCases[i].first.HeaderBB == First)
   2670       JTCases[i].first.HeaderBB = Last;
   2671 
   2672   // Update BitTestCases.
   2673   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
   2674     if (BitTestCases[i].Parent == First)
   2675       BitTestCases[i].Parent = Last;
   2676 }
   2677 
   2678 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
   2679   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
   2680 
   2681   // Figure out which block is immediately after the current one.
   2682   MachineBasicBlock *NextBlock = nullptr;
   2683   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
   2684 
   2685   // If there is only the default destination, branch to it if it is not the
   2686   // next basic block.  Otherwise, just fall through.
   2687   if (!SI.getNumCases()) {
   2688     // Update machine-CFG edges.
   2689 
   2690     // If this is not a fall-through branch, emit the branch.
   2691     SwitchMBB->addSuccessor(Default);
   2692     if (Default != NextBlock)
   2693       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
   2694                               MVT::Other, getControlRoot(),
   2695                               DAG.getBasicBlock(Default)));
   2696 
   2697     return;
   2698   }
   2699 
   2700   // If there are any non-default case statements, create a vector of Cases
   2701   // representing each one, and sort the vector so that we can efficiently
   2702   // create a binary search tree from them.
   2703   CaseVector Cases;
   2704   size_t numCmps = Clusterify(Cases, SI);
   2705   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
   2706                << ". Total compares: " << numCmps << '\n');
   2707   (void)numCmps;
   2708 
   2709   // Get the Value to be switched on and default basic blocks, which will be
   2710   // inserted into CaseBlock records, representing basic blocks in the binary
   2711   // search tree.
   2712   const Value *SV = SI.getCondition();
   2713 
   2714   // Push the initial CaseRec onto the worklist
   2715   CaseRecVector WorkList;
   2716   WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
   2717                              CaseRange(Cases.begin(),Cases.end())));
   2718 
   2719   while (!WorkList.empty()) {
   2720     // Grab a record representing a case range to process off the worklist
   2721     CaseRec CR = WorkList.back();
   2722     WorkList.pop_back();
   2723 
   2724     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2725       continue;
   2726 
   2727     // If the range has few cases (two or less) emit a series of specific
   2728     // tests.
   2729     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
   2730       continue;
   2731 
   2732     // If the switch has more than N blocks, and is at least 40% dense, and the
   2733     // target supports indirect branches, then emit a jump table rather than
   2734     // lowering the switch to a binary tree of conditional branches.
   2735     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
   2736     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2737       continue;
   2738 
   2739     // Emit binary tree. We need to pick a pivot, and push left and right ranges
   2740     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
   2741     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
   2742   }
   2743 }
   2744 
   2745 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
   2746   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
   2747 
   2748   // Update machine-CFG edges with unique successors.
   2749   SmallSet<BasicBlock*, 32> Done;
   2750   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
   2751     BasicBlock *BB = I.getSuccessor(i);
   2752     bool Inserted = Done.insert(BB);
   2753     if (!Inserted)
   2754         continue;
   2755 
   2756     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
   2757     addSuccessorWithWeight(IndirectBrMBB, Succ);
   2758   }
   2759 
   2760   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
   2761                           MVT::Other, getControlRoot(),
   2762                           getValue(I.getAddress())));
   2763 }
   2764 
   2765 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
   2766   if (DAG.getTarget().Options.TrapUnreachable)
   2767     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
   2768 }
   2769 
   2770 void SelectionDAGBuilder::visitFSub(const User &I) {
   2771   // -0.0 - X --> fneg
   2772   Type *Ty = I.getType();
   2773   if (isa<Constant>(I.getOperand(0)) &&
   2774       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
   2775     SDValue Op2 = getValue(I.getOperand(1));
   2776     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
   2777                              Op2.getValueType(), Op2));
   2778     return;
   2779   }
   2780 
   2781   visitBinary(I, ISD::FSUB);
   2782 }
   2783 
   2784 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
   2785   SDValue Op1 = getValue(I.getOperand(0));
   2786   SDValue Op2 = getValue(I.getOperand(1));
   2787 
   2788   bool nuw = false;
   2789   bool nsw = false;
   2790   bool exact = false;
   2791   if (const OverflowingBinaryOperator *OFBinOp =
   2792           dyn_cast<const OverflowingBinaryOperator>(&I)) {
   2793     nuw = OFBinOp->hasNoUnsignedWrap();
   2794     nsw = OFBinOp->hasNoSignedWrap();
   2795   }
   2796   if (const PossiblyExactOperator *ExactOp =
   2797           dyn_cast<const PossiblyExactOperator>(&I))
   2798     exact = ExactOp->isExact();
   2799 
   2800   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
   2801                                      Op1, Op2, nuw, nsw, exact);
   2802   setValue(&I, BinNodeValue);
   2803 }
   2804 
   2805 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
   2806   SDValue Op1 = getValue(I.getOperand(0));
   2807   SDValue Op2 = getValue(I.getOperand(1));
   2808 
   2809   EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
   2810 
   2811   // Coerce the shift amount to the right type if we can.
   2812   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
   2813     unsigned ShiftSize = ShiftTy.getSizeInBits();
   2814     unsigned Op2Size = Op2.getValueType().getSizeInBits();
   2815     SDLoc DL = getCurSDLoc();
   2816 
   2817     // If the operand is smaller than the shift count type, promote it.
   2818     if (ShiftSize > Op2Size)
   2819       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
   2820 
   2821     // If the operand is larger than the shift count type but the shift
   2822     // count type has enough bits to represent any shift value, truncate
   2823     // it now. This is a common case and it exposes the truncate to
   2824     // optimization early.
   2825     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
   2826       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
   2827     // Otherwise we'll need to temporarily settle for some other convenient
   2828     // type.  Type legalization will make adjustments once the shiftee is split.
   2829     else
   2830       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
   2831   }
   2832 
   2833   bool nuw = false;
   2834   bool nsw = false;
   2835   bool exact = false;
   2836 
   2837   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
   2838 
   2839     if (const OverflowingBinaryOperator *OFBinOp =
   2840             dyn_cast<const OverflowingBinaryOperator>(&I)) {
   2841       nuw = OFBinOp->hasNoUnsignedWrap();
   2842       nsw = OFBinOp->hasNoSignedWrap();
   2843     }
   2844     if (const PossiblyExactOperator *ExactOp =
   2845             dyn_cast<const PossiblyExactOperator>(&I))
   2846       exact = ExactOp->isExact();
   2847   }
   2848 
   2849   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
   2850                             nuw, nsw, exact);
   2851   setValue(&I, Res);
   2852 }
   2853 
   2854 void SelectionDAGBuilder::visitSDiv(const User &I) {
   2855   SDValue Op1 = getValue(I.getOperand(0));
   2856   SDValue Op2 = getValue(I.getOperand(1));
   2857 
   2858   // Turn exact SDivs into multiplications.
   2859   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
   2860   // exact bit.
   2861   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
   2862       !isa<ConstantSDNode>(Op1) &&
   2863       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
   2864     setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
   2865                                                         getCurSDLoc(), DAG));
   2866   else
   2867     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
   2868                              Op1, Op2));
   2869 }
   2870 
   2871 void SelectionDAGBuilder::visitICmp(const User &I) {
   2872   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
   2873   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
   2874     predicate = IC->getPredicate();
   2875   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
   2876     predicate = ICmpInst::Predicate(IC->getPredicate());
   2877   SDValue Op1 = getValue(I.getOperand(0));
   2878   SDValue Op2 = getValue(I.getOperand(1));
   2879   ISD::CondCode Opcode = getICmpCondCode(predicate);
   2880 
   2881   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2882   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
   2883 }
   2884 
   2885 void SelectionDAGBuilder::visitFCmp(const User &I) {
   2886   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
   2887   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
   2888     predicate = FC->getPredicate();
   2889   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
   2890     predicate = FCmpInst::Predicate(FC->getPredicate());
   2891   SDValue Op1 = getValue(I.getOperand(0));
   2892   SDValue Op2 = getValue(I.getOperand(1));
   2893   ISD::CondCode Condition = getFCmpCondCode(predicate);
   2894   if (TM.Options.NoNaNsFPMath)
   2895     Condition = getFCmpCodeWithoutNaN(Condition);
   2896   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2897   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
   2898 }
   2899 
   2900 void SelectionDAGBuilder::visitSelect(const User &I) {
   2901   SmallVector<EVT, 4> ValueVTs;
   2902   ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
   2903   unsigned NumValues = ValueVTs.size();
   2904   if (NumValues == 0) return;
   2905 
   2906   SmallVector<SDValue, 4> Values(NumValues);
   2907   SDValue Cond     = getValue(I.getOperand(0));
   2908   SDValue TrueVal  = getValue(I.getOperand(1));
   2909   SDValue FalseVal = getValue(I.getOperand(2));
   2910   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
   2911     ISD::VSELECT : ISD::SELECT;
   2912 
   2913   for (unsigned i = 0; i != NumValues; ++i)
   2914     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
   2915                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
   2916                             Cond,
   2917                             SDValue(TrueVal.getNode(),
   2918                                     TrueVal.getResNo() + i),
   2919                             SDValue(FalseVal.getNode(),
   2920                                     FalseVal.getResNo() + i));
   2921 
   2922   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   2923                            DAG.getVTList(ValueVTs), Values));
   2924 }
   2925 
   2926 void SelectionDAGBuilder::visitTrunc(const User &I) {
   2927   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
   2928   SDValue N = getValue(I.getOperand(0));
   2929   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2930   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
   2931 }
   2932 
   2933 void SelectionDAGBuilder::visitZExt(const User &I) {
   2934   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2935   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
   2936   SDValue N = getValue(I.getOperand(0));
   2937   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2938   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
   2939 }
   2940 
   2941 void SelectionDAGBuilder::visitSExt(const User &I) {
   2942   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2943   // SExt also can't be a cast to bool for same reason. So, nothing much to do
   2944   SDValue N = getValue(I.getOperand(0));
   2945   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2946   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
   2947 }
   2948 
   2949 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
   2950   // FPTrunc is never a no-op cast, no need to check
   2951   SDValue N = getValue(I.getOperand(0));
   2952   const TargetLowering *TLI = TM.getTargetLowering();
   2953   EVT DestVT = TLI->getValueType(I.getType());
   2954   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
   2955                            DestVT, N,
   2956                            DAG.getTargetConstant(0, TLI->getPointerTy())));
   2957 }
   2958 
   2959 void SelectionDAGBuilder::visitFPExt(const User &I) {
   2960   // FPExt is never a no-op cast, no need to check
   2961   SDValue N = getValue(I.getOperand(0));
   2962   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2963   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
   2964 }
   2965 
   2966 void SelectionDAGBuilder::visitFPToUI(const User &I) {
   2967   // FPToUI is never a no-op cast, no need to check
   2968   SDValue N = getValue(I.getOperand(0));
   2969   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2970   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
   2971 }
   2972 
   2973 void SelectionDAGBuilder::visitFPToSI(const User &I) {
   2974   // FPToSI is never a no-op cast, no need to check
   2975   SDValue N = getValue(I.getOperand(0));
   2976   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2977   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
   2978 }
   2979 
   2980 void SelectionDAGBuilder::visitUIToFP(const User &I) {
   2981   // UIToFP is never a no-op cast, no need to check
   2982   SDValue N = getValue(I.getOperand(0));
   2983   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2984   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
   2985 }
   2986 
   2987 void SelectionDAGBuilder::visitSIToFP(const User &I) {
   2988   // SIToFP is never a no-op cast, no need to check
   2989   SDValue N = getValue(I.getOperand(0));
   2990   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2991   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
   2992 }
   2993 
   2994 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
   2995   // What to do depends on the size of the integer and the size of the pointer.
   2996   // We can either truncate, zero extend, or no-op, accordingly.
   2997   SDValue N = getValue(I.getOperand(0));
   2998   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   2999   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
   3000 }
   3001 
   3002 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
   3003   // What to do depends on the size of the integer and the size of the pointer.
   3004   // We can either truncate, zero extend, or no-op, accordingly.
   3005   SDValue N = getValue(I.getOperand(0));
   3006   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   3007   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
   3008 }
   3009 
   3010 void SelectionDAGBuilder::visitBitCast(const User &I) {
   3011   SDValue N = getValue(I.getOperand(0));
   3012   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   3013 
   3014   // BitCast assures us that source and destination are the same size so this is
   3015   // either a BITCAST or a no-op.
   3016   if (DestVT != N.getValueType())
   3017     setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
   3018                              DestVT, N)); // convert types.
   3019   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
   3020   // might fold any kind of constant expression to an integer constant and that
   3021   // is not what we are looking for. Only regcognize a bitcast of a genuine
   3022   // constant integer as an opaque constant.
   3023   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
   3024     setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
   3025                                  /*isOpaque*/true));
   3026   else
   3027     setValue(&I, N);            // noop cast.
   3028 }
   3029 
   3030 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
   3031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3032   const Value *SV = I.getOperand(0);
   3033   SDValue N = getValue(SV);
   3034   EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
   3035 
   3036   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
   3037   unsigned DestAS = I.getType()->getPointerAddressSpace();
   3038 
   3039   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
   3040     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
   3041 
   3042   setValue(&I, N);
   3043 }
   3044 
   3045 void SelectionDAGBuilder::visitInsertElement(const User &I) {
   3046   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3047   SDValue InVec = getValue(I.getOperand(0));
   3048   SDValue InVal = getValue(I.getOperand(1));
   3049   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
   3050                                      getCurSDLoc(), TLI.getVectorIdxTy());
   3051   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
   3052                            TM.getTargetLowering()->getValueType(I.getType()),
   3053                            InVec, InVal, InIdx));
   3054 }
   3055 
   3056 void SelectionDAGBuilder::visitExtractElement(const User &I) {
   3057   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3058   SDValue InVec = getValue(I.getOperand(0));
   3059   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
   3060                                      getCurSDLoc(), TLI.getVectorIdxTy());
   3061   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
   3062                            TM.getTargetLowering()->getValueType(I.getType()),
   3063                            InVec, InIdx));
   3064 }
   3065 
   3066 // Utility for visitShuffleVector - Return true if every element in Mask,
   3067 // beginning from position Pos and ending in Pos+Size, falls within the
   3068 // specified sequential range [L, L+Pos). or is undef.
   3069 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
   3070                                 unsigned Pos, unsigned Size, int Low) {
   3071   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   3072     if (Mask[i] >= 0 && Mask[i] != Low)
   3073       return false;
   3074   return true;
   3075 }
   3076 
   3077 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
   3078   SDValue Src1 = getValue(I.getOperand(0));
   3079   SDValue Src2 = getValue(I.getOperand(1));
   3080 
   3081   SmallVector<int, 8> Mask;
   3082   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
   3083   unsigned MaskNumElts = Mask.size();
   3084 
   3085   const TargetLowering *TLI = TM.getTargetLowering();
   3086   EVT VT = TLI->getValueType(I.getType());
   3087   EVT SrcVT = Src1.getValueType();
   3088   unsigned SrcNumElts = SrcVT.getVectorNumElements();
   3089 
   3090   if (SrcNumElts == MaskNumElts) {
   3091     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
   3092                                       &Mask[0]));
   3093     return;
   3094   }
   3095 
   3096   // Normalize the shuffle vector since mask and vector length don't match.
   3097   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
   3098     // Mask is longer than the source vectors and is a multiple of the source
   3099     // vectors.  We can use concatenate vector to make the mask and vectors
   3100     // lengths match.
   3101     if (SrcNumElts*2 == MaskNumElts) {
   3102       // First check for Src1 in low and Src2 in high
   3103       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
   3104           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
   3105         // The shuffle is concatenating two vectors together.
   3106         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
   3107                                  VT, Src1, Src2));
   3108         return;
   3109       }
   3110       // Then check for Src2 in low and Src1 in high
   3111       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
   3112           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
   3113         // The shuffle is concatenating two vectors together.
   3114         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
   3115                                  VT, Src2, Src1));
   3116         return;
   3117       }
   3118     }
   3119 
   3120     // Pad both vectors with undefs to make them the same length as the mask.
   3121     unsigned NumConcat = MaskNumElts / SrcNumElts;
   3122     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
   3123     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
   3124     SDValue UndefVal = DAG.getUNDEF(SrcVT);
   3125 
   3126     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
   3127     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
   3128     MOps1[0] = Src1;
   3129     MOps2[0] = Src2;
   3130 
   3131     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   3132                                                   getCurSDLoc(), VT, MOps1);
   3133     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   3134                                                   getCurSDLoc(), VT, MOps2);
   3135 
   3136     // Readjust mask for new input vector length.
   3137     SmallVector<int, 8> MappedOps;
   3138     for (unsigned i = 0; i != MaskNumElts; ++i) {
   3139       int Idx = Mask[i];
   3140       if (Idx >= (int)SrcNumElts)
   3141         Idx -= SrcNumElts - MaskNumElts;
   3142       MappedOps.push_back(Idx);
   3143     }
   3144 
   3145     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
   3146                                       &MappedOps[0]));
   3147     return;
   3148   }
   3149 
   3150   if (SrcNumElts > MaskNumElts) {
   3151     // Analyze the access pattern of the vector to see if we can extract
   3152     // two subvectors and do the shuffle. The analysis is done by calculating
   3153     // the range of elements the mask access on both vectors.
   3154     int MinRange[2] = { static_cast<int>(SrcNumElts),
   3155                         static_cast<int>(SrcNumElts)};
   3156     int MaxRange[2] = {-1, -1};
   3157 
   3158     for (unsigned i = 0; i != MaskNumElts; ++i) {
   3159       int Idx = Mask[i];
   3160       unsigned Input = 0;
   3161       if (Idx < 0)
   3162         continue;
   3163 
   3164       if (Idx >= (int)SrcNumElts) {
   3165         Input = 1;
   3166         Idx -= SrcNumElts;
   3167       }
   3168       if (Idx > MaxRange[Input])
   3169         MaxRange[Input] = Idx;
   3170       if (Idx < MinRange[Input])
   3171         MinRange[Input] = Idx;
   3172     }
   3173 
   3174     // Check if the access is smaller than the vector size and can we find
   3175     // a reasonable extract index.
   3176     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
   3177                                    // Extract.
   3178     int StartIdx[2];  // StartIdx to extract from
   3179     for (unsigned Input = 0; Input < 2; ++Input) {
   3180       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
   3181         RangeUse[Input] = 0; // Unused
   3182         StartIdx[Input] = 0;
   3183         continue;
   3184       }
   3185 
   3186       // Find a good start index that is a multiple of the mask length. Then
   3187       // see if the rest of the elements are in range.
   3188       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
   3189       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
   3190           StartIdx[Input] + MaskNumElts <= SrcNumElts)
   3191         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
   3192     }
   3193 
   3194     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
   3195       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
   3196       return;
   3197     }
   3198     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
   3199       // Extract appropriate subvector and generate a vector shuffle
   3200       for (unsigned Input = 0; Input < 2; ++Input) {
   3201         SDValue &Src = Input == 0 ? Src1 : Src2;
   3202         if (RangeUse[Input] == 0)
   3203           Src = DAG.getUNDEF(VT);
   3204         else
   3205           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
   3206                             Src, DAG.getConstant(StartIdx[Input],
   3207                                                  TLI->getVectorIdxTy()));
   3208       }
   3209 
   3210       // Calculate new mask.
   3211       SmallVector<int, 8> MappedOps;
   3212       for (unsigned i = 0; i != MaskNumElts; ++i) {
   3213         int Idx = Mask[i];
   3214         if (Idx >= 0) {
   3215           if (Idx < (int)SrcNumElts)
   3216             Idx -= StartIdx[0];
   3217           else
   3218             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
   3219         }
   3220         MappedOps.push_back(Idx);
   3221       }
   3222 
   3223       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
   3224                                         &MappedOps[0]));
   3225       return;
   3226     }
   3227   }
   3228 
   3229   // We can't use either concat vectors or extract subvectors so fall back to
   3230   // replacing the shuffle with extract and build vector.
   3231   // to insert and build vector.
   3232   EVT EltVT = VT.getVectorElementType();
   3233   EVT IdxVT = TLI->getVectorIdxTy();
   3234   SmallVector<SDValue,8> Ops;
   3235   for (unsigned i = 0; i != MaskNumElts; ++i) {
   3236     int Idx = Mask[i];
   3237     SDValue Res;
   3238 
   3239     if (Idx < 0) {
   3240       Res = DAG.getUNDEF(EltVT);
   3241     } else {
   3242       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
   3243       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
   3244 
   3245       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
   3246                         EltVT, Src, DAG.getConstant(Idx, IdxVT));
   3247     }
   3248 
   3249     Ops.push_back(Res);
   3250   }
   3251 
   3252   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
   3253 }
   3254 
   3255 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
   3256   const Value *Op0 = I.getOperand(0);
   3257   const Value *Op1 = I.getOperand(1);
   3258   Type *AggTy = I.getType();
   3259   Type *ValTy = Op1->getType();
   3260   bool IntoUndef = isa<UndefValue>(Op0);
   3261   bool FromUndef = isa<UndefValue>(Op1);
   3262 
   3263   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   3264 
   3265   const TargetLowering *TLI = TM.getTargetLowering();
   3266   SmallVector<EVT, 4> AggValueVTs;
   3267   ComputeValueVTs(*TLI, AggTy, AggValueVTs);
   3268   SmallVector<EVT, 4> ValValueVTs;
   3269   ComputeValueVTs(*TLI, ValTy, ValValueVTs);
   3270 
   3271   unsigned NumAggValues = AggValueVTs.size();
   3272   unsigned NumValValues = ValValueVTs.size();
   3273   SmallVector<SDValue, 4> Values(NumAggValues);
   3274 
   3275   SDValue Agg = getValue(Op0);
   3276   unsigned i = 0;
   3277   // Copy the beginning value(s) from the original aggregate.
   3278   for (; i != LinearIndex; ++i)
   3279     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3280                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   3281   // Copy values from the inserted value(s).
   3282   if (NumValValues) {
   3283     SDValue Val = getValue(Op1);
   3284     for (; i != LinearIndex + NumValValues; ++i)
   3285       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3286                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
   3287   }
   3288   // Copy remaining value(s) from the original aggregate.
