Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "RegisterCoalescer.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/LiveRangeEdit.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineLoopInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/CodeGen/RegisterClassInfo.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/IR/Value.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/Format.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #include "llvm/Target/TargetSubtargetInfo.h"
     41 #include <algorithm>
     42 #include <cmath>
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "regalloc"
     46 
     47 STATISTIC(numJoins    , "Number of interval joins performed");
     48 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     49 STATISTIC(numCommutes , "Number of instruction commuting performed");
     50 STATISTIC(numExtends  , "Number of copies extended");
     51 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     52 STATISTIC(NumInflated , "Number of register classes inflated");
     53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
     54 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
     55 
     56 static cl::opt<bool>
     57 EnableJoining("join-liveintervals",
     58               cl::desc("Coalesce copies (default=true)"),
     59               cl::init(true));
     60 
     61 static cl::opt<bool> UseTerminalRule("terminal-rule",
     62                                      cl::desc("Apply the terminal rule"),
     63                                      cl::init(false));
     64 
     65 /// Temporary flag to test critical edge unsplitting.
     66 static cl::opt<bool>
     67 EnableJoinSplits("join-splitedges",
     68   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
     69 
     70 /// Temporary flag to test global copy optimization.
     71 static cl::opt<cl::boolOrDefault>
     72 EnableGlobalCopies("join-globalcopies",
     73   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
     74   cl::init(cl::BOU_UNSET), cl::Hidden);
     75 
     76 static cl::opt<bool>
     77 VerifyCoalescing("verify-coalescing",
     78          cl::desc("Verify machine instrs before and after register coalescing"),
     79          cl::Hidden);
     80 
     81 namespace {
     82   class RegisterCoalescer : public MachineFunctionPass,
     83                             private LiveRangeEdit::Delegate {
     84     MachineFunction* MF;
     85     MachineRegisterInfo* MRI;
     86     const TargetMachine* TM;
     87     const TargetRegisterInfo* TRI;
     88     const TargetInstrInfo* TII;
     89     LiveIntervals *LIS;
     90     const MachineLoopInfo* Loops;
     91     AliasAnalysis *AA;
     92     RegisterClassInfo RegClassInfo;
     93 
     94     /// A LaneMask to remember on which subregister live ranges we need to call
     95     /// shrinkToUses() later.
     96     unsigned ShrinkMask;
     97 
     98     /// True if the main range of the currently coalesced intervals should be
     99     /// checked for smaller live intervals.
    100     bool ShrinkMainRange;
    101 
    102     /// \brief True if the coalescer should aggressively coalesce global copies
    103     /// in favor of keeping local copies.
    104     bool JoinGlobalCopies;
    105 
    106     /// \brief True if the coalescer should aggressively coalesce fall-thru
    107     /// blocks exclusively containing copies.
    108     bool JoinSplitEdges;
    109 
    110     /// Copy instructions yet to be coalesced.
    111     SmallVector<MachineInstr*, 8> WorkList;
    112     SmallVector<MachineInstr*, 8> LocalWorkList;
    113 
    114     /// Set of instruction pointers that have been erased, and
    115     /// that may be present in WorkList.
    116     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
    117 
    118     /// Dead instructions that are about to be deleted.
    119     SmallVector<MachineInstr*, 8> DeadDefs;
    120 
    121     /// Virtual registers to be considered for register class inflation.
    122     SmallVector<unsigned, 8> InflateRegs;
    123 
    124     /// Recursively eliminate dead defs in DeadDefs.
    125     void eliminateDeadDefs();
    126 
    127     /// LiveRangeEdit callback for eliminateDeadDefs().
    128     void LRE_WillEraseInstruction(MachineInstr *MI) override;
    129 
    130     /// Coalesce the LocalWorkList.
    131     void coalesceLocals();
    132 
    133     /// Join compatible live intervals
    134     void joinAllIntervals();
    135 
    136     /// Coalesce copies in the specified MBB, putting
    137     /// copies that cannot yet be coalesced into WorkList.
    138     void copyCoalesceInMBB(MachineBasicBlock *MBB);
    139 
    140     /// Tries to coalesce all copies in CurrList. Returns true if any progress
    141     /// was made.
    142     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
    143 
    144     /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
    145     /// src/dst of the copy instruction CopyMI.  This returns true if the copy
    146     /// was successfully coalesced away. If it is not currently possible to
    147     /// coalesce this interval, but it may be possible if other things get
    148     /// coalesced, then it returns true by reference in 'Again'.
    149     bool joinCopy(MachineInstr *TheCopy, bool &Again);
    150 
    151     /// Attempt to join these two intervals.  On failure, this
    152     /// returns false.  The output "SrcInt" will not have been modified, so we
    153     /// can use this information below to update aliases.
    154     bool joinIntervals(CoalescerPair &CP);
    155 
    156     /// Attempt joining two virtual registers. Return true on success.
    157     bool joinVirtRegs(CoalescerPair &CP);
    158 
    159     /// Attempt joining with a reserved physreg.
    160     bool joinReservedPhysReg(CoalescerPair &CP);
    161 
    162     /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
    163     /// Subranges in @p LI which only partially interfere with the desired
    164     /// LaneMask are split as necessary. @p LaneMask are the lanes that
    165     /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
    166     /// lanemasks already adjusted to the coalesced register.
    167     /// @returns false if live range conflicts couldn't get resolved.
    168     bool mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
    169                            unsigned LaneMask, CoalescerPair &CP);
    170 
    171     /// Join the liveranges of two subregisters. Joins @p RRange into
    172     /// @p LRange, @p RRange may be invalid afterwards.
    173     /// @returns false if live range conflicts couldn't get resolved.
    174     bool joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
    175                           unsigned LaneMask, const CoalescerPair &CP);
    176 
    177     /// We found a non-trivially-coalescable copy. If the source value number is
    178     /// defined by a copy from the destination reg see if we can merge these two
    179     /// destination reg valno# into a single value number, eliminating a copy.
    180     /// This returns true if an interval was modified.
    181     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    182 
    183     /// Return true if there are definitions of IntB
    184     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    185     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    186                               VNInfo *AValNo, VNInfo *BValNo);
    187 
    188     /// We found a non-trivially-coalescable copy.
    189     /// If the source value number is defined by a commutable instruction and
    190     /// its other operand is coalesced to the copy dest register, see if we
    191     /// can transform the copy into a noop by commuting the definition.
    192     /// This returns true if an interval was modified.
    193     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    194 
    195     /// If the source of a copy is defined by a
    196     /// trivial computation, replace the copy by rematerialize the definition.
    197     bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
    198                                  bool &IsDefCopy);
    199 
    200     /// Return true if a copy involving a physreg should be joined.
    201     bool canJoinPhys(const CoalescerPair &CP);
    202 
    203     /// Replace all defs and uses of SrcReg to DstReg and update the subregister
    204     /// number if it is not zero. If DstReg is a physical register and the
    205     /// existing subregister number of the def / use being updated is not zero,
    206     /// make sure to set it to the correct physical subregister.
    207     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
    208 
    209     /// Handle copies of undef values.
    210     /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
    211     bool eliminateUndefCopy(MachineInstr *CopyMI);
    212 
    213     /// Check whether or not we should apply the terminal rule on the
    214     /// destination (Dst) of \p Copy.
    215     /// When the terminal rule applies, Copy is not profitable to
    216     /// coalesce.
    217     /// Dst is terminal if it has exactly one affinity (Dst, Src) and
    218     /// at least one interference (Dst, Dst2). If Dst is terminal, the
    219     /// terminal rule consists in checking that at least one of
    220     /// interfering node, say Dst2, has an affinity of equal or greater
    221     /// weight with Src.
    222     /// In that case, Dst2 and Dst will not be able to be both coalesced
    223     /// with Src. Since Dst2 exposes more coalescing opportunities than
    224     /// Dst, we can drop \p Copy.
    225     bool applyTerminalRule(const MachineInstr &Copy) const;
    226 
    227   public:
    228     static char ID; ///< Class identification, replacement for typeinfo
    229     RegisterCoalescer() : MachineFunctionPass(ID) {
    230       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    231     }
    232 
    233     void getAnalysisUsage(AnalysisUsage &AU) const override;
    234 
    235     void releaseMemory() override;
    236 
    237     /// This is the pass entry point.
    238     bool runOnMachineFunction(MachineFunction&) override;
    239 
    240     /// Implement the dump method.
    241     void print(raw_ostream &O, const Module* = nullptr) const override;
    242   };
    243 } // end anonymous namespace
    244 
    245 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    246 
    247 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    248                       "Simple Register Coalescing", false, false)
    249 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    250 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    251 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    252 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    253 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    254                     "Simple Register Coalescing", false, false)
    255 
    256 char RegisterCoalescer::ID = 0;
    257 
    258 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    259                         unsigned &Src, unsigned &Dst,
    260                         unsigned &SrcSub, unsigned &DstSub) {
    261   if (MI->isCopy()) {
    262     Dst = MI->getOperand(0).getReg();
    263     DstSub = MI->getOperand(0).getSubReg();
    264     Src = MI->getOperand(1).getReg();
    265     SrcSub = MI->getOperand(1).getSubReg();
    266   } else if (MI->isSubregToReg()) {
    267     Dst = MI->getOperand(0).getReg();
    268     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
    269                                       MI->getOperand(3).getImm());
    270     Src = MI->getOperand(2).getReg();
    271     SrcSub = MI->getOperand(2).getSubReg();
    272   } else
    273     return false;
    274   return true;
    275 }
    276 
    277 /// Return true if this block should be vacated by the coalescer to eliminate
    278 /// branches. The important cases to handle in the coalescer are critical edges
    279 /// split during phi elimination which contain only copies. Simple blocks that
    280 /// contain non-branches should also be vacated, but this can be handled by an
    281 /// earlier pass similar to early if-conversion.
    282 static bool isSplitEdge(const MachineBasicBlock *MBB) {
    283   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    284     return false;
    285 
    286   for (const auto &MI : *MBB) {
    287     if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
    288       return false;
    289   }
    290   return true;
    291 }
    292 
    293 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    294   SrcReg = DstReg = 0;
    295   SrcIdx = DstIdx = 0;
    296   NewRC = nullptr;
    297   Flipped = CrossClass = false;
    298 
    299   unsigned Src, Dst, SrcSub, DstSub;
    300   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    301     return false;
    302   Partial = SrcSub || DstSub;
    303 
    304   // If one register is a physreg, it must be Dst.
    305   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    306     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    307       return false;
    308     std::swap(Src, Dst);
    309     std::swap(SrcSub, DstSub);
    310     Flipped = true;
    311   }
    312 
    313   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    314 
    315   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    316     // Eliminate DstSub on a physreg.
    317     if (DstSub) {
    318       Dst = TRI.getSubReg(Dst, DstSub);
    319       if (!Dst) return false;
    320       DstSub = 0;
    321     }
    322 
    323     // Eliminate SrcSub by picking a corresponding Dst superregister.
    324     if (SrcSub) {
    325       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    326       if (!Dst) return false;
    327     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    328       return false;
    329     }
    330   } else {
    331     // Both registers are virtual.
    332     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    333     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    334 
    335     // Both registers have subreg indices.
    336     if (SrcSub && DstSub) {
    337       // Copies between different sub-registers are never coalescable.
    338       if (Src == Dst && SrcSub != DstSub)
    339         return false;
    340 
    341       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
    342                                          SrcIdx, DstIdx);
    343       if (!NewRC)
    344         return false;
    345     } else if (DstSub) {
    346       // SrcReg will be merged with a sub-register of DstReg.
    347       SrcIdx = DstSub;
    348       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    349     } else if (SrcSub) {
    350       // DstReg will be merged with a sub-register of SrcReg.
    351       DstIdx = SrcSub;
    352       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
    353     } else {
    354       // This is a straight copy without sub-registers.
    355       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    356     }
    357 
    358     // The combined constraint may be impossible to satisfy.
    359     if (!NewRC)
    360       return false;
    361 
    362     // Prefer SrcReg to be a sub-register of DstReg.
    363     // FIXME: Coalescer should support subregs symmetrically.
