Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/AsmPrinter.h"
     15 #include "DwarfDebug.h"
     16 #include "DwarfException.h"
     17 #include "Win64Exception.h"
     18 #include "WinCodeViewLineTables.h"
     19 #include "llvm/ADT/SmallString.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/JumpInstrTableInfo.h"
     23 #include "llvm/CodeGen/Analysis.h"
     24 #include "llvm/CodeGen/GCMetadataPrinter.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineFunction.h"
     28 #include "llvm/CodeGen/MachineInstrBundle.h"
     29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     30 #include "llvm/CodeGen/MachineLoopInfo.h"
     31 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/DebugInfo.h"
     34 #include "llvm/IR/Mangler.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/MC/MCAsmInfo.h"
     38 #include "llvm/MC/MCContext.h"
     39 #include "llvm/MC/MCExpr.h"
     40 #include "llvm/MC/MCInst.h"
     41 #include "llvm/MC/MCSection.h"
     42 #include "llvm/MC/MCStreamer.h"
     43 #include "llvm/MC/MCSymbol.h"
     44 #include "llvm/MC/MCValue.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include "llvm/Support/Format.h"
     47 #include "llvm/Support/MathExtras.h"
     48 #include "llvm/Support/TargetRegistry.h"
     49 #include "llvm/Support/Timer.h"
     50 #include "llvm/Target/TargetFrameLowering.h"
     51 #include "llvm/Target/TargetInstrInfo.h"
     52 #include "llvm/Target/TargetLowering.h"
     53 #include "llvm/Target/TargetLoweringObjectFile.h"
     54 #include "llvm/Target/TargetRegisterInfo.h"
     55 #include "llvm/Target/TargetSubtargetInfo.h"
     56 using namespace llvm;
     57 
     58 #define DEBUG_TYPE "asm-printer"
     59 
     60 static const char *const DWARFGroupName = "DWARF Emission";
     61 static const char *const DbgTimerName = "Debug Info Emission";
     62 static const char *const EHTimerName = "DWARF Exception Writer";
     63 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
     64 
     65 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     66 
     67 char AsmPrinter::ID = 0;
     68 
     69 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
     70 static gcp_map_type &getGCMap(void *&P) {
     71   if (!P)
     72     P = new gcp_map_type();
     73   return *(gcp_map_type*)P;
     74 }
     75 
     76 
     77 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     78 /// value in log2 form.  This rounds up to the preferred alignment if possible
     79 /// and legal.
     80 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
     81                                    unsigned InBits = 0) {
     82   unsigned NumBits = 0;
     83   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     84     NumBits = DL.getPreferredAlignmentLog(GVar);
     85 
     86   // If InBits is specified, round it to it.
     87   if (InBits > NumBits)
     88     NumBits = InBits;
     89 
     90   // If the GV has a specified alignment, take it into account.
     91   if (GV->getAlignment() == 0)
     92     return NumBits;
     93 
     94   unsigned GVAlign = Log2_32(GV->getAlignment());
     95 
     96   // If the GVAlign is larger than NumBits, or if we are required to obey
     97   // NumBits because the GV has an assigned section, obey it.
     98   if (GVAlign > NumBits || GV->hasSection())
     99     NumBits = GVAlign;
    100   return NumBits;
    101 }
    102 
    103 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
    104     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
    105       OutContext(Streamer->getContext()), OutStreamer(*Streamer.release()),
    106       LastMI(nullptr), LastFn(0), Counter(~0U) {
    107   DD = nullptr;
    108   MMI = nullptr;
    109   LI = nullptr;
    110   MF = nullptr;
    111   CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
    112   CurrentFnBegin = nullptr;
    113   CurrentFnEnd = nullptr;
    114   GCMetadataPrinters = nullptr;
    115   VerboseAsm = OutStreamer.isVerboseAsm();
    116 }
    117 
    118 AsmPrinter::~AsmPrinter() {
    119   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
    120 
    121   if (GCMetadataPrinters) {
    122     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    123 
    124     delete &GCMap;
    125     GCMetadataPrinters = nullptr;
    126   }
    127 
    128   delete &OutStreamer;
    129 }
    130 
    131 /// getFunctionNumber - Return a unique ID for the current function.
    132 ///
    133 unsigned AsmPrinter::getFunctionNumber() const {
    134   return MF->getFunctionNumber();
    135 }
    136 
    137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    138   return *TM.getObjFileLowering();
    139 }
    140 
    141 /// getDataLayout - Return information about data layout.
    142 const DataLayout &AsmPrinter::getDataLayout() const {
    143   return *TM.getDataLayout();
    144 }
    145 
    146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
    147   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
    148   return MF->getSubtarget<MCSubtargetInfo>();
    149 }
    150 
    151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
    152   S.EmitInstruction(Inst, getSubtargetInfo());
    153 }
    154 
    155 StringRef AsmPrinter::getTargetTriple() const {
    156   return TM.getTargetTriple();
    157 }
    158 
    159 /// getCurrentSection() - Return the current section we are emitting to.
    160 const MCSection *AsmPrinter::getCurrentSection() const {
    161   return OutStreamer.getCurrentSection().first;
    162 }
    163 
    164 
    165 
    166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    167   AU.setPreservesAll();
    168   MachineFunctionPass::getAnalysisUsage(AU);
    169   AU.addRequired<MachineModuleInfo>();
    170   AU.addRequired<GCModuleInfo>();
    171   if (isVerbose())
    172     AU.addRequired<MachineLoopInfo>();
    173 }
    174 
    175 bool AsmPrinter::doInitialization(Module &M) {
    176   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    177   MMI->AnalyzeModule(M);
    178 
    179   // Initialize TargetLoweringObjectFile.
    180   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    181     .Initialize(OutContext, TM);
    182 
    183   OutStreamer.InitSections(false);
    184 
    185   Mang = new Mangler(TM.getDataLayout());
    186 
    187   // Emit the version-min deplyment target directive if needed.
    188   //
    189   // FIXME: If we end up with a collection of these sorts of Darwin-specific
    190   // or ELF-specific things, it may make sense to have a platform helper class
    191   // that will work with the target helper class. For now keep it here, as the
    192   // alternative is duplicated code in each of the target asm printers that
    193   // use the directive, where it would need the same conditionalization
    194   // anyway.
    195   Triple TT(getTargetTriple());
    196   if (TT.isOSDarwin()) {
    197     unsigned Major, Minor, Update;
    198     TT.getOSVersion(Major, Minor, Update);
    199     // If there is a version specified, Major will be non-zero.
    200     if (Major)
    201       OutStreamer.EmitVersionMin((TT.isMacOSX() ?
    202                                   MCVM_OSXVersionMin : MCVM_IOSVersionMin),
    203                                  Major, Minor, Update);
    204   }
    205 
    206   // Allow the target to emit any magic that it wants at the start of the file.
    207   EmitStartOfAsmFile(M);
    208 
    209   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    210   // don't, this at least helps the user find where a global came from.
    211   if (MAI->hasSingleParameterDotFile()) {
    212     // .file "foo.c"
    213     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    214   }
    215 
    216   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    217   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    218   for (auto &I : *MI)
    219     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    220       MP->beginAssembly(M, *MI, *this);
    221 
    222   // Emit module-level inline asm if it exists.
    223   if (!M.getModuleInlineAsm().empty()) {
    224     // We're at the module level. Construct MCSubtarget from the default CPU
    225     // and target triple.
    226     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
    227         TM.getTargetTriple(), TM.getTargetCPU(), TM.getTargetFeatureString()));
    228     OutStreamer.AddComment("Start of file scope inline assembly");
    229     OutStreamer.AddBlankLine();
    230     EmitInlineAsm(M.getModuleInlineAsm()+"\n", *STI);
    231     OutStreamer.AddComment("End of file scope inline assembly");
    232     OutStreamer.AddBlankLine();
    233   }
    234 
    235   if (MAI->doesSupportDebugInformation()) {
    236     bool skip_dwarf = false;
    237     if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
    238       Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
    239                                      DbgTimerName,
    240                                      CodeViewLineTablesGroupName));
    241       // FIXME: Don't emit DWARF debug info if there's at least one function
    242       // with AddressSanitizer instrumentation.
    243       // This is a band-aid fix for PR22032.
    244       for (auto &F : M.functions()) {
    245         if (F.hasFnAttribute(Attribute::SanitizeAddress)) {
    246           skip_dwarf = true;
    247           break;
    248         }
    249       }
    250     }
    251     if (!skip_dwarf) {
    252       DD = new DwarfDebug(this, &M);
    253       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
    254     }
    255   }
    256 
    257   EHStreamer *ES = nullptr;
    258   switch (MAI->getExceptionHandlingType()) {
    259   case ExceptionHandling::None:
    260     break;
    261   case ExceptionHandling::SjLj:
    262   case ExceptionHandling::DwarfCFI:
    263     ES = new DwarfCFIException(this);
    264     break;
    265   case ExceptionHandling::ARM:
    266     ES = new ARMException(this);
    267     break;
    268   case ExceptionHandling::WinEH:
    269     switch (MAI->getWinEHEncodingType()) {
    270     default: llvm_unreachable("unsupported unwinding information encoding");
    271     case WinEH::EncodingType::Itanium:
    272       ES = new Win64Exception(this);
    273       break;
    274     }
    275     break;
    276   }
    277   if (ES)
    278     Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
    279   return false;
    280 }
    281 
    282 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
    283   if (!MAI.hasWeakDefCanBeHiddenDirective())
    284     return false;
    285 
    286   return canBeOmittedFromSymbolTable(GV);
    287 }
    288 
    289 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
    290   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
    291   switch (Linkage) {
    292   case GlobalValue::CommonLinkage:
    293   case GlobalValue::LinkOnceAnyLinkage:
    294   case GlobalValue::LinkOnceODRLinkage:
    295   case GlobalValue::WeakAnyLinkage:
    296   case GlobalValue::WeakODRLinkage:
    297     if (MAI->hasWeakDefDirective()) {
    298       // .globl _foo
    299       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    300 
    301       if (!canBeHidden(GV, *MAI))
    302         // .weak_definition _foo
    303         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    304       else
    305         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    306     } else if (MAI->hasLinkOnceDirective()) {
    307       // .globl _foo
    308       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    309       //NOTE: linkonce is handled by the section the symbol was assigned to.
    310     } else {
    311       // .weak _foo
    312       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    313     }
    314     return;
    315   case GlobalValue::AppendingLinkage:
    316     // FIXME: appending linkage variables should go into a section of
    317     // their name or something.  For now, just emit them as external.
    318   case GlobalValue::ExternalLinkage:
    319     // If external or appending, declare as a global symbol.
