Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCCallingConv.h"
     17 #include "PPCMachineFunctionInfo.h"
     18 #include "PPCPerfectShuffle.h"
     19 #include "PPCTargetMachine.h"
     20 #include "PPCTargetObjectFile.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringSwitch.h"
     23 #include "llvm/ADT/Triple.h"
     24 #include "llvm/CodeGen/CallingConvLower.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineLoopInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/SelectionDAG.h"
     31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DerivedTypes.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/Intrinsics.h"
     37 #include "llvm/Support/CommandLine.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/MathExtras.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 #include "llvm/Target/TargetOptions.h"
     42 using namespace llvm;
     43 
     44 // FIXME: Remove this once soft-float is supported.
     45 static cl::opt<bool> DisablePPCFloatInVariadic("disable-ppc-float-in-variadic",
     46 cl::desc("disable saving float registers for va_start on PPC"), cl::Hidden);
     47 
     48 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     49 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     50 
     51 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     52 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     53 
     54 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     55 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     56 
     57 // FIXME: Remove this once the bug has been fixed!
     58 extern cl::opt<bool> ANDIGlueBug;
     59 
     60 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
     61                                      const PPCSubtarget &STI)
     62     : TargetLowering(TM), Subtarget(STI) {
     63   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     64   setUseUnderscoreSetJmp(true);
     65   setUseUnderscoreLongJmp(true);
     66 
     67   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     68   // arguments are at least 4/8 bytes aligned.
     69   bool isPPC64 = Subtarget.isPPC64();
     70   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     71 
     72   // Set up the register classes.
     73   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     74   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     75   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     76 
     77   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     78   for (MVT VT : MVT::integer_valuetypes()) {
     79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
     80     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
     81   }
     82 
     83   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     84 
     85   // PowerPC has pre-inc load and store's.
     86   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     87   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     88   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     89   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     90   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     91   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
     92   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
     93   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     94   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     95   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
     96   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
     97   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
     98   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
     99   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
    100 
    101   if (Subtarget.useCRBits()) {
    102     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    103 
    104     if (isPPC64 || Subtarget.hasFPCVT()) {
    105       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
    106       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
    107                          isPPC64 ? MVT::i64 : MVT::i32);
    108       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
    109       AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
    110                          isPPC64 ? MVT::i64 : MVT::i32);
    111     } else {
    112       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
    113       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    114     }
    115 
    116     // PowerPC does not support direct load / store of condition registers
    117     setOperationAction(ISD::LOAD, MVT::i1, Custom);
    118     setOperationAction(ISD::STORE, MVT::i1, Custom);
    119 
    120     // FIXME: Remove this once the ANDI glue bug is fixed:
    121     if (ANDIGlueBug)
    122       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
    123 
    124     for (MVT VT : MVT::integer_valuetypes()) {
    125       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    126       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    127       setTruncStoreAction(VT, MVT::i1, Expand);
    128     }
    129 
    130     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
    131   }
    132 
    133   // This is used in the ppcf128->int sequence.  Note it has different semantics
    134   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    135   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    136 
    137   // We do not currently implement these libm ops for PowerPC.
    138   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    139   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    140   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    141   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    142   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    143   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    144 
    145   // PowerPC has no SREM/UREM instructions
    146   setOperationAction(ISD::SREM, MVT::i32, Expand);
    147   setOperationAction(ISD::UREM, MVT::i32, Expand);
    148   setOperationAction(ISD::SREM, MVT::i64, Expand);
    149   setOperationAction(ISD::UREM, MVT::i64, Expand);
    150 
    151   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    152   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    153   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    154   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    155   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    156   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    157   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    158   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    159   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    160 
    161   // We don't support sin/cos/sqrt/fmod/pow
    162   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    163   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    164   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    165   setOperationAction(ISD::FREM , MVT::f64, Expand);
    166   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    167   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    168   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    169   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    170   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    171   setOperationAction(ISD::FREM , MVT::f32, Expand);
    172   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    173   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    174 
    175   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    176 
    177   // If we're enabling GP optimizations, use hardware square root
    178   if (!Subtarget.hasFSQRT() &&
    179       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
    180         Subtarget.hasFRE()))
    181     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    182 
    183   if (!Subtarget.hasFSQRT() &&
    184       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
    185         Subtarget.hasFRES()))
    186     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    187 
    188   if (Subtarget.hasFCPSGN()) {
    189     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    190     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
    191   } else {
    192     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    193     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    194   }
    195 
    196   if (Subtarget.hasFPRND()) {
    197     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    198     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    199     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    200     setOperationAction(ISD::FROUND, MVT::f64, Legal);
    201 
    202     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    203     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    204     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    205     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    206   }
    207 
    208   // PowerPC does not have BSWAP, CTPOP or CTTZ
    209   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    210   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    211   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    212   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    213   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    214   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    215   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    216   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    217 
    218   if (Subtarget.hasPOPCNTD()) {
    219     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    220     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    221   } else {
    222     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    223     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    224   }
    225 
    226   // PowerPC does not have ROTR
    227   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    228   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    229 
    230   if (!Subtarget.useCRBits()) {
    231     // PowerPC does not have Select
    232     setOperationAction(ISD::SELECT, MVT::i32, Expand);
    233     setOperationAction(ISD::SELECT, MVT::i64, Expand);
    234     setOperationAction(ISD::SELECT, MVT::f32, Expand);
    235     setOperationAction(ISD::SELECT, MVT::f64, Expand);
    236   }
    237 
    238   // PowerPC wants to turn select_cc of FP into fsel when possible.
    239   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    240   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    241 
    242   // PowerPC wants to optimize integer setcc a bit
    243   if (!Subtarget.useCRBits())
    244     setOperationAction(ISD::SETCC, MVT::i32, Custom);
    245 
    246   // PowerPC does not have BRCOND which requires SetCC
    247   if (!Subtarget.useCRBits())
    248     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    249 
    250   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    251 
    252   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    253   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    254 
    255   // PowerPC does not have [U|S]INT_TO_FP
    256   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    257   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    258 
    259   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    260   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    261   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    262   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    263 
    264   // We cannot sextinreg(i1).  Expand to shifts.
    265   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    266 
    267   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    268   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    269   // support continuation, user-level threading, and etc.. As a result, no
    270   // other SjLj exception interfaces are implemented and please don't build
    271   // your own exception handling based on them.
    272   // LLVM/Clang supports zero-cost DWARF exception handling.
    273   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    274   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    275 
    276   // We want to legalize GlobalAddress and ConstantPool nodes into the
    277   // appropriate instructions to materialize the address.
    278   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    279   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    280   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    281   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    282   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    283   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    284   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    285   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    286   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    287   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    288 
    289   // TRAP is legal.
    290   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    291 
    292   // TRAMPOLINE is custom lowered.
    293   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    294   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    295 
    296   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    297   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    298 
    299   if (Subtarget.isSVR4ABI()) {
    300     if (isPPC64) {
    301       // VAARG always uses double-word chunks, so promote anything smaller.
    302       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    303       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    304       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    305       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    306       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    307       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    308       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    309       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    310       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    311     } else {
    312       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    313       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    314       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    315     }
    316   } else
    317     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    318 
    319   if (Subtarget.isSVR4ABI() && !isPPC64)
    320     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    321     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    322   else
    323     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    324 
    325   // Use the default implementation.
    326   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    327   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    328   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    329   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    330   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    331 
    332   // We want to custom lower some of our intrinsics.
    333   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    334 
    335   // To handle counter-based loop conditions.
    336   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    337 
    338   // Comparisons that require checking two conditions.
    339   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    340   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    341   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    342   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    343   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    344   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    345   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    346   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    347   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    348   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    349   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    350   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    351 
    352   if (Subtarget.has64BitSupport()) {
    353     // They also have instructions for converting between i64 and fp.
    354     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    355     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    356     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    357     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    358     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    359     // We cannot do this with Promote because i64 is not a legal type.
    360     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    361 
    362     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
    363       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    364   } else {
    365     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    366     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    367   }
    368 
    369   // With the instructions enabled under FPCVT, we can do everything.
    370   if (Subtarget.hasFPCVT()) {
    371     if (Subtarget.has64BitSupport()) {
    372       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    373       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    374       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    375       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    376     }
    377 
    378     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    379     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    380     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    381     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    382   }
    383 
    384   if (Subtarget.use64BitRegs()) {
    385     // 64-bit PowerPC implementations can support i64 types directly
    386     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    387     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    388     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    389     // 64-bit PowerPC wants to expand i128 shifts itself.
    390     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    391     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    392     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    393   } else {
    394     // 32-bit PowerPC wants to expand i64 shifts itself.
    395     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    396     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    397     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    398   }
    399 
    400   if (Subtarget.hasAltivec()) {
    401     // First set operation action for all vector types to expand. Then we
    402     // will selectively turn on ones that can be effectively codegen'd.
    403     for (MVT VT : MVT::vector_valuetypes()) {
    404       // add/sub are legal for all supported vector VT's.
    405       setOperationAction(ISD::ADD , VT, Legal);
    406       setOperationAction(ISD::SUB , VT, Legal);
    407 
    408       // Vector instructions introduced in P8
    409       if (Subtarget.hasP8Altivec()) {
    410         setOperationAction(ISD::CTPOP, VT, Legal);
    411         setOperationAction(ISD::CTLZ, VT, Legal);
    412       }
    413       else {
    414         setOperationAction(ISD::CTPOP, VT, Expand);
    415         setOperationAction(ISD::CTLZ, VT, Expand);
    416       }
    417 
    418       // We promote all shuffles to v16i8.
    419       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    420       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    421 
    422       // We promote all non-typed operations to v4i32.
    423       setOperationAction(ISD::AND   , VT, Promote);
    424       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    425       setOperationAction(ISD::OR    , VT, Promote);
    426       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    427       setOperationAction(ISD::XOR   , VT, Promote);
    428       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    429       setOperationAction(ISD::LOAD  , VT, Promote);
    430       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    431       setOperationAction(ISD::SELECT, VT, Promote);
    432       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    433       setOperationAction(ISD::STORE, VT, Promote);
    434       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    435 
    436       // No other operations are legal.
    437       setOperationAction(ISD::MUL , VT, Expand);
    438       setOperationAction(ISD::SDIV, VT, Expand);
    439       setOperationAction(ISD::SREM, VT, Expand);
    440       setOperationAction(ISD::UDIV, VT, Expand);
    441       setOperationAction(ISD::UREM, VT, Expand);
    442       setOperationAction(ISD::FDIV, VT, Expand);
    443       setOperationAction(ISD::FREM, VT, Expand);
    444       setOperationAction(ISD::FNEG, VT, Expand);
    445       setOperationAction(ISD::FSQRT, VT, Expand);
    446       setOperationAction(ISD::FLOG, VT, Expand);
    447       setOperationAction(ISD::FLOG10, VT, Expand);
    448       setOperationAction(ISD::FLOG2, VT, Expand);
    449       setOperationAction(ISD::FEXP, VT, Expand);
    450       setOperationAction(ISD::FEXP2, VT, Expand);
    451       setOperationAction(ISD::FSIN, VT, Expand);
    452       setOperationAction(ISD::FCOS, VT, Expand);
    453       setOperationAction(ISD::FABS, VT, Expand);
    454       setOperationAction(ISD::FPOWI, VT, Expand);
    455       setOperationAction(ISD::FFLOOR, VT, Expand);
    456       setOperationAction(ISD::FCEIL,  VT, Expand);
    457       setOperationAction(ISD::FTRUNC, VT, Expand);
    458       setOperationAction(ISD::FRINT,  VT, Expand);
    459       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    460       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    461       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    462       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    463       setOperationAction(ISD::MULHU, VT, Expand);
    464       setOperationAction(ISD::MULHS, VT, Expand);
    465       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    466       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    467       setOperationAction(ISD::UDIVREM, VT, Expand);
    468       setOperationAction(ISD::SDIVREM, VT, Expand);
    469       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    470       setOperationAction(ISD::FPOW, VT, Expand);
    471       setOperationAction(ISD::BSWAP, VT, Expand);
    472       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    473       setOperationAction(ISD::CTTZ, VT, Expand);
    474       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    475       setOperationAction(ISD::VSELECT, VT, Expand);
    476       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    477 
    478       for (MVT InnerVT : MVT::vector_valuetypes()) {
    479         setTruncStoreAction(VT, InnerVT, Expand);
    480         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    481         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    482         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    483       }
    484     }
    485 
    486     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    487     // with merges, splats, etc.
    488     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    489 
    490     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    491     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    492     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    493     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    494     setOperationAction(ISD::SELECT, MVT::v4i32,
    495                        Subtarget.useCRBits() ? Legal : Expand);
    496     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    497     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    498     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    499     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    500     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    501     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    502     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    503     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    504     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    505 
    506     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    507     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    508     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    509     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    510 
    511     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    512     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    513 
    514     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
    515       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    516       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    517     }
    518 
    519 
    520     if (Subtarget.hasP8Altivec())
    521       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
    522     else
    523       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    524 
    525     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    526     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    527 
    528     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    529     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    530 
    531     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    532     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    533     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    534     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    535 
    536     // Altivec does not contain unordered floating-point compare instructions
    537     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    538     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    539     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    540     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    541 
    542     if (Subtarget.hasVSX()) {
    543       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    544       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    545 
    546       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    547       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    548       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    549       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    550       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    551 
    552       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    553 
    554       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
    555       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    556 
    557       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    558       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    559 
    560       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
    561       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
    562       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
    563       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    564       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
    565 
    566       // Share the Altivec comparison restrictions.
    567       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
    568       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
    569       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
    570       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
    571 
    572       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
    573       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
    574 
    575       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
    576 
    577       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
    578 
    579       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
    580       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
    581 
    582       if (Subtarget.hasP8Altivec()) {
    583         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
    584         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
    585         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
    586 
    587         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
    588       }
    589       else {
    590         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
    591         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
    592         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
    593 
    594         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
    595 
    596         // VSX v2i64 only supports non-arithmetic operations.
    597         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
    598         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
    599       }
    600 
    601       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    602       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
    603       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    604       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
    605 
    606       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
    607 
    608       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    609       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    610       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    611       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    612 
    613       // Vector operation legalization checks the result type of
    614       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
    615       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    616       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
    617       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    618       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    619 
    620       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    621     }
    622 
    623     if (Subtarget.hasP8Altivec())
    624       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
    625   }
    626 
    627   if (Subtarget.hasQPX()) {
    628     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
    629     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
    630     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
    631     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
    632 
    633     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
    634     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
    635 
    636     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
    637     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
    638 
    639     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
    640     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
    641 
    642     if (!Subtarget.useCRBits())
    643       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
    644     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
    645 
    646     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
    647     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
    648     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
    649     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
    650     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
    651     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
    652     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
    653 
    654     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
    655     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
    656 
    657     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
    658     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
    659     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
    660 
    661     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
    662     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
    663     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
    664     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
    665     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
    666     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
    667     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
    668     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
    669     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
    670     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
    671     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
    672 
    673     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
    674     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
    675 
    676     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
    677     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
    678 
    679     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
    680 
    681     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    682     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    683     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    684     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
    685 
    686     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
    687     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
    688 
    689     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
    690     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
    691 
    692     if (!Subtarget.useCRBits())
    693       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
    694     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    695 
    696     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
    697     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
    698     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
    699     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
    700     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
    701     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    702     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    703 
    704     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
    705     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
    706 
    707     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
    708     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
    709     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
    710     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
    711     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
    712     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
    713     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
    714     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
    715     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
    716     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
    717     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
    718 
    719     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    720     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    721 
    722     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
    723     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
    724 
    725     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
    726 
    727     setOperationAction(ISD::AND , MVT::v4i1, Legal);
    728     setOperationAction(ISD::OR , MVT::v4i1, Legal);
    729     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
    730 
    731     if (!Subtarget.useCRBits())
    732       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
    733     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
    734 
    735     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
    736     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
    737 
    738     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
    739     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
    740     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
    741     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
    742     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
    743     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
    744     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
    745 
    746     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
    747     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
    748 
    749     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
    750 
    751     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
    752     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
    753     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
    754     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
    755 
    756     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    757     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
    758     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    759     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    760 
    761     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
    762     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    763 
    764     // These need to set FE_INEXACT, and so cannot be vectorized here.
    765     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
    766     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    767 
    768     if (TM.Options.UnsafeFPMath) {
    769       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
    770       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
    771 
    772       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    773       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    774     } else {
    775       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
    776       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
    777 
    778       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
    779       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    780     }
    781   }
    782 
    783   if (Subtarget.has64BitSupport())
    784     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    785 
    786   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
    787 
    788   if (!isPPC64) {
    789     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    790     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    791   }
    792 
    793   setBooleanContents(ZeroOrOneBooleanContent);
    794 
    795   if (Subtarget.hasAltivec()) {
    796     // Altivec instructions set fields to all zeros or all ones.
    797     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    798   }
    799 
    800   if (!isPPC64) {
    801     // These libcalls are not available in 32-bit.
    802     setLibcallName(RTLIB::SHL_I128, nullptr);
    803     setLibcallName(RTLIB::SRL_I128, nullptr);
    804     setLibcallName(RTLIB::SRA_I128, nullptr);
    805   }
    806 
    807   if (isPPC64) {
    808     setStackPointerRegisterToSaveRestore(PPC::X1);
    809     setExceptionPointerRegister(PPC::X3);
    810     setExceptionSelectorRegister(PPC::X4);
    811   } else {
    812     setStackPointerRegisterToSaveRestore(PPC::R1);
    813     setExceptionPointerRegister(PPC::R3);
    814     setExceptionSelectorRegister(PPC::R4);
    815   }
    816 
    817   // We have target-specific dag combine patterns for the following nodes:
    818   setTargetDAGCombine(ISD::SINT_TO_FP);
    819   if (Subtarget.hasFPCVT())
    820     setTargetDAGCombine(ISD::UINT_TO_FP);
    821   setTargetDAGCombine(ISD::LOAD);
    822   setTargetDAGCombine(ISD::STORE);
    823   setTargetDAGCombine(ISD::BR_CC);
    824   if (Subtarget.useCRBits())
    825     setTargetDAGCombine(ISD::BRCOND);
    826   setTargetDAGCombine(ISD::BSWAP);
    827   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    828   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    829   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    830 
    831   setTargetDAGCombine(ISD::SIGN_EXTEND);
    832   setTargetDAGCombine(ISD::ZERO_EXTEND);
    833   setTargetDAGCombine(ISD::ANY_EXTEND);
    834 
    835   if (Subtarget.useCRBits()) {
    836     setTargetDAGCombine(ISD::TRUNCATE);
    837     setTargetDAGCombine(ISD::SETCC);
    838     setTargetDAGCombine(ISD::SELECT_CC);
    839   }
    840 
    841   // Use reciprocal estimates.
    842   if (TM.Options.UnsafeFPMath) {
    843     setTargetDAGCombine(ISD::FDIV);
    844     setTargetDAGCombine(ISD::FSQRT);
    845   }
    846 
    847   // Darwin long double math library functions have $LDBL128 appended.
    848   if (Subtarget.isDarwin()) {
    849     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    850     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    851     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    852     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    853     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    854     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    855     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    856     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    857     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    858     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    859   }
    860 
    861   // With 32 condition bits, we don't need to sink (and duplicate) compares
    862   // aggressively in CodeGenPrep.
    863   if (Subtarget.useCRBits()) {
    864     setHasMultipleConditionRegisters();
    865     setJumpIsExpensive();
    866   }
    867 
    868   setMinFunctionAlignment(2);
    869   if (Subtarget.isDarwin())
    870     setPrefFunctionAlignment(4);
    871 
    872   switch (Subtarget.getDarwinDirective()) {
    873   default: break;
    874   case PPC::DIR_970:
    875   case PPC::DIR_A2:
    876   case PPC::DIR_E500mc:
    877   case PPC::DIR_E5500:
    878   case PPC::DIR_PWR4:
    879   case PPC::DIR_PWR5:
    880   case PPC::DIR_PWR5X:
    881   case PPC::DIR_PWR6:
    882   case PPC::DIR_PWR6X:
    883   case PPC::DIR_PWR7:
    884   case PPC::DIR_PWR8:
    885     setPrefFunctionAlignment(4);
    886     setPrefLoopAlignment(4);
    887     break;
    888   }
    889 
    890   setInsertFencesForAtomic(true);
    891 
    892   if (Subtarget.enableMachineScheduler())
    893     setSchedulingPreference(Sched::Source);
    894   else
    895     setSchedulingPreference(Sched::Hybrid);
    896 
    897   computeRegisterProperties(STI.getRegisterInfo());
    898 
    899   // The Freescale cores do better with aggressive inlining of memcpy and
    900   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
    901   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
    902       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
    903     MaxStoresPerMemset = 32;
    904     MaxStoresPerMemsetOptSize = 16;
    905     MaxStoresPerMemcpy = 32;
    906     MaxStoresPerMemcpyOptSize = 8;
    907     MaxStoresPerMemmove = 32;
    908     MaxStoresPerMemmoveOptSize = 8;
    909   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
    910     // The A2 also benefits from (very) aggressive inlining of memcpy and
    911     // friends. The overhead of a the function call, even when warm, can be
    912     // over one hundred cycles.
    913     MaxStoresPerMemset = 128;
    914     MaxStoresPerMemcpy = 128;
    915     MaxStoresPerMemmove = 128;
    916   }
    917 }
    918 
    919 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
    920 /// the desired ByVal argument alignment.
    921 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
    922                              unsigned MaxMaxAlign) {
    923   if (MaxAlign == MaxMaxAlign)
    924     return;
    925   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    926     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
    927       MaxAlign = 32;
    928     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
    929       MaxAlign = 16;
    930   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    931     unsigned EltAlign = 0;
    932     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
    933     if (EltAlign > MaxAlign)
    934       MaxAlign = EltAlign;
    935   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    936     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    937       unsigned EltAlign = 0;
    938       getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
    939       if (EltAlign > MaxAlign)
    940         MaxAlign = EltAlign;
    941       if (MaxAlign == MaxMaxAlign)
    942         break;
    943     }
    944   }
    945 }
    946 
    947 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    948 /// function arguments in the caller parameter area.
    949 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
    950   // Darwin passes everything on 4 byte boundary.
    951   if (Subtarget.isDarwin())
    952     return 4;
    953 
    954   // 16byte and wider vectors are passed on 16byte boundary.
    955   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    956   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
    957   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
    958     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
    959   return Align;
    960 }
    961 
    962 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    963   switch (Opcode) {
    964   default: return nullptr;
    965   case PPCISD::FSEL:            return "PPCISD::FSEL";
    966   case PPCISD::FCFID:           return "PPCISD::FCFID";
    967   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
    968   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
    969   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
    970   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
    971   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
    972   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
    973   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
    974   case PPCISD::FRE:             return "PPCISD::FRE";
    975   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
    976   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
    977   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
    978   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
    979   case PPCISD::VPERM:           return "PPCISD::VPERM";
    980   case PPCISD::CMPB:            return "PPCISD::CMPB";
    981   case PPCISD::Hi:              return "PPCISD::Hi";
    982   case PPCISD::Lo:              return "PPCISD::Lo";
    983   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
    984   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
    985   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
    986   case PPCISD::SRL:             return "PPCISD::SRL";
    987   case PPCISD::SRA:             return "PPCISD::SRA";
    988   case PPCISD::SHL:             return "PPCISD::SHL";
    989   case PPCISD::CALL:            return "PPCISD::CALL";
    990   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
    991   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
    992   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
    993   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
    994   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
    995   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
    996   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
    997   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
    998   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
    999   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
   1000   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
   1001   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
   1002   case PPCISD::VCMP:            return "PPCISD::VCMP";
   1003   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
   1004   case PPCISD::LBRX:            return "PPCISD::LBRX";
   1005   case PPCISD::STBRX:           return "PPCISD::STBRX";
   1006   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
   1007   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
   1008   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
   1009   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
   1010   case PPCISD::BDZ:             return "PPCISD::BDZ";
   1011   case PPCISD::MFFS:            return "PPCISD::MFFS";
   1012   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
   1013   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
   1014   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
   1015   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
   1016   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
   1017   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
   1018   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
   1019   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
   1020   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
   1021   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
   1022   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
   1023   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
   1024   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
   1025   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
   1026   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
   1027   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
   1028   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
   1029   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
   1030   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
   1031   case PPCISD::SC:              return "PPCISD::SC";
   1032   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
   1033   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
   1034   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
   1035   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
   1036   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
   1037   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
   1038   }
   1039 }
   1040 
   1041 EVT PPCTargetLowering::getSetCCResultType(LLVMContext &C, EVT VT) const {
   1042   if (!VT.isVector())
   1043     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
   1044 
   1045   if (Subtarget.hasQPX())
   1046     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
   1047 
   1048   return VT.changeVectorElementTypeToInteger();
   1049 }
   1050 
   1051 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   1052   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
   1053   return true;
   1054 }
   1055 
   1056 //===----------------------------------------------------------------------===//
   1057 // Node matching predicates, for use by the tblgen matching code.
   1058 //===----------------------------------------------------------------------===//
   1059 
   1060 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
   1061 static bool isFloatingPointZero(SDValue Op) {
   1062   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   1063     return CFP->getValueAPF().isZero();
   1064   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   1065     // Maybe this has already been legalized into the constant pool?
   1066     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
   1067       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   1068         return CFP->getValueAPF().isZero();
   1069   }
   1070   return false;
   1071 }
   1072 
   1073 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
   1074 /// true if Op is undef or if it matches the specified value.
   1075 static bool isConstantOrUndef(int Op, int Val) {
   1076   return Op < 0 || Op == Val;
   1077 }
   1078 
   1079 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
   1080 /// VPKUHUM instruction.
   1081 /// The ShuffleKind distinguishes between big-endian operations with
   1082 /// two different inputs (0), either-endian operations with two identical
   1083 /// inputs (1), and little-endian operantion with two different inputs (2).
   1084 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1085 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1086                                SelectionDAG &DAG) {
   1087   bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
   1088   if (ShuffleKind == 0) {
   1089     if (IsLE)
   1090       return false;
   1091     for (unsigned i = 0; i != 16; ++i)
   1092       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
   1093         return false;
   1094   } else if (ShuffleKind == 2) {
   1095     if (!IsLE)
   1096       return false;
   1097     for (unsigned i = 0; i != 16; ++i)
   1098       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
   1099         return false;
   1100   } else if (ShuffleKind == 1) {
   1101     unsigned j = IsLE ? 0 : 1;
   1102     for (unsigned i = 0; i != 8; ++i)
   1103       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
   1104           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
   1105         return false;
   1106   }
   1107   return true;
   1108 }
   1109 
   1110 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
   1111 /// VPKUWUM instruction.
   1112 /// The ShuffleKind distinguishes between big-endian operations with
   1113 /// two different inputs (0), either-endian operations with two identical
   1114 /// inputs (1), and little-endian operantion with two different inputs (2).
   1115 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1116 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1117                                SelectionDAG &DAG) {
   1118   bool IsLE = DAG.getTarget().getDataLayout()->isLittleEndian();
   1119   if (ShuffleKind == 0) {
   1120     if (IsLE)
   1121       return false;
   1122     for (unsigned i = 0; i != 16; i += 2)
   1123       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
   1124           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
   1125         return false;
   1126   } else if (ShuffleKind == 2) {
   1127     if (!IsLE)
   1128       return false;
   1129     for (unsigned i = 0; i != 16; i += 2)
   1130       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1131           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
   1132         return false;
   1133   } else if (ShuffleKind == 1) {
   1134     unsigned j = IsLE ? 0 : 2;
   1135     for (unsigned i = 0; i != 8; i += 2)
   1136       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1137           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1138           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1139           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
   1140         return false;
   1141   }
   1142   return true;
   1143 }
   1144 
   1145 /// isVMerge - Common function, used to match vmrg* shuffles.
   1146 ///
   1147 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
   1148                      unsigned LHSStart, unsigned RHSStart) {
   1149   if (N->getValueType(0) != MVT::v16i8)
   1150     return false;
   1151   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
   1152          "Unsupported merge size!");
   1153 
   1154   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
   1155     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
   1156       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
   1157                              LHSStart+j+i*UnitSize) ||
   1158           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
   1159                              RHSStart+j+i*UnitSize))
   1160         return false;
   1161     }
   1162   return true;
   1163 }
   1164 
   1165 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
   1166 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
   1167 /// The ShuffleKind distinguishes between big-endian merges with two
   1168 /// different inputs (0), either-endian merges with two identical inputs (1),
   1169 /// and little-endian merges with two different inputs (2).  For the latter,
   1170 /// the input operands are swapped (see PPCInstrAltivec.td).
   1171 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1172                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1173   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
   1174     if (ShuffleKind == 1) // unary
   1175       return isVMerge(N, UnitSize, 0, 0);
   1176     else if (ShuffleKind == 2) // swapped
   1177       return isVMerge(N, UnitSize, 0, 16);
   1178     else
   1179       return false;
   1180   } else {
   1181     if (ShuffleKind == 1) // unary
   1182       return isVMerge(N, UnitSize, 8, 8);
   1183     else if (ShuffleKind == 0) // normal
   1184       return isVMerge(N, UnitSize, 8, 24);
   1185     else
   1186       return false;
   1187   }
   1188 }
   1189 
   1190 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
   1191 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
   1192 /// The ShuffleKind distinguishes between big-endian merges with two
   1193 /// different inputs (0), either-endian merges with two identical inputs (1),
   1194 /// and little-endian merges with two different inputs (2).  For the latter,
   1195 /// the input operands are swapped (see PPCInstrAltivec.td).
   1196 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1197                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1198   if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
   1199     if (ShuffleKind == 1) // unary
   1200       return isVMerge(N, UnitSize, 8, 8);
   1201     else if (ShuffleKind == 2) // swapped
   1202       return isVMerge(N, UnitSize, 8, 24);
   1203     else
   1204       return false;
   1205   } else {
   1206     if (ShuffleKind == 1) // unary
   1207       return isVMerge(N, UnitSize, 0, 0);
   1208     else if (ShuffleKind == 0) // normal
   1209       return isVMerge(N, UnitSize, 0, 16);
   1210     else
   1211       return false;
   1212   }
   1213 }
   1214 
   1215 
   1216 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
   1217 /// amount, otherwise return -1.
   1218 /// The ShuffleKind distinguishes between big-endian operations with two
   1219 /// different inputs (0), either-endian operations with two identical inputs
   1220 /// (1), and little-endian operations with two different inputs (2).  For the
   1221 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
   1222 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
   1223                              SelectionDAG &DAG) {
   1224   if (N->getValueType(0) != MVT::v16i8)
   1225     return -1;
   1226 
   1227   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1228 
   1229   // Find the first non-undef value in the shuffle mask.
   1230   unsigned i;
   1231   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
   1232     /*search*/;
   1233 
   1234   if (i == 16) return -1;  // all undef.
   1235 
   1236   // Otherwise, check to see if the rest of the elements are consecutively
   1237   // numbered from this value.
   1238   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1239   if (ShiftAmt < i) return -1;
   1240 
   1241   ShiftAmt -= i;
   1242   bool isLE = DAG.getTarget().getDataLayout()->isLittleEndian();
   1243 
   1244   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
   1245     // Check the rest of the elements to see if they are consecutive.
   1246     for (++i; i != 16; ++i)
   1247       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1248         return -1;
   1249   } else if (ShuffleKind == 1) {
   1250     // Check the rest of the elements to see if they are consecutive.
   1251     for (++i; i != 16; ++i)
   1252       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
   1253         return -1;
   1254   } else
   1255     return -1;
   1256 
   1257   if (ShuffleKind == 2 && isLE)
   1258     ShiftAmt = 16 - ShiftAmt;
   1259 
   1260   return ShiftAmt;
   1261 }
   1262 
   1263 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
   1264 /// specifies a splat of a single element that is suitable for input to
   1265 /// VSPLTB/VSPLTH/VSPLTW.
   1266 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
   1267   assert(N->getValueType(0) == MVT::v16i8 &&
   1268          (EltSize == 1 || EltSize == 2 || EltSize == 4));
   1269 
   1270   // This is a splat operation if each element of the permute is the same, and
   1271   // if the value doesn't reference the second vector.
   1272   unsigned ElementBase = N->getMaskElt(0);
   1273 
   1274   // FIXME: Handle UNDEF elements too!
   1275   if (ElementBase >= 16)
   1276     return false;
   1277 
   1278   // Check that the indices are consecutive, in the case of a multi-byte element
   1279   // splatted with a v16i8 mask.
   1280   for (unsigned i = 1; i != EltSize; ++i)
   1281     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
   1282       return false;
   1283 
   1284   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
   1285     if (N->getMaskElt(i) < 0) continue;
   1286     for (unsigned j = 0; j != EltSize; ++j)
   1287       if (N->getMaskElt(i+j) != N->getMaskElt(j))
   1288         return false;
   1289   }
   1290   return true;
   1291 }
   1292 
   1293 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
   1294 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
   1295 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
   1296                                 SelectionDAG &DAG) {
   1297   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1298   assert(isSplatShuffleMask(SVOp, EltSize));
   1299   if (DAG.getTarget().getDataLayout()->isLittleEndian())
   1300     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
   1301   else
   1302     return SVOp->getMaskElt(0) / EltSize;
   1303 }
   1304 
   1305 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
   1306 /// by using a vspltis[bhw] instruction of the specified element size, return
   1307 /// the constant being splatted.  The ByteSize field indicates the number of
   1308 /// bytes of each element [124] -> [bhw].
   1309 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
   1310   SDValue OpVal(nullptr, 0);
   1311 
   1312   // If ByteSize of the splat is bigger than the element size of the
   1313   // build_vector, then we have a case where we are checking for a splat where
   1314   // multiple elements of the buildvector are folded together into a single
   1315   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
   1316   unsigned EltSize = 16/N->getNumOperands();
   1317   if (EltSize < ByteSize) {
   1318     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
   1319     SDValue UniquedVals[4];
   1320     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
   1321 
   1322     // See if all of the elements in the buildvector agree across.
   1323     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1324       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1325       // If the element isn't a constant, bail fully out.
   1326       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
   1327 
   1328 
   1329       if (!UniquedVals[i&(Multiple-1)].getNode())
   1330         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
   1331       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
   1332         return SDValue();  // no match.
   1333     }
   1334 
   1335     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
   1336     // either constant or undef values that are identical for each chunk.  See
   1337     // if these chunks can form into a larger vspltis*.
   1338 
   1339     // Check to see if all of the leading entries are either 0 or -1.  If
   1340     // neither, then this won't fit into the immediate field.
   1341     bool LeadingZero = true;
   1342     bool LeadingOnes = true;
   1343     for (unsigned i = 0; i != Multiple-1; ++i) {
   1344       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
   1345 
   1346       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
   1347       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
   1348     }
   1349     // Finally, check the least significant entry.
   1350     if (LeadingZero) {
   1351       if (!UniquedVals[Multiple-1].getNode())
   1352         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
   1353       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
   1354       if (Val < 16)
   1355         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
   1356     }
   1357     if (LeadingOnes) {
   1358       if (!UniquedVals[Multiple-1].getNode())
   1359         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
   1360       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
   1361       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
   1362         return DAG.getTargetConstant(Val, MVT::i32);
   1363     }
   1364 
   1365     return SDValue();
   1366   }
   1367 
   1368   // Check to see if this buildvec has a single non-undef value in its elements.
   1369   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1370     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1371     if (!OpVal.getNode())
   1372       OpVal = N->getOperand(i);
   1373     else if (OpVal != N->getOperand(i))
   1374       return SDValue();
   1375   }
   1376 
   1377   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
   1378 
   1379   unsigned ValSizeInBytes = EltSize;
   1380   uint64_t Value = 0;
   1381   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
   1382     Value = CN->getZExtValue();
   1383   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
   1384     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
   1385     Value = FloatToBits(CN->getValueAPF().convertToFloat());
   1386   }
   1387 
   1388   // If the splat value is larger than the element value, then we can never do
   1389   // this splat.  The only case that we could fit the replicated bits into our
   1390   // immediate field for would be zero, and we prefer to use vxor for it.
   1391   if (ValSizeInBytes < ByteSize) return SDValue();
   1392 
   1393   // If the element value is larger than the splat value, check if it consists
   1394   // of a repeated bit pattern of size ByteSize.
   1395   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
   1396     return SDValue();
   1397 
   1398   // Properly sign extend the value.
   1399   int MaskVal = SignExtend32(Value, ByteSize * 8);
   1400 
   1401   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
   1402   if (MaskVal == 0) return SDValue();
   1403 
   1404   // Finally, if this value fits in a 5 bit sext field, return it
   1405   if (SignExtend32<5>(MaskVal) == MaskVal)
   1406     return DAG.getTargetConstant(MaskVal, MVT::i32);
   1407   return SDValue();
   1408 }
   1409 
   1410 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
   1411 /// amount, otherwise return -1.
   1412 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
   1413   EVT VT = N->getValueType(0);
   1414   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
   1415     return -1;
   1416 
   1417   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1418 
   1419   // Find the first non-undef value in the shuffle mask.
   1420   unsigned i;
   1421   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
   1422     /*search*/;
   1423 
   1424   if (i == 4) return -1;  // all undef.
   1425 
   1426   // Otherwise, check to see if the rest of the elements are consecutively
   1427   // numbered from this value.
   1428   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1429   if (ShiftAmt < i) return -1;
   1430   ShiftAmt -= i;
   1431 
   1432   // Check the rest of the elements to see if they are consecutive.
   1433   for (++i; i != 4; ++i)
   1434     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1435       return -1;
   1436 
   1437   return ShiftAmt;
   1438 }
   1439 
   1440 //===----------------------------------------------------------------------===//
   1441 //  Addressing Mode Selection
   1442 //===----------------------------------------------------------------------===//
   1443 
   1444 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
   1445 /// or 64-bit immediate, and if the value can be accurately represented as a
   1446 /// sign extension from a 16-bit value.  If so, this returns true and the
   1447 /// immediate.
   1448 static bool isIntS16Immediate(SDNode *N, short &Imm) {
   1449   if (!isa<ConstantSDNode>(N))
   1450     return false;
   1451 
   1452   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
   1453   if (N->getValueType(0) == MVT::i32)
   1454     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
   1455   else
   1456     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
   1457 }
   1458 static bool isIntS16Immediate(SDValue Op, short &Imm) {
   1459   return isIntS16Immediate(Op.getNode(), Imm);
   1460 }
   1461 
   1462 
   1463 /// SelectAddressRegReg - Given the specified addressed, check to see if it
   1464 /// can be represented as an indexed [r+r] operation.  Returns false if it
   1465 /// can be more efficiently represented with [r+imm].
   1466 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
   1467                                             SDValue &Index,
   1468                                             SelectionDAG &DAG) const {
   1469   short imm = 0;
   1470   if (N.getOpcode() == ISD::ADD) {
   1471     if (isIntS16Immediate(N.getOperand(1), imm))
   1472       return false;    // r+i
   1473     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   1474       return false;    // r+i
   1475 
   1476     Base = N.getOperand(0);
   1477     Index = N.getOperand(1);
   1478     return true;
   1479   } else if (N.getOpcode() == ISD::OR) {
   1480     if (isIntS16Immediate(N.getOperand(1), imm))
   1481       return false;    // r+i can fold it if we can.
   1482 
   1483     // If this is an or of disjoint bitfields, we can codegen this as an add
   1484     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   1485     // disjoint.
   1486     APInt LHSKnownZero, LHSKnownOne;
   1487     APInt RHSKnownZero, RHSKnownOne;
   1488     DAG.computeKnownBits(N.getOperand(0),
   1489                          LHSKnownZero, LHSKnownOne);
   1490 
   1491     if (LHSKnownZero.getBoolValue()) {
   1492       DAG.computeKnownBits(N.getOperand(1),
   1493                            RHSKnownZero, RHSKnownOne);
   1494       // If all of the bits are known zero on the LHS or RHS, the add won't
   1495       // carry.
   1496       if (~(LHSKnownZero | RHSKnownZero) == 0) {
   1497         Base = N.getOperand(0);
   1498         Index = N.getOperand(1);
   1499         return true;
   1500       }
   1501     }
   1502   }
   1503 
   1504   return false;
   1505 }
   1506 
   1507 // If we happen to be doing an i64 load or store into a stack slot that has
   1508 // less than a 4-byte alignment, then the frame-index elimination may need to
   1509 // use an indexed load or store instruction (because the offset may not be a
   1510 // multiple of 4). The extra register needed to hold the offset comes from the
   1511 // register scavenger, and it is possible that the scavenger will need to use
   1512 // an emergency spill slot. As a result, we need to make sure that a spill slot
   1513 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   1514 // stack slot.
   1515 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   1516   // FIXME: This does not handle the LWA case.
   1517   if (VT != MVT::i64)
   1518     return;
   1519 
   1520   // NOTE: We'll exclude negative FIs here, which come from argument
   1521   // lowering, because there are no known test cases triggering this problem
   1522   // using packed structures (or similar). We can remove this exclusion if
   1523   // we find such a test case. The reason why this is so test-case driven is
   1524   // because this entire 'fixup' is only to prevent crashes (from the
   1525   // register scavenger) on not-really-valid inputs. For example, if we have:
   1526   //   %a = alloca i1
   1527   //   %b = bitcast i1* %a to i64*
   1528   //   store i64* a, i64 b
   1529   // then the store should really be marked as 'align 1', but is not. If it
   1530   // were marked as 'align 1' then the indexed form would have been
   1531   // instruction-selected initially, and the problem this 'fixup' is preventing
   1532   // won't happen regardless.
   1533   if (FrameIdx < 0)
   1534     return;
   1535 
   1536   MachineFunction &MF = DAG.getMachineFunction();
   1537   MachineFrameInfo *MFI = MF.getFrameInfo();
   1538 
   1539   unsigned Align = MFI->getObjectAlignment(FrameIdx);
   1540   if (Align >= 4)
   1541     return;
   1542 
   1543   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1544   FuncInfo->setHasNonRISpills();
   1545 }
   1546 
   1547 /// Returns true if the address N can be represented by a base register plus
   1548 /// a signed 16-bit displacement [r+imm], and if it is not better
   1549 /// represented as reg+reg.  If Aligned is true, only accept displacements
   1550 /// suitable for STD and friends, i.e. multiples of 4.
   1551 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   1552                                             SDValue &Base,
   1553                                             SelectionDAG &DAG,
   1554                                             bool Aligned) const {
   1555   // FIXME dl should come from parent load or store, not from address
   1556   SDLoc dl(N);
   1557   // If this can be more profitably realized as r+r, fail.
   1558   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1559     return false;
   1560 
   1561   if (N.getOpcode() == ISD::ADD) {
   1562     short imm = 0;
   1563     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1564         (!Aligned || (imm & 3) == 0)) {
   1565       Disp = DAG.getTargetConstant(imm, N.getValueType());
   1566       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1567         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1568         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1569       } else {
   1570         Base = N.getOperand(0);
   1571       }
   1572       return true; // [r+i]
   1573     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1574       // Match LOAD (ADD (X, Lo(G))).
   1575       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1576              && "Cannot handle constant offsets yet!");
   1577       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1578       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1579              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1580              Disp.getOpcode() == ISD::TargetConstantPool ||
   1581              Disp.getOpcode() == ISD::TargetJumpTable);
   1582       Base = N.getOperand(0);
   1583       return true;  // [&g+r]
   1584     }
   1585   } else if (N.getOpcode() == ISD::OR) {
   1586     short imm = 0;
   1587     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1588         (!Aligned || (imm & 3) == 0)) {
   1589       // If this is an or of disjoint bitfields, we can codegen this as an add
   1590       // (for better address arithmetic) if the LHS and RHS of the OR are
   1591       // provably disjoint.
   1592       APInt LHSKnownZero, LHSKnownOne;
   1593       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1594 
   1595       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1596         // If all of the bits are known zero on the LHS or RHS, the add won't
   1597         // carry.
   1598         if (FrameIndexSDNode *FI =
   1599               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1600           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1601           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1602         } else {
   1603           Base = N.getOperand(0);
   1604         }
   1605         Disp = DAG.getTargetConstant(imm, N.getValueType());
   1606         return true;
   1607       }
   1608     }
   1609   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1610     // Loading from a constant address.
   1611 
   1612     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1613     // this as "d, 0"
   1614     short Imm;
   1615     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
   1616       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
   1617       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1618                              CN->getValueType(0));
   1619       return true;
   1620     }
   1621 
   1622     // Handle 32-bit sext immediates with LIS + addr mode.
   1623     if ((CN->getValueType(0) == MVT::i32 ||
   1624          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   1625         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
   1626       int Addr = (int)CN->getZExtValue();
   1627 
   1628       // Otherwise, break this down into an LIS + disp.
   1629       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
   1630 
   1631       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
   1632       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1633       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1634       return true;
   1635     }
   1636   }
   1637 
   1638   Disp = DAG.getTargetConstant(0, getPointerTy());
   1639   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   1640     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1641     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1642   } else
   1643     Base = N;
   1644   return true;      // [r+0]
   1645 }
   1646 
   1647 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1648 /// represented as an indexed [r+r] operation.
   1649 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1650                                                 SDValue &Index,
   1651                                                 SelectionDAG &DAG) const {
   1652   // Check to see if we can easily represent this as an [r+r] address.  This
   1653   // will fail if it thinks that the address is more profitably represented as
   1654   // reg+imm, e.g. where imm = 0.
   1655   if (SelectAddressRegReg(N, Base, Index, DAG))
   1656     return true;
   1657 
   1658   // If the operand is an addition, always emit this as [r+r], since this is
   1659   // better (for code size, and execution, as the memop does the add for free)
   1660   // than emitting an explicit add.