   3289   for (; i != NumAggValues; ++i)
   3290     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3291                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   3292 
   3293   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   3294                            DAG.getVTList(AggValueVTs), Values));
   3295 }
   3296 
   3297 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
   3298   const Value *Op0 = I.getOperand(0);
   3299   Type *AggTy = Op0->getType();
   3300   Type *ValTy = I.getType();
   3301   bool OutOfUndef = isa<UndefValue>(Op0);
   3302 
   3303   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   3304 
   3305   const TargetLowering *TLI = TM.getTargetLowering();
   3306   SmallVector<EVT, 4> ValValueVTs;
   3307   ComputeValueVTs(*TLI, ValTy, ValValueVTs);
   3308 
   3309   unsigned NumValValues = ValValueVTs.size();
   3310 
   3311   // Ignore a extractvalue that produces an empty object
   3312   if (!NumValValues) {
   3313     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
   3314     return;
   3315   }
   3316 
   3317   SmallVector<SDValue, 4> Values(NumValValues);
   3318 
   3319   SDValue Agg = getValue(Op0);
   3320   // Copy out the selected value(s).
   3321   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
   3322     Values[i - LinearIndex] =
   3323       OutOfUndef ?
   3324         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
   3325         SDValue(Agg.getNode(), Agg.getResNo() + i);
   3326 
   3327   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   3328                            DAG.getVTList(ValValueVTs), Values));
   3329 }
   3330 
   3331 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
   3332   Value *Op0 = I.getOperand(0);
   3333   // Note that the pointer operand may be a vector of pointers. Take the scalar
   3334   // element which holds a pointer.
   3335   Type *Ty = Op0->getType()->getScalarType();
   3336   unsigned AS = Ty->getPointerAddressSpace();
   3337   SDValue N = getValue(Op0);
   3338 
   3339   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
   3340        OI != E; ++OI) {
   3341     const Value *Idx = *OI;
   3342     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
   3343       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
   3344       if (Field) {
   3345         // N = N + Offset
   3346         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
   3347         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
   3348                         DAG.getConstant(Offset, N.getValueType()));
   3349       }
   3350 
   3351       Ty = StTy->getElementType(Field);
   3352     } else {
   3353       Ty = cast<SequentialType>(Ty)->getElementType();
   3354 
   3355       // If this is a constant subscript, handle it quickly.
   3356       const TargetLowering *TLI = TM.getTargetLowering();
   3357       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
   3358         if (CI->isZero()) continue;
   3359         uint64_t Offs =
   3360             DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
   3361         SDValue OffsVal;
   3362         EVT PTy = TLI->getPointerTy(AS);
   3363         unsigned PtrBits = PTy.getSizeInBits();
   3364         if (PtrBits < 64)
   3365           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
   3366                                 DAG.getConstant(Offs, MVT::i64));
   3367         else
   3368           OffsVal = DAG.getConstant(Offs, PTy);
   3369 
   3370         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
   3371                         OffsVal);
   3372         continue;
   3373       }
   3374 
   3375       // N = N + Idx * ElementSize;
   3376       APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
   3377                                 DL->getTypeAllocSize(Ty));
   3378       SDValue IdxN = getValue(Idx);
   3379 
   3380       // If the index is smaller or larger than intptr_t, truncate or extend
   3381       // it.
   3382       IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
   3383 
   3384       // If this is a multiply by a power of two, turn it into a shl
   3385       // immediately.  This is a very common case.
   3386       if (ElementSize != 1) {
   3387         if (ElementSize.isPowerOf2()) {
   3388           unsigned Amt = ElementSize.logBase2();
   3389           IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
   3390                              N.getValueType(), IdxN,
   3391                              DAG.getConstant(Amt, IdxN.getValueType()));
   3392         } else {
   3393           SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
   3394           IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
   3395                              N.getValueType(), IdxN, Scale);
   3396         }
   3397       }
   3398 
   3399       N = DAG.getNode(ISD::ADD, getCurSDLoc(),
   3400                       N.getValueType(), N, IdxN);
   3401     }
   3402   }
   3403 
   3404   setValue(&I, N);
   3405 }
   3406 
   3407 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
   3408   // If this is a fixed sized alloca in the entry block of the function,
   3409   // allocate it statically on the stack.
   3410   if (FuncInfo.StaticAllocaMap.count(&I))
   3411     return;   // getValue will auto-populate this.
   3412 
   3413   Type *Ty = I.getAllocatedType();
   3414   const TargetLowering *TLI = TM.getTargetLowering();
   3415   uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
   3416   unsigned Align =
   3417     std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
   3418              I.getAlignment());
   3419 
   3420   SDValue AllocSize = getValue(I.getArraySize());
   3421 
   3422   EVT IntPtr = TLI->getPointerTy();
   3423   if (AllocSize.getValueType() != IntPtr)
   3424     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
   3425 
   3426   AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
   3427                           AllocSize,
   3428                           DAG.getConstant(TySize, IntPtr));
   3429 
   3430   // Handle alignment.  If the requested alignment is less than or equal to
   3431   // the stack alignment, ignore it.  If the size is greater than or equal to
   3432   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
   3433   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   3434   if (Align <= StackAlign)
   3435     Align = 0;
   3436 
   3437   // Round the size of the allocation up to the stack alignment size
   3438   // by add SA-1 to the size.
   3439   AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
   3440                           AllocSize.getValueType(), AllocSize,
   3441                           DAG.getIntPtrConstant(StackAlign-1));
   3442 
   3443   // Mask out the low bits for alignment purposes.
   3444   AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
   3445                           AllocSize.getValueType(), AllocSize,
   3446                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
   3447 
   3448   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
   3449   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
   3450   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
   3451   setValue(&I, DSA);
   3452   DAG.setRoot(DSA.getValue(1));
   3453 
   3454   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
   3455 }
   3456 
   3457 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
   3458   if (I.isAtomic())
   3459     return visitAtomicLoad(I);
   3460 
   3461   const Value *SV = I.getOperand(0);
   3462   SDValue Ptr = getValue(SV);
   3463 
   3464   Type *Ty = I.getType();
   3465 
   3466   bool isVolatile = I.isVolatile();
   3467   bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
   3468   bool isInvariant = I.getMetadata("invariant.load") != nullptr;
   3469   unsigned Alignment = I.getAlignment();
   3470   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3471   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
   3472 
   3473   SmallVector<EVT, 4> ValueVTs;
   3474   SmallVector<uint64_t, 4> Offsets;
   3475   ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
   3476   unsigned NumValues = ValueVTs.size();
   3477   if (NumValues == 0)
   3478     return;
   3479 
   3480   SDValue Root;
   3481   bool ConstantMemory = false;
   3482   if (isVolatile || NumValues > MaxParallelChains)
   3483     // Serialize volatile loads with other side effects.
   3484     Root = getRoot();
   3485   else if (AA->pointsToConstantMemory(
   3486              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
   3487     // Do not serialize (non-volatile) loads of constant memory with anything.
   3488     Root = DAG.getEntryNode();
   3489     ConstantMemory = true;
   3490   } else {
   3491     // Do not serialize non-volatile loads against each other.
   3492     Root = DAG.getRoot();
   3493   }
   3494 
   3495   const TargetLowering *TLI = TM.getTargetLowering();
   3496   if (isVolatile)
   3497     Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
   3498 
   3499   SmallVector<SDValue, 4> Values(NumValues);
   3500   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3501                                           NumValues));
   3502   EVT PtrVT = Ptr.getValueType();
   3503   unsigned ChainI = 0;
   3504   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3505     // Serializing loads here may result in excessive register pressure, and
   3506     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
   3507     // could recover a bit by hoisting nodes upward in the chain by recognizing
   3508     // they are side-effect free or do not alias. The optimizer should really
   3509     // avoid this case by converting large object/array copies to llvm.memcpy
   3510     // (MaxParallelChains should always remain as failsafe).
   3511     if (ChainI == MaxParallelChains) {
   3512       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
   3513       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
   3514                                   makeArrayRef(Chains.data(), ChainI));
   3515       Root = Chain;
   3516       ChainI = 0;
   3517     }
   3518     SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
   3519                             PtrVT, Ptr,
   3520                             DAG.getConstant(Offsets[i], PtrVT));
   3521     SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
   3522                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
   3523                             isNonTemporal, isInvariant, Alignment, TBAAInfo,
   3524                             Ranges);
   3525 
   3526     Values[i] = L;
   3527     Chains[ChainI] = L.getValue(1);
   3528   }
   3529 
   3530   if (!ConstantMemory) {
   3531     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
   3532                                 makeArrayRef(Chains.data(), ChainI));
   3533     if (isVolatile)
   3534       DAG.setRoot(Chain);
   3535     else
   3536       PendingLoads.push_back(Chain);
   3537   }
   3538 
   3539   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   3540                            DAG.getVTList(ValueVTs), Values));
   3541 }
   3542 
   3543 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
   3544   if (I.isAtomic())
   3545     return visitAtomicStore(I);
   3546 
   3547   const Value *SrcV = I.getOperand(0);
   3548   const Value *PtrV = I.getOperand(1);
   3549 
   3550   SmallVector<EVT, 4> ValueVTs;
   3551   SmallVector<uint64_t, 4> Offsets;
   3552   ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
   3553   unsigned NumValues = ValueVTs.size();
   3554   if (NumValues == 0)
   3555     return;
   3556 
   3557   // Get the lowered operands. Note that we do this after
   3558   // checking if NumResults is zero, because with zero results
   3559   // the operands won't have values in the map.
   3560   SDValue Src = getValue(SrcV);
   3561   SDValue Ptr = getValue(PtrV);
   3562 
   3563   SDValue Root = getRoot();
   3564   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3565                                           NumValues));
   3566   EVT PtrVT = Ptr.getValueType();
   3567   bool isVolatile = I.isVolatile();
   3568   bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
   3569   unsigned Alignment = I.getAlignment();
   3570   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3571 
   3572   unsigned ChainI = 0;
   3573   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3574     // See visitLoad comments.
   3575     if (ChainI == MaxParallelChains) {
   3576       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
   3577                                   makeArrayRef(Chains.data(), ChainI));
   3578       Root = Chain;
   3579       ChainI = 0;
   3580     }
   3581     SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
   3582                               DAG.getConstant(Offsets[i], PtrVT));
   3583     SDValue St = DAG.getStore(Root, getCurSDLoc(),
   3584                               SDValue(Src.getNode(), Src.getResNo() + i),
   3585                               Add, MachinePointerInfo(PtrV, Offsets[i]),
   3586                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
   3587     Chains[ChainI] = St;
   3588   }
   3589 
   3590   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
   3591                                   makeArrayRef(Chains.data(), ChainI));
   3592   DAG.setRoot(StoreNode);
   3593 }
   3594 
   3595 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
   3596                                     SynchronizationScope Scope,
   3597                                     bool Before, SDLoc dl,
   3598                                     SelectionDAG &DAG,
   3599                                     const TargetLowering &TLI) {
   3600   // Fence, if necessary
   3601   if (Before) {
   3602     if (Order == AcquireRelease || Order == SequentiallyConsistent)
   3603       Order = Release;
   3604     else if (Order == Acquire || Order == Monotonic || Order == Unordered)
   3605       return Chain;
   3606   } else {
   3607     if (Order == AcquireRelease)
   3608       Order = Acquire;
   3609     else if (Order == Release || Order == Monotonic || Order == Unordered)
   3610       return Chain;
   3611   }
   3612   SDValue Ops[3];
   3613   Ops[0] = Chain;
   3614   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
   3615   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
   3616   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
   3617 }
   3618 
   3619 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
   3620   SDLoc dl = getCurSDLoc();
   3621   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
   3622   AtomicOrdering FailureOrder = I.getFailureOrdering();
   3623   SynchronizationScope Scope = I.getSynchScope();
   3624 
   3625   SDValue InChain = getRoot();
   3626 
   3627   const TargetLowering *TLI = TM.getTargetLowering();
   3628   if (TLI->getInsertFencesForAtomic())
   3629     InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
   3630                                    DAG, *TLI);
   3631 
   3632   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
   3633   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
   3634   SDValue L = DAG.getAtomicCmpSwap(
   3635       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
   3636       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
   3637       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
   3638       0 /* Alignment */,
   3639       TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
   3640       TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope);
   3641 
   3642   SDValue OutChain = L.getValue(2);
   3643 
   3644   if (TLI->getInsertFencesForAtomic())
   3645     OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
   3646                                     DAG, *TLI);
   3647 
   3648   setValue(&I, L);
   3649   DAG.setRoot(OutChain);
   3650 }
   3651 
   3652 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
   3653   SDLoc dl = getCurSDLoc();
   3654   ISD::NodeType NT;
   3655   switch (I.getOperation()) {
   3656   default: llvm_unreachable("Unknown atomicrmw operation");
   3657   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
   3658   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
   3659   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
   3660   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
   3661   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
   3662   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
   3663   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
   3664   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
   3665   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
   3666   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
   3667   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
   3668   }
   3669   AtomicOrdering Order = I.getOrdering();
   3670   SynchronizationScope Scope = I.getSynchScope();
   3671 
   3672   SDValue InChain = getRoot();
   3673 
   3674   const TargetLowering *TLI = TM.getTargetLowering();
   3675   if (TLI->getInsertFencesForAtomic())
   3676     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3677                                    DAG, *TLI);
   3678 
   3679   SDValue L =
   3680     DAG.getAtomic(NT, dl,
   3681                   getValue(I.getValOperand()).getSimpleValueType(),
   3682                   InChain,
   3683                   getValue(I.getPointerOperand()),
   3684                   getValue(I.getValOperand()),
   3685                   I.getPointerOperand(), 0 /* Alignment */,
   3686                   TLI->getInsertFencesForAtomic() ? Monotonic : Order,
   3687                   Scope);
   3688 
   3689   SDValue OutChain = L.getValue(1);
   3690 
   3691   if (TLI->getInsertFencesForAtomic())
   3692     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3693                                     DAG, *TLI);
   3694 
   3695   setValue(&I, L);
   3696   DAG.setRoot(OutChain);
   3697 }
   3698 
   3699 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
   3700   SDLoc dl = getCurSDLoc();
   3701   const TargetLowering *TLI = TM.getTargetLowering();
   3702   SDValue Ops[3];
   3703   Ops[0] = getRoot();
   3704   Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
   3705   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
   3706   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
   3707 }
   3708 
   3709 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
   3710   SDLoc dl = getCurSDLoc();
   3711   AtomicOrdering Order = I.getOrdering();
   3712   SynchronizationScope Scope = I.getSynchScope();
   3713 
   3714   SDValue InChain = getRoot();
   3715 
   3716   const TargetLowering *TLI = TM.getTargetLowering();
   3717   EVT VT = TLI->getValueType(I.getType());
   3718 
   3719   if (I.getAlignment() < VT.getSizeInBits() / 8)
   3720     report_fatal_error("Cannot generate unaligned atomic load");
   3721 
   3722   MachineMemOperand *MMO =
   3723       DAG.getMachineFunction().
   3724       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
   3725                            MachineMemOperand::MOVolatile |
   3726                            MachineMemOperand::MOLoad,
   3727                            VT.getStoreSize(),
   3728                            I.getAlignment() ? I.getAlignment() :
   3729                                               DAG.getEVTAlignment(VT));
   3730 
   3731   InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
   3732   SDValue L =
   3733       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
   3734                     getValue(I.getPointerOperand()), MMO,
   3735                     TLI->getInsertFencesForAtomic() ? Monotonic : Order,
   3736                     Scope);
   3737 
   3738   SDValue OutChain = L.getValue(1);
   3739 
   3740   if (TLI->getInsertFencesForAtomic())
   3741     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3742                                     DAG, *TLI);
   3743 
   3744   setValue(&I, L);
   3745   DAG.setRoot(OutChain);
   3746 }
   3747 
   3748 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
   3749   SDLoc dl = getCurSDLoc();
   3750 
   3751   AtomicOrdering Order = I.getOrdering();
   3752   SynchronizationScope Scope = I.getSynchScope();
   3753 
   3754   SDValue InChain = getRoot();
   3755 
   3756   const TargetLowering *TLI = TM.getTargetLowering();
   3757   EVT VT = TLI->getValueType(I.getValueOperand()->getType());
   3758 
   3759   if (I.getAlignment() < VT.getSizeInBits() / 8)
   3760     report_fatal_error("Cannot generate unaligned atomic store");
   3761 
   3762   if (TLI->getInsertFencesForAtomic())
   3763     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3764                                    DAG, *TLI);
   3765 
   3766   SDValue OutChain =
   3767     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
   3768                   InChain,
   3769                   getValue(I.getPointerOperand()),
   3770                   getValue(I.getValueOperand()),
   3771                   I.getPointerOperand(), I.getAlignment(),
   3772                   TLI->getInsertFencesForAtomic() ? Monotonic : Order,
   3773                   Scope);
   3774 
   3775   if (TLI->getInsertFencesForAtomic())
   3776     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3777                                     DAG, *TLI);
   3778 
   3779   DAG.setRoot(OutChain);
   3780 }
   3781 
   3782 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
   3783 /// node.
   3784 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
   3785                                                unsigned Intrinsic) {
   3786   bool HasChain = !I.doesNotAccessMemory();
   3787   bool OnlyLoad = HasChain && I.onlyReadsMemory();
   3788 
   3789   // Build the operand list.
   3790   SmallVector<SDValue, 8> Ops;
   3791   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
   3792     if (OnlyLoad) {
   3793       // We don't need to serialize loads against other loads.
   3794       Ops.push_back(DAG.getRoot());
   3795     } else {
   3796       Ops.push_back(getRoot());
   3797     }
   3798   }
   3799 
   3800   // Info is set by getTgtMemInstrinsic
   3801   TargetLowering::IntrinsicInfo Info;
   3802   const TargetLowering *TLI = TM.getTargetLowering();
   3803   bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
   3804 
   3805   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
   3806   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
   3807       Info.opc == ISD::INTRINSIC_W_CHAIN)
   3808     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
   3809 
   3810   // Add all operands of the call to the operand list.
   3811   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   3812     SDValue Op = getValue(I.getArgOperand(i));
   3813     Ops.push_back(Op);
   3814   }
   3815 
   3816   SmallVector<EVT, 4> ValueVTs;
   3817   ComputeValueVTs(*TLI, I.getType(), ValueVTs);
   3818 
   3819   if (HasChain)
   3820     ValueVTs.push_back(MVT::Other);
   3821 
   3822   SDVTList VTs = DAG.getVTList(ValueVTs);
   3823 
   3824   // Create the node.
   3825   SDValue Result;
   3826   if (IsTgtIntrinsic) {
   3827     // This is target intrinsic that touches memory
   3828     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
   3829                                      VTs, Ops, Info.memVT,
   3830                                    MachinePointerInfo(Info.ptrVal, Info.offset),
   3831                                      Info.align, Info.vol,
   3832                                      Info.readMem, Info.writeMem);
   3833   } else if (!HasChain) {
   3834     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
   3835   } else if (!I.getType()->isVoidTy()) {
   3836     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
   3837   } else {
   3838     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
   3839   }
   3840 
   3841   if (HasChain) {
   3842     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
   3843     if (OnlyLoad)
   3844       PendingLoads.push_back(Chain);
   3845     else
   3846       DAG.setRoot(Chain);
   3847   }
   3848 
   3849   if (!I.getType()->isVoidTy()) {
   3850     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
   3851       EVT VT = TLI->getValueType(PTy);
   3852       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
   3853     }
   3854 
   3855     setValue(&I, Result);
   3856   }
   3857 }
   3858 
   3859 /// GetSignificand - Get the significand and build it into a floating-point
   3860 /// number with exponent of 1:
   3861 ///
   3862 ///   Op = (Op & 0x007fffff) | 0x3f800000;
   3863 ///
   3864 /// where Op is the hexadecimal representation of floating point value.
   3865 static SDValue
   3866 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
   3867   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3868                            DAG.getConstant(0x007fffff, MVT::i32));
   3869   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
   3870                            DAG.getConstant(0x3f800000, MVT::i32));
   3871   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
   3872 }
   3873 
   3874 /// GetExponent - Get the exponent:
   3875 ///
   3876 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
   3877 ///
   3878 /// where Op is the hexadecimal representation of floating point value.
   3879 static SDValue
   3880 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
   3881             SDLoc dl) {
   3882   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3883                            DAG.getConstant(0x7f800000, MVT::i32));
   3884   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
   3885                            DAG.getConstant(23, TLI.getPointerTy()));
   3886   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
   3887                            DAG.getConstant(127, MVT::i32));
   3888   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
   3889 }
   3890 
   3891 /// getF32Constant - Get 32-bit floating point constant.
   3892 static SDValue
   3893 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
   3894   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
   3895                            MVT::f32);
   3896 }
   3897 
   3898 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
   3899 /// limited-precision mode.