    320     // .globl _foo
    321     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    322     return;
    323   case GlobalValue::PrivateLinkage:
    324   case GlobalValue::InternalLinkage:
    325     return;
    326   case GlobalValue::AvailableExternallyLinkage:
    327     llvm_unreachable("Should never emit this");
    328   case GlobalValue::ExternalWeakLinkage:
    329     llvm_unreachable("Don't know how to emit these");
    330   }
    331   llvm_unreachable("Unknown linkage type!");
    332 }
    333 
    334 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
    335                                    const GlobalValue *GV) const {
    336   TM.getNameWithPrefix(Name, GV, *Mang);
    337 }
    338 
    339 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
    340   return TM.getSymbol(GV, *Mang);
    341 }
    342 
    343 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    344 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    345   if (GV->hasInitializer()) {
    346     // Check to see if this is a special global used by LLVM, if so, emit it.
    347     if (EmitSpecialLLVMGlobal(GV))
    348       return;
    349 
    350     // Skip the emission of global equivalents. The symbol can be emitted later
    351     // on by emitGlobalGOTEquivs in case it turns out to be needed.
    352     if (GlobalGOTEquivs.count(getSymbol(GV)))
    353       return;
    354 
    355     if (isVerbose()) {
    356       GV->printAsOperand(OutStreamer.GetCommentOS(),
    357                      /*PrintType=*/false, GV->getParent());
    358       OutStreamer.GetCommentOS() << '\n';
    359     }
    360   }
    361 
    362   MCSymbol *GVSym = getSymbol(GV);
    363   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    364 
    365   if (!GV->hasInitializer())   // External globals require no extra code.
    366     return;
    367 
    368   GVSym->redefineIfPossible();
    369   if (GVSym->isDefined() || GVSym->isVariable())
    370     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
    371                        "' is already defined");
    372 
    373   if (MAI->hasDotTypeDotSizeDirective())
    374     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    375 
    376   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    377 
    378   const DataLayout *DL = TM.getDataLayout();
    379   uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
    380 
    381   // If the alignment is specified, we *must* obey it.  Overaligning a global
    382   // with a specified alignment is a prompt way to break globals emitted to
    383   // sections and expected to be contiguous (e.g. ObjC metadata).
    384   unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
    385 
    386   for (const HandlerInfo &HI : Handlers) {
    387     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    388     HI.Handler->setSymbolSize(GVSym, Size);
    389   }
    390 
    391   // Handle common and BSS local symbols (.lcomm).
    392   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    393     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    394     unsigned Align = 1 << AlignLog;
    395 
    396     // Handle common symbols.
    397     if (GVKind.isCommon()) {
    398       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    399         Align = 0;
    400 
    401       // .comm _foo, 42, 4
    402       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    403       return;
    404     }
    405 
    406     // Handle local BSS symbols.
    407     if (MAI->hasMachoZeroFillDirective()) {
    408       const MCSection *TheSection =
    409         getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
    410       // .zerofill __DATA, __bss, _foo, 400, 5
    411       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    412       return;
    413     }
    414 
    415     // Use .lcomm only if it supports user-specified alignment.
    416     // Otherwise, while it would still be correct to use .lcomm in some
    417     // cases (e.g. when Align == 1), the external assembler might enfore
    418     // some -unknown- default alignment behavior, which could cause
    419     // spurious differences between external and integrated assembler.
    420     // Prefer to simply fall back to .local / .comm in this case.
    421     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
    422       // .lcomm _foo, 42
    423       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    424       return;
    425     }
    426 
    427     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    428       Align = 0;
    429 
    430     // .local _foo
    431     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    432     // .comm _foo, 42, 4
    433     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    434     return;
    435   }
    436 
    437   const MCSection *TheSection =
    438     getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
    439 
    440   // Handle the zerofill directive on darwin, which is a special form of BSS
    441   // emission.
    442   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    443     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    444 
    445     // .globl _foo
    446     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    447     // .zerofill __DATA, __common, _foo, 400, 5
    448     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    449     return;
    450   }
    451 
    452   // Handle thread local data for mach-o which requires us to output an
    453   // additional structure of data and mangle the original symbol so that we
    454   // can reference it later.
    455   //
    456   // TODO: This should become an "emit thread local global" method on TLOF.
    457   // All of this macho specific stuff should be sunk down into TLOFMachO and
    458   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    459   // TLOF class.  This will also make it more obvious that stuff like
    460   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    461   // specific code.
    462   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    463     // Emit the .tbss symbol
    464     MCSymbol *MangSym =
    465       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    466 
    467     if (GVKind.isThreadBSS()) {
    468       TheSection = getObjFileLowering().getTLSBSSSection();
    469       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    470     } else if (GVKind.isThreadData()) {
    471       OutStreamer.SwitchSection(TheSection);
    472 
    473       EmitAlignment(AlignLog, GV);
    474       OutStreamer.EmitLabel(MangSym);
    475 
    476       EmitGlobalConstant(GV->getInitializer());
    477     }
    478 
    479     OutStreamer.AddBlankLine();
    480 
    481     // Emit the variable struct for the runtime.
    482     const MCSection *TLVSect
    483       = getObjFileLowering().getTLSExtraDataSection();
    484 
    485     OutStreamer.SwitchSection(TLVSect);
    486     // Emit the linkage here.
    487     EmitLinkage(GV, GVSym);
    488     OutStreamer.EmitLabel(GVSym);
    489 
    490     // Three pointers in size:
    491     //   - __tlv_bootstrap - used to make sure support exists
    492     //   - spare pointer, used when mapped by the runtime
    493     //   - pointer to mangled symbol above with initializer
    494     unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
    495     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    496                                 PtrSize);
    497     OutStreamer.EmitIntValue(0, PtrSize);
    498     OutStreamer.EmitSymbolValue(MangSym, PtrSize);
    499 
    500     OutStreamer.AddBlankLine();
    501     return;
    502   }
    503 
    504   OutStreamer.SwitchSection(TheSection);
    505 
    506   EmitLinkage(GV, GVSym);
    507   EmitAlignment(AlignLog, GV);
    508 
    509   OutStreamer.EmitLabel(GVSym);
    510 
    511   EmitGlobalConstant(GV->getInitializer());
    512 
    513   if (MAI->hasDotTypeDotSizeDirective())
    514     // .size foo, 42
    515     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    516 
    517   OutStreamer.AddBlankLine();
    518 }
    519 
    520 /// EmitFunctionHeader - This method emits the header for the current
    521 /// function.
    522 void AsmPrinter::EmitFunctionHeader() {
    523   // Print out constants referenced by the function
    524   EmitConstantPool();
    525 
    526   // Print the 'header' of function.
    527   const Function *F = MF->getFunction();
    528 
    529   OutStreamer.SwitchSection(
    530       getObjFileLowering().SectionForGlobal(F, *Mang, TM));
    531   EmitVisibility(CurrentFnSym, F->getVisibility());
    532 
    533   EmitLinkage(F, CurrentFnSym);
    534   if (MAI->hasFunctionAlignment())
    535     EmitAlignment(MF->getAlignment(), F);
    536 
    537   if (MAI->hasDotTypeDotSizeDirective())
    538     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    539 
    540   if (isVerbose()) {
    541     F->printAsOperand(OutStreamer.GetCommentOS(),
    542                    /*PrintType=*/false, F->getParent());
    543     OutStreamer.GetCommentOS() << '\n';
    544   }
    545 
    546   // Emit the prefix data.
    547   if (F->hasPrefixData())
    548     EmitGlobalConstant(F->getPrefixData());
    549 
    550   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    551   // do their wild and crazy things as required.
    552   EmitFunctionEntryLabel();
    553 
    554   // If the function had address-taken blocks that got deleted, then we have
    555   // references to the dangling symbols.  Emit them at the start of the function
    556   // so that we don't get references to undefined symbols.
    557   std::vector<MCSymbol*> DeadBlockSyms;
    558   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    559   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    560     OutStreamer.AddComment("Address taken block that was later removed");
    561     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    562   }
    563 
    564   if (CurrentFnBegin) {
    565     if (MAI->useAssignmentForEHBegin()) {
    566       MCSymbol *CurPos = OutContext.CreateTempSymbol();
    567       OutStreamer.EmitLabel(CurPos);
    568       OutStreamer.EmitAssignment(CurrentFnBegin,
    569                                  MCSymbolRefExpr::Create(CurPos, OutContext));
    570     } else {
    571       OutStreamer.EmitLabel(CurrentFnBegin);
    572     }
    573   }
    574 
    575   // Emit pre-function debug and/or EH information.
    576   for (const HandlerInfo &HI : Handlers) {
    577     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    578     HI.Handler->beginFunction(MF);
    579   }
    580 
    581   // Emit the prologue data.
    582   if (F->hasPrologueData())
    583     EmitGlobalConstant(F->getPrologueData());
    584 }
    585 
    586 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    587 /// function.  This can be overridden by targets as required to do custom stuff.
    588 void AsmPrinter::EmitFunctionEntryLabel() {
    589   CurrentFnSym->redefineIfPossible();
    590 
    591   // The function label could have already been emitted if two symbols end up
    592   // conflicting due to asm renaming.  Detect this and emit an error.
    593   if (CurrentFnSym->isVariable())
    594     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    595                        "' is a protected alias");
    596   if (CurrentFnSym->isDefined())
    597     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    598                        "' label emitted multiple times to assembly file");
    599 
    600   return OutStreamer.EmitLabel(CurrentFnSym);
    601 }
    602 
    603 /// emitComments - Pretty-print comments for instructions.
    604 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    605   const MachineFunction *MF = MI.getParent()->getParent();
    606   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    607 
    608   // Check for spills and reloads
    609   int FI;
    610 
    611   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    612 
    613   // We assume a single instruction only has a spill or reload, not
    614   // both.
    615   const MachineMemOperand *MMO;
    616   if (TII->isLoadFromStackSlotPostFE(&MI, FI)) {
    617     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    618       MMO = *MI.memoperands_begin();
    619       CommentOS << MMO->getSize() << "-byte Reload\n";
    620     }
    621   } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) {
    622     if (FrameInfo->isSpillSlotObjectIndex(FI))
    623       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    624   } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) {
    625     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    626       MMO = *MI.memoperands_begin();
    627       CommentOS << MMO->getSize() << "-byte Spill\n";
    628     }
    629   } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) {
    630     if (FrameInfo->isSpillSlotObjectIndex(FI))
    631       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    632   }
    633 
    634   // Check for spill-induced copies
    635   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    636     CommentOS << " Reload Reuse\n";
    637 }
    638 
    639 /// emitImplicitDef - This method emits the specified machine instruction
    640 /// that is an implicit def.