   1661   if (N.getOpcode() == ISD::ADD) {
   1662     Base = N.getOperand(0);
   1663     Index = N.getOperand(1);
   1664     return true;
   1665   }
   1666 
   1667   // Otherwise, do it the hard way, using R0 as the base register.
   1668   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1669                          N.getValueType());
   1670   Index = N;
   1671   return true;
   1672 }
   1673 
   1674 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1675 /// offset pointer and addressing mode by reference if the node's address
   1676 /// can be legally represented as pre-indexed load / store address.
   1677 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1678                                                   SDValue &Offset,
   1679                                                   ISD::MemIndexedMode &AM,
   1680                                                   SelectionDAG &DAG) const {
   1681   if (DisablePPCPreinc) return false;
   1682 
   1683   bool isLoad = true;
   1684   SDValue Ptr;
   1685   EVT VT;
   1686   unsigned Alignment;
   1687   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1688     Ptr = LD->getBasePtr();
   1689     VT = LD->getMemoryVT();
   1690     Alignment = LD->getAlignment();
   1691   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1692     Ptr = ST->getBasePtr();
   1693     VT  = ST->getMemoryVT();
   1694     Alignment = ST->getAlignment();
   1695     isLoad = false;
   1696   } else
   1697     return false;
   1698 
   1699   // PowerPC doesn't have preinc load/store instructions for vectors (except
   1700   // for QPX, which does have preinc r+r forms).
   1701   if (VT.isVector()) {
   1702     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
   1703       return false;
   1704     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
   1705       AM = ISD::PRE_INC;
   1706       return true;
   1707     }
   1708   }
   1709 
   1710   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   1711 
   1712     // Common code will reject creating a pre-inc form if the base pointer
   1713     // is a frame index, or if N is a store and the base pointer is either
   1714     // the same as or a predecessor of the value being stored.  Check for
   1715     // those situations here, and try with swapped Base/Offset instead.
   1716     bool Swap = false;
   1717 
   1718     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   1719       Swap = true;
   1720     else if (!isLoad) {
   1721       SDValue Val = cast<StoreSDNode>(N)->getValue();
   1722       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   1723         Swap = true;
   1724     }
   1725 
   1726     if (Swap)
   1727       std::swap(Base, Offset);
   1728 
   1729     AM = ISD::PRE_INC;
   1730     return true;
   1731   }
   1732 
   1733   // LDU/STU can only handle immediates that are a multiple of 4.
   1734   if (VT != MVT::i64) {
   1735     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
   1736       return false;
   1737   } else {
   1738     // LDU/STU need an address with at least 4-byte alignment.
   1739     if (Alignment < 4)
   1740       return false;
   1741 
   1742     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
   1743       return false;
   1744   }
   1745 
   1746   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1747     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1748     // sext i32 to i64 when addr mode is r+i.
   1749     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1750         LD->getExtensionType() == ISD::SEXTLOAD &&
   1751         isa<ConstantSDNode>(Offset))
   1752       return false;
   1753   }
   1754 
   1755   AM = ISD::PRE_INC;
   1756   return true;
   1757 }
   1758 
   1759 //===----------------------------------------------------------------------===//
   1760 //  LowerOperation implementation
   1761 //===----------------------------------------------------------------------===//
   1762 
   1763 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1764 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1765 static bool GetLabelAccessInfo(const TargetMachine &TM,
   1766                                const PPCSubtarget &Subtarget,
   1767                                unsigned &HiOpFlags, unsigned &LoOpFlags,
   1768                                const GlobalValue *GV = nullptr) {
   1769   HiOpFlags = PPCII::MO_HA;
   1770   LoOpFlags = PPCII::MO_LO;
   1771 
   1772   // Don't use the pic base if not in PIC relocation model.
   1773   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
   1774 
   1775   if (isPIC) {
   1776     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1777     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1778   }
   1779 
   1780   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1781   // sure that instruction lowering adds it.
   1782   if (GV && Subtarget.hasLazyResolverStub(GV)) {
   1783     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1784     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1785 
   1786     if (GV->hasHiddenVisibility()) {
   1787       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1788       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1789     }
   1790   }
   1791 
   1792   return isPIC;
   1793 }
   1794 
   1795 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1796                              SelectionDAG &DAG) {
   1797   EVT PtrVT = HiPart.getValueType();
   1798   SDValue Zero = DAG.getConstant(0, PtrVT);
   1799   SDLoc DL(HiPart);
   1800 
   1801   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1802   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1803 
   1804   // With PIC, the first instruction is actually "GR+hi(&G)".
   1805   if (isPIC)
   1806     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1807                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1808 
   1809   // Generate non-pic code that has direct accesses to the constant pool.
   1810   // The address of the global is just (hi(&g)+lo(&g)).
   1811   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   1812 }
   1813 
   1814 static void setUsesTOCBasePtr(MachineFunction &MF) {
   1815   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1816   FuncInfo->setUsesTOCBasePtr();
   1817 }
   1818 
   1819 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
   1820   setUsesTOCBasePtr(DAG.getMachineFunction());
   1821 }
   1822 
   1823 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
   1824                            SDValue GA) {
   1825   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   1826   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
   1827                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
   1828 
   1829   SDValue Ops[] = { GA, Reg };
   1830   return DAG.getMemIntrinsicNode(PPCISD::TOC_ENTRY, dl,
   1831                                  DAG.getVTList(VT, MVT::Other), Ops, VT,
   1832                                  MachinePointerInfo::getGOT(), 0, false, true,
   1833                                  false, 0);
   1834 }
   1835 
   1836 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   1837                                              SelectionDAG &DAG) const {
   1838   EVT PtrVT = Op.getValueType();
   1839   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   1840   const Constant *C = CP->getConstVal();
   1841 
   1842   // 64-bit SVR4 ABI code is always position-independent.
   1843   // The actual address of the GlobalValue is stored in the TOC.
   1844   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   1845     setUsesTOCBasePtr(DAG);
   1846     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   1847     return getTOCEntry(DAG, SDLoc(CP), true, GA);
   1848   }
   1849 
   1850   unsigned MOHiFlag, MOLoFlag;
   1851   bool isPIC =
   1852       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   1853 
   1854   if (isPIC && Subtarget.isSVR4ABI()) {
   1855     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
   1856                                            PPCII::MO_PIC_FLAG);
   1857     return getTOCEntry(DAG, SDLoc(CP), false, GA);
   1858   }
   1859 
   1860   SDValue CPIHi =
   1861     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   1862   SDValue CPILo =
   1863     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   1864   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   1865 }
   1866 
   1867 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   1868   EVT PtrVT = Op.getValueType();
   1869   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1870 
   1871   // 64-bit SVR4 ABI code is always position-independent.
   1872   // The actual address of the GlobalValue is stored in the TOC.
   1873   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   1874     setUsesTOCBasePtr(DAG);
   1875     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1876     return getTOCEntry(DAG, SDLoc(JT), true, GA);
   1877   }
   1878 
   1879   unsigned MOHiFlag, MOLoFlag;
   1880   bool isPIC =
   1881       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   1882 
   1883   if (isPIC && Subtarget.isSVR4ABI()) {
   1884     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
   1885                                         PPCII::MO_PIC_FLAG);
   1886     return getTOCEntry(DAG, SDLoc(GA), false, GA);
   1887   }
   1888 
   1889   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   1890   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   1891   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   1892 }
   1893 
   1894 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   1895                                              SelectionDAG &DAG) const {
   1896   EVT PtrVT = Op.getValueType();
   1897   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
   1898   const BlockAddress *BA = BASDN->getBlockAddress();
   1899 
   1900   // 64-bit SVR4 ABI code is always position-independent.
   1901   // The actual BlockAddress is stored in the TOC.
   1902   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   1903     setUsesTOCBasePtr(DAG);
   1904     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
   1905     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
   1906   }
   1907 
   1908   unsigned MOHiFlag, MOLoFlag;
   1909   bool isPIC =
   1910       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   1911   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   1912   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   1913   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   1914 }
   1915 
   1916 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   1917                                               SelectionDAG &DAG) const {
   1918 
   1919   // FIXME: TLS addresses currently use medium model code sequences,
   1920   // which is the most useful form.  Eventually support for small and
   1921   // large models could be added if users need it, at the cost of
   1922   // additional complexity.
   1923   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   1924   SDLoc dl(GA);
   1925   const GlobalValue *GV = GA->getGlobal();
   1926   EVT PtrVT = getPointerTy();
   1927   bool is64bit = Subtarget.isPPC64();
   1928   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
   1929   PICLevel::Level picLevel = M->getPICLevel();
   1930 
   1931   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   1932 
   1933   if (Model == TLSModel::LocalExec) {
   1934     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1935                                                PPCII::MO_TPREL_HA);
   1936     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1937                                                PPCII::MO_TPREL_LO);
   1938     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   1939                                      is64bit ? MVT::i64 : MVT::i32);
   1940     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   1941     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   1942   }
   1943 
   1944   if (Model == TLSModel::InitialExec) {
   1945     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1946     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   1947                                                 PPCII::MO_TLS);
   1948     SDValue GOTPtr;
   1949     if (is64bit) {
   1950       setUsesTOCBasePtr(DAG);
   1951       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1952       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   1953                            PtrVT, GOTReg, TGA);
   1954     } else
   1955       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
   1956     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   1957                                    PtrVT, TGA, GOTPtr);
   1958     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   1959   }
   1960 
   1961   if (Model == TLSModel::GeneralDynamic) {
   1962     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1963     SDValue GOTPtr;
   1964     if (is64bit) {
   1965       setUsesTOCBasePtr(DAG);
   1966       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1967       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   1968                                    GOTReg, TGA);
   1969     } else {
   1970       if (picLevel == PICLevel::Small)
   1971         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   1972       else
   1973         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   1974     }
   1975     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
   1976                        GOTPtr, TGA, TGA);
   1977   }
   1978 
   1979   if (Model == TLSModel::LocalDynamic) {
   1980     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   1981     SDValue GOTPtr;
   1982     if (is64bit) {
   1983       setUsesTOCBasePtr(DAG);
   1984       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   1985       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   1986                            GOTReg, TGA);
   1987     } else {
   1988       if (picLevel == PICLevel::Small)
   1989         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   1990       else
   1991         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   1992     }
   1993     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
   1994                                   PtrVT, GOTPtr, TGA, TGA);
   1995     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
   1996                                       PtrVT, TLSAddr, TGA);
   1997     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   1998   }
   1999 
   2000   llvm_unreachable("Unknown TLS model!");
   2001 }
   2002 
   2003 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   2004                                               SelectionDAG &DAG) const {
   2005   EVT PtrVT = Op.getValueType();
   2006   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   2007   SDLoc DL(GSDN);
   2008   const GlobalValue *GV = GSDN->getGlobal();
   2009 
   2010   // 64-bit SVR4 ABI code is always position-independent.
   2011   // The actual address of the GlobalValue is stored in the TOC.
   2012   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2013     setUsesTOCBasePtr(DAG);
   2014     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   2015     return getTOCEntry(DAG, DL, true, GA);
   2016   }
   2017 
   2018   unsigned MOHiFlag, MOLoFlag;
   2019   bool isPIC =
   2020       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
   2021 
   2022   if (isPIC && Subtarget.isSVR4ABI()) {
   2023     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
   2024                                             GSDN->getOffset(),
   2025                                             PPCII::MO_PIC_FLAG);
   2026     return getTOCEntry(DAG, DL, false, GA);
   2027   }
   2028 
   2029   SDValue GAHi =
   2030     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   2031   SDValue GALo =
   2032     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   2033 
   2034   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   2035 
   2036   // If the global reference is actually to a non-lazy-pointer, we have to do an
   2037   // extra load to get the address of the global.
   2038   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   2039     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   2040                       false, false, false, 0);
   2041   return Ptr;
   2042 }
   2043 
   2044 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   2045   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2046   SDLoc dl(Op);
   2047 
   2048   if (Op.getValueType() == MVT::v2i64) {
   2049     // When the operands themselves are v2i64 values, we need to do something
   2050     // special because VSX has no underlying comparison operations for these.
   2051     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
   2052       // Equality can be handled by casting to the legal type for Altivec
   2053       // comparisons, everything else needs to be expanded.
   2054       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   2055         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   2056                  DAG.getSetCC(dl, MVT::v4i32,
   2057                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
   2058                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
   2059                    CC));
   2060       }
   2061 
   2062       return SDValue();
   2063     }
   2064 
   2065     // We handle most of these in the usual way.
   2066     return Op;
   2067   }
   2068 
   2069   // If we're comparing for equality to zero, expose the fact that this is
   2070   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   2071   // fold the new nodes.
   2072   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2073     if (C->isNullValue() && CC == ISD::SETEQ) {
   2074       EVT VT = Op.getOperand(0).getValueType();
   2075       SDValue Zext = Op.getOperand(0);
   2076       if (VT.bitsLT(MVT::i32)) {
   2077         VT = MVT::i32;
   2078         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   2079       }
   2080       unsigned Log2b = Log2_32(VT.getSizeInBits());
   2081       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   2082       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   2083                                 DAG.getConstant(Log2b, MVT::i32));
   2084       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   2085     }
   2086     // Leave comparisons against 0 and -1 alone for now, since they're usually
   2087     // optimized.  FIXME: revisit this when we can custom lower all setcc
   2088     // optimizations.
   2089     if (C->isAllOnesValue() || C->isNullValue())
   2090       return SDValue();
   2091   }
   2092 
   2093   // If we have an integer seteq/setne, turn it into a compare against zero
   2094   // by xor'ing the rhs with the lhs, which is faster than setting a
   2095   // condition register, reading it back out, and masking the correct bit.  The
   2096   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   2097   // the result to other bit-twiddling opportunities.
   2098   EVT LHSVT = Op.getOperand(0).getValueType();
   2099   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   2100     EVT VT = Op.getValueType();
   2101     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   2102                                 Op.getOperand(1));
   2103     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
   2104   }
   2105   return SDValue();
   2106 }
   2107 
   2108 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   2109                                       const PPCSubtarget &Subtarget) const {
   2110   SDNode *Node = Op.getNode();
   2111   EVT VT = Node->getValueType(0);
   2112   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2113   SDValue InChain = Node->getOperand(0);
   2114   SDValue VAListPtr = Node->getOperand(1);
   2115   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2116   SDLoc dl(Node);
   2117 
   2118   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   2119 
   2120   // gpr_index
   2121   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2122                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   2123                                     false, false, false, 0);
   2124   InChain = GprIndex.getValue(1);
   2125 
   2126   if (VT == MVT::i64) {
   2127     // Check if GprIndex is even
   2128     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   2129                                  DAG.getConstant(1, MVT::i32));
   2130     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   2131                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
   2132     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   2133                                           DAG.getConstant(1, MVT::i32));
   2134     // Align GprIndex to be even if it isn't
   2135     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   2136                            GprIndex);
   2137   }
   2138 
   2139   // fpr index is 1 byte after gpr
   2140   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2141                                DAG.getConstant(1, MVT::i32));
   2142 
   2143   // fpr
   2144   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2145                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   2146                                     false, false, false, 0);
   2147   InChain = FprIndex.getValue(1);
   2148 
   2149   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2150                                        DAG.getConstant(8, MVT::i32));
   2151 
   2152   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2153                                         DAG.getConstant(4, MVT::i32));
   2154 
   2155   // areas
   2156   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   2157                                      MachinePointerInfo(), false, false,
   2158                                      false, 0);
   2159   InChain = OverflowArea.getValue(1);
   2160 
   2161   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   2162                                     MachinePointerInfo(), false, false,
   2163                                     false, 0);
   2164   InChain = RegSaveArea.getValue(1);
   2165 
   2166   // select overflow_area if index > 8
   2167   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   2168                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
   2169 
   2170   // adjustment constant gpr_index * 4/8
   2171   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   2172                                     VT.isInteger() ? GprIndex : FprIndex,
   2173                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
   2174                                                     MVT::i32));
   2175 
   2176   // OurReg = RegSaveArea + RegConstant
   2177   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   2178                                RegConstant);
   2179 
   2180   // Floating types are 32 bytes into RegSaveArea
   2181   if (VT.isFloatingPoint())
   2182     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   2183                          DAG.getConstant(32, MVT::i32));
   2184 
   2185   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   2186   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   2187                                    VT.isInteger() ? GprIndex : FprIndex,
   2188                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
   2189                                                    MVT::i32));
   2190 
   2191   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   2192                               VT.isInteger() ? VAListPtr : FprPtr,
   2193                               MachinePointerInfo(SV),
   2194                               MVT::i8, false, false, 0);
   2195 
   2196   // determine if we should load from reg_save_area or overflow_area
   2197   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   2198 
   2199   // increase overflow_area by 4/8 if gpr/fpr > 8
   2200   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   2201                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   2202                                           MVT::i32));
   2203 
   2204   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   2205                              OverflowAreaPlusN);
   2206 
   2207   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   2208                               OverflowAreaPtr,
   2209                               MachinePointerInfo(),
   2210                               MVT::i32, false, false, 0);
   2211 
   2212   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   2213                      false, false, false, 0);
   2214 }
   2215 
   2216 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
   2217                                        const PPCSubtarget &Subtarget) const {
   2218   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   2219 
   2220   // We have to copy the entire va_list struct:
   2221   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   2222   return DAG.getMemcpy(Op.getOperand(0), Op,
   2223                        Op.getOperand(1), Op.getOperand(2),
   2224                        DAG.getConstant(12, MVT::i32), 8, false, true, false,
   2225                        MachinePointerInfo(), MachinePointerInfo());
   2226 }
   2227 
   2228 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   2229                                                   SelectionDAG &DAG) const {
   2230   return Op.getOperand(0);
   2231 }
   2232 
   2233 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   2234                                                 SelectionDAG &DAG) const {
   2235   SDValue Chain = Op.getOperand(0);
   2236   SDValue Trmp = Op.getOperand(1); // trampoline
   2237   SDValue FPtr = Op.getOperand(2); // nested function
   2238   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   2239   SDLoc dl(Op);
   2240 
   2241   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2242   bool isPPC64 = (PtrVT == MVT::i64);
   2243   Type *IntPtrTy =
   2244     DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
   2245                                                              *DAG.getContext());
   2246 
   2247   TargetLowering::ArgListTy Args;
   2248   TargetLowering::ArgListEntry Entry;
   2249 
   2250   Entry.Ty = IntPtrTy;
   2251   Entry.Node = Trmp; Args.push_back(Entry);
   2252 
   2253   // TrampSize == (isPPC64 ? 48 : 40);
   2254   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
   2255                                isPPC64 ? MVT::i64 : MVT::i32);
   2256   Args.push_back(Entry);
   2257 
   2258   Entry.Node = FPtr; Args.push_back(Entry);
   2259   Entry.Node = Nest; Args.push_back(Entry);
   2260 
   2261   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   2262   TargetLowering::CallLoweringInfo CLI(DAG);
   2263   CLI.setDebugLoc(dl).setChain(Chain)
   2264     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
   2265                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   2266                std::move(Args), 0);
   2267 
   2268   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2269   return CallResult.second;
   2270 }
   2271 
   2272 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   2273                                         const PPCSubtarget &Subtarget) const {
   2274   MachineFunction &MF = DAG.getMachineFunction();
   2275   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2276 
   2277   SDLoc dl(Op);
   2278 
   2279   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   2280     // vastart just stores the address of the VarArgsFrameIndex slot into the
   2281     // memory location argument.
   2282     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2283     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2284     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2285     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2286                         MachinePointerInfo(SV),
   2287                         false, false, 0);
   2288   }
   2289 
   2290   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   2291   // We suppose the given va_list is already allocated.
   2292   //
   2293   // typedef struct {
   2294   //  char gpr;     /* index into the array of 8 GPRs
   2295   //                 * stored in the register save area
   2296   //                 * gpr=0 corresponds to r3,
   2297   //                 * gpr=1 to r4, etc.
   2298   //                 */
   2299   //  char fpr;     /* index into the array of 8 FPRs
   2300   //                 * stored in the register save area
   2301   //                 * fpr=0 corresponds to f1,
   2302   //                 * fpr=1 to f2, etc.
   2303   //                 */
   2304   //  char *overflow_arg_area;
   2305   //                /* location on stack that holds
   2306   //                 * the next overflow argument
   2307   //                 */
   2308   //  char *reg_save_area;
   2309   //               /* where r3:r10 and f1:f8 (if saved)
   2310   //                * are stored
   2311   //                */
   2312   // } va_list[1];
   2313 
   2314 
   2315   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
   2316   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
   2317 
   2318 
   2319   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2320 
   2321   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   2322                                             PtrVT);
   2323   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   2324                                  PtrVT);
   2325 
   2326   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   2327   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
   2328 
   2329   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   2330   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
   2331 
   2332   uint64_t FPROffset = 1;
   2333   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
   2334 
   2335   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2336 
   2337   // Store first byte : number of int regs
   2338   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   2339                                          Op.getOperand(1),
   2340                                          MachinePointerInfo(SV),
   2341                                          MVT::i8, false, false, 0);
   2342   uint64_t nextOffset = FPROffset;
   2343   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   2344                                   ConstFPROffset);
   2345 
   2346   // Store second byte : number of float regs
   2347   SDValue secondStore =
   2348     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   2349                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   2350                       false, false, 0);
   2351   nextOffset += StackOffset;
   2352   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   2353 
   2354   // Store second word : arguments given on stack
   2355   SDValue thirdStore =
   2356     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   2357                  MachinePointerInfo(SV, nextOffset),
   2358                  false, false, 0);
   2359   nextOffset += FrameOffset;
   2360   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   2361 
   2362   // Store third word : arguments given in registers
   2363   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   2364                       MachinePointerInfo(SV, nextOffset),
   2365                       false, false, 0);
   2366 
   2367 }
   2368 
   2369 #include "PPCGenCallingConv.inc"
   2370 
   2371 // Function whose sole purpose is to kill compiler warnings
   2372 // stemming from unused functions included from PPCGenCallingConv.inc.
   2373 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
   2374   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
   2375 }
   2376 
   2377 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   2378                                       CCValAssign::LocInfo &LocInfo,
   2379                                       ISD::ArgFlagsTy &ArgFlags,
   2380                                       CCState &State) {
   2381   return true;
   2382 }
   2383 
   2384 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   2385                                              MVT &LocVT,
   2386                                              CCValAssign::LocInfo &LocInfo,
   2387                                              ISD::ArgFlagsTy &ArgFlags,
   2388                                              CCState &State) {
   2389   static const MCPhysReg ArgRegs[] = {
   2390     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2391     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2392   };
   2393   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2394 
   2395   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2396 
   2397   // Skip one register if the first unallocated register has an even register
   2398   // number and there are still argument registers available which have not been
   2399   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   2400   // need to skip a register if RegNum is odd.
   2401   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   2402     State.AllocateReg(ArgRegs[RegNum]);
   2403   }
   2404 
   2405   // Always return false here, as this function only makes sure that the first
   2406   // unallocated register has an odd register number and does not actually
   2407   // allocate a register for the current argument.
   2408   return false;
   2409 }
   2410 
   2411 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   2412                                                MVT &LocVT,
   2413                                                CCValAssign::LocInfo &LocInfo,
   2414                                                ISD::ArgFlagsTy &ArgFlags,
   2415                                                CCState &State) {
   2416   static const MCPhysReg ArgRegs[] = {
   2417     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2418     PPC::F8
   2419   };
   2420 
   2421   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2422 
   2423   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2424 
   2425   // If there is only one Floating-point register left we need to put both f64
   2426   // values of a split ppc_fp128 value on the stack.
   2427   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   2428     State.AllocateReg(ArgRegs[RegNum]);
   2429   }
   2430 
   2431   // Always return false here, as this function only makes sure that the two f64
   2432   // values a ppc_fp128 value is split into are both passed in registers or both
   2433   // passed on the stack and does not actually allocate a register for the
   2434   // current argument.
   2435   return false;
   2436 }
   2437 
   2438 /// FPR - The set of FP registers that should be allocated for arguments,
   2439 /// on Darwin.
   2440 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
   2441                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
   2442                                 PPC::F11, PPC::F12, PPC::F13};
   2443 
   2444 /// QFPR - The set of QPX registers that should be allocated for arguments.
   2445 static const MCPhysReg QFPR[] = {
   2446     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
   2447     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
   2448 
   2449 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   2450 /// the stack.
   2451 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   2452                                        unsigned PtrByteSize) {
   2453   unsigned ArgSize = ArgVT.getStoreSize();
   2454   if (Flags.isByVal())
   2455     ArgSize = Flags.getByValSize();
   2456 
   2457   // Round up to multiples of the pointer size, except for array members,
   2458   // which are always packed.
   2459   if (!Flags.isInConsecutiveRegs())
   2460     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2461 
   2462   return ArgSize;
   2463 }
   2464 
   2465 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
   2466 /// on the stack.
   2467 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
   2468                                             ISD::ArgFlagsTy Flags,
   2469                                             unsigned PtrByteSize) {
   2470   unsigned Align = PtrByteSize;
   2471 
   2472   // Altivec parameters are padded to a 16 byte boundary.
   2473   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2474       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2475       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
   2476     Align = 16;
   2477   // QPX vector types stored in double-precision are padded to a 32 byte
   2478   // boundary.
   2479   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
   2480     Align = 32;
   2481 
   2482   // ByVal parameters are aligned as requested.
   2483   if (Flags.isByVal()) {
   2484     unsigned BVAlign = Flags.getByValAlign();
   2485     if (BVAlign > PtrByteSize) {
   2486       if (BVAlign % PtrByteSize != 0)
   2487           llvm_unreachable(
   2488             "ByVal alignment is not a multiple of the pointer size");
   2489 
   2490       Align = BVAlign;
   2491     }
   2492   }
   2493 
   2494   // Array members are always packed to their original alignment.
   2495   if (Flags.isInConsecutiveRegs()) {
   2496     // If the array member was split into multiple registers, the first
   2497     // needs to be aligned to the size of the full type.  (Except for
   2498     // ppcf128, which is only aligned as its f64 components.)
   2499     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
   2500       Align = OrigVT.getStoreSize();
   2501     else
   2502       Align = ArgVT.getStoreSize();
   2503   }
   2504 
   2505   return Align;
   2506 }
   2507 
   2508 /// CalculateStackSlotUsed - Return whether this argument will use its
   2509 /// stack slot (instead of being passed in registers).  ArgOffset,
   2510 /// AvailableFPRs, and AvailableVRs must hold the current argument
   2511 /// position, and will be updated to account for this argument.
   2512 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
   2513                                    ISD::ArgFlagsTy Flags,
   2514                                    unsigned PtrByteSize,
   2515                                    unsigned LinkageSize,
   2516                                    unsigned ParamAreaSize,
   2517                                    unsigned &ArgOffset,
   2518                                    unsigned &AvailableFPRs,
   2519                                    unsigned &AvailableVRs, bool HasQPX) {
   2520   bool UseMemory = false;
   2521 
   2522   // Respect alignment of argument on the stack.
   2523   unsigned Align =
   2524     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   2525   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   2526   // If there's no space left in the argument save area, we must
   2527   // use memory (this check also catches zero-sized arguments).
   2528   if (ArgOffset >= LinkageSize + ParamAreaSize)
   2529     UseMemory = true;
   2530 
   2531   // Allocate argument on the stack.
   2532   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2533   if (Flags.isInConsecutiveRegsLast())
   2534     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2535   // If we overran the argument save area, we must use memory
   2536   // (this check catches arguments passed partially in memory)
   2537   if (ArgOffset > LinkageSize + ParamAreaSize)
   2538     UseMemory = true;
   2539 
   2540   // However, if the argument is actually passed in an FPR or a VR,
   2541   // we don't use memory after all.
   2542   if (!Flags.isByVal()) {
   2543     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
   2544         // QPX registers overlap with the scalar FP registers.
   2545         (HasQPX && (ArgVT == MVT::v4f32 ||
   2546                     ArgVT == MVT::v4f64 ||
   2547                     ArgVT == MVT::v4i1)))
   2548       if (AvailableFPRs > 0) {
   2549         --AvailableFPRs;
   2550         return false;
   2551       }
   2552     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2553         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2554         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64)
   2555       if (AvailableVRs > 0) {
   2556         --AvailableVRs;
   2557         return false;
   2558       }
   2559   }
   2560 
   2561   return UseMemory;
   2562 }
   2563 
   2564 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
   2565 /// ensure minimum alignment required for target.
   2566 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
   2567                                      unsigned NumBytes) {
   2568   unsigned TargetAlign = Lowering->getStackAlignment();
   2569   unsigned AlignMask = TargetAlign - 1;
   2570   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2571   return NumBytes;
   2572 }
   2573 
   2574 SDValue
   2575 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   2576                                         CallingConv::ID CallConv, bool isVarArg,
   2577                                         const SmallVectorImpl<ISD::InputArg>
   2578                                           &Ins,
   2579                                         SDLoc dl, SelectionDAG &DAG,
   2580                                         SmallVectorImpl<SDValue> &InVals)
   2581                                           const {
   2582   if (Subtarget.isSVR4ABI()) {
   2583     if (Subtarget.isPPC64())
   2584       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   2585                                          dl, DAG, InVals);
   2586     else
   2587       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   2588                                          dl, DAG, InVals);
   2589   } else {
   2590     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   2591                                        dl, DAG, InVals);
   2592   }
   2593 }
   2594 
   2595 SDValue
   2596 PPCTargetLowering::LowerFormalArguments_32SVR4(
   2597                                       SDValue Chain,
   2598                                       CallingConv::ID CallConv, bool isVarArg,
   2599                                       const SmallVectorImpl<ISD::InputArg>
   2600                                         &Ins,
   2601                                       SDLoc dl, SelectionDAG &DAG,
   2602                                       SmallVectorImpl<SDValue> &InVals) const {
   2603 
   2604   // 32-bit SVR4 ABI Stack Frame Layout:
   2605   //              +-----------------------------------+
   2606   //        +-->  |            Back chain             |
   2607   //        |     +-----------------------------------+
   2608   //        |     | Floating-point register save area |
   2609   //        |     +-----------------------------------+
   2610   //        |     |    General register save area     |
   2611   //        |     +-----------------------------------+
   2612   //        |     |          CR save word             |
   2613   //        |     +-----------------------------------+
   2614   //        |     |         VRSAVE save word          |
   2615   //        |     +-----------------------------------+
   2616   //        |     |         Alignment padding         |
   2617   //        |     +-----------------------------------+
   2618   //        |     |     Vector register save area     |
   2619   //        |     +-----------------------------------+
   2620   //        |     |       Local variable space        |
   2621   //        |     +-----------------------------------+
   2622   //        |     |        Parameter list area        |
   2623   //        |     +-----------------------------------+
   2624   //        |     |           LR save word            |
   2625   //        |     +-----------------------------------+
   2626   // SP-->  +---  |            Back chain             |
   2627   //              +-----------------------------------+
   2628   //
   2629   // Specifications:
   2630   //   System V Application Binary Interface PowerPC Processor Supplement
   2631   //   AltiVec Technology Programming Interface Manual
   2632 
   2633   MachineFunction &MF = DAG.getMachineFunction();
   2634   MachineFrameInfo *MFI = MF.getFrameInfo();
   2635   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2636 
   2637   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2638   // Potential tail calls could cause overwriting of argument stack slots.
   2639   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2640                        (CallConv == CallingConv::Fast));
   2641   unsigned PtrByteSize = 4;
   2642 
   2643   // Assign locations to all of the incoming arguments.
   2644   SmallVector<CCValAssign, 16> ArgLocs;
   2645   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2646                  *DAG.getContext());
   2647 
   2648   // Reserve space for the linkage area on the stack.
   2649   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   2650   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
   2651 
   2652   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   2653 
   2654   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2655     CCValAssign &VA = ArgLocs[i];
   2656 
   2657     // Arguments stored in registers.
   2658     if (VA.isRegLoc()) {
   2659       const TargetRegisterClass *RC;
   2660       EVT ValVT = VA.getValVT();
   2661 
   2662       switch (ValVT.getSimpleVT().SimpleTy) {
   2663         default:
   2664           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   2665         case MVT::i1:
   2666         case MVT::i32:
   2667           RC = &PPC::GPRCRegClass;
   2668           break;
   2669         case MVT::f32:
   2670           RC = &PPC::F4RCRegClass;
   2671           break;
   2672         case MVT::f64:
   2673           if (Subtarget.hasVSX())
   2674             RC = &PPC::VSFRCRegClass;
   2675           else
   2676             RC = &PPC::F8RCRegClass;
   2677           break;
   2678         case MVT::v16i8:
   2679         case MVT::v8i16:
   2680         case MVT::v4i32:
   2681           RC = &PPC::VRRCRegClass;
   2682           break;
   2683         case MVT::v4f32:
   2684           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
   2685           break;
   2686         case MVT::v2f64:
   2687         case MVT::v2i64:
   2688           RC = &PPC::VSHRCRegClass;
   2689           break;
   2690         case MVT::v4f64:
   2691           RC = &PPC::QFRCRegClass;
   2692           break;
   2693         case MVT::v4i1:
   2694           RC = &PPC::QBRCRegClass;
   2695           break;
   2696       }
   2697 
   2698       // Transform the arguments stored in physical registers into virtual ones.
   2699       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2700       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
   2701                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
   2702 
   2703       if (ValVT == MVT::i1)
   2704         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
   2705 
   2706       InVals.push_back(ArgValue);
   2707     } else {
   2708       // Argument stored in memory.
   2709       assert(VA.isMemLoc());
   2710 
   2711       unsigned ArgSize = VA.getLocVT().getStoreSize();
   2712       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   2713                                       isImmutable);
   2714 
   2715       // Create load nodes to retrieve arguments from the stack.
   2716       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2717       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2718                                    MachinePointerInfo(),
   2719                                    false, false, false, 0));
   2720     }
   2721   }
   2722 
   2723   // Assign locations to all of the incoming aggregate by value arguments.
   2724   // Aggregates passed by value are stored in the local variable space of the
   2725   // caller's stack frame, right above the parameter list area.
   2726   SmallVector<CCValAssign, 16> ByValArgLocs;
   2727   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2728                       ByValArgLocs, *DAG.getContext());
   2729 
   2730   // Reserve stack space for the allocations in CCInfo.
   2731   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2732 
   2733   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   2734 
   2735   // Area that is at least reserved in the caller of this function.
   2736   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   2737   MinReservedArea = std::max(MinReservedArea, LinkageSize);
   2738 
   2739   // Set the size that is at least reserved in caller of this function.  Tail
   2740   // call optimized function's reserved stack space needs to be aligned so that
   2741   // taking the difference between two stack areas will result in an aligned
   2742   // stack.
   2743   MinReservedArea =
   2744       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   2745   FuncInfo->setMinReservedArea(MinReservedArea);
   2746 
   2747   SmallVector<SDValue, 8> MemOps;
   2748 
   2749   // If the function takes variable number of arguments, make a frame index for
   2750   // the start of the first vararg value... for expansion of llvm.va_start.
   2751   if (isVarArg) {
   2752     static const MCPhysReg GPArgRegs[] = {
   2753       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2754       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2755     };
   2756     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   2757 
   2758     static const MCPhysReg FPArgRegs[] = {
   2759       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2760       PPC::F8
   2761     };
   2762     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   2763     if (DisablePPCFloatInVariadic)
   2764       NumFPArgRegs = 0;
   2765 
   2766     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
   2767     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
   2768 
   2769     // Make room for NumGPArgRegs and NumFPArgRegs.
   2770     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   2771                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
   2772 
   2773     FuncInfo->setVarArgsStackOffset(
   2774       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2775                              CCInfo.getNextStackOffset(), true));
   2776 
   2777     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   2778     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2779 
   2780     // The fixed integer arguments of a variadic function are stored to the
   2781     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   2782     // the result of va_next.
   2783     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   2784       // Get an existing live-in vreg, or add a new one.
   2785       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   2786       if (!VReg)
   2787         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   2788 
   2789       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2790       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2791                                    MachinePointerInfo(), false, false, 0);
   2792       MemOps.push_back(Store);
   2793       // Increment the address by four for the next argument to store
   2794       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   2795       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2796     }
   2797 
   2798     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   2799     // is set.
   2800     // The double arguments are stored to the VarArgsFrameIndex
   2801     // on the stack.
   2802     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   2803       // Get an existing live-in vreg, or add a new one.
   2804       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   2805       if (!VReg)
   2806         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   2807 
   2808       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   2809       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2810                                    MachinePointerInfo(), false, false, 0);
   2811       MemOps.push_back(Store);
   2812       // Increment the address by eight for the next argument to store
   2813       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
   2814                                          PtrVT);
   2815       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2816     }
   2817   }
   2818 
   2819   if (!MemOps.empty())
   2820     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   2821 
   2822   return Chain;
   2823 }
   2824 
   2825 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   2826 // value to MVT::i64 and then truncate to the correct register size.
   2827 SDValue
   2828 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
   2829                                      SelectionDAG &DAG, SDValue ArgVal,
   2830                                      SDLoc dl) const {
   2831   if (Flags.isSExt())
   2832     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   2833                          DAG.getValueType(ObjectVT));
   2834   else if (Flags.isZExt())
   2835     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   2836                          DAG.getValueType(ObjectVT));
   2837 
   2838   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
   2839 }
   2840 
   2841 SDValue
   2842 PPCTargetLowering::LowerFormalArguments_64SVR4(
   2843                                       SDValue Chain,
   2844                                       CallingConv::ID CallConv, bool isVarArg,
   2845                                       const SmallVectorImpl<ISD::InputArg>
   2846                                         &Ins,
   2847                                       SDLoc dl, SelectionDAG &DAG,
   2848                                       SmallVectorImpl<SDValue> &InVals) const {
   2849   // TODO: add description of PPC stack frame format, or at least some docs.
   2850   //
   2851   bool isELFv2ABI = Subtarget.isELFv2ABI();
   2852   bool isLittleEndian = Subtarget.isLittleEndian();
   2853   MachineFunction &MF = DAG.getMachineFunction();
   2854   MachineFrameInfo *MFI = MF.getFrameInfo();
   2855   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2856 
   2857   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   2858          "fastcc not supported on varargs functions");
   2859 
   2860   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2861   // Potential tail calls could cause overwriting of argument stack slots.
   2862   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2863                        (CallConv == CallingConv::Fast));
   2864   unsigned PtrByteSize = 8;
   2865   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   2866 
   2867   static const MCPhysReg GPR[] = {
   2868     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   2869     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   2870   };
   2871   static const MCPhysReg VR[] = {
   2872     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   2873     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   2874   };
   2875   static const MCPhysReg VSRH[] = {
   2876     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   2877     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   2878   };
   2879 
   2880   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   2881   const unsigned Num_FPR_Regs = 13;
   2882   const unsigned Num_VR_Regs  = array_lengthof(VR);
   2883   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
   2884 
   2885   // Do a first pass over the arguments to determine whether the ABI
   2886   // guarantees that our caller has allocated the parameter save area
   2887   // on its stack frame.  In the ELFv1 ABI, this is always the case;
   2888   // in the ELFv2 ABI, it is true if this is a vararg function or if
   2889   // any parameter is located in a stack slot.
   2890 
   2891   bool HasParameterArea = !isELFv2ABI || isVarArg;
   2892   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
   2893   unsigned NumBytes = LinkageSize;
   2894   unsigned AvailableFPRs = Num_FPR_Regs;
   2895   unsigned AvailableVRs = Num_VR_Regs;
   2896   for (unsigned i = 0, e = Ins.size(); i != e; ++i)
   2897     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
   2898                                PtrByteSize, LinkageSize, ParamAreaSize,
   2899                                NumBytes, AvailableFPRs, AvailableVRs,
   2900                                Subtarget.hasQPX()))
   2901       HasParameterArea = true;
   2902 
   2903   // Add DAG nodes to load the arguments or copy them out of registers.  On
   2904   // entry to a function on PPC, the arguments start after the linkage area,
   2905   // although the first ones are often in registers.
   2906 
   2907   unsigned ArgOffset = LinkageSize;
   2908   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   2909   unsigned &QFPR_idx = FPR_idx;
   2910   SmallVector<SDValue, 8> MemOps;
   2911   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   2912   unsigned CurArgIdx = 0;
   2913   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   2914     SDValue ArgVal;
   2915     bool needsLoad = false;
   2916     EVT ObjectVT = Ins[ArgNo].VT;
   2917     EVT OrigVT = Ins[ArgNo].ArgVT;
   2918     unsigned ObjSize = ObjectVT.getStoreSize();
   2919     unsigned ArgSize = ObjSize;
   2920     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   2921     if (Ins[ArgNo].isOrigArg()) {
   2922       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   2923       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   2924     }
   2925     // We re-align the argument offset for each argument, except when using the
   2926     // fast calling convention, when we need to make sure we do that only when
   2927     // we'll actually use a stack slot.
   2928     unsigned CurArgOffset, Align;
   2929     auto ComputeArgOffset = [&]() {
   2930       /* Respect alignment of argument on the stack.  */
   2931       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
   2932       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   2933       CurArgOffset = ArgOffset;
   2934     };
   2935 
   2936     if (CallConv != CallingConv::Fast) {
   2937       ComputeArgOffset();
   2938 
   2939       /* Compute GPR index associated with argument offset.  */
   2940       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   2941       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
   2942     }
   2943 
   2944     // FIXME the codegen can be much improved in some cases.
   2945     // We do not have to keep everything in memory.
   2946     if (Flags.isByVal()) {
   2947       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   2948 
   2949       if (CallConv == CallingConv::Fast)
   2950         ComputeArgOffset();
   2951 
   2952       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   2953       ObjSize = Flags.getByValSize();
   2954       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2955       // Empty aggregate parameters do not take up registers.  Examples:
   2956       //   struct { } a;
   2957       //   union  { } b;
   2958       //   int c[0];
   2959       // etc.  However, we have to provide a place-holder in InVals, so
   2960       // pretend we have an 8-byte item at the current address for that
   2961       // purpose.
   2962       if (!ObjSize) {
   2963         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   2964         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2965         InVals.push_back(FIN);
   2966         continue;
   2967       }
   2968 
   2969       // Create a stack object covering all stack doublewords occupied
   2970       // by the argument.  If the argument is (fully or partially) on
   2971       // the stack, or if the argument is fully in registers but the
   2972       // caller has allocated the parameter save anyway, we can refer
   2973       // directly to the caller's stack frame.  Otherwise, create a
   2974       // local copy in our own frame.
   2975       int FI;
   2976       if (HasParameterArea ||
   2977           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
   2978         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
   2979       else
   2980         FI = MFI->CreateStackObject(ArgSize, Align, false);
   2981       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2982 
   2983       // Handle aggregates smaller than 8 bytes.
   2984       if (ObjSize < PtrByteSize) {
   2985         // The value of the object is its address, which differs from the
   2986         // address of the enclosing doubleword on big-endian systems.
   2987         SDValue Arg = FIN;
   2988         if (!isLittleEndian) {
   2989           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, PtrVT);
   2990           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
   2991         }
   2992         InVals.push_back(Arg);
   2993 
   2994         if (GPR_idx != Num_GPR_Regs) {
   2995           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   2996           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2997           SDValue Store;
   2998 
   2999           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   3000             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   3001                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   3002             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
   3003                                       MachinePointerInfo(FuncArg),
   3004                                       ObjType, false, false, 0);
   3005           } else {
   3006             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   3007             // store the whole register as-is to the parameter save area
   3008             // slot.
   3009             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3010                                  MachinePointerInfo(FuncArg),
   3011                                  false, false, 0);
   3012           }
   3013 
   3014           MemOps.push_back(Store);
   3015         }
   3016         // Whether we copied from a register or not, advance the offset
   3017         // into the parameter save area by a full doubleword.
   3018         ArgOffset += PtrByteSize;
   3019         continue;
   3020       }
   3021 
   3022       // The value of the object is its address, which is the address of
   3023       // its first stack doubleword.
   3024       InVals.push_back(FIN);
   3025 
   3026       // Store whatever pieces of the object are in registers to memory.
   3027       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3028         if (GPR_idx == Num_GPR_Regs)
   3029           break;
   3030 
   3031         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3032         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3033         SDValue Addr = FIN;
   3034         if (j) {
   3035           SDValue Off = DAG.getConstant(j, PtrVT);
   3036           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
   3037         }
   3038         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
   3039                                      MachinePointerInfo(FuncArg, j),
   3040                                      false, false, 0);
   3041         MemOps.push_back(Store);
   3042         ++GPR_idx;
   3043       }
   3044       ArgOffset += ArgSize;
   3045       continue;
   3046     }
   3047 
   3048     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3049     default: llvm_unreachable("Unhandled argument type!");
   3050     case MVT::i1:
   3051     case MVT::i32:
   3052     case MVT::i64:
   3053       // These can be scalar arguments or elements of an integer array type
   3054       // passed directly.  Clang may use those instead of "byval" aggregate
   3055       // types to avoid forcing arguments to memory unnecessarily.
   3056       if (GPR_idx != Num_GPR_Regs) {
   3057         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3058         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3059 
   3060         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3061           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3062           // value to MVT::i64 and then truncate to the correct register size.
   3063           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3064       } else {
   3065         if (CallConv == CallingConv::Fast)
   3066           ComputeArgOffset();
   3067 
   3068         needsLoad = true;
   3069         ArgSize = PtrByteSize;
   3070       }
   3071       if (CallConv != CallingConv::Fast || needsLoad)
   3072         ArgOffset += 8;
   3073       break;
   3074 
   3075     case MVT::f32:
   3076     case MVT::f64:
   3077       // These can be scalar arguments or elements of a float array type
   3078       // passed directly.  The latter are used to implement ELFv2 homogenous
   3079       // float aggregates.