   3900 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   3901                          const TargetLowering &TLI) {
   3902   if (Op.getValueType() == MVT::f32 &&
   3903       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3904 
   3905     // Put the exponent in the right bit position for later addition to the
   3906     // final result:
   3907     //
   3908     //   #define LOG2OFe 1.4426950f
   3909     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
   3910     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   3911                              getF32Constant(DAG, 0x3fb8aa3b));
   3912     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   3913 
   3914     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
   3915     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3916     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   3917 
   3918     //   IntegerPartOfX <<= 23;
   3919     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3920                                  DAG.getConstant(23, TLI.getPointerTy()));
   3921 
   3922     SDValue TwoToFracPartOfX;
   3923     if (LimitFloatPrecision <= 6) {
   3924       // For floating-point precision of 6:
   3925       //
   3926       //   TwoToFractionalPartOfX =
   3927       //     0.997535578f +
   3928       //       (0.735607626f + 0.252464424f * x) * x;
   3929       //
   3930       // error 0.0144103317, which is 6 bits
   3931       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3932                                getF32Constant(DAG, 0x3e814304));
   3933       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3934                                getF32Constant(DAG, 0x3f3c50c8));
   3935       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3936       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3937                                      getF32Constant(DAG, 0x3f7f5e7e));
   3938     } else if (LimitFloatPrecision <= 12) {
   3939       // For floating-point precision of 12:
   3940       //
   3941       //   TwoToFractionalPartOfX =
   3942       //     0.999892986f +
   3943       //       (0.696457318f +
   3944       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3945       //
   3946       // 0.000107046256 error, which is 13 to 14 bits
   3947       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3948                                getF32Constant(DAG, 0x3da235e3));
   3949       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3950                                getF32Constant(DAG, 0x3e65b8f3));
   3951       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3952       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3953                                getF32Constant(DAG, 0x3f324b07));
   3954       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3955       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3956                                      getF32Constant(DAG, 0x3f7ff8fd));
   3957     } else { // LimitFloatPrecision <= 18
   3958       // For floating-point precision of 18:
   3959       //
   3960       //   TwoToFractionalPartOfX =
   3961       //     0.999999982f +
   3962       //       (0.693148872f +
   3963       //         (0.240227044f +
   3964       //           (0.554906021e-1f +
   3965       //             (0.961591928e-2f +
   3966       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   3967       //
   3968       // error 2.47208000*10^(-7), which is better than 18 bits
   3969       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3970                                getF32Constant(DAG, 0x3924b03e));
   3971       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3972                                getF32Constant(DAG, 0x3ab24b87));
   3973       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3974       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3975                                getF32Constant(DAG, 0x3c1d8c17));
   3976       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3977       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3978                                getF32Constant(DAG, 0x3d634a1d));
   3979       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3980       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3981                                getF32Constant(DAG, 0x3e75fe14));
   3982       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3983       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   3984                                 getF32Constant(DAG, 0x3f317234));
   3985       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   3986       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   3987                                      getF32Constant(DAG, 0x3f800000));
   3988     }
   3989 
   3990     // Add the exponent into the result in integer domain.
   3991     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
   3992     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3993                        DAG.getNode(ISD::ADD, dl, MVT::i32,
   3994                                    t13, IntegerPartOfX));
   3995   }
   3996 
   3997   // No special expansion.
   3998   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
   3999 }
   4000 
   4001 /// expandLog - Lower a log intrinsic. Handles the special sequences for
   4002 /// limited-precision mode.
   4003 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   4004                          const TargetLowering &TLI) {
   4005   if (Op.getValueType() == MVT::f32 &&
   4006       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4007     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   4008 
   4009     // Scale the exponent by log(2) [0.69314718f].
   4010     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   4011     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   4012                                         getF32Constant(DAG, 0x3f317218));
   4013 
   4014     // Get the significand and build it into a floating-point number with
   4015     // exponent of 1.
   4016     SDValue X = GetSignificand(DAG, Op1, dl);
   4017 
   4018     SDValue LogOfMantissa;
   4019     if (LimitFloatPrecision <= 6) {
   4020       // For floating-point precision of 6:
   4021       //
   4022       //   LogofMantissa =
   4023       //     -1.1609546f +
   4024       //       (1.4034025f - 0.23903021f * x) * x;
   4025       //
   4026       // error 0.0034276066, which is better than 8 bits
   4027       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4028                                getF32Constant(DAG, 0xbe74c456));
   4029       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4030                                getF32Constant(DAG, 0x3fb3a2b1));
   4031       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4032       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4033                                   getF32Constant(DAG, 0x3f949a29));
   4034     } else if (LimitFloatPrecision <= 12) {
   4035       // For floating-point precision of 12:
   4036       //
   4037       //   LogOfMantissa =
   4038       //     -1.7417939f +
   4039       //       (2.8212026f +
   4040       //         (-1.4699568f +
   4041       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
   4042       //
   4043       // error 0.000061011436, which is 14 bits
   4044       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4045                                getF32Constant(DAG, 0xbd67b6d6));
   4046       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4047                                getF32Constant(DAG, 0x3ee4f4b8));
   4048       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4049       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4050                                getF32Constant(DAG, 0x3fbc278b));
   4051       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4052       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4053                                getF32Constant(DAG, 0x40348e95));
   4054       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4055       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   4056                                   getF32Constant(DAG, 0x3fdef31a));
   4057     } else { // LimitFloatPrecision <= 18
   4058       // For floating-point precision of 18:
   4059       //
   4060       //   LogOfMantissa =
   4061       //     -2.1072184f +
   4062       //       (4.2372794f +
   4063       //         (-3.7029485f +
   4064       //           (2.2781945f +
   4065       //             (-0.87823314f +
   4066       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
   4067       //
   4068       // error 0.0000023660568, which is better than 18 bits
   4069       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4070                                getF32Constant(DAG, 0xbc91e5ac));
   4071       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4072                                getF32Constant(DAG, 0x3e4350aa));
   4073       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4074       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4075                                getF32Constant(DAG, 0x3f60d3e3));
   4076       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4077       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4078                                getF32Constant(DAG, 0x4011cdf0));
   4079       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4080       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   4081                                getF32Constant(DAG, 0x406cfd1c));
   4082       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4083       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4084                                getF32Constant(DAG, 0x408797cb));
   4085       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4086       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   4087                                   getF32Constant(DAG, 0x4006dcab));
   4088     }
   4089 
   4090     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
   4091   }
   4092 
   4093   // No special expansion.
   4094   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
   4095 }
   4096 
   4097 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
   4098 /// limited-precision mode.
   4099 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   4100                           const TargetLowering &TLI) {
   4101   if (Op.getValueType() == MVT::f32 &&
   4102       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4103     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   4104 
   4105     // Get the exponent.
   4106     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
   4107 
   4108     // Get the significand and build it into a floating-point number with
   4109     // exponent of 1.
   4110     SDValue X = GetSignificand(DAG, Op1, dl);
   4111 
   4112     // Different possible minimax approximations of significand in
   4113     // floating-point for various degrees of accuracy over [1,2].
   4114     SDValue Log2ofMantissa;
   4115     if (LimitFloatPrecision <= 6) {
   4116       // For floating-point precision of 6:
   4117       //
   4118       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
   4119       //
   4120       // error 0.0049451742, which is more than 7 bits
   4121       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4122                                getF32Constant(DAG, 0xbeb08fe0));
   4123       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4124                                getF32Constant(DAG, 0x40019463));
   4125       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4126       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4127                                    getF32Constant(DAG, 0x3fd6633d));
   4128     } else if (LimitFloatPrecision <= 12) {
   4129       // For floating-point precision of 12:
   4130       //
   4131       //   Log2ofMantissa =
   4132       //     -2.51285454f +
   4133       //       (4.07009056f +
   4134       //         (-2.12067489f +
   4135       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
   4136       //
   4137       // error 0.0000876136000, which is better than 13 bits
   4138       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4139                                getF32Constant(DAG, 0xbda7262e));
   4140       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4141                                getF32Constant(DAG, 0x3f25280b));
   4142       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4143       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4144                                getF32Constant(DAG, 0x4007b923));
   4145       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4146       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4147                                getF32Constant(DAG, 0x40823e2f));
   4148       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4149       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   4150                                    getF32Constant(DAG, 0x4020d29c));
   4151     } else { // LimitFloatPrecision <= 18
   4152       // For floating-point precision of 18:
   4153       //
   4154       //   Log2ofMantissa =
   4155       //     -3.0400495f +
   4156       //       (6.1129976f +
   4157       //         (-5.3420409f +
   4158       //           (3.2865683f +
   4159       //             (-1.2669343f +
   4160       //               (0.27515199f -
   4161       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
   4162       //
   4163       // error 0.0000018516, which is better than 18 bits
   4164       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4165                                getF32Constant(DAG, 0xbcd2769e));
   4166       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4167                                getF32Constant(DAG, 0x3e8ce0b9));
   4168       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4169       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4170                                getF32Constant(DAG, 0x3fa22ae7));
   4171       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4172       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4173                                getF32Constant(DAG, 0x40525723));
   4174       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4175       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   4176                                getF32Constant(DAG, 0x40aaf200));
   4177       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4178       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4179                                getF32Constant(DAG, 0x40c39dad));
   4180       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4181       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   4182                                    getF32Constant(DAG, 0x4042902c));
   4183     }
   4184 
   4185     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
   4186   }
   4187 
   4188   // No special expansion.
   4189   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
   4190 }
   4191 
   4192 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
   4193 /// limited-precision mode.
   4194 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   4195                            const TargetLowering &TLI) {
   4196   if (Op.getValueType() == MVT::f32 &&
   4197       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4198     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   4199 
   4200     // Scale the exponent by log10(2) [0.30102999f].
   4201     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   4202     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   4203                                         getF32Constant(DAG, 0x3e9a209a));
   4204 
   4205     // Get the significand and build it into a floating-point number with
   4206     // exponent of 1.
   4207     SDValue X = GetSignificand(DAG, Op1, dl);
   4208 
   4209     SDValue Log10ofMantissa;
   4210     if (LimitFloatPrecision <= 6) {
   4211       // For floating-point precision of 6:
   4212       //
   4213       //   Log10ofMantissa =
   4214       //     -0.50419619f +
   4215       //       (0.60948995f - 0.10380950f * x) * x;
   4216       //
   4217       // error 0.0014886165, which is 6 bits
   4218       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4219                                getF32Constant(DAG, 0xbdd49a13));
   4220       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4221                                getF32Constant(DAG, 0x3f1c0789));
   4222       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4223       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4224                                     getF32Constant(DAG, 0x3f011300));
   4225     } else if (LimitFloatPrecision <= 12) {
   4226       // For floating-point precision of 12:
   4227       //
   4228       //   Log10ofMantissa =
   4229       //     -0.64831180f +
   4230       //       (0.91751397f +
   4231       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
   4232       //
   4233       // error 0.00019228036, which is better than 12 bits
   4234       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4235                                getF32Constant(DAG, 0x3d431f31));
   4236       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4237                                getF32Constant(DAG, 0x3ea21fb2));
   4238       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4239       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4240                                getF32Constant(DAG, 0x3f6ae232));
   4241       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4242       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4243                                     getF32Constant(DAG, 0x3f25f7c3));
   4244     } else { // LimitFloatPrecision <= 18
   4245       // For floating-point precision of 18:
   4246       //
   4247       //   Log10ofMantissa =
   4248       //     -0.84299375f +
   4249       //       (1.5327582f +
   4250       //         (-1.0688956f +
   4251       //           (0.49102474f +
   4252       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
   4253       //
   4254       // error 0.0000037995730, which is better than 18 bits
   4255       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4256                                getF32Constant(DAG, 0x3c5d51ce));
   4257       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4258                                getF32Constant(DAG, 0x3e00685a));
   4259       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4260       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4261                                getF32Constant(DAG, 0x3efb6798));
   4262       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4263       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4264                                getF32Constant(DAG, 0x3f88d192));
   4265       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4266       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4267                                getF32Constant(DAG, 0x3fc4316c));
   4268       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4269       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
   4270                                     getF32Constant(DAG, 0x3f57ce70));
   4271     }
   4272 
   4273     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
   4274   }
   4275 
   4276   // No special expansion.
   4277   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
   4278 }
   4279 
   4280 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
   4281 /// limited-precision mode.
   4282 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   4283                           const TargetLowering &TLI) {
   4284   if (Op.getValueType() == MVT::f32 &&
   4285       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4286     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
   4287 
   4288     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   4289     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   4290     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
   4291 
   4292     //   IntegerPartOfX <<= 23;
   4293     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   4294                                  DAG.getConstant(23, TLI.getPointerTy()));
   4295 
   4296     SDValue TwoToFractionalPartOfX;
   4297     if (LimitFloatPrecision <= 6) {
   4298       // For floating-point precision of 6:
   4299       //
   4300       //   TwoToFractionalPartOfX =
   4301       //     0.997535578f +
   4302       //       (0.735607626f + 0.252464424f * x) * x;
   4303       //
   4304       // error 0.0144103317, which is 6 bits
   4305       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4306                                getF32Constant(DAG, 0x3e814304));
   4307       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4308                                getF32Constant(DAG, 0x3f3c50c8));
   4309       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4310       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4311                                            getF32Constant(DAG, 0x3f7f5e7e));
   4312     } else if (LimitFloatPrecision <= 12) {
   4313       // For floating-point precision of 12:
   4314       //
   4315       //   TwoToFractionalPartOfX =
   4316       //     0.999892986f +
   4317       //       (0.696457318f +
   4318       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   4319       //
   4320       // error 0.000107046256, which is 13 to 14 bits
   4321       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4322                                getF32Constant(DAG, 0x3da235e3));
   4323       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4324                                getF32Constant(DAG, 0x3e65b8f3));
   4325       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4326       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4327                                getF32Constant(DAG, 0x3f324b07));
   4328       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4329       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4330                                            getF32Constant(DAG, 0x3f7ff8fd));
   4331     } else { // LimitFloatPrecision <= 18
   4332       // For floating-point precision of 18:
   4333       //
   4334       //   TwoToFractionalPartOfX =
   4335       //     0.999999982f +
   4336       //       (0.693148872f +
   4337       //         (0.240227044f +
   4338       //           (0.554906021e-1f +
   4339       //             (0.961591928e-2f +
   4340       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4341       // error 2.47208000*10^(-7), which is better than 18 bits
   4342       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4343                                getF32Constant(DAG, 0x3924b03e));
   4344       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4345                                getF32Constant(DAG, 0x3ab24b87));
   4346       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4347       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4348                                getF32Constant(DAG, 0x3c1d8c17));
   4349       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4350       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4351                                getF32Constant(DAG, 0x3d634a1d));
   4352       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4353       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4354                                getF32Constant(DAG, 0x3e75fe14));
   4355       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4356       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4357                                 getF32Constant(DAG, 0x3f317234));
   4358       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4359       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4360                                            getF32Constant(DAG, 0x3f800000));
   4361     }
   4362 
   4363     // Add the exponent into the result in integer domain.
   4364     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   4365                               TwoToFractionalPartOfX);
   4366     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   4367                        DAG.getNode(ISD::ADD, dl, MVT::i32,
   4368                                    t13, IntegerPartOfX));
   4369   }
   4370 
   4371   // No special expansion.
   4372   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
   4373 }
   4374 
   4375 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
   4376 /// limited-precision mode with x == 10.0f.
   4377 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
   4378                          SelectionDAG &DAG, const TargetLowering &TLI) {
   4379   bool IsExp10 = false;
   4380   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
   4381       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4382     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
   4383       APFloat Ten(10.0f);
   4384       IsExp10 = LHSC->isExactlyValue(Ten);
   4385     }
   4386   }
   4387 
   4388   if (IsExp10) {
   4389     // Put the exponent in the right bit position for later addition to the
   4390     // final result:
   4391     //
   4392     //   #define LOG2OF10 3.3219281f
   4393     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
   4394     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
   4395                              getF32Constant(DAG, 0x40549a78));
   4396     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   4397 
   4398     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   4399     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   4400     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   4401 
   4402     //   IntegerPartOfX <<= 23;
   4403     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   4404                                  DAG.getConstant(23, TLI.getPointerTy()));
   4405 
   4406     SDValue TwoToFractionalPartOfX;
   4407     if (LimitFloatPrecision <= 6) {
   4408       // For floating-point precision of 6:
   4409       //
   4410       //   twoToFractionalPartOfX =
   4411       //     0.997535578f +
   4412       //       (0.735607626f + 0.252464424f * x) * x;
   4413       //
   4414       // error 0.0144103317, which is 6 bits
   4415       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4416                                getF32Constant(DAG, 0x3e814304));
   4417       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4418                                getF32Constant(DAG, 0x3f3c50c8));
   4419       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4420       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4421                                            getF32Constant(DAG, 0x3f7f5e7e));
   4422     } else if (LimitFloatPrecision <= 12) {
   4423       // For floating-point precision of 12:
   4424       //
   4425       //   TwoToFractionalPartOfX =
   4426       //     0.999892986f +
   4427       //       (0.696457318f +
   4428       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   4429       //
   4430       // error 0.000107046256, which is 13 to 14 bits
   4431       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4432                                getF32Constant(DAG, 0x3da235e3));
   4433       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4434                                getF32Constant(DAG, 0x3e65b8f3));
   4435       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4436       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4437                                getF32Constant(DAG, 0x3f324b07));
   4438       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4439       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4440                                            getF32Constant(DAG, 0x3f7ff8fd));
   4441     } else { // LimitFloatPrecision <= 18
   4442       // For floating-point precision of 18:
   4443       //
   4444       //   TwoToFractionalPartOfX =
   4445       //     0.999999982f +
   4446       //       (0.693148872f +
   4447       //         (0.240227044f +
   4448       //           (0.554906021e-1f +
   4449       //             (0.961591928e-2f +
   4450       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4451       // error 2.47208000*10^(-7), which is better than 18 bits
   4452       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4453                                getF32Constant(DAG, 0x3924b03e));
   4454       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4455                                getF32Constant(DAG, 0x3ab24b87));
   4456       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4457       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4458                                getF32Constant(DAG, 0x3c1d8c17));
   4459       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4460       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4461                                getF32Constant(DAG, 0x3d634a1d));
   4462       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4463       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4464                                getF32Constant(DAG, 0x3e75fe14));
   4465       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4466       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4467                                 getF32Constant(DAG, 0x3f317234));
   4468       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4469       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4470                                            getF32Constant(DAG, 0x3f800000));
   4471     }
   4472 
   4473     SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
   4474     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   4475                        DAG.getNode(ISD::ADD, dl, MVT::i32,
   4476                                    t13, IntegerPartOfX));
   4477   }
   4478 
   4479   // No special expansion.
   4480   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
   4481 }
   4482 
   4483 
   4484 /// ExpandPowI - Expand a llvm.powi intrinsic.
   4485 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
   4486                           SelectionDAG &DAG) {
   4487   // If RHS is a constant, we can expand this out to a multiplication tree,
   4488   // otherwise we end up lowering to a call to __powidf2 (for example).  When
   4489   // optimizing for size, we only want to do this if the expansion would produce
   4490   // a small number of multiplies, otherwise we do the full expansion.
   4491   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   4492     // Get the exponent as a positive value.
   4493     unsigned Val = RHSC->getSExtValue();
   4494     if ((int)Val < 0) Val = -Val;
   4495 
   4496     // powi(x, 0) -> 1.0
   4497     if (Val == 0)
   4498       return DAG.getConstantFP(1.0, LHS.getValueType());
   4499 
   4500     const Function *F = DAG.getMachineFunction().getFunction();
   4501     if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   4502                                          Attribute::OptimizeForSize) ||
   4503         // If optimizing for size, don't insert too many multiplies.  This
   4504         // inserts up to 5 multiplies.
   4505         CountPopulation_32(Val)+Log2_32(Val) < 7) {
   4506       // We use the simple binary decomposition method to generate the multiply
   4507       // sequence.  There are more optimal ways to do this (for example,
   4508       // powi(x,15) generates one more multiply than it should), but this has
   4509       // the benefit of being both really simple and much better than a libcall.
   4510       SDValue Res;  // Logically starts equal to 1.0
   4511       SDValue CurSquare = LHS;
   4512       while (Val) {
   4513         if (Val & 1) {
   4514           if (Res.getNode())
   4515             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
   4516           else
   4517             Res = CurSquare;  // 1.0*CurSquare.
   4518         }
   4519 
   4520         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
   4521                                 CurSquare, CurSquare);
   4522         Val >>= 1;
   4523       }
   4524 
   4525       // If the original was negative, invert the result, producing 1/(x*x*x).
   4526       if (RHSC->getSExtValue() < 0)
   4527         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
   4528                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
   4529       return Res;
   4530     }
   4531   }
   4532 
   4533   // Otherwise, expand to a libcall.
   4534   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
   4535 }
   4536 
   4537 // getTruncatedArgReg - Find underlying register used for an truncated
   4538 // argument.
   4539 static unsigned getTruncatedArgReg(const SDValue &N) {
   4540   if (N.getOpcode() != ISD::TRUNCATE)
   4541     return 0;
   4542 
   4543   const SDValue &Ext = N.getOperand(0);
   4544   if (Ext.getOpcode() == ISD::AssertZext ||
   4545       Ext.getOpcode() == ISD::AssertSext) {
   4546     const SDValue &CFR = Ext.getOperand(0);
   4547     if (CFR.getOpcode() == ISD::CopyFromReg)
   4548       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
   4549     if (CFR.getOpcode() == ISD::TRUNCATE)
   4550       return getTruncatedArgReg(CFR);
   4551   }
   4552   return 0;
   4553 }
   4554 
   4555 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
   4556 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
   4557 /// At the end of instruction selection, they will be inserted to the entry BB.
   4558 bool
   4559 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
   4560                                               int64_t Offset, bool IsIndirect,
   4561                                               const SDValue &N) {
   4562   const Argument *Arg = dyn_cast<Argument>(V);
   4563   if (!Arg)
   4564     return false;
   4565 
   4566   MachineFunction &MF = DAG.getMachineFunction();
   4567   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
   4568 
   4569   // Ignore inlined function arguments here.
   4570   DIVariable DV(Variable);
   4571   if (DV.isInlinedFnArgument(MF.getFunction()))
   4572     return false;
   4573 
   4574   Optional<MachineOperand> Op;
   4575   // Some arguments' frame index is recorded during argument lowering.
   4576   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
   4577     Op = MachineOperand::CreateFI(FI);
   4578 
   4579   if (!Op && N.getNode()) {
   4580     unsigned Reg;
   4581     if (N.getOpcode() == ISD::CopyFromReg)
   4582       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
   4583     else
   4584       Reg = getTruncatedArgReg(N);
   4585     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
   4586       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   4587       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
   4588       if (PR)
   4589         Reg = PR;
   4590     }
   4591     if (Reg)
   4592       Op = MachineOperand::CreateReg(Reg, false);
   4593   }
   4594 
   4595   if (!Op) {
   4596     // Check if ValueMap has reg number.
   4597     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   4598     if (VMI != FuncInfo.ValueMap.end())
   4599       Op = MachineOperand::CreateReg(VMI->second, false);
   4600   }
   4601 
   4602   if (!Op && N.getNode())
   4603     // Check if frame index is available.