    641 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
    642   unsigned RegNo = MI->getOperand(0).getReg();
    643   OutStreamer.AddComment(Twine("implicit-def: ") +
    644                          MMI->getContext().getRegisterInfo()->getName(RegNo));
    645   OutStreamer.AddBlankLine();
    646 }
    647 
    648 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
    649   std::string Str = "kill:";
    650   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    651     const MachineOperand &Op = MI->getOperand(i);
    652     assert(Op.isReg() && "KILL instruction must have only register operands");
    653     Str += ' ';
    654     Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg());
    655     Str += (Op.isDef() ? "<def>" : "<kill>");
    656   }
    657   AP.OutStreamer.AddComment(Str);
    658   AP.OutStreamer.AddBlankLine();
    659 }
    660 
    661 /// emitDebugValueComment - This method handles the target-independent form
    662 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    663 /// means the target will need to handle MI in EmitInstruction.
    664 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    665   // This code handles only the 4-operand target-independent form.
    666   if (MI->getNumOperands() != 4)
    667     return false;
    668 
    669   SmallString<128> Str;
    670   raw_svector_ostream OS(Str);
    671   OS << "DEBUG_VALUE: ";
    672 
    673   DIVariable V = MI->getDebugVariable();
    674   if (auto *SP = dyn_cast<MDSubprogram>(V->getScope())) {
    675     StringRef Name = SP->getDisplayName();
    676     if (!Name.empty())
    677       OS << Name << ":";
    678   }
    679   OS << V->getName();
    680 
    681   DIExpression Expr = MI->getDebugExpression();
    682   if (Expr->isBitPiece())
    683     OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
    684        << " size=" << Expr->getBitPieceSize() << "]";
    685   OS << " <- ";
    686 
    687   // The second operand is only an offset if it's an immediate.
    688   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
    689   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
    690 
    691   // Register or immediate value. Register 0 means undef.
    692   if (MI->getOperand(0).isFPImm()) {
    693     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    694     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    695       OS << (double)APF.convertToFloat();
    696     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    697       OS << APF.convertToDouble();
    698     } else {
    699       // There is no good way to print long double.  Convert a copy to
    700       // double.  Ah well, it's only a comment.
    701       bool ignored;
    702       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    703                   &ignored);
    704       OS << "(long double) " << APF.convertToDouble();
    705     }
    706   } else if (MI->getOperand(0).isImm()) {
    707     OS << MI->getOperand(0).getImm();
    708   } else if (MI->getOperand(0).isCImm()) {
    709     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    710   } else {
    711     unsigned Reg;
    712     if (MI->getOperand(0).isReg()) {
    713       Reg = MI->getOperand(0).getReg();
    714     } else {
    715       assert(MI->getOperand(0).isFI() && "Unknown operand type");
    716       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
    717       Offset += TFI->getFrameIndexReference(*AP.MF,
    718                                             MI->getOperand(0).getIndex(), Reg);
    719       Deref = true;
    720     }
    721     if (Reg == 0) {
    722       // Suppress offset, it is not meaningful here.
    723       OS << "undef";
    724       // NOTE: Want this comment at start of line, don't emit with AddComment.
    725       AP.OutStreamer.emitRawComment(OS.str());
    726       return true;
    727     }
    728     if (Deref)
    729       OS << '[';
    730     OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg);
    731   }
    732 
    733   if (Deref)
    734     OS << '+' << Offset << ']';
    735 
    736   // NOTE: Want this comment at start of line, don't emit with AddComment.
    737   AP.OutStreamer.emitRawComment(OS.str());
    738   return true;
    739 }
    740 
    741 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    742   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    743       MF->getFunction()->needsUnwindTableEntry())
    744     return CFI_M_EH;
    745 
    746   if (MMI->hasDebugInfo())
    747     return CFI_M_Debug;
    748 
    749   return CFI_M_None;
    750 }
    751 
    752 bool AsmPrinter::needsSEHMoves() {
    753   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
    754 }
    755 
    756 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
    757   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
    758   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
    759       ExceptionHandlingType != ExceptionHandling::ARM)
    760     return;
    761 
    762   if (needsCFIMoves() == CFI_M_None)
    763     return;
    764 
    765   const MachineModuleInfo &MMI = MF->getMMI();
    766   const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
    767   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
    768   const MCCFIInstruction &CFI = Instrs[CFIIndex];
    769   emitCFIInstruction(CFI);
    770 }
    771 
    772 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
    773   // The operands are the MCSymbol and the frame offset of the allocation.
    774   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
    775   int FrameOffset = MI.getOperand(1).getImm();
    776 
    777   // Emit a symbol assignment.
    778   OutStreamer.EmitAssignment(FrameAllocSym,
    779                              MCConstantExpr::Create(FrameOffset, OutContext));
    780 }
    781 
    782 /// EmitFunctionBody - This method emits the body and trailer for a
    783 /// function.
    784 void AsmPrinter::EmitFunctionBody() {
    785   EmitFunctionHeader();
    786 
    787   // Emit target-specific gunk before the function body.
    788   EmitFunctionBodyStart();
    789 
    790   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
    791 
    792   // Print out code for the function.
    793   bool HasAnyRealCode = false;
    794   for (auto &MBB : *MF) {
    795     // Print a label for the basic block.
    796     EmitBasicBlockStart(MBB);
    797     for (auto &MI : MBB) {
    798 
    799       // Print the assembly for the instruction.
    800       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
    801           !MI.isDebugValue()) {
    802         HasAnyRealCode = true;
    803         ++EmittedInsts;
    804       }
    805 
    806       if (ShouldPrintDebugScopes) {
    807         for (const HandlerInfo &HI : Handlers) {
    808           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    809                              TimePassesIsEnabled);
    810           HI.Handler->beginInstruction(&MI);
    811         }
    812       }
    813 
    814       if (isVerbose())
    815         emitComments(MI, OutStreamer.GetCommentOS());
    816 
    817       switch (MI.getOpcode()) {
    818       case TargetOpcode::CFI_INSTRUCTION:
    819         emitCFIInstruction(MI);
    820         break;
    821 
    822       case TargetOpcode::FRAME_ALLOC:
    823         emitFrameAlloc(MI);
    824         break;
    825 
    826       case TargetOpcode::EH_LABEL:
    827       case TargetOpcode::GC_LABEL:
    828         OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
    829         break;
    830       case TargetOpcode::INLINEASM:
    831         EmitInlineAsm(&MI);
    832         break;
    833       case TargetOpcode::DBG_VALUE:
    834         if (isVerbose()) {
    835           if (!emitDebugValueComment(&MI, *this))
    836             EmitInstruction(&MI);
    837         }
    838         break;
    839       case TargetOpcode::IMPLICIT_DEF:
    840         if (isVerbose()) emitImplicitDef(&MI);
    841         break;
    842       case TargetOpcode::KILL:
    843         if (isVerbose()) emitKill(&MI, *this);
    844         break;
    845       default:
    846         EmitInstruction(&MI);
    847         break;
    848       }
    849 
    850       if (ShouldPrintDebugScopes) {
    851         for (const HandlerInfo &HI : Handlers) {
    852           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    853                              TimePassesIsEnabled);
    854           HI.Handler->endInstruction();
    855         }
    856       }
    857     }
    858 
    859     EmitBasicBlockEnd(MBB);
    860   }
    861 
    862   // If the function is empty and the object file uses .subsections_via_symbols,
    863   // then we need to emit *something* to the function body to prevent the
    864   // labels from collapsing together.  Just emit a noop.
    865   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
    866     MCInst Noop;
    867     MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
    868     OutStreamer.AddComment("avoids zero-length function");
    869 
    870     // Targets can opt-out of emitting the noop here by leaving the opcode
    871     // unspecified.
    872     if (Noop.getOpcode())
    873       OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
    874   }
    875 
    876   const Function *F = MF->getFunction();
    877   for (const auto &BB : *F) {
    878     if (!BB.hasAddressTaken())
    879       continue;
    880     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
    881     if (Sym->isDefined())
    882       continue;
    883     OutStreamer.AddComment("Address of block that was removed by CodeGen");
    884     OutStreamer.EmitLabel(Sym);
    885   }
    886 
    887   // Emit target-specific gunk after the function body.
    888   EmitFunctionBodyEnd();
    889 
    890   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
    891       MAI->hasDotTypeDotSizeDirective()) {
    892     // Create a symbol for the end of function.
    893     CurrentFnEnd = createTempSymbol("func_end");
    894     OutStreamer.EmitLabel(CurrentFnEnd);
    895   }
    896 
    897   // If the target wants a .size directive for the size of the function, emit
    898   // it.
    899   if (MAI->hasDotTypeDotSizeDirective()) {
    900     // We can get the size as difference between the function label and the
    901     // temp label.
    902     const MCExpr *SizeExp =
    903       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(CurrentFnEnd, OutContext),
    904                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
    905                                                       OutContext),
    906                               OutContext);
    907     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    908   }
    909 
    910   for (const HandlerInfo &HI : Handlers) {
    911     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    912     HI.Handler->markFunctionEnd();
    913   }
    914 
    915   // Print out jump tables referenced by the function.
    916   EmitJumpTableInfo();
    917 
    918   // Emit post-function debug and/or EH information.
    919   for (const HandlerInfo &HI : Handlers) {
    920     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    921     HI.Handler->endFunction(MF);
    922   }
    923   MMI->EndFunction();
    924 
    925   OutStreamer.AddBlankLine();
    926 }
    927 
    928 /// \brief Compute the number of Global Variables that uses a Constant.
    929 static unsigned getNumGlobalVariableUses(const Constant *C) {
    930   if (!C)
    931     return 0;
    932 
    933   if (isa<GlobalVariable>(C))
    934     return 1;
    935 
    936   unsigned NumUses = 0;
    937   for (auto *CU : C->users())
    938     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
    939 
    940   return NumUses;
    941 }
    942 
    943 /// \brief Only consider global GOT equivalents if at least one user is a
    944 /// cstexpr inside an initializer of another global variables. Also, don't
    945 /// handle cstexpr inside instructions. During global variable emission,
    946 /// candidates are skipped and are emitted later in case at least one cstexpr
    947 /// isn't replaced by a PC relative GOT entry access.
    948 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
    949                                      unsigned &NumGOTEquivUsers) {
    950   // Global GOT equivalents are unnamed private globals with a constant
    951   // pointer initializer to another global symbol. They must point to a
    952   // GlobalVariable or Function, i.e., as GlobalValue.
    953   if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() ||
    954       !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0)))
    955     return false;
    956 
    957   // To be a got equivalent, at least one of its users need to be a constant
    958   // expression used by another global variable.
    959   for (auto *U : GV->users())
    960     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
    961 
    962   return NumGOTEquivUsers > 0;
    963 }
    964 
    965 /// \brief Unnamed constant global variables solely contaning a pointer to
    966 /// another globals variable is equivalent to a GOT table entry; it contains the
    967 /// the address of another symbol. Optimize it and replace accesses to these
    968 /// "GOT equivalents" by using the GOT entry for the final global instead.