   3080       if (FPR_idx != Num_FPR_Regs) {
   3081         unsigned VReg;
   3082 
   3083         if (ObjectVT == MVT::f32)
   3084           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   3085         else
   3086           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
   3087                                                 ? &PPC::VSFRCRegClass
   3088                                                 : &PPC::F8RCRegClass);
   3089 
   3090         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3091         ++FPR_idx;
   3092       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
   3093         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   3094         // once we support fp <-> gpr moves.
   3095 
   3096         // This can only ever happen in the presence of f32 array types,
   3097         // since otherwise we never run out of FPRs before running out
   3098         // of GPRs.
   3099         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3100         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3101 
   3102         if (ObjectVT == MVT::f32) {
   3103           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
   3104             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
   3105                                  DAG.getConstant(32, MVT::i32));
   3106           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   3107         }
   3108 
   3109         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
   3110       } else {
   3111         if (CallConv == CallingConv::Fast)
   3112           ComputeArgOffset();
   3113 
   3114         needsLoad = true;
   3115       }
   3116 
   3117       // When passing an array of floats, the array occupies consecutive
   3118       // space in the argument area; only round up to the next doubleword
   3119       // at the end of the array.  Otherwise, each float takes 8 bytes.
   3120       if (CallConv != CallingConv::Fast || needsLoad) {
   3121         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
   3122         ArgOffset += ArgSize;
   3123         if (Flags.isInConsecutiveRegsLast())
   3124           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3125       }
   3126       break;
   3127     case MVT::v4f32:
   3128     case MVT::v4i32:
   3129     case MVT::v8i16:
   3130     case MVT::v16i8:
   3131     case MVT::v2f64:
   3132     case MVT::v2i64:
   3133       if (!Subtarget.hasQPX()) {
   3134       // These can be scalar arguments or elements of a vector array type
   3135       // passed directly.  The latter are used to implement ELFv2 homogenous
   3136       // vector aggregates.
   3137       if (VR_idx != Num_VR_Regs) {
   3138         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
   3139                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
   3140                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3141         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3142         ++VR_idx;
   3143       } else {
   3144         if (CallConv == CallingConv::Fast)
   3145           ComputeArgOffset();
   3146 
   3147         needsLoad = true;
   3148       }
   3149       if (CallConv != CallingConv::Fast || needsLoad)
   3150         ArgOffset += 16;
   3151       break;
   3152       } // not QPX
   3153 
   3154       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
   3155              "Invalid QPX parameter type");
   3156       /* fall through */
   3157 
   3158     case MVT::v4f64:
   3159     case MVT::v4i1:
   3160       // QPX vectors are treated like their scalar floating-point subregisters
   3161       // (except that they're larger).
   3162       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
   3163       if (QFPR_idx != Num_QFPR_Regs) {
   3164         const TargetRegisterClass *RC;
   3165         switch (ObjectVT.getSimpleVT().SimpleTy) {
   3166         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
   3167         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
   3168         default:         RC = &PPC::QBRCRegClass; break;
   3169         }
   3170 
   3171         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
   3172         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3173         ++QFPR_idx;
   3174       } else {
   3175         if (CallConv == CallingConv::Fast)
   3176           ComputeArgOffset();
   3177         needsLoad = true;
   3178       }
   3179       if (CallConv != CallingConv::Fast || needsLoad)
   3180         ArgOffset += Sz;
   3181       break;
   3182     }
   3183 
   3184     // We need to load the argument to a virtual register if we determined
   3185     // above that we ran out of physical registers of the appropriate type.
   3186     if (needsLoad) {
   3187       if (ObjSize < ArgSize && !isLittleEndian)
   3188         CurArgOffset += ArgSize - ObjSize;
   3189       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
   3190       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3191       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3192                            false, false, false, 0);
   3193     }
   3194 
   3195     InVals.push_back(ArgVal);
   3196   }
   3197 
   3198   // Area that is at least reserved in the caller of this function.
   3199   unsigned MinReservedArea;
   3200   if (HasParameterArea)
   3201     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
   3202   else
   3203     MinReservedArea = LinkageSize;
   3204 
   3205   // Set the size that is at least reserved in caller of this function.  Tail
   3206   // call optimized functions' reserved stack space needs to be aligned so that
   3207   // taking the difference between two stack areas will result in an aligned
   3208   // stack.
   3209   MinReservedArea =
   3210       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3211   FuncInfo->setMinReservedArea(MinReservedArea);
   3212 
   3213   // If the function takes variable number of arguments, make a frame index for
   3214   // the start of the first vararg value... for expansion of llvm.va_start.
   3215   if (isVarArg) {
   3216     int Depth = ArgOffset;
   3217 
   3218     FuncInfo->setVarArgsFrameIndex(
   3219       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   3220     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3221 
   3222     // If this function is vararg, store any remaining integer argument regs
   3223     // to their spots on the stack so that they may be loaded by deferencing the
   3224     // result of va_next.
   3225     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3226          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
   3227       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3228       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3229       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3230                                    MachinePointerInfo(), false, false, 0);
   3231       MemOps.push_back(Store);
   3232       // Increment the address by four for the next argument to store
   3233       SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
   3234       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3235     }
   3236   }
   3237 
   3238   if (!MemOps.empty())
   3239     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3240 
   3241   return Chain;
   3242 }
   3243 
   3244 SDValue
   3245 PPCTargetLowering::LowerFormalArguments_Darwin(
   3246                                       SDValue Chain,
   3247                                       CallingConv::ID CallConv, bool isVarArg,
   3248                                       const SmallVectorImpl<ISD::InputArg>
   3249                                         &Ins,
   3250                                       SDLoc dl, SelectionDAG &DAG,
   3251                                       SmallVectorImpl<SDValue> &InVals) const {
   3252   // TODO: add description of PPC stack frame format, or at least some docs.
   3253   //
   3254   MachineFunction &MF = DAG.getMachineFunction();
   3255   MachineFrameInfo *MFI = MF.getFrameInfo();
   3256   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3257 
   3258   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3259   bool isPPC64 = PtrVT == MVT::i64;
   3260   // Potential tail calls could cause overwriting of argument stack slots.
   3261   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3262                        (CallConv == CallingConv::Fast));
   3263   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   3264   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3265   unsigned ArgOffset = LinkageSize;
   3266   // Area that is at least reserved in caller of this function.
   3267   unsigned MinReservedArea = ArgOffset;
   3268 
   3269   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   3270     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3271     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3272   };
   3273   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   3274     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3275     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3276   };
   3277   static const MCPhysReg VR[] = {
   3278     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3279     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3280   };
   3281 
   3282   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   3283   const unsigned Num_FPR_Regs = 13;
   3284   const unsigned Num_VR_Regs  = array_lengthof( VR);
   3285 
   3286   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3287 
   3288   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   3289 
   3290   // In 32-bit non-varargs functions, the stack space for vectors is after the
   3291   // stack space for non-vectors.  We do not use this space unless we have
   3292   // too many vectors to fit in registers, something that only occurs in
   3293   // constructed examples:), but we have to walk the arglist to figure
   3294   // that out...for the pathological case, compute VecArgOffset as the
   3295   // start of the vector parameter area.  Computing VecArgOffset is the
   3296   // entire point of the following loop.
   3297   unsigned VecArgOffset = ArgOffset;
   3298   if (!isVarArg && !isPPC64) {
   3299     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   3300          ++ArgNo) {
   3301       EVT ObjectVT = Ins[ArgNo].VT;
   3302       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3303 
   3304       if (Flags.isByVal()) {
   3305         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   3306         unsigned ObjSize = Flags.getByValSize();
   3307         unsigned ArgSize =
   3308                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3309         VecArgOffset += ArgSize;
   3310         continue;
   3311       }
   3312 
   3313       switch(ObjectVT.getSimpleVT().SimpleTy) {
   3314       default: llvm_unreachable("Unhandled argument type!");
   3315       case MVT::i1:
   3316       case MVT::i32:
   3317       case MVT::f32:
   3318         VecArgOffset += 4;
   3319         break;
   3320       case MVT::i64:  // PPC64
   3321       case MVT::f64:
   3322         // FIXME: We are guaranteed to be !isPPC64 at this point.
   3323         // Does MVT::i64 apply?
   3324         VecArgOffset += 8;
   3325         break;
   3326       case MVT::v4f32:
   3327       case MVT::v4i32:
   3328       case MVT::v8i16:
   3329       case MVT::v16i8:
   3330         // Nothing to do, we're only looking at Nonvector args here.
   3331         break;
   3332       }
   3333     }
   3334   }
   3335   // We've found where the vector parameter area in memory is.  Skip the
   3336   // first 12 parameters; these don't use that memory.
   3337   VecArgOffset = ((VecArgOffset+15)/16)*16;
   3338   VecArgOffset += 12*16;
   3339 
   3340   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3341   // entry to a function on PPC, the arguments start after the linkage area,
   3342   // although the first ones are often in registers.
   3343 
   3344   SmallVector<SDValue, 8> MemOps;
   3345   unsigned nAltivecParamsAtEnd = 0;
   3346   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3347   unsigned CurArgIdx = 0;
   3348   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3349     SDValue ArgVal;
   3350     bool needsLoad = false;
   3351     EVT ObjectVT = Ins[ArgNo].VT;
   3352     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   3353     unsigned ArgSize = ObjSize;
   3354     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3355     if (Ins[ArgNo].isOrigArg()) {
   3356       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3357       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3358     }
   3359     unsigned CurArgOffset = ArgOffset;
   3360 
   3361     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   3362     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   3363         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   3364       if (isVarArg || isPPC64) {
   3365         MinReservedArea = ((MinReservedArea+15)/16)*16;
   3366         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   3367                                                   Flags,
   3368                                                   PtrByteSize);
   3369       } else  nAltivecParamsAtEnd++;
   3370     } else
   3371       // Calculate min reserved area.
   3372       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   3373                                                 Flags,
   3374                                                 PtrByteSize);
   3375 
   3376     // FIXME the codegen can be much improved in some cases.
   3377     // We do not have to keep everything in memory.
   3378     if (Flags.isByVal()) {
   3379       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3380 
   3381       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3382       ObjSize = Flags.getByValSize();
   3383       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3384       // Objects of size 1 and 2 are right justified, everything else is
   3385       // left justified.  This means the memory address is adjusted forwards.
   3386       if (ObjSize==1 || ObjSize==2) {
   3387         CurArgOffset = CurArgOffset + (4 - ObjSize);
   3388       }
   3389       // The value of the object is its address.
   3390       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
   3391       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3392       InVals.push_back(FIN);
   3393       if (ObjSize==1 || ObjSize==2) {
   3394         if (GPR_idx != Num_GPR_Regs) {
   3395           unsigned VReg;
   3396           if (isPPC64)
   3397             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3398           else
   3399             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3400           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3401           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   3402           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   3403                                             MachinePointerInfo(FuncArg),
   3404                                             ObjType, false, false, 0);
   3405           MemOps.push_back(Store);
   3406           ++GPR_idx;
   3407         }
   3408 
   3409         ArgOffset += PtrByteSize;
   3410 
   3411         continue;
   3412       }
   3413       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3414         // Store whatever pieces of the object are in registers
   3415         // to memory.  ArgOffset will be the address of the beginning
   3416         // of the object.
   3417         if (GPR_idx != Num_GPR_Regs) {
   3418           unsigned VReg;
   3419           if (isPPC64)
   3420             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3421           else
   3422             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3423           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3424           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3425           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3426           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3427                                        MachinePointerInfo(FuncArg, j),
   3428                                        false, false, 0);
   3429           MemOps.push_back(Store);
   3430           ++GPR_idx;
   3431           ArgOffset += PtrByteSize;
   3432         } else {
   3433           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   3434           break;
   3435         }
   3436       }
   3437       continue;
   3438     }
   3439 
   3440     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3441     default: llvm_unreachable("Unhandled argument type!");
   3442     case MVT::i1:
   3443     case MVT::i32:
   3444       if (!isPPC64) {
   3445         if (GPR_idx != Num_GPR_Regs) {
   3446           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3447           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3448 
   3449           if (ObjectVT == MVT::i1)
   3450             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
   3451 
   3452           ++GPR_idx;
   3453         } else {
   3454           needsLoad = true;
   3455           ArgSize = PtrByteSize;
   3456         }
   3457         // All int arguments reserve stack space in the Darwin ABI.
   3458         ArgOffset += PtrByteSize;
   3459         break;
   3460       }
   3461       // FALLTHROUGH
   3462     case MVT::i64:  // PPC64
   3463       if (GPR_idx != Num_GPR_Regs) {
   3464         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3465         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3466 
   3467         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3468           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3469           // value to MVT::i64 and then truncate to the correct register size.
   3470           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3471 
   3472         ++GPR_idx;
   3473       } else {
   3474         needsLoad = true;
   3475         ArgSize = PtrByteSize;
   3476       }
   3477       // All int arguments reserve stack space in the Darwin ABI.
   3478       ArgOffset += 8;
   3479       break;
   3480 
   3481     case MVT::f32:
   3482     case MVT::f64:
   3483       // Every 4 bytes of argument space consumes one of the GPRs available for
   3484       // argument passing.
   3485       if (GPR_idx != Num_GPR_Regs) {
   3486         ++GPR_idx;
   3487         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   3488           ++GPR_idx;
   3489       }
   3490       if (FPR_idx != Num_FPR_Regs) {
   3491         unsigned VReg;
   3492 
   3493         if (ObjectVT == MVT::f32)
   3494           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   3495         else
   3496           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   3497 
   3498         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3499         ++FPR_idx;
   3500       } else {
   3501         needsLoad = true;
   3502       }
   3503 
   3504       // All FP arguments reserve stack space in the Darwin ABI.
   3505       ArgOffset += isPPC64 ? 8 : ObjSize;
   3506       break;
   3507     case MVT::v4f32:
   3508     case MVT::v4i32:
   3509     case MVT::v8i16:
   3510     case MVT::v16i8:
   3511       // Note that vector arguments in registers don't reserve stack space,
   3512       // except in varargs functions.
   3513       if (VR_idx != Num_VR_Regs) {
   3514         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3515         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3516         if (isVarArg) {
   3517           while ((ArgOffset % 16) != 0) {
   3518             ArgOffset += PtrByteSize;
   3519             if (GPR_idx != Num_GPR_Regs)
   3520               GPR_idx++;
   3521           }
   3522           ArgOffset += 16;
   3523           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   3524         }
   3525         ++VR_idx;
   3526       } else {
   3527         if (!isVarArg && !isPPC64) {
   3528           // Vectors go after all the nonvectors.
   3529           CurArgOffset = VecArgOffset;
   3530           VecArgOffset += 16;
   3531         } else {
   3532           // Vectors are aligned.
   3533           ArgOffset = ((ArgOffset+15)/16)*16;
   3534           CurArgOffset = ArgOffset;
   3535           ArgOffset += 16;
   3536         }
   3537         needsLoad = true;
   3538       }
   3539       break;
   3540     }
   3541 
   3542     // We need to load the argument to a virtual register if we determined above
   3543     // that we ran out of physical registers of the appropriate type.
   3544     if (needsLoad) {
   3545       int FI = MFI->CreateFixedObject(ObjSize,
   3546                                       CurArgOffset + (ArgSize - ObjSize),
   3547                                       isImmutable);
   3548       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3549       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3550                            false, false, false, 0);
   3551     }
   3552 
   3553     InVals.push_back(ArgVal);
   3554   }
   3555 
   3556   // Allow for Altivec parameters at the end, if needed.
   3557   if (nAltivecParamsAtEnd) {
   3558     MinReservedArea = ((MinReservedArea+15)/16)*16;
   3559     MinReservedArea += 16*nAltivecParamsAtEnd;
   3560   }
   3561 
   3562   // Area that is at least reserved in the caller of this function.
   3563   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
   3564 
   3565   // Set the size that is at least reserved in caller of this function.  Tail
   3566   // call optimized functions' reserved stack space needs to be aligned so that
   3567   // taking the difference between two stack areas will result in an aligned
   3568   // stack.
   3569   MinReservedArea =
   3570       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3571   FuncInfo->setMinReservedArea(MinReservedArea);
   3572 
   3573   // If the function takes variable number of arguments, make a frame index for
   3574   // the start of the first vararg value... for expansion of llvm.va_start.
   3575   if (isVarArg) {
   3576     int Depth = ArgOffset;
   3577 
   3578     FuncInfo->setVarArgsFrameIndex(
   3579       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   3580                              Depth, true));
   3581     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3582 
   3583     // If this function is vararg, store any remaining integer argument regs
   3584     // to their spots on the stack so that they may be loaded by deferencing the
   3585     // result of va_next.
   3586     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   3587       unsigned VReg;
   3588 
   3589       if (isPPC64)
   3590         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3591       else
   3592         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3593 
   3594       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3595       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3596                                    MachinePointerInfo(), false, false, 0);
   3597       MemOps.push_back(Store);
   3598       // Increment the address by four for the next argument to store
   3599       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
   3600       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3601     }
   3602   }
   3603 
   3604   if (!MemOps.empty())
   3605     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3606 
   3607   return Chain;
   3608 }
   3609 
   3610 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   3611 /// adjusted to accommodate the arguments for the tailcall.
   3612 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   3613                                    unsigned ParamSize) {
   3614 
   3615   if (!isTailCall) return 0;
   3616 
   3617   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   3618   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   3619   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   3620   // Remember only if the new adjustement is bigger.
   3621   if (SPDiff < FI->getTailCallSPDelta())
   3622     FI->setTailCallSPDelta(SPDiff);
   3623 
   3624   return SPDiff;
   3625 }
   3626 
   3627 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   3628 /// for tail call optimization. Targets which want to do tail call
   3629 /// optimization should implement this function.
   3630 bool
   3631 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   3632                                                      CallingConv::ID CalleeCC,
   3633                                                      bool isVarArg,
   3634                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   3635                                                      SelectionDAG& DAG) const {
   3636   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   3637     return false;
   3638 
   3639   // Variable argument functions are not supported.
   3640   if (isVarArg)
   3641     return false;
   3642 
   3643   MachineFunction &MF = DAG.getMachineFunction();
   3644   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   3645   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   3646     // Functions containing by val parameters are not supported.
   3647     for (unsigned i = 0; i != Ins.size(); i++) {
   3648        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   3649        if (Flags.isByVal()) return false;
   3650     }
   3651 
   3652     // Non-PIC/GOT tail calls are supported.
   3653     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   3654       return true;
   3655 
   3656     // At the moment we can only do local tail calls (in same module, hidden
   3657     // or protected) if we are generating PIC.
   3658     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3659       return G->getGlobal()->hasHiddenVisibility()
   3660           || G->getGlobal()->hasProtectedVisibility();
   3661   }
   3662 
   3663   return false;
   3664 }
   3665 
   3666 /// isCallCompatibleAddress - Return the immediate to use if the specified
   3667 /// 32-bit value is representable in the immediate field of a BxA instruction.
   3668 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   3669   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   3670   if (!C) return nullptr;
   3671 
   3672   int Addr = C->getZExtValue();
   3673   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   3674       SignExtend32<26>(Addr) != Addr)
   3675     return nullptr;  // Top 6 bits have to be sext of immediate.
   3676 
   3677   return DAG.getConstant((int)C->getZExtValue() >> 2,
   3678                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
   3679 }
   3680 
   3681 namespace {
   3682 
   3683 struct TailCallArgumentInfo {
   3684   SDValue Arg;
   3685   SDValue FrameIdxOp;
   3686   int       FrameIdx;
   3687 
   3688   TailCallArgumentInfo() : FrameIdx(0) {}
   3689 };
   3690 
   3691 }
   3692 
   3693 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   3694 static void
   3695 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   3696                                            SDValue Chain,
   3697                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   3698                    SmallVectorImpl<SDValue> &MemOpChains,
   3699                    SDLoc dl) {
   3700   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   3701     SDValue Arg = TailCallArgs[i].Arg;
   3702     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   3703     int FI = TailCallArgs[i].FrameIdx;
   3704     // Store relative to framepointer.
   3705     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
   3706                                        MachinePointerInfo::getFixedStack(FI),
   3707                                        false, false, 0));
   3708   }
   3709 }
   3710 
   3711 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   3712 /// the appropriate stack slot for the tail call optimized function call.
   3713 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   3714                                                MachineFunction &MF,
   3715                                                SDValue Chain,
   3716                                                SDValue OldRetAddr,
   3717                                                SDValue OldFP,
   3718                                                int SPDiff,
   3719                                                bool isPPC64,
   3720                                                bool isDarwinABI,
   3721                                                SDLoc dl) {
   3722   if (SPDiff) {
   3723     // Calculate the new stack slot for the return address.
   3724     int SlotSize = isPPC64 ? 8 : 4;
   3725     const PPCFrameLowering *FL =
   3726         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
   3727     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
   3728     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   3729                                                           NewRetAddrLoc, true);
   3730     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3731     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   3732     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   3733                          MachinePointerInfo::getFixedStack(NewRetAddr),
   3734                          false, false, 0);
   3735 
   3736     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   3737     // slot as the FP is never overwritten.
   3738     if (isDarwinABI) {
   3739       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
   3740       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   3741                                                           true);
   3742       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   3743       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
   3744                            MachinePointerInfo::getFixedStack(NewFPIdx),
   3745                            false, false, 0);
   3746     }
   3747   }
   3748   return Chain;
   3749 }
   3750 
   3751 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   3752 /// the position of the argument.
   3753 static void
   3754 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   3755                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   3756                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   3757   int Offset = ArgOffset + SPDiff;
   3758   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   3759   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   3760   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3761   SDValue FIN = DAG.getFrameIndex(FI, VT);
   3762   TailCallArgumentInfo Info;
   3763   Info.Arg = Arg;
   3764   Info.FrameIdxOp = FIN;
   3765   Info.FrameIdx = FI;
   3766   TailCallArguments.push_back(Info);
   3767 }
   3768 
   3769 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   3770 /// stack slot. Returns the chain as result and the loaded frame pointers in
   3771 /// LROpOut/FPOpout. Used when tail calling.
   3772 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   3773                                                         int SPDiff,
   3774                                                         SDValue Chain,
   3775                                                         SDValue &LROpOut,
   3776                                                         SDValue &FPOpOut,
   3777                                                         bool isDarwinABI,
   3778                                                         SDLoc dl) const {
   3779   if (SPDiff) {
   3780     // Load the LR and FP stack slot for later adjusting.
   3781     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
   3782     LROpOut = getReturnAddrFrameIndex(DAG);
   3783     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   3784                           false, false, false, 0);
   3785     Chain = SDValue(LROpOut.getNode(), 1);
   3786 
   3787     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   3788     // slot as the FP is never overwritten.
   3789     if (isDarwinABI) {
   3790       FPOpOut = getFramePointerFrameIndex(DAG);
   3791       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   3792                             false, false, false, 0);
   3793       Chain = SDValue(FPOpOut.getNode(), 1);
   3794     }
   3795   }
   3796   return Chain;
   3797 }
   3798 
   3799 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   3800 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   3801 /// specified by the specific parameter attribute. The copy will be passed as
   3802 /// a byval function parameter.
   3803 /// Sometimes what we are copying is the end of a larger object, the part that
   3804 /// does not fit in registers.
   3805 static SDValue
   3806 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   3807                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   3808                           SDLoc dl) {
   3809   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   3810   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   3811                        false, false, false, MachinePointerInfo(),
   3812                        MachinePointerInfo());
   3813 }
   3814 
   3815 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   3816 /// tail calls.
   3817 static void
   3818 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   3819                  SDValue Arg, SDValue PtrOff, int SPDiff,
   3820                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   3821                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   3822                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
   3823                  SDLoc dl) {
   3824   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3825   if (!isTailCall) {
   3826     if (isVector) {
   3827       SDValue StackPtr;
   3828       if (isPPC64)
   3829         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   3830       else
   3831         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   3832       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   3833                            DAG.getConstant(ArgOffset, PtrVT));
   3834     }
   3835     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   3836                                        MachinePointerInfo(), false, false, 0));
   3837   // Calculate and remember argument location.
   3838   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   3839                                   TailCallArguments);
   3840 }
   3841 
   3842 static
   3843 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   3844                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   3845                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   3846                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   3847   MachineFunction &MF = DAG.getMachineFunction();
   3848 
   3849   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   3850   // might overwrite each other in case of tail call optimization.
   3851   SmallVector<SDValue, 8> MemOpChains2;
   3852   // Do not flag preceding copytoreg stuff together with the following stuff.
   3853   InFlag = SDValue();
   3854   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   3855                                     MemOpChains2, dl);
   3856   if (!MemOpChains2.empty())
   3857     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
   3858 
   3859   // Store the return address to the appropriate stack slot.
   3860   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   3861                                         isPPC64, isDarwinABI, dl);
   3862 
   3863   // Emit callseq_end just before tailcall node.
   3864   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   3865                              DAG.getIntPtrConstant(0, true), InFlag, dl);
   3866   InFlag = Chain.getValue(1);
   3867 }
   3868 
   3869 // Is this global address that of a function that can be called by name? (as
   3870 // opposed to something that must hold a descriptor for an indirect call).
   3871 static bool isFunctionGlobalAddress(SDValue Callee) {
   3872   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   3873     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
   3874         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
   3875       return false;
   3876 
   3877     return G->getGlobal()->getType()->getElementType()->isFunctionTy();
   3878   }
   3879 
   3880   return false;
   3881 }
   3882 
   3883 static
   3884 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   3885                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
   3886                      bool isTailCall, bool IsPatchPoint,
   3887                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
   3888                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   3889                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
   3890 
   3891   bool isPPC64 = Subtarget.isPPC64();
   3892   bool isSVR4ABI = Subtarget.isSVR4ABI();
   3893   bool isELFv2ABI = Subtarget.isELFv2ABI();
   3894 
   3895   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   3896   NodeTys.push_back(MVT::Other);   // Returns a chain
   3897   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   3898 
   3899   unsigned CallOpc = PPCISD::CALL;
   3900 
   3901   bool needIndirectCall = true;
   3902   if (!isSVR4ABI || !isPPC64)
   3903     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   3904       // If this is an absolute destination address, use the munged value.
   3905       Callee = SDValue(Dest, 0);
   3906       needIndirectCall = false;
   3907     }
   3908 
   3909   if (isFunctionGlobalAddress(Callee)) {
   3910     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
   3911     // A call to a TLS address is actually an indirect call to a
   3912     // thread-specific pointer.
   3913     unsigned OpFlags = 0;
   3914     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3915          (Subtarget.getTargetTriple().isMacOSX() &&
   3916           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   3917          (G->getGlobal()->isDeclaration() ||
   3918           G->getGlobal()->isWeakForLinker())) ||
   3919         (Subtarget.isTargetELF() && !isPPC64 &&
   3920          !G->getGlobal()->hasLocalLinkage() &&
   3921          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   3922       // PC-relative references to external symbols should go through $stub,
   3923       // unless we're building with the leopard linker or later, which
   3924       // automatically synthesizes these stubs.
   3925       OpFlags = PPCII::MO_PLT_OR_STUB;
   3926     }
   3927 
   3928     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   3929     // every direct call is) turn it into a TargetGlobalAddress /
   3930     // TargetExternalSymbol node so that legalize doesn't hack it.
   3931     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   3932                                         Callee.getValueType(), 0, OpFlags);
   3933     needIndirectCall = false;
   3934   }
   3935 
   3936   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   3937     unsigned char OpFlags = 0;
   3938 
   3939     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
   3940          (Subtarget.getTargetTriple().isMacOSX() &&
   3941           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
   3942         (Subtarget.isTargetELF() && !isPPC64 &&
   3943          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   3944       // PC-relative references to external symbols should go through $stub,
   3945       // unless we're building with the leopard linker or later, which
   3946       // automatically synthesizes these stubs.
   3947       OpFlags = PPCII::MO_PLT_OR_STUB;
   3948     }
   3949 
   3950     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   3951                                          OpFlags);
   3952     needIndirectCall = false;
   3953   }
   3954 
   3955   if (IsPatchPoint) {
   3956     // We'll form an invalid direct call when lowering a patchpoint; the full
   3957     // sequence for an indirect call is complicated, and many of the
   3958     // instructions introduced might have side effects (and, thus, can't be
   3959     // removed later). The call itself will be removed as soon as the
   3960     // argument/return lowering is complete, so the fact that it has the wrong
   3961     // kind of operands should not really matter.
   3962     needIndirectCall = false;
   3963   }
   3964 
   3965   if (needIndirectCall) {
   3966     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   3967     // to do the call, we can't use PPCISD::CALL.
   3968     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   3969 
   3970     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
   3971       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   3972       // entry point, but to the function descriptor (the function entry point
   3973       // address is part of the function descriptor though).
   3974       // The function descriptor is a three doubleword structure with the
   3975       // following fields: function entry point, TOC base address and
   3976       // environment pointer.
   3977       // Thus for a call through a function pointer, the following actions need
   3978       // to be performed:
   3979       //   1. Save the TOC of the caller in the TOC save area of its stack
   3980       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   3981       //   2. Load the address of the function entry point from the function
   3982       //      descriptor.
   3983       //   3. Load the TOC of the callee from the function descriptor into r2.
   3984       //   4. Load the environment pointer from the function descriptor into
   3985       //      r11.
   3986       //   5. Branch to the function entry point address.
   3987       //   6. On return of the callee, the TOC of the caller needs to be
   3988       //      restored (this is done in FinishCall()).
   3989       //
   3990       // The loads are scheduled at the beginning of the call sequence, and the
   3991       // register copies are flagged together to ensure that no other
   3992       // operations can be scheduled in between. E.g. without flagging the
   3993       // copies together, a TOC access in the caller could be scheduled between
   3994       // the assignment of the callee TOC and the branch to the callee, which
   3995       // results in the TOC access going through the TOC of the callee instead
   3996       // of going through the TOC of the caller, which leads to incorrect code.
   3997 
   3998       // Load the address of the function entry point from the function
   3999       // descriptor.
   4000       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
   4001       if (LDChain.getValueType() == MVT::Glue)
   4002         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
   4003 
   4004       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
   4005 
   4006       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
   4007       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
   4008                                         false, false, LoadsInv, 8);
   4009 
   4010       // Load environment pointer into r11.
   4011       SDValue PtrOff = DAG.getIntPtrConstant(16);
   4012       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   4013       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
   4014                                        MPI.getWithOffset(16), false, false,
   4015                                        LoadsInv, 8);
   4016 
   4017       SDValue TOCOff = DAG.getIntPtrConstant(8);
   4018       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
   4019       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
   4020                                    MPI.getWithOffset(8), false, false,
   4021                                    LoadsInv, 8);
   4022 
   4023       setUsesTOCBasePtr(DAG);
   4024       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
   4025                                         InFlag);
   4026       Chain = TOCVal.getValue(0);
   4027       InFlag = TOCVal.getValue(1);
   4028 
   4029       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   4030                                         InFlag);
   4031 
   4032       Chain = EnvVal.getValue(0);
   4033       InFlag = EnvVal.getValue(1);
   4034 
   4035       MTCTROps[0] = Chain;
   4036       MTCTROps[1] = LoadFuncPtr;
   4037       MTCTROps[2] = InFlag;
   4038     }
   4039 
   4040     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
   4041                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   4042     InFlag = Chain.getValue(1);
   4043 
   4044     NodeTys.clear();
   4045     NodeTys.push_back(MVT::Other);
   4046     NodeTys.push_back(MVT::Glue);
   4047     Ops.push_back(Chain);
   4048     CallOpc = PPCISD::BCTRL;
   4049     Callee.setNode(nullptr);
   4050     // Add use of X11 (holding environment pointer)
   4051     if (isSVR4ABI && isPPC64 && !isELFv2ABI)
   4052       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   4053     // Add CTR register as callee so a bctr can be emitted later.
   4054     if (isTailCall)
   4055       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   4056   }
   4057 
   4058   // If this is a direct call, pass the chain and the callee.
   4059   if (Callee.getNode()) {
   4060     Ops.push_back(Chain);
   4061     Ops.push_back(Callee);
   4062   }
   4063   // If this is a tail call add stack pointer delta.
   4064   if (isTailCall)
   4065     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
   4066 
   4067   // Add argument registers to the end of the list so that they are known live
   4068   // into the call.
   4069   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   4070     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   4071                                   RegsToPass[i].second.getValueType()));
   4072 
   4073   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
   4074   // into the call.
   4075   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
   4076     setUsesTOCBasePtr(DAG);
   4077     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
   4078   }
   4079 
   4080   return CallOpc;
   4081 }
   4082 
   4083 static
   4084 bool isLocalCall(const SDValue &Callee)
   4085 {
   4086   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4087     return !G->getGlobal()->isDeclaration() &&
   4088            !G->getGlobal()->isWeakForLinker();
   4089   return false;
   4090 }
   4091 
   4092 SDValue
   4093 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   4094                                    CallingConv::ID CallConv, bool isVarArg,
   4095                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   4096                                    SDLoc dl, SelectionDAG &DAG,
   4097                                    SmallVectorImpl<SDValue> &InVals) const {
   4098 
   4099   SmallVector<CCValAssign, 16> RVLocs;
   4100   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   4101                     *DAG.getContext());
   4102   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   4103 
   4104   // Copy all of the result registers out of their specified physreg.
   4105   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   4106     CCValAssign &VA = RVLocs[i];
   4107     assert(VA.isRegLoc() && "Can only return in registers!");
   4108 
   4109     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   4110                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   4111     Chain = Val.getValue(1);
   4112     InFlag = Val.getValue(2);
   4113 
   4114     switch (VA.getLocInfo()) {
   4115     default: llvm_unreachable("Unknown loc info!");
   4116     case CCValAssign::Full: break;
   4117     case CCValAssign::AExt:
   4118       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4119       break;
   4120     case CCValAssign::ZExt:
   4121       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   4122                         DAG.getValueType(VA.getValVT()));
   4123       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4124       break;
   4125     case CCValAssign::SExt:
   4126       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   4127                         DAG.getValueType(VA.getValVT()));
   4128       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4129       break;
   4130     }
   4131 
   4132     InVals.push_back(Val);
   4133   }
   4134 
   4135   return Chain;
   4136 }
   4137 
   4138 SDValue
   4139 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
   4140                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
   4141                               SelectionDAG &DAG,
   4142                               SmallVector<std::pair<unsigned, SDValue>, 8>
   4143                                 &RegsToPass,
   4144                               SDValue InFlag, SDValue Chain,
   4145                               SDValue CallSeqStart, SDValue &Callee,
   4146                               int SPDiff, unsigned NumBytes,
   4147                               const SmallVectorImpl<ISD::InputArg> &Ins,
   4148                               SmallVectorImpl<SDValue> &InVals,
   4149                               ImmutableCallSite *CS) const {
   4150 
   4151   std::vector<EVT> NodeTys;
   4152   SmallVector<SDValue, 8> Ops;
   4153   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
   4154                                  SPDiff, isTailCall, IsPatchPoint, RegsToPass,
   4155                                  Ops, NodeTys, CS, Subtarget);
   4156 
   4157   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   4158   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
   4159     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   4160 
   4161   // When performing tail call optimization the callee pops its arguments off
   4162   // the stack. Account for this here so these bytes can be pushed back on in
   4163   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   4164   int BytesCalleePops =
   4165     (CallConv == CallingConv::Fast &&
   4166      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   4167 
   4168   // Add a register mask operand representing the call-preserved registers.
   4169   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   4170   const uint32_t *Mask =
   4171       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
   4172   assert(Mask && "Missing call preserved mask for calling convention");
   4173   Ops.push_back(DAG.getRegisterMask(Mask));
   4174 
   4175   if (InFlag.getNode())
   4176     Ops.push_back(InFlag);
   4177 
   4178   // Emit tail call.
   4179   if (isTailCall) {
   4180     assert(((Callee.getOpcode() == ISD::Register &&
   4181              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   4182             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   4183             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   4184             isa<ConstantSDNode>(Callee)) &&
   4185     "Expecting an global address, external symbol, absolute value or register");
   4186 
   4187     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
   4188   }
   4189 
   4190   // Add a NOP immediately after the branch instruction when using the 64-bit
   4191   // SVR4 ABI. At link time, if caller and callee are in a different module and
   4192   // thus have a different TOC, the call will be replaced with a call to a stub
   4193   // function which saves the current TOC, loads the TOC of the callee and
   4194   // branches to the callee. The NOP will be replaced with a load instruction
   4195   // which restores the TOC of the caller from the TOC save slot of the current
   4196   // stack frame. If caller and callee belong to the same module (and have the
   4197   // same TOC), the NOP will remain unchanged.
   4198 
   4199   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
   4200       !IsPatchPoint) {
   4201     if (CallOpc == PPCISD::BCTRL) {
   4202       // This is a call through a function pointer.
   4203       // Restore the caller TOC from the save area into R2.
   4204       // See PrepareCall() for more information about calls through function
   4205       // pointers in the 64-bit SVR4 ABI.
   4206       // We are using a target-specific load with r2 hard coded, because the
   4207       // result of a target-independent load would never go directly into r2,
   4208       // since r2 is a reserved register (which prevents the register allocator
   4209       // from allocating it), resulting in an additional register being
   4210       // allocated and an unnecessary move instruction being generated.
   4211       CallOpc = PPCISD::BCTRL_LOAD_TOC;
   4212 
   4213       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4214       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
   4215       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   4216       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset);
   4217       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
   4218 
   4219       // The address needs to go after the chain input but before the flag (or
   4220       // any other variadic arguments).
   4221       Ops.insert(std::next(Ops.begin()), AddTOC);
   4222     } else if ((CallOpc == PPCISD::CALL) &&
   4223                (!isLocalCall(Callee) ||
   4224                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
   4225       // Otherwise insert NOP for non-local calls.
   4226       CallOpc = PPCISD::CALL_NOP;
   4227   }
   4228 
   4229   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   4230   InFlag = Chain.getValue(1);
   4231 
   4232   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   4233                              DAG.getIntPtrConstant(BytesCalleePops, true),
   4234                              InFlag, dl);
   4235   if (!Ins.empty())
   4236     InFlag = Chain.getValue(1);
   4237 
   4238   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   4239                          Ins, dl, DAG, InVals);
   4240 }
   4241 
   4242 SDValue
   4243 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   4244                              SmallVectorImpl<SDValue> &InVals) const {
   4245   SelectionDAG &DAG                     = CLI.DAG;
   4246   SDLoc &dl                             = CLI.DL;
   4247   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   4248   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   4249   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   4250   SDValue Chain                         = CLI.Chain;
   4251   SDValue Callee                        = CLI.Callee;
   4252   bool &isTailCall                      = CLI.IsTailCall;
   4253   CallingConv::ID CallConv              = CLI.CallConv;
   4254   bool isVarArg                         = CLI.IsVarArg;
   4255   bool IsPatchPoint                     = CLI.IsPatchPoint;
   4256   ImmutableCallSite *CS                 = CLI.CS;
   4257 
   4258   if (isTailCall)
   4259     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   4260                                                    Ins, DAG);
   4261 
   4262   if (!isTailCall && CS && CS->isMustTailCall())
   4263     report_fatal_error("failed to perform tail call elimination on a call "
   4264                        "site marked musttail");
   4265 
   4266   if (Subtarget.isSVR4ABI()) {
   4267     if (Subtarget.isPPC64())
   4268       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   4269                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4270                               dl, DAG, InVals, CS);
   4271     else
   4272       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   4273                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4274                               dl, DAG, InVals, CS);
   4275   }
   4276 
   4277   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   4278                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4279                           dl, DAG, InVals, CS);
   4280 }
   4281 
   4282 SDValue
   4283 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   4284                                     CallingConv::ID CallConv, bool isVarArg,
   4285                                     bool isTailCall, bool IsPatchPoint,
   4286                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4287                                     const SmallVectorImpl<SDValue> &OutVals,
   4288                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4289                                     SDLoc dl, SelectionDAG &DAG,
   4290                                     SmallVectorImpl<SDValue> &InVals,
   4291                                     ImmutableCallSite *CS) const {
   4292   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   4293   // of the 32-bit SVR4 ABI stack frame layout.
   4294 
   4295   assert((CallConv == CallingConv::C ||
   4296           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   4297 
   4298   unsigned PtrByteSize = 4;
   4299 
   4300   MachineFunction &MF = DAG.getMachineFunction();
   4301 
   4302   // Mark this function as potentially containing a function that contains a
   4303   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4304   // and restoring the callers stack pointer in this functions epilog. This is
   4305   // done because by tail calling the called function might overwrite the value
   4306   // in this function's (MF) stack pointer stack slot 0(SP).
   4307   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4308       CallConv == CallingConv::Fast)
   4309     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4310 
   4311   // Count how many bytes are to be pushed on the stack, including the linkage
   4312   // area, parameter list area and the part of the local variable space which
   4313   // contains copies of aggregates which are passed by value.
   4314 
   4315   // Assign locations to all of the outgoing arguments.
   4316   SmallVector<CCValAssign, 16> ArgLocs;
   4317   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   4318                  *DAG.getContext());
   4319 
   4320   // Reserve space for the linkage area on the stack.
   4321   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
   4322                        PtrByteSize);
   4323 
   4324   if (isVarArg) {
   4325     // Handle fixed and variable vector arguments differently.
   4326     // Fixed vector arguments go into registers as long as registers are
   4327     // available. Variable vector arguments always go into memory.
   4328     unsigned NumArgs = Outs.size();
   4329 
   4330     for (unsigned i = 0; i != NumArgs; ++i) {
   4331       MVT ArgVT = Outs[i].VT;
   4332       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   4333       bool Result;
   4334 
   4335       if (Outs[i].IsFixed) {
   4336         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   4337                                CCInfo);
   4338       } else {
   4339         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   4340                                       ArgFlags, CCInfo);
   4341       }
   4342 
   4343       if (Result) {
   4344 #ifndef NDEBUG
   4345         errs() << "Call operand #" << i << " has unhandled type "
   4346              << EVT(ArgVT).getEVTString() << "\n";
   4347 #endif
   4348         llvm_unreachable(nullptr);
   4349       }
   4350     }
   4351   } else {
   4352     // All arguments are treated the same.
   4353     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   4354   }
   4355 
   4356   // Assign locations to all of the outgoing aggregate by value arguments.
   4357   SmallVector<CCValAssign, 16> ByValArgLocs;
   4358   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   4359                       ByValArgLocs, *DAG.getContext());
   4360 
   4361   // Reserve stack space for the allocations in CCInfo.
   4362   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   4363 
   4364   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   4365 
   4366   // Size of the linkage area, parameter list area and the part of the local
   4367   // space variable where copies of aggregates which are passed by value are
   4368   // stored.
   4369   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   4370 
   4371   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4372   // call optimization.
   4373   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4374 
   4375   // Adjust the stack pointer for the new arguments...
   4376   // These operations are automatically eliminated by the prolog/epilog pass
   4377   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   4378                                dl);
   4379   SDValue CallSeqStart = Chain;
   4380 
   4381   // Load the return address and frame pointer so it can be moved somewhere else
   4382   // later.
   4383   SDValue LROp, FPOp;
   4384   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   4385                                        dl);
   4386 
   4387   // Set up a copy of the stack pointer for use loading and storing any
   4388   // arguments that may not fit in the registers available for argument
   4389   // passing.
   4390   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4391 
   4392   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4393   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4394   SmallVector<SDValue, 8> MemOpChains;
   4395 
   4396   bool seenFloatArg = false;
   4397   // Walk the register/memloc assignments, inserting copies/loads.
   4398   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   4399        i != e;
   4400        ++i) {
   4401     CCValAssign &VA = ArgLocs[i];
   4402     SDValue Arg = OutVals[i];
   4403     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4404 
   4405     if (Flags.isByVal()) {
   4406       // Argument is an aggregate which is passed by value, thus we need to
   4407       // create a copy of it in the local variable space of the current stack
   4408       // frame (which is the stack frame of the caller) and pass the address of
   4409       // this copy to the callee.
   4410       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   4411       CCValAssign &ByValVA = ByValArgLocs[j++];
   4412       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   4413 
   4414       // Memory reserved in the local variable space of the callers stack frame.
   4415       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   4416 
   4417       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   4418       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   4419 
   4420       // Create a copy of the argument in the local area of the current
   4421       // stack frame.
   4422       SDValue MemcpyCall =
   4423         CreateCopyOfByValArgument(Arg, PtrOff,
   4424                                   CallSeqStart.getNode()->getOperand(0),
   4425                                   Flags, DAG, dl);
   4426 
   4427       // This must go outside the CALLSEQ_START..END.
   4428       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4429                            CallSeqStart.getNode()->getOperand(1),
   4430                            SDLoc(MemcpyCall));
   4431       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4432                              NewCallSeqStart.getNode());
   4433       Chain = CallSeqStart = NewCallSeqStart;
   4434 
   4435       // Pass the address of the aggregate copy on the stack either in a
   4436       // physical register or in the parameter list area of the current stack
   4437       // frame to the callee.
   4438       Arg = PtrOff;
   4439     }
   4440 
   4441     if (VA.isRegLoc()) {
   4442       if (Arg.getValueType() == MVT::i1)
   4443         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
   4444 
   4445       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   4446       // Put argument in a physical register.
   4447       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   4448     } else {
   4449       // Put argument in the parameter list area of the current stack frame.
   4450       assert(VA.isMemLoc());
   4451       unsigned LocMemOffset = VA.getLocMemOffset();
   4452 
   4453       if (!isTailCall) {
   4454         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   4455         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   4456 
   4457         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4458                                            MachinePointerInfo(),
   4459                                            false, false, 0));
   4460       } else {
   4461         // Calculate and remember argument location.
   4462         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   4463                                  TailCallArguments);
   4464       }
   4465     }
   4466   }
   4467 
   4468   if (!MemOpChains.empty())
   4469     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   4470 
   4471   // Build a sequence of copy-to-reg nodes chained together with token chain
   4472   // and flag operands which copy the outgoing args into the appropriate regs.