   4604     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
   4605       if (FrameIndexSDNode *FINode =
   4606           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
   4607         Op = MachineOperand::CreateFI(FINode->getIndex());
   4608 
   4609   if (!Op)
   4610     return false;
   4611 
   4612   if (Op->isReg())
   4613     FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
   4614                                             TII->get(TargetOpcode::DBG_VALUE),
   4615                                             IsIndirect,
   4616                                             Op->getReg(), Offset, Variable));
   4617   else
   4618     FuncInfo.ArgDbgValues.push_back(
   4619       BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
   4620           .addOperand(*Op).addImm(Offset).addMetadata(Variable));
   4621 
   4622   return true;
   4623 }
   4624 
   4625 // VisualStudio defines setjmp as _setjmp
   4626 #if defined(_MSC_VER) && defined(setjmp) && \
   4627                          !defined(setjmp_undefined_for_msvc)
   4628 #  pragma push_macro("setjmp")
   4629 #  undef setjmp
   4630 #  define setjmp_undefined_for_msvc
   4631 #endif
   4632 
   4633 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
   4634 /// we want to emit this as a call to a named external function, return the name
   4635 /// otherwise lower it and return null.
   4636 const char *
   4637 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
   4638   const TargetLowering *TLI = TM.getTargetLowering();
   4639   SDLoc sdl = getCurSDLoc();
   4640   DebugLoc dl = getCurDebugLoc();
   4641   SDValue Res;
   4642 
   4643   switch (Intrinsic) {
   4644   default:
   4645     // By default, turn this into a target intrinsic node.
   4646     visitTargetIntrinsic(I, Intrinsic);
   4647     return nullptr;
   4648   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
   4649   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
   4650   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
   4651   case Intrinsic::returnaddress:
   4652     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
   4653                              getValue(I.getArgOperand(0))));
   4654     return nullptr;
   4655   case Intrinsic::frameaddress:
   4656     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
   4657                              getValue(I.getArgOperand(0))));
   4658     return nullptr;
   4659   case Intrinsic::read_register: {
   4660     Value *Reg = I.getArgOperand(0);
   4661     SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
   4662     EVT VT = TM.getTargetLowering()->getValueType(I.getType());
   4663     setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
   4664     return nullptr;
   4665   }
   4666   case Intrinsic::write_register: {
   4667     Value *Reg = I.getArgOperand(0);
   4668     Value *RegValue = I.getArgOperand(1);
   4669     SDValue Chain = getValue(RegValue).getOperand(0);
   4670     SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
   4671     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
   4672                             RegName, getValue(RegValue)));
   4673     return nullptr;
   4674   }
   4675   case Intrinsic::setjmp:
   4676     return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
   4677   case Intrinsic::longjmp:
   4678     return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
   4679   case Intrinsic::memcpy: {
   4680     // Assert for address < 256 since we support only user defined address
   4681     // spaces.
   4682     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4683            < 256 &&
   4684            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4685            < 256 &&
   4686            "Unknown address space");
   4687     SDValue Op1 = getValue(I.getArgOperand(0));
   4688     SDValue Op2 = getValue(I.getArgOperand(1));
   4689     SDValue Op3 = getValue(I.getArgOperand(2));
   4690     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4691     if (!Align)
   4692       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
   4693     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4694     DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
   4695                               MachinePointerInfo(I.getArgOperand(0)),
   4696                               MachinePointerInfo(I.getArgOperand(1))));
   4697     return nullptr;
   4698   }
   4699   case Intrinsic::memset: {
   4700     // Assert for address < 256 since we support only user defined address
   4701     // spaces.
   4702     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4703            < 256 &&
   4704            "Unknown address space");
   4705     SDValue Op1 = getValue(I.getArgOperand(0));
   4706     SDValue Op2 = getValue(I.getArgOperand(1));
   4707     SDValue Op3 = getValue(I.getArgOperand(2));
   4708     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4709     if (!Align)
   4710       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
   4711     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4712     DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
   4713                               MachinePointerInfo(I.getArgOperand(0))));
   4714     return nullptr;
   4715   }
   4716   case Intrinsic::memmove: {
   4717     // Assert for address < 256 since we support only user defined address
   4718     // spaces.
   4719     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4720            < 256 &&
   4721            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4722            < 256 &&
   4723            "Unknown address space");
   4724     SDValue Op1 = getValue(I.getArgOperand(0));
   4725     SDValue Op2 = getValue(I.getArgOperand(1));
   4726     SDValue Op3 = getValue(I.getArgOperand(2));
   4727     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4728     if (!Align)
   4729       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
   4730     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4731     DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
   4732                                MachinePointerInfo(I.getArgOperand(0)),
   4733                                MachinePointerInfo(I.getArgOperand(1))));
   4734     return nullptr;
   4735   }
   4736   case Intrinsic::dbg_declare: {
   4737     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
   4738     MDNode *Variable = DI.getVariable();
   4739     const Value *Address = DI.getAddress();
   4740     DIVariable DIVar(Variable);
   4741     assert((!DIVar || DIVar.isVariable()) &&
   4742       "Variable in DbgDeclareInst should be either null or a DIVariable.");
   4743     if (!Address || !DIVar) {
   4744       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4745       return nullptr;
   4746     }
   4747 
   4748     // Check if address has undef value.
   4749     if (isa<UndefValue>(Address) ||
   4750         (Address->use_empty() && !isa<Argument>(Address))) {
   4751       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4752       return nullptr;
   4753     }
   4754 
   4755     SDValue &N = NodeMap[Address];
   4756     if (!N.getNode() && isa<Argument>(Address))
   4757       // Check unused arguments map.
   4758       N = UnusedArgNodeMap[Address];
   4759     SDDbgValue *SDV;
   4760     if (N.getNode()) {
   4761       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
   4762         Address = BCI->getOperand(0);
   4763       // Parameters are handled specially.
   4764       bool isParameter =
   4765         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
   4766          isa<Argument>(Address));
   4767 
   4768       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
   4769 
   4770       if (isParameter && !AI) {
   4771         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
   4772         if (FINode)
   4773           // Byval parameter.  We have a frame index at this point.
   4774           SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(),
   4775 					  0, dl, SDNodeOrder);
   4776         else {
   4777           // Address is an argument, so try to emit its dbg value using
   4778           // virtual register info from the FuncInfo.ValueMap.
   4779           EmitFuncArgumentDbgValue(Address, Variable, 0, false, N);
   4780           return nullptr;
   4781         }
   4782       } else if (AI)
   4783         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
   4784                               true, 0, dl, SDNodeOrder);
   4785       else {
   4786         // Can't do anything with other non-AI cases yet.
   4787         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4788         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
   4789         DEBUG(Address->dump());
   4790         return nullptr;
   4791       }
   4792       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
   4793     } else {
   4794       // If Address is an argument then try to emit its dbg value using
   4795       // virtual register info from the FuncInfo.ValueMap.
   4796       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) {
   4797         // If variable is pinned by a alloca in dominating bb then
   4798         // use StaticAllocaMap.
   4799         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
   4800           if (AI->getParent() != DI.getParent()) {
   4801             DenseMap<const AllocaInst*, int>::iterator SI =
   4802               FuncInfo.StaticAllocaMap.find(AI);
   4803             if (SI != FuncInfo.StaticAllocaMap.end()) {
   4804               SDV = DAG.getFrameIndexDbgValue(Variable, SI->second,
   4805                                               0, dl, SDNodeOrder);
   4806               DAG.AddDbgValue(SDV, nullptr, false);
   4807               return nullptr;
   4808             }
   4809           }
   4810         }
   4811         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4812       }
   4813     }
   4814     return nullptr;
   4815   }
   4816   case Intrinsic::dbg_value: {
   4817     const DbgValueInst &DI = cast<DbgValueInst>(I);
   4818     DIVariable DIVar(DI.getVariable());
   4819     assert((!DIVar || DIVar.isVariable()) &&
   4820       "Variable in DbgValueInst should be either null or a DIVariable.");
   4821     if (!DIVar)
   4822       return nullptr;
   4823 
   4824     MDNode *Variable = DI.getVariable();
   4825     uint64_t Offset = DI.getOffset();
   4826     const Value *V = DI.getValue();
   4827     if (!V)
   4828       return nullptr;
   4829 
   4830     SDDbgValue *SDV;
   4831     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
   4832       SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder);
   4833       DAG.AddDbgValue(SDV, nullptr, false);
   4834     } else {
   4835       // Do not use getValue() in here; we don't want to generate code at
   4836       // this point if it hasn't been done yet.
   4837       SDValue N = NodeMap[V];
   4838       if (!N.getNode() && isa<Argument>(V))
   4839         // Check unused arguments map.
   4840         N = UnusedArgNodeMap[V];
   4841       if (N.getNode()) {
   4842         // A dbg.value for an alloca is always indirect.
   4843         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
   4844         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) {
   4845           SDV = DAG.getDbgValue(Variable, N.getNode(),
   4846                                 N.getResNo(), IsIndirect,
   4847 				Offset, dl, SDNodeOrder);
   4848           DAG.AddDbgValue(SDV, N.getNode(), false);
   4849         }
   4850       } else if (!V->use_empty() ) {
   4851         // Do not call getValue(V) yet, as we don't want to generate code.
   4852         // Remember it for later.
   4853         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
   4854         DanglingDebugInfoMap[V] = DDI;
   4855       } else {
   4856         // We may expand this to cover more cases.  One case where we have no
   4857         // data available is an unreferenced parameter.
   4858         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4859       }
   4860     }
   4861 
   4862     // Build a debug info table entry.
   4863     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   4864       V = BCI->getOperand(0);
   4865     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
   4866     // Don't handle byval struct arguments or VLAs, for example.
   4867     if (!AI) {
   4868       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
   4869       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
   4870       return nullptr;
   4871     }
   4872     DenseMap<const AllocaInst*, int>::iterator SI =
   4873       FuncInfo.StaticAllocaMap.find(AI);
   4874     if (SI == FuncInfo.StaticAllocaMap.end())
   4875       return nullptr; // VLAs.
   4876     return nullptr;
   4877   }
   4878 
   4879   case Intrinsic::eh_typeid_for: {
   4880     // Find the type id for the given typeinfo.
   4881     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
   4882     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
   4883     Res = DAG.getConstant(TypeID, MVT::i32);
   4884     setValue(&I, Res);
   4885     return nullptr;
   4886   }
   4887 
   4888   case Intrinsic::eh_return_i32:
   4889   case Intrinsic::eh_return_i64:
   4890     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
   4891     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
   4892                             MVT::Other,
   4893                             getControlRoot(),
   4894                             getValue(I.getArgOperand(0)),
   4895                             getValue(I.getArgOperand(1))));
   4896     return nullptr;
   4897   case Intrinsic::eh_unwind_init:
   4898     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
   4899     return nullptr;
   4900   case Intrinsic::eh_dwarf_cfa: {
   4901     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
   4902                                         TLI->getPointerTy());
   4903     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
   4904                                  CfaArg.getValueType(),
   4905                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
   4906                                              CfaArg.getValueType()),
   4907                                  CfaArg);
   4908     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
   4909                              TLI->getPointerTy(),
   4910                              DAG.getConstant(0, TLI->getPointerTy()));
   4911     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
   4912                              FA, Offset));
   4913     return nullptr;
   4914   }
   4915   case Intrinsic::eh_sjlj_callsite: {
   4916     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4917     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
   4918     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
   4919     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
   4920 
   4921     MMI.setCurrentCallSite(CI->getZExtValue());
   4922     return nullptr;
   4923   }
   4924   case Intrinsic::eh_sjlj_functioncontext: {
   4925     // Get and store the index of the function context.
   4926     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4927     AllocaInst *FnCtx =
   4928       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
   4929     int FI = FuncInfo.StaticAllocaMap[FnCtx];
   4930     MFI->setFunctionContextIndex(FI);
   4931     return nullptr;
   4932   }
   4933   case Intrinsic::eh_sjlj_setjmp: {
   4934     SDValue Ops[2];
   4935     Ops[0] = getRoot();
   4936     Ops[1] = getValue(I.getArgOperand(0));
   4937     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
   4938                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
   4939     setValue(&I, Op.getValue(0));
   4940     DAG.setRoot(Op.getValue(1));
   4941     return nullptr;
   4942   }
   4943   case Intrinsic::eh_sjlj_longjmp: {
   4944     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
   4945                             getRoot(), getValue(I.getArgOperand(0))));
   4946     return nullptr;
   4947   }
   4948 
   4949   case Intrinsic::x86_mmx_pslli_w:
   4950   case Intrinsic::x86_mmx_pslli_d:
   4951   case Intrinsic::x86_mmx_pslli_q:
   4952   case Intrinsic::x86_mmx_psrli_w:
   4953   case Intrinsic::x86_mmx_psrli_d:
   4954   case Intrinsic::x86_mmx_psrli_q:
   4955   case Intrinsic::x86_mmx_psrai_w:
   4956   case Intrinsic::x86_mmx_psrai_d: {
   4957     SDValue ShAmt = getValue(I.getArgOperand(1));
   4958     if (isa<ConstantSDNode>(ShAmt)) {
   4959       visitTargetIntrinsic(I, Intrinsic);
   4960       return nullptr;
   4961     }
   4962     unsigned NewIntrinsic = 0;
   4963     EVT ShAmtVT = MVT::v2i32;
   4964     switch (Intrinsic) {
   4965     case Intrinsic::x86_mmx_pslli_w:
   4966       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
   4967       break;
   4968     case Intrinsic::x86_mmx_pslli_d:
   4969       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
   4970       break;
   4971     case Intrinsic::x86_mmx_pslli_q:
   4972       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
   4973       break;
   4974     case Intrinsic::x86_mmx_psrli_w:
   4975       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
   4976       break;
   4977     case Intrinsic::x86_mmx_psrli_d:
   4978       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
   4979       break;
   4980     case Intrinsic::x86_mmx_psrli_q:
   4981       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
   4982       break;
   4983     case Intrinsic::x86_mmx_psrai_w:
   4984       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
   4985       break;
   4986     case Intrinsic::x86_mmx_psrai_d:
   4987       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
   4988       break;
   4989     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4990     }
   4991 
   4992     // The vector shift intrinsics with scalars uses 32b shift amounts but
   4993     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   4994     // to be zero.
   4995     // We must do this early because v2i32 is not a legal type.
   4996     SDValue ShOps[2];
   4997     ShOps[0] = ShAmt;
   4998     ShOps[1] = DAG.getConstant(0, MVT::i32);
   4999     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
   5000     EVT DestVT = TLI->getValueType(I.getType());
   5001     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
   5002     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
   5003                        DAG.getConstant(NewIntrinsic, MVT::i32),
   5004                        getValue(I.getArgOperand(0)), ShAmt);
   5005     setValue(&I, Res);
   5006     return nullptr;
   5007   }
   5008   case Intrinsic::x86_avx_vinsertf128_pd_256:
   5009   case Intrinsic::x86_avx_vinsertf128_ps_256:
   5010   case Intrinsic::x86_avx_vinsertf128_si_256:
   5011   case Intrinsic::x86_avx2_vinserti128: {
   5012     EVT DestVT = TLI->getValueType(I.getType());
   5013     EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
   5014     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
   5015                    ElVT.getVectorNumElements();
   5016     Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
   5017                       getValue(I.getArgOperand(0)),
   5018                       getValue(I.getArgOperand(1)),
   5019                       DAG.getConstant(Idx, TLI->getVectorIdxTy()));
   5020     setValue(&I, Res);
   5021     return nullptr;
   5022   }
   5023   case Intrinsic::x86_avx_vextractf128_pd_256:
   5024   case Intrinsic::x86_avx_vextractf128_ps_256:
   5025   case Intrinsic::x86_avx_vextractf128_si_256:
   5026   case Intrinsic::x86_avx2_vextracti128: {
   5027     EVT DestVT = TLI->getValueType(I.getType());
   5028     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
   5029                    DestVT.getVectorNumElements();
   5030     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
   5031                       getValue(I.getArgOperand(0)),
   5032                       DAG.getConstant(Idx, TLI->getVectorIdxTy()));
   5033     setValue(&I, Res);
   5034     return nullptr;
   5035   }
   5036   case Intrinsic::convertff:
   5037   case Intrinsic::convertfsi:
   5038   case Intrinsic::convertfui:
   5039   case Intrinsic::convertsif:
   5040   case Intrinsic::convertuif:
   5041   case Intrinsic::convertss:
   5042   case Intrinsic::convertsu:
   5043   case Intrinsic::convertus:
   5044   case Intrinsic::convertuu: {
   5045     ISD::CvtCode Code = ISD::CVT_INVALID;
   5046     switch (Intrinsic) {
   5047     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   5048     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
   5049     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
   5050     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
   5051     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
   5052     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
   5053     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
   5054     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
   5055     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
   5056     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
   5057     }
   5058     EVT DestVT = TLI->getValueType(I.getType());
   5059     const Value *Op1 = I.getArgOperand(0);
   5060     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
   5061                                DAG.getValueType(DestVT),
   5062                                DAG.getValueType(getValue(Op1).getValueType()),
   5063                                getValue(I.getArgOperand(1)),
   5064                                getValue(I.getArgOperand(2)),
   5065                                Code);
   5066     setValue(&I, Res);
   5067     return nullptr;
   5068   }
   5069   case Intrinsic::powi:
   5070     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
   5071                             getValue(I.getArgOperand(1)), DAG));
   5072     return nullptr;
   5073   case Intrinsic::log:
   5074     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
   5075     return nullptr;
   5076   case Intrinsic::log2:
   5077     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
   5078     return nullptr;
   5079   case Intrinsic::log10:
   5080     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
   5081     return nullptr;
   5082   case Intrinsic::exp:
   5083     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
   5084     return nullptr;
   5085   case Intrinsic::exp2:
   5086     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
   5087     return nullptr;
   5088   case Intrinsic::pow:
   5089     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
   5090                            getValue(I.getArgOperand(1)), DAG, *TLI));
   5091     return nullptr;
   5092   case Intrinsic::sqrt:
   5093   case Intrinsic::fabs:
   5094   case Intrinsic::sin:
   5095   case Intrinsic::cos:
   5096   case Intrinsic::floor:
   5097   case Intrinsic::ceil:
   5098   case Intrinsic::trunc:
   5099   case Intrinsic::rint:
   5100   case Intrinsic::nearbyint:
   5101   case Intrinsic::round: {
   5102     unsigned Opcode;
   5103     switch (Intrinsic) {
   5104     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   5105     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
   5106     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
   5107     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
   5108     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
   5109     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
   5110     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
   5111     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
   5112     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
   5113     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
   5114     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
   5115     }
   5116 
   5117     setValue(&I, DAG.getNode(Opcode, sdl,
   5118                              getValue(I.getArgOperand(0)).getValueType(),
   5119                              getValue(I.getArgOperand(0))));
   5120     return nullptr;
   5121   }
   5122   case Intrinsic::copysign:
   5123     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
   5124                              getValue(I.getArgOperand(0)).getValueType(),
   5125                              getValue(I.getArgOperand(0)),
   5126                              getValue(I.getArgOperand(1))));
   5127     return nullptr;
   5128   case Intrinsic::fma:
   5129     setValue(&I, DAG.getNode(ISD::FMA, sdl,
   5130                              getValue(I.getArgOperand(0)).getValueType(),
   5131                              getValue(I.getArgOperand(0)),
   5132                              getValue(I.getArgOperand(1)),
   5133                              getValue(I.getArgOperand(2))));
   5134     return nullptr;
   5135   case Intrinsic::fmuladd: {
   5136     EVT VT = TLI->getValueType(I.getType());
   5137     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
   5138         TLI->isFMAFasterThanFMulAndFAdd(VT)) {
   5139       setValue(&I, DAG.getNode(ISD::FMA, sdl,
   5140                                getValue(I.getArgOperand(0)).getValueType(),
   5141                                getValue(I.getArgOperand(0)),
   5142                                getValue(I.getArgOperand(1)),
   5143                                getValue(I.getArgOperand(2))));
   5144     } else {
   5145       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
   5146                                 getValue(I.getArgOperand(0)).getValueType(),
   5147                                 getValue(I.getArgOperand(0)),
   5148                                 getValue(I.getArgOperand(1)));
   5149       SDValue Add = DAG.getNode(ISD::FADD, sdl,
   5150                                 getValue(I.getArgOperand(0)).getValueType(),
   5151                                 Mul,
   5152                                 getValue(I.getArgOperand(2)));
   5153       setValue(&I, Add);
   5154     }
   5155     return nullptr;
   5156   }
   5157   case Intrinsic::convert_to_fp16:
   5158     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
   5159                              MVT::i16, getValue(I.getArgOperand(0))));
   5160     return nullptr;
   5161   case Intrinsic::convert_from_fp16:
   5162     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
   5163                              MVT::f32, getValue(I.getArgOperand(0))));
   5164     return nullptr;
   5165   case Intrinsic::pcmarker: {
   5166     SDValue Tmp = getValue(I.getArgOperand(0));
   5167     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
   5168     return nullptr;
   5169   }
   5170   case Intrinsic::readcyclecounter: {
   5171     SDValue Op = getRoot();
   5172     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
   5173                       DAG.getVTList(MVT::i64, MVT::Other), Op);
   5174     setValue(&I, Res);
   5175     DAG.setRoot(Res.getValue(1));
   5176     return nullptr;
   5177   }
   5178   case Intrinsic::bswap:
   5179     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
   5180                              getValue(I.getArgOperand(0)).getValueType(),
   5181                              getValue(I.getArgOperand(0))));
   5182     return nullptr;
   5183   case Intrinsic::cttz: {
   5184     SDValue Arg = getValue(I.getArgOperand(0));
   5185     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
   5186     EVT Ty = Arg.getValueType();
   5187     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
   5188                              sdl, Ty, Arg));
   5189     return nullptr;
   5190   }
   5191   case Intrinsic::ctlz: {
   5192     SDValue Arg = getValue(I.getArgOperand(0));
   5193     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
   5194     EVT Ty = Arg.getValueType();
   5195     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
   5196                              sdl, Ty, Arg));
   5197     return nullptr;
   5198   }
   5199   case Intrinsic::ctpop: {
   5200     SDValue Arg = getValue(I.getArgOperand(0));
   5201     EVT Ty = Arg.getValueType();
   5202     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
   5203     return nullptr;
   5204   }
   5205   case Intrinsic::stacksave: {
   5206     SDValue Op = getRoot();
   5207     Res = DAG.getNode(ISD::STACKSAVE, sdl,
   5208                       DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op);
   5209     setValue(&I, Res);
   5210     DAG.setRoot(Res.getValue(1));
   5211     return nullptr;
   5212   }
   5213   case Intrinsic::stackrestore: {
   5214     Res = getValue(I.getArgOperand(0));
   5215     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
   5216     return nullptr;
   5217   }
   5218   case Intrinsic::stackprotector: {
   5219     // Emit code into the DAG to store the stack guard onto the stack.