    364     if (DstIdx && !SrcIdx) {
    365       std::swap(Src, Dst);
    366       std::swap(SrcIdx, DstIdx);
    367       Flipped = !Flipped;
    368     }
    369 
    370     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    371   }
    372   // Check our invariants
    373   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    374   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    375          "Cannot have a physical SubIdx");
    376   SrcReg = Src;
    377   DstReg = Dst;
    378   return true;
    379 }
    380 
    381 bool CoalescerPair::flip() {
    382   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
    383     return false;
    384   std::swap(SrcReg, DstReg);
    385   std::swap(SrcIdx, DstIdx);
    386   Flipped = !Flipped;
    387   return true;
    388 }
    389 
    390 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    391   if (!MI)
    392     return false;
    393   unsigned Src, Dst, SrcSub, DstSub;
    394   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    395     return false;
    396 
    397   // Find the virtual register that is SrcReg.
    398   if (Dst == SrcReg) {
    399     std::swap(Src, Dst);
    400     std::swap(SrcSub, DstSub);
    401   } else if (Src != SrcReg) {
    402     return false;
    403   }
    404 
    405   // Now check that Dst matches DstReg.
    406   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    407     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    408       return false;
    409     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
    410     // DstSub could be set for a physreg from INSERT_SUBREG.
    411     if (DstSub)
    412       Dst = TRI.getSubReg(Dst, DstSub);
    413     // Full copy of Src.
    414     if (!SrcSub)
    415       return DstReg == Dst;
    416     // This is a partial register copy. Check that the parts match.
    417     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    418   } else {
    419     // DstReg is virtual.
    420     if (DstReg != Dst)
    421       return false;
    422     // Registers match, do the subregisters line up?
    423     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
    424            TRI.composeSubRegIndices(DstIdx, DstSub);
    425   }
    426 }
    427 
    428 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    429   AU.setPreservesCFG();
    430   AU.addRequired<AliasAnalysis>();
    431   AU.addRequired<LiveIntervals>();
    432   AU.addPreserved<LiveIntervals>();
    433   AU.addPreserved<SlotIndexes>();
    434   AU.addRequired<MachineLoopInfo>();
    435   AU.addPreserved<MachineLoopInfo>();
    436   AU.addPreservedID(MachineDominatorsID);
    437   MachineFunctionPass::getAnalysisUsage(AU);
    438 }
    439 
    440 void RegisterCoalescer::eliminateDeadDefs() {
    441   SmallVector<unsigned, 8> NewRegs;
    442   LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
    443                 nullptr, this).eliminateDeadDefs(DeadDefs);
    444 }
    445 
    446 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
    447   // MI may be in WorkList. Make sure we don't visit it.
    448   ErasedInstrs.insert(MI);
    449 }
    450 
    451 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
    452                                              MachineInstr *CopyMI) {
    453   assert(!CP.isPartial() && "This doesn't work for partial copies.");
    454   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
    455 
    456   LiveInterval &IntA =
    457     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    458   LiveInterval &IntB =
    459     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    460   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    461 
    462   // We have a non-trivially-coalescable copy with IntA being the source and
    463   // IntB being the dest, thus this defines a value number in IntB.  If the
    464   // source value number (in IntA) is defined by a copy from B, see if we can
    465   // merge these two pieces of B into a single value number, eliminating a copy.
    466   // For example:
    467   //
    468   //  A3 = B0
    469   //    ...
    470   //  B1 = A3      <- this copy
    471   //
    472   // In this case, B0 can be extended to where the B1 copy lives, allowing the
    473   // B1 value number to be replaced with B0 (which simplifies the B
    474   // liveinterval).
    475 
    476   // BValNo is a value number in B that is defined by a copy from A.  'B1' in
    477   // the example above.
    478   LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
    479   if (BS == IntB.end()) return false;
    480   VNInfo *BValNo = BS->valno;
    481 
    482   // Get the location that B is defined at.  Two options: either this value has
    483   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    484   // can't process it.
    485   if (BValNo->def != CopyIdx) return false;
    486 
    487   // AValNo is the value number in A that defines the copy, A3 in the example.
    488   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    489   LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
    490   // The live segment might not exist after fun with physreg coalescing.
    491   if (AS == IntA.end()) return false;
    492   VNInfo *AValNo = AS->valno;
    493 
    494   // If AValNo is defined as a copy from IntB, we can potentially process this.
    495   // Get the instruction that defines this value number.
    496   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    497   // Don't allow any partial copies, even if isCoalescable() allows them.
    498   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
    499     return false;
    500 
    501   // Get the Segment in IntB that this value number starts with.
    502   LiveInterval::iterator ValS =
    503     IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
    504   if (ValS == IntB.end())
    505     return false;
    506 
    507   // Make sure that the end of the live segment is inside the same block as
    508   // CopyMI.
    509   MachineInstr *ValSEndInst =
    510     LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
    511   if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
    512     return false;
    513 
    514   // Okay, we now know that ValS ends in the same block that the CopyMI
    515   // live-range starts.  If there are no intervening live segments between them
    516   // in IntB, we can merge them.
    517   if (ValS+1 != BS) return false;
    518 
    519   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
    520 
    521   SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
    522   // We are about to delete CopyMI, so need to remove it as the 'instruction
    523   // that defines this value #'. Update the valnum with the new defining
    524   // instruction #.
    525   BValNo->def = FillerStart;
    526 
    527   // Okay, we can merge them.  We need to insert a new liverange:
    528   // [ValS.end, BS.begin) of either value number, then we merge the
    529   // two value numbers.
    530   IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
    531 
    532   // Okay, merge "B1" into the same value number as "B0".
    533   if (BValNo != ValS->valno)
    534     IntB.MergeValueNumberInto(BValNo, ValS->valno);
    535 
    536   // Do the same for the subregister segments.
    537   for (LiveInterval::SubRange &S : IntB.subranges()) {
    538     VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
    539     S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
    540     VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
    541     if (SubBValNo != SubValSNo)
    542       S.MergeValueNumberInto(SubBValNo, SubValSNo);
    543   }
    544 
    545   DEBUG(dbgs() << "   result = " << IntB << '\n');
    546 
    547   // If the source instruction was killing the source register before the
    548   // merge, unset the isKill marker given the live range has been extended.
    549   int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
    550   if (UIdx != -1) {
    551     ValSEndInst->getOperand(UIdx).setIsKill(false);
    552   }
    553 
    554   // Rewrite the copy. If the copy instruction was killing the destination
    555   // register before the merge, find the last use and trim the live range. That
    556   // will also add the isKill marker.
    557   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
    558   if (AS->end == CopyIdx)
    559     LIS->shrinkToUses(&IntA);
    560 
    561   ++numExtends;
    562   return true;
    563 }
    564 
    565 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
    566                                              LiveInterval &IntB,
    567                                              VNInfo *AValNo,
    568                                              VNInfo *BValNo) {
    569   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
    570   // the PHI values.
    571   if (LIS->hasPHIKill(IntA, AValNo))
    572     return true;
    573 
    574   for (LiveRange::Segment &ASeg : IntA.segments) {
    575     if (ASeg.valno != AValNo) continue;
    576     LiveInterval::iterator BI =
    577       std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
    578     if (BI != IntB.begin())
    579       --BI;
    580     for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
    581       if (BI->valno == BValNo)
    582         continue;
    583       if (BI->start <= ASeg.start && BI->end > ASeg.start)
    584         return true;
    585       if (BI->start > ASeg.start && BI->start < ASeg.end)
    586         return true;
    587     }
    588   }
    589   return false;
    590 }
    591 
    592 /// Copy segements with value number @p SrcValNo from liverange @p Src to live
    593 /// range @Dst and use value number @p DstValNo there.
    594 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
    595                                  const LiveRange &Src, const VNInfo *SrcValNo)
    596 {
    597   for (const LiveRange::Segment &S : Src.segments) {
    598     if (S.valno != SrcValNo)
    599       continue;
    600     Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
    601   }
    602 }
    603 
    604 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
    605                                                  MachineInstr *CopyMI) {
    606   assert(!CP.isPhys());
    607 
    608   LiveInterval &IntA =
    609       LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    610   LiveInterval &IntB =
    611       LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    612 
    613   // We found a non-trivially-coalescable copy with IntA being the source and
    614   // IntB being the dest, thus this defines a value number in IntB.  If the
    615   // source value number (in IntA) is defined by a commutable instruction and
    616   // its other operand is coalesced to the copy dest register, see if we can
    617   // transform the copy into a noop by commuting the definition. For example,
    618   //
    619   //  A3 = op A2 B0<kill>
    620   //    ...
    621   //  B1 = A3      <- this copy
    622   //    ...
    623   //     = op A3   <- more uses
    624   //
    625   // ==>
    626   //
    627   //  B2 = op B0 A2<kill>
    628   //    ...
    629   //  B1 = B2      <- now an identity copy
    630   //    ...
    631   //     = op B2   <- more uses
    632 
    633   // BValNo is a value number in B that is defined by a copy from A. 'B1' in
    634   // the example above.
    635   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    636   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    637   assert(BValNo != nullptr && BValNo->def == CopyIdx);
    638 
    639   // AValNo is the value number in A that defines the copy, A3 in the example.
    640   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    641   assert(AValNo && !AValNo->isUnused() && "COPY source not live");
    642   if (AValNo->isPHIDef())
    643     return false;
    644   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    645   if (!DefMI)
    646     return false;
    647   if (!DefMI->isCommutable())
    648     return false;
    649   // If DefMI is a two-address instruction then commuting it will change the
    650   // destination register.
    651   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    652   assert(DefIdx != -1);
    653   unsigned UseOpIdx;
    654   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    655     return false;
    656   unsigned Op1, Op2, NewDstIdx;
    657   if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
    658     return false;
    659   if (Op1 == UseOpIdx)
    660     NewDstIdx = Op2;
    661   else if (Op2 == UseOpIdx)
    662     NewDstIdx = Op1;
    663   else
    664     return false;
    665 
    666   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    667   unsigned NewReg = NewDstMO.getReg();
    668   if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
    669     return false;
    670 
    671   // Make sure there are no other definitions of IntB that would reach the
    672   // uses which the new definition can reach.
    673   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    674     return false;
    675 
    676   // If some of the uses of IntA.reg is already coalesced away, return false.
    677   // It's not possible to determine whether it's safe to perform the coalescing.
    678   for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
    679     MachineInstr *UseMI = MO.getParent();
    680     unsigned OpNo = &MO - &UseMI->getOperand(0);
    681     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
    682     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
    683     if (US == IntA.end() || US->valno != AValNo)
    684       continue;
    685     // If this use is tied to a def, we can't rewrite the register.
    686     if (UseMI->isRegTiedToDefOperand(OpNo))
    687       return false;
    688   }
    689 
    690   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
    691                << *DefMI);
    692 
    693   // At this point we have decided that it is legal to do this
    694   // transformation.  Start by commuting the instruction.
    695   MachineBasicBlock *MBB = DefMI->getParent();
    696   MachineInstr *NewMI = TII->commuteInstruction(DefMI);
    697   if (!NewMI)
    698     return false;
    699   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    700       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    701       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    702     return false;
    703   if (NewMI != DefMI) {
    704     LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
    705     MachineBasicBlock::iterator Pos = DefMI;
    706     MBB->insert(Pos, NewMI);
    707     MBB->erase(DefMI);
    708   }
    709 
    710   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    711   // A = or A, B
    712   // ...
    713   // B = A
    714   // ...
    715   // C = A<kill>
    716   // ...
    717   //   = B
    718 
    719   // Update uses of IntA of the specific Val# with IntB.
    720   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    721                                          UE = MRI->use_end();
    722        UI != UE; /* ++UI is below because of possible MI removal */) {
    723     MachineOperand &UseMO = *UI;
    724     ++UI;
    725     if (UseMO.isUndef())
    726       continue;
    727     MachineInstr *UseMI = UseMO.getParent();
    728     if (UseMI->isDebugValue()) {
    729       // FIXME These don't have an instruction index.  Not clear we have enough
    730       // info to decide whether to do this replacement or not.  For now do it.
    731       UseMO.setReg(NewReg);
    732       continue;
    733     }
    734     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
    735     LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
    736     assert(US != IntA.end() && "Use must be live");
    737     if (US->valno != AValNo)
    738       continue;
    739     // Kill flags are no longer accurate. They are recomputed after RA.