   4473   SDValue InFlag;
   4474   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4475     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4476                              RegsToPass[i].second, InFlag);
   4477     InFlag = Chain.getValue(1);
   4478   }
   4479 
   4480   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   4481   // registers.
   4482   if (isVarArg) {
   4483     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   4484     SDValue Ops[] = { Chain, InFlag };
   4485 
   4486     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   4487                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
   4488 
   4489     InFlag = Chain.getValue(1);
   4490   }
   4491 
   4492   if (isTailCall)
   4493     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   4494                     false, TailCallArguments);
   4495 
   4496   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
   4497                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   4498                     NumBytes, Ins, InVals, CS);
   4499 }
   4500 
   4501 // Copy an argument into memory, being careful to do this outside the
   4502 // call sequence for the call to which the argument belongs.
   4503 SDValue
   4504 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
   4505                                               SDValue CallSeqStart,
   4506                                               ISD::ArgFlagsTy Flags,
   4507                                               SelectionDAG &DAG,
   4508                                               SDLoc dl) const {
   4509   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   4510                         CallSeqStart.getNode()->getOperand(0),
   4511                         Flags, DAG, dl);
   4512   // The MEMCPY must go outside the CALLSEQ_START..END.
   4513   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4514                              CallSeqStart.getNode()->getOperand(1),
   4515                              SDLoc(MemcpyCall));
   4516   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4517                          NewCallSeqStart.getNode());
   4518   return NewCallSeqStart;
   4519 }
   4520 
   4521 SDValue
   4522 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
   4523                                     CallingConv::ID CallConv, bool isVarArg,
   4524                                     bool isTailCall, bool IsPatchPoint,
   4525                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4526                                     const SmallVectorImpl<SDValue> &OutVals,
   4527                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4528                                     SDLoc dl, SelectionDAG &DAG,
   4529                                     SmallVectorImpl<SDValue> &InVals,
   4530                                     ImmutableCallSite *CS) const {
   4531 
   4532   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4533   bool isLittleEndian = Subtarget.isLittleEndian();
   4534   unsigned NumOps = Outs.size();
   4535 
   4536   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   4537   unsigned PtrByteSize = 8;
   4538 
   4539   MachineFunction &MF = DAG.getMachineFunction();
   4540 
   4541   // Mark this function as potentially containing a function that contains a
   4542   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4543   // and restoring the callers stack pointer in this functions epilog. This is
   4544   // done because by tail calling the called function might overwrite the value
   4545   // in this function's (MF) stack pointer stack slot 0(SP).
   4546   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4547       CallConv == CallingConv::Fast)
   4548     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4549 
   4550   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   4551          "fastcc not supported on varargs functions");
   4552 
   4553   // Count how many bytes are to be pushed on the stack, including the linkage
   4554   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
   4555   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
   4556   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
   4557   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   4558   unsigned NumBytes = LinkageSize;
   4559   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4560   unsigned &QFPR_idx = FPR_idx;
   4561 
   4562   static const MCPhysReg GPR[] = {
   4563     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4564     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4565   };
   4566   static const MCPhysReg VR[] = {
   4567     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4568     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4569   };
   4570   static const MCPhysReg VSRH[] = {
   4571     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   4572     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   4573   };
   4574 
   4575   const unsigned NumGPRs = array_lengthof(GPR);
   4576   const unsigned NumFPRs = 13;
   4577   const unsigned NumVRs  = array_lengthof(VR);
   4578   const unsigned NumQFPRs = NumFPRs;
   4579 
   4580   // When using the fast calling convention, we don't provide backing for
   4581   // arguments that will be in registers.
   4582   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
   4583 
   4584   // Add up all the space actually used.
   4585   for (unsigned i = 0; i != NumOps; ++i) {
   4586     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4587     EVT ArgVT = Outs[i].VT;
   4588     EVT OrigVT = Outs[i].ArgVT;
   4589 
   4590     if (CallConv == CallingConv::Fast) {
   4591       if (Flags.isByVal())
   4592         NumGPRsUsed += (Flags.getByValSize()+7)/8;
   4593       else
   4594         switch (ArgVT.getSimpleVT().SimpleTy) {
   4595         default: llvm_unreachable("Unexpected ValueType for argument!");
   4596         case MVT::i1:
   4597         case MVT::i32:
   4598         case MVT::i64:
   4599           if (++NumGPRsUsed <= NumGPRs)
   4600             continue;
   4601           break;
   4602         case MVT::v4i32:
   4603         case MVT::v8i16:
   4604         case MVT::v16i8:
   4605         case MVT::v2f64:
   4606         case MVT::v2i64:
   4607           if (++NumVRsUsed <= NumVRs)
   4608             continue;
   4609           break;
   4610         case MVT::v4f32:
   4611 	  // When using QPX, this is handled like a FP register, otherwise, it
   4612 	  // is an Altivec register.
   4613           if (Subtarget.hasQPX()) {
   4614             if (++NumFPRsUsed <= NumFPRs)
   4615               continue;
   4616           } else {
   4617             if (++NumVRsUsed <= NumVRs)
   4618               continue;
   4619           }
   4620           break;
   4621         case MVT::f32:
   4622         case MVT::f64:
   4623         case MVT::v4f64: // QPX
   4624         case MVT::v4i1:  // QPX
   4625           if (++NumFPRsUsed <= NumFPRs)
   4626             continue;
   4627           break;
   4628         }
   4629     }
   4630 
   4631     /* Respect alignment of argument on the stack.  */
   4632     unsigned Align =
   4633       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   4634     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
   4635 
   4636     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   4637     if (Flags.isInConsecutiveRegsLast())
   4638       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   4639   }
   4640 
   4641   unsigned NumBytesActuallyUsed = NumBytes;
   4642 
   4643   // The prolog code of the callee may store up to 8 GPR argument registers to
   4644   // the stack, allowing va_start to index over them in memory if its varargs.
   4645   // Because we cannot tell if this is needed on the caller side, we have to
   4646   // conservatively assume that it is needed.  As such, make sure we have at
   4647   // least enough stack space for the caller to store the 8 GPRs.
   4648   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
   4649   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   4650 
   4651   // Tail call needs the stack to be aligned.
   4652   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4653       CallConv == CallingConv::Fast)
   4654     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   4655 
   4656   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4657   // call optimization.
   4658   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4659 
   4660   // To protect arguments on the stack from being clobbered in a tail call,
   4661   // force all the loads to happen before doing any other lowering.
   4662   if (isTailCall)
   4663     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4664 
   4665   // Adjust the stack pointer for the new arguments...
   4666   // These operations are automatically eliminated by the prolog/epilog pass
   4667   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   4668                                dl);
   4669   SDValue CallSeqStart = Chain;
   4670 
   4671   // Load the return address and frame pointer so it can be move somewhere else
   4672   // later.
   4673   SDValue LROp, FPOp;
   4674   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4675                                        dl);
   4676 
   4677   // Set up a copy of the stack pointer for use loading and storing any
   4678   // arguments that may not fit in the registers available for argument
   4679   // passing.
   4680   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4681 
   4682   // Figure out which arguments are going to go in registers, and which in
   4683   // memory.  Also, if this is a vararg function, floating point operations
   4684   // must be stored to our stack, and loaded into integer regs as well, if
   4685   // any integer regs are available for argument passing.
   4686   unsigned ArgOffset = LinkageSize;
   4687 
   4688   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4689   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4690 
   4691   SmallVector<SDValue, 8> MemOpChains;
   4692   for (unsigned i = 0; i != NumOps; ++i) {
   4693     SDValue Arg = OutVals[i];
   4694     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4695     EVT ArgVT = Outs[i].VT;
   4696     EVT OrigVT = Outs[i].ArgVT;
   4697 
   4698     // PtrOff will be used to store the current argument to the stack if a
   4699     // register cannot be found for it.
   4700     SDValue PtrOff;
   4701 
   4702     // We re-align the argument offset for each argument, except when using the
   4703     // fast calling convention, when we need to make sure we do that only when
   4704     // we'll actually use a stack slot.
   4705     auto ComputePtrOff = [&]() {
   4706       /* Respect alignment of argument on the stack.  */
   4707       unsigned Align =
   4708         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   4709       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   4710 
   4711       PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   4712 
   4713       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4714     };
   4715 
   4716     if (CallConv != CallingConv::Fast) {
   4717       ComputePtrOff();
   4718 
   4719       /* Compute GPR index associated with argument offset.  */
   4720       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   4721       GPR_idx = std::min(GPR_idx, NumGPRs);
   4722     }
   4723 
   4724     // Promote integers to 64-bit values.
   4725     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
   4726       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4727       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4728       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4729     }
   4730 
   4731     // FIXME memcpy is used way more than necessary.  Correctness first.
   4732     // Note: "by value" is code for passing a structure by value, not
   4733     // basic types.
   4734     if (Flags.isByVal()) {
   4735       // Note: Size includes alignment padding, so
   4736       //   struct x { short a; char b; }
   4737       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   4738       // These are the proper values we need for right-justifying the
   4739       // aggregate in a parameter register.
   4740       unsigned Size = Flags.getByValSize();
   4741 
   4742       // An empty aggregate parameter takes up no storage and no
   4743       // registers.
   4744       if (Size == 0)
   4745         continue;
   4746 
   4747       if (CallConv == CallingConv::Fast)
   4748         ComputePtrOff();
   4749 
   4750       // All aggregates smaller than 8 bytes must be passed right-justified.
   4751       if (Size==1 || Size==2 || Size==4) {
   4752         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   4753         if (GPR_idx != NumGPRs) {
   4754           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4755                                         MachinePointerInfo(), VT,
   4756                                         false, false, false, 0);
   4757           MemOpChains.push_back(Load.getValue(1));
   4758           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4759 
   4760           ArgOffset += PtrByteSize;
   4761           continue;
   4762         }
   4763       }
   4764 
   4765       if (GPR_idx == NumGPRs && Size < 8) {
   4766         SDValue AddPtr = PtrOff;
   4767         if (!isLittleEndian) {
   4768           SDValue Const = DAG.getConstant(PtrByteSize - Size,
   4769                                           PtrOff.getValueType());
   4770           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4771         }
   4772         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4773                                                           CallSeqStart,
   4774                                                           Flags, DAG, dl);
   4775         ArgOffset += PtrByteSize;
   4776         continue;
   4777       }
   4778       // Copy entire object into memory.  There are cases where gcc-generated
   4779       // code assumes it is there, even if it could be put entirely into
   4780       // registers.  (This is not what the doc says.)
   4781 
   4782       // FIXME: The above statement is likely due to a misunderstanding of the
   4783       // documents.  All arguments must be copied into the parameter area BY
   4784       // THE CALLEE in the event that the callee takes the address of any
   4785       // formal argument.  That has not yet been implemented.  However, it is
   4786       // reasonable to use the stack area as a staging area for the register
   4787       // load.
   4788 
   4789       // Skip this for small aggregates, as we will use the same slot for a
   4790       // right-justified copy, below.
   4791       if (Size >= 8)
   4792         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   4793                                                           CallSeqStart,
   4794                                                           Flags, DAG, dl);
   4795 
   4796       // When a register is available, pass a small aggregate right-justified.
   4797       if (Size < 8 && GPR_idx != NumGPRs) {
   4798         // The easiest way to get this right-justified in a register
   4799         // is to copy the structure into the rightmost portion of a
   4800         // local variable slot, then load the whole slot into the
   4801         // register.
   4802         // FIXME: The memcpy seems to produce pretty awful code for
   4803         // small aggregates, particularly for packed ones.
   4804         // FIXME: It would be preferable to use the slot in the
   4805         // parameter save area instead of a new local variable.
   4806         SDValue AddPtr = PtrOff;
   4807         if (!isLittleEndian) {
   4808           SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
   4809           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4810         }
   4811         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   4812                                                           CallSeqStart,
   4813                                                           Flags, DAG, dl);
   4814 
   4815         // Load the slot into the register.
   4816         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   4817                                    MachinePointerInfo(),
   4818                                    false, false, false, 0);
   4819         MemOpChains.push_back(Load.getValue(1));
   4820         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4821 
   4822         // Done with this argument.
   4823         ArgOffset += PtrByteSize;
   4824         continue;
   4825       }
   4826 
   4827       // For aggregates larger than PtrByteSize, copy the pieces of the
   4828       // object that fit into registers from the parameter save area.
   4829       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   4830         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   4831         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   4832         if (GPR_idx != NumGPRs) {
   4833           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   4834                                      MachinePointerInfo(),
   4835                                      false, false, false, 0);
   4836           MemOpChains.push_back(Load.getValue(1));
   4837           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4838           ArgOffset += PtrByteSize;
   4839         } else {
   4840           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   4841           break;
   4842         }
   4843       }
   4844       continue;
   4845     }
   4846 
   4847     switch (Arg.getSimpleValueType().SimpleTy) {
   4848     default: llvm_unreachable("Unexpected ValueType for argument!");
   4849     case MVT::i1:
   4850     case MVT::i32:
   4851     case MVT::i64:
   4852       // These can be scalar arguments or elements of an integer array type
   4853       // passed directly.  Clang may use those instead of "byval" aggregate
   4854       // types to avoid forcing arguments to memory unnecessarily.
   4855       if (GPR_idx != NumGPRs) {
   4856         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   4857       } else {
   4858         if (CallConv == CallingConv::Fast)
   4859           ComputePtrOff();
   4860 
   4861         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4862                          true, isTailCall, false, MemOpChains,
   4863                          TailCallArguments, dl);
   4864         if (CallConv == CallingConv::Fast)
   4865           ArgOffset += PtrByteSize;
   4866       }
   4867       if (CallConv != CallingConv::Fast)
   4868         ArgOffset += PtrByteSize;
   4869       break;
   4870     case MVT::f32:
   4871     case MVT::f64: {
   4872       // These can be scalar arguments or elements of a float array type
   4873       // passed directly.  The latter are used to implement ELFv2 homogenous
   4874       // float aggregates.
   4875 
   4876       // Named arguments go into FPRs first, and once they overflow, the
   4877       // remaining arguments go into GPRs and then the parameter save area.
   4878       // Unnamed arguments for vararg functions always go to GPRs and
   4879       // then the parameter save area.  For now, put all arguments to vararg
   4880       // routines always in both locations (FPR *and* GPR or stack slot).
   4881       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
   4882       bool NeededLoad = false;
   4883 
   4884       // First load the argument into the next available FPR.
   4885       if (FPR_idx != NumFPRs)
   4886         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   4887 
   4888       // Next, load the argument into GPR or stack slot if needed.
   4889       if (!NeedGPROrStack)
   4890         ;
   4891       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
   4892         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   4893         // once we support fp <-> gpr moves.
   4894 
   4895         // In the non-vararg case, this can only ever happen in the
   4896         // presence of f32 array types, since otherwise we never run
   4897         // out of FPRs before running out of GPRs.
   4898         SDValue ArgVal;
   4899 
   4900         // Double values are always passed in a single GPR.
   4901         if (Arg.getValueType() != MVT::f32) {
   4902           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   4903 
   4904         // Non-array float values are extended and passed in a GPR.
   4905         } else if (!Flags.isInConsecutiveRegs()) {
   4906           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   4907           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   4908 
   4909         // If we have an array of floats, we collect every odd element
   4910         // together with its predecessor into one GPR.
   4911         } else if (ArgOffset % PtrByteSize != 0) {
   4912           SDValue Lo, Hi;
   4913           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
   4914           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   4915           if (!isLittleEndian)
   4916             std::swap(Lo, Hi);
   4917           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   4918 
   4919         // The final element, if even, goes into the first half of a GPR.
   4920         } else if (Flags.isInConsecutiveRegsLast()) {
   4921           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   4922           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   4923           if (!isLittleEndian)
   4924             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
   4925                                  DAG.getConstant(32, MVT::i32));
   4926 
   4927         // Non-final even elements are skipped; they will be handled
   4928         // together the with subsequent argument on the next go-around.
   4929         } else
   4930           ArgVal = SDValue();
   4931 
   4932         if (ArgVal.getNode())
   4933           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
   4934       } else {
   4935         if (CallConv == CallingConv::Fast)
   4936           ComputePtrOff();
   4937 
   4938         // Single-precision floating-point values are mapped to the
   4939         // second (rightmost) word of the stack doubleword.
   4940         if (Arg.getValueType() == MVT::f32 &&
   4941             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
   4942           SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   4943           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   4944         }
   4945 
   4946         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   4947                          true, isTailCall, false, MemOpChains,
   4948                          TailCallArguments, dl);
   4949 
   4950         NeededLoad = true;
   4951       }
   4952       // When passing an array of floats, the array occupies consecutive
   4953       // space in the argument area; only round up to the next doubleword
   4954       // at the end of the array.  Otherwise, each float takes 8 bytes.
   4955       if (CallConv != CallingConv::Fast || NeededLoad) {
   4956         ArgOffset += (Arg.getValueType() == MVT::f32 &&
   4957                       Flags.isInConsecutiveRegs()) ? 4 : 8;
   4958         if (Flags.isInConsecutiveRegsLast())
   4959           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   4960       }
   4961       break;
   4962     }
   4963     case MVT::v4f32:
   4964     case MVT::v4i32:
   4965     case MVT::v8i16:
   4966     case MVT::v16i8:
   4967     case MVT::v2f64:
   4968     case MVT::v2i64:
   4969       if (!Subtarget.hasQPX()) {
   4970       // These can be scalar arguments or elements of a vector array type
   4971       // passed directly.  The latter are used to implement ELFv2 homogenous
   4972       // vector aggregates.
   4973 
   4974       // For a varargs call, named arguments go into VRs or on the stack as
   4975       // usual; unnamed arguments always go to the stack or the corresponding
   4976       // GPRs when within range.  For now, we always put the value in both
   4977       // locations (or even all three).
   4978       if (isVarArg) {
   4979         // We could elide this store in the case where the object fits
   4980         // entirely in R registers.  Maybe later.
   4981         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   4982                                      MachinePointerInfo(), false, false, 0);
   4983         MemOpChains.push_back(Store);
   4984         if (VR_idx != NumVRs) {
   4985           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   4986                                      MachinePointerInfo(),
   4987                                      false, false, false, 0);
   4988           MemOpChains.push_back(Load.getValue(1));
   4989 
   4990           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   4991                            Arg.getSimpleValueType() == MVT::v2i64) ?
   4992                           VSRH[VR_idx] : VR[VR_idx];
   4993           ++VR_idx;
   4994 
   4995           RegsToPass.push_back(std::make_pair(VReg, Load));
   4996         }
   4997         ArgOffset += 16;
   4998         for (unsigned i=0; i<16; i+=PtrByteSize) {
   4999           if (GPR_idx == NumGPRs)
   5000             break;
   5001           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5002                                   DAG.getConstant(i, PtrVT));
   5003           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5004                                      false, false, false, 0);
   5005           MemOpChains.push_back(Load.getValue(1));
   5006           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5007         }
   5008         break;
   5009       }
   5010 
   5011       // Non-varargs Altivec params go into VRs or on the stack.
   5012       if (VR_idx != NumVRs) {
   5013         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5014                          Arg.getSimpleValueType() == MVT::v2i64) ?
   5015                         VSRH[VR_idx] : VR[VR_idx];
   5016         ++VR_idx;
   5017 
   5018         RegsToPass.push_back(std::make_pair(VReg, Arg));
   5019       } else {
   5020         if (CallConv == CallingConv::Fast)
   5021           ComputePtrOff();
   5022 
   5023         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5024                          true, isTailCall, true, MemOpChains,
   5025                          TailCallArguments, dl);
   5026         if (CallConv == CallingConv::Fast)
   5027           ArgOffset += 16;
   5028       }
   5029 
   5030       if (CallConv != CallingConv::Fast)
   5031         ArgOffset += 16;
   5032       break;
   5033       } // not QPX
   5034 
   5035       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
   5036              "Invalid QPX parameter type");
   5037 
   5038       /* fall through */
   5039     case MVT::v4f64:
   5040     case MVT::v4i1: {
   5041       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
   5042       if (isVarArg) {
   5043         // We could elide this store in the case where the object fits
   5044         // entirely in R registers.  Maybe later.
   5045         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5046                                      MachinePointerInfo(), false, false, 0);
   5047         MemOpChains.push_back(Store);
   5048         if (QFPR_idx != NumQFPRs) {
   5049           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
   5050                                      Store, PtrOff, MachinePointerInfo(),
   5051                                      false, false, false, 0);
   5052           MemOpChains.push_back(Load.getValue(1));
   5053           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
   5054         }
   5055         ArgOffset += (IsF32 ? 16 : 32);
   5056         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
   5057           if (GPR_idx == NumGPRs)
   5058             break;
   5059           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5060                                   DAG.getConstant(i, PtrVT));
   5061           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5062                                      false, false, false, 0);
   5063           MemOpChains.push_back(Load.getValue(1));
   5064           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5065         }
   5066         break;
   5067       }
   5068 
   5069       // Non-varargs QPX params go into registers or on the stack.
   5070       if (QFPR_idx != NumQFPRs) {
   5071         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
   5072       } else {
   5073         if (CallConv == CallingConv::Fast)
   5074           ComputePtrOff();
   5075 
   5076         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5077                          true, isTailCall, true, MemOpChains,
   5078                          TailCallArguments, dl);
   5079         if (CallConv == CallingConv::Fast)
   5080           ArgOffset += (IsF32 ? 16 : 32);
   5081       }
   5082 
   5083       if (CallConv != CallingConv::Fast)
   5084         ArgOffset += (IsF32 ? 16 : 32);
   5085       break;
   5086       }
   5087     }
   5088   }
   5089 
   5090   assert(NumBytesActuallyUsed == ArgOffset);
   5091   (void)NumBytesActuallyUsed;
   5092 
   5093   if (!MemOpChains.empty())
   5094     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5095 
   5096   // Check if this is an indirect call (MTCTR/BCTRL).
   5097   // See PrepareCall() for more information about calls through function
   5098   // pointers in the 64-bit SVR4 ABI.
   5099   if (!isTailCall && !IsPatchPoint &&
   5100       !isFunctionGlobalAddress(Callee) &&
   5101       !isa<ExternalSymbolSDNode>(Callee)) {
   5102     // Load r2 into a virtual register and store it to the TOC save area.
   5103     setUsesTOCBasePtr(DAG);
   5104     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   5105     // TOC save area offset.
   5106     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   5107     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset);
   5108     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5109     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
   5110                          MachinePointerInfo::getStack(TOCSaveOffset),
   5111                          false, false, 0);
   5112     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
   5113     // This does not mean the MTCTR instruction must use R12; it's easier
   5114     // to model this as an extra parameter, so do that.
   5115     if (isELFv2ABI && !IsPatchPoint)
   5116       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   5117   }
   5118 
   5119   // Build a sequence of copy-to-reg nodes chained together with token chain
   5120   // and flag operands which copy the outgoing args into the appropriate regs.
   5121   SDValue InFlag;
   5122   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5123     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5124                              RegsToPass[i].second, InFlag);
   5125     InFlag = Chain.getValue(1);
   5126   }
   5127 
   5128   if (isTailCall)
   5129     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
   5130                     FPOp, true, TailCallArguments);
   5131 
   5132   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
   5133                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   5134                     NumBytes, Ins, InVals, CS);
   5135 }
   5136 
   5137 SDValue
   5138 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   5139                                     CallingConv::ID CallConv, bool isVarArg,
   5140                                     bool isTailCall, bool IsPatchPoint,
   5141                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   5142                                     const SmallVectorImpl<SDValue> &OutVals,
   5143                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   5144                                     SDLoc dl, SelectionDAG &DAG,
   5145                                     SmallVectorImpl<SDValue> &InVals,
   5146                                     ImmutableCallSite *CS) const {
   5147 
   5148   unsigned NumOps = Outs.size();
   5149 
   5150   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5151   bool isPPC64 = PtrVT == MVT::i64;
   5152   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   5153 
   5154   MachineFunction &MF = DAG.getMachineFunction();
   5155 
   5156   // Mark this function as potentially containing a function that contains a
   5157   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5158   // and restoring the callers stack pointer in this functions epilog. This is
   5159   // done because by tail calling the called function might overwrite the value
   5160   // in this function's (MF) stack pointer stack slot 0(SP).
   5161   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5162       CallConv == CallingConv::Fast)
   5163     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5164 
   5165   // Count how many bytes are to be pushed on the stack, including the linkage
   5166   // area, and parameter passing area.  We start with 24/48 bytes, which is
   5167   // prereserved space for [SP][CR][LR][3 x unused].
   5168   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   5169   unsigned NumBytes = LinkageSize;
   5170 
   5171   // Add up all the space actually used.
   5172   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   5173   // they all go in registers, but we must reserve stack space for them for
   5174   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   5175   // assigned stack space in order, with padding so Altivec parameters are
   5176   // 16-byte aligned.
   5177   unsigned nAltivecParamsAtEnd = 0;
   5178   for (unsigned i = 0; i != NumOps; ++i) {
   5179     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5180     EVT ArgVT = Outs[i].VT;
   5181     // Varargs Altivec parameters are padded to a 16 byte boundary.
   5182     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   5183         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   5184         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
   5185       if (!isVarArg && !isPPC64) {
   5186         // Non-varargs Altivec parameters go after all the non-Altivec
   5187         // parameters; handle those later so we know how much padding we need.
   5188         nAltivecParamsAtEnd++;
   5189         continue;
   5190       }
   5191       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   5192       NumBytes = ((NumBytes+15)/16)*16;
   5193     }
   5194     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   5195   }
   5196 
   5197   // Allow for Altivec parameters at the end, if needed.
   5198   if (nAltivecParamsAtEnd) {
   5199     NumBytes = ((NumBytes+15)/16)*16;
   5200     NumBytes += 16*nAltivecParamsAtEnd;
   5201   }
   5202 
   5203   // The prolog code of the callee may store up to 8 GPR argument registers to
   5204   // the stack, allowing va_start to index over them in memory if its varargs.
   5205   // Because we cannot tell if this is needed on the caller side, we have to
   5206   // conservatively assume that it is needed.  As such, make sure we have at
   5207   // least enough stack space for the caller to store the 8 GPRs.
   5208   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   5209 
   5210   // Tail call needs the stack to be aligned.
   5211   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5212       CallConv == CallingConv::Fast)
   5213     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   5214 
   5215   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5216   // call optimization.
   5217   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5218 
   5219   // To protect arguments on the stack from being clobbered in a tail call,
   5220   // force all the loads to happen before doing any other lowering.
   5221   if (isTailCall)
   5222     Chain = DAG.getStackArgumentTokenFactor(Chain);
   5223 
   5224   // Adjust the stack pointer for the new arguments...
   5225   // These operations are automatically eliminated by the prolog/epilog pass
   5226   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   5227                                dl);
   5228   SDValue CallSeqStart = Chain;
   5229 
   5230   // Load the return address and frame pointer so it can be move somewhere else
   5231   // later.
   5232   SDValue LROp, FPOp;
   5233   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   5234                                        dl);
   5235 
   5236   // Set up a copy of the stack pointer for use loading and storing any
   5237   // arguments that may not fit in the registers available for argument
   5238   // passing.
   5239   SDValue StackPtr;
   5240   if (isPPC64)
   5241     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   5242   else
   5243     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   5244 
   5245   // Figure out which arguments are going to go in registers, and which in
   5246   // memory.  Also, if this is a vararg function, floating point operations
   5247   // must be stored to our stack, and loaded into integer regs as well, if
   5248   // any integer regs are available for argument passing.
   5249   unsigned ArgOffset = LinkageSize;
   5250   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   5251 
   5252   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   5253     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   5254     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   5255   };
   5256   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   5257     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   5258     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   5259   };
   5260   static const MCPhysReg VR[] = {
   5261     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   5262     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   5263   };
   5264   const unsigned NumGPRs = array_lengthof(GPR_32);
   5265   const unsigned NumFPRs = 13;
   5266   const unsigned NumVRs  = array_lengthof(VR);
   5267 
   5268   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   5269 
   5270   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5271   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5272 
   5273   SmallVector<SDValue, 8> MemOpChains;
   5274   for (unsigned i = 0; i != NumOps; ++i) {
   5275     SDValue Arg = OutVals[i];
   5276     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5277 
   5278     // PtrOff will be used to store the current argument to the stack if a
   5279     // register cannot be found for it.
   5280     SDValue PtrOff;
   5281 
   5282     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
   5283 
   5284     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5285 
   5286     // On PPC64, promote integers to 64-bit values.
   5287     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   5288       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   5289       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   5290       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   5291     }
   5292 
   5293     // FIXME memcpy is used way more than necessary.  Correctness first.
   5294     // Note: "by value" is code for passing a structure by value, not
   5295     // basic types.
   5296     if (Flags.isByVal()) {
   5297       unsigned Size = Flags.getByValSize();
   5298       // Very small objects are passed right-justified.  Everything else is
   5299       // passed left-justified.
   5300       if (Size==1 || Size==2) {
   5301         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   5302         if (GPR_idx != NumGPRs) {
   5303           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   5304                                         MachinePointerInfo(), VT,
   5305                                         false, false, false, 0);
   5306           MemOpChains.push_back(Load.getValue(1));
   5307           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5308 
   5309           ArgOffset += PtrByteSize;
   5310         } else {
   5311           SDValue Const = DAG.getConstant(PtrByteSize - Size,
   5312                                           PtrOff.getValueType());
   5313           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5314           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5315                                                             CallSeqStart,
   5316                                                             Flags, DAG, dl);
   5317           ArgOffset += PtrByteSize;
   5318         }
   5319         continue;
   5320       }
   5321       // Copy entire object into memory.  There are cases where gcc-generated
   5322       // code assumes it is there, even if it could be put entirely into
   5323       // registers.  (This is not what the doc says.)
   5324       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5325                                                         CallSeqStart,
   5326                                                         Flags, DAG, dl);
   5327 
   5328       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   5329       // copy the pieces of the object that fit into registers from the
   5330       // parameter save area.
   5331       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5332         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
   5333         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5334         if (GPR_idx != NumGPRs) {
   5335           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5336                                      MachinePointerInfo(),
   5337                                      false, false, false, 0);
   5338           MemOpChains.push_back(Load.getValue(1));
   5339           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5340           ArgOffset += PtrByteSize;
   5341         } else {
   5342           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5343           break;
   5344         }
   5345       }
   5346       continue;
   5347     }
   5348 
   5349     switch (Arg.getSimpleValueType().SimpleTy) {
   5350     default: llvm_unreachable("Unexpected ValueType for argument!");
   5351     case MVT::i1:
   5352     case MVT::i32:
   5353     case MVT::i64:
   5354       if (GPR_idx != NumGPRs) {
   5355         if (Arg.getValueType() == MVT::i1)
   5356           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
   5357 
   5358         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5359       } else {
   5360         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5361                          isPPC64, isTailCall, false, MemOpChains,
   5362                          TailCallArguments, dl);
   5363       }
   5364       ArgOffset += PtrByteSize;
   5365       break;
   5366     case MVT::f32:
   5367     case MVT::f64:
   5368       if (FPR_idx != NumFPRs) {
   5369         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5370 
   5371         if (isVarArg) {
   5372           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5373                                        MachinePointerInfo(), false, false, 0);
   5374           MemOpChains.push_back(Store);
   5375 
   5376           // Float varargs are always shadowed in available integer registers
   5377           if (GPR_idx != NumGPRs) {
   5378             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5379                                        MachinePointerInfo(), false, false,
   5380                                        false, 0);
   5381             MemOpChains.push_back(Load.getValue(1));
   5382             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5383           }
   5384           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   5385             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
   5386             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5387             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5388                                        MachinePointerInfo(),
   5389                                        false, false, false, 0);
   5390             MemOpChains.push_back(Load.getValue(1));
   5391             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5392           }
   5393         } else {
   5394           // If we have any FPRs remaining, we may also have GPRs remaining.
   5395           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   5396           // GPRs.
   5397           if (GPR_idx != NumGPRs)
   5398             ++GPR_idx;
   5399           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   5400               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   5401             ++GPR_idx;
   5402         }
   5403       } else
   5404         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5405                          isPPC64, isTailCall, false, MemOpChains,
   5406                          TailCallArguments, dl);
   5407       if (isPPC64)
   5408         ArgOffset += 8;
   5409       else
   5410         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   5411       break;
   5412     case MVT::v4f32:
   5413     case MVT::v4i32:
   5414     case MVT::v8i16:
   5415     case MVT::v16i8:
   5416       if (isVarArg) {
   5417         // These go aligned on the stack, or in the corresponding R registers
   5418         // when within range.  The Darwin PPC ABI doc claims they also go in
   5419         // V registers; in fact gcc does this only for arguments that are
   5420         // prototyped, not for those that match the ...  We do it for all
   5421         // arguments, seems to work.
   5422         while (ArgOffset % 16 !=0) {
   5423           ArgOffset += PtrByteSize;
   5424           if (GPR_idx != NumGPRs)
   5425             GPR_idx++;
   5426         }
   5427         // We could elide this store in the case where the object fits
   5428         // entirely in R registers.  Maybe later.
   5429         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   5430                             DAG.getConstant(ArgOffset, PtrVT));
   5431         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5432                                      MachinePointerInfo(), false, false, 0);
   5433         MemOpChains.push_back(Store);
   5434         if (VR_idx != NumVRs) {
   5435           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5436                                      MachinePointerInfo(),
   5437                                      false, false, false, 0);
   5438           MemOpChains.push_back(Load.getValue(1));
   5439           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   5440         }
   5441         ArgOffset += 16;
   5442         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5443           if (GPR_idx == NumGPRs)
   5444             break;
   5445           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5446                                   DAG.getConstant(i, PtrVT));
   5447           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5448                                      false, false, false, 0);
   5449           MemOpChains.push_back(Load.getValue(1));
   5450           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5451         }
   5452         break;
   5453       }
   5454 
   5455       // Non-varargs Altivec params generally go in registers, but have
   5456       // stack space allocated at the end.
   5457       if (VR_idx != NumVRs) {
   5458         // Doesn't have GPR space allocated.
   5459         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   5460       } else if (nAltivecParamsAtEnd==0) {
   5461         // We are emitting Altivec params in order.
   5462         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5463                          isPPC64, isTailCall, true, MemOpChains,
   5464                          TailCallArguments, dl);
   5465         ArgOffset += 16;
   5466       }
   5467       break;
   5468     }
   5469   }
   5470   // If all Altivec parameters fit in registers, as they usually do,
   5471   // they get stack space following the non-Altivec parameters.  We
   5472   // don't track this here because nobody below needs it.
   5473   // If there are more Altivec parameters than fit in registers emit
   5474   // the stores here.
   5475   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   5476     unsigned j = 0;
   5477     // Offset is aligned; skip 1st 12 params which go in V registers.
   5478     ArgOffset = ((ArgOffset+15)/16)*16;
   5479     ArgOffset += 12*16;
   5480     for (unsigned i = 0; i != NumOps; ++i) {
   5481       SDValue Arg = OutVals[i];
   5482       EVT ArgType = Outs[i].VT;
   5483       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   5484           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   5485         if (++j > NumVRs) {
   5486           SDValue PtrOff;
   5487           // We are emitting Altivec params in order.
   5488           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5489                            isPPC64, isTailCall, true, MemOpChains,
   5490                            TailCallArguments, dl);
   5491           ArgOffset += 16;
   5492         }
   5493       }
   5494     }
   5495   }
   5496 
   5497   if (!MemOpChains.empty())
   5498     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5499 
   5500   // On Darwin, R12 must contain the address of an indirect callee.  This does
   5501   // not mean the MTCTR instruction must use R12; it's easier to model this as
   5502   // an extra parameter, so do that.
   5503   if (!isTailCall &&
   5504       !isFunctionGlobalAddress(Callee) &&
   5505       !isa<ExternalSymbolSDNode>(Callee) &&
   5506       !isBLACompatibleAddress(Callee, DAG))
   5507     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   5508                                                    PPC::R12), Callee));
   5509 
   5510   // Build a sequence of copy-to-reg nodes chained together with token chain
   5511   // and flag operands which copy the outgoing args into the appropriate regs.
   5512   SDValue InFlag;
   5513   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5514     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5515                              RegsToPass[i].second, InFlag);
   5516     InFlag = Chain.getValue(1);
   5517   }
   5518 
   5519   if (isTailCall)
   5520     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   5521                     FPOp, true, TailCallArguments);
   5522 
   5523   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, DAG,
   5524                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   5525                     NumBytes, Ins, InVals, CS);
   5526 }
   5527 
   5528 bool
   5529 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   5530                                   MachineFunction &MF, bool isVarArg,
   5531                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   5532                                   LLVMContext &Context) const {
   5533   SmallVector<CCValAssign, 16> RVLocs;
   5534   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   5535   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   5536 }
   5537 
   5538 SDValue
   5539 PPCTargetLowering::LowerReturn(SDValue Chain,
   5540                                CallingConv::ID CallConv, bool isVarArg,
   5541                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   5542                                const SmallVectorImpl<SDValue> &OutVals,
   5543                                SDLoc dl, SelectionDAG &DAG) const {
   5544 
   5545   SmallVector<CCValAssign, 16> RVLocs;
   5546   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   5547                  *DAG.getContext());
   5548   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   5549 
   5550   SDValue Flag;
   5551   SmallVector<SDValue, 4> RetOps(1, Chain);
   5552 
   5553   // Copy the result values into the output registers.
   5554   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   5555     CCValAssign &VA = RVLocs[i];
   5556     assert(VA.isRegLoc() && "Can only return in registers!");
   5557 
   5558     SDValue Arg = OutVals[i];
   5559 
   5560     switch (VA.getLocInfo()) {
   5561     default: llvm_unreachable("Unknown loc info!");
   5562     case CCValAssign::Full: break;
   5563     case CCValAssign::AExt:
   5564       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   5565       break;
   5566     case CCValAssign::ZExt:
   5567       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   5568       break;
   5569     case CCValAssign::SExt:
   5570       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   5571       break;
   5572     }
   5573 
   5574     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   5575     Flag = Chain.getValue(1);
   5576     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   5577   }
   5578 
   5579   RetOps[0] = Chain;  // Update chain.
   5580 
   5581   // Add the flag if we have it.
   5582   if (Flag.getNode())
   5583     RetOps.push_back(Flag);
   5584 
   5585   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
   5586 }
   5587 
   5588 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   5589                                    const PPCSubtarget &Subtarget) const {
   5590   // When we pop the dynamic allocation we need to restore the SP link.
   5591   SDLoc dl(Op);
   5592 
   5593   // Get the corect type for pointers.
   5594   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5595 
   5596   // Construct the stack pointer operand.
   5597   bool isPPC64 = Subtarget.isPPC64();
   5598   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   5599   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   5600 
   5601   // Get the operands for the STACKRESTORE.
   5602   SDValue Chain = Op.getOperand(0);
   5603   SDValue SaveSP = Op.getOperand(1);
   5604 
   5605   // Load the old link SP.
   5606   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   5607                                    MachinePointerInfo(),
   5608                                    false, false, false, 0);
   5609 
   5610   // Restore the stack pointer.
   5611   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   5612 
   5613   // Store the old link SP.
   5614   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   5615                       false, false, 0);
   5616 }
   5617 
   5618 
   5619 
   5620 SDValue
   5621 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
   5622   MachineFunction &MF = DAG.getMachineFunction();
   5623   bool isPPC64 = Subtarget.isPPC64();
   5624   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5625 
   5626   // Get current frame pointer save index.  The users of this index will be
   5627   // primarily DYNALLOC instructions.
   5628   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   5629   int RASI = FI->getReturnAddrSaveIndex();
   5630 
   5631   // If the frame pointer save index hasn't been defined yet.
   5632   if (!RASI) {
   5633     // Find out what the fix offset of the frame pointer save area.
   5634     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
   5635     // Allocate the frame index for frame pointer save area.
   5636     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
   5637     // Save the result.
   5638     FI->setReturnAddrSaveIndex(RASI);
   5639   }
   5640   return DAG.getFrameIndex(RASI, PtrVT);
   5641 }
   5642 
   5643 SDValue
   5644 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   5645   MachineFunction &MF = DAG.getMachineFunction();
   5646   bool isPPC64 = Subtarget.isPPC64();
   5647   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5648 
   5649   // Get current frame pointer save index.  The users of this index will be
   5650   // primarily DYNALLOC instructions.
   5651   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   5652   int FPSI = FI->getFramePointerSaveIndex();
   5653 
   5654   // If the frame pointer save index hasn't been defined yet.
   5655   if (!FPSI) {
   5656     // Find out what the fix offset of the frame pointer save area.
   5657     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
   5658     // Allocate the frame index for frame pointer save area.
   5659     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   5660     // Save the result.
   5661     FI->setFramePointerSaveIndex(FPSI);
   5662   }
   5663   return DAG.getFrameIndex(FPSI, PtrVT);
   5664 }
   5665 
   5666 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   5667                                          SelectionDAG &DAG,
   5668                                          const PPCSubtarget &Subtarget) const {
   5669   // Get the inputs.
   5670   SDValue Chain = Op.getOperand(0);
   5671   SDValue Size  = Op.getOperand(1);
   5672   SDLoc dl(Op);
   5673 
   5674   // Get the corect type for pointers.
   5675   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   5676   // Negate the size.
   5677   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   5678                                   DAG.getConstant(0, PtrVT), Size);
   5679   // Construct a node for the frame pointer save index.
   5680   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   5681   // Build a DYNALLOC node.
   5682   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   5683   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   5684   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
   5685 }
   5686 
   5687 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   5688                                                SelectionDAG &DAG) const {
   5689   SDLoc DL(Op);
   5690   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   5691                      DAG.getVTList(MVT::i32, MVT::Other),
   5692                      Op.getOperand(0), Op.getOperand(1));
   5693 }
   5694 
   5695 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   5696                                                 SelectionDAG &DAG) const {
   5697   SDLoc DL(Op);
   5698   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   5699                      Op.getOperand(0), Op.getOperand(1));
   5700 }
   5701 
   5702 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   5703   if (Op.getValueType().isVector())
   5704     return LowerVectorLoad(Op, DAG);
   5705 
   5706   assert(Op.getValueType() == MVT::i1 &&
   5707          "Custom lowering only for i1 loads");
   5708 
   5709   // First, load 8 bits into 32 bits, then truncate to 1 bit.
   5710 
   5711   SDLoc dl(Op);
   5712   LoadSDNode *LD = cast<LoadSDNode>(Op);
   5713 
   5714   SDValue Chain = LD->getChain();
   5715   SDValue BasePtr = LD->getBasePtr();
   5716   MachineMemOperand *MMO = LD->getMemOperand();
   5717 
   5718   SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
   5719                                  BasePtr, MVT::i8, MMO);
   5720   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
   5721 
   5722   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
   5723   return DAG.getMergeValues(Ops, dl);
   5724 }
   5725 
   5726 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   5727   if (Op.getOperand(1).getValueType().isVector())
   5728     return LowerVectorStore(Op, DAG);
   5729 
   5730   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
   5731          "Custom lowering only for i1 stores");
   5732 
   5733   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
   5734 
   5735   SDLoc dl(Op);
   5736   StoreSDNode *ST = cast<StoreSDNode>(Op);
   5737 
   5738   SDValue Chain = ST->getChain();
   5739   SDValue BasePtr = ST->getBasePtr();
   5740   SDValue Value = ST->getValue();
   5741   MachineMemOperand *MMO = ST->getMemOperand();
   5742 
   5743   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
   5744   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
   5745 }
   5746 
   5747 // FIXME: Remove this once the ANDI glue bug is fixed:
   5748 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   5749   assert(Op.getValueType() == MVT::i1 &&
   5750          "Custom lowering only for i1 results");
   5751 
   5752   SDLoc DL(Op);
   5753   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
   5754                      Op.getOperand(0));
   5755 }
   5756 
   5757 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   5758 /// possible.
   5759 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   5760   // Not FP? Not a fsel.
   5761   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   5762       !Op.getOperand(2).getValueType().isFloatingPoint())
   5763     return Op;
   5764 
   5765   // We might be able to do better than this under some circumstances, but in
   5766   // general, fsel-based lowering of select is a finite-math-only optimization.
   5767   // For more information, see section F.3 of the 2.06 ISA specification.
   5768   if (!DAG.getTarget().Options.NoInfsFPMath ||
   5769       !DAG.getTarget().Options.NoNaNsFPMath)
   5770     return Op;
   5771 
   5772   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   5773 
   5774   EVT ResVT = Op.getValueType();
   5775   EVT CmpVT = Op.getOperand(0).getValueType();
   5776   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   5777   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   5778   SDLoc dl(Op);
   5779 
   5780   // If the RHS of the comparison is a 0.0, we don't need to do the
   5781   // subtraction at all.
   5782   SDValue Sel1;
   5783   if (isFloatingPointZero(RHS))
   5784     switch (CC) {
   5785     default: break;       // SETUO etc aren't handled by fsel.
   5786     case ISD::SETNE:
   5787       std::swap(TV, FV);
   5788     case ISD::SETEQ:
   5789       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5790         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   5791       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   5792       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5793         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   5794       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   5795                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
   5796     case ISD::SETULT:
   5797     case ISD::SETLT:
   5798       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   5799     case ISD::SETOGE:
   5800     case ISD::SETGE:
   5801       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5802         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   5803       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   5804     case ISD::SETUGT:
   5805     case ISD::SETGT:
   5806       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   5807     case ISD::SETOLE:
   5808     case ISD::SETLE:
   5809       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5810         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   5811       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   5812                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   5813     }
   5814 
   5815   SDValue Cmp;
   5816   switch (CC) {
   5817   default: break;       // SETUO etc aren't handled by fsel.