    969 /// Compute GOT equivalent candidates among all global variables to avoid
    970 /// emitting them if possible later on, after it use is replaced by a GOT entry
    971 /// access.
    972 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
    973   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
    974     return;
    975 
    976   for (const auto &G : M.globals()) {
    977     unsigned NumGOTEquivUsers = 0;
    978     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
    979       continue;
    980 
    981     const MCSymbol *GOTEquivSym = getSymbol(&G);
    982     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
    983   }
    984 }
    985 
    986 /// \brief Constant expressions using GOT equivalent globals may not be eligible
    987 /// for PC relative GOT entry conversion, in such cases we need to emit such
    988 /// globals we previously omitted in EmitGlobalVariable.
    989 void AsmPrinter::emitGlobalGOTEquivs() {
    990   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
    991     return;
    992 
    993   SmallVector<const GlobalVariable *, 8> FailedCandidates;
    994   for (auto &I : GlobalGOTEquivs) {
    995     const GlobalVariable *GV = I.second.first;
    996     unsigned Cnt = I.second.second;
    997     if (Cnt)
    998       FailedCandidates.push_back(GV);
    999   }
   1000   GlobalGOTEquivs.clear();
   1001 
   1002   for (auto *GV : FailedCandidates)
   1003     EmitGlobalVariable(GV);
   1004 }
   1005 
   1006 bool AsmPrinter::doFinalization(Module &M) {
   1007   // Set the MachineFunction to nullptr so that we can catch attempted
   1008   // accesses to MF specific features at the module level and so that
   1009   // we can conditionalize accesses based on whether or not it is nullptr.
   1010   MF = nullptr;
   1011 
   1012   // Gather all GOT equivalent globals in the module. We really need two
   1013   // passes over the globals: one to compute and another to avoid its emission
   1014   // in EmitGlobalVariable, otherwise we would not be able to handle cases
   1015   // where the got equivalent shows up before its use.
   1016   computeGlobalGOTEquivs(M);
   1017 
   1018   // Emit global variables.
   1019   for (const auto &G : M.globals())
   1020     EmitGlobalVariable(&G);
   1021 
   1022   // Emit remaining GOT equivalent globals.
   1023   emitGlobalGOTEquivs();
   1024 
   1025   // Emit visibility info for declarations
   1026   for (const Function &F : M) {
   1027     if (!F.isDeclaration())
   1028       continue;
   1029     GlobalValue::VisibilityTypes V = F.getVisibility();
   1030     if (V == GlobalValue::DefaultVisibility)
   1031       continue;
   1032 
   1033     MCSymbol *Name = getSymbol(&F);
   1034     EmitVisibility(Name, V, false);
   1035   }
   1036 
   1037   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
   1038 
   1039   // Emit module flags.
   1040   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
   1041   M.getModuleFlagsMetadata(ModuleFlags);
   1042   if (!ModuleFlags.empty())
   1043     TLOF.emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
   1044 
   1045   Triple TT(TM.getTargetTriple());
   1046   if (TT.isOSBinFormatELF()) {
   1047     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
   1048 
   1049     // Output stubs for external and common global variables.
   1050     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
   1051     if (!Stubs.empty()) {
   1052       OutStreamer.SwitchSection(TLOF.getDataRelSection());
   1053       const DataLayout *DL = TM.getDataLayout();
   1054 
   1055       for (const auto &Stub : Stubs) {
   1056         OutStreamer.EmitLabel(Stub.first);
   1057         OutStreamer.EmitSymbolValue(Stub.second.getPointer(),
   1058                                     DL->getPointerSize());
   1059       }
   1060     }
   1061   }
   1062 
   1063   // Make sure we wrote out everything we need.
   1064   OutStreamer.Flush();
   1065 
   1066   // Finalize debug and EH information.
   1067   for (const HandlerInfo &HI : Handlers) {
   1068     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
   1069                        TimePassesIsEnabled);
   1070     HI.Handler->endModule();
   1071     delete HI.Handler;
   1072   }
   1073   Handlers.clear();
   1074   DD = nullptr;
   1075 
   1076   // If the target wants to know about weak references, print them all.
   1077   if (MAI->getWeakRefDirective()) {
   1078     // FIXME: This is not lazy, it would be nice to only print weak references
   1079     // to stuff that is actually used.  Note that doing so would require targets
   1080     // to notice uses in operands (due to constant exprs etc).  This should
   1081     // happen with the MC stuff eventually.
   1082 
   1083     // Print out module-level global variables here.
   1084     for (const auto &G : M.globals()) {
   1085       if (!G.hasExternalWeakLinkage())
   1086         continue;
   1087       OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
   1088     }
   1089 
   1090     for (const auto &F : M) {
   1091       if (!F.hasExternalWeakLinkage())
   1092         continue;
   1093       OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
   1094     }
   1095   }
   1096 
   1097   OutStreamer.AddBlankLine();
   1098   for (const auto &Alias : M.aliases()) {
   1099     MCSymbol *Name = getSymbol(&Alias);
   1100 
   1101     if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
   1102       OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
   1103     else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
   1104       OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
   1105     else
   1106       assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
   1107 
   1108     EmitVisibility(Name, Alias.getVisibility());
   1109 
   1110     // Emit the directives as assignments aka .set:
   1111     OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee()));
   1112   }
   1113 
   1114   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
   1115   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
   1116   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
   1117     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
   1118       MP->finishAssembly(M, *MI, *this);
   1119 
   1120   // Emit llvm.ident metadata in an '.ident' directive.
   1121   EmitModuleIdents(M);
   1122 
   1123   // Emit __morestack address if needed for indirect calls.
   1124   if (MMI->usesMorestackAddr()) {
   1125     const MCSection *ReadOnlySection =
   1126         getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(),
   1127                                                    /*C=*/nullptr);
   1128     OutStreamer.SwitchSection(ReadOnlySection);
   1129 
   1130     MCSymbol *AddrSymbol =
   1131         OutContext.GetOrCreateSymbol(StringRef("__morestack_addr"));
   1132     OutStreamer.EmitLabel(AddrSymbol);
   1133 
   1134     unsigned PtrSize = TM.getDataLayout()->getPointerSize(0);
   1135     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
   1136                                 PtrSize);
   1137   }
   1138 
   1139   // If we don't have any trampolines, then we don't require stack memory
   1140   // to be executable. Some targets have a directive to declare this.
   1141   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
   1142   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
   1143     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
   1144       OutStreamer.SwitchSection(S);
   1145 
   1146   // Allow the target to emit any magic that it wants at the end of the file,
   1147   // after everything else has gone out.
   1148   EmitEndOfAsmFile(M);
   1149 
   1150   delete Mang; Mang = nullptr;
   1151   MMI = nullptr;
   1152 
   1153   OutStreamer.Finish();
   1154   OutStreamer.reset();
   1155 
   1156   return false;
   1157 }
   1158 
   1159 MCSymbol *AsmPrinter::getCurExceptionSym() {
   1160   if (!CurExceptionSym)
   1161     CurExceptionSym = createTempSymbol("exception");
   1162   return CurExceptionSym;
   1163 }
   1164 
   1165 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
   1166   this->MF = &MF;
   1167   // Get the function symbol.
   1168   CurrentFnSym = getSymbol(MF.getFunction());
   1169   CurrentFnSymForSize = CurrentFnSym;
   1170   CurrentFnBegin = nullptr;
   1171   CurExceptionSym = nullptr;
   1172   bool NeedsLocalForSize = MAI->needsLocalForSize();
   1173   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
   1174       NeedsLocalForSize) {
   1175     CurrentFnBegin = createTempSymbol("func_begin");
   1176     if (NeedsLocalForSize)
   1177       CurrentFnSymForSize = CurrentFnBegin;
   1178   }
   1179 
   1180   if (isVerbose())
   1181     LI = &getAnalysis<MachineLoopInfo>();
   1182 }
   1183 
   1184 namespace {
   1185   // SectionCPs - Keep track the alignment, constpool entries per Section.
   1186   struct SectionCPs {
   1187     const MCSection *S;
   1188     unsigned Alignment;
   1189     SmallVector<unsigned, 4> CPEs;
   1190     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
   1191   };
   1192 }
   1193 
   1194 /// EmitConstantPool - Print to the current output stream assembly
   1195 /// representations of the constants in the constant pool MCP. This is
   1196 /// used to print out constants which have been "spilled to memory" by
   1197 /// the code generator.
   1198 ///
   1199 void AsmPrinter::EmitConstantPool() {
   1200   const MachineConstantPool *MCP = MF->getConstantPool();
   1201   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
   1202   if (CP.empty()) return;
   1203 
   1204   // Calculate sections for constant pool entries. We collect entries to go into
   1205   // the same section together to reduce amount of section switch statements.
   1206   SmallVector<SectionCPs, 4> CPSections;
   1207   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
   1208     const MachineConstantPoolEntry &CPE = CP[i];
   1209     unsigned Align = CPE.getAlignment();
   1210 
   1211     SectionKind Kind =
   1212         CPE.getSectionKind(TM.getDataLayout());
   1213 
   1214     const Constant *C = nullptr;
   1215     if (!CPE.isMachineConstantPoolEntry())
   1216       C = CPE.Val.ConstVal;
   1217 
   1218     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C);
   1219 
   1220     // The number of sections are small, just do a linear search from the
   1221     // last section to the first.
   1222     bool Found = false;
   1223     unsigned SecIdx = CPSections.size();
   1224     while (SecIdx != 0) {
   1225       if (CPSections[--SecIdx].S == S) {
   1226         Found = true;
   1227         break;
   1228       }
   1229     }
   1230     if (!Found) {
   1231       SecIdx = CPSections.size();
   1232       CPSections.push_back(SectionCPs(S, Align));
   1233     }
   1234 
   1235     if (Align > CPSections[SecIdx].Alignment)
   1236       CPSections[SecIdx].Alignment = Align;
   1237     CPSections[SecIdx].CPEs.push_back(i);
   1238   }
   1239 
   1240   // Now print stuff into the calculated sections.
   1241   const MCSection *CurSection = nullptr;
   1242   unsigned Offset = 0;
   1243   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1244     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1245       unsigned CPI = CPSections[i].CPEs[j];
   1246       MCSymbol *Sym = GetCPISymbol(CPI);
   1247       if (!Sym->isUndefined())
   1248         continue;
   1249 
   1250       if (CurSection != CPSections[i].S) {
   1251         OutStreamer.SwitchSection(CPSections[i].S);
   1252         EmitAlignment(Log2_32(CPSections[i].Alignment));
   1253         CurSection = CPSections[i].S;
   1254         Offset = 0;
   1255       }
   1256 
   1257       MachineConstantPoolEntry CPE = CP[CPI];
   1258 
   1259       // Emit inter-object padding for alignment.