    740     UseMO.setIsKill(false);
    741     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    742       UseMO.substPhysReg(NewReg, *TRI);
    743     else
    744       UseMO.setReg(NewReg);
    745     if (UseMI == CopyMI)
    746       continue;
    747     if (!UseMI->isCopy())
    748       continue;
    749     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    750         UseMI->getOperand(0).getSubReg())
    751       continue;
    752 
    753     // This copy will become a noop. If it's defining a new val#, merge it into
    754     // BValNo.
    755     SlotIndex DefIdx = UseIdx.getRegSlot();
    756     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    757     if (!DVNI)
    758       continue;
    759     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    760     assert(DVNI->def == DefIdx);
    761     BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
    762     for (LiveInterval::SubRange &S : IntB.subranges()) {
    763       VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
    764       if (!SubDVNI)
    765         continue;
    766       VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
    767       assert(SubBValNo->def == CopyIdx);
    768       S.MergeValueNumberInto(SubDVNI, SubBValNo);
    769     }
    770 
    771     ErasedInstrs.insert(UseMI);
    772     LIS->RemoveMachineInstrFromMaps(UseMI);
    773     UseMI->eraseFromParent();
    774   }
    775 
    776   // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
    777   // is updated.
    778   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
    779   if (IntB.hasSubRanges()) {
    780     if (!IntA.hasSubRanges()) {
    781       unsigned Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
    782       IntA.createSubRangeFrom(Allocator, Mask, IntA);
    783     }
    784     SlotIndex AIdx = CopyIdx.getRegSlot(true);
    785     for (LiveInterval::SubRange &SA : IntA.subranges()) {
    786       VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
    787       assert(ASubValNo != nullptr);
    788 
    789       unsigned AMask = SA.LaneMask;
    790       for (LiveInterval::SubRange &SB : IntB.subranges()) {
    791         unsigned BMask = SB.LaneMask;
    792         unsigned Common = BMask & AMask;
    793         if (Common == 0)
    794           continue;
    795 
    796         DEBUG(
    797             dbgs() << format("\t\tCopy+Merge %04X into %04X\n", BMask, Common));
    798         unsigned BRest = BMask & ~AMask;
    799         LiveInterval::SubRange *CommonRange;
    800         if (BRest != 0) {
    801           SB.LaneMask = BRest;
    802           DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", BRest));
    803           // Duplicate SubRange for newly merged common stuff.
    804           CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
    805         } else {
    806           // We van reuse the L SubRange.
    807           SB.LaneMask = Common;
    808           CommonRange = &SB;
    809         }
    810         LiveRange RangeCopy(SB, Allocator);
    811 
    812         VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
    813         assert(BSubValNo->def == CopyIdx);
    814         BSubValNo->def = ASubValNo->def;
    815         addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
    816         AMask &= ~BMask;
    817       }
    818       if (AMask != 0) {
    819         DEBUG(dbgs() << format("\t\tNew Lane %04X\n", AMask));
    820         LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
    821         VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
    822         addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
    823       }
    824     }
    825   }
    826 
    827   BValNo->def = AValNo->def;
    828   addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
    829   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    830 
    831   LIS->removeVRegDefAt(IntA, AValNo->def);
    832 
    833   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    834   ++numCommutes;
    835   return true;
    836 }
    837 
    838 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
    839 /// defining a subregister.
    840 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
    841   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
    842          "This code cannot handle physreg aliasing");
    843   for (const MachineOperand &Op : MI.operands()) {
    844     if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
    845       continue;
    846     // Return true if we define the full register or don't care about the value
    847     // inside other subregisters.
    848     if (Op.getSubReg() == 0 || Op.isUndef())
    849       return true;
    850   }
    851   return false;
    852 }
    853 
    854 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
    855                                                 MachineInstr *CopyMI,
    856                                                 bool &IsDefCopy) {
    857   IsDefCopy = false;
    858   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
    859   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
    860   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
    861   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
    862   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
    863     return false;
    864 
    865   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
    866   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
    867   VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
    868   assert(ValNo && "CopyMI input register not live");
    869   if (ValNo->isPHIDef() || ValNo->isUnused())
    870     return false;
    871   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    872   if (!DefMI)
    873     return false;
    874   if (DefMI->isCopyLike()) {
    875     IsDefCopy = true;
    876     return false;
    877   }
    878   if (!TII->isAsCheapAsAMove(DefMI))
    879     return false;
    880   if (!TII->isTriviallyReMaterializable(DefMI, AA))
    881     return false;
    882   if (!definesFullReg(*DefMI, SrcReg))
    883     return false;
    884   bool SawStore = false;
    885   if (!DefMI->isSafeToMove(TII, AA, SawStore))
    886     return false;
    887   const MCInstrDesc &MCID = DefMI->getDesc();
    888   if (MCID.getNumDefs() != 1)
    889     return false;
    890   // Only support subregister destinations when the def is read-undef.
    891   MachineOperand &DstOperand = CopyMI->getOperand(0);
    892   unsigned CopyDstReg = DstOperand.getReg();
    893   if (DstOperand.getSubReg() && !DstOperand.isUndef())
    894     return false;
    895 
    896   // If both SrcIdx and DstIdx are set, correct rematerialization would widen
    897   // the register substantially (beyond both source and dest size). This is bad
    898   // for performance since it can cascade through a function, introducing many
    899   // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
    900   // around after a few subreg copies).
    901   if (SrcIdx && DstIdx)
    902     return false;
    903 
    904   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
    905   if (!DefMI->isImplicitDef()) {
    906     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    907       unsigned NewDstReg = DstReg;
    908 
    909       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
    910                                               DefMI->getOperand(0).getSubReg());
    911       if (NewDstIdx)
    912         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
    913 
    914       // Finally, make sure that the physical subregister that will be
    915       // constructed later is permitted for the instruction.
    916       if (!DefRC->contains(NewDstReg))
    917         return false;
    918     } else {
    919       // Theoretically, some stack frame reference could exist. Just make sure
    920       // it hasn't actually happened.
    921       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
    922              "Only expect to deal with virtual or physical registers");
    923     }
    924   }
    925 
    926   MachineBasicBlock *MBB = CopyMI->getParent();
    927   MachineBasicBlock::iterator MII =
    928     std::next(MachineBasicBlock::iterator(CopyMI));
    929   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
    930   MachineInstr *NewMI = std::prev(MII);
    931 
    932   LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
    933   CopyMI->eraseFromParent();
    934   ErasedInstrs.insert(CopyMI);
    935 
    936   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
    937   // We need to remember these so we can add intervals once we insert
    938   // NewMI into SlotIndexes.
    939   SmallVector<unsigned, 4> NewMIImplDefs;
    940   for (unsigned i = NewMI->getDesc().getNumOperands(),
    941          e = NewMI->getNumOperands(); i != e; ++i) {
    942     MachineOperand &MO = NewMI->getOperand(i);
    943     if (MO.isReg()) {
    944       assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
    945              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
    946       NewMIImplDefs.push_back(MO.getReg());
    947     }
    948   }
    949 
    950   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
    951     const TargetRegisterClass *NewRC = CP.getNewRC();
    952     unsigned NewIdx = NewMI->getOperand(0).getSubReg();
    953 
    954     if (DefRC != nullptr) {
    955       if (NewIdx)
    956         NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
    957       else
    958         NewRC = TRI->getCommonSubClass(NewRC, DefRC);
    959       assert(NewRC && "subreg chosen for remat incompatible with instruction");
    960     }
    961     MRI->setRegClass(DstReg, NewRC);
    962 
    963     updateRegDefsUses(DstReg, DstReg, DstIdx);
    964     NewMI->getOperand(0).setSubReg(NewIdx);
    965   } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
    966     // The New instruction may be defining a sub-register of what's actually
    967     // been asked for. If so it must implicitly define the whole thing.
    968     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
    969            "Only expect virtual or physical registers in remat");
    970     NewMI->getOperand(0).setIsDead(true);
    971     NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
    972                                                 true  /*IsDef*/,
    973                                                 true  /*IsImp*/,
    974                                                 false /*IsKill*/));
    975     // Record small dead def live-ranges for all the subregisters
    976     // of the destination register.
    977     // Otherwise, variables that live through may miss some
    978     // interferences, thus creating invalid allocation.
    979     // E.g., i386 code:
    980     // vreg1 = somedef ; vreg1 GR8
    981     // vreg2 = remat ; vreg2 GR32
    982     // CL = COPY vreg2.sub_8bit
    983     // = somedef vreg1 ; vreg1 GR8
    984     // =>
    985     // vreg1 = somedef ; vreg1 GR8
    986     // ECX<def, dead> = remat ; CL<imp-def>
    987     // = somedef vreg1 ; vreg1 GR8
    988     // vreg1 will see the inteferences with CL but not with CH since
    989     // no live-ranges would have been created for ECX.
    990     // Fix that!
    991     SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    992     for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
    993          Units.isValid(); ++Units)
    994       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
    995         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
    996   }
    997 
    998   if (NewMI->getOperand(0).getSubReg())
    999     NewMI->getOperand(0).setIsUndef();
   1000 
   1001   // CopyMI may have implicit operands, transfer them over to the newly
   1002   // rematerialized instruction. And update implicit def interval valnos.
   1003   for (unsigned i = CopyMI->getDesc().getNumOperands(),
   1004          e = CopyMI->getNumOperands(); i != e; ++i) {
   1005     MachineOperand &MO = CopyMI->getOperand(i);
   1006     if (MO.isReg()) {
   1007       assert(MO.isImplicit() && "No explicit operands after implict operands.");
   1008       // Discard VReg implicit defs.
   1009       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
   1010         NewMI->addOperand(MO);
   1011       }
   1012     }
   1013   }
   1014 
   1015   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
   1016   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
   1017     unsigned Reg = NewMIImplDefs[i];
   1018     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
   1019       if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
   1020         LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
   1021   }
   1022 
   1023   DEBUG(dbgs() << "Remat: " << *NewMI);
   1024   ++NumReMats;
   1025 
   1026   // The source interval can become smaller because we removed a use.
   1027   LIS->shrinkToUses(&SrcInt, &DeadDefs);
   1028   if (!DeadDefs.empty()) {
   1029     // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
   1030     // to describe DstReg instead.
   1031     for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
   1032       MachineInstr *UseMI = UseMO.getParent();
   1033       if (UseMI->isDebugValue()) {
   1034         UseMO.setReg(DstReg);
   1035         DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
   1036       }
   1037     }
   1038     eliminateDeadDefs();
   1039   }
   1040 
   1041   return true;
   1042 }
   1043 
   1044 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
   1045   // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
   1046   // local variables. When we have a copy like:
   1047   //
   1048   //   %vreg1 = COPY %vreg2<undef>
   1049   //
   1050   // We delete the copy and remove the corresponding value number from %vreg1.
   1051   // Any uses of that value number are marked as <undef>.
   1052 
   1053   // Note that we do not query CoalescerPair here but redo isMoveInstr as the
   1054   // CoalescerPair may have a new register class with adjusted subreg indices
   1055   // at this point.
   1056   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
   1057   isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
   1058 
   1059   SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
   1060   const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
   1061   // CopyMI is undef iff SrcReg is not live before the instruction.
   1062   if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
   1063     unsigned SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
   1064     for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
   1065       if ((SR.LaneMask & SrcMask) == 0)
   1066         continue;
   1067       if (SR.liveAt(Idx))
   1068         return false;
   1069     }
   1070   } else if (SrcLI.liveAt(Idx))
   1071     return false;
   1072 
   1073   DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
   1074 
   1075   // Remove any DstReg segments starting at the instruction.
   1076   LiveInterval &DstLI = LIS->getInterval(DstReg);
   1077   SlotIndex RegIndex = Idx.getRegSlot();
   1078   // Remove value or merge with previous one in case of a subregister def.
   1079   if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
   1080     VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
   1081     DstLI.MergeValueNumberInto(VNI, PrevVNI);
   1082 
   1083     // The affected subregister segments can be removed.
   1084     unsigned DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
   1085     for (LiveInterval::SubRange &SR : DstLI.subranges()) {
   1086       if ((SR.LaneMask & DstMask) == 0)
   1087         continue;
   1088 
   1089       VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
   1090       assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
   1091       SR.removeValNo(SVNI);
   1092     }
   1093     DstLI.removeEmptySubRanges();
   1094   } else
   1095     LIS->removeVRegDefAt(DstLI, RegIndex);
   1096 
   1097   // Mark uses as undef.