   5818   case ISD::SETNE:
   5819     std::swap(TV, FV);
   5820   case ISD::SETEQ:
   5821     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   5822     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5823       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5824     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   5825     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5826       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   5827     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   5828                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
   5829   case ISD::SETULT:
   5830   case ISD::SETLT:
   5831     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   5832     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5833       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5834     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   5835   case ISD::SETOGE:
   5836   case ISD::SETGE:
   5837     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
   5838     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5839       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5840     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   5841   case ISD::SETUGT:
   5842   case ISD::SETGT:
   5843     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   5844     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5845       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5846     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   5847   case ISD::SETOLE:
   5848   case ISD::SETLE:
   5849     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
   5850     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   5851       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   5852     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   5853   }
   5854   return Op;
   5855 }
   5856 
   5857 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
   5858                                                SelectionDAG &DAG,
   5859                                                SDLoc dl) const {
   5860   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   5861   SDValue Src = Op.getOperand(0);
   5862   if (Src.getValueType() == MVT::f32)
   5863     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   5864 
   5865   SDValue Tmp;
   5866   switch (Op.getSimpleValueType().SimpleTy) {
   5867   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   5868   case MVT::i32:
   5869     Tmp = DAG.getNode(
   5870         Op.getOpcode() == ISD::FP_TO_SINT
   5871             ? PPCISD::FCTIWZ
   5872             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   5873         dl, MVT::f64, Src);
   5874     break;
   5875   case MVT::i64:
   5876     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   5877            "i64 FP_TO_UINT is supported only with FPCVT");
   5878     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   5879                                                         PPCISD::FCTIDUZ,
   5880                       dl, MVT::f64, Src);
   5881     break;
   5882   }
   5883 
   5884   // Convert the FP value to an int value through memory.
   5885   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
   5886     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
   5887   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
   5888   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
   5889   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
   5890 
   5891   // Emit a store to the stack slot.
   5892   SDValue Chain;
   5893   if (i32Stack) {
   5894     MachineFunction &MF = DAG.getMachineFunction();
   5895     MachineMemOperand *MMO =
   5896       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
   5897     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
   5898     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   5899               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
   5900   } else
   5901     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   5902                          MPI, false, false, 0);
   5903 
   5904   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   5905   // add in a bias.
   5906   if (Op.getValueType() == MVT::i32 && !i32Stack) {
   5907     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   5908                         DAG.getConstant(4, FIPtr.getValueType()));
   5909     MPI = MPI.getWithOffset(4);
   5910   }
   5911 
   5912   RLI.Chain = Chain;
   5913   RLI.Ptr = FIPtr;
   5914   RLI.MPI = MPI;
   5915 }
   5916 
   5917 /// \brief Custom lowers floating point to integer conversions to use
   5918 /// the direct move instructions available in ISA 2.07 to avoid the
   5919 /// need for load/store combinations.
   5920 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
   5921                                                     SelectionDAG &DAG,
   5922                                                     SDLoc dl) const {
   5923   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   5924   SDValue Src = Op.getOperand(0);
   5925 
   5926   if (Src.getValueType() == MVT::f32)
   5927     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   5928 
   5929   SDValue Tmp;
   5930   switch (Op.getSimpleValueType().SimpleTy) {
   5931   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   5932   case MVT::i32:
   5933     Tmp = DAG.getNode(
   5934         Op.getOpcode() == ISD::FP_TO_SINT
   5935             ? PPCISD::FCTIWZ
   5936             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   5937         dl, MVT::f64, Src);
   5938     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
   5939     break;
   5940   case MVT::i64:
   5941     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   5942            "i64 FP_TO_UINT is supported only with FPCVT");
   5943     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   5944                                                         PPCISD::FCTIDUZ,
   5945                       dl, MVT::f64, Src);
   5946     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
   5947     break;
   5948   }
   5949   return Tmp;
   5950 }
   5951 
   5952 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   5953                                           SDLoc dl) const {
   5954   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
   5955     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
   5956 
   5957   ReuseLoadInfo RLI;
   5958   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   5959 
   5960   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
   5961                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
   5962                      RLI.Ranges);
   5963 }
   5964 
   5965 // We're trying to insert a regular store, S, and then a load, L. If the
   5966 // incoming value, O, is a load, we might just be able to have our load use the
   5967 // address used by O. However, we don't know if anything else will store to
   5968 // that address before we can load from it. To prevent this situation, we need
   5969 // to insert our load, L, into the chain as a peer of O. To do this, we give L
   5970 // the same chain operand as O, we create a token factor from the chain results
   5971 // of O and L, and we replace all uses of O's chain result with that token
   5972 // factor (see spliceIntoChain below for this last part).
   5973 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
   5974                                             ReuseLoadInfo &RLI,
   5975                                             SelectionDAG &DAG,
   5976                                             ISD::LoadExtType ET) const {
   5977   SDLoc dl(Op);
   5978   if (ET == ISD::NON_EXTLOAD &&
   5979       (Op.getOpcode() == ISD::FP_TO_UINT ||
   5980        Op.getOpcode() == ISD::FP_TO_SINT) &&
   5981       isOperationLegalOrCustom(Op.getOpcode(),
   5982                                Op.getOperand(0).getValueType())) {
   5983 
   5984     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   5985     return true;
   5986   }
   5987 
   5988   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
   5989   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
   5990       LD->isNonTemporal())
   5991     return false;
   5992   if (LD->getMemoryVT() != MemVT)
   5993     return false;
   5994 
   5995   RLI.Ptr = LD->getBasePtr();
   5996   if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
   5997     assert(LD->getAddressingMode() == ISD::PRE_INC &&
   5998            "Non-pre-inc AM on PPC?");
   5999     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
   6000                           LD->getOffset());
   6001   }
   6002 
   6003   RLI.Chain = LD->getChain();
   6004   RLI.MPI = LD->getPointerInfo();
   6005   RLI.IsInvariant = LD->isInvariant();
   6006   RLI.Alignment = LD->getAlignment();
   6007   RLI.AAInfo = LD->getAAInfo();
   6008   RLI.Ranges = LD->getRanges();
   6009 
   6010   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
   6011   return true;
   6012 }
   6013 
   6014 // Given the head of the old chain, ResChain, insert a token factor containing
   6015 // it and NewResChain, and make users of ResChain now be users of that token
   6016 // factor.
   6017 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
   6018                                         SDValue NewResChain,
   6019                                         SelectionDAG &DAG) const {
   6020   if (!ResChain)
   6021     return;
   6022 
   6023   SDLoc dl(NewResChain);
   6024 
   6025   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   6026                            NewResChain, DAG.getUNDEF(MVT::Other));
   6027   assert(TF.getNode() != NewResChain.getNode() &&
   6028          "A new TF really is required here");
   6029 
   6030   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
   6031   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
   6032 }
   6033 
   6034 /// \brief Custom lowers integer to floating point conversions to use
   6035 /// the direct move instructions available in ISA 2.07 to avoid the
   6036 /// need for load/store combinations.
   6037 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
   6038                                                     SelectionDAG &DAG,
   6039                                                     SDLoc dl) const {
   6040   assert((Op.getValueType() == MVT::f32 ||
   6041           Op.getValueType() == MVT::f64) &&
   6042          "Invalid floating point type as target of conversion");
   6043   assert(Subtarget.hasFPCVT() &&
   6044          "Int to FP conversions with direct moves require FPCVT");
   6045   SDValue FP;
   6046   SDValue Src = Op.getOperand(0);
   6047   bool SinglePrec = Op.getValueType() == MVT::f32;
   6048   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
   6049   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
   6050   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
   6051                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
   6052 
   6053   if (WordInt) {
   6054     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
   6055                      dl, MVT::f64, Src);
   6056     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   6057   }
   6058   else {
   6059     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
   6060     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   6061   }
   6062 
   6063   return FP;
   6064 }
   6065 
   6066 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
   6067                                           SelectionDAG &DAG) const {
   6068   SDLoc dl(Op);
   6069 
   6070   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
   6071     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
   6072       return SDValue();
   6073 
   6074     SDValue Value = Op.getOperand(0);
   6075     // The values are now known to be -1 (false) or 1 (true). To convert this
   6076     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   6077     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   6078     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   6079 
   6080     SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
   6081     FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   6082                           FPHalfs, FPHalfs, FPHalfs, FPHalfs);
   6083 
   6084     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   6085 
   6086     if (Op.getValueType() != MVT::v4f64)
   6087       Value = DAG.getNode(ISD::FP_ROUND, dl,
   6088                           Op.getValueType(), Value, DAG.getIntPtrConstant(1));
   6089     return Value;
   6090   }
   6091 
   6092   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   6093   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   6094     return SDValue();
   6095 
   6096   if (Op.getOperand(0).getValueType() == MVT::i1)
   6097     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
   6098                        DAG.getConstantFP(1.0, Op.getValueType()),
   6099                        DAG.getConstantFP(0.0, Op.getValueType()));
   6100 
   6101   // If we have direct moves, we can do all the conversion, skip the store/load
   6102   // however, without FPCVT we can't do most conversions.
   6103   if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
   6104     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
   6105 
   6106   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   6107          "UINT_TO_FP is supported only with FPCVT");
   6108 
   6109   // If we have FCFIDS, then use it when converting to single-precision.
   6110   // Otherwise, convert to double-precision and then round.
   6111   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   6112                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   6113                                                             : PPCISD::FCFIDS)
   6114                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   6115                                                             : PPCISD::FCFID);
   6116   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   6117                   ? MVT::f32
   6118                   : MVT::f64;
   6119 
   6120   if (Op.getOperand(0).getValueType() == MVT::i64) {
   6121     SDValue SINT = Op.getOperand(0);
   6122     // When converting to single-precision, we actually need to convert
   6123     // to double-precision first and then round to single-precision.
   6124     // To avoid double-rounding effects during that operation, we have
   6125     // to prepare the input operand.  Bits that might be truncated when
   6126     // converting to double-precision are replaced by a bit that won't
   6127     // be lost at this stage, but is below the single-precision rounding
   6128     // position.
   6129     //
   6130     // However, if -enable-unsafe-fp-math is in effect, accept double
   6131     // rounding to avoid the extra overhead.
   6132     if (Op.getValueType() == MVT::f32 &&
   6133         !Subtarget.hasFPCVT() &&
   6134         !DAG.getTarget().Options.UnsafeFPMath) {
   6135 
   6136       // Twiddle input to make sure the low 11 bits are zero.  (If this
   6137       // is the case, we are guaranteed the value will fit into the 53 bit
   6138       // mantissa of an IEEE double-precision value without rounding.)
   6139       // If any of those low 11 bits were not zero originally, make sure
   6140       // bit 12 (value 2048) is set instead, so that the final rounding
   6141       // to single-precision gets the correct result.
   6142       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   6143                                   SINT, DAG.getConstant(2047, MVT::i64));
   6144       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   6145                           Round, DAG.getConstant(2047, MVT::i64));
   6146       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   6147       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   6148                           Round, DAG.getConstant(-2048, MVT::i64));
   6149 
   6150       // However, we cannot use that value unconditionally: if the magnitude
   6151       // of the input value is small, the bit-twiddling we did above might
   6152       // end up visibly changing the output.  Fortunately, in that case, we
   6153       // don't need to twiddle bits since the original input will convert
   6154       // exactly to double-precision floating-point already.  Therefore,
   6155       // construct a conditional to use the original value if the top 11
   6156       // bits are all sign-bit copies, and use the rounded value computed
   6157       // above otherwise.
   6158       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   6159                                  SINT, DAG.getConstant(53, MVT::i32));
   6160       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   6161                          Cond, DAG.getConstant(1, MVT::i64));
   6162       Cond = DAG.getSetCC(dl, MVT::i32,
   6163                           Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
   6164 
   6165       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   6166     }
   6167 
   6168     ReuseLoadInfo RLI;
   6169     SDValue Bits;
   6170 
   6171     MachineFunction &MF = DAG.getMachineFunction();
   6172     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
   6173       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
   6174                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
   6175                          RLI.Ranges);
   6176       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6177     } else if (Subtarget.hasLFIWAX() &&
   6178                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
   6179       MachineMemOperand *MMO =
   6180         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6181                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6182       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6183       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
   6184                                      DAG.getVTList(MVT::f64, MVT::Other),
   6185                                      Ops, MVT::i32, MMO);
   6186       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6187     } else if (Subtarget.hasFPCVT() &&
   6188                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
   6189       MachineMemOperand *MMO =
   6190         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6191                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6192       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6193       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
   6194                                      DAG.getVTList(MVT::f64, MVT::Other),
   6195                                      Ops, MVT::i32, MMO);
   6196       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6197     } else if (((Subtarget.hasLFIWAX() &&
   6198                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
   6199                 (Subtarget.hasFPCVT() &&
   6200                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
   6201                SINT.getOperand(0).getValueType() == MVT::i32) {
   6202       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   6203       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   6204 
   6205       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   6206       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6207 
   6208       SDValue Store =
   6209         DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
   6210                      MachinePointerInfo::getFixedStack(FrameIdx),
   6211                      false, false, 0);
   6212 
   6213       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   6214              "Expected an i32 store");
   6215 
   6216       RLI.Ptr = FIdx;
   6217       RLI.Chain = Store;
   6218       RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
   6219       RLI.Alignment = 4;
   6220 
   6221       MachineMemOperand *MMO =
   6222         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6223                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6224       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6225       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
   6226                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
   6227                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
   6228                                      Ops, MVT::i32, MMO);
   6229     } else
   6230       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   6231 
   6232     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
   6233 
   6234     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   6235       FP = DAG.getNode(ISD::FP_ROUND, dl,
   6236                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   6237     return FP;
   6238   }
   6239 
   6240   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   6241          "Unhandled INT_TO_FP type in custom expander!");
   6242   // Since we only generate this in 64-bit mode, we can take advantage of
   6243   // 64-bit registers.  In particular, sign extend the input value into the
   6244   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   6245   // then lfd it and fcfid it.
   6246   MachineFunction &MF = DAG.getMachineFunction();
   6247   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   6248   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   6249 
   6250   SDValue Ld;
   6251   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
   6252     ReuseLoadInfo RLI;
   6253     bool ReusingLoad;
   6254     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
   6255                                             DAG))) {
   6256       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   6257       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6258 
   6259       SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   6260                                    MachinePointerInfo::getFixedStack(FrameIdx),
   6261                                    false, false, 0);
   6262 
   6263       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   6264              "Expected an i32 store");
   6265 
   6266       RLI.Ptr = FIdx;
   6267       RLI.Chain = Store;
   6268       RLI.MPI = MachinePointerInfo::getFixedStack(FrameIdx);
   6269       RLI.Alignment = 4;
   6270     }
   6271 
   6272     MachineMemOperand *MMO =
   6273       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6274                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6275     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6276     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
   6277                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
   6278                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
   6279                                  Ops, MVT::i32, MMO);
   6280     if (ReusingLoad)
   6281       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
   6282   } else {
   6283     assert(Subtarget.isPPC64() &&
   6284            "i32->FP without LFIWAX supported only on PPC64");
   6285 
   6286     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   6287     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6288 
   6289     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
   6290                                 Op.getOperand(0));
   6291 
   6292     // STD the extended value into the stack slot.
   6293     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
   6294                                  MachinePointerInfo::getFixedStack(FrameIdx),
   6295                                  false, false, 0);
   6296 
   6297     // Load the value as a double.
   6298     Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
   6299                      MachinePointerInfo::getFixedStack(FrameIdx),
   6300                      false, false, false, 0);
   6301   }
   6302 
   6303   // FCFID it and return it.
   6304   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
   6305   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   6306     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
   6307   return FP;
   6308 }
   6309 
   6310 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   6311                                             SelectionDAG &DAG) const {
   6312   SDLoc dl(Op);
   6313   /*
   6314    The rounding mode is in bits 30:31 of FPSR, and has the following
   6315    settings:
   6316      00 Round to nearest
   6317      01 Round to 0
   6318      10 Round to +inf
   6319      11 Round to -inf
   6320 
   6321   FLT_ROUNDS, on the other hand, expects the following:
   6322     -1 Undefined
   6323      0 Round to 0
   6324      1 Round to nearest
   6325      2 Round to +inf
   6326      3 Round to -inf
   6327 
   6328   To perform the conversion, we do:
   6329     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   6330   */
   6331 
   6332   MachineFunction &MF = DAG.getMachineFunction();
   6333   EVT VT = Op.getValueType();
   6334   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   6335 
   6336   // Save FP Control Word to register
   6337   EVT NodeTys[] = {
   6338     MVT::f64,    // return register
   6339     MVT::Glue    // unused in this context
   6340   };
   6341   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
   6342 
   6343   // Save FP register to stack slot
   6344   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   6345   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   6346   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   6347                                StackSlot, MachinePointerInfo(), false, false,0);
   6348 
   6349   // Load FP Control Word from low 32 bits of stack slot.
   6350   SDValue Four = DAG.getConstant(4, PtrVT);
   6351   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   6352   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   6353                             false, false, false, 0);
   6354 
   6355   // Transform as necessary
   6356   SDValue CWD1 =
   6357     DAG.getNode(ISD::AND, dl, MVT::i32,
   6358                 CWD, DAG.getConstant(3, MVT::i32));
   6359   SDValue CWD2 =
   6360     DAG.getNode(ISD::SRL, dl, MVT::i32,
   6361                 DAG.getNode(ISD::AND, dl, MVT::i32,
   6362                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   6363                                         CWD, DAG.getConstant(3, MVT::i32)),
   6364                             DAG.getConstant(3, MVT::i32)),
   6365                 DAG.getConstant(1, MVT::i32));
   6366 
   6367   SDValue RetVal =
   6368     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   6369 
   6370   return DAG.getNode((VT.getSizeInBits() < 16 ?
   6371                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   6372 }
   6373 
   6374 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6375   EVT VT = Op.getValueType();
   6376   unsigned BitWidth = VT.getSizeInBits();
   6377   SDLoc dl(Op);
   6378   assert(Op.getNumOperands() == 3 &&
   6379          VT == Op.getOperand(1).getValueType() &&
   6380          "Unexpected SHL!");
   6381 
   6382   // Expand into a bunch of logical ops.  Note that these ops
   6383   // depend on the PPC behavior for oversized shift amounts.
   6384   SDValue Lo = Op.getOperand(0);
   6385   SDValue Hi = Op.getOperand(1);
   6386   SDValue Amt = Op.getOperand(2);
   6387   EVT AmtVT = Amt.getValueType();
   6388 
   6389   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6390                              DAG.getConstant(BitWidth, AmtVT), Amt);
   6391   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   6392   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   6393   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   6394   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6395                              DAG.getConstant(-BitWidth, AmtVT));
   6396   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   6397   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   6398   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   6399   SDValue OutOps[] = { OutLo, OutHi };
   6400   return DAG.getMergeValues(OutOps, dl);
   6401 }
   6402 
   6403 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6404   EVT VT = Op.getValueType();
   6405   SDLoc dl(Op);
   6406   unsigned BitWidth = VT.getSizeInBits();
   6407   assert(Op.getNumOperands() == 3 &&
   6408          VT == Op.getOperand(1).getValueType() &&
   6409          "Unexpected SRL!");
   6410 
   6411   // Expand into a bunch of logical ops.  Note that these ops
   6412   // depend on the PPC behavior for oversized shift amounts.
   6413   SDValue Lo = Op.getOperand(0);
   6414   SDValue Hi = Op.getOperand(1);
   6415   SDValue Amt = Op.getOperand(2);
   6416   EVT AmtVT = Amt.getValueType();
   6417 
   6418   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6419                              DAG.getConstant(BitWidth, AmtVT), Amt);
   6420   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   6421   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   6422   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   6423   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6424                              DAG.getConstant(-BitWidth, AmtVT));
   6425   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   6426   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   6427   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   6428   SDValue OutOps[] = { OutLo, OutHi };
   6429   return DAG.getMergeValues(OutOps, dl);
   6430 }
   6431 
   6432 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6433   SDLoc dl(Op);
   6434   EVT VT = Op.getValueType();
   6435   unsigned BitWidth = VT.getSizeInBits();
   6436   assert(Op.getNumOperands() == 3 &&
   6437          VT == Op.getOperand(1).getValueType() &&
   6438          "Unexpected SRA!");
   6439 
   6440   // Expand into a bunch of logical ops, followed by a select_cc.
   6441   SDValue Lo = Op.getOperand(0);
   6442   SDValue Hi = Op.getOperand(1);
   6443   SDValue Amt = Op.getOperand(2);
   6444   EVT AmtVT = Amt.getValueType();
   6445 
   6446   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6447                              DAG.getConstant(BitWidth, AmtVT), Amt);
   6448   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   6449   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   6450   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   6451   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6452                              DAG.getConstant(-BitWidth, AmtVT));
   6453   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   6454   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   6455   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
   6456                                   Tmp4, Tmp6, ISD::SETLE);
   6457   SDValue OutOps[] = { OutLo, OutHi };
   6458   return DAG.getMergeValues(OutOps, dl);
   6459 }
   6460 
   6461 //===----------------------------------------------------------------------===//
   6462 // Vector related lowering.
   6463 //
   6464 
   6465 /// BuildSplatI - Build a canonical splati of Val with an element size of
   6466 /// SplatSize.  Cast the result to VT.
   6467 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   6468                              SelectionDAG &DAG, SDLoc dl) {
   6469   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   6470 
   6471   static const MVT VTys[] = { // canonical VT to use for each size.
   6472     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   6473   };
   6474 
   6475   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   6476 
   6477   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   6478   if (Val == -1)
   6479     SplatSize = 1;
   6480 
   6481   EVT CanonicalVT = VTys[SplatSize-1];
   6482 
   6483   // Build a canonical splat for this value.
   6484   SDValue Elt = DAG.getConstant(Val, MVT::i32);
   6485   SmallVector<SDValue, 8> Ops;
   6486   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   6487   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
   6488   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   6489 }
   6490 
   6491 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
   6492 /// specified intrinsic ID.
   6493 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
   6494                                 SelectionDAG &DAG, SDLoc dl,
   6495                                 EVT DestVT = MVT::Other) {
   6496   if (DestVT == MVT::Other) DestVT = Op.getValueType();
   6497   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   6498                      DAG.getConstant(IID, MVT::i32), Op);
   6499 }
   6500 
   6501 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   6502 /// specified intrinsic ID.
   6503 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   6504                                 SelectionDAG &DAG, SDLoc dl,
   6505                                 EVT DestVT = MVT::Other) {
   6506   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   6507   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   6508                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
   6509 }
   6510 
   6511 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   6512 /// specified intrinsic ID.
   6513 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   6514                                 SDValue Op2, SelectionDAG &DAG,
   6515                                 SDLoc dl, EVT DestVT = MVT::Other) {
   6516   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   6517   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   6518                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
   6519 }
   6520 
   6521 
   6522 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   6523 /// amount.  The result has the specified value type.
   6524 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   6525                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
   6526   // Force LHS/RHS to be the right type.
   6527   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   6528   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   6529 
   6530   int Ops[16];
   6531   for (unsigned i = 0; i != 16; ++i)
   6532     Ops[i] = i + Amt;
   6533   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   6534   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   6535 }
   6536 
   6537 // If this is a case we can't handle, return null and let the default
   6538 // expansion code take care of it.  If we CAN select this case, and if it
   6539 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   6540 // this case more efficiently than a constant pool load, lower it to the
   6541 // sequence of ops that should be used.
   6542 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   6543                                              SelectionDAG &DAG) const {
   6544   SDLoc dl(Op);
   6545   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   6546   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   6547 
   6548   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
   6549     // We first build an i32 vector, load it into a QPX register,
   6550     // then convert it to a floating-point vector and compare it
   6551     // to a zero vector to get the boolean result.
   6552     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6553     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   6554     MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
   6555     EVT PtrVT = getPointerTy();
   6556     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6557 
   6558     assert(BVN->getNumOperands() == 4 &&
   6559       "BUILD_VECTOR for v4i1 does not have 4 operands");
   6560 
   6561     bool IsConst = true;
   6562     for (unsigned i = 0; i < 4; ++i) {
   6563       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   6564       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
   6565         IsConst = false;
   6566         break;
   6567       }
   6568     }
   6569 
   6570     if (IsConst) {
   6571       Constant *One =
   6572         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
   6573       Constant *NegOne =
   6574         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
   6575 
   6576       SmallVector<Constant*, 4> CV(4, NegOne);
   6577       for (unsigned i = 0; i < 4; ++i) {
   6578         if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
   6579           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
   6580         else if (cast<ConstantSDNode>(BVN->getOperand(i))->
   6581                    getConstantIntValue()->isZero())
   6582           continue;
   6583         else
   6584           CV[i] = One;
   6585       }
   6586 
   6587       Constant *CP = ConstantVector::get(CV);
   6588       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(),
   6589                       16 /* alignment */);
   6590 
   6591       SmallVector<SDValue, 2> Ops;
   6592       Ops.push_back(DAG.getEntryNode());
   6593       Ops.push_back(CPIdx);
   6594 
   6595       SmallVector<EVT, 2> ValueVTs;
   6596       ValueVTs.push_back(MVT::v4i1);
   6597       ValueVTs.push_back(MVT::Other); // chain
   6598       SDVTList VTs = DAG.getVTList(ValueVTs);
   6599 
   6600       return DAG.getMemIntrinsicNode(PPCISD::QVLFSb,
   6601         dl, VTs, Ops, MVT::v4f32,
   6602         MachinePointerInfo::getConstantPool());
   6603     }
   6604 
   6605     SmallVector<SDValue, 4> Stores;
   6606     for (unsigned i = 0; i < 4; ++i) {
   6607       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   6608 
   6609       unsigned Offset = 4*i;
   6610       SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
   6611       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   6612 
   6613       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
   6614       if (StoreSize > 4) {
   6615         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
   6616                                            BVN->getOperand(i), Idx,
   6617                                            PtrInfo.getWithOffset(Offset),
   6618                                            MVT::i32, false, false, 0));
   6619       } else {
   6620         SDValue StoreValue = BVN->getOperand(i);
   6621         if (StoreSize < 4)
   6622           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
   6623 
   6624         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
   6625                                       StoreValue, Idx,
   6626                                       PtrInfo.getWithOffset(Offset),
   6627                                       false, false, 0));
   6628       }
   6629     }
   6630 
   6631     SDValue StoreChain;
   6632     if (!Stores.empty())
   6633       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   6634     else
   6635       StoreChain = DAG.getEntryNode();
   6636 
   6637     // Now load from v4i32 into the QPX register; this will extend it to
   6638     // v4i64 but not yet convert it to a floating point. Nevertheless, this
   6639     // is typed as v4f64 because the QPX register integer states are not
   6640     // explicitly represented.
   6641 
   6642     SmallVector<SDValue, 2> Ops;
   6643     Ops.push_back(StoreChain);
   6644     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, MVT::i32));
   6645     Ops.push_back(FIdx);
   6646 
   6647     SmallVector<EVT, 2> ValueVTs;
   6648     ValueVTs.push_back(MVT::v4f64);
   6649     ValueVTs.push_back(MVT::Other); // chain
   6650     SDVTList VTs = DAG.getVTList(ValueVTs);
   6651 
   6652     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
   6653       dl, VTs, Ops, MVT::v4i32, PtrInfo);
   6654     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   6655       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, MVT::i32),
   6656       LoadedVect);
   6657 
   6658     SDValue FPZeros = DAG.getConstantFP(0.0, MVT::f64);
   6659     FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   6660                           FPZeros, FPZeros, FPZeros, FPZeros);
   6661 
   6662     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
   6663   }
   6664 
   6665   // All other QPX vectors are handled by generic code.
   6666   if (Subtarget.hasQPX())
   6667     return SDValue();
   6668 
   6669   // Check if this is a splat of a constant value.
   6670   APInt APSplatBits, APSplatUndef;
   6671   unsigned SplatBitSize;
   6672   bool HasAnyUndefs;
   6673   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   6674                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
   6675       SplatBitSize > 32)
   6676     return SDValue();
   6677 
   6678   unsigned SplatBits = APSplatBits.getZExtValue();
   6679   unsigned SplatUndef = APSplatUndef.getZExtValue();
   6680   unsigned SplatSize = SplatBitSize / 8;
   6681 
   6682   // First, handle single instruction cases.
   6683 
   6684   // All zeros?
   6685   if (SplatBits == 0) {
   6686     // Canonicalize all zero vectors to be v4i32.
   6687     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   6688       SDValue Z = DAG.getConstant(0, MVT::i32);
   6689       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   6690       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   6691     }
   6692     return Op;
   6693   }
   6694 
   6695   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   6696   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   6697                     (32-SplatBitSize));
   6698   if (SextVal >= -16 && SextVal <= 15)
   6699     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   6700 
   6701 
   6702   // Two instruction sequences.
   6703 
   6704   // If this value is in the range [-32,30] and is even, use:
   6705   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   6706   // If this value is in the range [17,31] and is odd, use:
   6707   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   6708   // If this value is in the range [-31,-17] and is odd, use:
   6709   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   6710   // Note the last two are three-instruction sequences.
   6711   if (SextVal >= -32 && SextVal <= 31) {
   6712     // To avoid having these optimizations undone by constant folding,
   6713     // we convert to a pseudo that will be expanded later into one of
   6714     // the above forms.
   6715     SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
   6716     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
   6717               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
   6718     SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
   6719     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   6720     if (VT == Op.getValueType())
   6721       return RetVal;
   6722     else
   6723       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
   6724   }
   6725 
   6726   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   6727   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   6728   // for fneg/fabs.
   6729   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   6730     // Make -1 and vspltisw -1:
   6731     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   6732 
   6733     // Make the VSLW intrinsic, computing 0x8000_0000.
   6734     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   6735                                    OnesV, DAG, dl);
   6736 
   6737     // xor by OnesV to invert it.
   6738     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   6739     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   6740   }
   6741 
   6742   // Check to see if this is a wide variety of vsplti*, binop self cases.
   6743   static const signed char SplatCsts[] = {
   6744     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   6745     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   6746   };
   6747 
   6748   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   6749     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   6750     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   6751     int i = SplatCsts[idx];
   6752 
   6753     // Figure out what shift amount will be used by altivec if shifted by i in
   6754     // this splat size.
   6755     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   6756 
   6757     // vsplti + shl self.
   6758     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   6759       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   6760       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   6761         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   6762         Intrinsic::ppc_altivec_vslw
   6763       };
   6764       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   6765       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   6766     }
   6767 
   6768     // vsplti + srl self.
   6769     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   6770       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   6771       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   6772         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   6773         Intrinsic::ppc_altivec_vsrw
   6774       };
   6775       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   6776       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   6777     }
   6778 
   6779     // vsplti + sra self.
   6780     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   6781       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   6782       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   6783         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   6784         Intrinsic::ppc_altivec_vsraw
   6785       };
   6786       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   6787       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   6788     }
   6789 
   6790     // vsplti + rol self.
   6791     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   6792                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   6793       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   6794       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   6795         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   6796         Intrinsic::ppc_altivec_vrlw
   6797       };
   6798       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   6799       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   6800     }
   6801 
   6802     // t = vsplti c, result = vsldoi t, t, 1
   6803     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   6804       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   6805       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
   6806     }
   6807     // t = vsplti c, result = vsldoi t, t, 2
   6808     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   6809       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   6810       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
   6811     }
   6812     // t = vsplti c, result = vsldoi t, t, 3
   6813     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   6814       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   6815       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
   6816     }
   6817   }
   6818 
   6819   return SDValue();
   6820 }
   6821 
   6822 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   6823 /// the specified operations to build the shuffle.
   6824 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   6825                                       SDValue RHS, SelectionDAG &DAG,
   6826                                       SDLoc dl) {
   6827   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   6828   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   6829   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   6830 
   6831   enum {
   6832     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   6833     OP_VMRGHW,
   6834     OP_VMRGLW,
   6835     OP_VSPLTISW0,
   6836     OP_VSPLTISW1,
   6837     OP_VSPLTISW2,
   6838     OP_VSPLTISW3,
   6839     OP_VSLDOI4,
   6840     OP_VSLDOI8,
   6841     OP_VSLDOI12
   6842   };
   6843 
   6844   if (OpNum == OP_COPY) {
   6845     if (LHSID == (1*9+2)*9+3) return LHS;
   6846     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   6847     return RHS;
   6848   }
   6849 
   6850   SDValue OpLHS, OpRHS;
   6851   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   6852   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   6853 
   6854   int ShufIdxs[16];
   6855   switch (OpNum) {
   6856   default: llvm_unreachable("Unknown i32 permute!");
   6857   case OP_VMRGHW:
   6858     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   6859     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   6860     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   6861     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   6862     break;
   6863   case OP_VMRGLW:
   6864     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   6865     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   6866     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   6867     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   6868     break;
   6869   case OP_VSPLTISW0:
   6870     for (unsigned i = 0; i != 16; ++i)
   6871       ShufIdxs[i] = (i&3)+0;
   6872     break;
   6873   case OP_VSPLTISW1:
   6874     for (unsigned i = 0; i != 16; ++i)
   6875       ShufIdxs[i] = (i&3)+4;
   6876     break;
   6877   case OP_VSPLTISW2:
   6878     for (unsigned i = 0; i != 16; ++i)
   6879       ShufIdxs[i] = (i&3)+8;
   6880     break;
   6881   case OP_VSPLTISW3:
   6882     for (unsigned i = 0; i != 16; ++i)
   6883       ShufIdxs[i] = (i&3)+12;
   6884     break;
   6885   case OP_VSLDOI4:
   6886     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   6887   case OP_VSLDOI8:
   6888     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   6889   case OP_VSLDOI12:
   6890     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   6891   }
   6892   EVT VT = OpLHS.getValueType();
   6893   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   6894   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   6895   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   6896   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   6897 }
   6898 
   6899 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   6900 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   6901 /// return the code it can be lowered into.  Worst case, it can always be
   6902 /// lowered into a vperm.
   6903 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   6904                                                SelectionDAG &DAG) const {
   6905   SDLoc dl(Op);
   6906   SDValue V1 = Op.getOperand(0);
   6907   SDValue V2 = Op.getOperand(1);
   6908   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6909   EVT VT = Op.getValueType();
   6910   bool isLittleEndian = Subtarget.isLittleEndian();
   6911 
   6912   if (Subtarget.hasQPX()) {
   6913     if (VT.getVectorNumElements() != 4)
   6914       return SDValue();
   6915 
   6916     if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   6917 
   6918     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
   6919     if (AlignIdx != -1) {
   6920       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
   6921                          DAG.getConstant(AlignIdx, MVT::i32));
   6922     } else if (SVOp->isSplat()) {
   6923       int SplatIdx = SVOp->getSplatIndex();
   6924       if (SplatIdx >= 4) {
   6925         std::swap(V1, V2);
   6926         SplatIdx -= 4;
   6927       }
   6928 
   6929       // FIXME: If SplatIdx == 0 and the input came from a load, then there is
   6930       // nothing to do.
   6931 
   6932       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
   6933                          DAG.getConstant(SplatIdx, MVT::i32));
   6934     }
   6935 
   6936     // Lower this into a qvgpci/qvfperm pair.
   6937 
   6938     // Compute the qvgpci literal
   6939     unsigned idx = 0;
   6940     for (unsigned i = 0; i < 4; ++i) {
   6941       int m = SVOp->getMaskElt(i);
   6942       unsigned mm = m >= 0 ? (unsigned) m : i;
   6943       idx |= mm << (3-i)*3;
   6944     }
   6945 
   6946     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
   6947                              DAG.getConstant(idx, MVT::i32));
   6948     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
   6949   }
   6950 
   6951   // Cases that are handled by instructions that take permute immediates
   6952   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   6953   // selected by the instruction selector.
   6954   if (V2.getOpcode() == ISD::UNDEF) {
   6955     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   6956         PPC::isSplatShuffleMask(SVOp, 2) ||
   6957         PPC::isSplatShuffleMask(SVOp, 4) ||
   6958         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
   6959         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
   6960         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
   6961         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
   6962         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
   6963         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
   6964         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
   6965         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
   6966         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
   6967       return Op;
   6968     }
   6969   }
   6970 
   6971   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   6972   // and produce a fixed permutation.  If any of these match, do not lower to
   6973   // VPERM.
   6974   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
   6975   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   6976       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   6977       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
   6978       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   6979       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   6980       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   6981       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   6982       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   6983       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
   6984     return Op;
   6985 
   6986   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   6987   // perfect shuffle table to emit an optimal matching sequence.
   6988   ArrayRef<int> PermMask = SVOp->getMask();
   6989 
   6990   unsigned PFIndexes[4];
   6991   bool isFourElementShuffle = true;
   6992   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   6993     unsigned EltNo = 8;   // Start out undef.
   6994     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   6995       if (PermMask[i*4+j] < 0)
   6996         continue;   // Undef, ignore it.
   6997 
   6998       unsigned ByteSource = PermMask[i*4+j];
   6999       if ((ByteSource & 3) != j) {
   7000         isFourElementShuffle = false;
   7001         break;
   7002       }
   7003 
   7004       if (EltNo == 8) {
   7005         EltNo = ByteSource/4;
   7006       } else if (EltNo != ByteSource/4) {
   7007         isFourElementShuffle = false;
   7008         break;
   7009       }
   7010     }
   7011     PFIndexes[i] = EltNo;
   7012   }
   7013 
   7014   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   7015   // perfect shuffle vector to determine if it is cost effective to do this as
   7016   // discrete instructions, or whether we should use a vperm.
   7017   // For now, we skip this for little endian until such time as we have a
   7018   // little-endian perfect shuffle table.
   7019   if (isFourElementShuffle && !isLittleEndian) {
   7020     // Compute the index in the perfect shuffle table.
   7021     unsigned PFTableIndex =
   7022       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   7023 
   7024     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   7025     unsigned Cost  = (PFEntry >> 30);
   7026 
   7027     // Determining when to avoid vperm is tricky.  Many things affect the cost
   7028     // of vperm, particularly how many times the perm mask needs to be computed.
   7029     // For example, if the perm mask can be hoisted out of a loop or is already
   7030     // used (perhaps because there are multiple permutes with the same shuffle
   7031     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   7032     // the loop requires an extra register.
   7033     //
   7034     // As a compromise, we only emit discrete instructions if the shuffle can be
   7035     // generated in 3 or fewer operations.  When we have loop information
   7036     // available, if this block is within a loop, we should avoid using vperm
   7037     // for 3-operation perms and use a constant pool load instead.
   7038     if (Cost < 3)
   7039       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   7040   }
   7041 
   7042   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   7043   // vector that will get spilled to the constant pool.
   7044   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   7045 
   7046   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   7047   // that it is in input element units, not in bytes.  Convert now.
   7048 
   7049   // For little endian, the order of the input vectors is reversed, and
   7050   // the permutation mask is complemented with respect to 31.  This is
   7051   // necessary to produce proper semantics with the big-endian-biased vperm
   7052   // instruction.
   7053   EVT EltVT = V1.getValueType().getVectorElementType();
   7054   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   7055 
   7056   SmallVector<SDValue, 16> ResultMask;
   7057   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   7058     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   7059 
   7060     for (unsigned j = 0; j != BytesPerElement; ++j)
   7061       if (isLittleEndian)
   7062         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement+j),
   7063                                              MVT::i32));
   7064       else
   7065         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
   7066                                              MVT::i32));
   7067   }
   7068 
   7069   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   7070                                   ResultMask);
   7071   if (isLittleEndian)
   7072     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   7073                        V2, V1, VPermMask);
   7074   else
   7075     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   7076                        V1, V2, VPermMask);
   7077 }
   7078 
   7079 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
   7080 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
   7081 /// information about the intrinsic.
   7082 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
   7083                                   bool &isDot, const PPCSubtarget &Subtarget) {
   7084   unsigned IntrinsicID =
   7085     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   7086   CompareOpc = -1;
   7087   isDot = false;
   7088   switch (IntrinsicID) {
   7089   default: return false;
   7090     // Comparison predicates.
   7091   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   7092   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   7093   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   7094   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   7095   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   7096   case Intrinsic::ppc_altivec_vcmpequd_p:
   7097     if (Subtarget.hasP8Altivec()) {
   7098       CompareOpc = 199;
   7099       isDot = 1;
   7100     }
   7101     else
   7102       return false;
   7103 
   7104     break;
   7105   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   7106   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   7107   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   7108   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   7109   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   7110   case Intrinsic::ppc_altivec_vcmpgtsd_p:
   7111     if (Subtarget.hasP8Altivec()) {
   7112       CompareOpc = 967;
   7113       isDot = 1;
   7114     }
   7115     else
   7116       return false;
   7117 
   7118     break;
   7119   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   7120   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   7121   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   7122   case Intrinsic::ppc_altivec_vcmpgtud_p:
   7123     if (Subtarget.hasP8Altivec()) {
   7124       CompareOpc = 711;
   7125       isDot = 1;
   7126     }
   7127     else
   7128       return false;
   7129 
   7130     break;
   7131 
   7132     // Normal Comparisons.
   7133   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   7134   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   7135   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   7136   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   7137   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   7138   case Intrinsic::ppc_altivec_vcmpequd:
   7139     if (Subtarget.hasP8Altivec()) {
   7140       CompareOpc = 199;
   7141       isDot = 0;
   7142     }
   7143     else
   7144       return false;
   7145 
   7146     break;
   7147   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   7148   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   7149   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   7150   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   7151   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   7152   case Intrinsic::ppc_altivec_vcmpgtsd:
   7153     if (Subtarget.hasP8Altivec()) {
   7154       CompareOpc = 967;
   7155       isDot = 0;
   7156     }
   7157     else
   7158       return false;
   7159 
   7160     break;
   7161   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   7162   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   7163   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   7164   case Intrinsic::ppc_altivec_vcmpgtud:
   7165     if (Subtarget.hasP8Altivec()) {
   7166       CompareOpc = 711;
   7167       isDot = 0;
   7168     }
   7169     else
   7170       return false;
   7171 
   7172     break;
   7173   }
   7174   return true;
   7175 }
   7176 
   7177 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   7178 /// lower, do it, otherwise return null.
   7179 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   7180                                                    SelectionDAG &DAG) const {
   7181   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   7182   // opcode number of the comparison.
   7183   SDLoc dl(Op);
   7184   int CompareOpc;
   7185   bool isDot;
   7186   if (!getAltivecCompareInfo(Op, CompareOpc, isDot, Subtarget))
   7187     return SDValue();    // Don't custom lower most intrinsics.
   7188 
   7189   // If this is a non-dot comparison, make the VCMP node and we are done.
   7190   if (!isDot) {
   7191     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   7192                               Op.getOperand(1), Op.getOperand(2),
   7193                               DAG.getConstant(CompareOpc, MVT::i32));
   7194     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   7195   }
   7196 
   7197   // Create the PPCISD altivec 'dot' comparison node.
   7198   SDValue Ops[] = {
   7199     Op.getOperand(2),  // LHS
   7200     Op.getOperand(3),  // RHS
   7201     DAG.getConstant(CompareOpc, MVT::i32)
   7202   };
   7203   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   7204   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   7205 
   7206   // Now that we have the comparison, emit a copy from the CR to a GPR.
   7207   // This is flagged to the above dot comparison.
   7208   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
   7209                                 DAG.getRegister(PPC::CR6, MVT::i32),
   7210                                 CompNode.getValue(1));
   7211 
   7212   // Unpack the result based on how the target uses it.
   7213   unsigned BitNo;   // Bit # of CR6.
   7214   bool InvertBit;   // Invert result?
   7215   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   7216   default:  // Can't happen, don't crash on invalid number though.
   7217   case 0:   // Return the value of the EQ bit of CR6.
   7218     BitNo = 0; InvertBit = false;
   7219     break;
   7220   case 1:   // Return the inverted value of the EQ bit of CR6.
   7221     BitNo = 0; InvertBit = true;
   7222     break;
   7223   case 2:   // Return the value of the LT bit of CR6.
   7224     BitNo = 2; InvertBit = false;
   7225     break;
   7226   case 3:   // Return the inverted value of the LT bit of CR6.
   7227     BitNo = 2; InvertBit = true;
   7228     break;
   7229   }
   7230 
   7231   // Shift the bit into the low position.
   7232   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   7233                       DAG.getConstant(8-(3-BitNo), MVT::i32));
   7234   // Isolate the bit.
   7235   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   7236                       DAG.getConstant(1, MVT::i32));
   7237 
   7238   // If we are supposed to, toggle the bit.
   7239   if (InvertBit)
   7240     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   7241                         DAG.getConstant(1, MVT::i32));
   7242   return Flags;
   7243 }
   7244 
   7245 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   7246                                                   SelectionDAG &DAG) const {
   7247   SDLoc dl(Op);
   7248   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
   7249   // instructions), but for smaller types, we need to first extend up to v2i32
   7250   // before doing going farther.
   7251   if (Op.getValueType() == MVT::v2i64) {
   7252     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   7253     if (ExtVT != MVT::v2i32) {
   7254       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
   7255       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
   7256                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
   7257                                         ExtVT.getVectorElementType(), 4)));
   7258       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
   7259       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
   7260                        DAG.getValueType(MVT::v2i32));
   7261     }
   7262 
   7263     return Op;
   7264   }
   7265 
   7266   return SDValue();
   7267 }
   7268 
   7269 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   7270                                                    SelectionDAG &DAG) const {
   7271   SDLoc dl(Op);
   7272   // Create a stack slot that is 16-byte aligned.
   7273   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7274   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7275   EVT PtrVT = getPointerTy();
   7276   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7277 
   7278   // Store the input value into Value#0 of the stack slot.
   7279   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   7280                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   7281                                false, false, 0);
   7282   // Load it out.
   7283   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   7284                      false, false, false, 0);
   7285 }
   7286 
   7287 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   7288                                                    SelectionDAG &DAG) const {
   7289   SDLoc dl(Op);
   7290   SDNode *N = Op.getNode();
   7291 
   7292   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
   7293          "Unknown extract_vector_elt type");
   7294 
   7295   SDValue Value = N->getOperand(0);
   7296 
   7297   // The first part of this is like the store lowering except that we don't
   7298   // need to track the chain.