   5220     MachineFunction &MF = DAG.getMachineFunction();
   5221     MachineFrameInfo *MFI = MF.getFrameInfo();
   5222     EVT PtrTy = TLI->getPointerTy();
   5223 
   5224     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
   5225     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   5226 
   5227     int FI = FuncInfo.StaticAllocaMap[Slot];
   5228     MFI->setStackProtectorIndex(FI);
   5229 
   5230     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   5231 
   5232     // Store the stack protector onto the stack.
   5233     Res = DAG.getStore(getRoot(), sdl, Src, FIN,
   5234                        MachinePointerInfo::getFixedStack(FI),
   5235                        true, false, 0);
   5236     setValue(&I, Res);
   5237     DAG.setRoot(Res);
   5238     return nullptr;
   5239   }
   5240   case Intrinsic::objectsize: {
   5241     // If we don't know by now, we're never going to know.
   5242     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
   5243 
   5244     assert(CI && "Non-constant type in __builtin_object_size?");
   5245 
   5246     SDValue Arg = getValue(I.getCalledValue());
   5247     EVT Ty = Arg.getValueType();
   5248 
   5249     if (CI->isZero())
   5250       Res = DAG.getConstant(-1ULL, Ty);
   5251     else
   5252       Res = DAG.getConstant(0, Ty);
   5253 
   5254     setValue(&I, Res);
   5255     return nullptr;
   5256   }
   5257   case Intrinsic::annotation:
   5258   case Intrinsic::ptr_annotation:
   5259     // Drop the intrinsic, but forward the value
   5260     setValue(&I, getValue(I.getOperand(0)));
   5261     return nullptr;
   5262   case Intrinsic::var_annotation:
   5263     // Discard annotate attributes
   5264     return nullptr;
   5265 
   5266   case Intrinsic::init_trampoline: {
   5267     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
   5268 
   5269     SDValue Ops[6];
   5270     Ops[0] = getRoot();
   5271     Ops[1] = getValue(I.getArgOperand(0));
   5272     Ops[2] = getValue(I.getArgOperand(1));
   5273     Ops[3] = getValue(I.getArgOperand(2));
   5274     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
   5275     Ops[5] = DAG.getSrcValue(F);
   5276 
   5277     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
   5278 
   5279     DAG.setRoot(Res);
   5280     return nullptr;
   5281   }
   5282   case Intrinsic::adjust_trampoline: {
   5283     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
   5284                              TLI->getPointerTy(),
   5285                              getValue(I.getArgOperand(0))));
   5286     return nullptr;
   5287   }
   5288   case Intrinsic::gcroot:
   5289     if (GFI) {
   5290       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
   5291       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
   5292 
   5293       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
   5294       GFI->addStackRoot(FI->getIndex(), TypeMap);
   5295     }
   5296     return nullptr;
   5297   case Intrinsic::gcread:
   5298   case Intrinsic::gcwrite:
   5299     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
   5300   case Intrinsic::flt_rounds:
   5301     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
   5302     return nullptr;
   5303 
   5304   case Intrinsic::expect: {
   5305     // Just replace __builtin_expect(exp, c) with EXP.
   5306     setValue(&I, getValue(I.getArgOperand(0)));
   5307     return nullptr;
   5308   }
   5309 
   5310   case Intrinsic::debugtrap:
   5311   case Intrinsic::trap: {
   5312     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
   5313     if (TrapFuncName.empty()) {
   5314       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
   5315         ISD::TRAP : ISD::DEBUGTRAP;
   5316       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
   5317       return nullptr;
   5318     }
   5319     TargetLowering::ArgListTy Args;
   5320 
   5321     TargetLowering::CallLoweringInfo CLI(DAG);
   5322     CLI.setDebugLoc(sdl).setChain(getRoot())
   5323       .setCallee(CallingConv::C, I.getType(),
   5324                  DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()),
   5325                  std::move(Args), 0);
   5326 
   5327     std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
   5328     DAG.setRoot(Result.second);
   5329     return nullptr;
   5330   }
   5331 
   5332   case Intrinsic::uadd_with_overflow:
   5333   case Intrinsic::sadd_with_overflow:
   5334   case Intrinsic::usub_with_overflow:
   5335   case Intrinsic::ssub_with_overflow:
   5336   case Intrinsic::umul_with_overflow:
   5337   case Intrinsic::smul_with_overflow: {
   5338     ISD::NodeType Op;
   5339     switch (Intrinsic) {
   5340     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   5341     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
   5342     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
   5343     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
   5344     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
   5345     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
   5346     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
   5347     }
   5348     SDValue Op1 = getValue(I.getArgOperand(0));
   5349     SDValue Op2 = getValue(I.getArgOperand(1));
   5350 
   5351     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
   5352     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
   5353     return nullptr;
   5354   }
   5355   case Intrinsic::prefetch: {
   5356     SDValue Ops[5];
   5357     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   5358     Ops[0] = getRoot();
   5359     Ops[1] = getValue(I.getArgOperand(0));
   5360     Ops[2] = getValue(I.getArgOperand(1));
   5361     Ops[3] = getValue(I.getArgOperand(2));
   5362     Ops[4] = getValue(I.getArgOperand(3));
   5363     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
   5364                                         DAG.getVTList(MVT::Other), Ops,
   5365                                         EVT::getIntegerVT(*Context, 8),
   5366                                         MachinePointerInfo(I.getArgOperand(0)),
   5367                                         0, /* align */
   5368                                         false, /* volatile */
   5369                                         rw==0, /* read */
   5370                                         rw==1)); /* write */
   5371     return nullptr;
   5372   }
   5373   case Intrinsic::lifetime_start:
   5374   case Intrinsic::lifetime_end: {
   5375     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
   5376     // Stack coloring is not enabled in O0, discard region information.
   5377     if (TM.getOptLevel() == CodeGenOpt::None)
   5378       return nullptr;
   5379 
   5380     SmallVector<Value *, 4> Allocas;
   5381     GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
   5382 
   5383     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
   5384            E = Allocas.end(); Object != E; ++Object) {
   5385       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
   5386 
   5387       // Could not find an Alloca.
   5388       if (!LifetimeObject)
   5389         continue;
   5390 
   5391       int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
   5392 
   5393       SDValue Ops[2];
   5394       Ops[0] = getRoot();
   5395       Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
   5396       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
   5397 
   5398       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
   5399       DAG.setRoot(Res);
   5400     }
   5401     return nullptr;
   5402   }
   5403   case Intrinsic::invariant_start:
   5404     // Discard region information.
   5405     setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
   5406     return nullptr;
   5407   case Intrinsic::invariant_end:
   5408     // Discard region information.
   5409     return nullptr;
   5410   case Intrinsic::stackprotectorcheck: {
   5411     // Do not actually emit anything for this basic block. Instead we initialize
   5412     // the stack protector descriptor and export the guard variable so we can
   5413     // access it in FinishBasicBlock.
   5414     const BasicBlock *BB = I.getParent();
   5415     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
   5416     ExportFromCurrentBlock(SPDescriptor.getGuard());
   5417 
   5418     // Flush our exports since we are going to process a terminator.
   5419     (void)getControlRoot();
   5420     return nullptr;
   5421   }
   5422   case Intrinsic::clear_cache:
   5423     return TLI->getClearCacheBuiltinName();
   5424   case Intrinsic::donothing:
   5425     // ignore
   5426     return nullptr;
   5427   case Intrinsic::experimental_stackmap: {
   5428     visitStackmap(I);
   5429     return nullptr;
   5430   }
   5431   case Intrinsic::experimental_patchpoint_void:
   5432   case Intrinsic::experimental_patchpoint_i64: {
   5433     visitPatchpoint(I);
   5434     return nullptr;
   5435   }
   5436   }
   5437 }
   5438 
   5439 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
   5440                                       bool isTailCall,
   5441                                       MachineBasicBlock *LandingPad) {
   5442   const TargetLowering *TLI = TM.getTargetLowering();
   5443   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   5444   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   5445   Type *RetTy = FTy->getReturnType();
   5446   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5447   MCSymbol *BeginLabel = nullptr;
   5448 
   5449   TargetLowering::ArgListTy Args;
   5450   TargetLowering::ArgListEntry Entry;
   5451   Args.reserve(CS.arg_size());
   5452 
   5453   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   5454        i != e; ++i) {
   5455     const Value *V = *i;
   5456 
   5457     // Skip empty types
   5458     if (V->getType()->isEmptyTy())
   5459       continue;
   5460 
   5461     SDValue ArgNode = getValue(V);
   5462     Entry.Node = ArgNode; Entry.Ty = V->getType();
   5463 
   5464     // Skip the first return-type Attribute to get to params.
   5465     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
   5466     Args.push_back(Entry);
   5467   }
   5468 
   5469   if (LandingPad) {
   5470     // Insert a label before the invoke call to mark the try range.  This can be
   5471     // used to detect deletion of the invoke via the MachineModuleInfo.
   5472     BeginLabel = MMI.getContext().CreateTempSymbol();
   5473 
   5474     // For SjLj, keep track of which landing pads go with which invokes
   5475     // so as to maintain the ordering of pads in the LSDA.
   5476     unsigned CallSiteIndex = MMI.getCurrentCallSite();
   5477     if (CallSiteIndex) {
   5478       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
   5479       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
   5480 
   5481       // Now that the call site is handled, stop tracking it.
   5482       MMI.setCurrentCallSite(0);
   5483     }
   5484 
   5485     // Both PendingLoads and PendingExports must be flushed here;
   5486     // this call might not return.
   5487     (void)getRoot();
   5488     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
   5489   }
   5490 
   5491   // Check if target-independent constraints permit a tail call here.
   5492   // Target-dependent constraints are checked within TLI->LowerCallTo.
   5493   if (isTailCall && !isInTailCallPosition(CS, DAG))
   5494     isTailCall = false;
   5495 
   5496   TargetLowering::CallLoweringInfo CLI(DAG);
   5497   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
   5498     .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall);
   5499 
   5500   std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
   5501   assert((isTailCall || Result.second.getNode()) &&
   5502          "Non-null chain expected with non-tail call!");
   5503   assert((Result.second.getNode() || !Result.first.getNode()) &&
   5504          "Null value expected with tail call!");
   5505   if (Result.first.getNode())
   5506     setValue(CS.getInstruction(), Result.first);
   5507 
   5508   if (!Result.second.getNode()) {
   5509     // As a special case, a null chain means that a tail call has been emitted
   5510     // and the DAG root is already updated.
   5511     HasTailCall = true;
   5512 
   5513     // Since there's no actual continuation from this block, nothing can be
   5514     // relying on us setting vregs for them.
   5515     PendingExports.clear();
   5516   } else {
   5517     DAG.setRoot(Result.second);
   5518   }
   5519 
   5520   if (LandingPad) {
   5521     // Insert a label at the end of the invoke call to mark the try range.  This
   5522     // can be used to detect deletion of the invoke via the MachineModuleInfo.
   5523     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
   5524     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
   5525 
   5526     // Inform MachineModuleInfo of range.
   5527     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
   5528   }
   5529 }
   5530 
   5531 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
   5532 /// value is equal or not-equal to zero.
   5533 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
   5534   for (const User *U : V->users()) {
   5535     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
   5536       if (IC->isEquality())
   5537         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
   5538           if (C->isNullValue())
   5539             continue;
   5540     // Unknown instruction.
   5541     return false;
   5542   }
   5543   return true;
   5544 }
   5545 
   5546 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
   5547                              Type *LoadTy,
   5548                              SelectionDAGBuilder &Builder) {
   5549 
   5550   // Check to see if this load can be trivially constant folded, e.g. if the
   5551   // input is from a string literal.
   5552   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
   5553     // Cast pointer to the type we really want to load.
   5554     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
   5555                                          PointerType::getUnqual(LoadTy));
   5556 
   5557     if (const Constant *LoadCst =
   5558           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
   5559                                        Builder.DL))
   5560       return Builder.getValue(LoadCst);
   5561   }
   5562 
   5563   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
   5564   // still constant memory, the input chain can be the entry node.
   5565   SDValue Root;
   5566   bool ConstantMemory = false;
   5567 
   5568   // Do not serialize (non-volatile) loads of constant memory with anything.
   5569   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
   5570     Root = Builder.DAG.getEntryNode();
   5571     ConstantMemory = true;
   5572   } else {
   5573     // Do not serialize non-volatile loads against each other.
   5574     Root = Builder.DAG.getRoot();
   5575   }
   5576 
   5577   SDValue Ptr = Builder.getValue(PtrVal);
   5578   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
   5579                                         Ptr, MachinePointerInfo(PtrVal),
   5580                                         false /*volatile*/,
   5581                                         false /*nontemporal*/,
   5582                                         false /*isinvariant*/, 1 /* align=1 */);
   5583 
   5584   if (!ConstantMemory)
   5585     Builder.PendingLoads.push_back(LoadVal.getValue(1));
   5586   return LoadVal;
   5587 }
   5588 
   5589 /// processIntegerCallValue - Record the value for an instruction that
   5590 /// produces an integer result, converting the type where necessary.
   5591 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
   5592                                                   SDValue Value,
   5593                                                   bool IsSigned) {
   5594   EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
   5595   if (IsSigned)
   5596     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
   5597   else
   5598     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
   5599   setValue(&I, Value);
   5600 }
   5601 
   5602 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
   5603 /// If so, return true and lower it, otherwise return false and it will be
   5604 /// lowered like a normal call.
   5605 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
   5606   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
   5607   if (I.getNumArgOperands() != 3)
   5608     return false;
   5609 
   5610   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
   5611   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
   5612       !I.getArgOperand(2)->getType()->isIntegerTy() ||
   5613       !I.getType()->isIntegerTy())
   5614     return false;
   5615 
   5616   const Value *Size = I.getArgOperand(2);
   5617   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
   5618   if (CSize && CSize->getZExtValue() == 0) {
   5619     EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
   5620     setValue(&I, DAG.getConstant(0, CallVT));
   5621     return true;
   5622   }
   5623 
   5624   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5625   std::pair<SDValue, SDValue> Res =
   5626     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
   5627                                 getValue(LHS), getValue(RHS), getValue(Size),
   5628                                 MachinePointerInfo(LHS),
   5629                                 MachinePointerInfo(RHS));
   5630   if (Res.first.getNode()) {
   5631     processIntegerCallValue(I, Res.first, true);
   5632     PendingLoads.push_back(Res.second);
   5633     return true;
   5634   }
   5635 
   5636   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
   5637   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
   5638   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
   5639     bool ActuallyDoIt = true;
   5640     MVT LoadVT;
   5641     Type *LoadTy;
   5642     switch (CSize->getZExtValue()) {
   5643     default:
   5644       LoadVT = MVT::Other;
   5645       LoadTy = nullptr;
   5646       ActuallyDoIt = false;
   5647       break;
   5648     case 2:
   5649       LoadVT = MVT::i16;
   5650       LoadTy = Type::getInt16Ty(CSize->getContext());
   5651       break;
   5652     case 4:
   5653       LoadVT = MVT::i32;
   5654       LoadTy = Type::getInt32Ty(CSize->getContext());
   5655       break;
   5656     case 8:
   5657       LoadVT = MVT::i64;
   5658       LoadTy = Type::getInt64Ty(CSize->getContext());
   5659       break;
   5660         /*
   5661     case 16:
   5662       LoadVT = MVT::v4i32;
   5663       LoadTy = Type::getInt32Ty(CSize->getContext());
   5664       LoadTy = VectorType::get(LoadTy, 4);
   5665       break;
   5666          */
   5667     }
   5668 
   5669     // This turns into unaligned loads.  We only do this if the target natively
   5670     // supports the MVT we'll be loading or if it is small enough (<= 4) that
   5671     // we'll only produce a small number of byte loads.
   5672 
   5673     // Require that we can find a legal MVT, and only do this if the target
   5674     // supports unaligned loads of that type.  Expanding into byte loads would
   5675     // bloat the code.
   5676     const TargetLowering *TLI = TM.getTargetLowering();
   5677     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
   5678       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
   5679       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
   5680       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
   5681       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
   5682       if (!TLI->isTypeLegal(LoadVT) ||
   5683           !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
   5684           !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
   5685         ActuallyDoIt = false;
   5686     }
   5687 
   5688     if (ActuallyDoIt) {
   5689       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
   5690       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
   5691 
   5692       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
   5693                                  ISD::SETNE);
   5694       processIntegerCallValue(I, Res, false);
   5695       return true;
   5696     }
   5697   }
   5698 
   5699 
   5700   return false;
   5701 }
   5702 
   5703 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
   5704 /// form.  If so, return true and lower it, otherwise return false and it
   5705 /// will be lowered like a normal call.
   5706 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
   5707   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
   5708   if (I.getNumArgOperands() != 3)
   5709     return false;
   5710 
   5711   const Value *Src = I.getArgOperand(0);
   5712   const Value *Char = I.getArgOperand(1);
   5713   const Value *Length = I.getArgOperand(2);
   5714   if (!Src->getType()->isPointerTy() ||
   5715       !Char->getType()->isIntegerTy() ||
   5716       !Length->getType()->isIntegerTy() ||
   5717       !I.getType()->isPointerTy())
   5718     return false;
   5719 
   5720   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5721   std::pair<SDValue, SDValue> Res =
   5722     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
   5723                                 getValue(Src), getValue(Char), getValue(Length),
   5724                                 MachinePointerInfo(Src));
   5725   if (Res.first.getNode()) {
   5726     setValue(&I, Res.first);
   5727     PendingLoads.push_back(Res.second);
   5728     return true;
   5729   }
   5730 
   5731   return false;
   5732 }
   5733 
   5734 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
   5735 /// optimized form.  If so, return true and lower it, otherwise return false
   5736 /// and it will be lowered like a normal call.
   5737 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
   5738   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
   5739   if (I.getNumArgOperands() != 2)
   5740     return false;
   5741 
   5742   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
   5743   if (!Arg0->getType()->isPointerTy() ||
   5744       !Arg1->getType()->isPointerTy() ||
   5745       !I.getType()->isPointerTy())
   5746     return false;
   5747 
   5748   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5749   std::pair<SDValue, SDValue> Res =
   5750     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
   5751                                 getValue(Arg0), getValue(Arg1),
   5752                                 MachinePointerInfo(Arg0),
   5753                                 MachinePointerInfo(Arg1), isStpcpy);
   5754   if (Res.first.getNode()) {
   5755     setValue(&I, Res.first);
   5756     DAG.setRoot(Res.second);
   5757     return true;
   5758   }
   5759 
   5760   return false;
   5761 }
   5762 
   5763 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
   5764 /// If so, return true and lower it, otherwise return false and it will be
   5765 /// lowered like a normal call.
   5766 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
   5767   // Verify that the prototype makes sense.  int strcmp(void*,void*)
   5768   if (I.getNumArgOperands() != 2)
   5769     return false;
   5770 
   5771   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
   5772   if (!Arg0->getType()->isPointerTy() ||
   5773       !Arg1->getType()->isPointerTy() ||
   5774       !I.getType()->isIntegerTy())
   5775     return false;
   5776 
   5777   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5778   std::pair<SDValue, SDValue> Res =
   5779     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
   5780                                 getValue(Arg0), getValue(Arg1),
   5781                                 MachinePointerInfo(Arg0),
   5782                                 MachinePointerInfo(Arg1));
   5783   if (Res.first.getNode()) {
   5784     processIntegerCallValue(I, Res.first, true);
   5785     PendingLoads.push_back(Res.second);
   5786     return true;
   5787   }
   5788 
   5789   return false;
   5790 }
   5791 
   5792 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
   5793 /// form.  If so, return true and lower it, otherwise return false and it
   5794 /// will be lowered like a normal call.
   5795 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
   5796   // Verify that the prototype makes sense.  size_t strlen(char *)
   5797   if (I.getNumArgOperands() != 1)
   5798     return false;
   5799 
   5800   const Value *Arg0 = I.getArgOperand(0);
   5801   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
   5802     return false;
   5803 
   5804   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5805   std::pair<SDValue, SDValue> Res =
   5806     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
   5807                                 getValue(Arg0), MachinePointerInfo(Arg0));
   5808   if (Res.first.getNode()) {
   5809     processIntegerCallValue(I, Res.first, false);
   5810     PendingLoads.push_back(Res.second);
   5811     return true;
   5812   }
   5813 
   5814   return false;
   5815 }
   5816 
   5817 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
   5818 /// form.  If so, return true and lower it, otherwise return false and it
   5819 /// will be lowered like a normal call.
   5820 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
   5821   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
   5822   if (I.getNumArgOperands() != 2)
   5823     return false;
   5824 
   5825   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
   5826   if (!Arg0->getType()->isPointerTy() ||
   5827       !Arg1->getType()->isIntegerTy() ||
   5828       !I.getType()->isIntegerTy())
   5829     return false;
   5830 
   5831   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5832   std::pair<SDValue, SDValue> Res =
   5833     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
   5834                                  getValue(Arg0), getValue(Arg1),
   5835                                  MachinePointerInfo(Arg0));
   5836   if (Res.first.getNode()) {
   5837     processIntegerCallValue(I, Res.first, false);
   5838     PendingLoads.push_back(Res.second);
   5839     return true;
   5840   }
   5841 
   5842   return false;
   5843 }
   5844 
   5845 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
   5846 /// operation (as expected), translate it to an SDNode with the specified opcode
   5847 /// and return true.
   5848 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
   5849                                               unsigned Opcode) {
   5850   // Sanity check that it really is a unary floating-point call.
   5851   if (I.getNumArgOperands() != 1 ||
   5852       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
   5853       I.getType() != I.getArgOperand(0)->getType() ||
   5854       !I.onlyReadsMemory())
   5855     return false;
   5856 
   5857   SDValue Tmp = getValue(I.getArgOperand(0));
   5858   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
   5859   return true;
   5860 }
   5861 
   5862 void SelectionDAGBuilder::visitCall(const CallInst &I) {
   5863   // Handle inline assembly differently.