   1098   for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
   1099     if (MO.isDef() /*|| MO.isUndef()*/)
   1100       continue;
   1101     const MachineInstr &MI = *MO.getParent();
   1102     SlotIndex UseIdx = LIS->getInstructionIndex(&MI);
   1103     unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
   1104     bool isLive;
   1105     if (UseMask != ~0u && DstLI.hasSubRanges()) {
   1106       isLive = false;
   1107       for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
   1108         if ((SR.LaneMask & UseMask) == 0)
   1109           continue;
   1110         if (SR.liveAt(UseIdx)) {
   1111           isLive = true;
   1112           break;
   1113         }
   1114       }
   1115     } else
   1116       isLive = DstLI.liveAt(UseIdx);
   1117     if (isLive)
   1118       continue;
   1119     MO.setIsUndef(true);
   1120     DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
   1121   }
   1122   return true;
   1123 }
   1124 
   1125 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
   1126                                           unsigned DstReg,
   1127                                           unsigned SubIdx) {
   1128   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
   1129   LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
   1130 
   1131   SmallPtrSet<MachineInstr*, 8> Visited;
   1132   for (MachineRegisterInfo::reg_instr_iterator
   1133        I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
   1134        I != E; ) {
   1135     MachineInstr *UseMI = &*(I++);
   1136 
   1137     // Each instruction can only be rewritten once because sub-register
   1138     // composition is not always idempotent. When SrcReg != DstReg, rewriting
   1139     // the UseMI operands removes them from the SrcReg use-def chain, but when
   1140     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
   1141     // operands mentioning the virtual register.
   1142     if (SrcReg == DstReg && !Visited.insert(UseMI).second)
   1143       continue;
   1144 
   1145     SmallVector<unsigned,8> Ops;
   1146     bool Reads, Writes;
   1147     std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
   1148 
   1149     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
   1150     // because SrcReg is a sub-register.
   1151     if (DstInt && !Reads && SubIdx)
   1152       Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
   1153 
   1154     // Replace SrcReg with DstReg in all UseMI operands.
   1155     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1156       MachineOperand &MO = UseMI->getOperand(Ops[i]);
   1157 
   1158       // Adjust <undef> flags in case of sub-register joins. We don't want to
   1159       // turn a full def into a read-modify-write sub-register def and vice
   1160       // versa.
   1161       if (SubIdx && MO.isDef())
   1162         MO.setIsUndef(!Reads);
   1163 
   1164       // A subreg use of a partially undef (super) register may be a complete
   1165       // undef use now and then has to be marked that way.
   1166       if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
   1167         if (!DstInt->hasSubRanges()) {
   1168           BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
   1169           unsigned Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
   1170           DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
   1171         }
   1172         unsigned Mask = TRI->getSubRegIndexLaneMask(SubIdx);
   1173         bool IsUndef = true;
   1174         SlotIndex MIIdx = UseMI->isDebugValue()
   1175           ? LIS->getSlotIndexes()->getIndexBefore(UseMI)
   1176           : LIS->getInstructionIndex(UseMI);
   1177         SlotIndex UseIdx = MIIdx.getRegSlot(true);
   1178         for (LiveInterval::SubRange &S : DstInt->subranges()) {
   1179           if ((S.LaneMask & Mask) == 0)
   1180             continue;
   1181           if (S.liveAt(UseIdx)) {
   1182             IsUndef = false;
   1183             break;
   1184           }
   1185         }
   1186         if (IsUndef) {
   1187           MO.setIsUndef(true);
   1188           // We found out some subregister use is actually reading an undefined
   1189           // value. In some cases the whole vreg has become undefined at this
   1190           // point so we have to potentially shrink the main range if the
   1191           // use was ending a live segment there.
   1192           LiveQueryResult Q = DstInt->Query(MIIdx);
   1193           if (Q.valueOut() == nullptr)
   1194             ShrinkMainRange = true;
   1195         }
   1196       }
   1197 
   1198       if (DstIsPhys)
   1199         MO.substPhysReg(DstReg, *TRI);
   1200       else
   1201         MO.substVirtReg(DstReg, SubIdx, *TRI);
   1202     }
   1203 
   1204     DEBUG({
   1205         dbgs() << "\t\tupdated: ";
   1206         if (!UseMI->isDebugValue())
   1207           dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
   1208         dbgs() << *UseMI;
   1209       });
   1210   }
   1211 }
   1212 
   1213 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
   1214   // Always join simple intervals that are defined by a single copy from a
   1215   // reserved register. This doesn't increase register pressure, so it is
   1216   // always beneficial.
   1217   if (!MRI->isReserved(CP.getDstReg())) {
   1218     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
   1219     return false;
   1220   }
   1221 
   1222   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
   1223   if (JoinVInt.containsOneValue())
   1224     return true;
   1225 
   1226   DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
   1227   return false;
   1228 }
   1229 
   1230 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
   1231 
   1232   Again = false;
   1233   DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
   1234 
   1235   CoalescerPair CP(*TRI);
   1236   if (!CP.setRegisters(CopyMI)) {
   1237     DEBUG(dbgs() << "\tNot coalescable.\n");
   1238     return false;
   1239   }
   1240 
   1241   if (CP.getNewRC()) {
   1242     auto SrcRC = MRI->getRegClass(CP.getSrcReg());
   1243     auto DstRC = MRI->getRegClass(CP.getDstReg());
   1244     unsigned SrcIdx = CP.getSrcIdx();
   1245     unsigned DstIdx = CP.getDstIdx();
   1246     if (CP.isFlipped()) {
   1247       std::swap(SrcIdx, DstIdx);
   1248       std::swap(SrcRC, DstRC);
   1249     }
   1250     if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
   1251                             CP.getNewRC())) {
   1252       DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
   1253       return false;
   1254     }
   1255   }
   1256 
   1257   // Dead code elimination. This really should be handled by MachineDCE, but
   1258   // sometimes dead copies slip through, and we can't generate invalid live
   1259   // ranges.
   1260   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
   1261     DEBUG(dbgs() << "\tCopy is dead.\n");
   1262     DeadDefs.push_back(CopyMI);
   1263     eliminateDeadDefs();
   1264     return true;
   1265   }
   1266 
   1267   // Eliminate undefs.
   1268   if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
   1269     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1270     CopyMI->eraseFromParent();
   1271     return false;  // Not coalescable.
   1272   }
   1273 
   1274   // Coalesced copies are normally removed immediately, but transformations
   1275   // like removeCopyByCommutingDef() can inadvertently create identity copies.
   1276   // When that happens, just join the values and remove the copy.
   1277   if (CP.getSrcReg() == CP.getDstReg()) {
   1278     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
   1279     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
   1280     const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
   1281     LiveQueryResult LRQ = LI.Query(CopyIdx);
   1282     if (VNInfo *DefVNI = LRQ.valueDefined()) {
   1283       VNInfo *ReadVNI = LRQ.valueIn();
   1284       assert(ReadVNI && "No value before copy and no <undef> flag.");
   1285       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
   1286       LI.MergeValueNumberInto(DefVNI, ReadVNI);
   1287 
   1288       // Process subregister liveranges.
   1289       for (LiveInterval::SubRange &S : LI.subranges()) {
   1290         LiveQueryResult SLRQ = S.Query(CopyIdx);
   1291         if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
   1292           VNInfo *SReadVNI = SLRQ.valueIn();
   1293           S.MergeValueNumberInto(SDefVNI, SReadVNI);
   1294         }
   1295       }
   1296       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
   1297     }
   1298     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1299     CopyMI->eraseFromParent();
   1300     return true;
   1301   }
   1302 
   1303   // Enforce policies.
   1304   if (CP.isPhys()) {
   1305     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
   1306                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
   1307                  << '\n');
   1308     if (!canJoinPhys(CP)) {
   1309       // Before giving up coalescing, if definition of source is defined by
   1310       // trivial computation, try rematerializing it.
   1311       bool IsDefCopy;
   1312       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1313         return true;
   1314       if (IsDefCopy)
   1315         Again = true;  // May be possible to coalesce later.
   1316       return false;
   1317     }
   1318   } else {
   1319     // When possible, let DstReg be the larger interval.
   1320     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
   1321                            LIS->getInterval(CP.getDstReg()).size())
   1322       CP.flip();
   1323 
   1324     DEBUG({
   1325       dbgs() << "\tConsidering merging to "
   1326              << TRI->getRegClassName(CP.getNewRC()) << " with ";
   1327       if (CP.getDstIdx() && CP.getSrcIdx())
   1328         dbgs() << PrintReg(CP.getDstReg()) << " in "
   1329                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
   1330                << PrintReg(CP.getSrcReg()) << " in "
   1331                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
   1332       else
   1333         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
   1334                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
   1335     });
   1336   }
   1337 
   1338   ShrinkMask = 0;
   1339   ShrinkMainRange = false;
   1340 
   1341   // Okay, attempt to join these two intervals.  On failure, this returns false.
   1342   // Otherwise, if one of the intervals being joined is a physreg, this method
   1343   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
   1344   // been modified, so we can use this information below to update aliases.
   1345   if (!joinIntervals(CP)) {
   1346     // Coalescing failed.
   1347 
   1348     // If definition of source is defined by trivial computation, try
   1349     // rematerializing it.
   1350     bool IsDefCopy;
   1351     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1352       return true;
   1353 
   1354     // If we can eliminate the copy without merging the live segments, do so
   1355     // now.
   1356     if (!CP.isPartial() && !CP.isPhys()) {
   1357       if (adjustCopiesBackFrom(CP, CopyMI) ||
   1358           removeCopyByCommutingDef(CP, CopyMI)) {
   1359         LIS->RemoveMachineInstrFromMaps(CopyMI);
   1360         CopyMI->eraseFromParent();
   1361         DEBUG(dbgs() << "\tTrivial!\n");
   1362         return true;
   1363       }
   1364     }
   1365 
   1366     // Otherwise, we are unable to join the intervals.
   1367     DEBUG(dbgs() << "\tInterference!\n");
   1368     Again = true;  // May be possible to coalesce later.
   1369     return false;
   1370   }
   1371 
   1372   // Coalescing to a virtual register that is of a sub-register class of the
   1373   // other. Make sure the resulting register is set to the right register class.
   1374   if (CP.isCrossClass()) {
   1375     ++numCrossRCs;
   1376     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1377   }
   1378 
   1379   // Removing sub-register copies can ease the register class constraints.
   1380   // Make sure we attempt to inflate the register class of DstReg.
   1381   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
   1382     InflateRegs.push_back(CP.getDstReg());
   1383 
   1384   // CopyMI has been erased by joinIntervals at this point. Remove it from
   1385   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
   1386   // to the work list. This keeps ErasedInstrs from growing needlessly.
   1387   ErasedInstrs.erase(CopyMI);
   1388 
   1389   // Rewrite all SrcReg operands to DstReg.
   1390   // Also update DstReg operands to include DstIdx if it is set.
   1391   if (CP.getDstIdx())
   1392     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
   1393   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
   1394 
   1395   // Shrink subregister ranges if necessary.
   1396   if (ShrinkMask != 0) {
   1397     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
   1398     for (LiveInterval::SubRange &S : LI.subranges()) {
   1399       if ((S.LaneMask & ShrinkMask) == 0)
   1400         continue;
   1401       DEBUG(dbgs() << "Shrink LaneUses (Lane "
   1402                    << format("%04X", S.LaneMask) << ")\n");
   1403       LIS->shrinkToUses(S, LI.reg);
   1404     }
   1405   }
   1406   if (ShrinkMainRange) {
   1407     LiveInterval &LI = LIS->getInterval(CP.getDstReg());
   1408     LIS->shrinkToUses(&LI);
   1409   }
   1410 
   1411   // SrcReg is guaranteed to be the register whose live interval that is
   1412   // being merged.
   1413   LIS->removeInterval(CP.getSrcReg());
   1414 
   1415   // Update regalloc hint.