   7299 
   7300   // The values are now known to be -1 (false) or 1 (true). To convert this
   7301   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   7302   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   7303   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   7304 
   7305   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   7306   // understand how to form the extending load.
   7307   SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
   7308   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   7309                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
   7310 
   7311   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   7312 
   7313   // Now convert to an integer and store.
   7314   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7315     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, MVT::i32),
   7316     Value);
   7317 
   7318   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7319   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7320   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
   7321   EVT PtrVT = getPointerTy();
   7322   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7323 
   7324   SDValue StoreChain = DAG.getEntryNode();
   7325   SmallVector<SDValue, 2> Ops;
   7326   Ops.push_back(StoreChain);
   7327   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, MVT::i32));
   7328   Ops.push_back(Value);
   7329   Ops.push_back(FIdx);
   7330 
   7331   SmallVector<EVT, 2> ValueVTs;
   7332   ValueVTs.push_back(MVT::Other); // chain
   7333   SDVTList VTs = DAG.getVTList(ValueVTs);
   7334 
   7335   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   7336     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7337 
   7338   // Extract the value requested.
   7339   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   7340   SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
   7341   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7342 
   7343   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   7344                                PtrInfo.getWithOffset(Offset),
   7345                                false, false, false, 0);
   7346 
   7347   if (!Subtarget.useCRBits())
   7348     return IntVal;
   7349 
   7350   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
   7351 }
   7352 
   7353 /// Lowering for QPX v4i1 loads
   7354 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
   7355                                            SelectionDAG &DAG) const {
   7356   SDLoc dl(Op);
   7357   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
   7358   SDValue LoadChain = LN->getChain();
   7359   SDValue BasePtr = LN->getBasePtr();
   7360 
   7361   if (Op.getValueType() == MVT::v4f64 ||
   7362       Op.getValueType() == MVT::v4f32) {
   7363     EVT MemVT = LN->getMemoryVT();
   7364     unsigned Alignment = LN->getAlignment();
   7365 
   7366     // If this load is properly aligned, then it is legal.
   7367     if (Alignment >= MemVT.getStoreSize())
   7368       return Op;
   7369 
   7370     EVT ScalarVT = Op.getValueType().getScalarType(),
   7371         ScalarMemVT = MemVT.getScalarType();
   7372     unsigned Stride = ScalarMemVT.getStoreSize();
   7373 
   7374     SmallVector<SDValue, 8> Vals, LoadChains;
   7375     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   7376       SDValue Load;
   7377       if (ScalarVT != ScalarMemVT)
   7378         Load =
   7379           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
   7380                          BasePtr,
   7381                          LN->getPointerInfo().getWithOffset(Idx*Stride),
   7382                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
   7383                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
   7384                          LN->getAAInfo());
   7385       else
   7386         Load =
   7387           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
   7388                        LN->getPointerInfo().getWithOffset(Idx*Stride),
   7389                        LN->isVolatile(), LN->isNonTemporal(),
   7390                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
   7391                        LN->getAAInfo());
   7392 
   7393       if (Idx == 0 && LN->isIndexed()) {
   7394         assert(LN->getAddressingMode() == ISD::PRE_INC &&
   7395                "Unknown addressing mode on vector load");
   7396         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
   7397                                   LN->getAddressingMode());
   7398       }
   7399 
   7400       Vals.push_back(Load);
   7401       LoadChains.push_back(Load.getValue(1));
   7402 
   7403       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   7404                             DAG.getConstant(Stride, BasePtr.getValueType()));
   7405     }
   7406 
   7407     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   7408     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
   7409                                    Op.getValueType(), Vals);
   7410 
   7411     if (LN->isIndexed()) {
   7412       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
   7413       return DAG.getMergeValues(RetOps, dl);
   7414     }
   7415 
   7416     SDValue RetOps[] = { Value, TF };
   7417     return DAG.getMergeValues(RetOps, dl);
   7418   }
   7419 
   7420   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
   7421   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
   7422 
   7423   // To lower v4i1 from a byte array, we load the byte elements of the
   7424   // vector and then reuse the BUILD_VECTOR logic.
   7425 
   7426   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
   7427   for (unsigned i = 0; i < 4; ++i) {
   7428     SDValue Idx = DAG.getConstant(i, BasePtr.getValueType());
   7429     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   7430 
   7431     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
   7432                         dl, MVT::i32, LoadChain, Idx,
   7433                         LN->getPointerInfo().getWithOffset(i),
   7434                         MVT::i8 /* memory type */,
   7435                         LN->isVolatile(), LN->isNonTemporal(),
   7436                         LN->isInvariant(),
   7437                         1 /* alignment */, LN->getAAInfo()));
   7438     VectElmtChains.push_back(VectElmts[i].getValue(1));
   7439   }
   7440 
   7441   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
   7442   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
   7443 
   7444   SDValue RVals[] = { Value, LoadChain };
   7445   return DAG.getMergeValues(RVals, dl);
   7446 }
   7447 
   7448 /// Lowering for QPX v4i1 stores
   7449 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
   7450                                             SelectionDAG &DAG) const {
   7451   SDLoc dl(Op);
   7452   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
   7453   SDValue StoreChain = SN->getChain();
   7454   SDValue BasePtr = SN->getBasePtr();
   7455   SDValue Value = SN->getValue();
   7456 
   7457   if (Value.getValueType() == MVT::v4f64 ||
   7458       Value.getValueType() == MVT::v4f32) {
   7459     EVT MemVT = SN->getMemoryVT();
   7460     unsigned Alignment = SN->getAlignment();
   7461 
   7462     // If this store is properly aligned, then it is legal.
   7463     if (Alignment >= MemVT.getStoreSize())
   7464       return Op;
   7465 
   7466     EVT ScalarVT = Value.getValueType().getScalarType(),
   7467         ScalarMemVT = MemVT.getScalarType();
   7468     unsigned Stride = ScalarMemVT.getStoreSize();
   7469 
   7470     SmallVector<SDValue, 8> Stores;
   7471     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   7472       SDValue Ex =
   7473         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
   7474                     DAG.getConstant(Idx, getVectorIdxTy()));
   7475       SDValue Store;
   7476       if (ScalarVT != ScalarMemVT)
   7477         Store =
   7478           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
   7479                             SN->getPointerInfo().getWithOffset(Idx*Stride),
   7480                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
   7481                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
   7482       else
   7483         Store =
   7484           DAG.getStore(StoreChain, dl, Ex, BasePtr,
   7485                        SN->getPointerInfo().getWithOffset(Idx*Stride),
   7486                        SN->isVolatile(), SN->isNonTemporal(),
   7487                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
   7488 
   7489       if (Idx == 0 && SN->isIndexed()) {
   7490         assert(SN->getAddressingMode() == ISD::PRE_INC &&
   7491                "Unknown addressing mode on vector store");
   7492         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
   7493                                     SN->getAddressingMode());
   7494       }
   7495 
   7496       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   7497                             DAG.getConstant(Stride, BasePtr.getValueType()));
   7498       Stores.push_back(Store);
   7499     }
   7500 
   7501     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   7502 
   7503     if (SN->isIndexed()) {
   7504       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
   7505       return DAG.getMergeValues(RetOps, dl);
   7506     }
   7507 
   7508     return TF;
   7509   }
   7510 
   7511   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
   7512   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
   7513 
   7514   // The values are now known to be -1 (false) or 1 (true). To convert this
   7515   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   7516   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   7517   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   7518 
   7519   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   7520   // understand how to form the extending load.
   7521   SDValue FPHalfs = DAG.getConstantFP(0.5, MVT::f64);
   7522   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   7523                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
   7524 
   7525   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   7526 
   7527   // Now convert to an integer and store.
   7528   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7529     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, MVT::i32),
   7530     Value);
   7531 
   7532   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7533   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7534   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FrameIdx);
   7535   EVT PtrVT = getPointerTy();
   7536   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7537 
   7538   SmallVector<SDValue, 2> Ops;
   7539   Ops.push_back(StoreChain);
   7540   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, MVT::i32));
   7541   Ops.push_back(Value);
   7542   Ops.push_back(FIdx);
   7543 
   7544   SmallVector<EVT, 2> ValueVTs;
   7545   ValueVTs.push_back(MVT::Other); // chain
   7546   SDVTList VTs = DAG.getVTList(ValueVTs);
   7547 
   7548   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   7549     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7550 
   7551   // Move data into the byte array.
   7552   SmallVector<SDValue, 4> Loads, LoadChains;
   7553   for (unsigned i = 0; i < 4; ++i) {
   7554     unsigned Offset = 4*i;
   7555     SDValue Idx = DAG.getConstant(Offset, FIdx.getValueType());
   7556     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7557 
   7558     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   7559                                    PtrInfo.getWithOffset(Offset),
   7560                                    false, false, false, 0));
   7561     LoadChains.push_back(Loads[i].getValue(1));
   7562   }
   7563 
   7564   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   7565 
   7566   SmallVector<SDValue, 4> Stores;
   7567   for (unsigned i = 0; i < 4; ++i) {
   7568     SDValue Idx = DAG.getConstant(i, BasePtr.getValueType());
   7569     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   7570 
   7571     Stores.push_back(DAG.getTruncStore(StoreChain, dl, Loads[i], Idx,
   7572                                        SN->getPointerInfo().getWithOffset(i),
   7573                                        MVT::i8 /* memory type */,
   7574                                        SN->isNonTemporal(), SN->isVolatile(),
   7575                                        1 /* alignment */, SN->getAAInfo()));
   7576   }
   7577 
   7578   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   7579 
   7580   return StoreChain;
   7581 }
   7582 
   7583 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   7584   SDLoc dl(Op);
   7585   if (Op.getValueType() == MVT::v4i32) {
   7586     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   7587 
   7588     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   7589     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   7590 
   7591     SDValue RHSSwap =   // = vrlw RHS, 16
   7592       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   7593 
   7594     // Shrinkify inputs to v8i16.
   7595     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   7596     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   7597     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   7598 
   7599     // Low parts multiplied together, generating 32-bit results (we ignore the
   7600     // top parts).
   7601     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   7602                                         LHS, RHS, DAG, dl, MVT::v4i32);
   7603 
   7604     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   7605                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   7606     // Shift the high parts up 16 bits.
   7607     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   7608                               Neg16, DAG, dl);
   7609     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   7610   } else if (Op.getValueType() == MVT::v8i16) {
   7611     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   7612 
   7613     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   7614 
   7615     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   7616                             LHS, RHS, Zero, DAG, dl);
   7617   } else if (Op.getValueType() == MVT::v16i8) {
   7618     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   7619     bool isLittleEndian = Subtarget.isLittleEndian();
   7620 
   7621     // Multiply the even 8-bit parts, producing 16-bit sums.
   7622     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   7623                                            LHS, RHS, DAG, dl, MVT::v8i16);
   7624     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   7625 
   7626     // Multiply the odd 8-bit parts, producing 16-bit sums.
   7627     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   7628                                           LHS, RHS, DAG, dl, MVT::v8i16);
   7629     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   7630 
   7631     // Merge the results together.  Because vmuleub and vmuloub are
   7632     // instructions with a big-endian bias, we must reverse the
   7633     // element numbering and reverse the meaning of "odd" and "even"
   7634     // when generating little endian code.
   7635     int Ops[16];
   7636     for (unsigned i = 0; i != 8; ++i) {
   7637       if (isLittleEndian) {
   7638         Ops[i*2  ] = 2*i;
   7639         Ops[i*2+1] = 2*i+16;
   7640       } else {
   7641         Ops[i*2  ] = 2*i+1;
   7642         Ops[i*2+1] = 2*i+1+16;
   7643       }
   7644     }
   7645     if (isLittleEndian)
   7646       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
   7647     else
   7648       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   7649   } else {
   7650     llvm_unreachable("Unknown mul to lower!");
   7651   }
   7652 }
   7653 
   7654 /// LowerOperation - Provide custom lowering hooks for some operations.
   7655 ///
   7656 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   7657   switch (Op.getOpcode()) {
   7658   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   7659   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   7660   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   7661   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   7662   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   7663   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   7664   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   7665   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   7666   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   7667   case ISD::VASTART:
   7668     return LowerVASTART(Op, DAG, Subtarget);
   7669 
   7670   case ISD::VAARG:
   7671     return LowerVAARG(Op, DAG, Subtarget);
   7672 
   7673   case ISD::VACOPY:
   7674     return LowerVACOPY(Op, DAG, Subtarget);
   7675 
   7676   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
   7677   case ISD::DYNAMIC_STACKALLOC:
   7678     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
   7679 
   7680   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   7681   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   7682 
   7683   case ISD::LOAD:               return LowerLOAD(Op, DAG);
   7684   case ISD::STORE:              return LowerSTORE(Op, DAG);
   7685   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
   7686   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   7687   case ISD::FP_TO_UINT:
   7688   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   7689                                                       SDLoc(Op));
   7690   case ISD::UINT_TO_FP:
   7691   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
   7692   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   7693 
   7694   // Lower 64-bit shifts.
   7695   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   7696   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   7697   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   7698 
   7699   // Vector-related lowering.
   7700   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   7701   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   7702   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   7703   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   7704   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
   7705   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   7706   case ISD::MUL:                return LowerMUL(Op, DAG);
   7707 
   7708   // For counter-based loop handling.
   7709   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
   7710 
   7711   // Frame & Return address.
   7712   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   7713   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   7714   }
   7715 }
   7716 
   7717 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   7718                                            SmallVectorImpl<SDValue>&Results,
   7719                                            SelectionDAG &DAG) const {
   7720   SDLoc dl(N);
   7721   switch (N->getOpcode()) {
   7722   default:
   7723     llvm_unreachable("Do not know how to custom type legalize this operation!");
   7724   case ISD::READCYCLECOUNTER: {
   7725     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   7726     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
   7727 
   7728     Results.push_back(RTB);
   7729     Results.push_back(RTB.getValue(1));
   7730     Results.push_back(RTB.getValue(2));
   7731     break;
   7732   }
   7733   case ISD::INTRINSIC_W_CHAIN: {
   7734     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
   7735         Intrinsic::ppc_is_decremented_ctr_nonzero)
   7736       break;
   7737 
   7738     assert(N->getValueType(0) == MVT::i1 &&
   7739            "Unexpected result type for CTR decrement intrinsic");
   7740     EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
   7741     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
   7742     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
   7743                                  N->getOperand(1));
   7744 
   7745     Results.push_back(NewInt);
   7746     Results.push_back(NewInt.getValue(1));
   7747     break;
   7748   }
   7749   case ISD::VAARG: {
   7750     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
   7751       return;
   7752 
   7753     EVT VT = N->getValueType(0);
   7754 
   7755     if (VT == MVT::i64) {
   7756       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
   7757 
   7758       Results.push_back(NewNode);
   7759       Results.push_back(NewNode.getValue(1));
   7760     }
   7761     return;
   7762   }
   7763   case ISD::FP_ROUND_INREG: {
   7764     assert(N->getValueType(0) == MVT::ppcf128);
   7765     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   7766     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   7767                              MVT::f64, N->getOperand(0),
   7768                              DAG.getIntPtrConstant(0));
   7769     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   7770                              MVT::f64, N->getOperand(0),
   7771                              DAG.getIntPtrConstant(1));
   7772 
   7773     // Add the two halves of the long double in round-to-zero mode.
   7774     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
   7775 
   7776     // We know the low half is about to be thrown away, so just use something
   7777     // convenient.
   7778     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   7779                                 FPreg, FPreg));
   7780     return;
   7781   }
   7782   case ISD::FP_TO_SINT:
   7783   case ISD::FP_TO_UINT:
   7784     // LowerFP_TO_INT() can only handle f32 and f64.
   7785     if (N->getOperand(0).getValueType() == MVT::ppcf128)
   7786       return;
   7787     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   7788     return;
   7789   }
   7790 }
   7791 
   7792 
   7793 //===----------------------------------------------------------------------===//
   7794 //  Other Lowering Code
   7795 //===----------------------------------------------------------------------===//
   7796 
   7797 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
   7798   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   7799   Function *Func = Intrinsic::getDeclaration(M, Id);
   7800   return Builder.CreateCall(Func);
   7801 }
   7802 
   7803 // The mappings for emitLeading/TrailingFence is taken from
   7804 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   7805 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   7806                                          AtomicOrdering Ord, bool IsStore,
   7807                                          bool IsLoad) const {
   7808   if (Ord == SequentiallyConsistent)
   7809     return callIntrinsic(Builder, Intrinsic::ppc_sync);
   7810   else if (isAtLeastRelease(Ord))
   7811     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   7812   else
   7813     return nullptr;
   7814 }
   7815 
   7816 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   7817                                           AtomicOrdering Ord, bool IsStore,
   7818                                           bool IsLoad) const {
   7819   if (IsLoad && isAtLeastAcquire(Ord))
   7820     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   7821   // FIXME: this is too conservative, a dependent branch + isync is enough.
   7822   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
   7823   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
   7824   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
   7825   else
   7826     return nullptr;
   7827 }
   7828 
   7829 MachineBasicBlock *
   7830 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   7831                                     unsigned AtomicSize,
   7832                                     unsigned BinOpcode) const {
   7833   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   7834   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   7835 
   7836   auto LoadMnemonic = PPC::LDARX;
   7837   auto StoreMnemonic = PPC::STDCX;
   7838   switch (AtomicSize) {
   7839   default:
   7840     llvm_unreachable("Unexpected size of atomic entity");
   7841   case 1:
   7842     LoadMnemonic = PPC::LBARX;
   7843     StoreMnemonic = PPC::STBCX;
   7844     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   7845     break;
   7846   case 2:
   7847     LoadMnemonic = PPC::LHARX;
   7848     StoreMnemonic = PPC::STHCX;
   7849     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   7850     break;
   7851   case 4:
   7852     LoadMnemonic = PPC::LWARX;
   7853     StoreMnemonic = PPC::STWCX;
   7854     break;
   7855   case 8:
   7856     LoadMnemonic = PPC::LDARX;
   7857     StoreMnemonic = PPC::STDCX;
   7858     break;
   7859   }
   7860 
   7861   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7862   MachineFunction *F = BB->getParent();
   7863   MachineFunction::iterator It = BB;
   7864   ++It;
   7865 
   7866   unsigned dest = MI->getOperand(0).getReg();
   7867   unsigned ptrA = MI->getOperand(1).getReg();
   7868   unsigned ptrB = MI->getOperand(2).getReg();
   7869   unsigned incr = MI->getOperand(3).getReg();
   7870   DebugLoc dl = MI->getDebugLoc();
   7871 
   7872   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   7873   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   7874   F->insert(It, loopMBB);
   7875   F->insert(It, exitMBB);
   7876   exitMBB->splice(exitMBB->begin(), BB,
   7877                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7878   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   7879 
   7880   MachineRegisterInfo &RegInfo = F->getRegInfo();
   7881   unsigned TmpReg = (!BinOpcode) ? incr :
   7882     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
   7883                                            : &PPC::GPRCRegClass);
   7884 
   7885   //  thisMBB:
   7886   //   ...
   7887   //   fallthrough --> loopMBB
   7888   BB->addSuccessor(loopMBB);
   7889 
   7890   //  loopMBB:
   7891   //   l[wd]arx dest, ptr
   7892   //   add r0, dest, incr
   7893   //   st[wd]cx. r0, ptr
   7894   //   bne- loopMBB
   7895   //   fallthrough --> exitMBB
   7896   BB = loopMBB;
   7897   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   7898     .addReg(ptrA).addReg(ptrB);
   7899   if (BinOpcode)
   7900     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   7901   BuildMI(BB, dl, TII->get(StoreMnemonic))
   7902     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   7903   BuildMI(BB, dl, TII->get(PPC::BCC))
   7904     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   7905   BB->addSuccessor(loopMBB);
   7906   BB->addSuccessor(exitMBB);
   7907 
   7908   //  exitMBB:
   7909   //   ...
   7910   BB = exitMBB;
   7911   return BB;
   7912 }
   7913 
   7914 MachineBasicBlock *
   7915 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   7916                                             MachineBasicBlock *BB,
   7917                                             bool is8bit,    // operation
   7918                                             unsigned BinOpcode) const {
   7919   // If we support part-word atomic mnemonics, just use them
   7920   if (Subtarget.hasPartwordAtomics())
   7921     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
   7922 
   7923   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   7924   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   7925   // In 64 bit mode we have to use 64 bits for addresses, even though the
   7926   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   7927   // registers without caring whether they're 32 or 64, but here we're
   7928   // doing actual arithmetic on the addresses.
   7929   bool is64bit = Subtarget.isPPC64();
   7930   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   7931 
   7932   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7933   MachineFunction *F = BB->getParent();
   7934   MachineFunction::iterator It = BB;
   7935   ++It;
   7936 
   7937   unsigned dest = MI->getOperand(0).getReg();
   7938   unsigned ptrA = MI->getOperand(1).getReg();
   7939   unsigned ptrB = MI->getOperand(2).getReg();
   7940   unsigned incr = MI->getOperand(3).getReg();
   7941   DebugLoc dl = MI->getDebugLoc();
   7942 
   7943   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   7944   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   7945   F->insert(It, loopMBB);
   7946   F->insert(It, exitMBB);
   7947   exitMBB->splice(exitMBB->begin(), BB,
   7948                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7949   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   7950 
   7951   MachineRegisterInfo &RegInfo = F->getRegInfo();
   7952   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   7953                                           : &PPC::GPRCRegClass;
   7954   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   7955   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   7956   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   7957   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   7958   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   7959   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   7960   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   7961   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   7962   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   7963   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   7964   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   7965   unsigned Ptr1Reg;
   7966   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   7967 
   7968   //  thisMBB:
   7969   //   ...
   7970   //   fallthrough --> loopMBB
   7971   BB->addSuccessor(loopMBB);
   7972 
   7973   // The 4-byte load must be aligned, while a char or short may be
   7974   // anywhere in the word.  Hence all this nasty bookkeeping code.
   7975   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   7976   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   7977   //   xori shift, shift1, 24 [16]
   7978   //   rlwinm ptr, ptr1, 0, 0, 29
   7979   //   slw incr2, incr, shift
   7980   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   7981   //   slw mask, mask2, shift
   7982   //  loopMBB:
   7983   //   lwarx tmpDest, ptr
   7984   //   add tmp, tmpDest, incr2
   7985   //   andc tmp2, tmpDest, mask
   7986   //   and tmp3, tmp, mask
   7987   //   or tmp4, tmp3, tmp2
   7988   //   stwcx. tmp4, ptr
   7989   //   bne- loopMBB
   7990   //   fallthrough --> exitMBB
   7991   //   srw dest, tmpDest, shift
   7992   if (ptrA != ZeroReg) {
   7993     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   7994     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   7995       .addReg(ptrA).addReg(ptrB);
   7996   } else {
   7997     Ptr1Reg = ptrB;
   7998   }
   7999   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   8000       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   8001   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   8002       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   8003   if (is64bit)
   8004     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   8005       .addReg(Ptr1Reg).addImm(0).addImm(61);
   8006   else
   8007     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   8008       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   8009   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   8010       .addReg(incr).addReg(ShiftReg);
   8011   if (is8bit)
   8012     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   8013   else {
   8014     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   8015     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   8016   }
   8017   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   8018       .addReg(Mask2Reg).addReg(ShiftReg);
   8019 
   8020   BB = loopMBB;
   8021   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   8022     .addReg(ZeroReg).addReg(PtrReg);
   8023   if (BinOpcode)
   8024     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   8025       .addReg(Incr2Reg).addReg(TmpDestReg);
   8026   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   8027     .addReg(TmpDestReg).addReg(MaskReg);
   8028   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   8029     .addReg(TmpReg).addReg(MaskReg);
   8030   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   8031     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   8032   BuildMI(BB, dl, TII->get(PPC::STWCX))
   8033     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   8034   BuildMI(BB, dl, TII->get(PPC::BCC))
   8035     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   8036   BB->addSuccessor(loopMBB);
   8037   BB->addSuccessor(exitMBB);
   8038 
   8039   //  exitMBB:
   8040   //   ...
   8041   BB = exitMBB;
   8042   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   8043     .addReg(ShiftReg);
   8044   return BB;
   8045 }
   8046 
   8047 llvm::MachineBasicBlock*
   8048 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
   8049                                     MachineBasicBlock *MBB) const {
   8050   DebugLoc DL = MI->getDebugLoc();
   8051   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8052 
   8053   MachineFunction *MF = MBB->getParent();
   8054   MachineRegisterInfo &MRI = MF->getRegInfo();
   8055 
   8056   const BasicBlock *BB = MBB->getBasicBlock();
   8057   MachineFunction::iterator I = MBB;
   8058   ++I;
   8059 
   8060   // Memory Reference
   8061   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   8062   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   8063 
   8064   unsigned DstReg = MI->getOperand(0).getReg();
   8065   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   8066   assert(RC->hasType(MVT::i32) && "Invalid destination!");
   8067   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   8068   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   8069 
   8070   MVT PVT = getPointerTy();
   8071   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   8072          "Invalid Pointer Size!");
   8073   // For v = setjmp(buf), we generate
   8074   //
   8075   // thisMBB:
   8076   //  SjLjSetup mainMBB
   8077   //  bl mainMBB
   8078   //  v_restore = 1
   8079   //  b sinkMBB
   8080   //
   8081   // mainMBB:
   8082   //  buf[LabelOffset] = LR
   8083   //  v_main = 0
   8084   //
   8085   // sinkMBB:
   8086   //  v = phi(main, restore)
   8087   //
   8088 
   8089   MachineBasicBlock *thisMBB = MBB;
   8090   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   8091   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   8092   MF->insert(I, mainMBB);
   8093   MF->insert(I, sinkMBB);
   8094 
   8095   MachineInstrBuilder MIB;
   8096 
   8097   // Transfer the remainder of BB and its successor edges to sinkMBB.
   8098   sinkMBB->splice(sinkMBB->begin(), MBB,
   8099                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   8100   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   8101 
   8102   // Note that the structure of the jmp_buf used here is not compatible
   8103   // with that used by libc, and is not designed to be. Specifically, it
   8104   // stores only those 'reserved' registers that LLVM does not otherwise
   8105   // understand how to spill. Also, by convention, by the time this
   8106   // intrinsic is called, Clang has already stored the frame address in the
   8107   // first slot of the buffer and stack address in the third. Following the
   8108   // X86 target code, we'll store the jump address in the second slot. We also
   8109   // need to save the TOC pointer (R2) to handle jumps between shared
   8110   // libraries, and that will be stored in the fourth slot. The thread
   8111   // identifier (R13) is not affected.
   8112 
   8113   // thisMBB:
   8114   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   8115   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   8116   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   8117 
   8118   // Prepare IP either in reg.
   8119   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   8120   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
   8121   unsigned BufReg = MI->getOperand(1).getReg();
   8122 
   8123   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
   8124     setUsesTOCBasePtr(*MBB->getParent());
   8125     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
   8126             .addReg(PPC::X2)
   8127             .addImm(TOCOffset)
   8128             .addReg(BufReg);
   8129     MIB.setMemRefs(MMOBegin, MMOEnd);
   8130   }
   8131 
   8132   // Naked functions never have a base pointer, and so we use r1. For all
   8133   // other functions, this decision must be delayed until during PEI.
   8134   unsigned BaseReg;
   8135   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
   8136     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
   8137   else
   8138     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
   8139 
   8140   MIB = BuildMI(*thisMBB, MI, DL,
   8141                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
   8142             .addReg(BaseReg)
   8143             .addImm(BPOffset)
   8144             .addReg(BufReg);
   8145   MIB.setMemRefs(MMOBegin, MMOEnd);
   8146 
   8147   // Setup
   8148   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
   8149   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   8150   MIB.addRegMask(TRI->getNoPreservedMask());
   8151 
   8152   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
   8153 
   8154   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
   8155           .addMBB(mainMBB);
   8156   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
   8157 
   8158   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
   8159   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
   8160 
   8161   // mainMBB:
   8162   //  mainDstReg = 0
   8163   MIB =
   8164       BuildMI(mainMBB, DL,
   8165               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
   8166 
   8167   // Store IP
   8168   if (Subtarget.isPPC64()) {
   8169     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
   8170             .addReg(LabelReg)
   8171             .addImm(LabelOffset)
   8172             .addReg(BufReg);
   8173   } else {
   8174     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
   8175             .addReg(LabelReg)
   8176             .addImm(LabelOffset)
   8177             .addReg(BufReg);
   8178   }
   8179 
   8180   MIB.setMemRefs(MMOBegin, MMOEnd);
   8181 
   8182   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
   8183   mainMBB->addSuccessor(sinkMBB);
   8184 
   8185   // sinkMBB:
   8186   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   8187           TII->get(PPC::PHI), DstReg)
   8188     .addReg(mainDstReg).addMBB(mainMBB)
   8189     .addReg(restoreDstReg).addMBB(thisMBB);
   8190 
   8191   MI->eraseFromParent();
   8192   return sinkMBB;
   8193 }
   8194 
   8195 MachineBasicBlock *
   8196 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
   8197                                      MachineBasicBlock *MBB) const {
   8198   DebugLoc DL = MI->getDebugLoc();
   8199   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8200 
   8201   MachineFunction *MF = MBB->getParent();
   8202   MachineRegisterInfo &MRI = MF->getRegInfo();
   8203 
   8204   // Memory Reference
   8205   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   8206   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   8207 
   8208   MVT PVT = getPointerTy();
   8209   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   8210          "Invalid Pointer Size!");
   8211 
   8212   const TargetRegisterClass *RC =
   8213     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   8214   unsigned Tmp = MRI.createVirtualRegister(RC);
   8215   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   8216   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
   8217   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
   8218   unsigned BP =
   8219       (PVT == MVT::i64)
   8220           ? PPC::X30
   8221           : (Subtarget.isSVR4ABI() &&
   8222                      MF->getTarget().getRelocationModel() == Reloc::PIC_
   8223                  ? PPC::R29
   8224                  : PPC::R30);
   8225 
   8226   MachineInstrBuilder MIB;
   8227 
   8228   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   8229   const int64_t SPOffset    = 2 * PVT.getStoreSize();
   8230   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   8231   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   8232 
   8233   unsigned BufReg = MI->getOperand(0).getReg();
   8234 
   8235   // Reload FP (the jumped-to function may not have had a
   8236   // frame pointer, and if so, then its r31 will be restored
   8237   // as necessary).
   8238   if (PVT == MVT::i64) {
   8239     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
   8240             .addImm(0)
   8241             .addReg(BufReg);
   8242   } else {
   8243     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
   8244             .addImm(0)
   8245             .addReg(BufReg);
   8246   }
   8247   MIB.setMemRefs(MMOBegin, MMOEnd);
   8248 
   8249   // Reload IP
   8250   if (PVT == MVT::i64) {
   8251     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
   8252             .addImm(LabelOffset)
   8253             .addReg(BufReg);
   8254   } else {
   8255     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
   8256             .addImm(LabelOffset)
   8257             .addReg(BufReg);
   8258   }
   8259   MIB.setMemRefs(MMOBegin, MMOEnd);
   8260 
   8261   // Reload SP
   8262   if (PVT == MVT::i64) {
   8263     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
   8264             .addImm(SPOffset)
   8265             .addReg(BufReg);
   8266   } else {
   8267     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
   8268             .addImm(SPOffset)
   8269             .addReg(BufReg);
   8270   }
   8271   MIB.setMemRefs(MMOBegin, MMOEnd);
   8272 
   8273   // Reload BP
   8274   if (PVT == MVT::i64) {
   8275     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
   8276             .addImm(BPOffset)
   8277             .addReg(BufReg);
   8278   } else {
   8279     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
   8280             .addImm(BPOffset)
   8281             .addReg(BufReg);
   8282   }
   8283   MIB.setMemRefs(MMOBegin, MMOEnd);
   8284 
   8285   // Reload TOC
   8286   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
   8287     setUsesTOCBasePtr(*MBB->getParent());
   8288     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
   8289             .addImm(TOCOffset)
   8290             .addReg(BufReg);
   8291 
   8292     MIB.setMemRefs(MMOBegin, MMOEnd);
   8293   }
   8294 
   8295   // Jump
   8296   BuildMI(*MBB, MI, DL,
   8297           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
   8298   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
   8299 
   8300   MI->eraseFromParent();
   8301   return MBB;
   8302 }
   8303 
   8304 MachineBasicBlock *
   8305 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   8306                                                MachineBasicBlock *BB) const {
   8307   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
   8308       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
   8309     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
   8310         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
   8311       // Call lowering should have added an r2 operand to indicate a dependence
   8312       // on the TOC base pointer value. It can't however, because there is no
   8313       // way to mark the dependence as implicit there, and so the stackmap code
   8314       // will confuse it with a regular operand. Instead, add the dependence
   8315       // here.
   8316       setUsesTOCBasePtr(*BB->getParent());
   8317       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
   8318     }
   8319 
   8320     return emitPatchPoint(MI, BB);
   8321   }
   8322 
   8323   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
   8324       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
   8325     return emitEHSjLjSetJmp(MI, BB);
   8326   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
   8327              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
   8328     return emitEHSjLjLongJmp(MI, BB);
   8329   }
   8330 
   8331   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8332 
   8333   // To "insert" these instructions we actually have to insert their
   8334   // control-flow patterns.
   8335   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8336   MachineFunction::iterator It = BB;
   8337   ++It;
   8338 
   8339   MachineFunction *F = BB->getParent();
   8340 
   8341   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   8342                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
   8343                               MI->getOpcode() == PPC::SELECT_I4 ||
   8344                               MI->getOpcode() == PPC::SELECT_I8)) {
   8345     SmallVector<MachineOperand, 2> Cond;
   8346     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   8347         MI->getOpcode() == PPC::SELECT_CC_I8)
   8348       Cond.push_back(MI->getOperand(4));
   8349     else
   8350       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
   8351     Cond.push_back(MI->getOperand(1));
   8352 
   8353     DebugLoc dl = MI->getDebugLoc();
   8354     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
   8355                       Cond, MI->getOperand(2).getReg(),
   8356                       MI->getOperand(3).getReg());
   8357   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   8358              MI->getOpcode() == PPC::SELECT_CC_I8 ||
   8359              MI->getOpcode() == PPC::SELECT_CC_F4 ||
   8360              MI->getOpcode() == PPC::SELECT_CC_F8 ||
   8361              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
   8362              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
   8363              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
   8364              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
   8365              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
   8366              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
   8367              MI->getOpcode() == PPC::SELECT_I4 ||
   8368              MI->getOpcode() == PPC::SELECT_I8 ||
   8369              MI->getOpcode() == PPC::SELECT_F4 ||
   8370              MI->getOpcode() == PPC::SELECT_F8 ||
   8371              MI->getOpcode() == PPC::SELECT_QFRC ||
   8372              MI->getOpcode() == PPC::SELECT_QSRC ||
   8373              MI->getOpcode() == PPC::SELECT_QBRC ||
   8374              MI->getOpcode() == PPC::SELECT_VRRC ||
   8375              MI->getOpcode() == PPC::SELECT_VSFRC ||
   8376              MI->getOpcode() == PPC::SELECT_VSRC) {
   8377     // The incoming instruction knows the destination vreg to set, the
   8378     // condition code register to branch on, the true/false values to
   8379     // select between, and a branch opcode to use.
   8380 
   8381     //  thisMBB:
   8382     //  ...
   8383     //   TrueVal = ...
   8384     //   cmpTY ccX, r1, r2
   8385     //   bCC copy1MBB
   8386     //   fallthrough --> copy0MBB
   8387     MachineBasicBlock *thisMBB = BB;
   8388     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8389     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8390     DebugLoc dl = MI->getDebugLoc();
   8391     F->insert(It, copy0MBB);
   8392     F->insert(It, sinkMBB);
   8393 
   8394     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8395     sinkMBB->splice(sinkMBB->begin(), BB,
   8396                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8397     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   8398 
   8399     // Next, add the true and fallthrough blocks as its successors.
   8400     BB->addSuccessor(copy0MBB);
   8401     BB->addSuccessor(sinkMBB);
   8402 
   8403     if (MI->getOpcode() == PPC::SELECT_I4 ||
   8404         MI->getOpcode() == PPC::SELECT_I8 ||
   8405         MI->getOpcode() == PPC::SELECT_F4 ||
   8406         MI->getOpcode() == PPC::SELECT_F8 ||
   8407         MI->getOpcode() == PPC::SELECT_QFRC ||
   8408         MI->getOpcode() == PPC::SELECT_QSRC ||
   8409         MI->getOpcode() == PPC::SELECT_QBRC ||
   8410         MI->getOpcode() == PPC::SELECT_VRRC ||
   8411         MI->getOpcode() == PPC::SELECT_VSFRC ||
   8412         MI->getOpcode() == PPC::SELECT_VSRC) {
   8413       BuildMI(BB, dl, TII->get(PPC::BC))
   8414         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   8415     } else {
   8416       unsigned SelectPred = MI->getOperand(4).getImm();
   8417       BuildMI(BB, dl, TII->get(PPC::BCC))
   8418         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   8419     }
   8420 
   8421     //  copy0MBB:
   8422     //   %FalseValue = ...
   8423     //   # fallthrough to sinkMBB
   8424     BB = copy0MBB;
   8425 
   8426     // Update machine-CFG edges
   8427     BB->addSuccessor(sinkMBB);
   8428 
   8429     //  sinkMBB:
   8430     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   8431     //  ...
   8432     BB = sinkMBB;
   8433     BuildMI(*BB, BB->begin(), dl,
   8434             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   8435       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   8436       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   8437   } else if (MI->getOpcode() == PPC::ReadTB) {
   8438     // To read the 64-bit time-base register on a 32-bit target, we read the
   8439     // two halves. Should the counter have wrapped while it was being read, we
   8440     // need to try again.
   8441     // ...
   8442     // readLoop:
   8443     // mfspr Rx,TBU # load from TBU
   8444     // mfspr Ry,TB  # load from TB
   8445     // mfspr Rz,TBU # load from TBU
   8446     // cmpw crX,Rx,Rz # check if old=new
   8447     // bne readLoop   # branch if they're not equal
   8448     // ...
   8449 
   8450     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8451     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8452     DebugLoc dl = MI->getDebugLoc();
   8453     F->insert(It, readMBB);
   8454     F->insert(It, sinkMBB);
   8455 
   8456     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8457     sinkMBB->splice(sinkMBB->begin(), BB,
   8458                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8459     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   8460 
   8461     BB->addSuccessor(readMBB);
   8462     BB = readMBB;
   8463 
   8464     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8465     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
   8466     unsigned LoReg = MI->getOperand(0).getReg();
   8467     unsigned HiReg = MI->getOperand(1).getReg();
   8468 
   8469     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
   8470     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
   8471     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
   8472 
   8473     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   8474 
   8475     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
   8476       .addReg(HiReg).addReg(ReadAgainReg);
   8477     BuildMI(BB, dl, TII->get(PPC::BCC))
   8478       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
   8479 
   8480     BB->addSuccessor(readMBB);
   8481     BB->addSuccessor(sinkMBB);
   8482   }
   8483   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   8484     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   8485   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   8486     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   8487   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   8488     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
   8489   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   8490     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
   8491 
   8492   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   8493     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   8494   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   8495     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   8496   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   8497     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
   8498   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   8499     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
   8500 
   8501   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   8502     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   8503   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   8504     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   8505   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   8506     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
   8507   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   8508     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
   8509 
   8510   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   8511     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   8512   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   8513     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   8514   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   8515     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
   8516   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   8517     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
   8518 
   8519   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   8520     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
   8521   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   8522     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
   8523   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   8524     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
   8525   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   8526     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
   8527 
   8528   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   8529     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   8530   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   8531     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   8532   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   8533     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
   8534   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   8535     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
   8536 
   8537   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   8538     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   8539   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   8540     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   8541   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   8542     BB = EmitAtomicBinary(MI, BB, 4, 0);
   8543   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   8544     BB = EmitAtomicBinary(MI, BB, 8, 0);
   8545 
   8546   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   8547            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
   8548            (Subtarget.hasPartwordAtomics() &&
   8549             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
   8550            (Subtarget.hasPartwordAtomics() &&
   8551             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
   8552     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   8553 
   8554     auto LoadMnemonic = PPC::LDARX;
   8555     auto StoreMnemonic = PPC::STDCX;
   8556     switch(MI->getOpcode()) {
   8557     default:
   8558       llvm_unreachable("Compare and swap of unknown size");
   8559     case PPC::ATOMIC_CMP_SWAP_I8:
   8560       LoadMnemonic = PPC::LBARX;
   8561       StoreMnemonic = PPC::STBCX;
   8562       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   8563       break;
   8564     case PPC::ATOMIC_CMP_SWAP_I16:
   8565       LoadMnemonic = PPC::LHARX;
   8566       StoreMnemonic = PPC::STHCX;
   8567       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   8568       break;
   8569     case PPC::ATOMIC_CMP_SWAP_I32:
   8570       LoadMnemonic = PPC::LWARX;
   8571       StoreMnemonic = PPC::STWCX;
   8572       break;
   8573     case PPC::ATOMIC_CMP_SWAP_I64:
   8574       LoadMnemonic = PPC::LDARX;
   8575       StoreMnemonic = PPC::STDCX;
   8576       break;
   8577     }
   8578     unsigned dest   = MI->getOperand(0).getReg();
   8579     unsigned ptrA   = MI->getOperand(1).getReg();
   8580     unsigned ptrB   = MI->getOperand(2).getReg();
   8581     unsigned oldval = MI->getOperand(3).getReg();
   8582     unsigned newval = MI->getOperand(4).getReg();
   8583     DebugLoc dl     = MI->getDebugLoc();
   8584 
   8585     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8586     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8587     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8588     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8589     F->insert(It, loop1MBB);
   8590     F->insert(It, loop2MBB);
   8591     F->insert(It, midMBB);
   8592     F->insert(It, exitMBB);
   8593     exitMBB->splice(exitMBB->begin(), BB,
   8594                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8595     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8596 
   8597     //  thisMBB:
   8598     //   ...
   8599     //   fallthrough --> loopMBB
   8600     BB->addSuccessor(loop1MBB);
   8601 
   8602     // loop1MBB:
   8603     //   l[bhwd]arx dest, ptr
   8604     //   cmp[wd] dest, oldval
   8605     //   bne- midMBB
   8606     // loop2MBB:
   8607     //   st[bhwd]cx. newval, ptr
   8608     //   bne- loopMBB
   8609     //   b exitBB
   8610     // midMBB:
   8611     //   st[bhwd]cx. dest, ptr
   8612     // exitBB:
   8613     BB = loop1MBB;
   8614     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   8615       .addReg(ptrA).addReg(ptrB);
   8616     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   8617       .addReg(oldval).addReg(dest);
   8618     BuildMI(BB, dl, TII->get(PPC::BCC))
   8619       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   8620     BB->addSuccessor(loop2MBB);
   8621     BB->addSuccessor(midMBB);
   8622 
   8623     BB = loop2MBB;
   8624     BuildMI(BB, dl, TII->get(StoreMnemonic))
   8625       .addReg(newval).addReg(ptrA).addReg(ptrB);
   8626     BuildMI(BB, dl, TII->get(PPC::BCC))
   8627       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   8628     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   8629     BB->addSuccessor(loop1MBB);
   8630     BB->addSuccessor(exitMBB);
   8631 
   8632     BB = midMBB;
   8633     BuildMI(BB, dl, TII->get(StoreMnemonic))
   8634       .addReg(dest).addReg(ptrA).addReg(ptrB);
   8635     BB->addSuccessor(exitMBB);
   8636 
   8637     //  exitMBB:
   8638     //   ...
   8639     BB = exitMBB;
   8640   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   8641              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   8642     // We must use 64-bit registers for addresses when targeting 64-bit,
   8643     // since we're actually doing arithmetic on them.  Other registers
   8644     // can be 32-bit.
   8645     bool is64bit = Subtarget.isPPC64();
   8646     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   8647 
   8648     unsigned dest   = MI->getOperand(0).getReg();
   8649     unsigned ptrA   = MI->getOperand(1).getReg();
   8650     unsigned ptrB   = MI->getOperand(2).getReg();
   8651     unsigned oldval = MI->getOperand(3).getReg();
   8652     unsigned newval = MI->getOperand(4).getReg();
   8653     DebugLoc dl     = MI->getDebugLoc();
   8654 
   8655     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8656     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8657     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8658     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8659     F->insert(It, loop1MBB);
   8660     F->insert(It, loop2MBB);
   8661     F->insert(It, midMBB);
   8662     F->insert(It, exitMBB);
   8663     exitMBB->splice(exitMBB->begin(), BB,
   8664                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8665     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8666 
   8667     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8668     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   8669                                             : &PPC::GPRCRegClass;
   8670     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   8671     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   8672     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   8673     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   8674     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   8675     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   8676     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   8677     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   8678     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   8679     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   8680     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   8681     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   8682     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   8683     unsigned Ptr1Reg;
   8684     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   8685     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   8686     //  thisMBB:
   8687     //   ...
   8688     //   fallthrough --> loopMBB
   8689     BB->addSuccessor(loop1MBB);
   8690 
   8691     // The 4-byte load must be aligned, while a char or short may be
   8692     // anywhere in the word.  Hence all this nasty bookkeeping code.