   1260       unsigned AlignMask = CPE.getAlignment() - 1;
   1261       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1262       OutStreamer.EmitZeros(NewOffset - Offset);
   1263 
   1264       Type *Ty = CPE.getType();
   1265       Offset = NewOffset +
   1266                TM.getDataLayout()->getTypeAllocSize(Ty);
   1267 
   1268       OutStreamer.EmitLabel(Sym);
   1269       if (CPE.isMachineConstantPoolEntry())
   1270         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1271       else
   1272         EmitGlobalConstant(CPE.Val.ConstVal);
   1273     }
   1274   }
   1275 }
   1276 
   1277 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1278 /// by the current function to the current output stream.
   1279 ///
   1280 void AsmPrinter::EmitJumpTableInfo() {
   1281   const DataLayout *DL = MF->getTarget().getDataLayout();
   1282   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1283   if (!MJTI) return;
   1284   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1285   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1286   if (JT.empty()) return;
   1287 
   1288   // Pick the directive to use to print the jump table entries, and switch to
   1289   // the appropriate section.
   1290   const Function *F = MF->getFunction();
   1291   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
   1292   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
   1293       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
   1294       *F);
   1295   if (JTInDiffSection) {
   1296     // Drop it in the readonly section.
   1297     const MCSection *ReadOnlySection =
   1298         TLOF.getSectionForJumpTable(*F, *Mang, TM);
   1299     OutStreamer.SwitchSection(ReadOnlySection);
   1300   }
   1301 
   1302   EmitAlignment(Log2_32(
   1303       MJTI->getEntryAlignment(*TM.getDataLayout())));
   1304 
   1305   // Jump tables in code sections are marked with a data_region directive
   1306   // where that's supported.
   1307   if (!JTInDiffSection)
   1308     OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
   1309 
   1310   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1311     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1312 
   1313     // If this jump table was deleted, ignore it.
   1314     if (JTBBs.empty()) continue;
   1315 
   1316     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
   1317     /// emit a .set directive for each unique entry.
   1318     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1319         MAI->doesSetDirectiveSuppressesReloc()) {
   1320       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1321       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
   1322       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1323       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1324         const MachineBasicBlock *MBB = JTBBs[ii];
   1325         if (!EmittedSets.insert(MBB).second)
   1326           continue;
   1327 
   1328         // .set LJTSet, LBB32-base
   1329         const MCExpr *LHS =
   1330           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1331         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1332                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1333       }
   1334     }
   1335 
   1336     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1337     // before each jump table.  The first label is never referenced, but tells
   1338     // the assembler and linker the extents of the jump table object.  The
   1339     // second label is actually referenced by the code.
   1340     if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
   1341       // FIXME: This doesn't have to have any specific name, just any randomly
   1342       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1343       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1344 
   1345     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1346 
   1347     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1348       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1349   }
   1350   if (!JTInDiffSection)
   1351     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
   1352 }
   1353 
   1354 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1355 /// current stream.
   1356 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1357                                     const MachineBasicBlock *MBB,
   1358                                     unsigned UID) const {
   1359   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1360   const MCExpr *Value = nullptr;
   1361   switch (MJTI->getEntryKind()) {
   1362   case MachineJumpTableInfo::EK_Inline:
   1363     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1364   case MachineJumpTableInfo::EK_Custom32:
   1365     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
   1366         MJTI, MBB, UID, OutContext);
   1367     break;
   1368   case MachineJumpTableInfo::EK_BlockAddress:
   1369     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1370     //     .word LBB123
   1371     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1372     break;
   1373   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1374     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1375     // with a relocation as gp-relative, e.g.:
   1376     //     .gprel32 LBB123
   1377     MCSymbol *MBBSym = MBB->getSymbol();
   1378     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1379     return;
   1380   }
   1381 
   1382   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1383     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1384     // with a relocation as gp-relative, e.g.:
   1385     //     .gpdword LBB123
   1386     MCSymbol *MBBSym = MBB->getSymbol();
   1387     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1388     return;
   1389   }
   1390 
   1391   case MachineJumpTableInfo::EK_LabelDifference32: {
   1392     // Each entry is the address of the block minus the address of the jump
   1393     // table. This is used for PIC jump tables where gprel32 is not supported.
   1394     // e.g.:
   1395     //      .word LBB123 - LJTI1_2
   1396     // If the .set directive avoids relocations, this is emitted as:
   1397     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1398     //      .word L4_5_set_123
   1399     if (MAI->doesSetDirectiveSuppressesReloc()) {
   1400       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1401                                       OutContext);
   1402       break;
   1403     }
   1404     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1405     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
   1406     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
   1407     Value = MCBinaryExpr::CreateSub(Value, Base, OutContext);
   1408     break;
   1409   }
   1410   }
   1411 
   1412   assert(Value && "Unknown entry kind!");
   1413 
   1414   unsigned EntrySize =
   1415       MJTI->getEntrySize(*TM.getDataLayout());
   1416   OutStreamer.EmitValue(Value, EntrySize);
   1417 }
   1418 
   1419 
   1420 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1421 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1422 /// do nothing and return false.
   1423 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1424   if (GV->getName() == "llvm.used") {
   1425     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1426       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
   1427     return true;
   1428   }
   1429 
   1430   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1431   if (StringRef(GV->getSection()) == "llvm.metadata" ||
   1432       GV->hasAvailableExternallyLinkage())
   1433     return true;
   1434 
   1435   if (!GV->hasAppendingLinkage()) return false;
   1436 
   1437   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1438 
   1439   if (GV->getName() == "llvm.global_ctors") {
   1440     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
   1441 
   1442     if (TM.getRelocationModel() == Reloc::Static &&
   1443         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1444       StringRef Sym(".constructors_used");
   1445       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1446                                       MCSA_Reference);
   1447     }
   1448     return true;
   1449   }
   1450 
   1451   if (GV->getName() == "llvm.global_dtors") {
   1452     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
   1453 
   1454     if (TM.getRelocationModel() == Reloc::Static &&
   1455         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1456       StringRef Sym(".destructors_used");
   1457       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1458                                       MCSA_Reference);
   1459     }
   1460     return true;
   1461   }
   1462 
   1463   return false;
   1464 }
   1465 
   1466 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1467 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1468 /// is true, as being used with this directive.
   1469 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
   1470   // Should be an array of 'i8*'.
   1471   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1472     const GlobalValue *GV =
   1473       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1474     if (GV)
   1475       OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
   1476   }
   1477 }
   1478 
   1479 namespace {
   1480 struct Structor {
   1481   Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
   1482   int Priority;
   1483   llvm::Constant *Func;
   1484   llvm::GlobalValue *ComdatKey;
   1485 };
   1486 } // end namespace
   1487 
   1488 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1489 /// priority.
   1490 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
   1491   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1492   // init priority.
   1493   if (!isa<ConstantArray>(List)) return;
   1494 
   1495   // Sanity check the structors list.
   1496   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1497   if (!InitList) return; // Not an array!
   1498   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1499   // FIXME: Only allow the 3-field form in LLVM 4.0.
   1500   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
   1501     return; // Not an array of two or three elements!
   1502   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1503       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1504   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
   1505     return; // Not (int, ptr, ptr).
   1506 
   1507   // Gather the structors in a form that's convenient for sorting by priority.
   1508   SmallVector<Structor, 8> Structors;
   1509   for (Value *O : InitList->operands()) {
   1510     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
   1511     if (!CS) continue; // Malformed.
   1512     if (CS->getOperand(1)->isNullValue())
   1513       break;  // Found a null terminator, skip the rest.
   1514     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1515     if (!Priority) continue; // Malformed.
   1516     Structors.push_back(Structor());
   1517     Structor &S = Structors.back();
   1518     S.Priority = Priority->getLimitedValue(65535);
   1519     S.Func = CS->getOperand(1);
   1520     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
   1521       S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
   1522   }
   1523 
   1524   // Emit the function pointers in the target-specific order
   1525   const DataLayout *DL = TM.getDataLayout();
   1526   unsigned Align = Log2_32(DL->getPointerPrefAlignment());
   1527   std::stable_sort(Structors.begin(), Structors.end(),
   1528                    [](const Structor &L,
   1529                       const Structor &R) { return L.Priority < R.Priority; });
   1530   for (Structor &S : Structors) {
   1531     const TargetLoweringObjectFile &Obj = getObjFileLowering();
   1532     const MCSymbol *KeySym = nullptr;
   1533     if (GlobalValue *GV = S.ComdatKey) {
   1534       if (GV->hasAvailableExternallyLinkage())
   1535         // If the associated variable is available_externally, some other TU
   1536         // will provide its dynamic initializer.
   1537         continue;
   1538 
   1539       KeySym = getSymbol(GV);
   1540     }
   1541     const MCSection *OutputSection =
   1542         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
   1543                 : Obj.getStaticDtorSection(S.Priority, KeySym));
   1544     OutStreamer.SwitchSection(OutputSection);
   1545     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
   1546       EmitAlignment(Align);
   1547     EmitXXStructor(S.Func);
   1548   }
   1549 }
   1550 
   1551 void AsmPrinter::EmitModuleIdents(Module &M) {
   1552   if (!MAI->hasIdentDirective())
   1553     return;
   1554 
   1555   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
   1556     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   1557       const MDNode *N = NMD->getOperand(i);
   1558       assert(N->getNumOperands() == 1 &&
   1559              "llvm.ident metadata entry can have only one operand");
   1560       const MDString *S = cast<MDString>(N->getOperand(0));
   1561       OutStreamer.EmitIdent(S->getString());
   1562     }
   1563   }
   1564 }
   1565 
   1566 //===--------------------------------------------------------------------===//
   1567 // Emission and print routines
   1568 //
   1569 
   1570 /// EmitInt8 - Emit a byte directive and value.
   1571 ///
   1572 void AsmPrinter::EmitInt8(int Value) const {
   1573   OutStreamer.EmitIntValue(Value, 1);
   1574 }
   1575 
   1576 /// EmitInt16 - Emit a short directive and value.
   1577 ///
   1578 void AsmPrinter::EmitInt16(int Value) const {
   1579   OutStreamer.EmitIntValue(Value, 2);
   1580 }
   1581 
   1582 /// EmitInt32 - Emit a long directive and value.
   1583 ///
   1584 void AsmPrinter::EmitInt32(int Value) const {
   1585   OutStreamer.EmitIntValue(Value, 4);
   1586 }
   1587 
   1588 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
   1589 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
   1590 /// .set if it avoids relocations.
   1591 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1592                                      unsigned Size) const {
   1593   // Get the Hi-Lo expression.