   1416   TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1417 
   1418   DEBUG({
   1419     dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
   1420            << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
   1421     dbgs() << "\tResult = ";
   1422     if (CP.isPhys())
   1423       dbgs() << PrintReg(CP.getDstReg(), TRI);
   1424     else
   1425       dbgs() << LIS->getInterval(CP.getDstReg());
   1426     dbgs() << '\n';
   1427   });
   1428 
   1429   ++numJoins;
   1430   return true;
   1431 }
   1432 
   1433 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
   1434   unsigned DstReg = CP.getDstReg();
   1435   assert(CP.isPhys() && "Must be a physreg copy");
   1436   assert(MRI->isReserved(DstReg) && "Not a reserved register");
   1437   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1438   DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
   1439 
   1440   assert(RHS.containsOneValue() && "Invalid join with reserved register");
   1441 
   1442   // Optimization for reserved registers like ESP. We can only merge with a
   1443   // reserved physreg if RHS has a single value that is a copy of DstReg.
   1444   // The live range of the reserved register will look like a set of dead defs
   1445   // - we don't properly track the live range of reserved registers.
   1446 
   1447   // Deny any overlapping intervals.  This depends on all the reserved
   1448   // register live ranges to look like dead defs.
   1449   for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
   1450     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
   1451       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
   1452       return false;
   1453     }
   1454 
   1455   // Skip any value computations, we are not adding new values to the
   1456   // reserved register.  Also skip merging the live ranges, the reserved
   1457   // register live range doesn't need to be accurate as long as all the
   1458   // defs are there.
   1459 
   1460   // Delete the identity copy.
   1461   MachineInstr *CopyMI;
   1462   if (CP.isFlipped()) {
   1463     CopyMI = MRI->getVRegDef(RHS.reg);
   1464   } else {
   1465     if (!MRI->hasOneNonDBGUse(RHS.reg)) {
   1466       DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
   1467       return false;
   1468     }
   1469 
   1470     MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
   1471     CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
   1472     const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
   1473     const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
   1474 
   1475     // We checked above that there are no interfering defs of the physical
   1476     // register. However, for this case, where we intent to move up the def of
   1477     // the physical register, we also need to check for interfering uses.
   1478     SlotIndexes *Indexes = LIS->getSlotIndexes();
   1479     for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
   1480          SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
   1481       MachineInstr *MI = LIS->getInstructionFromIndex(SI);
   1482       if (MI->readsRegister(DstReg, TRI)) {
   1483         DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
   1484         return false;
   1485       }
   1486     }
   1487 
   1488     // We're going to remove the copy which defines a physical reserved
   1489     // register, so remove its valno, etc.
   1490     DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
   1491           << CopyRegIdx << "\n");
   1492 
   1493     LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
   1494     // Create a new dead def at the new def location.
   1495     for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
   1496       LiveRange &LR = LIS->getRegUnit(*UI);
   1497       LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
   1498     }
   1499   }
   1500 
   1501   LIS->RemoveMachineInstrFromMaps(CopyMI);
   1502   CopyMI->eraseFromParent();
   1503 
   1504   // We don't track kills for reserved registers.
   1505   MRI->clearKillFlags(CP.getSrcReg());
   1506 
   1507   return true;
   1508 }
   1509 
   1510 //===----------------------------------------------------------------------===//
   1511 //                 Interference checking and interval joining
   1512 //===----------------------------------------------------------------------===//
   1513 //
   1514 // In the easiest case, the two live ranges being joined are disjoint, and
   1515 // there is no interference to consider. It is quite common, though, to have
   1516 // overlapping live ranges, and we need to check if the interference can be
   1517 // resolved.
   1518 //
   1519 // The live range of a single SSA value forms a sub-tree of the dominator tree.
   1520 // This means that two SSA values overlap if and only if the def of one value
   1521 // is contained in the live range of the other value. As a special case, the
   1522 // overlapping values can be defined at the same index.
   1523 //
   1524 // The interference from an overlapping def can be resolved in these cases:
   1525 //
   1526 // 1. Coalescable copies. The value is defined by a copy that would become an
   1527 //    identity copy after joining SrcReg and DstReg. The copy instruction will
   1528 //    be removed, and the value will be merged with the source value.
   1529 //
   1530 //    There can be several copies back and forth, causing many values to be
   1531 //    merged into one. We compute a list of ultimate values in the joined live
   1532 //    range as well as a mappings from the old value numbers.
   1533 //
   1534 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
   1535 //    predecessors have a live out value. It doesn't cause real interference,
   1536 //    and can be merged into the value it overlaps. Like a coalescable copy, it
   1537 //    can be erased after joining.
   1538 //
   1539 // 3. Copy of external value. The overlapping def may be a copy of a value that
   1540 //    is already in the other register. This is like a coalescable copy, but
   1541 //    the live range of the source register must be trimmed after erasing the
   1542 //    copy instruction:
   1543 //
   1544 //      %src = COPY %ext
   1545 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
   1546 //
   1547 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
   1548 //    defining one lane at a time:
   1549 //
   1550 //      %dst:ssub0<def,read-undef> = FOO
   1551 //      %src = BAR
   1552 //      %dst:ssub1<def> = COPY %src
   1553 //
   1554 //    The live range of %src overlaps the %dst value defined by FOO, but
   1555 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
   1556 //    which was undef anyway.
   1557 //
   1558 //    The value mapping is more complicated in this case. The final live range
   1559 //    will have different value numbers for both FOO and BAR, but there is no
   1560 //    simple mapping from old to new values. It may even be necessary to add
   1561 //    new PHI values.
   1562 //
   1563 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
   1564 //    is live, but never read. This can happen because we don't compute
   1565 //    individual live ranges per lane.
   1566 //
   1567 //      %dst<def> = FOO
   1568 //      %src = BAR
   1569 //      %dst:ssub1<def> = COPY %src
   1570 //
   1571 //    This kind of interference is only resolved locally. If the clobbered
   1572 //    lane value escapes the block, the join is aborted.
   1573 
   1574 namespace {
   1575 /// Track information about values in a single virtual register about to be
   1576 /// joined. Objects of this class are always created in pairs - one for each
   1577 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
   1578 /// pair)
   1579 class JoinVals {
   1580   /// Live range we work on.
   1581   LiveRange &LR;
   1582   /// (Main) register we work on.
   1583   const unsigned Reg;
   1584 
   1585   /// Reg (and therefore the values in this liverange) will end up as
   1586   /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
   1587   /// CP.SrcIdx.
   1588   const unsigned SubIdx;
   1589   /// The LaneMask that this liverange will occupy the coalesced register. May
   1590   /// be smaller than the lanemask produced by SubIdx when merging subranges.
   1591   const unsigned LaneMask;
   1592 
   1593   /// This is true when joining sub register ranges, false when joining main
   1594   /// ranges.
   1595   const bool SubRangeJoin;
   1596   /// Whether the current LiveInterval tracks subregister liveness.
   1597   const bool TrackSubRegLiveness;
   1598 
   1599   /// Values that will be present in the final live range.
   1600   SmallVectorImpl<VNInfo*> &NewVNInfo;
   1601 
   1602   const CoalescerPair &CP;
   1603   LiveIntervals *LIS;
   1604   SlotIndexes *Indexes;
   1605   const TargetRegisterInfo *TRI;
   1606 
   1607   /// Value number assignments. Maps value numbers in LI to entries in
   1608   /// NewVNInfo. This is suitable for passing to LiveInterval::join().
   1609   SmallVector<int, 8> Assignments;
   1610 
   1611   /// Conflict resolution for overlapping values.
   1612   enum ConflictResolution {
   1613     /// No overlap, simply keep this value.
   1614     CR_Keep,
   1615 
   1616     /// Merge this value into OtherVNI and erase the defining instruction.
   1617     /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
   1618     /// values.
   1619     CR_Erase,
   1620 
   1621     /// Merge this value into OtherVNI but keep the defining instruction.
   1622     /// This is for the special case where OtherVNI is defined by the same
   1623     /// instruction.
   1624     CR_Merge,
   1625 
   1626     /// Keep this value, and have it replace OtherVNI where possible. This
   1627     /// complicates value mapping since OtherVNI maps to two different values
   1628     /// before and after this def.
   1629     /// Used when clobbering undefined or dead lanes.
   1630     CR_Replace,
   1631 
   1632     /// Unresolved conflict. Visit later when all values have been mapped.
   1633     CR_Unresolved,
   1634 
   1635     /// Unresolvable conflict. Abort the join.
   1636     CR_Impossible
   1637   };
   1638 
   1639   /// Per-value info for LI. The lane bit masks are all relative to the final
   1640   /// joined register, so they can be compared directly between SrcReg and
   1641   /// DstReg.
   1642   struct Val {
   1643     ConflictResolution Resolution;
   1644 
   1645     /// Lanes written by this def, 0 for unanalyzed values.
   1646     unsigned WriteLanes;
   1647 
   1648     /// Lanes with defined values in this register. Other lanes are undef and
   1649     /// safe to clobber.
   1650     unsigned ValidLanes;
   1651 
   1652     /// Value in LI being redefined by this def.
   1653     VNInfo *RedefVNI;
   1654 
   1655     /// Value in the other live range that overlaps this def, if any.
   1656     VNInfo *OtherVNI;
   1657 
   1658     /// Is this value an IMPLICIT_DEF that can be erased?
   1659     ///
   1660     /// IMPLICIT_DEF values should only exist at the end of a basic block that
   1661     /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
   1662     /// safely erased if they are overlapping a live value in the other live
   1663     /// interval.
   1664     ///
   1665     /// Weird control flow graphs and incomplete PHI handling in
   1666     /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
   1667     /// longer live ranges. Such IMPLICIT_DEF values should be treated like
   1668     /// normal values.
   1669     bool ErasableImplicitDef;
   1670 
   1671     /// True when the live range of this value will be pruned because of an
   1672     /// overlapping CR_Replace value in the other live range.
   1673     bool Pruned;
   1674 
   1675     /// True once Pruned above has been computed.
   1676     bool PrunedComputed;
   1677 
   1678     Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
   1679             RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
   1680             Pruned(false), PrunedComputed(false) {}
   1681 
   1682     bool isAnalyzed() const { return WriteLanes != 0; }
   1683   };
   1684 
   1685   /// One entry per value number in LI.
   1686   SmallVector<Val, 8> Vals;
   1687 
   1688   /// Compute the bitmask of lanes actually written by DefMI.
   1689   /// Set Redef if there are any partial register definitions that depend on the
   1690   /// previous value of the register.
   1691   unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
   1692 
   1693   /// Find the ultimate value that VNI was copied from.
   1694   std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
   1695 
   1696   bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
   1697 
   1698   /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
   1699   /// Return a conflict resolution when possible, but leave the hard cases as
   1700   /// CR_Unresolved.
   1701   /// Recursively calls computeAssignment() on this and Other, guaranteeing that
   1702   /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
   1703   /// The recursion always goes upwards in the dominator tree, making loops
   1704   /// impossible.
   1705   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
   1706 
   1707   /// Compute the value assignment for ValNo in RI.
   1708   /// This may be called recursively by analyzeValue(), but never for a ValNo on
   1709   /// the stack.
   1710   void computeAssignment(unsigned ValNo, JoinVals &Other);
   1711 
   1712   /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
   1713   /// the extent of the tainted lanes in the block.
   1714   ///
   1715   /// Multiple values in Other.LR can be affected since partial redefinitions
   1716   /// can preserve previously tainted lanes.
   1717   ///
   1718   ///   1 %dst = VLOAD           <-- Define all lanes in %dst
   1719   ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
   1720   ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
   1721   ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
   1722   ///
   1723   /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
   1724   /// entry to TaintedVals.
   1725   ///
   1726   /// Returns false if the tainted lanes extend beyond the basic block.
   1727   bool taintExtent(unsigned, unsigned, JoinVals&,
   1728                    SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
   1729 
   1730   /// Return true if MI uses any of the given Lanes from Reg.
   1731   /// This does not include partial redefinitions of Reg.
   1732   bool usesLanes(const MachineInstr *MI, unsigned, unsigned, unsigned) const;
   1733 
   1734   /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
   1735   /// be pruned:
   1736   ///
   1737   ///   %dst = COPY %src
   1738   ///   %src = COPY %dst  <-- This value to be pruned.
   1739   ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
   1740   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
   1741 
   1742 public:
   1743   JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, unsigned LaneMask,
   1744            SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
   1745            LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
   1746            bool TrackSubRegLiveness)
   1747     : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
   1748       SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
   1749       NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
   1750       TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
   1751   {}
   1752 
   1753   /// Analyze defs in LR and compute a value mapping in NewVNInfo.
   1754   /// Returns false if any conflicts were impossible to resolve.
   1755   bool mapValues(JoinVals &Other);
   1756 
   1757   /// Try to resolve conflicts that require all values to be mapped.