   8693     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   8694     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   8695     //   xori shift, shift1, 24 [16]
   8696     //   rlwinm ptr, ptr1, 0, 0, 29
   8697     //   slw newval2, newval, shift
   8698     //   slw oldval2, oldval,shift
   8699     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   8700     //   slw mask, mask2, shift
   8701     //   and newval3, newval2, mask
   8702     //   and oldval3, oldval2, mask
   8703     // loop1MBB:
   8704     //   lwarx tmpDest, ptr
   8705     //   and tmp, tmpDest, mask
   8706     //   cmpw tmp, oldval3
   8707     //   bne- midMBB
   8708     // loop2MBB:
   8709     //   andc tmp2, tmpDest, mask
   8710     //   or tmp4, tmp2, newval3
   8711     //   stwcx. tmp4, ptr
   8712     //   bne- loop1MBB
   8713     //   b exitBB
   8714     // midMBB:
   8715     //   stwcx. tmpDest, ptr
   8716     // exitBB:
   8717     //   srw dest, tmpDest, shift
   8718     if (ptrA != ZeroReg) {
   8719       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   8720       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   8721         .addReg(ptrA).addReg(ptrB);
   8722     } else {
   8723       Ptr1Reg = ptrB;
   8724     }
   8725     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   8726         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   8727     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   8728         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   8729     if (is64bit)
   8730       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   8731         .addReg(Ptr1Reg).addImm(0).addImm(61);
   8732     else
   8733       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   8734         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   8735     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   8736         .addReg(newval).addReg(ShiftReg);
   8737     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   8738         .addReg(oldval).addReg(ShiftReg);
   8739     if (is8bit)
   8740       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   8741     else {
   8742       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   8743       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   8744         .addReg(Mask3Reg).addImm(65535);
   8745     }
   8746     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   8747         .addReg(Mask2Reg).addReg(ShiftReg);
   8748     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   8749         .addReg(NewVal2Reg).addReg(MaskReg);
   8750     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   8751         .addReg(OldVal2Reg).addReg(MaskReg);
   8752 
   8753     BB = loop1MBB;
   8754     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   8755         .addReg(ZeroReg).addReg(PtrReg);
   8756     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   8757         .addReg(TmpDestReg).addReg(MaskReg);
   8758     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   8759         .addReg(TmpReg).addReg(OldVal3Reg);
   8760     BuildMI(BB, dl, TII->get(PPC::BCC))
   8761         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   8762     BB->addSuccessor(loop2MBB);
   8763     BB->addSuccessor(midMBB);
   8764 
   8765     BB = loop2MBB;
   8766     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   8767         .addReg(TmpDestReg).addReg(MaskReg);
   8768     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   8769         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   8770     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   8771         .addReg(ZeroReg).addReg(PtrReg);
   8772     BuildMI(BB, dl, TII->get(PPC::BCC))
   8773       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   8774     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   8775     BB->addSuccessor(loop1MBB);
   8776     BB->addSuccessor(exitMBB);
   8777 
   8778     BB = midMBB;
   8779     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   8780       .addReg(ZeroReg).addReg(PtrReg);
   8781     BB->addSuccessor(exitMBB);
   8782 
   8783     //  exitMBB:
   8784     //   ...
   8785     BB = exitMBB;
   8786     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   8787       .addReg(ShiftReg);
   8788   } else if (MI->getOpcode() == PPC::FADDrtz) {
   8789     // This pseudo performs an FADD with rounding mode temporarily forced
   8790     // to round-to-zero.  We emit this via custom inserter since the FPSCR
   8791     // is not modeled at the SelectionDAG level.
   8792     unsigned Dest = MI->getOperand(0).getReg();
   8793     unsigned Src1 = MI->getOperand(1).getReg();
   8794     unsigned Src2 = MI->getOperand(2).getReg();
   8795     DebugLoc dl   = MI->getDebugLoc();
   8796 
   8797     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8798     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
   8799 
   8800     // Save FPSCR value.
   8801     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
   8802 
   8803     // Set rounding mode to round-to-zero.
   8804     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
   8805     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
   8806 
   8807     // Perform addition.
   8808     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
   8809 
   8810     // Restore FPSCR value.
   8811     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
   8812   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   8813              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
   8814              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   8815              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
   8816     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   8817                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
   8818                       PPC::ANDIo8 : PPC::ANDIo;
   8819     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   8820                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
   8821 
   8822     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8823     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
   8824                                                   &PPC::GPRCRegClass :
   8825                                                   &PPC::G8RCRegClass);
   8826 
   8827     DebugLoc dl   = MI->getDebugLoc();
   8828     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
   8829       .addReg(MI->getOperand(1).getReg()).addImm(1);
   8830     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
   8831             MI->getOperand(0).getReg())
   8832       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
   8833   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
   8834     DebugLoc Dl = MI->getDebugLoc();
   8835     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8836     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   8837     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
   8838     return BB;
   8839   } else {
   8840     llvm_unreachable("Unexpected instr type to insert");
   8841   }
   8842 
   8843   MI->eraseFromParent();   // The pseudo instruction is gone now.
   8844   return BB;
   8845 }
   8846 
   8847 //===----------------------------------------------------------------------===//
   8848 // Target Optimization Hooks
   8849 //===----------------------------------------------------------------------===//
   8850 
   8851 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
   8852                                             DAGCombinerInfo &DCI,
   8853                                             unsigned &RefinementSteps,
   8854                                             bool &UseOneConstNR) const {
   8855   EVT VT = Operand.getValueType();
   8856   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
   8857       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
   8858       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   8859       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   8860       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   8861       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   8862     // Convergence is quadratic, so we essentially double the number of digits
   8863     // correct after every iteration. For both FRE and FRSQRTE, the minimum
   8864     // architected relative accuracy is 2^-5. When hasRecipPrec(), this is
   8865     // 2^-14. IEEE float has 23 digits and double has 52 digits.
   8866     RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
   8867     if (VT.getScalarType() == MVT::f64)
   8868       ++RefinementSteps;
   8869     UseOneConstNR = true;
   8870     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
   8871   }
   8872   return SDValue();
   8873 }
   8874 
   8875 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
   8876                                             DAGCombinerInfo &DCI,
   8877                                             unsigned &RefinementSteps) const {
   8878   EVT VT = Operand.getValueType();
   8879   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
   8880       (VT == MVT::f64 && Subtarget.hasFRE()) ||
   8881       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   8882       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   8883       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   8884       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   8885     // Convergence is quadratic, so we essentially double the number of digits
   8886     // correct after every iteration. For both FRE and FRSQRTE, the minimum
   8887     // architected relative accuracy is 2^-5. When hasRecipPrec(), this is
   8888     // 2^-14. IEEE float has 23 digits and double has 52 digits.
   8889     RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
   8890     if (VT.getScalarType() == MVT::f64)
   8891       ++RefinementSteps;
   8892     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
   8893   }
   8894   return SDValue();
   8895 }
   8896 
   8897 bool PPCTargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
   8898   // Note: This functionality is used only when unsafe-fp-math is enabled, and
   8899   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
   8900   // enabled for division), this functionality is redundant with the default
   8901   // combiner logic (once the division -> reciprocal/multiply transformation
   8902   // has taken place). As a result, this matters more for older cores than for
   8903   // newer ones.
   8904 
   8905   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
   8906   // reciprocal if there are two or more FDIVs (for embedded cores with only
   8907   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
   8908   switch (Subtarget.getDarwinDirective()) {
   8909   default:
   8910     return NumUsers > 2;
   8911   case PPC::DIR_440:
   8912   case PPC::DIR_A2:
   8913   case PPC::DIR_E500mc:
   8914   case PPC::DIR_E5500:
   8915     return NumUsers > 1;
   8916   }
   8917 }
   8918 
   8919 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
   8920                             unsigned Bytes, int Dist,
   8921                             SelectionDAG &DAG) {
   8922   if (VT.getSizeInBits() / 8 != Bytes)
   8923     return false;
   8924 
   8925   SDValue BaseLoc = Base->getBasePtr();
   8926   if (Loc.getOpcode() == ISD::FrameIndex) {
   8927     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   8928       return false;
   8929     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   8930     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   8931     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   8932     int FS  = MFI->getObjectSize(FI);
   8933     int BFS = MFI->getObjectSize(BFI);
   8934     if (FS != BFS || FS != (int)Bytes) return false;
   8935     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
   8936   }
   8937 
   8938   // Handle X+C
   8939   if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
   8940       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
   8941     return true;
   8942 
   8943   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8944   const GlobalValue *GV1 = nullptr;
   8945   const GlobalValue *GV2 = nullptr;
   8946   int64_t Offset1 = 0;
   8947   int64_t Offset2 = 0;
   8948   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   8949   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   8950   if (isGA1 && isGA2 && GV1 == GV2)
   8951     return Offset1 == (Offset2 + Dist*Bytes);
   8952   return false;
   8953 }
   8954 
   8955 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
   8956 // not enforce equality of the chain operands.
   8957 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
   8958                             unsigned Bytes, int Dist,
   8959                             SelectionDAG &DAG) {
   8960   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
   8961     EVT VT = LS->getMemoryVT();
   8962     SDValue Loc = LS->getBasePtr();
   8963     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
   8964   }
   8965 
   8966   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
   8967     EVT VT;
   8968     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   8969     default: return false;
   8970     case Intrinsic::ppc_qpx_qvlfd:
   8971     case Intrinsic::ppc_qpx_qvlfda:
   8972       VT = MVT::v4f64;
   8973       break;
   8974     case Intrinsic::ppc_qpx_qvlfs:
   8975     case Intrinsic::ppc_qpx_qvlfsa:
   8976       VT = MVT::v4f32;
   8977       break;
   8978     case Intrinsic::ppc_qpx_qvlfcd:
   8979     case Intrinsic::ppc_qpx_qvlfcda:
   8980       VT = MVT::v2f64;
   8981       break;
   8982     case Intrinsic::ppc_qpx_qvlfcs:
   8983     case Intrinsic::ppc_qpx_qvlfcsa:
   8984       VT = MVT::v2f32;
   8985       break;
   8986     case Intrinsic::ppc_qpx_qvlfiwa:
   8987     case Intrinsic::ppc_qpx_qvlfiwz:
   8988     case Intrinsic::ppc_altivec_lvx:
   8989     case Intrinsic::ppc_altivec_lvxl:
   8990     case Intrinsic::ppc_vsx_lxvw4x:
   8991       VT = MVT::v4i32;
   8992       break;
   8993     case Intrinsic::ppc_vsx_lxvd2x:
   8994       VT = MVT::v2f64;
   8995       break;
   8996     case Intrinsic::ppc_altivec_lvebx:
   8997       VT = MVT::i8;
   8998       break;
   8999     case Intrinsic::ppc_altivec_lvehx:
   9000       VT = MVT::i16;
   9001       break;
   9002     case Intrinsic::ppc_altivec_lvewx:
   9003       VT = MVT::i32;
   9004       break;
   9005     }
   9006 
   9007     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
   9008   }
   9009 
   9010   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
   9011     EVT VT;
   9012     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9013     default: return false;
   9014     case Intrinsic::ppc_qpx_qvstfd:
   9015     case Intrinsic::ppc_qpx_qvstfda:
   9016       VT = MVT::v4f64;
   9017       break;
   9018     case Intrinsic::ppc_qpx_qvstfs:
   9019     case Intrinsic::ppc_qpx_qvstfsa:
   9020       VT = MVT::v4f32;
   9021       break;
   9022     case Intrinsic::ppc_qpx_qvstfcd:
   9023     case Intrinsic::ppc_qpx_qvstfcda:
   9024       VT = MVT::v2f64;
   9025       break;
   9026     case Intrinsic::ppc_qpx_qvstfcs:
   9027     case Intrinsic::ppc_qpx_qvstfcsa:
   9028       VT = MVT::v2f32;
   9029       break;
   9030     case Intrinsic::ppc_qpx_qvstfiw:
   9031     case Intrinsic::ppc_qpx_qvstfiwa:
   9032     case Intrinsic::ppc_altivec_stvx:
   9033     case Intrinsic::ppc_altivec_stvxl:
   9034     case Intrinsic::ppc_vsx_stxvw4x:
   9035       VT = MVT::v4i32;
   9036       break;
   9037     case Intrinsic::ppc_vsx_stxvd2x:
   9038       VT = MVT::v2f64;
   9039       break;
   9040     case Intrinsic::ppc_altivec_stvebx:
   9041       VT = MVT::i8;
   9042       break;
   9043     case Intrinsic::ppc_altivec_stvehx:
   9044       VT = MVT::i16;
   9045       break;
   9046     case Intrinsic::ppc_altivec_stvewx:
   9047       VT = MVT::i32;
   9048       break;
   9049     }
   9050 
   9051     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
   9052   }
   9053 
   9054   return false;
   9055 }
   9056 
   9057 // Return true is there is a nearyby consecutive load to the one provided
   9058 // (regardless of alignment). We search up and down the chain, looking though
   9059 // token factors and other loads (but nothing else). As a result, a true result
   9060 // indicates that it is safe to create a new consecutive load adjacent to the
   9061 // load provided.
   9062 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
   9063   SDValue Chain = LD->getChain();
   9064   EVT VT = LD->getMemoryVT();
   9065 
   9066   SmallSet<SDNode *, 16> LoadRoots;
   9067   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
   9068   SmallSet<SDNode *, 16> Visited;
   9069 
   9070   // First, search up the chain, branching to follow all token-factor operands.
   9071   // If we find a consecutive load, then we're done, otherwise, record all
   9072   // nodes just above the top-level loads and token factors.
   9073   while (!Queue.empty()) {
   9074     SDNode *ChainNext = Queue.pop_back_val();
   9075     if (!Visited.insert(ChainNext).second)
   9076       continue;
   9077 
   9078     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
   9079       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   9080         return true;
   9081 
   9082       if (!Visited.count(ChainLD->getChain().getNode()))
   9083         Queue.push_back(ChainLD->getChain().getNode());
   9084     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
   9085       for (const SDUse &O : ChainNext->ops())
   9086         if (!Visited.count(O.getNode()))
   9087           Queue.push_back(O.getNode());
   9088     } else
   9089       LoadRoots.insert(ChainNext);
   9090   }
   9091 
   9092   // Second, search down the chain, starting from the top-level nodes recorded
   9093   // in the first phase. These top-level nodes are the nodes just above all
   9094   // loads and token factors. Starting with their uses, recursively look though
   9095   // all loads (just the chain uses) and token factors to find a consecutive
   9096   // load.
   9097   Visited.clear();
   9098   Queue.clear();
   9099 
   9100   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
   9101        IE = LoadRoots.end(); I != IE; ++I) {
   9102     Queue.push_back(*I);
   9103 
   9104     while (!Queue.empty()) {
   9105       SDNode *LoadRoot = Queue.pop_back_val();
   9106       if (!Visited.insert(LoadRoot).second)
   9107         continue;
   9108 
   9109       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
   9110         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   9111           return true;
   9112 
   9113       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
   9114            UE = LoadRoot->use_end(); UI != UE; ++UI)
   9115         if (((isa<MemSDNode>(*UI) &&
   9116             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
   9117             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
   9118           Queue.push_back(*UI);
   9119     }
   9120   }
   9121 
   9122   return false;
   9123 }
   9124 
   9125 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
   9126                                                   DAGCombinerInfo &DCI) const {
   9127   SelectionDAG &DAG = DCI.DAG;
   9128   SDLoc dl(N);
   9129 
   9130   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
   9131   // If we're tracking CR bits, we need to be careful that we don't have:
   9132   //   trunc(binary-ops(zext(x), zext(y)))
   9133   // or
   9134   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
   9135   // such that we're unnecessarily moving things into GPRs when it would be
   9136   // better to keep them in CR bits.
   9137 
   9138   // Note that trunc here can be an actual i1 trunc, or can be the effective
   9139   // truncation that comes from a setcc or select_cc.
   9140   if (N->getOpcode() == ISD::TRUNCATE &&
   9141       N->getValueType(0) != MVT::i1)
   9142     return SDValue();
   9143 
   9144   if (N->getOperand(0).getValueType() != MVT::i32 &&
   9145       N->getOperand(0).getValueType() != MVT::i64)
   9146     return SDValue();
   9147 
   9148   if (N->getOpcode() == ISD::SETCC ||
   9149       N->getOpcode() == ISD::SELECT_CC) {
   9150     // If we're looking at a comparison, then we need to make sure that the
   9151     // high bits (all except for the first) don't matter the result.
   9152     ISD::CondCode CC =
   9153       cast<CondCodeSDNode>(N->getOperand(
   9154         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
   9155     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
   9156 
   9157     if (ISD::isSignedIntSetCC(CC)) {
   9158       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
   9159           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
   9160         return SDValue();
   9161     } else if (ISD::isUnsignedIntSetCC(CC)) {
   9162       if (!DAG.MaskedValueIsZero(N->getOperand(0),
   9163                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
   9164           !DAG.MaskedValueIsZero(N->getOperand(1),
   9165                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
   9166         return SDValue();
   9167     } else {
   9168       // This is neither a signed nor an unsigned comparison, just make sure
   9169       // that the high bits are equal.
   9170       APInt Op1Zero, Op1One;
   9171       APInt Op2Zero, Op2One;
   9172       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
   9173       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
   9174 
   9175       // We don't really care about what is known about the first bit (if
   9176       // anything), so clear it in all masks prior to comparing them.
   9177       Op1Zero.clearBit(0); Op1One.clearBit(0);
   9178       Op2Zero.clearBit(0); Op2One.clearBit(0);
   9179 
   9180       if (Op1Zero != Op2Zero || Op1One != Op2One)
   9181         return SDValue();
   9182     }
   9183   }
   9184 
   9185   // We now know that the higher-order bits are irrelevant, we just need to
   9186   // make sure that all of the intermediate operations are bit operations, and
   9187   // all inputs are extensions.
   9188   if (N->getOperand(0).getOpcode() != ISD::AND &&
   9189       N->getOperand(0).getOpcode() != ISD::OR  &&
   9190       N->getOperand(0).getOpcode() != ISD::XOR &&
   9191       N->getOperand(0).getOpcode() != ISD::SELECT &&
   9192       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
   9193       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
   9194       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
   9195       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
   9196       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
   9197     return SDValue();
   9198 
   9199   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
   9200       N->getOperand(1).getOpcode() != ISD::AND &&
   9201       N->getOperand(1).getOpcode() != ISD::OR  &&
   9202       N->getOperand(1).getOpcode() != ISD::XOR &&
   9203       N->getOperand(1).getOpcode() != ISD::SELECT &&
   9204       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
   9205       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
   9206       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
   9207       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
   9208       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
   9209     return SDValue();
   9210 
   9211   SmallVector<SDValue, 4> Inputs;
   9212   SmallVector<SDValue, 8> BinOps, PromOps;
   9213   SmallPtrSet<SDNode *, 16> Visited;
   9214 
   9215   for (unsigned i = 0; i < 2; ++i) {
   9216     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9217           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9218           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   9219           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   9220         isa<ConstantSDNode>(N->getOperand(i)))
   9221       Inputs.push_back(N->getOperand(i));
   9222     else
   9223       BinOps.push_back(N->getOperand(i));
   9224 
   9225     if (N->getOpcode() == ISD::TRUNCATE)
   9226       break;
   9227   }
   9228 
   9229   // Visit all inputs, collect all binary operations (and, or, xor and
   9230   // select) that are all fed by extensions.
   9231   while (!BinOps.empty()) {
   9232     SDValue BinOp = BinOps.back();
   9233     BinOps.pop_back();
   9234 
   9235     if (!Visited.insert(BinOp.getNode()).second)
   9236       continue;
   9237 
   9238     PromOps.push_back(BinOp);
   9239 
   9240     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   9241       // The condition of the select is not promoted.
   9242       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   9243         continue;
   9244       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   9245         continue;
   9246 
   9247       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9248             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9249             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   9250            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   9251           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   9252         Inputs.push_back(BinOp.getOperand(i));
   9253       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   9254                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   9255                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   9256                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   9257                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
   9258                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   9259                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9260                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9261                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
   9262         BinOps.push_back(BinOp.getOperand(i));
   9263       } else {
   9264         // We have an input that is not an extension or another binary
   9265         // operation; we'll abort this transformation.
   9266         return SDValue();
   9267       }
   9268     }
   9269   }
   9270 
   9271   // Make sure that this is a self-contained cluster of operations (which
   9272   // is not quite the same thing as saying that everything has only one
   9273   // use).
   9274   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9275     if (isa<ConstantSDNode>(Inputs[i]))
   9276       continue;
   9277 
   9278     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   9279                               UE = Inputs[i].getNode()->use_end();
   9280          UI != UE; ++UI) {
   9281       SDNode *User = *UI;
   9282       if (User != N && !Visited.count(User))
   9283         return SDValue();
   9284 
   9285       // Make sure that we're not going to promote the non-output-value
   9286       // operand(s) or SELECT or SELECT_CC.
   9287       // FIXME: Although we could sometimes handle this, and it does occur in
   9288       // practice that one of the condition inputs to the select is also one of
   9289       // the outputs, we currently can't deal with this.
   9290       if (User->getOpcode() == ISD::SELECT) {
   9291         if (User->getOperand(0) == Inputs[i])
   9292           return SDValue();
   9293       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9294         if (User->getOperand(0) == Inputs[i] ||
   9295             User->getOperand(1) == Inputs[i])
   9296           return SDValue();
   9297       }
   9298     }
   9299   }
   9300 
   9301   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   9302     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   9303                               UE = PromOps[i].getNode()->use_end();
   9304          UI != UE; ++UI) {
   9305       SDNode *User = *UI;
   9306       if (User != N && !Visited.count(User))
   9307         return SDValue();
   9308 
   9309       // Make sure that we're not going to promote the non-output-value
   9310       // operand(s) or SELECT or SELECT_CC.
   9311       // FIXME: Although we could sometimes handle this, and it does occur in
   9312       // practice that one of the condition inputs to the select is also one of
   9313       // the outputs, we currently can't deal with this.
   9314       if (User->getOpcode() == ISD::SELECT) {
   9315         if (User->getOperand(0) == PromOps[i])
   9316           return SDValue();
   9317       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9318         if (User->getOperand(0) == PromOps[i] ||
   9319             User->getOperand(1) == PromOps[i])
   9320           return SDValue();
   9321       }
   9322     }
   9323   }
   9324 
   9325   // Replace all inputs with the extension operand.
   9326   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9327     // Constants may have users outside the cluster of to-be-promoted nodes,
   9328     // and so we need to replace those as we do the promotions.
   9329     if (isa<ConstantSDNode>(Inputs[i]))
   9330       continue;
   9331     else
   9332       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
   9333   }
   9334 
   9335   // Replace all operations (these are all the same, but have a different
   9336   // (i1) return type). DAG.getNode will validate that the types of
   9337   // a binary operator match, so go through the list in reverse so that
   9338   // we've likely promoted both operands first. Any intermediate truncations or
   9339   // extensions disappear.
   9340   while (!PromOps.empty()) {
   9341     SDValue PromOp = PromOps.back();
   9342     PromOps.pop_back();
   9343 
   9344     if (PromOp.getOpcode() == ISD::TRUNCATE ||
   9345         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
   9346         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
   9347         PromOp.getOpcode() == ISD::ANY_EXTEND) {
   9348       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
   9349           PromOp.getOperand(0).getValueType() != MVT::i1) {
   9350         // The operand is not yet ready (see comment below).
   9351         PromOps.insert(PromOps.begin(), PromOp);
   9352         continue;
   9353       }
   9354 
   9355       SDValue RepValue = PromOp.getOperand(0);
   9356       if (isa<ConstantSDNode>(RepValue))
   9357         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
   9358 
   9359       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
   9360       continue;
   9361     }
   9362 
   9363     unsigned C;
   9364     switch (PromOp.getOpcode()) {
   9365     default:             C = 0; break;
   9366     case ISD::SELECT:    C = 1; break;
   9367     case ISD::SELECT_CC: C = 2; break;
   9368     }
   9369 
   9370     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   9371          PromOp.getOperand(C).getValueType() != MVT::i1) ||
   9372         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   9373          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
   9374       // The to-be-promoted operands of this node have not yet been
   9375       // promoted (this should be rare because we're going through the
   9376       // list backward, but if one of the operands has several users in
   9377       // this cluster of to-be-promoted nodes, it is possible).
   9378       PromOps.insert(PromOps.begin(), PromOp);
   9379       continue;
   9380     }
   9381 
   9382     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   9383                                 PromOp.getNode()->op_end());
   9384 
   9385     // If there are any constant inputs, make sure they're replaced now.
   9386     for (unsigned i = 0; i < 2; ++i)
   9387       if (isa<ConstantSDNode>(Ops[C+i]))
   9388         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
   9389 
   9390     DAG.ReplaceAllUsesOfValueWith(PromOp,
   9391       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
   9392   }
   9393 
   9394   // Now we're left with the initial truncation itself.
   9395   if (N->getOpcode() == ISD::TRUNCATE)
   9396     return N->getOperand(0);
   9397 
   9398   // Otherwise, this is a comparison. The operands to be compared have just
   9399   // changed type (to i1), but everything else is the same.
   9400   return SDValue(N, 0);
   9401 }
   9402 
   9403 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
   9404                                                   DAGCombinerInfo &DCI) const {
   9405   SelectionDAG &DAG = DCI.DAG;
   9406   SDLoc dl(N);
   9407 
   9408   // If we're tracking CR bits, we need to be careful that we don't have:
   9409   //   zext(binary-ops(trunc(x), trunc(y)))
   9410   // or
   9411   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
   9412   // such that we're unnecessarily moving things into CR bits that can more
   9413   // efficiently stay in GPRs. Note that if we're not certain that the high
   9414   // bits are set as required by the final extension, we still may need to do
   9415   // some masking to get the proper behavior.
   9416 
   9417   // This same functionality is important on PPC64 when dealing with
   9418   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
   9419   // the return values of functions. Because it is so similar, it is handled
   9420   // here as well.
   9421 
   9422   if (N->getValueType(0) != MVT::i32 &&
   9423       N->getValueType(0) != MVT::i64)
   9424     return SDValue();
   9425 
   9426   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
   9427         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
   9428     return SDValue();
   9429 
   9430   if (N->getOperand(0).getOpcode() != ISD::AND &&
   9431       N->getOperand(0).getOpcode() != ISD::OR  &&
   9432       N->getOperand(0).getOpcode() != ISD::XOR &&
   9433       N->getOperand(0).getOpcode() != ISD::SELECT &&
   9434       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
   9435     return SDValue();
   9436 
   9437   SmallVector<SDValue, 4> Inputs;
   9438   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
   9439   SmallPtrSet<SDNode *, 16> Visited;
   9440 
   9441   // Visit all inputs, collect all binary operations (and, or, xor and
   9442   // select) that are all fed by truncations.
   9443   while (!BinOps.empty()) {
   9444     SDValue BinOp = BinOps.back();
   9445     BinOps.pop_back();
   9446 
   9447     if (!Visited.insert(BinOp.getNode()).second)
   9448       continue;
   9449 
   9450     PromOps.push_back(BinOp);
   9451 
   9452     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   9453       // The condition of the select is not promoted.
   9454       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   9455         continue;
   9456       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   9457         continue;
   9458 
   9459       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   9460           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   9461         Inputs.push_back(BinOp.getOperand(i));
   9462       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   9463                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   9464                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   9465                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   9466                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
   9467         BinOps.push_back(BinOp.getOperand(i));
   9468       } else {
   9469         // We have an input that is not a truncation or another binary
   9470         // operation; we'll abort this transformation.
   9471         return SDValue();
   9472       }
   9473     }
   9474   }
   9475 
   9476   // The operands of a select that must be truncated when the select is
   9477   // promoted because the operand is actually part of the to-be-promoted set.
   9478   DenseMap<SDNode *, EVT> SelectTruncOp[2];
   9479 
   9480   // Make sure that this is a self-contained cluster of operations (which
   9481   // is not quite the same thing as saying that everything has only one
   9482   // use).
   9483   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9484     if (isa<ConstantSDNode>(Inputs[i]))
   9485       continue;
   9486 
   9487     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   9488                               UE = Inputs[i].getNode()->use_end();
   9489          UI != UE; ++UI) {
   9490       SDNode *User = *UI;
   9491       if (User != N && !Visited.count(User))
   9492         return SDValue();
   9493 
   9494       // If we're going to promote the non-output-value operand(s) or SELECT or
   9495       // SELECT_CC, record them for truncation.
   9496       if (User->getOpcode() == ISD::SELECT) {
   9497         if (User->getOperand(0) == Inputs[i])
   9498           SelectTruncOp[0].insert(std::make_pair(User,
   9499                                     User->getOperand(0).getValueType()));
   9500       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9501         if (User->getOperand(0) == Inputs[i])
   9502           SelectTruncOp[0].insert(std::make_pair(User,
   9503                                     User->getOperand(0).getValueType()));
   9504         if (User->getOperand(1) == Inputs[i])
   9505           SelectTruncOp[1].insert(std::make_pair(User,
   9506                                     User->getOperand(1).getValueType()));
   9507       }
   9508     }
   9509   }
   9510 
   9511   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   9512     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   9513                               UE = PromOps[i].getNode()->use_end();
   9514          UI != UE; ++UI) {
   9515       SDNode *User = *UI;
   9516       if (User != N && !Visited.count(User))
   9517         return SDValue();
   9518 
   9519       // If we're going to promote the non-output-value operand(s) or SELECT or
   9520       // SELECT_CC, record them for truncation.
   9521       if (User->getOpcode() == ISD::SELECT) {
   9522         if (User->getOperand(0) == PromOps[i])
   9523           SelectTruncOp[0].insert(std::make_pair(User,
   9524                                     User->getOperand(0).getValueType()));
   9525       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9526         if (User->getOperand(0) == PromOps[i])
   9527           SelectTruncOp[0].insert(std::make_pair(User,
   9528                                     User->getOperand(0).getValueType()));
   9529         if (User->getOperand(1) == PromOps[i])
   9530           SelectTruncOp[1].insert(std::make_pair(User,
   9531                                     User->getOperand(1).getValueType()));
   9532       }
   9533     }
   9534   }
   9535 
   9536   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
   9537   bool ReallyNeedsExt = false;
   9538   if (N->getOpcode() != ISD::ANY_EXTEND) {
   9539     // If all of the inputs are not already sign/zero extended, then
   9540     // we'll still need to do that at the end.
   9541     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9542       if (isa<ConstantSDNode>(Inputs[i]))
   9543         continue;
   9544 
   9545       unsigned OpBits =
   9546         Inputs[i].getOperand(0).getValueSizeInBits();
   9547       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
   9548 
   9549       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
   9550            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
   9551                                   APInt::getHighBitsSet(OpBits,
   9552                                                         OpBits-PromBits))) ||
   9553           (N->getOpcode() == ISD::SIGN_EXTEND &&
   9554            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
   9555              (OpBits-(PromBits-1)))) {
   9556         ReallyNeedsExt = true;
   9557         break;
   9558       }
   9559     }
   9560   }
   9561 
   9562   // Replace all inputs, either with the truncation operand, or a
   9563   // truncation or extension to the final output type.
   9564   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9565     // Constant inputs need to be replaced with the to-be-promoted nodes that
   9566     // use them because they might have users outside of the cluster of
   9567     // promoted nodes.
   9568     if (isa<ConstantSDNode>(Inputs[i]))
   9569       continue;
   9570 
   9571     SDValue InSrc = Inputs[i].getOperand(0);
   9572     if (Inputs[i].getValueType() == N->getValueType(0))
   9573       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
   9574     else if (N->getOpcode() == ISD::SIGN_EXTEND)
   9575       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   9576         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
   9577     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   9578       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   9579         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
   9580     else
   9581       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   9582         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
   9583   }
   9584 
   9585   // Replace all operations (these are all the same, but have a different
   9586   // (promoted) return type). DAG.getNode will validate that the types of
   9587   // a binary operator match, so go through the list in reverse so that
   9588   // we've likely promoted both operands first.
   9589   while (!PromOps.empty()) {
   9590     SDValue PromOp = PromOps.back();
   9591     PromOps.pop_back();
   9592 
   9593     unsigned C;
   9594     switch (PromOp.getOpcode()) {
   9595     default:             C = 0; break;
   9596     case ISD::SELECT:    C = 1; break;
   9597     case ISD::SELECT_CC: C = 2; break;
   9598     }
   9599 
   9600     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   9601          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
   9602         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   9603          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
   9604       // The to-be-promoted operands of this node have not yet been
   9605       // promoted (this should be rare because we're going through the
   9606       // list backward, but if one of the operands has several users in
   9607       // this cluster of to-be-promoted nodes, it is possible).
   9608       PromOps.insert(PromOps.begin(), PromOp);
   9609       continue;
   9610     }
   9611 
   9612     // For SELECT and SELECT_CC nodes, we do a similar check for any
   9613     // to-be-promoted comparison inputs.
   9614     if (PromOp.getOpcode() == ISD::SELECT ||
   9615         PromOp.getOpcode() == ISD::SELECT_CC) {
   9616       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
   9617            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
   9618           (SelectTruncOp[1].count(PromOp.getNode()) &&
   9619            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
   9620         PromOps.insert(PromOps.begin(), PromOp);
   9621         continue;
   9622       }
   9623     }
   9624 
   9625     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   9626                                 PromOp.getNode()->op_end());
   9627 
   9628     // If this node has constant inputs, then they'll need to be promoted here.
   9629     for (unsigned i = 0; i < 2; ++i) {
   9630       if (!isa<ConstantSDNode>(Ops[C+i]))
   9631         continue;
   9632       if (Ops[C+i].getValueType() == N->getValueType(0))
   9633         continue;
   9634 
   9635       if (N->getOpcode() == ISD::SIGN_EXTEND)
   9636         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   9637       else if (N->getOpcode() == ISD::ZERO_EXTEND)
   9638         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   9639       else
   9640         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   9641     }
   9642 
   9643     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
   9644     // truncate them again to the original value type.
   9645     if (PromOp.getOpcode() == ISD::SELECT ||
   9646         PromOp.getOpcode() == ISD::SELECT_CC) {
   9647       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
   9648       if (SI0 != SelectTruncOp[0].end())
   9649         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
   9650       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
   9651       if (SI1 != SelectTruncOp[1].end())
   9652         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
   9653     }
   9654 
   9655     DAG.ReplaceAllUsesOfValueWith(PromOp,
   9656       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
   9657   }
   9658 
   9659   // Now we're left with the initial extension itself.
   9660   if (!ReallyNeedsExt)
   9661     return N->getOperand(0);
   9662 
   9663   // To zero extend, just mask off everything except for the first bit (in the
   9664   // i1 case).
   9665   if (N->getOpcode() == ISD::ZERO_EXTEND)
   9666     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
   9667                        DAG.getConstant(APInt::getLowBitsSet(
   9668                                          N->getValueSizeInBits(0), PromBits),
   9669                                        N->getValueType(0)));
   9670 
   9671   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
   9672          "Invalid extension type");
   9673   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
   9674   SDValue ShiftCst =
   9675     DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
   9676   return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
   9677                      DAG.getNode(ISD::SHL, dl, N->getValueType(0),
   9678                                  N->getOperand(0), ShiftCst), ShiftCst);
   9679 }
   9680 
   9681 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
   9682                                               DAGCombinerInfo &DCI) const {
   9683   assert((N->getOpcode() == ISD::SINT_TO_FP ||
   9684           N->getOpcode() == ISD::UINT_TO_FP) &&
   9685          "Need an int -> FP conversion node here");
   9686 
   9687   if (!Subtarget.has64BitSupport())
   9688     return SDValue();
   9689 
   9690   SelectionDAG &DAG = DCI.DAG;
   9691   SDLoc dl(N);
   9692   SDValue Op(N, 0);
   9693 
   9694   // Don't handle ppc_fp128 here or i1 conversions.
   9695   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   9696     return SDValue();
   9697   if (Op.getOperand(0).getValueType() == MVT::i1)
   9698     return SDValue();
   9699 
   9700   // For i32 intermediate values, unfortunately, the conversion functions
   9701   // leave the upper 32 bits of the value are undefined. Within the set of
   9702   // scalar instructions, we have no method for zero- or sign-extending the
   9703   // value. Thus, we cannot handle i32 intermediate values here.
   9704   if (Op.getOperand(0).getValueType() == MVT::i32)
   9705     return SDValue();
   9706 
   9707   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   9708          "UINT_TO_FP is supported only with FPCVT");
   9709 
   9710   // If we have FCFIDS, then use it when converting to single-precision.
   9711   // Otherwise, convert to double-precision and then round.
   9712   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   9713                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   9714                                                             : PPCISD::FCFIDS)
   9715                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   9716                                                             : PPCISD::FCFID);
   9717   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   9718                   ? MVT::f32
   9719                   : MVT::f64;
   9720 
   9721   // If we're converting from a float, to an int, and back to a float again,
   9722   // then we don't need the store/load pair at all.
   9723   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
   9724        Subtarget.hasFPCVT()) ||
   9725       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
   9726     SDValue Src = Op.getOperand(0).getOperand(0);
   9727     if (Src.getValueType() == MVT::f32) {
   9728       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   9729       DCI.AddToWorklist(Src.getNode());
   9730     }
   9731 
   9732     unsigned FCTOp =
   9733       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   9734                                                         PPCISD::FCTIDUZ;
   9735 
   9736     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
   9737     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
   9738 
   9739     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
   9740       FP = DAG.getNode(ISD::FP_ROUND, dl,
   9741                        MVT::f32, FP, DAG.getIntPtrConstant(0));
   9742       DCI.AddToWorklist(FP.getNode());
   9743     }
   9744 
   9745     return FP;
   9746   }
   9747 
   9748   return SDValue();
   9749 }
   9750 
   9751 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
   9752 // builtins) into loads with swaps.
   9753 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
   9754                                               DAGCombinerInfo &DCI) const {
   9755   SelectionDAG &DAG = DCI.DAG;
   9756   SDLoc dl(N);
   9757   SDValue Chain;
   9758   SDValue Base;
   9759   MachineMemOperand *MMO;
   9760 
   9761   switch (N->getOpcode()) {
   9762   default:
   9763     llvm_unreachable("Unexpected opcode for little endian VSX load");
   9764   case ISD::LOAD: {
   9765     LoadSDNode *LD = cast<LoadSDNode>(N);
   9766     Chain = LD->getChain();
   9767     Base = LD->getBasePtr();
   9768     MMO = LD->getMemOperand();
   9769     // If the MMO suggests this isn't a load of a full vector, leave
   9770     // things alone.  For a built-in, we have to make the change for
   9771     // correctness, so if there is a size problem that will be a bug.
   9772     if (MMO->getSize() < 16)
   9773       return SDValue();
   9774     break;
   9775   }
   9776   case ISD::INTRINSIC_W_CHAIN: {
   9777     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   9778     Chain = Intrin->getChain();
   9779     Base = Intrin->getBasePtr();
   9780     MMO = Intrin->getMemOperand();
   9781     break;
   9782   }
   9783   }
   9784 
   9785   MVT VecTy = N->getValueType(0).getSimpleVT();
   9786   SDValue LoadOps[] = { Chain, Base };
   9787   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
   9788                                          DAG.getVTList(VecTy, MVT::Other),
   9789                                          LoadOps, VecTy, MMO);
   9790   DCI.AddToWorklist(Load.getNode());
   9791   Chain = Load.getValue(1);
   9792   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
   9793                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
   9794   DCI.AddToWorklist(Swap.getNode());
   9795   return Swap;
   9796 }
   9797 
   9798 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
   9799 // builtins) into stores with swaps.
   9800 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
   9801                                                DAGCombinerInfo &DCI) const {
   9802   SelectionDAG &DAG = DCI.DAG;
   9803   SDLoc dl(N);
   9804   SDValue Chain;
   9805   SDValue Base;
   9806   unsigned SrcOpnd;
   9807   MachineMemOperand *MMO;
   9808 
   9809   switch (N->getOpcode()) {
   9810   default:
   9811     llvm_unreachable("Unexpected opcode for little endian VSX store");
   9812   case ISD::STORE: {
   9813     StoreSDNode *ST = cast<StoreSDNode>(N);
   9814     Chain = ST->getChain();
   9815     Base = ST->getBasePtr();
   9816     MMO = ST->getMemOperand();
   9817     SrcOpnd = 1;
   9818     // If the MMO suggests this isn't a store of a full vector, leave
   9819     // things alone.  For a built-in, we have to make the change for
   9820     // correctness, so if there is a size problem that will be a bug.
   9821     if (MMO->getSize() < 16)
   9822       return SDValue();
   9823     break;
   9824   }
   9825   case ISD::INTRINSIC_VOID: {
   9826     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   9827     Chain = Intrin->getChain();
   9828     // Intrin->getBasePtr() oddly does not get what we want.
   9829     Base = Intrin->getOperand(3);
   9830     MMO = Intrin->getMemOperand();
   9831     SrcOpnd = 2;
   9832     break;
   9833   }
   9834   }
   9835 
   9836   SDValue Src = N->getOperand(SrcOpnd);
   9837   MVT VecTy = Src.getValueType().getSimpleVT();
   9838   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
   9839                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
   9840   DCI.AddToWorklist(Swap.getNode());
   9841   Chain = Swap.getValue(1);
   9842   SDValue StoreOps[] = { Chain, Swap, Base };
   9843   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
   9844                                           DAG.getVTList(MVT::Other),
   9845                                           StoreOps, VecTy, MMO);
   9846   DCI.AddToWorklist(Store.getNode());
   9847   return Store;
   9848 }
   9849 
   9850 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   9851                                              DAGCombinerInfo &DCI) const {
   9852   SelectionDAG &DAG = DCI.DAG;
   9853   SDLoc dl(N);
   9854   switch (N->getOpcode()) {
   9855   default: break;
   9856   case PPCISD::SHL:
   9857     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   9858       if (C->isNullValue())   // 0 << V -> 0.
   9859         return N->getOperand(0);
   9860     }
   9861     break;
   9862   case PPCISD::SRL:
   9863     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   9864       if (C->isNullValue())   // 0 >>u V -> 0.
   9865         return N->getOperand(0);
   9866     }
   9867     break;
   9868   case PPCISD::SRA:
   9869     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   9870       if (C->isNullValue() ||   //  0 >>s V -> 0.
   9871           C->isAllOnesValue())    // -1 >>s V -> -1.
   9872         return N->getOperand(0);
   9873     }
   9874     break;
   9875   case ISD::SIGN_EXTEND:
   9876   case ISD::ZERO_EXTEND:
   9877   case ISD::ANY_EXTEND:
   9878     return DAGCombineExtBoolTrunc(N, DCI);
   9879   case ISD::TRUNCATE:
   9880   case ISD::SETCC:
   9881   case ISD::SELECT_CC:
   9882     return DAGCombineTruncBoolExt(N, DCI);
   9883   case ISD::SINT_TO_FP:
   9884   case ISD::UINT_TO_FP:
   9885     return combineFPToIntToFP(N, DCI);
   9886   case ISD::STORE: {
   9887     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   9888     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
   9889         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   9890         N->getOperand(1).getValueType() == MVT::i32 &&
   9891         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   9892       SDValue Val = N->getOperand(1).getOperand(0);
   9893       if (Val.getValueType() == MVT::f32) {
   9894         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   9895         DCI.AddToWorklist(Val.getNode());
   9896       }
   9897       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   9898       DCI.AddToWorklist(Val.getNode());
   9899 
   9900       SDValue Ops[] = {
   9901         N->getOperand(0), Val, N->getOperand(2),
   9902         DAG.getValueType(N->getOperand(1).getValueType())
   9903       };
   9904 
   9905       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   9906               DAG.getVTList(MVT::Other), Ops,
   9907               cast<StoreSDNode>(N)->getMemoryVT(),
   9908               cast<StoreSDNode>(N)->getMemOperand());
   9909       DCI.AddToWorklist(Val.getNode());
   9910       return Val;
   9911     }
   9912 
   9913     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   9914     if (cast<StoreSDNode>(N)->isUnindexed() &&
   9915         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   9916         N->getOperand(1).getNode()->hasOneUse() &&
   9917         (N->getOperand(1).getValueType() == MVT::i32 ||
   9918          N->getOperand(1).getValueType() == MVT::i16 ||
   9919          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   9920           N->getOperand(1).getValueType() == MVT::i64))) {
   9921       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   9922       // Do an any-extend to 32-bits if this is a half-word input.
   9923       if (BSwapOp.getValueType() == MVT::i16)
   9924         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   9925 
   9926       SDValue Ops[] = {
   9927         N->getOperand(0), BSwapOp, N->getOperand(2),
   9928         DAG.getValueType(N->getOperand(1).getValueType())
   9929       };
   9930       return
   9931         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   9932                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
   9933                                 cast<StoreSDNode>(N)->getMemOperand());
   9934     }
   9935 
   9936     // For little endian, VSX stores require generating xxswapd/lxvd2x.
   9937     EVT VT = N->getOperand(1).getValueType();
   9938     if (VT.isSimple()) {
   9939       MVT StoreVT = VT.getSimpleVT();
   9940       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
   9941           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
   9942            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
   9943         return expandVSXStoreForLE(N, DCI);
   9944     }
   9945     break;
   9946   }
   9947   case ISD::LOAD: {
   9948     LoadSDNode *LD = cast<LoadSDNode>(N);
   9949     EVT VT = LD->getValueType(0);
   9950 
   9951     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   9952     if (VT.isSimple()) {
   9953       MVT LoadVT = VT.getSimpleVT();
   9954       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
   9955           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
   9956            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
   9957         return expandVSXLoadForLE(N, DCI);
   9958     }
   9959 
   9960     EVT MemVT = LD->getMemoryVT();
   9961     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
   9962     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
   9963     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
   9964     unsigned ScalarABIAlignment = getDataLayout()->getABITypeAlignment(STy);
   9965     if (LD->isUnindexed() && VT.isVector() &&
   9966         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
   9967           // P8 and later hardware should just use LOAD.