   1594   const MCExpr *Diff =
   1595     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1596                             MCSymbolRefExpr::Create(Lo, OutContext),
   1597                             OutContext);
   1598 
   1599   if (!MAI->doesSetDirectiveSuppressesReloc()) {
   1600     OutStreamer.EmitValue(Diff, Size);
   1601     return;
   1602   }
   1603 
   1604   // Otherwise, emit with .set (aka assignment).
   1605   MCSymbol *SetLabel = createTempSymbol("set");
   1606   OutStreamer.EmitAssignment(SetLabel, Diff);
   1607   OutStreamer.EmitSymbolValue(SetLabel, Size);
   1608 }
   1609 
   1610 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1611 /// where the size in bytes of the directive is specified by Size and Label
   1612 /// specifies the label.  This implicitly uses .set if it is available.
   1613 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1614                                      unsigned Size,
   1615                                      bool IsSectionRelative) const {
   1616   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
   1617     OutStreamer.EmitCOFFSecRel32(Label);
   1618     return;
   1619   }
   1620 
   1621   // Emit Label+Offset (or just Label if Offset is zero)
   1622   const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
   1623   if (Offset)
   1624     Expr = MCBinaryExpr::CreateAdd(
   1625         Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
   1626 
   1627   OutStreamer.EmitValue(Expr, Size);
   1628 }
   1629 
   1630 //===----------------------------------------------------------------------===//
   1631 
   1632 // EmitAlignment - Emit an alignment directive to the specified power of
   1633 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1634 // byte alignment.  If a global value is specified, and if that global has
   1635 // an explicit alignment requested, it will override the alignment request
   1636 // if required for correctness.
   1637 //
   1638 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
   1639   if (GV)
   1640     NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(),
   1641                                  NumBits);
   1642 
   1643   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1644 
   1645   assert(NumBits <
   1646              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
   1647          "undefined behavior");
   1648   if (getCurrentSection()->getKind().isText())
   1649     OutStreamer.EmitCodeAlignment(1u << NumBits);
   1650   else
   1651     OutStreamer.EmitValueToAlignment(1u << NumBits);
   1652 }
   1653 
   1654 //===----------------------------------------------------------------------===//
   1655 // Constant emission.
   1656 //===----------------------------------------------------------------------===//
   1657 
   1658 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
   1659   MCContext &Ctx = OutContext;
   1660 
   1661   if (CV->isNullValue() || isa<UndefValue>(CV))
   1662     return MCConstantExpr::Create(0, Ctx);
   1663 
   1664   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1665     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1666 
   1667   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1668     return MCSymbolRefExpr::Create(getSymbol(GV), Ctx);
   1669 
   1670   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1671     return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx);
   1672 
   1673   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1674   if (!CE) {
   1675     llvm_unreachable("Unknown constant value to lower!");
   1676   }
   1677 
   1678   if (const MCExpr *RelocExpr
   1679       = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM))
   1680     return RelocExpr;
   1681 
   1682   switch (CE->getOpcode()) {
   1683   default:
   1684     // If the code isn't optimized, there may be outstanding folding
   1685     // opportunities. Attempt to fold the expression using DataLayout as a
   1686     // last resort before giving up.
   1687     if (Constant *C = ConstantFoldConstantExpression(CE, *TM.getDataLayout()))
   1688       if (C != CE)
   1689         return lowerConstant(C);
   1690 
   1691     // Otherwise report the problem to the user.
   1692     {
   1693       std::string S;
   1694       raw_string_ostream OS(S);
   1695       OS << "Unsupported expression in static initializer: ";
   1696       CE->printAsOperand(OS, /*PrintType=*/false,
   1697                      !MF ? nullptr : MF->getFunction()->getParent());
   1698       report_fatal_error(OS.str());
   1699     }
   1700   case Instruction::GetElementPtr: {
   1701     const DataLayout &DL = *TM.getDataLayout();
   1702 
   1703     // Generate a symbolic expression for the byte address
   1704     APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
   1705     cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
   1706 
   1707     const MCExpr *Base = lowerConstant(CE->getOperand(0));
   1708     if (!OffsetAI)
   1709       return Base;
   1710 
   1711     int64_t Offset = OffsetAI.getSExtValue();
   1712     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1713                                    Ctx);
   1714   }
   1715 
   1716   case Instruction::Trunc:
   1717     // We emit the value and depend on the assembler to truncate the generated
   1718     // expression properly.  This is important for differences between
   1719     // blockaddress labels.  Since the two labels are in the same function, it
   1720     // is reasonable to treat their delta as a 32-bit value.
   1721     // FALL THROUGH.
   1722   case Instruction::BitCast:
   1723     return lowerConstant(CE->getOperand(0));
   1724 
   1725   case Instruction::IntToPtr: {
   1726     const DataLayout &DL = *TM.getDataLayout();
   1727 
   1728     // Handle casts to pointers by changing them into casts to the appropriate
   1729     // integer type.  This promotes constant folding and simplifies this code.
   1730     Constant *Op = CE->getOperand(0);
   1731     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
   1732                                       false/*ZExt*/);
   1733     return lowerConstant(Op);
   1734   }
   1735 
   1736   case Instruction::PtrToInt: {
   1737     const DataLayout &DL = *TM.getDataLayout();
   1738 
   1739     // Support only foldable casts to/from pointers that can be eliminated by
   1740     // changing the pointer to the appropriately sized integer type.
   1741     Constant *Op = CE->getOperand(0);
   1742     Type *Ty = CE->getType();
   1743 
   1744     const MCExpr *OpExpr = lowerConstant(Op);
   1745 
   1746     // We can emit the pointer value into this slot if the slot is an
   1747     // integer slot equal to the size of the pointer.
   1748     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
   1749       return OpExpr;
   1750 
   1751     // Otherwise the pointer is smaller than the resultant integer, mask off
   1752     // the high bits so we are sure to get a proper truncation if the input is
   1753     // a constant expr.
   1754     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
   1755     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1756     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1757   }
   1758 
   1759   // The MC library also has a right-shift operator, but it isn't consistently
   1760   // signed or unsigned between different targets.
   1761   case Instruction::Add:
   1762   case Instruction::Sub:
   1763   case Instruction::Mul:
   1764   case Instruction::SDiv:
   1765   case Instruction::SRem:
   1766   case Instruction::Shl:
   1767   case Instruction::And:
   1768   case Instruction::Or:
   1769   case Instruction::Xor: {
   1770     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
   1771     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
   1772     switch (CE->getOpcode()) {
   1773     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1774     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1775     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1776     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1777     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1778     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1779     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1780     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1781     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1782     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1783     }
   1784   }
   1785   }
   1786 }
   1787 
   1788 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP,
   1789                                    const Constant *BaseCV = nullptr,
   1790                                    uint64_t Offset = 0);
   1791 
   1792 /// isRepeatedByteSequence - Determine whether the given value is
   1793 /// composed of a repeated sequence of identical bytes and return the
   1794 /// byte value.  If it is not a repeated sequence, return -1.
   1795 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1796   StringRef Data = V->getRawDataValues();
   1797   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1798   char C = Data[0];
   1799   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1800     if (Data[i] != C) return -1;
   1801   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1802 }
   1803 
   1804 
   1805 /// isRepeatedByteSequence - Determine whether the given value is
   1806 /// composed of a repeated sequence of identical bytes and return the
   1807 /// byte value.  If it is not a repeated sequence, return -1.
   1808 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1809 
   1810   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1811     if (CI->getBitWidth() > 64) return -1;
   1812 
   1813     uint64_t Size =
   1814         TM.getDataLayout()->getTypeAllocSize(V->getType());
   1815     uint64_t Value = CI->getZExtValue();
   1816 
   1817     // Make sure the constant is at least 8 bits long and has a power
   1818     // of 2 bit width.  This guarantees the constant bit width is
   1819     // always a multiple of 8 bits, avoiding issues with padding out
   1820     // to Size and other such corner cases.
   1821     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1822 
   1823     uint8_t Byte = static_cast<uint8_t>(Value);
   1824 
   1825     for (unsigned i = 1; i < Size; ++i) {
   1826       Value >>= 8;
   1827       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1828     }
   1829     return Byte;
   1830   }
   1831   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1832     // Make sure all array elements are sequences of the same repeated
   1833     // byte.
   1834     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1835     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1836     if (Byte == -1) return -1;
   1837 
   1838     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1839       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1840       if (ThisByte == -1) return -1;
   1841       if (Byte != ThisByte) return -1;
   1842     }
   1843     return Byte;
   1844   }
   1845 
   1846   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1847     return isRepeatedByteSequence(CDS);
   1848 
   1849   return -1;
   1850 }
   1851 
   1852 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
   1853                                              AsmPrinter &AP){
   1854 
   1855   // See if we can aggregate this into a .fill, if so, emit it as such.
   1856   int Value = isRepeatedByteSequence(CDS, AP.TM);
   1857   if (Value != -1) {
   1858     uint64_t Bytes =
   1859         AP.TM.getDataLayout()->getTypeAllocSize(
   1860             CDS->getType());
   1861     // Don't emit a 1-byte object as a .fill.
   1862     if (Bytes > 1)
   1863       return AP.OutStreamer.EmitFill(Bytes, Value);
   1864   }
   1865 
   1866   // If this can be emitted with .ascii/.asciz, emit it as such.
   1867   if (CDS->isString())
   1868     return AP.OutStreamer.EmitBytes(CDS->getAsString());
   1869 
   1870   // Otherwise, emit the values in successive locations.
   1871   unsigned ElementByteSize = CDS->getElementByteSize();
   1872   if (isa<IntegerType>(CDS->getElementType())) {
   1873     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1874       if (AP.isVerbose())
   1875         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   1876                                                 CDS->getElementAsInteger(i));
   1877       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
   1878                                   ElementByteSize);
   1879     }
   1880   } else if (ElementByteSize == 4) {
   1881     // FP Constants are printed as integer constants to avoid losing
   1882     // precision.
   1883     assert(CDS->getElementType()->isFloatTy());
   1884     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1885       union {
   1886         float F;
   1887         uint32_t I;
   1888       };
   1889 
   1890       F = CDS->getElementAsFloat(i);
   1891       if (AP.isVerbose())
   1892         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
   1893       AP.OutStreamer.EmitIntValue(I, 4);
   1894     }
   1895   } else {
   1896     assert(CDS->getElementType()->isDoubleTy());
   1897     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1898       union {
   1899         double F;
   1900         uint64_t I;
   1901       };
   1902 
   1903       F = CDS->getElementAsDouble(i);
   1904       if (AP.isVerbose())
   1905         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
   1906       AP.OutStreamer.EmitIntValue(I, 8);
   1907     }
   1908   }
   1909 
   1910   const DataLayout &DL = *AP.TM.getDataLayout();
   1911   unsigned Size = DL.getTypeAllocSize(CDS->getType());
   1912   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
   1913                         CDS->getNumElements();
   1914   if (unsigned Padding = Size - EmittedSize)
   1915     AP.OutStreamer.EmitZeros(Padding);
   1916 
   1917 }
   1918 
   1919 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP,
   1920                                     const Constant *BaseCV, uint64_t Offset) {
   1921   // See if we can aggregate some values.  Make sure it can be
   1922   // represented as a series of bytes of the constant value.