   1758   /// Returns false if any conflicts were impossible to resolve.
   1759   bool resolveConflicts(JoinVals &Other);
   1760 
   1761   /// Prune the live range of values in Other.LR where they would conflict with
   1762   /// CR_Replace values in LR. Collect end points for restoring the live range
   1763   /// after joining.
   1764   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
   1765                    bool changeInstrs);
   1766 
   1767   /// Removes subranges starting at copies that get removed. This sometimes
   1768   /// happens when undefined subranges are copied around. These ranges contain
   1769   /// no usefull information and can be removed.
   1770   void pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask);
   1771 
   1772   /// Erase any machine instructions that have been coalesced away.
   1773   /// Add erased instructions to ErasedInstrs.
   1774   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
   1775   /// the erased instrs.
   1776   void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
   1777                    SmallVectorImpl<unsigned> &ShrinkRegs);
   1778 
   1779   /// Remove liverange defs at places where implicit defs will be removed.
   1780   void removeImplicitDefs();
   1781 
   1782   /// Get the value assignments suitable for passing to LiveInterval::join.
   1783   const int *getAssignments() const { return Assignments.data(); }
   1784 };
   1785 } // end anonymous namespace
   1786 
   1787 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
   1788   const {
   1789   unsigned L = 0;
   1790   for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
   1791     if (!MO->isReg() || MO->getReg() != Reg || !MO->isDef())
   1792       continue;
   1793     L |= TRI->getSubRegIndexLaneMask(
   1794            TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
   1795     if (MO->readsReg())
   1796       Redef = true;
   1797   }
   1798   return L;
   1799 }
   1800 
   1801 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
   1802     const VNInfo *VNI) const {
   1803   unsigned Reg = this->Reg;
   1804 
   1805   while (!VNI->isPHIDef()) {
   1806     SlotIndex Def = VNI->def;
   1807     MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   1808     assert(MI && "No defining instruction");
   1809     if (!MI->isFullCopy())
   1810       return std::make_pair(VNI, Reg);
   1811     unsigned SrcReg = MI->getOperand(1).getReg();
   1812     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1813       return std::make_pair(VNI, Reg);
   1814 
   1815     const LiveInterval &LI = LIS->getInterval(SrcReg);
   1816     const VNInfo *ValueIn;
   1817     // No subrange involved.
   1818     if (!SubRangeJoin || !LI.hasSubRanges()) {
   1819       LiveQueryResult LRQ = LI.Query(Def);
   1820       ValueIn = LRQ.valueIn();
   1821     } else {
   1822       // Query subranges. Pick the first matching one.
   1823       ValueIn = nullptr;
   1824       for (const LiveInterval::SubRange &S : LI.subranges()) {
   1825         // Transform lanemask to a mask in the joined live interval.
   1826         unsigned SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
   1827         if ((SMask & LaneMask) == 0)
   1828           continue;
   1829         LiveQueryResult LRQ = S.Query(Def);
   1830         ValueIn = LRQ.valueIn();
   1831         break;
   1832       }
   1833     }
   1834     if (ValueIn == nullptr)
   1835       break;
   1836     VNI = ValueIn;
   1837     Reg = SrcReg;
   1838   }
   1839   return std::make_pair(VNI, Reg);
   1840 }
   1841 
   1842 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
   1843                                const JoinVals &Other) const {
   1844   const VNInfo *Orig0;
   1845   unsigned Reg0;
   1846   std::tie(Orig0, Reg0) = followCopyChain(Value0);
   1847   if (Orig0 == Value1)
   1848     return true;
   1849 
   1850   const VNInfo *Orig1;
   1851   unsigned Reg1;
   1852   std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
   1853 
   1854   // The values are equal if they are defined at the same place and use the
   1855   // same register. Note that we cannot compare VNInfos directly as some of
   1856   // them might be from a copy created in mergeSubRangeInto()  while the other
   1857   // is from the original LiveInterval.
   1858   return Orig0->def == Orig1->def && Reg0 == Reg1;
   1859 }
   1860 
   1861 JoinVals::ConflictResolution
   1862 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
   1863   Val &V = Vals[ValNo];
   1864   assert(!V.isAnalyzed() && "Value has already been analyzed!");
   1865   VNInfo *VNI = LR.getValNumInfo(ValNo);
   1866   if (VNI->isUnused()) {
   1867     V.WriteLanes = ~0u;
   1868     return CR_Keep;
   1869   }
   1870 
   1871   // Get the instruction defining this value, compute the lanes written.
   1872   const MachineInstr *DefMI = nullptr;
   1873   if (VNI->isPHIDef()) {
   1874     // Conservatively assume that all lanes in a PHI are valid.
   1875     unsigned Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
   1876     V.ValidLanes = V.WriteLanes = Lanes;
   1877   } else {
   1878     DefMI = Indexes->getInstructionFromIndex(VNI->def);
   1879     assert(DefMI != nullptr);
   1880     if (SubRangeJoin) {
   1881       // We don't care about the lanes when joining subregister ranges.
   1882       V.WriteLanes = V.ValidLanes = 1;
   1883       if (DefMI->isImplicitDef()) {
   1884         V.ValidLanes = 0;
   1885         V.ErasableImplicitDef = true;
   1886       }
   1887     } else {
   1888       bool Redef = false;
   1889       V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
   1890 
   1891       // If this is a read-modify-write instruction, there may be more valid
   1892       // lanes than the ones written by this instruction.
   1893       // This only covers partial redef operands. DefMI may have normal use
   1894       // operands reading the register. They don't contribute valid lanes.
   1895       //
   1896       // This adds ssub1 to the set of valid lanes in %src:
   1897       //
   1898       //   %src:ssub1<def> = FOO
   1899       //
   1900       // This leaves only ssub1 valid, making any other lanes undef:
   1901       //
   1902       //   %src:ssub1<def,read-undef> = FOO %src:ssub2
   1903       //
   1904       // The <read-undef> flag on the def operand means that old lane values are
   1905       // not important.
   1906       if (Redef) {
   1907         V.RedefVNI = LR.Query(VNI->def).valueIn();
   1908         assert((TrackSubRegLiveness || V.RedefVNI) &&
   1909                "Instruction is reading nonexistent value");
   1910         if (V.RedefVNI != nullptr) {
   1911           computeAssignment(V.RedefVNI->id, Other);
   1912           V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
   1913         }
   1914       }
   1915 
   1916       // An IMPLICIT_DEF writes undef values.
   1917       if (DefMI->isImplicitDef()) {
   1918         // We normally expect IMPLICIT_DEF values to be live only until the end
   1919         // of their block. If the value is really live longer and gets pruned in
   1920         // another block, this flag is cleared again.
   1921         V.ErasableImplicitDef = true;
   1922         V.ValidLanes &= ~V.WriteLanes;
   1923       }
   1924     }
   1925   }
   1926 
   1927   // Find the value in Other that overlaps VNI->def, if any.
   1928   LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
   1929 
   1930   // It is possible that both values are defined by the same instruction, or
   1931   // the values are PHIs defined in the same block. When that happens, the two
   1932   // values should be merged into one, but not into any preceding value.
   1933   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
   1934   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
   1935     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
   1936 
   1937     // One value stays, the other is merged. Keep the earlier one, or the first
   1938     // one we see.
   1939     if (OtherVNI->def < VNI->def)
   1940       Other.computeAssignment(OtherVNI->id, *this);
   1941     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
   1942       // This is an early-clobber def overlapping a live-in value in the other
   1943       // register. Not mergeable.
   1944       V.OtherVNI = OtherLRQ.valueIn();
   1945       return CR_Impossible;
   1946     }
   1947     V.OtherVNI = OtherVNI;
   1948     Val &OtherV = Other.Vals[OtherVNI->id];
   1949     // Keep this value, check for conflicts when analyzing OtherVNI.
   1950     if (!OtherV.isAnalyzed())
   1951       return CR_Keep;
   1952     // Both sides have been analyzed now.
   1953     // Allow overlapping PHI values. Any real interference would show up in a
   1954     // predecessor, the PHI itself can't introduce any conflicts.
   1955     if (VNI->isPHIDef())
   1956       return CR_Merge;
   1957     if (V.ValidLanes & OtherV.ValidLanes)
   1958       // Overlapping lanes can't be resolved.
   1959       return CR_Impossible;
   1960     else
   1961       return CR_Merge;
   1962   }
   1963 
   1964   // No simultaneous def. Is Other live at the def?
   1965   V.OtherVNI = OtherLRQ.valueIn();
   1966   if (!V.OtherVNI)
   1967     // No overlap, no conflict.
   1968     return CR_Keep;
   1969 
   1970   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
   1971 
   1972   // We have overlapping values, or possibly a kill of Other.
   1973   // Recursively compute assignments up the dominator tree.
   1974   Other.computeAssignment(V.OtherVNI->id, *this);
   1975   Val &OtherV = Other.Vals[V.OtherVNI->id];
   1976 
   1977   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
   1978   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
   1979   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
   1980   // technically.
   1981   //
   1982   // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
   1983   // to erase the IMPLICIT_DEF instruction.
   1984   if (OtherV.ErasableImplicitDef && DefMI &&
   1985       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
   1986     DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
   1987                  << " extends into BB#" << DefMI->getParent()->getNumber()
   1988                  << ", keeping it.\n");
   1989     OtherV.ErasableImplicitDef = false;
   1990   }
   1991 
   1992   // Allow overlapping PHI values. Any real interference would show up in a
   1993   // predecessor, the PHI itself can't introduce any conflicts.
   1994   if (VNI->isPHIDef())
   1995     return CR_Replace;
   1996 
   1997   // Check for simple erasable conflicts.
   1998   if (DefMI->isImplicitDef()) {
   1999     // We need the def for the subregister if there is nothing else live at the
   2000     // subrange at this point.
   2001     if (TrackSubRegLiveness
   2002         && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
   2003       return CR_Replace;
   2004     return CR_Erase;
   2005   }
   2006 
   2007   // Include the non-conflict where DefMI is a coalescable copy that kills
   2008   // OtherVNI. We still want the copy erased and value numbers merged.
   2009   if (CP.isCoalescable(DefMI)) {
   2010     // Some of the lanes copied from OtherVNI may be undef, making them undef
   2011     // here too.
   2012     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
   2013     return CR_Erase;
   2014   }
   2015 
   2016   // This may not be a real conflict if DefMI simply kills Other and defines
   2017   // VNI.
   2018   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
   2019     return CR_Keep;
   2020 
   2021   // Handle the case where VNI and OtherVNI can be proven to be identical:
   2022   //
   2023   //   %other = COPY %ext
   2024   //   %this  = COPY %ext <-- Erase this copy
   2025   //
   2026   if (DefMI->isFullCopy() && !CP.isPartial()
   2027       && valuesIdentical(VNI, V.OtherVNI, Other))
   2028     return CR_Erase;
   2029 
   2030   // If the lanes written by this instruction were all undef in OtherVNI, it is
   2031   // still safe to join the live ranges. This can't be done with a simple value
   2032   // mapping, though - OtherVNI will map to multiple values:
   2033   //
   2034   //   1 %dst:ssub0 = FOO                <-- OtherVNI
   2035   //   2 %src = BAR                      <-- VNI
   2036   //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
   2037   //   4 BAZ %dst<kill>
   2038   //   5 QUUX %src<kill>
   2039   //
   2040   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
   2041   // handles this complex value mapping.
   2042   if ((V.WriteLanes & OtherV.ValidLanes) == 0)
   2043     return CR_Replace;
   2044 
   2045   // If the other live range is killed by DefMI and the live ranges are still
   2046   // overlapping, it must be because we're looking at an early clobber def:
   2047   //
   2048   //   %dst<def,early-clobber> = ASM %src<kill>
   2049   //
   2050   // In this case, it is illegal to merge the two live ranges since the early
   2051   // clobber def would clobber %src before it was read.
   2052   if (OtherLRQ.isKill()) {
   2053     // This case where the def doesn't overlap the kill is handled above.
   2054     assert(VNI->def.isEarlyClobber() &&
   2055            "Only early clobber defs can overlap a kill");
   2056     return CR_Impossible;
   2057   }
   2058 
   2059   // VNI is clobbering live lanes in OtherVNI, but there is still the
   2060   // possibility that no instructions actually read the clobbered lanes.