   9968           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
   9969                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
   9970          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
   9971           LD->getAlignment() >= ScalarABIAlignment)) &&
   9972         LD->getAlignment() < ABIAlignment) {
   9973       // This is a type-legal unaligned Altivec or QPX load.
   9974       SDValue Chain = LD->getChain();
   9975       SDValue Ptr = LD->getBasePtr();
   9976       bool isLittleEndian = Subtarget.isLittleEndian();
   9977 
   9978       // This implements the loading of unaligned vectors as described in
   9979       // the venerable Apple Velocity Engine overview. Specifically:
   9980       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
   9981       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
   9982       //
   9983       // The general idea is to expand a sequence of one or more unaligned
   9984       // loads into an alignment-based permutation-control instruction (lvsl
   9985       // or lvsr), a series of regular vector loads (which always truncate
   9986       // their input address to an aligned address), and a series of
   9987       // permutations.  The results of these permutations are the requested
   9988       // loaded values.  The trick is that the last "extra" load is not taken
   9989       // from the address you might suspect (sizeof(vector) bytes after the
   9990       // last requested load), but rather sizeof(vector) - 1 bytes after the
   9991       // last requested vector. The point of this is to avoid a page fault if
   9992       // the base address happened to be aligned. This works because if the
   9993       // base address is aligned, then adding less than a full vector length
   9994       // will cause the last vector in the sequence to be (re)loaded.
   9995       // Otherwise, the next vector will be fetched as you might suspect was
   9996       // necessary.
   9997 
   9998       // We might be able to reuse the permutation generation from
   9999       // a different base address offset from this one by an aligned amount.
   10000       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
   10001       // optimization later.
   10002       Intrinsic::ID Intr, IntrLD, IntrPerm;
   10003       MVT PermCntlTy, PermTy, LDTy;
   10004       if (Subtarget.hasAltivec()) {
   10005         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
   10006                                  Intrinsic::ppc_altivec_lvsl;
   10007         IntrLD = Intrinsic::ppc_altivec_lvx;
   10008         IntrPerm = Intrinsic::ppc_altivec_vperm;
   10009         PermCntlTy = MVT::v16i8;
   10010         PermTy = MVT::v4i32;
   10011         LDTy = MVT::v4i32;
   10012       } else {
   10013         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
   10014                                        Intrinsic::ppc_qpx_qvlpcls;
   10015         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
   10016                                        Intrinsic::ppc_qpx_qvlfs;
   10017         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
   10018         PermCntlTy = MVT::v4f64;
   10019         PermTy = MVT::v4f64;
   10020         LDTy = MemVT.getSimpleVT();
   10021       }
   10022 
   10023       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
   10024 
   10025       // Create the new MMO for the new base load. It is like the original MMO,
   10026       // but represents an area in memory almost twice the vector size centered
   10027       // on the original address. If the address is unaligned, we might start
   10028       // reading up to (sizeof(vector)-1) bytes below the address of the
   10029       // original unaligned load.
   10030       MachineFunction &MF = DAG.getMachineFunction();
   10031       MachineMemOperand *BaseMMO =
   10032         MF.getMachineMemOperand(LD->getMemOperand(), -MemVT.getStoreSize()+1,
   10033                                 2*MemVT.getStoreSize()-1);
   10034 
   10035       // Create the new base load.
   10036       SDValue LDXIntID = DAG.getTargetConstant(IntrLD, getPointerTy());
   10037       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
   10038       SDValue BaseLoad =
   10039         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   10040                                 DAG.getVTList(PermTy, MVT::Other),
   10041                                 BaseLoadOps, LDTy, BaseMMO);
   10042 
   10043       // Note that the value of IncOffset (which is provided to the next
   10044       // load's pointer info offset value, and thus used to calculate the
   10045       // alignment), and the value of IncValue (which is actually used to
   10046       // increment the pointer value) are different! This is because we
   10047       // require the next load to appear to be aligned, even though it
   10048       // is actually offset from the base pointer by a lesser amount.
   10049       int IncOffset = VT.getSizeInBits() / 8;
   10050       int IncValue = IncOffset;
   10051 
   10052       // Walk (both up and down) the chain looking for another load at the real
   10053       // (aligned) offset (the alignment of the other load does not matter in
   10054       // this case). If found, then do not use the offset reduction trick, as
   10055       // that will prevent the loads from being later combined (as they would
   10056       // otherwise be duplicates).
   10057       if (!findConsecutiveLoad(LD, DAG))
   10058         --IncValue;
   10059 
   10060       SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
   10061       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   10062 
   10063       MachineMemOperand *ExtraMMO =
   10064         MF.getMachineMemOperand(LD->getMemOperand(),
   10065                                 1, 2*MemVT.getStoreSize()-1);
   10066       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
   10067       SDValue ExtraLoad =
   10068         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   10069                                 DAG.getVTList(PermTy, MVT::Other),
   10070                                 ExtraLoadOps, LDTy, ExtraMMO);
   10071 
   10072       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   10073         BaseLoad.getValue(1), ExtraLoad.getValue(1));
   10074 
   10075       // Because vperm has a big-endian bias, we must reverse the order
   10076       // of the input vectors and complement the permute control vector
   10077       // when generating little endian code.  We have already handled the
   10078       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
   10079       // and ExtraLoad here.
   10080       SDValue Perm;
   10081       if (isLittleEndian)
   10082         Perm = BuildIntrinsicOp(IntrPerm,
   10083                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
   10084       else
   10085         Perm = BuildIntrinsicOp(IntrPerm,
   10086                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
   10087 
   10088       if (VT != PermTy)
   10089         Perm = Subtarget.hasAltivec() ?
   10090                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
   10091                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
   10092                                DAG.getTargetConstant(1, MVT::i64));
   10093                                // second argument is 1 because this rounding
   10094                                // is always exact.
   10095 
   10096       // The output of the permutation is our loaded result, the TokenFactor is
   10097       // our new chain.
   10098       DCI.CombineTo(N, Perm, TF);
   10099       return SDValue(N, 0);
   10100     }
   10101     }
   10102     break;
   10103     case ISD::INTRINSIC_WO_CHAIN: {
   10104       bool isLittleEndian = Subtarget.isLittleEndian();
   10105       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   10106       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
   10107                                            : Intrinsic::ppc_altivec_lvsl);
   10108       if ((IID == Intr ||
   10109            IID == Intrinsic::ppc_qpx_qvlpcld  ||
   10110            IID == Intrinsic::ppc_qpx_qvlpcls) &&
   10111         N->getOperand(1)->getOpcode() == ISD::ADD) {
   10112         SDValue Add = N->getOperand(1);
   10113 
   10114         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
   10115                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
   10116 
   10117         if (DAG.MaskedValueIsZero(
   10118                 Add->getOperand(1),
   10119                 APInt::getAllOnesValue(Bits /* alignment */)
   10120                     .zext(
   10121                         Add.getValueType().getScalarType().getSizeInBits()))) {
   10122           SDNode *BasePtr = Add->getOperand(0).getNode();
   10123           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   10124                                     UE = BasePtr->use_end();
   10125                UI != UE; ++UI) {
   10126             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10127                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
   10128               // We've found another LVSL/LVSR, and this address is an aligned
   10129               // multiple of that one. The results will be the same, so use the
   10130               // one we've just found instead.
   10131 
   10132               return SDValue(*UI, 0);
   10133             }
   10134           }
   10135         }
   10136 
   10137         if (isa<ConstantSDNode>(Add->getOperand(1))) {
   10138           SDNode *BasePtr = Add->getOperand(0).getNode();
   10139           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   10140                UE = BasePtr->use_end(); UI != UE; ++UI) {
   10141             if (UI->getOpcode() == ISD::ADD &&
   10142                 isa<ConstantSDNode>(UI->getOperand(1)) &&
   10143                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
   10144                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
   10145                 (1ULL << Bits) == 0) {
   10146               SDNode *OtherAdd = *UI;
   10147               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
   10148                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
   10149                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10150                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
   10151                   return SDValue(*VI, 0);
   10152                 }
   10153               }
   10154             }
   10155           }
   10156         }
   10157       }
   10158     }
   10159 
   10160     break;
   10161   case ISD::INTRINSIC_W_CHAIN: {
   10162     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   10163     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
   10164       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10165       default:
   10166         break;
   10167       case Intrinsic::ppc_vsx_lxvw4x:
   10168       case Intrinsic::ppc_vsx_lxvd2x:
   10169         return expandVSXLoadForLE(N, DCI);
   10170       }
   10171     }
   10172     break;
   10173   }
   10174   case ISD::INTRINSIC_VOID: {
   10175     // For little endian, VSX stores require generating xxswapd/stxvd2x.
   10176     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
   10177       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10178       default:
   10179         break;
   10180       case Intrinsic::ppc_vsx_stxvw4x:
   10181       case Intrinsic::ppc_vsx_stxvd2x:
   10182         return expandVSXStoreForLE(N, DCI);
   10183       }
   10184     }
   10185     break;
   10186   }
   10187   case ISD::BSWAP:
   10188     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   10189     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   10190         N->getOperand(0).hasOneUse() &&
   10191         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
   10192          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   10193           N->getValueType(0) == MVT::i64))) {
   10194       SDValue Load = N->getOperand(0);
   10195       LoadSDNode *LD = cast<LoadSDNode>(Load);
   10196       // Create the byte-swapping load.
   10197       SDValue Ops[] = {
   10198         LD->getChain(),    // Chain
   10199         LD->getBasePtr(),  // Ptr
   10200         DAG.getValueType(N->getValueType(0)) // VT
   10201       };
   10202       SDValue BSLoad =
   10203         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   10204                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   10205                                               MVT::i64 : MVT::i32, MVT::Other),
   10206                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
   10207 
   10208       // If this is an i16 load, insert the truncate.
   10209       SDValue ResVal = BSLoad;
   10210       if (N->getValueType(0) == MVT::i16)
   10211         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   10212 
   10213       // First, combine the bswap away.  This makes the value produced by the
   10214       // load dead.
   10215       DCI.CombineTo(N, ResVal);
   10216 
   10217       // Next, combine the load away, we give it a bogus result value but a real
   10218       // chain result.  The result value is dead because the bswap is dead.
   10219       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   10220 
   10221       // Return N so it doesn't get rechecked!
   10222       return SDValue(N, 0);
   10223     }
   10224 
   10225     break;
   10226   case PPCISD::VCMP: {
   10227     // If a VCMPo node already exists with exactly the same operands as this
   10228     // node, use its result instead of this node (VCMPo computes both a CR6 and
   10229     // a normal output).
   10230     //
   10231     if (!N->getOperand(0).hasOneUse() &&
   10232         !N->getOperand(1).hasOneUse() &&
   10233         !N->getOperand(2).hasOneUse()) {
   10234 
   10235       // Scan all of the users of the LHS, looking for VCMPo's that match.
   10236       SDNode *VCMPoNode = nullptr;
   10237 
   10238       SDNode *LHSN = N->getOperand(0).getNode();
   10239       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   10240            UI != E; ++UI)
   10241         if (UI->getOpcode() == PPCISD::VCMPo &&
   10242             UI->getOperand(1) == N->getOperand(1) &&
   10243             UI->getOperand(2) == N->getOperand(2) &&
   10244             UI->getOperand(0) == N->getOperand(0)) {
   10245           VCMPoNode = *UI;
   10246           break;
   10247         }
   10248 
   10249       // If there is no VCMPo node, or if the flag value has a single use, don't
   10250       // transform this.
   10251       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   10252         break;
   10253 
   10254       // Look at the (necessarily single) use of the flag value.  If it has a
   10255       // chain, this transformation is more complex.  Note that multiple things
   10256       // could use the value result, which we should ignore.
   10257       SDNode *FlagUser = nullptr;
   10258       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   10259            FlagUser == nullptr; ++UI) {
   10260         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   10261         SDNode *User = *UI;
   10262         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   10263           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   10264             FlagUser = User;
   10265             break;
   10266           }
   10267         }
   10268       }
   10269 
   10270       // If the user is a MFOCRF instruction, we know this is safe.
   10271       // Otherwise we give up for right now.
   10272       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
   10273         return SDValue(VCMPoNode, 0);
   10274     }
   10275     break;
   10276   }
   10277   case ISD::BRCOND: {
   10278     SDValue Cond = N->getOperand(1);
   10279     SDValue Target = N->getOperand(2);
   10280 
   10281     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   10282         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
   10283           Intrinsic::ppc_is_decremented_ctr_nonzero) {
   10284 
   10285       // We now need to make the intrinsic dead (it cannot be instruction
   10286       // selected).
   10287       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
   10288       assert(Cond.getNode()->hasOneUse() &&
   10289              "Counter decrement has more than one use");
   10290 
   10291       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
   10292                          N->getOperand(0), Target);
   10293     }
   10294   }
   10295   break;
   10296   case ISD::BR_CC: {
   10297     // If this is a branch on an altivec predicate comparison, lower this so
   10298     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
   10299     // lowering is done pre-legalize, because the legalizer lowers the predicate
   10300     // compare down to code that is difficult to reassemble.
   10301     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   10302     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   10303 
   10304     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
   10305     // value. If so, pass-through the AND to get to the intrinsic.
   10306     if (LHS.getOpcode() == ISD::AND &&
   10307         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   10308         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
   10309           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   10310         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   10311         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
   10312           isZero())
   10313       LHS = LHS.getOperand(0);
   10314 
   10315     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   10316         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
   10317           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   10318         isa<ConstantSDNode>(RHS)) {
   10319       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   10320              "Counter decrement comparison is not EQ or NE");
   10321 
   10322       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   10323       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
   10324                     (CC == ISD::SETNE && !Val);
   10325 
   10326       // We now need to make the intrinsic dead (it cannot be instruction
   10327       // selected).
   10328       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
   10329       assert(LHS.getNode()->hasOneUse() &&
   10330              "Counter decrement has more than one use");
   10331 
   10332       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
   10333                          N->getOperand(0), N->getOperand(4));
   10334     }
   10335 
   10336     int CompareOpc;
   10337     bool isDot;
   10338 
   10339     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10340         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   10341         getAltivecCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
   10342       assert(isDot && "Can't compare against a vector result!");
   10343 
   10344       // If this is a comparison against something other than 0/1, then we know
   10345       // that the condition is never/always true.
   10346       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   10347       if (Val != 0 && Val != 1) {
   10348         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   10349           return N->getOperand(0);
   10350         // Always !=, turn it into an unconditional branch.
   10351         return DAG.getNode(ISD::BR, dl, MVT::Other,
   10352                            N->getOperand(0), N->getOperand(4));
   10353       }
   10354 
   10355       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   10356 
   10357       // Create the PPCISD altivec 'dot' comparison node.
   10358       SDValue Ops[] = {
   10359         LHS.getOperand(2),  // LHS of compare
   10360         LHS.getOperand(3),  // RHS of compare
   10361         DAG.getConstant(CompareOpc, MVT::i32)
   10362       };
   10363       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   10364       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   10365 
   10366       // Unpack the result based on how the target uses it.
   10367       PPC::Predicate CompOpc;
   10368       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   10369       default:  // Can't happen, don't crash on invalid number though.
   10370       case 0:   // Branch on the value of the EQ bit of CR6.
   10371         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   10372         break;
   10373       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   10374         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   10375         break;
   10376       case 2:   // Branch on the value of the LT bit of CR6.
   10377         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   10378         break;
   10379       case 3:   // Branch on the inverted value of the LT bit of CR6.
   10380         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   10381         break;
   10382       }
   10383 
   10384       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   10385                          DAG.getConstant(CompOpc, MVT::i32),
   10386                          DAG.getRegister(PPC::CR6, MVT::i32),
   10387                          N->getOperand(4), CompNode.getValue(1));
   10388     }
   10389     break;
   10390   }
   10391   }
   10392 
   10393   return SDValue();
   10394 }
   10395 
   10396 SDValue
   10397 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   10398                                   SelectionDAG &DAG,
   10399                                   std::vector<SDNode *> *Created) const {
   10400   // fold (sdiv X, pow2)
   10401   EVT VT = N->getValueType(0);
   10402   if (VT == MVT::i64 && !Subtarget.isPPC64())
   10403     return SDValue();
   10404   if ((VT != MVT::i32 && VT != MVT::i64) ||
   10405       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
   10406     return SDValue();
   10407 
   10408   SDLoc DL(N);
   10409   SDValue N0 = N->getOperand(0);
   10410 
   10411   bool IsNegPow2 = (-Divisor).isPowerOf2();
   10412   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
   10413   SDValue ShiftAmt = DAG.getConstant(Lg2, VT);
   10414 
   10415   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
   10416   if (Created)
   10417     Created->push_back(Op.getNode());
   10418 
   10419   if (IsNegPow2) {
   10420     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), Op);
   10421     if (Created)
   10422       Created->push_back(Op.getNode());
   10423   }
   10424 
   10425   return Op;
   10426 }
   10427 
   10428 //===----------------------------------------------------------------------===//
   10429 // Inline Assembly Support
   10430 //===----------------------------------------------------------------------===//
   10431 
   10432 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   10433                                                       APInt &KnownZero,
   10434                                                       APInt &KnownOne,
   10435                                                       const SelectionDAG &DAG,
   10436                                                       unsigned Depth) const {
   10437   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   10438   switch (Op.getOpcode()) {
   10439   default: break;
   10440   case PPCISD::LBRX: {
   10441     // lhbrx is known to have the top bits cleared out.
   10442     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   10443       KnownZero = 0xFFFF0000;
   10444     break;
   10445   }
   10446   case ISD::INTRINSIC_WO_CHAIN: {
   10447     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   10448     default: break;
   10449     case Intrinsic::ppc_altivec_vcmpbfp_p:
   10450     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   10451     case Intrinsic::ppc_altivec_vcmpequb_p:
   10452     case Intrinsic::ppc_altivec_vcmpequh_p:
   10453     case Intrinsic::ppc_altivec_vcmpequw_p:
   10454     case Intrinsic::ppc_altivec_vcmpequd_p:
   10455     case Intrinsic::ppc_altivec_vcmpgefp_p:
   10456     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   10457     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   10458     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   10459     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   10460     case Intrinsic::ppc_altivec_vcmpgtsd_p:
   10461     case Intrinsic::ppc_altivec_vcmpgtub_p:
   10462     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   10463     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   10464     case Intrinsic::ppc_altivec_vcmpgtud_p:
   10465       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   10466       break;
   10467     }
   10468   }
   10469   }
   10470 }
   10471 
   10472 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
   10473   switch (Subtarget.getDarwinDirective()) {
   10474   default: break;
   10475   case PPC::DIR_970:
   10476   case PPC::DIR_PWR4:
   10477   case PPC::DIR_PWR5:
   10478   case PPC::DIR_PWR5X:
   10479   case PPC::DIR_PWR6:
   10480   case PPC::DIR_PWR6X:
   10481   case PPC::DIR_PWR7:
   10482   case PPC::DIR_PWR8: {
   10483     if (!ML)
   10484       break;
   10485 
   10486     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
   10487 
   10488     // For small loops (between 5 and 8 instructions), align to a 32-byte
   10489     // boundary so that the entire loop fits in one instruction-cache line.
   10490     uint64_t LoopSize = 0;
   10491     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
   10492       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J)
   10493         LoopSize += TII->GetInstSizeInBytes(J);
   10494 
   10495     if (LoopSize > 16 && LoopSize <= 32)
   10496       return 5;
   10497 
   10498     break;
   10499   }
   10500   }
   10501 
   10502   return TargetLowering::getPrefLoopAlignment(ML);
   10503 }
   10504 
   10505 /// getConstraintType - Given a constraint, return the type of
   10506 /// constraint it is for this target.
   10507 PPCTargetLowering::ConstraintType
   10508 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
   10509   if (Constraint.size() == 1) {
   10510     switch (Constraint[0]) {
   10511     default: break;
   10512     case 'b':
   10513     case 'r':
   10514     case 'f':
   10515     case 'v':
   10516     case 'y':
   10517       return C_RegisterClass;
   10518     case 'Z':
   10519       // FIXME: While Z does indicate a memory constraint, it specifically
   10520       // indicates an r+r address (used in conjunction with the 'y' modifier
   10521       // in the replacement string). Currently, we're forcing the base
   10522       // register to be r0 in the asm printer (which is interpreted as zero)
   10523       // and forming the complete address in the second register. This is
   10524       // suboptimal.
   10525       return C_Memory;
   10526     }
   10527   } else if (Constraint == "wc") { // individual CR bits.
   10528     return C_RegisterClass;
   10529   } else if (Constraint == "wa" || Constraint == "wd" ||
   10530              Constraint == "wf" || Constraint == "ws") {
   10531     return C_RegisterClass; // VSX registers.
   10532   }
   10533   return TargetLowering::getConstraintType(Constraint);
   10534 }
   10535 
   10536 /// Examine constraint type and operand type and determine a weight value.
   10537 /// This object must already have been set up with the operand type
   10538 /// and the current alternative constraint selected.
   10539 TargetLowering::ConstraintWeight
   10540 PPCTargetLowering::getSingleConstraintMatchWeight(
   10541     AsmOperandInfo &info, const char *constraint) const {
   10542   ConstraintWeight weight = CW_Invalid;
   10543   Value *CallOperandVal = info.CallOperandVal;
   10544     // If we don't have a value, we can't do a match,
   10545     // but allow it at the lowest weight.
   10546   if (!CallOperandVal)
   10547     return CW_Default;
   10548   Type *type = CallOperandVal->getType();
   10549 
   10550   // Look at the constraint type.
   10551   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
   10552     return CW_Register; // an individual CR bit.
   10553   else if ((StringRef(constraint) == "wa" ||
   10554             StringRef(constraint) == "wd" ||
   10555             StringRef(constraint) == "wf") &&
   10556            type->isVectorTy())
   10557     return CW_Register;
   10558   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
   10559     return CW_Register;
   10560 
   10561   switch (*constraint) {
   10562   default:
   10563     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   10564     break;
   10565   case 'b':
   10566     if (type->isIntegerTy())
   10567       weight = CW_Register;
   10568     break;
   10569   case 'f':
   10570     if (type->isFloatTy())
   10571       weight = CW_Register;
   10572     break;
   10573   case 'd':
   10574     if (type->isDoubleTy())
   10575       weight = CW_Register;
   10576     break;
   10577   case 'v':
   10578     if (type->isVectorTy())
   10579       weight = CW_Register;
   10580     break;
   10581   case 'y':
   10582     weight = CW_Register;
   10583     break;
   10584   case 'Z':
   10585     weight = CW_Memory;
   10586     break;
   10587   }
   10588   return weight;
   10589 }
   10590 
   10591 std::pair<unsigned, const TargetRegisterClass *>
   10592 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   10593                                                 const std::string &Constraint,
   10594                                                 MVT VT) const {
   10595   if (Constraint.size() == 1) {
   10596     // GCC RS6000 Constraint Letters
   10597     switch (Constraint[0]) {
   10598     case 'b':   // R1-R31
   10599       if (VT == MVT::i64 && Subtarget.isPPC64())
   10600         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
   10601       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
   10602     case 'r':   // R0-R31
   10603       if (VT == MVT::i64 && Subtarget.isPPC64())
   10604         return std::make_pair(0U, &PPC::G8RCRegClass);
   10605       return std::make_pair(0U, &PPC::GPRCRegClass);
   10606     case 'f':
   10607       if (VT == MVT::f32 || VT == MVT::i32)
   10608         return std::make_pair(0U, &PPC::F4RCRegClass);
   10609       if (VT == MVT::f64 || VT == MVT::i64)
   10610         return std::make_pair(0U, &PPC::F8RCRegClass);
   10611       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   10612         return std::make_pair(0U, &PPC::QFRCRegClass);
   10613       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   10614         return std::make_pair(0U, &PPC::QSRCRegClass);
   10615       break;
   10616     case 'v':
   10617       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   10618         return std::make_pair(0U, &PPC::QFRCRegClass);
   10619       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   10620         return std::make_pair(0U, &PPC::QSRCRegClass);
   10621       return std::make_pair(0U, &PPC::VRRCRegClass);
   10622     case 'y':   // crrc
   10623       return std::make_pair(0U, &PPC::CRRCRegClass);
   10624     }
   10625   } else if (Constraint == "wc") { // an individual CR bit.
   10626     return std::make_pair(0U, &PPC::CRBITRCRegClass);
   10627   } else if (Constraint == "wa" || Constraint == "wd" ||
   10628              Constraint == "wf") {
   10629     return std::make_pair(0U, &PPC::VSRCRegClass);
   10630   } else if (Constraint == "ws") {
   10631     return std::make_pair(0U, &PPC::VSFRCRegClass);
   10632   }
   10633 
   10634   std::pair<unsigned, const TargetRegisterClass *> R =
   10635       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   10636 
   10637   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
   10638   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
   10639   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
   10640   // register.
   10641   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
   10642   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
   10643   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
   10644       PPC::GPRCRegClass.contains(R.first))
   10645     return std::make_pair(TRI->getMatchingSuperReg(R.first,
   10646                             PPC::sub_32, &PPC::G8RCRegClass),
   10647                           &PPC::G8RCRegClass);
   10648 
   10649   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
   10650   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
   10651     R.first = PPC::CR0;
   10652     R.second = &PPC::CRRCRegClass;
   10653   }
   10654 
   10655   return R;
   10656 }
   10657 
   10658 
   10659 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   10660 /// vector.  If it is invalid, don't add anything to Ops.
   10661 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   10662                                                      std::string &Constraint,
   10663                                                      std::vector<SDValue>&Ops,
   10664                                                      SelectionDAG &DAG) const {
   10665   SDValue Result;
   10666 
   10667   // Only support length 1 constraints.
   10668   if (Constraint.length() > 1) return;
   10669 
   10670   char Letter = Constraint[0];
   10671   switch (Letter) {
   10672   default: break;
   10673   case 'I':
   10674   case 'J':
   10675   case 'K':
   10676   case 'L':
   10677   case 'M':
   10678   case 'N':
   10679   case 'O':
   10680   case 'P': {
   10681     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   10682     if (!CST) return; // Must be an immediate to match.
   10683     int64_t Value = CST->getSExtValue();
   10684     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
   10685                          // numbers are printed as such.
   10686     switch (Letter) {
   10687     default: llvm_unreachable("Unknown constraint letter!");
   10688     case 'I':  // "I" is a signed 16-bit constant.
   10689       if (isInt<16>(Value))
   10690         Result = DAG.getTargetConstant(Value, TCVT);
   10691       break;
   10692     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   10693       if (isShiftedUInt<16, 16>(Value))
   10694         Result = DAG.getTargetConstant(Value, TCVT);
   10695       break;
   10696     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   10697       if (isShiftedInt<16, 16>(Value))
   10698         Result = DAG.getTargetConstant(Value, TCVT);
   10699       break;
   10700     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   10701       if (isUInt<16>(Value))
   10702         Result = DAG.getTargetConstant(Value, TCVT);
   10703       break;
   10704     case 'M':  // "M" is a constant that is greater than 31.
   10705       if (Value > 31)
   10706         Result = DAG.getTargetConstant(Value, TCVT);
   10707       break;
   10708     case 'N':  // "N" is a positive constant that is an exact power of two.
   10709       if (Value > 0 && isPowerOf2_64(Value))
   10710         Result = DAG.getTargetConstant(Value, TCVT);
   10711       break;
   10712     case 'O':  // "O" is the constant zero.
   10713       if (Value == 0)
   10714         Result = DAG.getTargetConstant(Value, TCVT);
   10715       break;
   10716     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   10717       if (isInt<16>(-Value))
   10718         Result = DAG.getTargetConstant(Value, TCVT);
   10719       break;
   10720     }
   10721     break;
   10722   }
   10723   }
   10724 
   10725   if (Result.getNode()) {
   10726     Ops.push_back(Result);
   10727     return;
   10728   }
   10729 
   10730   // Handle standard constraint letters.
   10731   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   10732 }
   10733 
   10734 // isLegalAddressingMode - Return true if the addressing mode represented
   10735 // by AM is legal for this target, for a load/store of the specified type.
   10736 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   10737                                               Type *Ty) const {
   10738   // PPC does not allow r+i addressing modes for vectors!
   10739   if (Ty->isVectorTy() && AM.BaseOffs != 0)
   10740     return false;
   10741 
   10742   // PPC allows a sign-extended 16-bit immediate field.
   10743   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   10744     return false;
   10745 
   10746   // No global is ever allowed as a base.
   10747   if (AM.BaseGV)
   10748     return false;
   10749 
   10750   // PPC only support r+r,
   10751   switch (AM.Scale) {
   10752   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   10753     break;
   10754   case 1:
   10755     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   10756       return false;
   10757     // Otherwise we have r+r or r+i.
   10758     break;
   10759   case 2:
   10760     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   10761       return false;
   10762     // Allow 2*r as r+r.
   10763     break;
   10764   default:
   10765     // No other scales are supported.
   10766     return false;
   10767   }
   10768 
   10769   return true;
   10770 }
   10771 
   10772 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   10773                                            SelectionDAG &DAG) const {
   10774   MachineFunction &MF = DAG.getMachineFunction();
   10775   MachineFrameInfo *MFI = MF.getFrameInfo();
   10776   MFI->setReturnAddressIsTaken(true);
   10777 
   10778   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   10779     return SDValue();
   10780 
   10781   SDLoc dl(Op);
   10782   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   10783 
   10784   // Make sure the function does not optimize away the store of the RA to
   10785   // the stack.
   10786   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   10787   FuncInfo->setLRStoreRequired();
   10788   bool isPPC64 = Subtarget.isPPC64();
   10789 
   10790   if (Depth > 0) {
   10791     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   10792     SDValue Offset =
   10793         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(),
   10794                         isPPC64 ? MVT::i64 : MVT::i32);
   10795     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   10796                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   10797                                    FrameAddr, Offset),
   10798                        MachinePointerInfo(), false, false, false, 0);
   10799   }
   10800 
   10801   // Just load the return address off the stack.
   10802   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   10803   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   10804                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   10805 }
   10806 
   10807 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   10808                                           SelectionDAG &DAG) const {
   10809   SDLoc dl(Op);
   10810   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   10811 
   10812   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   10813   bool isPPC64 = PtrVT == MVT::i64;
   10814 
   10815   MachineFunction &MF = DAG.getMachineFunction();
   10816   MachineFrameInfo *MFI = MF.getFrameInfo();
   10817   MFI->setFrameAddressIsTaken(true);
   10818 
   10819   // Naked functions never have a frame pointer, and so we use r1. For all
   10820   // other functions, this decision must be delayed until during PEI.
   10821   unsigned FrameReg;
   10822   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
   10823     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
   10824   else
   10825     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
   10826 
   10827   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   10828                                          PtrVT);
   10829   while (Depth--)
   10830     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   10831                             FrameAddr, MachinePointerInfo(), false, false,
   10832                             false, 0);
   10833   return FrameAddr;
   10834 }
   10835 
   10836 // FIXME? Maybe this could be a TableGen attribute on some registers and
   10837 // this table could be generated automatically from RegInfo.
   10838 unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
   10839                                               EVT VT) const {
   10840   bool isPPC64 = Subtarget.isPPC64();
   10841   bool isDarwinABI = Subtarget.isDarwinABI();
   10842 
   10843   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
   10844       (!isPPC64 && VT != MVT::i32))
   10845     report_fatal_error("Invalid register global variable type");
   10846 
   10847   bool is64Bit = isPPC64 && VT == MVT::i64;
   10848   unsigned Reg = StringSwitch<unsigned>(RegName)
   10849                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
   10850                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
   10851                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
   10852                                   (is64Bit ? PPC::X13 : PPC::R13))
   10853                    .Default(0);
   10854 
   10855   if (Reg)
   10856     return Reg;
   10857   report_fatal_error("Invalid register name global variable");
   10858 }
   10859 
   10860 bool
   10861 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   10862   // The PowerPC target isn't yet aware of offsets.
   10863   return false;
   10864 }
   10865 
   10866 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   10867                                            const CallInst &I,
   10868                                            unsigned Intrinsic) const {
   10869 
   10870   switch (Intrinsic) {
   10871   case Intrinsic::ppc_qpx_qvlfd:
   10872   case Intrinsic::ppc_qpx_qvlfs:
   10873   case Intrinsic::ppc_qpx_qvlfcd:
   10874   case Intrinsic::ppc_qpx_qvlfcs:
   10875   case Intrinsic::ppc_qpx_qvlfiwa:
   10876   case Intrinsic::ppc_qpx_qvlfiwz:
   10877   case Intrinsic::ppc_altivec_lvx:
   10878   case Intrinsic::ppc_altivec_lvxl:
   10879   case Intrinsic::ppc_altivec_lvebx:
   10880   case Intrinsic::ppc_altivec_lvehx:
   10881   case Intrinsic::ppc_altivec_lvewx:
   10882   case Intrinsic::ppc_vsx_lxvd2x:
   10883   case Intrinsic::ppc_vsx_lxvw4x: {
   10884     EVT VT;
   10885     switch (Intrinsic) {
   10886     case Intrinsic::ppc_altivec_lvebx:
   10887       VT = MVT::i8;
   10888       break;
   10889     case Intrinsic::ppc_altivec_lvehx:
   10890       VT = MVT::i16;
   10891       break;
   10892     case Intrinsic::ppc_altivec_lvewx:
   10893       VT = MVT::i32;
   10894       break;
   10895     case Intrinsic::ppc_vsx_lxvd2x:
   10896       VT = MVT::v2f64;
   10897       break;
   10898     case Intrinsic::ppc_qpx_qvlfd:
   10899       VT = MVT::v4f64;
   10900       break;
   10901     case Intrinsic::ppc_qpx_qvlfs:
   10902       VT = MVT::v4f32;
   10903       break;
   10904     case Intrinsic::ppc_qpx_qvlfcd:
   10905       VT = MVT::v2f64;
   10906       break;
   10907     case Intrinsic::ppc_qpx_qvlfcs:
   10908       VT = MVT::v2f32;
   10909       break;
   10910     default:
   10911       VT = MVT::v4i32;
   10912       break;
   10913     }
   10914 
   10915     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10916     Info.memVT = VT;
   10917     Info.ptrVal = I.getArgOperand(0);
   10918     Info.offset = -VT.getStoreSize()+1;
   10919     Info.size = 2*VT.getStoreSize()-1;
   10920     Info.align = 1;
   10921     Info.vol = false;
   10922     Info.readMem = true;
   10923     Info.writeMem = false;
   10924     return true;
   10925   }
   10926   case Intrinsic::ppc_qpx_qvlfda:
   10927   case Intrinsic::ppc_qpx_qvlfsa:
   10928   case Intrinsic::ppc_qpx_qvlfcda:
   10929   case Intrinsic::ppc_qpx_qvlfcsa:
   10930   case Intrinsic::ppc_qpx_qvlfiwaa:
   10931   case Intrinsic::ppc_qpx_qvlfiwza: {
   10932     EVT VT;
   10933     switch (Intrinsic) {
   10934     case Intrinsic::ppc_qpx_qvlfda:
   10935       VT = MVT::v4f64;
   10936       break;
   10937     case Intrinsic::ppc_qpx_qvlfsa:
   10938       VT = MVT::v4f32;
   10939       break;
   10940     case Intrinsic::ppc_qpx_qvlfcda:
   10941       VT = MVT::v2f64;
   10942       break;
   10943     case Intrinsic::ppc_qpx_qvlfcsa:
   10944       VT = MVT::v2f32;
   10945       break;
   10946     default:
   10947       VT = MVT::v4i32;
   10948       break;
   10949     }
   10950 
   10951     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10952     Info.memVT = VT;
   10953     Info.ptrVal = I.getArgOperand(0);
   10954     Info.offset = 0;
   10955     Info.size = VT.getStoreSize();
   10956     Info.align = 1;
   10957     Info.vol = false;
   10958     Info.readMem = true;
   10959     Info.writeMem = false;
   10960     return true;
   10961   }
   10962   case Intrinsic::ppc_qpx_qvstfd:
   10963   case Intrinsic::ppc_qpx_qvstfs:
   10964   case Intrinsic::ppc_qpx_qvstfcd:
   10965   case Intrinsic::ppc_qpx_qvstfcs:
   10966   case Intrinsic::ppc_qpx_qvstfiw:
   10967   case Intrinsic::ppc_altivec_stvx:
   10968   case Intrinsic::ppc_altivec_stvxl:
   10969   case Intrinsic::ppc_altivec_stvebx:
   10970   case Intrinsic::ppc_altivec_stvehx:
   10971   case Intrinsic::ppc_altivec_stvewx:
   10972   case Intrinsic::ppc_vsx_stxvd2x:
   10973   case Intrinsic::ppc_vsx_stxvw4x: {
   10974     EVT VT;
   10975     switch (Intrinsic) {
   10976     case Intrinsic::ppc_altivec_stvebx:
   10977       VT = MVT::i8;
   10978       break;
   10979     case Intrinsic::ppc_altivec_stvehx:
   10980       VT = MVT::i16;
   10981       break;
   10982     case Intrinsic::ppc_altivec_stvewx:
   10983       VT = MVT::i32;
   10984       break;
   10985     case Intrinsic::ppc_vsx_stxvd2x:
   10986       VT = MVT::v2f64;
   10987       break;
   10988     case Intrinsic::ppc_qpx_qvstfd:
   10989       VT = MVT::v4f64;
   10990       break;
   10991     case Intrinsic::ppc_qpx_qvstfs:
   10992       VT = MVT::v4f32;
   10993       break;
   10994     case Intrinsic::ppc_qpx_qvstfcd:
   10995       VT = MVT::v2f64;
   10996       break;
   10997     case Intrinsic::ppc_qpx_qvstfcs:
   10998       VT = MVT::v2f32;
   10999       break;
   11000     default:
   11001       VT = MVT::v4i32;
   11002       break;
   11003     }
   11004 
   11005     Info.opc = ISD::INTRINSIC_VOID;
   11006     Info.memVT = VT;
   11007     Info.ptrVal = I.getArgOperand(1);
   11008     Info.offset = -VT.getStoreSize()+1;
   11009     Info.size = 2*VT.getStoreSize()-1;
   11010     Info.align = 1;
   11011     Info.vol = false;
   11012     Info.readMem = false;
   11013     Info.writeMem = true;
   11014     return true;
   11015   }
   11016   case Intrinsic::ppc_qpx_qvstfda:
   11017   case Intrinsic::ppc_qpx_qvstfsa:
   11018   case Intrinsic::ppc_qpx_qvstfcda:
   11019   case Intrinsic::ppc_qpx_qvstfcsa:
   11020   case Intrinsic::ppc_qpx_qvstfiwa: {
   11021     EVT VT;
   11022     switch (Intrinsic) {
   11023     case Intrinsic::ppc_qpx_qvstfda:
   11024       VT = MVT::v4f64;
   11025       break;
   11026     case Intrinsic::ppc_qpx_qvstfsa:
   11027       VT = MVT::v4f32;
   11028       break;
   11029     case Intrinsic::ppc_qpx_qvstfcda:
   11030       VT = MVT::v2f64;
   11031       break;
   11032     case Intrinsic::ppc_qpx_qvstfcsa:
   11033       VT = MVT::v2f32;
   11034       break;
   11035     default:
   11036       VT = MVT::v4i32;
   11037       break;
   11038     }
   11039 
   11040     Info.opc = ISD::INTRINSIC_VOID;
   11041     Info.memVT = VT;
   11042     Info.ptrVal = I.getArgOperand(1);
   11043     Info.offset = 0;
   11044     Info.size = VT.getStoreSize();
   11045     Info.align = 1;
   11046     Info.vol = false;
   11047     Info.readMem = false;
   11048     Info.writeMem = true;
   11049     return true;
   11050   }
   11051   default:
   11052     break;
   11053   }
   11054 
   11055   return false;
   11056 }
   11057 
   11058 /// getOptimalMemOpType - Returns the target specific optimal type for load
   11059 /// and store operations as a result of memset, memcpy, and memmove
   11060 /// lowering. If DstAlign is zero that means it's safe to destination
   11061 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   11062 /// means there isn't a need to check it against alignment requirement,
   11063 /// probably because the source does not need to be loaded. If 'IsMemset' is
   11064 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   11065 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   11066 /// source is constant so it does not need to be loaded.
   11067 /// It returns EVT::Other if the type should be determined using generic
   11068 /// target-independent logic.
   11069 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   11070                                            unsigned DstAlign, unsigned SrcAlign,
   11071                                            bool IsMemset, bool ZeroMemset,
   11072                                            bool MemcpyStrSrc,
   11073                                            MachineFunction &MF) const {
   11074   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
   11075     const Function *F = MF.getFunction();
   11076     // When expanding a memset, require at least two QPX instructions to cover
   11077     // the cost of loading the value to be stored from the constant pool.
   11078     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
   11079        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
   11080         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   11081       return MVT::v4f64;
   11082     }
   11083 
   11084     // We should use Altivec/VSX loads and stores when available. For unaligned
   11085     // addresses, unaligned VSX loads are only fast starting with the P8.
   11086     if (Subtarget.hasAltivec() && Size >= 16 &&
   11087         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
   11088          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
   11089       return MVT::v4i32;
   11090   }
   11091 
   11092   if (Subtarget.isPPC64()) {
   11093     return MVT::i64;
   11094   }
   11095 
   11096   return MVT::i32;
   11097 }
   11098 
   11099 /// \brief Returns true if it is beneficial to convert a load of a constant
   11100 /// to just the constant itself.
   11101 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   11102                                                           Type *Ty) const {
   11103   assert(Ty->isIntegerTy());
   11104 
   11105   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   11106   if (BitSize == 0 || BitSize > 64)
   11107     return false;
   11108   return true;
   11109 }
   11110 
   11111 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   11112   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   11113     return false;
   11114   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   11115   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   11116   return NumBits1 == 64 && NumBits2 == 32;
   11117 }
   11118 
   11119 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   11120   if (!VT1.isInteger() || !VT2.isInteger())
   11121     return false;
   11122   unsigned NumBits1 = VT1.getSizeInBits();
   11123   unsigned NumBits2 = VT2.getSizeInBits();
   11124   return NumBits1 == 64 && NumBits2 == 32;
   11125 }
   11126 
   11127 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   11128   // Generally speaking, zexts are not free, but they are free when they can be
   11129   // folded with other operations.
   11130   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
   11131     EVT MemVT = LD->getMemoryVT();
   11132     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
   11133          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
   11134         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
   11135          LD->getExtensionType() == ISD::ZEXTLOAD))
   11136       return true;
   11137   }
   11138 
   11139   // FIXME: Add other cases...
   11140   //  - 32-bit shifts with a zext to i64
   11141   //  - zext after ctlz, bswap, etc.
   11142   //  - zext after and by a constant mask
   11143 
   11144   return TargetLowering::isZExtFree(Val, VT2);
   11145 }
   11146 
   11147 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
   11148   assert(VT.isFloatingPoint());
   11149   return true;
   11150 }
   11151 
   11152 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   11153   return isInt<16>(Imm) || isUInt<16>(Imm);
   11154 }
   11155 
   11156 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   11157   return isInt<16>(Imm) || isUInt<16>(Imm);
   11158 }
   11159 
   11160 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   11161                                                        unsigned,
   11162                                                        unsigned,
   11163                                                        bool *Fast) const {
   11164   if (DisablePPCUnaligned)
   11165     return false;
   11166 
   11167   // PowerPC supports unaligned memory access for simple non-vector types.
   11168   // Although accessing unaligned addresses is not as efficient as accessing
   11169   // aligned addresses, it is generally more efficient than manual expansion,
   11170   // and generally only traps for software emulation when crossing page
   11171   // boundaries.
   11172 
   11173   if (!VT.isSimple())
   11174     return false;
   11175 
   11176   if (VT.getSimpleVT().isVector()) {
   11177     if (Subtarget.hasVSX()) {
   11178       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
   11179           VT != MVT::v4f32 && VT != MVT::v4i32)
   11180         return false;
   11181     } else {
   11182       return false;
   11183     }
   11184   }
   11185 
   11186   if (VT == MVT::ppcf128)
   11187     return false;
   11188 
   11189   if (Fast)
   11190     *Fast = true;
   11191 
   11192   return true;
   11193 }
   11194 
   11195 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   11196   VT = VT.getScalarType();
   11197 
   11198   if (!VT.isSimple())
   11199     return false;
   11200 
   11201   switch (VT.getSimpleVT().SimpleTy) {
   11202   case MVT::f32:
   11203   case MVT::f64:
   11204     return true;
   11205   default:
   11206     break;
   11207   }
   11208 
   11209   return false;
   11210 }
   11211 
   11212 const MCPhysReg *
   11213 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
   11214   // LR is a callee-save register, but we must treat it as clobbered by any call
   11215   // site. Hence we include LR in the scratch registers, which are in turn added
   11216   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
   11217   // to CTR, which is used by any indirect call.
   11218   static const MCPhysReg ScratchRegs[] = {
   11219     PPC::X12, PPC::LR8, PPC::CTR8, 0
   11220   };
   11221 
   11222   return ScratchRegs;
   11223 }
   11224 
   11225 bool
   11226 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
   11227                      EVT VT , unsigned DefinedValues) const {
   11228   if (VT == MVT::v2i64)
   11229     return false;
   11230 
   11231   if (Subtarget.hasQPX()) {
   11232     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
   11233       return true;
   11234   }
   11235 
   11236   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
   11237 }
   11238 
   11239 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   11240   if (DisableILPPref || Subtarget.enableMachineScheduler())
   11241     return TargetLowering::getSchedulingPreference(N);
   11242 
   11243   return Sched::ILP;
   11244 }
   11245 
   11246 // Create a fast isel object.
   11247 FastISel *
   11248 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
   11249                                   const TargetLibraryInfo *LibInfo) const {
   11250   return PPC::createFastISel(FuncInfo, LibInfo);
   11251 }
   11252