   5864   if (isa<InlineAsm>(I.getCalledValue())) {
   5865     visitInlineAsm(&I);
   5866     return;
   5867   }
   5868 
   5869   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5870   ComputeUsesVAFloatArgument(I, &MMI);
   5871 
   5872   const char *RenameFn = nullptr;
   5873   if (Function *F = I.getCalledFunction()) {
   5874     if (F->isDeclaration()) {
   5875       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
   5876         if (unsigned IID = II->getIntrinsicID(F)) {
   5877           RenameFn = visitIntrinsicCall(I, IID);
   5878           if (!RenameFn)
   5879             return;
   5880         }
   5881       }
   5882       if (unsigned IID = F->getIntrinsicID()) {
   5883         RenameFn = visitIntrinsicCall(I, IID);
   5884         if (!RenameFn)
   5885           return;
   5886       }
   5887     }
   5888 
   5889     // Check for well-known libc/libm calls.  If the function is internal, it
   5890     // can't be a library call.
   5891     LibFunc::Func Func;
   5892     if (!F->hasLocalLinkage() && F->hasName() &&
   5893         LibInfo->getLibFunc(F->getName(), Func) &&
   5894         LibInfo->hasOptimizedCodeGen(Func)) {
   5895       switch (Func) {
   5896       default: break;
   5897       case LibFunc::copysign:
   5898       case LibFunc::copysignf:
   5899       case LibFunc::copysignl:
   5900         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
   5901             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5902             I.getType() == I.getArgOperand(0)->getType() &&
   5903             I.getType() == I.getArgOperand(1)->getType() &&
   5904             I.onlyReadsMemory()) {
   5905           SDValue LHS = getValue(I.getArgOperand(0));
   5906           SDValue RHS = getValue(I.getArgOperand(1));
   5907           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
   5908                                    LHS.getValueType(), LHS, RHS));
   5909           return;
   5910         }
   5911         break;
   5912       case LibFunc::fabs:
   5913       case LibFunc::fabsf:
   5914       case LibFunc::fabsl:
   5915         if (visitUnaryFloatCall(I, ISD::FABS))
   5916           return;
   5917         break;
   5918       case LibFunc::sin:
   5919       case LibFunc::sinf:
   5920       case LibFunc::sinl:
   5921         if (visitUnaryFloatCall(I, ISD::FSIN))
   5922           return;
   5923         break;
   5924       case LibFunc::cos:
   5925       case LibFunc::cosf:
   5926       case LibFunc::cosl:
   5927         if (visitUnaryFloatCall(I, ISD::FCOS))
   5928           return;
   5929         break;
   5930       case LibFunc::sqrt:
   5931       case LibFunc::sqrtf:
   5932       case LibFunc::sqrtl:
   5933       case LibFunc::sqrt_finite:
   5934       case LibFunc::sqrtf_finite:
   5935       case LibFunc::sqrtl_finite:
   5936         if (visitUnaryFloatCall(I, ISD::FSQRT))
   5937           return;
   5938         break;
   5939       case LibFunc::floor:
   5940       case LibFunc::floorf:
   5941       case LibFunc::floorl:
   5942         if (visitUnaryFloatCall(I, ISD::FFLOOR))
   5943           return;
   5944         break;
   5945       case LibFunc::nearbyint:
   5946       case LibFunc::nearbyintf:
   5947       case LibFunc::nearbyintl:
   5948         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
   5949           return;
   5950         break;
   5951       case LibFunc::ceil:
   5952       case LibFunc::ceilf:
   5953       case LibFunc::ceill:
   5954         if (visitUnaryFloatCall(I, ISD::FCEIL))
   5955           return;
   5956         break;
   5957       case LibFunc::rint:
   5958       case LibFunc::rintf:
   5959       case LibFunc::rintl:
   5960         if (visitUnaryFloatCall(I, ISD::FRINT))
   5961           return;
   5962         break;
   5963       case LibFunc::round:
   5964       case LibFunc::roundf:
   5965       case LibFunc::roundl:
   5966         if (visitUnaryFloatCall(I, ISD::FROUND))
   5967           return;
   5968         break;
   5969       case LibFunc::trunc:
   5970       case LibFunc::truncf:
   5971       case LibFunc::truncl:
   5972         if (visitUnaryFloatCall(I, ISD::FTRUNC))
   5973           return;
   5974         break;
   5975       case LibFunc::log2:
   5976       case LibFunc::log2f:
   5977       case LibFunc::log2l:
   5978         if (visitUnaryFloatCall(I, ISD::FLOG2))
   5979           return;
   5980         break;
   5981       case LibFunc::exp2:
   5982       case LibFunc::exp2f:
   5983       case LibFunc::exp2l:
   5984         if (visitUnaryFloatCall(I, ISD::FEXP2))
   5985           return;
   5986         break;
   5987       case LibFunc::memcmp:
   5988         if (visitMemCmpCall(I))
   5989           return;
   5990         break;
   5991       case LibFunc::memchr:
   5992         if (visitMemChrCall(I))
   5993           return;
   5994         break;
   5995       case LibFunc::strcpy:
   5996         if (visitStrCpyCall(I, false))
   5997           return;
   5998         break;
   5999       case LibFunc::stpcpy:
   6000         if (visitStrCpyCall(I, true))
   6001           return;
   6002         break;
   6003       case LibFunc::strcmp:
   6004         if (visitStrCmpCall(I))
   6005           return;
   6006         break;
   6007       case LibFunc::strlen:
   6008         if (visitStrLenCall(I))
   6009           return;
   6010         break;
   6011       case LibFunc::strnlen:
   6012         if (visitStrNLenCall(I))
   6013           return;
   6014         break;
   6015       }
   6016     }
   6017   }
   6018 
   6019   SDValue Callee;
   6020   if (!RenameFn)
   6021     Callee = getValue(I.getCalledValue());
   6022   else
   6023     Callee = DAG.getExternalSymbol(RenameFn,
   6024                                    TM.getTargetLowering()->getPointerTy());
   6025 
   6026   // Check if we can potentially perform a tail call. More detailed checking is
   6027   // be done within LowerCallTo, after more information about the call is known.
   6028   LowerCallTo(&I, Callee, I.isTailCall());
   6029 }
   6030 
   6031 namespace {
   6032 
   6033 /// AsmOperandInfo - This contains information for each constraint that we are
   6034 /// lowering.
   6035 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
   6036 public:
   6037   /// CallOperand - If this is the result output operand or a clobber
   6038   /// this is null, otherwise it is the incoming operand to the CallInst.
   6039   /// This gets modified as the asm is processed.
   6040   SDValue CallOperand;
   6041 
   6042   /// AssignedRegs - If this is a register or register class operand, this
   6043   /// contains the set of register corresponding to the operand.
   6044   RegsForValue AssignedRegs;
   6045 
   6046   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
   6047     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
   6048   }
   6049 
   6050   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
   6051   /// corresponds to.  If there is no Value* for this operand, it returns
   6052   /// MVT::Other.
   6053   EVT getCallOperandValEVT(LLVMContext &Context,
   6054                            const TargetLowering &TLI,
   6055                            const DataLayout *DL) const {
   6056     if (!CallOperandVal) return MVT::Other;
   6057 
   6058     if (isa<BasicBlock>(CallOperandVal))
   6059       return TLI.getPointerTy();
   6060 
   6061     llvm::Type *OpTy = CallOperandVal->getType();
   6062 
   6063     // FIXME: code duplicated from TargetLowering::ParseConstraints().
   6064     // If this is an indirect operand, the operand is a pointer to the
   6065     // accessed type.
   6066     if (isIndirect) {
   6067       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   6068       if (!PtrTy)
   6069         report_fatal_error("Indirect operand for inline asm not a pointer!");
   6070       OpTy = PtrTy->getElementType();
   6071     }
   6072 
   6073     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   6074     if (StructType *STy = dyn_cast<StructType>(OpTy))
   6075       if (STy->getNumElements() == 1)
   6076         OpTy = STy->getElementType(0);
   6077 
   6078     // If OpTy is not a single value, it may be a struct/union that we
   6079     // can tile with integers.
   6080     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   6081       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
   6082       switch (BitSize) {
   6083       default: break;
   6084       case 1:
   6085       case 8:
   6086       case 16:
   6087       case 32:
   6088       case 64:
   6089       case 128:
   6090         OpTy = IntegerType::get(Context, BitSize);
   6091         break;
   6092       }
   6093     }
   6094 
   6095     return TLI.getValueType(OpTy, true);
   6096   }
   6097 };
   6098 
   6099 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
   6100 
   6101 } // end anonymous namespace
   6102 
   6103 /// GetRegistersForValue - Assign registers (virtual or physical) for the
   6104 /// specified operand.  We prefer to assign virtual registers, to allow the
   6105 /// register allocator to handle the assignment process.  However, if the asm
   6106 /// uses features that we can't model on machineinstrs, we have SDISel do the
   6107 /// allocation.  This produces generally horrible, but correct, code.
   6108 ///
   6109 ///   OpInfo describes the operand.
   6110 ///
   6111 static void GetRegistersForValue(SelectionDAG &DAG,
   6112                                  const TargetLowering &TLI,
   6113                                  SDLoc DL,
   6114                                  SDISelAsmOperandInfo &OpInfo) {
   6115   LLVMContext &Context = *DAG.getContext();
   6116 
   6117   MachineFunction &MF = DAG.getMachineFunction();
   6118   SmallVector<unsigned, 4> Regs;
   6119 
   6120   // If this is a constraint for a single physreg, or a constraint for a
   6121   // register class, find it.
   6122   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
   6123     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   6124                                      OpInfo.ConstraintVT);
   6125 
   6126   unsigned NumRegs = 1;
   6127   if (OpInfo.ConstraintVT != MVT::Other) {
   6128     // If this is a FP input in an integer register (or visa versa) insert a bit
   6129     // cast of the input value.  More generally, handle any case where the input
   6130     // value disagrees with the register class we plan to stick this in.
   6131     if (OpInfo.Type == InlineAsm::isInput &&
   6132         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
   6133       // Try to convert to the first EVT that the reg class contains.  If the
   6134       // types are identical size, use a bitcast to convert (e.g. two differing
   6135       // vector types).
   6136       MVT RegVT = *PhysReg.second->vt_begin();
   6137       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
   6138         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   6139                                          RegVT, OpInfo.CallOperand);
   6140         OpInfo.ConstraintVT = RegVT;
   6141       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
   6142         // If the input is a FP value and we want it in FP registers, do a
   6143         // bitcast to the corresponding integer type.  This turns an f64 value
   6144         // into i64, which can be passed with two i32 values on a 32-bit
   6145         // machine.
   6146         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
   6147         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   6148                                          RegVT, OpInfo.CallOperand);
   6149         OpInfo.ConstraintVT = RegVT;
   6150       }
   6151     }
   6152 
   6153     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
   6154   }
   6155 
   6156   MVT RegVT;
   6157   EVT ValueVT = OpInfo.ConstraintVT;
   6158 
   6159   // If this is a constraint for a specific physical register, like {r17},
   6160   // assign it now.
   6161   if (unsigned AssignedReg = PhysReg.first) {
   6162     const TargetRegisterClass *RC = PhysReg.second;
   6163     if (OpInfo.ConstraintVT == MVT::Other)
   6164       ValueVT = *RC->vt_begin();
   6165 
   6166     // Get the actual register value type.  This is important, because the user
   6167     // may have asked for (e.g.) the AX register in i32 type.  We need to
   6168     // remember that AX is actually i16 to get the right extension.
   6169     RegVT = *RC->vt_begin();
   6170 
   6171     // This is a explicit reference to a physical register.
   6172     Regs.push_back(AssignedReg);
   6173 
   6174     // If this is an expanded reference, add the rest of the regs to Regs.
   6175     if (NumRegs != 1) {
   6176       TargetRegisterClass::iterator I = RC->begin();
   6177       for (; *I != AssignedReg; ++I)
   6178         assert(I != RC->end() && "Didn't find reg!");
   6179 
   6180       // Already added the first reg.
   6181       --NumRegs; ++I;
   6182       for (; NumRegs; --NumRegs, ++I) {
   6183         assert(I != RC->end() && "Ran out of registers to allocate!");
   6184         Regs.push_back(*I);
   6185       }
   6186     }
   6187 
   6188     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   6189     return;
   6190   }
   6191 
   6192   // Otherwise, if this was a reference to an LLVM register class, create vregs
   6193   // for this reference.
   6194   if (const TargetRegisterClass *RC = PhysReg.second) {
   6195     RegVT = *RC->vt_begin();
   6196     if (OpInfo.ConstraintVT == MVT::Other)
   6197       ValueVT = RegVT;
   6198 
   6199     // Create the appropriate number of virtual registers.
   6200     MachineRegisterInfo &RegInfo = MF.getRegInfo();
   6201     for (; NumRegs; --NumRegs)
   6202       Regs.push_back(RegInfo.createVirtualRegister(RC));
   6203 
   6204     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   6205     return;
   6206   }
   6207 
   6208   // Otherwise, we couldn't allocate enough registers for this.
   6209 }
   6210 
   6211 /// visitInlineAsm - Handle a call to an InlineAsm object.
   6212 ///
   6213 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
   6214   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   6215 
   6216   /// ConstraintOperands - Information about all of the constraints.
   6217   SDISelAsmOperandInfoVector ConstraintOperands;
   6218 
   6219   const TargetLowering *TLI = TM.getTargetLowering();
   6220   TargetLowering::AsmOperandInfoVector
   6221     TargetConstraints = TLI->ParseConstraints(CS);
   6222 
   6223   bool hasMemory = false;
   6224 
   6225   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   6226   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   6227   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   6228     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
   6229     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
   6230 
   6231     MVT OpVT = MVT::Other;
   6232 
   6233     // Compute the value type for each operand.
   6234     switch (OpInfo.Type) {
   6235     case InlineAsm::isOutput:
   6236       // Indirect outputs just consume an argument.
   6237       if (OpInfo.isIndirect) {
   6238         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   6239         break;
   6240       }
   6241 
   6242       // The return value of the call is this value.  As such, there is no
   6243       // corresponding argument.
   6244       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   6245       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   6246         OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
   6247       } else {
   6248         assert(ResNo == 0 && "Asm only has one result!");
   6249         OpVT = TLI->getSimpleValueType(CS.getType());
   6250       }
   6251       ++ResNo;
   6252       break;
   6253     case InlineAsm::isInput:
   6254       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   6255       break;
   6256     case InlineAsm::isClobber:
   6257       // Nothing to do.
   6258       break;
   6259     }
   6260 
   6261     // If this is an input or an indirect output, process the call argument.
   6262     // BasicBlocks are labels, currently appearing only in asm's.
   6263     if (OpInfo.CallOperandVal) {
   6264       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
   6265         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
   6266       } else {
   6267         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
   6268       }
   6269 
   6270       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
   6271         getSimpleVT();
   6272     }
   6273 
   6274     OpInfo.ConstraintVT = OpVT;
   6275 
   6276     // Indirect operand accesses access memory.
   6277     if (OpInfo.isIndirect)
   6278       hasMemory = true;
   6279     else {
   6280       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
   6281         TargetLowering::ConstraintType
   6282           CType = TLI->getConstraintType(OpInfo.Codes[j]);
   6283         if (CType == TargetLowering::C_Memory) {
   6284           hasMemory = true;
   6285           break;
   6286         }
   6287       }
   6288     }
   6289   }
   6290 
   6291   SDValue Chain, Flag;
   6292 
   6293   // We won't need to flush pending loads if this asm doesn't touch
   6294   // memory and is nonvolatile.
   6295   if (hasMemory || IA->hasSideEffects())
   6296     Chain = getRoot();
   6297   else
   6298     Chain = DAG.getRoot();
   6299 
   6300   // Second pass over the constraints: compute which constraint option to use
   6301   // and assign registers to constraints that want a specific physreg.
   6302   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6303     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6304 
   6305     // If this is an output operand with a matching input operand, look up the
   6306     // matching input. If their types mismatch, e.g. one is an integer, the
   6307     // other is floating point, or their sizes are different, flag it as an
   6308     // error.
   6309     if (OpInfo.hasMatchingInput()) {
   6310       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   6311 
   6312       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   6313         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   6314           TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   6315                                             OpInfo.ConstraintVT);
   6316         std::pair<unsigned, const TargetRegisterClass*> InputRC =
   6317           TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
   6318                                             Input.ConstraintVT);
   6319         if ((OpInfo.ConstraintVT.isInteger() !=
   6320              Input.ConstraintVT.isInteger()) ||
   6321             (MatchRC.second != InputRC.second)) {
   6322           report_fatal_error("Unsupported asm: input constraint"
   6323                              " with a matching output constraint of"
   6324                              " incompatible type!");
   6325         }
   6326         Input.ConstraintVT = OpInfo.ConstraintVT;
   6327       }
   6328     }
   6329 
   6330     // Compute the constraint code and ConstraintType to use.
   6331     TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
   6332 
   6333     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   6334         OpInfo.Type == InlineAsm::isClobber)
   6335       continue;
   6336 
   6337     // If this is a memory input, and if the operand is not indirect, do what we
   6338     // need to to provide an address for the memory input.
   6339     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   6340         !OpInfo.isIndirect) {
   6341       assert((OpInfo.isMultipleAlternative ||
   6342               (OpInfo.Type == InlineAsm::isInput)) &&
   6343              "Can only indirectify direct input operands!");
   6344 
   6345       // Memory operands really want the address of the value.  If we don't have
   6346       // an indirect input, put it in the constpool if we can, otherwise spill
   6347       // it to a stack slot.
   6348       // TODO: This isn't quite right. We need to handle these according to
   6349       // the addressing mode that the constraint wants. Also, this may take
   6350       // an additional register for the computation and we don't want that
   6351       // either.
   6352 
   6353       // If the operand is a float, integer, or vector constant, spill to a
   6354       // constant pool entry to get its address.
   6355       const Value *OpVal = OpInfo.CallOperandVal;
   6356       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
   6357           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
   6358         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
   6359                                                  TLI->getPointerTy());
   6360       } else {
   6361         // Otherwise, create a stack slot and emit a store to it before the
   6362         // asm.
   6363         Type *Ty = OpVal->getType();
   6364         uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
   6365         unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
   6366         MachineFunction &MF = DAG.getMachineFunction();
   6367         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   6368         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
   6369         Chain = DAG.getStore(Chain, getCurSDLoc(),
   6370                              OpInfo.CallOperand, StackSlot,
   6371                              MachinePointerInfo::getFixedStack(SSFI),
   6372                              false, false, 0);
   6373         OpInfo.CallOperand = StackSlot;
   6374       }
   6375 
   6376       // There is no longer a Value* corresponding to this operand.
   6377       OpInfo.CallOperandVal = nullptr;
   6378 
   6379       // It is now an indirect operand.
   6380       OpInfo.isIndirect = true;
   6381     }
   6382 
   6383     // If this constraint is for a specific register, allocate it before
   6384     // anything else.
   6385     if (OpInfo.ConstraintType == TargetLowering::C_Register)
   6386       GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
   6387   }
   6388 
   6389   // Second pass - Loop over all of the operands, assigning virtual or physregs
   6390   // to register class operands.
   6391   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6392     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6393 
   6394     // C_Register operands have already been allocated, Other/Memory don't need
   6395     // to be.
   6396     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
   6397       GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
   6398   }
   6399 
   6400   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
   6401   std::vector<SDValue> AsmNodeOperands;
   6402   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
   6403   AsmNodeOperands.push_back(
   6404           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
   6405                                       TLI->getPointerTy()));
   6406 
   6407   // If we have a !srcloc metadata node associated with it, we want to attach
   6408   // this to the ultimately generated inline asm machineinstr.  To do this, we
   6409   // pass in the third operand as this (potentially null) inline asm MDNode.
   6410   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
   6411   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
   6412 
   6413   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
   6414   // bits as operand 3.
   6415   unsigned ExtraInfo = 0;
   6416   if (IA->hasSideEffects())
   6417     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
   6418   if (IA->isAlignStack())
   6419     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
   6420   // Set the asm dialect.
   6421   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
   6422 
   6423   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
   6424   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   6425     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   6426 
   6427     // Compute the constraint code and ConstraintType to use.
   6428     TLI->ComputeConstraintToUse(OpInfo, SDValue());
   6429 
   6430     // Ideally, we would only check against memory constraints.  However, the
   6431     // meaning of an other constraint can be target-specific and we can't easily
   6432     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
   6433     // for other constriants as well.
   6434     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
   6435         OpInfo.ConstraintType == TargetLowering::C_Other) {
   6436       if (OpInfo.Type == InlineAsm::isInput)
   6437         ExtraInfo |= InlineAsm::Extra_MayLoad;
   6438       else if (OpInfo.Type == InlineAsm::isOutput)
   6439         ExtraInfo |= InlineAsm::Extra_MayStore;
   6440       else if (OpInfo.Type == InlineAsm::isClobber)
   6441         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
   6442     }
   6443   }
   6444 
   6445   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
   6446                                                   TLI->getPointerTy()));
   6447 
   6448   // Loop over all of the inputs, copying the operand values into the
   6449   // appropriate registers and processing the output regs.
   6450   RegsForValue RetValRegs;
   6451 
   6452   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
   6453   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
   6454 
   6455   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6456     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6457 
   6458     switch (OpInfo.Type) {
   6459     case InlineAsm::isOutput: {
   6460       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
   6461           OpInfo.ConstraintType != TargetLowering::C_Register) {
   6462         // Memory output, or 'other' output (e.g. 'X' constraint).
   6463         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
   6464 
   6465         // Add information to the INLINEASM node to know about this output.
   6466         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6467         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
   6468                                                         TLI->getPointerTy()));
   6469         AsmNodeOperands.push_back(OpInfo.CallOperand);
   6470         break;
   6471       }
   6472 
   6473       // Otherwise, this is a register or register class output.
   6474 
   6475       // Copy the output from the appropriate register.  Find a register that
   6476       // we can use.