   2061   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
   2062   // Otherwise Other.RI wouldn't be live here.
   2063   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
   2064     return CR_Impossible;
   2065 
   2066   // We need to verify that no instructions are reading the clobbered lanes. To
   2067   // save compile time, we'll only check that locally. Don't allow the tainted
   2068   // value to escape the basic block.
   2069   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   2070   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
   2071     return CR_Impossible;
   2072 
   2073   // There are still some things that could go wrong besides clobbered lanes
   2074   // being read, for example OtherVNI may be only partially redefined in MBB,
   2075   // and some clobbered lanes could escape the block. Save this analysis for
   2076   // resolveConflicts() when all values have been mapped. We need to know
   2077   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
   2078   // that now - the recursive analyzeValue() calls must go upwards in the
   2079   // dominator tree.
   2080   return CR_Unresolved;
   2081 }
   2082 
   2083 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
   2084   Val &V = Vals[ValNo];
   2085   if (V.isAnalyzed()) {
   2086     // Recursion should always move up the dominator tree, so ValNo is not
   2087     // supposed to reappear before it has been assigned.
   2088     assert(Assignments[ValNo] != -1 && "Bad recursion?");
   2089     return;
   2090   }
   2091   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
   2092   case CR_Erase:
   2093   case CR_Merge:
   2094     // Merge this ValNo into OtherVNI.
   2095     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
   2096     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
   2097     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
   2098     DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
   2099                  << LR.getValNumInfo(ValNo)->def << " into "
   2100                  << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
   2101                  << V.OtherVNI->def << " --> @"
   2102                  << NewVNInfo[Assignments[ValNo]]->def << '\n');
   2103     break;
   2104   case CR_Replace:
   2105   case CR_Unresolved: {
   2106     // The other value is going to be pruned if this join is successful.
   2107     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
   2108     Val &OtherV = Other.Vals[V.OtherVNI->id];
   2109     // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
   2110     // its lanes.
   2111     if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
   2112       OtherV.ErasableImplicitDef = false;
   2113     OtherV.Pruned = true;
   2114   }
   2115     // Fall through.
   2116   default:
   2117     // This value number needs to go in the final joined live range.
   2118     Assignments[ValNo] = NewVNInfo.size();
   2119     NewVNInfo.push_back(LR.getValNumInfo(ValNo));
   2120     break;
   2121   }
   2122 }
   2123 
   2124 bool JoinVals::mapValues(JoinVals &Other) {
   2125   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2126     computeAssignment(i, Other);
   2127     if (Vals[i].Resolution == CR_Impossible) {
   2128       DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
   2129                    << '@' << LR.getValNumInfo(i)->def << '\n');
   2130       return false;
   2131     }
   2132   }
   2133   return true;
   2134 }
   2135 
   2136 bool JoinVals::
   2137 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
   2138             SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
   2139   VNInfo *VNI = LR.getValNumInfo(ValNo);
   2140   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   2141   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
   2142 
   2143   // Scan Other.LR from VNI.def to MBBEnd.
   2144   LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
   2145   assert(OtherI != Other.LR.end() && "No conflict?");
   2146   do {
   2147     // OtherI is pointing to a tainted value. Abort the join if the tainted
   2148     // lanes escape the block.
   2149     SlotIndex End = OtherI->end;
   2150     if (End >= MBBEnd) {
   2151       DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
   2152                    << OtherI->valno->id << '@' << OtherI->start << '\n');
   2153       return false;
   2154     }
   2155     DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
   2156                  << OtherI->valno->id << '@' << OtherI->start
   2157                  << " to " << End << '\n');
   2158     // A dead def is not a problem.
   2159     if (End.isDead())
   2160       break;
   2161     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
   2162 
   2163     // Check for another def in the MBB.
   2164     if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
   2165       break;
   2166 
   2167     // Lanes written by the new def are no longer tainted.
   2168     const Val &OV = Other.Vals[OtherI->valno->id];
   2169     TaintedLanes &= ~OV.WriteLanes;
   2170     if (!OV.RedefVNI)
   2171       break;
   2172   } while (TaintedLanes);
   2173   return true;
   2174 }
   2175 
   2176 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx,
   2177                          unsigned Lanes) const {
   2178   if (MI->isDebugValue())
   2179     return false;
   2180   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
   2181     if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
   2182       continue;
   2183     if (!MO->readsReg())
   2184       continue;
   2185     if (Lanes & TRI->getSubRegIndexLaneMask(
   2186                   TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
   2187       return true;
   2188   }
   2189   return false;
   2190 }
   2191 
   2192 bool JoinVals::resolveConflicts(JoinVals &Other) {
   2193   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2194     Val &V = Vals[i];
   2195     assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
   2196     if (V.Resolution != CR_Unresolved)
   2197       continue;
   2198     DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
   2199                  << '@' << LR.getValNumInfo(i)->def << '\n');
   2200     if (SubRangeJoin)
   2201       return false;
   2202 
   2203     ++NumLaneConflicts;
   2204     assert(V.OtherVNI && "Inconsistent conflict resolution.");
   2205     VNInfo *VNI = LR.getValNumInfo(i);
   2206     const Val &OtherV = Other.Vals[V.OtherVNI->id];
   2207 
   2208     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
   2209     // join, those lanes will be tainted with a wrong value. Get the extent of
   2210     // the tainted lanes.
   2211     unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
   2212     SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
   2213     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
   2214       // Tainted lanes would extend beyond the basic block.
   2215       return false;
   2216 
   2217     assert(!TaintExtent.empty() && "There should be at least one conflict.");
   2218 
   2219     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
   2220     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   2221     MachineBasicBlock::iterator MI = MBB->begin();
   2222     if (!VNI->isPHIDef()) {
   2223       MI = Indexes->getInstructionFromIndex(VNI->def);
   2224       // No need to check the instruction defining VNI for reads.
   2225       ++MI;
   2226     }
   2227     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
   2228            "Interference ends on VNI->def. Should have been handled earlier");
   2229     MachineInstr *LastMI =
   2230       Indexes->getInstructionFromIndex(TaintExtent.front().first);
   2231     assert(LastMI && "Range must end at a proper instruction");
   2232     unsigned TaintNum = 0;
   2233     for(;;) {
   2234       assert(MI != MBB->end() && "Bad LastMI");
   2235       if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
   2236         DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
   2237         return false;
   2238       }
   2239       // LastMI is the last instruction to use the current value.
   2240       if (&*MI == LastMI) {
   2241         if (++TaintNum == TaintExtent.size())
   2242           break;
   2243         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
   2244         assert(LastMI && "Range must end at a proper instruction");
   2245         TaintedLanes = TaintExtent[TaintNum].second;
   2246       }
   2247       ++MI;
   2248     }
   2249 
   2250     // The tainted lanes are unused.
   2251     V.Resolution = CR_Replace;
   2252     ++NumLaneResolves;
   2253   }
   2254   return true;
   2255 }
   2256 
   2257 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
   2258   Val &V = Vals[ValNo];
   2259   if (V.Pruned || V.PrunedComputed)
   2260     return V.Pruned;
   2261 
   2262   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
   2263     return V.Pruned;
   2264 
   2265   // Follow copies up the dominator tree and check if any intermediate value
   2266   // has been pruned.
   2267   V.PrunedComputed = true;
   2268   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
   2269   return V.Pruned;
   2270 }
   2271 
   2272 void JoinVals::pruneValues(JoinVals &Other,
   2273                            SmallVectorImpl<SlotIndex> &EndPoints,
   2274                            bool changeInstrs) {
   2275   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2276     SlotIndex Def = LR.getValNumInfo(i)->def;
   2277     switch (Vals[i].Resolution) {
   2278     case CR_Keep:
   2279       break;
   2280     case CR_Replace: {
   2281       // This value takes precedence over the value in Other.LR.
   2282       LIS->pruneValue(Other.LR, Def, &EndPoints);
   2283       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
   2284       // instructions are only inserted to provide a live-out value for PHI
   2285       // predecessors, so the instruction should simply go away once its value
   2286       // has been replaced.
   2287       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
   2288       bool EraseImpDef = OtherV.ErasableImplicitDef &&
   2289                          OtherV.Resolution == CR_Keep;
   2290       if (!Def.isBlock()) {
   2291         if (changeInstrs) {
   2292           // Remove <def,read-undef> flags. This def is now a partial redef.
   2293           // Also remove <def,dead> flags since the joined live range will
   2294           // continue past this instruction.
   2295           for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
   2296                MO.isValid(); ++MO) {
   2297             if (MO->isReg() && MO->isDef() && MO->getReg() == Reg) {
   2298               MO->setIsUndef(EraseImpDef);
   2299               MO->setIsDead(false);
   2300             }
   2301           }
   2302         }
   2303         // This value will reach instructions below, but we need to make sure
   2304         // the live range also reaches the instruction at Def.
   2305         if (!EraseImpDef)
   2306           EndPoints.push_back(Def);
   2307       }
   2308       DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
   2309                    << ": " << Other.LR << '\n');
   2310       break;
   2311     }
   2312     case CR_Erase:
   2313     case CR_Merge:
   2314       if (isPrunedValue(i, Other)) {
   2315         // This value is ultimately a copy of a pruned value in LR or Other.LR.
   2316         // We can no longer trust the value mapping computed by
   2317         // computeAssignment(), the value that was originally copied could have
   2318         // been replaced.
   2319         LIS->pruneValue(LR, Def, &EndPoints);
   2320         DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
   2321                      << Def << ": " << LR << '\n');
   2322       }
   2323       break;
   2324     case CR_Unresolved:
   2325     case CR_Impossible:
   2326       llvm_unreachable("Unresolved conflicts");
   2327     }
   2328   }
   2329 }
   2330 
   2331 void JoinVals::pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask)
   2332 {
   2333   // Look for values being erased.
   2334   bool DidPrune = false;
   2335   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2336     if (Vals[i].Resolution != CR_Erase)
   2337       continue;
   2338 
   2339     // Check subranges at the point where the copy will be removed.
   2340     SlotIndex Def = LR.getValNumInfo(i)->def;
   2341     for (LiveInterval::SubRange &S : LI.subranges()) {
   2342       LiveQueryResult Q = S.Query(Def);
   2343 
   2344       // If a subrange starts at the copy then an undefined value has been
   2345       // copied and we must remove that subrange value as well.
   2346       VNInfo *ValueOut = Q.valueOutOrDead();
   2347       if (ValueOut != nullptr && Q.valueIn() == nullptr) {
   2348         DEBUG(dbgs() << "\t\tPrune sublane " << format("%04X", S.LaneMask)
   2349                      << " at " << Def << "\n");
   2350         LIS->pruneValue(S, Def, nullptr);
   2351         DidPrune = true;
   2352         // Mark value number as unused.
   2353         ValueOut->markUnused();
   2354         continue;
   2355       }
   2356       // If a subrange ends at the copy, then a value was copied but only
   2357       // partially used later. Shrink the subregister range apropriately.
   2358       if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
   2359         DEBUG(dbgs() << "\t\tDead uses at sublane "
   2360                      << format("%04X", S.LaneMask) << " at " << Def << "\n");
   2361         ShrinkMask |= S.LaneMask;
   2362       }
   2363     }
   2364   }
   2365   if (DidPrune)
   2366     LI.removeEmptySubRanges();
   2367 }
   2368 
   2369 void JoinVals::removeImplicitDefs() {
   2370   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2371     Val &V = Vals[i];
   2372     if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
   2373       continue;
   2374 
   2375     VNInfo *VNI = LR.getValNumInfo(i);
   2376     VNI->markUnused();
   2377     LR.removeValNo(VNI);
   2378   }
   2379 }
   2380 
   2381 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
   2382                            SmallVectorImpl<unsigned> &ShrinkRegs) {
   2383   for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
   2384     // Get the def location before markUnused() below invalidates it.
   2385     SlotIndex Def = LR.getValNumInfo(i)->def;
   2386     switch (Vals[i].Resolution) {
   2387     case CR_Keep: {
   2388       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
   2389       // longer. The IMPLICIT_DEF instructions are only inserted by
   2390       // PHIElimination to guarantee that all PHI predecessors have a value.
   2391       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
   2392         break;
   2393       // Remove value number i from LR.