   1923   int Value = isRepeatedByteSequence(CA, AP.TM);
   1924   const DataLayout &DL = *AP.TM.getDataLayout();
   1925 
   1926   if (Value != -1) {
   1927     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
   1928     AP.OutStreamer.EmitFill(Bytes, Value);
   1929   }
   1930   else {
   1931     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
   1932       emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset);
   1933       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
   1934     }
   1935   }
   1936 }
   1937 
   1938 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
   1939   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1940     emitGlobalConstantImpl(CV->getOperand(i), AP);
   1941 
   1942   const DataLayout &DL = *AP.TM.getDataLayout();
   1943   unsigned Size = DL.getTypeAllocSize(CV->getType());
   1944   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
   1945                          CV->getType()->getNumElements();
   1946   if (unsigned Padding = Size - EmittedSize)
   1947     AP.OutStreamer.EmitZeros(Padding);
   1948 }
   1949 
   1950 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP,
   1951                                      const Constant *BaseCV, uint64_t Offset) {
   1952   // Print the fields in successive locations. Pad to align if needed!
   1953   const DataLayout *DL = AP.TM.getDataLayout();
   1954   unsigned Size = DL->getTypeAllocSize(CS->getType());
   1955   const StructLayout *Layout = DL->getStructLayout(CS->getType());
   1956   uint64_t SizeSoFar = 0;
   1957   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1958     const Constant *Field = CS->getOperand(i);
   1959 
   1960     // Print the actual field value.
   1961     emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar);
   1962 
   1963     // Check if padding is needed and insert one or more 0s.
   1964     uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
   1965     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1966                         - Layout->getElementOffset(i)) - FieldSize;
   1967     SizeSoFar += FieldSize + PadSize;
   1968 
   1969     // Insert padding - this may include padding to increase the size of the
   1970     // current field up to the ABI size (if the struct is not packed) as well
   1971     // as padding to ensure that the next field starts at the right offset.
   1972     AP.OutStreamer.EmitZeros(PadSize);
   1973   }
   1974   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1975          "Layout of constant struct may be incorrect!");
   1976 }
   1977 
   1978 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
   1979   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1980 
   1981   // First print a comment with what we think the original floating-point value
   1982   // should have been.
   1983   if (AP.isVerbose()) {
   1984     SmallString<8> StrVal;
   1985     CFP->getValueAPF().toString(StrVal);
   1986 
   1987     if (CFP->getType())
   1988       CFP->getType()->print(AP.OutStreamer.GetCommentOS());
   1989     else
   1990       AP.OutStreamer.GetCommentOS() << "Printing <null> Type";
   1991     AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
   1992   }
   1993 
   1994   // Now iterate through the APInt chunks, emitting them in endian-correct
   1995   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
   1996   // floats).
   1997   unsigned NumBytes = API.getBitWidth() / 8;
   1998   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
   1999   const uint64_t *p = API.getRawData();
   2000 
   2001   // PPC's long double has odd notions of endianness compared to how LLVM
   2002   // handles it: p[0] goes first for *big* endian on PPC.
   2003   if (AP.TM.getDataLayout()->isBigEndian() &&
   2004       !CFP->getType()->isPPC_FP128Ty()) {
   2005     int Chunk = API.getNumWords() - 1;
   2006 
   2007     if (TrailingBytes)
   2008       AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
   2009 
   2010     for (; Chunk >= 0; --Chunk)
   2011       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
   2012   } else {
   2013     unsigned Chunk;
   2014     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
   2015       AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
   2016 
   2017     if (TrailingBytes)
   2018       AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
   2019   }
   2020 
   2021   // Emit the tail padding for the long double.
   2022   const DataLayout &DL = *AP.TM.getDataLayout();
   2023   AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
   2024                            DL.getTypeStoreSize(CFP->getType()));
   2025 }
   2026 
   2027 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
   2028   const DataLayout *DL = AP.TM.getDataLayout();
   2029   unsigned BitWidth = CI->getBitWidth();
   2030 
   2031   // Copy the value as we may massage the layout for constants whose bit width
   2032   // is not a multiple of 64-bits.
   2033   APInt Realigned(CI->getValue());
   2034   uint64_t ExtraBits = 0;
   2035   unsigned ExtraBitsSize = BitWidth & 63;
   2036 
   2037   if (ExtraBitsSize) {
   2038     // The bit width of the data is not a multiple of 64-bits.
   2039     // The extra bits are expected to be at the end of the chunk of the memory.
   2040     // Little endian:
   2041     // * Nothing to be done, just record the extra bits to emit.
   2042     // Big endian:
   2043     // * Record the extra bits to emit.
   2044     // * Realign the raw data to emit the chunks of 64-bits.
   2045     if (DL->isBigEndian()) {
   2046       // Basically the structure of the raw data is a chunk of 64-bits cells:
   2047       //    0        1         BitWidth / 64
   2048       // [chunk1][chunk2] ... [chunkN].
   2049       // The most significant chunk is chunkN and it should be emitted first.
   2050       // However, due to the alignment issue chunkN contains useless bits.
   2051       // Realign the chunks so that they contain only useless information:
   2052       // ExtraBits     0       1       (BitWidth / 64) - 1
   2053       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
   2054       ExtraBits = Realigned.getRawData()[0] &
   2055         (((uint64_t)-1) >> (64 - ExtraBitsSize));
   2056       Realigned = Realigned.lshr(ExtraBitsSize);
   2057     } else
   2058       ExtraBits = Realigned.getRawData()[BitWidth / 64];
   2059   }
   2060 
   2061   // We don't expect assemblers to support integer data directives
   2062   // for more than 64 bits, so we emit the data in at most 64-bit
   2063   // quantities at a time.
   2064   const uint64_t *RawData = Realigned.getRawData();
   2065   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   2066     uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   2067     AP.OutStreamer.EmitIntValue(Val, 8);
   2068   }
   2069 
   2070   if (ExtraBitsSize) {
   2071     // Emit the extra bits after the 64-bits chunks.
   2072 
   2073     // Emit a directive that fills the expected size.
   2074     uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(
   2075         CI->getType());
   2076     Size -= (BitWidth / 64) * 8;
   2077     assert(Size && Size * 8 >= ExtraBitsSize &&
   2078            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
   2079            == ExtraBits && "Directive too small for extra bits.");
   2080     AP.OutStreamer.EmitIntValue(ExtraBits, Size);
   2081   }
   2082 }
   2083 
   2084 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
   2085 /// equivalent global, by a target specific GOT pc relative access to the
   2086 /// final symbol.
   2087 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
   2088                                          const Constant *BaseCst,
   2089                                          uint64_t Offset) {
   2090   // The global @foo below illustrates a global that uses a got equivalent.
   2091   //
   2092   //  @bar = global i32 42
   2093   //  @gotequiv = private unnamed_addr constant i32* @bar
   2094   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
   2095   //                             i64 ptrtoint (i32* @foo to i64))
   2096   //                        to i32)
   2097   //
   2098   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
   2099   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
   2100   // form:
   2101   //
   2102   //  foo = cstexpr, where
   2103   //    cstexpr := <gotequiv> - "." + <cst>
   2104   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
   2105   //
   2106   // After canonicalization by EvaluateAsRelocatable `ME` turns into:
   2107   //
   2108   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
   2109   //    gotpcrelcst := <offset from @foo base> + <cst>
   2110   //
   2111   MCValue MV;
   2112   if (!(*ME)->EvaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
   2113     return;
   2114 
   2115   const MCSymbol *GOTEquivSym = &MV.getSymA()->getSymbol();
   2116   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
   2117     return;
   2118 
   2119   const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst);
   2120   if (!BaseGV)
   2121     return;
   2122 
   2123   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
   2124   if (BaseSym != &MV.getSymB()->getSymbol())
   2125     return;
   2126 
   2127   // Make sure to match:
   2128   //
   2129   //    gotpcrelcst := <offset from @foo base> + <cst>
   2130   //
   2131   // If gotpcrelcst is positive it means that we can safely fold the pc rel
   2132   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
   2133   // if the target knows how to encode it.
   2134   //
   2135   int64_t GOTPCRelCst = Offset + MV.getConstant();
   2136   if (GOTPCRelCst < 0)
   2137     return;
   2138   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
   2139     return;
   2140 
   2141   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
   2142   //
   2143   //  bar:
   2144   //    .long 42
   2145   //  gotequiv:
   2146   //    .quad bar
   2147   //  foo:
   2148   //    .long gotequiv - "." + <cst>
   2149   //
   2150   // is replaced by the target specific equivalent to:
   2151   //
   2152   //  bar:
   2153   //    .long 42
   2154   //  foo:
   2155   //    .long bar@GOTPCREL+<gotpcrelcst>
   2156   //
   2157   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
   2158   const GlobalVariable *GV = Result.first;
   2159   int NumUses = (int)Result.second;
   2160   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
   2161   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
   2162   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
   2163       FinalSym, MV, Offset, AP.MMI, AP.OutStreamer);
   2164 
   2165   // Update GOT equivalent usage information
   2166   --NumUses;
   2167   if (NumUses >= 0)
   2168     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
   2169 }
   2170 
   2171 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP,
   2172                                    const Constant *BaseCV, uint64_t Offset) {
   2173   const DataLayout *DL = AP.TM.getDataLayout();
   2174   uint64_t Size = DL->getTypeAllocSize(CV->getType());
   2175 
   2176   // Globals with sub-elements such as combinations of arrays and structs
   2177   // are handled recursively by emitGlobalConstantImpl. Keep track of the
   2178   // constant symbol base and the current position with BaseCV and Offset.
   2179   if (!BaseCV && CV->hasOneUse())
   2180     BaseCV = dyn_cast<Constant>(CV->user_back());
   2181 
   2182   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   2183     return AP.OutStreamer.EmitZeros(Size);
   2184 
   2185   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   2186     switch (Size) {
   2187     case 1:
   2188     case 2:
   2189     case 4:
   2190     case 8:
   2191       if (AP.isVerbose())
   2192         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
   2193                                                 CI->getZExtValue());
   2194       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
   2195       return;
   2196     default:
   2197       emitGlobalConstantLargeInt(CI, AP);
   2198       return;
   2199     }
   2200   }
   2201 
   2202   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   2203     return emitGlobalConstantFP(CFP, AP);
   2204 
   2205   if (isa<ConstantPointerNull>(CV)) {
   2206     AP.OutStreamer.EmitIntValue(0, Size);
   2207     return;
   2208   }
   2209 
   2210   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   2211     return emitGlobalConstantDataSequential(CDS, AP);
   2212 
   2213   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   2214     return emitGlobalConstantArray(CVA, AP, BaseCV, Offset);
   2215 
   2216   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   2217     return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset);
   2218 
   2219   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   2220     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   2221     // vectors).