   6477       if (OpInfo.AssignedRegs.Regs.empty()) {
   6478         LLVMContext &Ctx = *DAG.getContext();
   6479         Ctx.emitError(CS.getInstruction(),
   6480                       "couldn't allocate output register for constraint '" +
   6481                           Twine(OpInfo.ConstraintCode) + "'");
   6482         return;
   6483       }
   6484 
   6485       // If this is an indirect operand, store through the pointer after the
   6486       // asm.
   6487       if (OpInfo.isIndirect) {
   6488         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
   6489                                                       OpInfo.CallOperandVal));
   6490       } else {
   6491         // This is the result value of the call.
   6492         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   6493         // Concatenate this output onto the outputs list.
   6494         RetValRegs.append(OpInfo.AssignedRegs);
   6495       }
   6496 
   6497       // Add information to the INLINEASM node to know that this register is
   6498       // set.
   6499       OpInfo.AssignedRegs
   6500           .AddInlineAsmOperands(OpInfo.isEarlyClobber
   6501                                     ? InlineAsm::Kind_RegDefEarlyClobber
   6502                                     : InlineAsm::Kind_RegDef,
   6503                                 false, 0, DAG, AsmNodeOperands);
   6504       break;
   6505     }
   6506     case InlineAsm::isInput: {
   6507       SDValue InOperandVal = OpInfo.CallOperand;
   6508 
   6509       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
   6510         // If this is required to match an output register we have already set,
   6511         // just use its register.
   6512         unsigned OperandNo = OpInfo.getMatchedOperand();
   6513 
   6514         // Scan until we find the definition we already emitted of this operand.
   6515         // When we find it, create a RegsForValue operand.
   6516         unsigned CurOp = InlineAsm::Op_FirstOperand;
   6517         for (; OperandNo; --OperandNo) {
   6518           // Advance to the next operand.
   6519           unsigned OpFlag =
   6520             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6521           assert((InlineAsm::isRegDefKind(OpFlag) ||
   6522                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
   6523                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
   6524           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
   6525         }
   6526 
   6527         unsigned OpFlag =
   6528           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6529         if (InlineAsm::isRegDefKind(OpFlag) ||
   6530             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
   6531           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
   6532           if (OpInfo.isIndirect) {
   6533             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
   6534             LLVMContext &Ctx = *DAG.getContext();
   6535             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
   6536                                                " don't know how to handle tied "
   6537                                                "indirect register inputs");
   6538             return;
   6539           }
   6540 
   6541           RegsForValue MatchedRegs;
   6542           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
   6543           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
   6544           MatchedRegs.RegVTs.push_back(RegVT);
   6545           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
   6546           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
   6547                i != e; ++i) {
   6548             if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
   6549               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
   6550             else {
   6551               LLVMContext &Ctx = *DAG.getContext();
   6552               Ctx.emitError(CS.getInstruction(),
   6553                             "inline asm error: This value"
   6554                             " type register class is not natively supported!");
   6555               return;
   6556             }
   6557           }
   6558           // Use the produced MatchedRegs object to
   6559           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
   6560                                     Chain, &Flag, CS.getInstruction());
   6561           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
   6562                                            true, OpInfo.getMatchedOperand(),
   6563                                            DAG, AsmNodeOperands);
   6564           break;
   6565         }
   6566 
   6567         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
   6568         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
   6569                "Unexpected number of operands");
   6570         // Add information to the INLINEASM node to know about this input.
   6571         // See InlineAsm.h isUseOperandTiedToDef.
   6572         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
   6573                                                     OpInfo.getMatchedOperand());
   6574         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
   6575                                                         TLI->getPointerTy()));
   6576         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
   6577         break;
   6578       }
   6579 
   6580       // Treat indirect 'X' constraint as memory.
   6581       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
   6582           OpInfo.isIndirect)
   6583         OpInfo.ConstraintType = TargetLowering::C_Memory;
   6584 
   6585       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
   6586         std::vector<SDValue> Ops;
   6587         TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
   6588                                           Ops, DAG);
   6589         if (Ops.empty()) {
   6590           LLVMContext &Ctx = *DAG.getContext();
   6591           Ctx.emitError(CS.getInstruction(),
   6592                         "invalid operand for inline asm constraint '" +
   6593                             Twine(OpInfo.ConstraintCode) + "'");
   6594           return;
   6595         }
   6596 
   6597         // Add information to the INLINEASM node to know about this input.
   6598         unsigned ResOpType =
   6599           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
   6600         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6601                                                         TLI->getPointerTy()));
   6602         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
   6603         break;
   6604       }
   6605 
   6606       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
   6607         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
   6608         assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
   6609                "Memory operands expect pointer values");
   6610 
   6611         // Add information to the INLINEASM node to know about this input.
   6612         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6613         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6614                                                         TLI->getPointerTy()));
   6615         AsmNodeOperands.push_back(InOperandVal);
   6616         break;
   6617       }
   6618 
   6619       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
   6620               OpInfo.ConstraintType == TargetLowering::C_Register) &&
   6621              "Unknown constraint type!");
   6622 
   6623       // TODO: Support this.
   6624       if (OpInfo.isIndirect) {
   6625         LLVMContext &Ctx = *DAG.getContext();
   6626         Ctx.emitError(CS.getInstruction(),
   6627                       "Don't know how to handle indirect register inputs yet "
   6628                       "for constraint '" +
   6629                           Twine(OpInfo.ConstraintCode) + "'");
   6630         return;
   6631       }
   6632 
   6633       // Copy the input into the appropriate registers.
   6634       if (OpInfo.AssignedRegs.Regs.empty()) {
   6635         LLVMContext &Ctx = *DAG.getContext();
   6636         Ctx.emitError(CS.getInstruction(),
   6637                       "couldn't allocate input reg for constraint '" +
   6638                           Twine(OpInfo.ConstraintCode) + "'");
   6639         return;
   6640       }
   6641 
   6642       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
   6643                                         Chain, &Flag, CS.getInstruction());
   6644 
   6645       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
   6646                                                DAG, AsmNodeOperands);
   6647       break;
   6648     }
   6649     case InlineAsm::isClobber: {
   6650       // Add the clobbered value to the operand list, so that the register
   6651       // allocator is aware that the physreg got clobbered.
   6652       if (!OpInfo.AssignedRegs.Regs.empty())
   6653         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
   6654                                                  false, 0, DAG,
   6655                                                  AsmNodeOperands);
   6656       break;
   6657     }
   6658     }
   6659   }
   6660 
   6661   // Finish up input operands.  Set the input chain and add the flag last.
   6662   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
   6663   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
   6664 
   6665   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
   6666                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
   6667   Flag = Chain.getValue(1);
   6668 
   6669   // If this asm returns a register value, copy the result from that register
   6670   // and set it as the value of the call.
   6671   if (!RetValRegs.Regs.empty()) {
   6672     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
   6673                                              Chain, &Flag, CS.getInstruction());
   6674 
   6675     // FIXME: Why don't we do this for inline asms with MRVs?
   6676     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
   6677       EVT ResultType = TLI->getValueType(CS.getType());
   6678 
   6679       // If any of the results of the inline asm is a vector, it may have the
   6680       // wrong width/num elts.  This can happen for register classes that can
   6681       // contain multiple different value types.  The preg or vreg allocated may
   6682       // not have the same VT as was expected.  Convert it to the right type
   6683       // with bit_convert.
   6684       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
   6685         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
   6686                           ResultType, Val);
   6687 
   6688       } else if (ResultType != Val.getValueType() &&
   6689                  ResultType.isInteger() && Val.getValueType().isInteger()) {
   6690         // If a result value was tied to an input value, the computed result may
   6691         // have a wider width than the expected result.  Extract the relevant
   6692         // portion.
   6693         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
   6694       }
   6695 
   6696       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
   6697     }
   6698 
   6699     setValue(CS.getInstruction(), Val);
   6700     // Don't need to use this as a chain in this case.
   6701     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
   6702       return;
   6703   }
   6704 
   6705   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
   6706 
   6707   // Process indirect outputs, first output all of the flagged copies out of
   6708   // physregs.
   6709   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
   6710     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
   6711     const Value *Ptr = IndirectStoresToEmit[i].second;
   6712     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
   6713                                              Chain, &Flag, IA);
   6714     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
   6715   }
   6716 
   6717   // Emit the non-flagged stores from the physregs.
   6718   SmallVector<SDValue, 8> OutChains;
   6719   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
   6720     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
   6721                                StoresToEmit[i].first,
   6722                                getValue(StoresToEmit[i].second),
   6723                                MachinePointerInfo(StoresToEmit[i].second),
   6724                                false, false, 0);
   6725     OutChains.push_back(Val);
   6726   }
   6727 
   6728   if (!OutChains.empty())
   6729     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
   6730 
   6731   DAG.setRoot(Chain);
   6732 }
   6733 
   6734 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
   6735   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
   6736                           MVT::Other, getRoot(),
   6737                           getValue(I.getArgOperand(0)),
   6738                           DAG.getSrcValue(I.getArgOperand(0))));
   6739 }
   6740 
   6741 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
   6742   const TargetLowering *TLI = TM.getTargetLowering();
   6743   const DataLayout &DL = *TLI->getDataLayout();
   6744   SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
   6745                            getRoot(), getValue(I.getOperand(0)),
   6746                            DAG.getSrcValue(I.getOperand(0)),
   6747                            DL.getABITypeAlignment(I.getType()));
   6748   setValue(&I, V);
   6749   DAG.setRoot(V.getValue(1));
   6750 }
   6751 
   6752 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
   6753   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
   6754                           MVT::Other, getRoot(),
   6755                           getValue(I.getArgOperand(0)),
   6756                           DAG.getSrcValue(I.getArgOperand(0))));
   6757 }
   6758 
   6759 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
   6760   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
   6761                           MVT::Other, getRoot(),
   6762                           getValue(I.getArgOperand(0)),
   6763                           getValue(I.getArgOperand(1)),
   6764                           DAG.getSrcValue(I.getArgOperand(0)),
   6765                           DAG.getSrcValue(I.getArgOperand(1))));
   6766 }
   6767 
   6768 /// \brief Lower an argument list according to the target calling convention.
   6769 ///
   6770 /// \return A tuple of <return-value, token-chain>
   6771 ///
   6772 /// This is a helper for lowering intrinsics that follow a target calling
   6773 /// convention or require stack pointer adjustment. Only a subset of the
   6774 /// intrinsic's operands need to participate in the calling convention.
   6775 std::pair<SDValue, SDValue>
   6776 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
   6777                                        unsigned NumArgs, SDValue Callee,
   6778                                        bool useVoidTy) {
   6779   TargetLowering::ArgListTy Args;
   6780   Args.reserve(NumArgs);
   6781 
   6782   // Populate the argument list.
   6783   // Attributes for args start at offset 1, after the return attribute.
   6784   ImmutableCallSite CS(&CI);
   6785   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
   6786        ArgI != ArgE; ++ArgI) {
   6787     const Value *V = CI.getOperand(ArgI);
   6788 
   6789     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
   6790 
   6791     TargetLowering::ArgListEntry Entry;
   6792     Entry.Node = getValue(V);
   6793     Entry.Ty = V->getType();
   6794     Entry.setAttributes(&CS, AttrI);
   6795     Args.push_back(Entry);
   6796   }
   6797 
   6798   Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
   6799   TargetLowering::CallLoweringInfo CLI(DAG);
   6800   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
   6801     .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
   6802     .setDiscardResult(!CI.use_empty());
   6803 
   6804   const TargetLowering *TLI = TM.getTargetLowering();
   6805   return TLI->LowerCallTo(CLI);
   6806 }
   6807 
   6808 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
   6809 /// or patchpoint target node's operand list.
   6810 ///
   6811 /// Constants are converted to TargetConstants purely as an optimization to
   6812 /// avoid constant materialization and register allocation.
   6813 ///
   6814 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
   6815 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
   6816 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
   6817 /// address materialization and register allocation, but may also be required
   6818 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
   6819 /// alloca in the entry block, then the runtime may assume that the alloca's
   6820 /// StackMap location can be read immediately after compilation and that the
   6821 /// location is valid at any point during execution (this is similar to the
   6822 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
   6823 /// only available in a register, then the runtime would need to trap when
   6824 /// execution reaches the StackMap in order to read the alloca's location.
   6825 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
   6826                                 SmallVectorImpl<SDValue> &Ops,
   6827                                 SelectionDAGBuilder &Builder) {
   6828   for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
   6829     SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
   6830     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
   6831       Ops.push_back(
   6832         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
   6833       Ops.push_back(
   6834         Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
   6835     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
   6836       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
   6837       Ops.push_back(
   6838         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
   6839     } else
   6840       Ops.push_back(OpVal);
   6841   }
   6842 }
   6843 
   6844 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
   6845 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
   6846   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
   6847   //                                  [live variables...])
   6848 
   6849   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
   6850 
   6851   SDValue Chain, InFlag, Callee, NullPtr;
   6852   SmallVector<SDValue, 32> Ops;
   6853 
   6854   SDLoc DL = getCurSDLoc();
   6855   Callee = getValue(CI.getCalledValue());
   6856   NullPtr = DAG.getIntPtrConstant(0, true);
   6857 
   6858   // The stackmap intrinsic only records the live variables (the arguemnts
   6859   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
   6860   // intrinsic, this won't be lowered to a function call. This means we don't
   6861   // have to worry about calling conventions and target specific lowering code.
   6862   // Instead we perform the call lowering right here.
   6863   //
   6864   // chain, flag = CALLSEQ_START(chain, 0)
   6865   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
   6866   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
   6867   //
   6868   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
   6869   InFlag = Chain.getValue(1);
   6870 
   6871   // Add the <id> and <numBytes> constants.
   6872   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
   6873   Ops.push_back(DAG.getTargetConstant(
   6874                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
   6875   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
   6876   Ops.push_back(DAG.getTargetConstant(
   6877                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
   6878 
   6879   // Push live variables for the stack map.
   6880   addStackMapLiveVars(CI, 2, Ops, *this);
   6881 
   6882   // We are not pushing any register mask info here on the operands list,
   6883   // because the stackmap doesn't clobber anything.
   6884 
   6885   // Push the chain and the glue flag.
   6886   Ops.push_back(Chain);
   6887   Ops.push_back(InFlag);
   6888 
   6889   // Create the STACKMAP node.
   6890   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   6891   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
   6892   Chain = SDValue(SM, 0);
   6893   InFlag = Chain.getValue(1);
   6894 
   6895   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
   6896 
   6897   // Stackmaps don't generate values, so nothing goes into the NodeMap.
   6898 
   6899   // Set the root to the target-lowered call chain.
   6900   DAG.setRoot(Chain);
   6901 
   6902   // Inform the Frame Information that we have a stackmap in this function.
   6903   FuncInfo.MF->getFrameInfo()->setHasStackMap();
   6904 }
   6905 
   6906 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
   6907 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
   6908   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
   6909   //                                                 i32 <numBytes>,
   6910   //                                                 i8* <target>,
   6911   //                                                 i32 <numArgs>,
   6912   //                                                 [Args...],
   6913   //                                                 [live variables...])
   6914 
   6915   CallingConv::ID CC = CI.getCallingConv();
   6916   bool isAnyRegCC = CC == CallingConv::AnyReg;
   6917   bool hasDef = !CI.getType()->isVoidTy();
   6918   SDValue Callee = getValue(CI.getOperand(2)); // <target>
   6919 
   6920   // Get the real number of arguments participating in the call <numArgs>
   6921   SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
   6922   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
   6923 
   6924   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
   6925   // Intrinsics include all meta-operands up to but not including CC.
   6926   unsigned NumMetaOpers = PatchPointOpers::CCPos;
   6927   assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
   6928          "Not enough arguments provided to the patchpoint intrinsic");
   6929 
   6930   // For AnyRegCC the arguments are lowered later on manually.
   6931   unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
   6932   std::pair<SDValue, SDValue> Result =
   6933     LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
   6934 
   6935   // Set the root to the target-lowered call chain.
   6936   SDValue Chain = Result.second;
   6937   DAG.setRoot(Chain);
   6938 
   6939   SDNode *CallEnd = Chain.getNode();
   6940   if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
   6941     CallEnd = CallEnd->getOperand(0).getNode();
   6942 
   6943   /// Get a call instruction from the call sequence chain.
   6944   /// Tail calls are not allowed.
   6945   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
   6946          "Expected a callseq node.");
   6947   SDNode *Call = CallEnd->getOperand(0).getNode();
   6948   bool hasGlue = Call->getGluedNode();
   6949 
   6950   // Replace the target specific call node with the patchable intrinsic.
   6951   SmallVector<SDValue, 8> Ops;
   6952 
   6953   // Add the <id> and <numBytes> constants.
   6954   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
   6955   Ops.push_back(DAG.getTargetConstant(
   6956                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
   6957   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
   6958   Ops.push_back(DAG.getTargetConstant(
   6959                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
   6960 
   6961   // Assume that the Callee is a constant address.
   6962   // FIXME: handle function symbols in the future.
   6963   Ops.push_back(
   6964     DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
   6965                           /*isTarget=*/true));
   6966 
   6967   // Adjust <numArgs> to account for any arguments that have been passed on the
   6968   // stack instead.
   6969   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
   6970   unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
   6971   NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
   6972   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
   6973 
   6974   // Add the calling convention
   6975   Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
   6976 
   6977   // Add the arguments we omitted previously. The register allocator should
   6978   // place these in any free register.
   6979   if (isAnyRegCC)
   6980     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
   6981       Ops.push_back(getValue(CI.getArgOperand(i)));
   6982 
   6983   // Push the arguments from the call instruction up to the register mask.
   6984   SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
   6985   for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
   6986     Ops.push_back(*i);
   6987 
   6988   // Push live variables for the stack map.
   6989   addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
   6990 
   6991   // Push the register mask info.
   6992   if (hasGlue)
   6993     Ops.push_back(*(Call->op_end()-2));
   6994   else
   6995     Ops.push_back(*(Call->op_end()-1));
   6996 
   6997   // Push the chain (this is originally the first operand of the call, but
   6998   // becomes now the last or second to last operand).
   6999   Ops.push_back(*(Call->op_begin()));
   7000 
   7001   // Push the glue flag (last operand).
   7002   if (hasGlue)
   7003     Ops.push_back(*(Call->op_end()-1));
   7004 
   7005   SDVTList NodeTys;
   7006   if (isAnyRegCC && hasDef) {
   7007     // Create the return types based on the intrinsic definition
   7008     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7009     SmallVector<EVT, 3> ValueVTs;
   7010     ComputeValueVTs(TLI, CI.getType(), ValueVTs);
   7011     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
   7012 
   7013     // There is always a chain and a glue type at the end
   7014     ValueVTs.push_back(MVT::Other);
   7015     ValueVTs.push_back(MVT::Glue);
   7016     NodeTys = DAG.getVTList(ValueVTs);
   7017   } else
   7018     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7019 
   7020   // Replace the target specific call node with a PATCHPOINT node.
   7021   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
   7022                                          getCurSDLoc(), NodeTys, Ops);
   7023 
   7024   // Update the NodeMap.
   7025   if (hasDef) {
   7026     if (isAnyRegCC)
   7027       setValue(&CI, SDValue(MN, 0));
   7028     else
   7029       setValue(&CI, Result.first);
   7030   }
   7031 
   7032   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
   7033   // call sequence. Furthermore the location of the chain and glue can change
   7034   // when the AnyReg calling convention is used and the intrinsic returns a
   7035   // value.
   7036   if (isAnyRegCC && hasDef) {
   7037     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
   7038     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
   7039     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
   7040   } else
   7041     DAG.ReplaceAllUsesWith(Call, MN);
   7042   DAG.DeleteNode(Call);
   7043 
   7044   // Inform the Frame Information that we have a patchpoint in this function.
   7045   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
   7046 }
   7047 
   7048 /// Returns an AttributeSet representing the attributes applied to the return
   7049 /// value of the given call.
   7050 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
   7051   SmallVector<Attribute::AttrKind, 2> Attrs;
   7052   if (CLI.RetSExt)
   7053     Attrs.push_back(Attribute::SExt);
   7054   if (CLI.RetZExt)
   7055     Attrs.push_back(Attribute::ZExt);
   7056   if (CLI.IsInReg)
   7057     Attrs.push_back(Attribute::InReg);
   7058 
   7059   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
   7060                            Attrs);
   7061 }
   7062 
   7063 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
   7064 /// implementation, which just calls LowerCall.
   7065 /// FIXME: When all targets are
   7066 /// migrated to using LowerCall, this hook should be integrated into SDISel.
   7067 std::pair<SDValue, SDValue>
   7068 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
   7069   // Handle the incoming return values from the call.
   7070   CLI.Ins.clear();
   7071   Type *OrigRetTy = CLI.RetTy;
   7072   SmallVector<EVT, 4> RetTys;
   7073   SmallVector<uint64_t, 4> Offsets;
   7074   ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
   7075 
   7076   SmallVector<ISD::OutputArg, 4> Outs;
   7077   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
   7078 
   7079   bool CanLowerReturn =
   7080       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
   7081                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
   7082 
   7083   SDValue DemoteStackSlot;
   7084   int DemoteStackIdx = -100;
   7085   if (!CanLowerReturn) {
   7086     // FIXME: equivalent assert?
   7087     // assert(!CS.hasInAllocaArgument() &&
   7088     //        "sret demotion is incompatible with inalloca");
   7089     uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
   7090     unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
   7091     MachineFunction &MF = CLI.DAG.getMachineFunction();
   7092     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   7093     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
   7094 
   7095     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
   7096     ArgListEntry Entry;
   7097     Entry.Node = DemoteStackSlot;
   7098     Entry.Ty = StackSlotPtrType;
   7099     Entry.isSExt = false;
   7100     Entry.isZExt = false;
   7101     Entry.isInReg = false;
   7102     Entry.isSRet = true;
   7103     Entry.isNest = false;
   7104     Entry.isByVal = false;
   7105     Entry.isReturned = false;
   7106     Entry.Alignment = Align;
   7107     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
   7108     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
   7109   } else {
   7110     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   7111       EVT VT = RetTys[I];
   7112       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
   7113       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
   7114       for (unsigned i = 0; i != NumRegs; ++i) {
   7115         ISD::InputArg MyFlags;
   7116         MyFlags.VT = RegisterVT;
   7117         MyFlags.ArgVT = VT;
   7118         MyFlags.Used = CLI.IsReturnValueUsed;
   7119         if (CLI.RetSExt)
   7120           MyFlags.Flags.setSExt();
   7121         if (CLI.RetZExt)
   7122           MyFlags.Flags.setZExt();
   7123         if (CLI.IsInReg)
   7124           MyFlags.Flags.setInReg();
   7125         CLI.Ins.push_back(MyFlags);
   7126       }
   7127     }
   7128   }
   7129 
   7130   // Handle all of the outgoing arguments.
   7131   CLI.Outs.clear();
   7132   CLI.OutVals.clear();
   7133   ArgListTy &Args = CLI.getArgs();
   7134   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   7135     SmallVector<EVT, 4> ValueVTs;
   7136     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
   7137     Type *FinalType = Args[i].Ty;
   7138     if (Args[i].isByVal)
   7139       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
   7140     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
   7141         FinalType, CLI.CallConv, CLI.IsVarArg);
   7142     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
   7143          ++Value) {
   7144       EVT VT = ValueVTs[Value];
   7145       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
   7146       SDValue Op = SDValue(Args[i].Node.getNode(),
   7147                            Args[i].Node.getResNo() + Value);
   7148       ISD::ArgFlagsTy Flags;
   7149       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
   7150 
   7151       if (Args[i].isZExt)
   7152         Flags.setZExt();
   7153       if (Args[i].isSExt)
   7154         Flags.setSExt();
   7155       if (Args[i].isInReg)
   7156         Flags.setInReg();
   7157       if (Args[i].isSRet)
   7158         Flags.setSRet();
   7159       if (Args[i].isByVal)
   7160         Flags.setByVal();
   7161       if (Args[i].isInAlloca) {
   7162         Flags.setInAlloca();
   7163         // Set the byval flag for CCAssignFn callbacks that don't know about
   7164         // inalloca.  This way we can know how many bytes we should've allocated
   7165         // and how many bytes a callee cleanup function will pop.  If we port
   7166         // inalloca to more targets, we'll have to add custom inalloca handling
   7167         // in the various CC lowering callbacks.
   7168         Flags.setByVal();
   7169       }
   7170       if (Args[i].isByVal || Args[i].isInAlloca) {
   7171         PointerType *Ty = cast<PointerType>(Args[i].Ty);
   7172         Type *ElementTy = Ty->getElementType();
   7173         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
   7174         // For ByVal, alignment should come from FE.  BE will guess if this
   7175         // info is not there but there are cases it cannot get right.
   7176         unsigned FrameAlign;
   7177         if (Args[i].Alignment)
   7178           FrameAlign = Args[i].Alignment;
   7179         else
   7180           FrameAlign = getByValTypeAlignment(ElementTy);
   7181         Flags.setByValAlign(FrameAlign);
   7182       }
   7183       if (Args[i].isNest)
   7184         Flags.setNest();
   7185       if (NeedsRegBlock)
   7186         Flags.setInConsecutiveRegs();
   7187       Flags.setOrigAlign(OriginalAlignment);
   7188 
   7189       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
   7190       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
   7191       SmallVector<SDValue, 4> Parts(NumParts);
   7192       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   7193 
   7194       if (Args[i].isSExt)
   7195         ExtendKind = ISD::SIGN_EXTEND;
   7196       else if (Args[i].isZExt)
   7197         ExtendKind = ISD::ZERO_EXTEND;
   7198 
   7199       // Conservatively only handle 'returned' on non-vectors for now
   7200       if (Args[i].isReturned && !Op.getValueType().isVector()) {
   7201         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
   7202                "unexpected use of 'returned'");
   7203         // Before passing 'returned' to the target lowering code, ensure that
   7204         // either the register MVT and the actual EVT are the same size or that
   7205         // the return value and argument are extended in the same way; in these
   7206         // cases it's safe to pass the argument register value unchanged as the
   7207         // return register value (although it's at the target's option whether
   7208         // to do so)
   7209         // TODO: allow code generation to take advantage of partially preserved
   7210         // registers rather than clobbering the entire register when the
   7211         // parameter extension method is not compatible with the return
   7212         // extension method
   7213         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
   7214             (ExtendKind != ISD::ANY_EXTEND &&
   7215              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
   7216         Flags.setReturned();
   7217       }
   7218 
   7219       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
   7220                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
   7221 
   7222       for (unsigned j = 0; j != NumParts; ++j) {
   7223         // if it isn't first piece, alignment must be 1
   7224         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
   7225                                i < CLI.NumFixedArgs,
   7226                                i, j*Parts[j].getValueType().getStoreSize());
   7227         if (NumParts > 1 && j == 0)
   7228           MyFlags.Flags.setSplit();
   7229         else if (j != 0)
   7230           MyFlags.Flags.setOrigAlign(1);
   7231 
   7232         // Only mark the end at the last register of the last value.
   7233         if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1)
   7234           MyFlags.Flags.setInConsecutiveRegsLast();
   7235 
   7236         CLI.Outs.push_back(MyFlags);
   7237         CLI.OutVals.push_back(Parts[j]);
   7238       }
   7239     }
   7240   }
   7241 
   7242   SmallVector<SDValue, 4> InVals;
   7243   CLI.Chain = LowerCall(CLI, InVals);
   7244 
   7245   // Verify that the target's LowerCall behaved as expected.
   7246   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
   7247          "LowerCall didn't return a valid chain!");
   7248   assert((!CLI.IsTailCall || InVals.empty()) &&
   7249          "LowerCall emitted a return value for a tail call!");
   7250   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
   7251          "LowerCall didn't emit the correct number of values!");
   7252 
   7253   // For a tail call, the return value is merely live-out and there aren't
   7254   // any nodes in the DAG representing it. Return a special value to
   7255   // indicate that a tail call has been emitted and no more Instructions
   7256   // should be processed in the current block.
   7257   if (CLI.IsTailCall) {
   7258     CLI.DAG.setRoot(CLI.Chain);
   7259     return std::make_pair(SDValue(), SDValue());
   7260   }
   7261 
   7262   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
   7263           assert(InVals[i].getNode() &&
   7264                  "LowerCall emitted a null value!");
   7265           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
   7266                  "LowerCall emitted a value with the wrong type!");
   7267         });
   7268 
   7269   SmallVector<SDValue, 4> ReturnValues;
   7270   if (!CanLowerReturn) {
   7271     // The instruction result is the result of loading from the
   7272     // hidden sret parameter.
   7273     SmallVector<EVT, 1> PVTs;
   7274     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
   7275 
   7276     ComputeValueVTs(*this, PtrRetTy, PVTs);
   7277     assert(PVTs.size() == 1 && "Pointers should fit in one register");
   7278     EVT PtrVT = PVTs[0];
   7279 
   7280     unsigned NumValues = RetTys.size();
   7281     ReturnValues.resize(NumValues);
   7282     SmallVector<SDValue, 4> Chains(NumValues);
   7283 
   7284     for (unsigned i = 0; i < NumValues; ++i) {
   7285       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
   7286                                     CLI.DAG.getConstant(Offsets[i], PtrVT));
   7287       SDValue L = CLI.DAG.getLoad(
   7288           RetTys[i], CLI.DL, CLI.Chain, Add,
   7289           MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
   7290           false, false, 1);
   7291       ReturnValues[i] = L;
   7292       Chains[i] = L.getValue(1);
   7293     }
   7294 
   7295     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
   7296   } else {
   7297     // Collect the legal value parts into potentially illegal values
   7298     // that correspond to the original function's return values.
   7299     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   7300     if (CLI.RetSExt)
   7301       AssertOp = ISD::AssertSext;
   7302     else if (CLI.RetZExt)
   7303       AssertOp = ISD::AssertZext;
   7304     unsigned CurReg = 0;
   7305     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   7306       EVT VT = RetTys[I];
   7307       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
   7308       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
   7309 
   7310       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
   7311                                               NumRegs, RegisterVT, VT, nullptr,
   7312                                               AssertOp));
   7313       CurReg += NumRegs;
   7314     }
   7315 
   7316     // For a function returning void, there is no return value. We can't create
   7317     // such a node, so we just return a null return value in that case. In
   7318     // that case, nothing will actually look at the value.
   7319     if (ReturnValues.empty())
   7320       return std::make_pair(SDValue(), CLI.Chain);
   7321   }
   7322 
   7323   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
   7324                                 CLI.DAG.getVTList(RetTys), ReturnValues);
   7325   return std::make_pair(Res, CLI.Chain);
   7326 }
   7327 
   7328 void TargetLowering::LowerOperationWrapper(SDNode *N,
   7329                                            SmallVectorImpl<SDValue> &Results,
   7330                                            SelectionDAG &DAG) const {
   7331   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
   7332   if (Res.getNode())
   7333     Results.push_back(Res);
   7334 }
   7335 
   7336 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   7337   llvm_unreachable("LowerOperation not implemented for this target!");
   7338 }
   7339 
   7340 void
   7341 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
   7342   SDValue Op = getNonRegisterValue(V);
   7343   assert((Op.getOpcode() != ISD::CopyFromReg ||
   7344           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
   7345          "Copy from a reg to the same reg!");
   7346   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
   7347 
   7348   const TargetLowering *TLI = TM.getTargetLowering();
   7349   RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
   7350   SDValue Chain = DAG.getEntryNode();
   7351   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V);
   7352   PendingExports.push_back(Chain);
   7353 }
   7354 
   7355 #include "llvm/CodeGen/SelectionDAGISel.h"
   7356 
   7357 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
   7358 /// entry block, return true.  This includes arguments used by switches, since
   7359 /// the switch may expand into multiple basic blocks.
   7360 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
   7361   // With FastISel active, we may be splitting blocks, so force creation
   7362   // of virtual registers for all non-dead arguments.
   7363   if (FastISel)
   7364     return A->use_empty();
   7365 
   7366   const BasicBlock *Entry = A->getParent()->begin();
   7367   for (const User *U : A->users())
   7368     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
   7369       return false;  // Use not in entry block.
   7370 
   7371   return true;
   7372 }
   7373 
   7374 void SelectionDAGISel::LowerArguments(const Function &F) {
   7375   SelectionDAG &DAG = SDB->DAG;
   7376   SDLoc dl = SDB->getCurSDLoc();
   7377   const TargetLowering *TLI = getTargetLowering();
   7378   const DataLayout *DL = TLI->getDataLayout();
   7379   SmallVector<ISD::InputArg, 16> Ins;
   7380 
   7381   if (!FuncInfo->CanLowerReturn) {
   7382     // Put in an sret pointer parameter before all the other parameters.
   7383     SmallVector<EVT, 1> ValueVTs;
   7384     ComputeValueVTs(*getTargetLowering(),
   7385                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
   7386 
   7387     // NOTE: Assuming that a pointer will never break down to more than one VT
   7388     // or one register.
   7389     ISD::ArgFlagsTy Flags;
   7390     Flags.setSRet();
   7391     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
   7392     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
   7393     Ins.push_back(RetArg);
   7394   }
   7395 
   7396   // Set up the incoming argument description vector.
   7397   unsigned Idx = 1;
   7398   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
   7399        I != E; ++I, ++Idx) {
   7400     SmallVector<EVT, 4> ValueVTs;
   7401     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
   7402     bool isArgValueUsed = !I->use_empty();
   7403     unsigned PartBase = 0;
   7404     Type *FinalType = I->getType();
   7405     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
   7406       FinalType = cast<PointerType>(FinalType)->getElementType();
   7407     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
   7408         FinalType, F.getCallingConv(), F.isVarArg());
   7409     for (unsigned Value = 0, NumValues = ValueVTs.size();
   7410          Value != NumValues; ++Value) {
   7411       EVT VT = ValueVTs[Value];
   7412       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
   7413       ISD::ArgFlagsTy Flags;
   7414       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
   7415 
   7416       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
   7417         Flags.setZExt();
   7418       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
   7419         Flags.setSExt();
   7420       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
   7421         Flags.setInReg();
   7422       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
   7423         Flags.setSRet();
   7424       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
   7425         Flags.setByVal();
   7426       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
   7427         Flags.setInAlloca();
   7428         // Set the byval flag for CCAssignFn callbacks that don't know about
   7429         // inalloca.  This way we can know how many bytes we should've allocated
   7430         // and how many bytes a callee cleanup function will pop.  If we port
   7431         // inalloca to more targets, we'll have to add custom inalloca handling
   7432         // in the various CC lowering callbacks.
   7433         Flags.setByVal();
   7434       }
   7435       if (Flags.isByVal() || Flags.isInAlloca()) {
   7436         PointerType *Ty = cast<PointerType>(I->getType());
   7437         Type *ElementTy = Ty->getElementType();
   7438         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
   7439         // For ByVal, alignment should be passed from FE.  BE will guess if
   7440         // this info is not there but there are cases it cannot get right.
   7441         unsigned FrameAlign;
   7442         if (F.getParamAlignment(Idx))
   7443           FrameAlign = F.getParamAlignment(Idx);
   7444         else
   7445           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
   7446         Flags.setByValAlign(FrameAlign);
   7447       }
   7448       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
   7449         Flags.setNest();
   7450       if (NeedsRegBlock)
   7451         Flags.setInConsecutiveRegs();
   7452       Flags.setOrigAlign(OriginalAlignment);
   7453 
   7454       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
   7455       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
   7456       for (unsigned i = 0; i != NumRegs; ++i) {
   7457         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
   7458                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
   7459         if (NumRegs > 1 && i == 0)
   7460           MyFlags.Flags.setSplit();
   7461         // if it isn't first piece, alignment must be 1
   7462         else if (i > 0)
   7463           MyFlags.Flags.setOrigAlign(1);
   7464 
   7465         // Only mark the end at the last register of the last value.
   7466         if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1)
   7467           MyFlags.Flags.setInConsecutiveRegsLast();
   7468 
   7469         Ins.push_back(MyFlags);
   7470       }
   7471       PartBase += VT.getStoreSize();
   7472     }
   7473   }
   7474 
   7475   // Call the target to set up the argument values.
   7476   SmallVector<SDValue, 8> InVals;
   7477   SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
   7478                                               F.isVarArg(), Ins,
   7479                                               dl, DAG, InVals);
   7480 
   7481   // Verify that the target's LowerFormalArguments behaved as expected.
   7482   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
   7483          "LowerFormalArguments didn't return a valid chain!");
   7484   assert(InVals.size() == Ins.size() &&
   7485          "LowerFormalArguments didn't emit the correct number of values!");
   7486   DEBUG({
   7487       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   7488         assert(InVals[i].getNode() &&
   7489                "LowerFormalArguments emitted a null value!");
   7490         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   7491                "LowerFormalArguments emitted a value with the wrong type!");
   7492       }
   7493     });
   7494 
   7495   // Update the DAG with the new chain value resulting from argument lowering.
   7496   DAG.setRoot(NewRoot);
   7497 
   7498   // Set up the argument values.
   7499   unsigned i = 0;
   7500   Idx = 1;
   7501   if (!FuncInfo->CanLowerReturn) {
   7502     // Create a virtual register for the sret pointer, and put in a copy
   7503     // from the sret argument into it.
   7504     SmallVector<EVT, 1> ValueVTs;
   7505     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   7506     MVT VT = ValueVTs[0].getSimpleVT();
   7507     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
   7508     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   7509     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
   7510                                         RegVT, VT, nullptr, AssertOp);
   7511 
   7512     MachineFunction& MF = SDB->DAG.getMachineFunction();
   7513     MachineRegisterInfo& RegInfo = MF.getRegInfo();
   7514     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
   7515     FuncInfo->DemoteRegister = SRetReg;
   7516     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
   7517                                     SRetReg, ArgValue);
   7518     DAG.setRoot(NewRoot);
   7519 
   7520     // i indexes lowered arguments.  Bump it past the hidden sret argument.
   7521     // Idx indexes LLVM arguments.  Don't touch it.
   7522     ++i;
   7523   }
   7524 
   7525   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   7526       ++I, ++Idx) {
   7527     SmallVector<SDValue, 4> ArgValues;
   7528     SmallVector<EVT, 4> ValueVTs;
   7529     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
   7530     unsigned NumValues = ValueVTs.size();
   7531 
   7532     // If this argument is unused then remember its value. It is used to generate
   7533     // debugging information.
   7534     if (I->use_empty() && NumValues) {
   7535       SDB->setUnusedArgValue(I, InVals[i]);
   7536 
   7537       // Also remember any frame index for use in FastISel.
   7538       if (FrameIndexSDNode *FI =
   7539           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
   7540         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   7541     }
   7542 
   7543     for (unsigned Val = 0; Val != NumValues; ++Val) {
   7544       EVT VT = ValueVTs[Val];
   7545       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
   7546       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
   7547 
   7548       if (!I->use_empty()) {
   7549         ISD::NodeType AssertOp = ISD::DELETED_NODE;
   7550         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
   7551           AssertOp = ISD::AssertSext;
   7552         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
   7553           AssertOp = ISD::AssertZext;
   7554 
   7555         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
   7556                                              NumParts, PartVT, VT,
   7557                                              nullptr, AssertOp));
   7558       }
   7559 
   7560       i += NumParts;
   7561     }
   7562 
   7563     // We don't need to do anything else for unused arguments.
   7564     if (ArgValues.empty())
   7565       continue;
   7566 
   7567     // Note down frame index.
   7568     if (FrameIndexSDNode *FI =
   7569         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
   7570       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   7571 
   7572     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
   7573                                      SDB->getCurSDLoc());
   7574 
   7575     SDB->setValue(I, Res);
   7576     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
   7577       if (LoadSDNode *LNode =
   7578           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
   7579         if (FrameIndexSDNode *FI =
   7580             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
   7581         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   7582     }
   7583 
   7584     // If this argument is live outside of the entry block, insert a copy from
   7585     // wherever we got it to the vreg that other BB's will reference it as.
   7586     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
   7587       // If we can, though, try to skip creating an unnecessary vreg.
   7588       // FIXME: This isn't very clean... it would be nice to make this more
   7589       // general.  It's also subtly incompatible with the hacks FastISel
   7590       // uses with vregs.
   7591       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
   7592       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   7593         FuncInfo->ValueMap[I] = Reg;
   7594         continue;
   7595       }
   7596     }
   7597     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
   7598       FuncInfo->InitializeRegForValue(I);
   7599       SDB->CopyToExportRegsIfNeeded(I);
   7600     }
   7601   }
   7602 
   7603   assert(i == InVals.size() && "Argument register count mismatch!");
   7604 
   7605   // Finally, if the target has anything special to do, allow it to do so.
   7606   // FIXME: this should insert code into the DAG!
   7607   EmitFunctionEntryCode();
   7608 }
   7609 
   7610 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
   7611 /// ensure constants are generated when needed.  Remember the virtual registers
   7612 /// that need to be added to the Machine PHI nodes as input.  We cannot just
   7613 /// directly add them, because expansion might result in multiple MBB's for one
   7614 /// BB.  As such, the start of the BB might correspond to a different MBB than
   7615 /// the end.
   7616 ///
   7617 void
   7618 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   7619   const TerminatorInst *TI = LLVMBB->getTerminator();
   7620 
   7621   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   7622 
   7623   // Check successor nodes' PHI nodes that expect a constant to be available
   7624   // from this block.
   7625   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   7626     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   7627     if (!isa<PHINode>(SuccBB->begin())) continue;
   7628     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   7629 
   7630     // If this terminator has multiple identical successors (common for
   7631     // switches), only handle each succ once.
   7632     if (!SuccsHandled.insert(SuccMBB)) continue;
   7633 
   7634     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   7635 
   7636     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   7637     // nodes and Machine PHI nodes, but the incoming operands have not been
   7638     // emitted yet.
   7639     for (BasicBlock::const_iterator I = SuccBB->begin();
   7640          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   7641       // Ignore dead phi's.
   7642       if (PN->use_empty()) continue;
   7643 
   7644       // Skip empty types
   7645       if (PN->getType()->isEmptyTy())
   7646         continue;
   7647 
   7648       unsigned Reg;
   7649       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   7650 
   7651       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
   7652         unsigned &RegOut = ConstantsOut[C];
   7653         if (RegOut == 0) {
   7654           RegOut = FuncInfo.CreateRegs(C->getType());
   7655           CopyValueToVirtualRegister(C, RegOut);
   7656         }
   7657         Reg = RegOut;
   7658       } else {
   7659         DenseMap<const Value *, unsigned>::iterator I =
   7660           FuncInfo.ValueMap.find(PHIOp);
   7661         if (I != FuncInfo.ValueMap.end())
   7662           Reg = I->second;
   7663         else {
   7664           assert(isa<AllocaInst>(PHIOp) &&
   7665                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
   7666                  "Didn't codegen value into a register!??");
   7667           Reg = FuncInfo.CreateRegs(PHIOp->getType());
   7668           CopyValueToVirtualRegister(PHIOp, Reg);
   7669         }
   7670       }
   7671 
   7672       // Remember that this register needs to added to the machine PHI node as
   7673       // the input for this MBB.
   7674       SmallVector<EVT, 4> ValueVTs;
   7675       const TargetLowering *TLI = TM.getTargetLowering();
   7676       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
   7677       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
   7678         EVT VT = ValueVTs[vti];
   7679         unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
   7680         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
   7681           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
   7682         Reg += NumRegisters;
   7683       }
   7684     }
   7685   }
   7686 
   7687   ConstantsOut.clear();
   7688 }
   7689 
   7690 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
   7691 /// is 0.
   7692 MachineBasicBlock *
   7693 SelectionDAGBuilder::StackProtectorDescriptor::
   7694 AddSuccessorMBB(const BasicBlock *BB,
   7695                 MachineBasicBlock *ParentMBB,
   7696                 MachineBasicBlock *SuccMBB) {
   7697   // If SuccBB has not been created yet, create it.
   7698   if (!SuccMBB) {
   7699     MachineFunction *MF = ParentMBB->getParent();
   7700     MachineFunction::iterator BBI = ParentMBB;
   7701     SuccMBB = MF->CreateMachineBasicBlock(BB);
   7702     MF->insert(++BBI, SuccMBB);
   7703   }
   7704   // Add it as a successor of ParentMBB.
   7705   ParentMBB->addSuccessor(SuccMBB);
   7706   return SuccMBB;
   7707 }
   7708