   2222     if (CE->getOpcode() == Instruction::BitCast)
   2223       return emitGlobalConstantImpl(CE->getOperand(0), AP);
   2224 
   2225     if (Size > 8) {
   2226       // If the constant expression's size is greater than 64-bits, then we have
   2227       // to emit the value in chunks. Try to constant fold the value and emit it
   2228       // that way.
   2229       Constant *New = ConstantFoldConstantExpression(CE, *DL);
   2230       if (New && New != CE)
   2231         return emitGlobalConstantImpl(New, AP);
   2232     }
   2233   }
   2234 
   2235   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   2236     return emitGlobalConstantVector(V, AP);
   2237 
   2238   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   2239   // thread the streamer with EmitValue.
   2240   const MCExpr *ME = AP.lowerConstant(CV);
   2241 
   2242   // Since lowerConstant already folded and got rid of all IR pointer and
   2243   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
   2244   // directly.
   2245   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
   2246     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
   2247 
   2248   AP.OutStreamer.EmitValue(ME, Size);
   2249 }
   2250 
   2251 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   2252 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
   2253   uint64_t Size =
   2254       TM.getDataLayout()->getTypeAllocSize(CV->getType());
   2255   if (Size)
   2256     emitGlobalConstantImpl(CV, *this);
   2257   else if (MAI->hasSubsectionsViaSymbols()) {
   2258     // If the global has zero size, emit a single byte so that two labels don't
   2259     // look like they are at the same location.
   2260     OutStreamer.EmitIntValue(0, 1);
   2261   }
   2262 }
   2263 
   2264 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   2265   // Target doesn't support this yet!
   2266   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   2267 }
   2268 
   2269 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   2270   if (Offset > 0)
   2271     OS << '+' << Offset;
   2272   else if (Offset < 0)
   2273     OS << Offset;
   2274 }
   2275 
   2276 //===----------------------------------------------------------------------===//
   2277 // Symbol Lowering Routines.
   2278 //===----------------------------------------------------------------------===//
   2279 
   2280 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
   2281   return OutContext.createTempSymbol(Name, true);
   2282 }
   2283 
   2284 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   2285   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   2286 }
   2287 
   2288 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   2289   return MMI->getAddrLabelSymbol(BB);
   2290 }
   2291 
   2292 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   2293 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   2294   const DataLayout *DL = TM.getDataLayout();
   2295   return OutContext.GetOrCreateSymbol
   2296     (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   2297      + "_" + Twine(CPID));
   2298 }
   2299 
   2300 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   2301 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   2302   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   2303 }
   2304 
   2305 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   2306 /// FIXME: privatize to AsmPrinter.
   2307 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   2308   const DataLayout *DL = TM.getDataLayout();
   2309   return OutContext.GetOrCreateSymbol
   2310   (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   2311    Twine(UID) + "_set_" + Twine(MBBID));
   2312 }
   2313 
   2314 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
   2315                                                    StringRef Suffix) const {
   2316   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
   2317                                                            TM);
   2318 }
   2319 
   2320 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   2321 /// ExternalSymbol.
   2322 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   2323   SmallString<60> NameStr;
   2324   Mang->getNameWithPrefix(NameStr, Sym);
   2325   return OutContext.GetOrCreateSymbol(NameStr);
   2326 }
   2327 
   2328 
   2329 
   2330 /// PrintParentLoopComment - Print comments about parent loops of this one.
   2331 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2332                                    unsigned FunctionNumber) {
   2333   if (!Loop) return;
   2334   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   2335   OS.indent(Loop->getLoopDepth()*2)
   2336     << "Parent Loop BB" << FunctionNumber << "_"
   2337     << Loop->getHeader()->getNumber()
   2338     << " Depth=" << Loop->getLoopDepth() << '\n';
   2339 }
   2340 
   2341 
   2342 /// PrintChildLoopComment - Print comments about child loops within
   2343 /// the loop for this basic block, with nesting.
   2344 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2345                                   unsigned FunctionNumber) {
   2346   // Add child loop information
   2347   for (const MachineLoop *CL : *Loop) {
   2348     OS.indent(CL->getLoopDepth()*2)
   2349       << "Child Loop BB" << FunctionNumber << "_"
   2350       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
   2351       << '\n';
   2352     PrintChildLoopComment(OS, CL, FunctionNumber);
   2353   }
   2354 }
   2355 
   2356 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   2357 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   2358                                        const MachineLoopInfo *LI,
   2359                                        const AsmPrinter &AP) {
   2360   // Add loop depth information
   2361   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   2362   if (!Loop) return;
   2363 
   2364   MachineBasicBlock *Header = Loop->getHeader();
   2365   assert(Header && "No header for loop");
   2366 
   2367   // If this block is not a loop header, just print out what is the loop header
   2368   // and return.
   2369   if (Header != &MBB) {
   2370     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   2371                               Twine(AP.getFunctionNumber())+"_" +
   2372                               Twine(Loop->getHeader()->getNumber())+
   2373                               " Depth="+Twine(Loop->getLoopDepth()));
   2374     return;
   2375   }
   2376 
   2377   // Otherwise, it is a loop header.  Print out information about child and
   2378   // parent loops.
   2379   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   2380 
   2381   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2382 
   2383   OS << "=>";
   2384   OS.indent(Loop->getLoopDepth()*2-2);
   2385 
   2386   OS << "This ";
   2387   if (Loop->empty())
   2388     OS << "Inner ";
   2389   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2390 
   2391   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2392 }
   2393 
   2394 
   2395 /// EmitBasicBlockStart - This method prints the label for the specified
   2396 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2397 /// it if appropriate.
   2398 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
   2399   // Emit an alignment directive for this block, if needed.
   2400   if (unsigned Align = MBB.getAlignment())
   2401     EmitAlignment(Align);
   2402 
   2403   // If the block has its address taken, emit any labels that were used to
   2404   // reference the block.  It is possible that there is more than one label
   2405   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2406   // the references were generated.
   2407   if (MBB.hasAddressTaken()) {
   2408     const BasicBlock *BB = MBB.getBasicBlock();
   2409     if (isVerbose())
   2410       OutStreamer.AddComment("Block address taken");
   2411 
   2412     std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB);
   2413     for (auto *Sym : Symbols)
   2414       OutStreamer.EmitLabel(Sym);
   2415   }
   2416 
   2417   // Print some verbose block comments.
   2418   if (isVerbose()) {
   2419     if (const BasicBlock *BB = MBB.getBasicBlock())
   2420       if (BB->hasName())
   2421         OutStreamer.AddComment("%" + BB->getName());
   2422     emitBasicBlockLoopComments(MBB, LI, *this);
   2423   }
   2424 
   2425   // Print the main label for the block.
   2426   if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) {
   2427     if (isVerbose()) {
   2428       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2429       OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
   2430     }
   2431   } else {
   2432     OutStreamer.EmitLabel(MBB.getSymbol());
   2433   }
   2434 }
   2435 
   2436 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2437                                 bool IsDefinition) const {
   2438   MCSymbolAttr Attr = MCSA_Invalid;
   2439 
   2440   switch (Visibility) {
   2441   default: break;
   2442   case GlobalValue::HiddenVisibility:
   2443     if (IsDefinition)
   2444       Attr = MAI->getHiddenVisibilityAttr();
   2445     else
   2446       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2447     break;
   2448   case GlobalValue::ProtectedVisibility:
   2449     Attr = MAI->getProtectedVisibilityAttr();
   2450     break;
   2451   }
   2452 
   2453   if (Attr != MCSA_Invalid)
   2454     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2455 }
   2456 
   2457 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2458 /// exactly one predecessor and the control transfer mechanism between
   2459 /// the predecessor and this block is a fall-through.
   2460 bool AsmPrinter::
   2461 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2462   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2463   // then nothing falls through to it.
   2464   if (MBB->isLandingPad() || MBB->pred_empty())
   2465     return false;
   2466 
   2467   // If there isn't exactly one predecessor, it can't be a fall through.
   2468   if (MBB->pred_size() > 1)
   2469     return false;
   2470 
   2471   // The predecessor has to be immediately before this block.
   2472   MachineBasicBlock *Pred = *MBB->pred_begin();
   2473   if (!Pred->isLayoutSuccessor(MBB))
   2474     return false;
   2475 
   2476   // If the block is completely empty, then it definitely does fall through.
   2477   if (Pred->empty())
   2478     return true;
   2479 
   2480   // Check the terminators in the previous blocks
   2481   for (const auto &MI : Pred->terminators()) {
   2482     // If it is not a simple branch, we are in a table somewhere.
   2483     if (!MI.isBranch() || MI.isIndirectBranch())
   2484       return false;
   2485 
   2486     // If we are the operands of one of the branches, this is not a fall
   2487     // through. Note that targets with delay slots will usually bundle
   2488     // terminators with the delay slot instruction.
   2489     for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
   2490       if (OP->isJTI())
   2491         return false;
   2492       if (OP->isMBB() && OP->getMBB() == MBB)
   2493         return false;
   2494     }
   2495   }
   2496 
   2497   return true;
   2498 }
   2499 
   2500 
   2501 
   2502 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
   2503   if (!S.usesMetadata())
   2504     return nullptr;
   2505 
   2506   assert(!S.useStatepoints() && "statepoints do not currently support custom"
   2507          " stackmap formats, please see the documentation for a description of"
   2508          " the default format.  If you really need a custom serialized format,"
   2509          " please file a bug");
   2510 
   2511   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2512   gcp_map_type::iterator GCPI = GCMap.find(&S);
   2513   if (GCPI != GCMap.end())
   2514     return GCPI->second.get();
   2515 
   2516   const char *Name = S.getName().c_str();
   2517 
   2518   for (GCMetadataPrinterRegistry::iterator
   2519          I = GCMetadataPrinterRegistry::begin(),
   2520          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2521     if (strcmp(Name, I->getName()) == 0) {
   2522       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
   2523       GMP->S = &S;
   2524       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
   2525       return IterBool.first->second.get();
   2526     }
   2527 
   2528   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2529 }
   2530 
   2531 /// Pin vtable to this file.
   2532 AsmPrinterHandler::~AsmPrinterHandler() {}
   2533 
   2534 void AsmPrinterHandler::markFunctionEnd() {}
   2535