   2394       VNInfo *VNI = LR.getValNumInfo(i);
   2395       LR.removeValNo(VNI);
   2396       // Note that this VNInfo is reused and still referenced in NewVNInfo,
   2397       // make it appear like an unused value number.
   2398       VNI->markUnused();
   2399       DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
   2400       // FALL THROUGH.
   2401     }
   2402 
   2403     case CR_Erase: {
   2404       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   2405       assert(MI && "No instruction to erase");
   2406       if (MI->isCopy()) {
   2407         unsigned Reg = MI->getOperand(1).getReg();
   2408         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
   2409             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
   2410           ShrinkRegs.push_back(Reg);
   2411       }
   2412       ErasedInstrs.insert(MI);
   2413       DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
   2414       LIS->RemoveMachineInstrFromMaps(MI);
   2415       MI->eraseFromParent();
   2416       break;
   2417     }
   2418     default:
   2419       break;
   2420     }
   2421   }
   2422 }
   2423 
   2424 bool RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
   2425                                          unsigned LaneMask,
   2426                                          const CoalescerPair &CP) {
   2427   SmallVector<VNInfo*, 16> NewVNInfo;
   2428   JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
   2429                    NewVNInfo, CP, LIS, TRI, true, true);
   2430   JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
   2431                    NewVNInfo, CP, LIS, TRI, true, true);
   2432 
   2433   // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
   2434   // We should be able to resolve all conflicts here as we could successfully do
   2435   // it on the mainrange already. There is however a problem when multiple
   2436   // ranges get mapped to the "overflow" lane mask bit which creates unexpected
   2437   // interferences.
   2438   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
   2439     DEBUG(dbgs() << "*** Couldn't join subrange!\n");
   2440     return false;
   2441   }
   2442   if (!LHSVals.resolveConflicts(RHSVals) ||
   2443       !RHSVals.resolveConflicts(LHSVals)) {
   2444     DEBUG(dbgs() << "*** Couldn't join subrange!\n");
   2445     return false;
   2446   }
   2447 
   2448   // The merging algorithm in LiveInterval::join() can't handle conflicting
   2449   // value mappings, so we need to remove any live ranges that overlap a
   2450   // CR_Replace resolution. Collect a set of end points that can be used to
   2451   // restore the live range after joining.
   2452   SmallVector<SlotIndex, 8> EndPoints;
   2453   LHSVals.pruneValues(RHSVals, EndPoints, false);
   2454   RHSVals.pruneValues(LHSVals, EndPoints, false);
   2455 
   2456   LHSVals.removeImplicitDefs();
   2457   RHSVals.removeImplicitDefs();
   2458 
   2459   LRange.verify();
   2460   RRange.verify();
   2461 
   2462   // Join RRange into LHS.
   2463   LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
   2464               NewVNInfo);
   2465 
   2466   DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
   2467   if (EndPoints.empty())
   2468     return true;
   2469 
   2470   // Recompute the parts of the live range we had to remove because of
   2471   // CR_Replace conflicts.
   2472   DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   2473                << " points: " << LRange << '\n');
   2474   LIS->extendToIndices(LRange, EndPoints);
   2475   return true;
   2476 }
   2477 
   2478 bool RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
   2479                                           const LiveRange &ToMerge,
   2480                                           unsigned LaneMask, CoalescerPair &CP) {
   2481   BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
   2482   for (LiveInterval::SubRange &R : LI.subranges()) {
   2483     unsigned RMask = R.LaneMask;
   2484     // LaneMask of subregisters common to subrange R and ToMerge.
   2485     unsigned Common = RMask & LaneMask;
   2486     // There is nothing to do without common subregs.
   2487     if (Common == 0)
   2488       continue;
   2489 
   2490     DEBUG(dbgs() << format("\t\tCopy+Merge %04X into %04X\n", RMask, Common));
   2491     // LaneMask of subregisters contained in the R range but not in ToMerge,
   2492     // they have to split into their own subrange.
   2493     unsigned LRest = RMask & ~LaneMask;
   2494     LiveInterval::SubRange *CommonRange;
   2495     if (LRest != 0) {
   2496       R.LaneMask = LRest;
   2497       DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", LRest));
   2498       // Duplicate SubRange for newly merged common stuff.
   2499       CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
   2500     } else {
   2501       // Reuse the existing range.
   2502       R.LaneMask = Common;
   2503       CommonRange = &R;
   2504     }
   2505     LiveRange RangeCopy(ToMerge, Allocator);
   2506     if (!joinSubRegRanges(*CommonRange, RangeCopy, Common, CP))
   2507       return false;
   2508     LaneMask &= ~RMask;
   2509   }
   2510 
   2511   if (LaneMask != 0) {
   2512     DEBUG(dbgs() << format("\t\tNew Lane %04X\n", LaneMask));
   2513     LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
   2514   }
   2515   return true;
   2516 }
   2517 
   2518 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
   2519   SmallVector<VNInfo*, 16> NewVNInfo;
   2520   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   2521   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
   2522   bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
   2523   JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
   2524                    TRI, false, TrackSubRegLiveness);
   2525   JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
   2526                    TRI, false, TrackSubRegLiveness);
   2527 
   2528   DEBUG(dbgs() << "\t\tRHS = " << RHS
   2529                << "\n\t\tLHS = " << LHS
   2530                << '\n');
   2531 
   2532   // First compute NewVNInfo and the simple value mappings.
   2533   // Detect impossible conflicts early.
   2534   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
   2535     return false;
   2536 
   2537   // Some conflicts can only be resolved after all values have been mapped.
   2538   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
   2539     return false;
   2540 
   2541   // All clear, the live ranges can be merged.
   2542   if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
   2543     BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
   2544 
   2545     // Transform lanemasks from the LHS to masks in the coalesced register and
   2546     // create initial subranges if necessary.
   2547     unsigned DstIdx = CP.getDstIdx();
   2548     if (!LHS.hasSubRanges()) {
   2549       unsigned Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
   2550                                   : TRI->getSubRegIndexLaneMask(DstIdx);
   2551       // LHS must support subregs or we wouldn't be in this codepath.
   2552       assert(Mask != 0);
   2553       LHS.createSubRangeFrom(Allocator, Mask, LHS);
   2554     } else if (DstIdx != 0) {
   2555       // Transform LHS lanemasks to new register class if necessary.
   2556       for (LiveInterval::SubRange &R : LHS.subranges()) {
   2557         unsigned Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
   2558         R.LaneMask = Mask;
   2559       }
   2560     }
   2561     DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
   2562                  << ' ' << LHS << '\n');
   2563 
   2564     // Determine lanemasks of RHS in the coalesced register and merge subranges.
   2565     unsigned SrcIdx = CP.getSrcIdx();
   2566     bool Abort = false;
   2567     if (!RHS.hasSubRanges()) {
   2568       unsigned Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
   2569                                   : TRI->getSubRegIndexLaneMask(SrcIdx);
   2570       if (!mergeSubRangeInto(LHS, RHS, Mask, CP))
   2571         Abort = true;
   2572     } else {
   2573       // Pair up subranges and merge.
   2574       for (LiveInterval::SubRange &R : RHS.subranges()) {
   2575         unsigned Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
   2576         if (!mergeSubRangeInto(LHS, R, Mask, CP)) {
   2577           Abort = true;
   2578           break;
   2579         }
   2580       }
   2581     }
   2582     if (Abort) {
   2583       // This shouldn't have happened :-(
   2584       // However we are aware of at least one existing problem where we
   2585       // can't merge subranges when multiple ranges end up in the
   2586       // "overflow bit" 32. As a workaround we drop all subregister ranges
   2587       // which means we loose some precision but are back to a well defined
   2588       // state.
   2589       assert((CP.getNewRC()->getLaneMask() & 0x80000000u)
   2590              && "SubRange merge should only fail when merging into bit 32.");
   2591       DEBUG(dbgs() << "\tSubrange join aborted!\n");
   2592       LHS.clearSubRanges();
   2593       RHS.clearSubRanges();
   2594     } else {
   2595       DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
   2596 
   2597       LHSVals.pruneSubRegValues(LHS, ShrinkMask);
   2598       RHSVals.pruneSubRegValues(LHS, ShrinkMask);
   2599     }
   2600   }
   2601 
   2602   // The merging algorithm in LiveInterval::join() can't handle conflicting
   2603   // value mappings, so we need to remove any live ranges that overlap a
   2604   // CR_Replace resolution. Collect a set of end points that can be used to
   2605   // restore the live range after joining.
   2606   SmallVector<SlotIndex, 8> EndPoints;
   2607   LHSVals.pruneValues(RHSVals, EndPoints, true);
   2608   RHSVals.pruneValues(LHSVals, EndPoints, true);
   2609 
   2610   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
   2611   // registers to require trimming.
   2612   SmallVector<unsigned, 8> ShrinkRegs;
   2613   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2614   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2615   while (!ShrinkRegs.empty())
   2616     LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
   2617 
   2618   // Join RHS into LHS.
   2619   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
   2620 
   2621   // Kill flags are going to be wrong if the live ranges were overlapping.
   2622   // Eventually, we should simply clear all kill flags when computing live
   2623   // ranges. They are reinserted after register allocation.
   2624   MRI->clearKillFlags(LHS.reg);
   2625   MRI->clearKillFlags(RHS.reg);
   2626 
   2627   if (!EndPoints.empty()) {
   2628     // Recompute the parts of the live range we had to remove because of
   2629     // CR_Replace conflicts.
   2630     DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   2631                  << " points: " << LHS << '\n');
   2632     LIS->extendToIndices((LiveRange&)LHS, EndPoints);
   2633   }
   2634 
   2635   return true;
   2636 }
   2637 
   2638 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
   2639   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
   2640 }
   2641 
   2642 namespace {
   2643 /// Information concerning MBB coalescing priority.
   2644 struct MBBPriorityInfo {
   2645   MachineBasicBlock *MBB;
   2646   unsigned Depth;
   2647   bool IsSplit;
   2648 
   2649   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
   2650     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
   2651 };
   2652 }
   2653 
   2654 /// C-style comparator that sorts first based on the loop depth of the basic
   2655 /// block (the unsigned), and then on the MBB number.
   2656 ///
   2657 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
   2658 static int compareMBBPriority(const MBBPriorityInfo *LHS,
   2659                               const MBBPriorityInfo *RHS) {
   2660   // Deeper loops first
   2661   if (LHS->Depth != RHS->Depth)
   2662     return LHS->Depth > RHS->Depth ? -1 : 1;
   2663 
   2664   // Try to unsplit critical edges next.
   2665   if (LHS->IsSplit != RHS->IsSplit)
   2666     return LHS->IsSplit ? -1 : 1;
   2667 
   2668   // Prefer blocks that are more connected in the CFG. This takes care of
   2669   // the most difficult copies first while intervals are short.
   2670   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
   2671   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
   2672   if (cl != cr)
   2673     return cl > cr ? -1 : 1;
   2674 
   2675   // As a last resort, sort by block number.
   2676   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
   2677 }
   2678 
   2679 /// \returns true if the given copy uses or defines a local live range.
   2680 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
   2681   if (!Copy->isCopy())
   2682     return false;
   2683 
   2684   if (Copy->getOperand(1).isUndef())
   2685     return false;
   2686 
   2687   unsigned SrcReg = Copy->getOperand(1).getReg();
   2688   unsigned DstReg = Copy->getOperand(0).getReg();
   2689   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
   2690       || TargetRegisterInfo::isPhysicalRegister(DstReg))
   2691     return false;
   2692 
   2693   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
   2694     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
   2695 }
   2696 
   2697 bool RegisterCoalescer::
   2698 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
   2699   bool Progress = false;
   2700   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
   2701     if (!CurrList[i])
   2702       continue;
   2703     // Skip instruction pointers that have already been erased, for example by
   2704     // dead code elimination.
   2705     if (ErasedInstrs.erase(CurrList[i])) {
   2706       CurrList[i] = nullptr;
   2707       continue;
   2708     }
   2709     bool Again = false;
   2710     bool Success = joinCopy(CurrList[i], Again);
   2711     Progress |= Success;
   2712     if (Success || !Again)
   2713       CurrList[i] = nullptr;
   2714   }
   2715   return Progress;
   2716 }
   2717 
   2718 /// Check if DstReg is a terminal node.
   2719 /// I.e., it does not have any affinity other than \p Copy.
   2720 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
   2721                           const MachineRegisterInfo *MRI) {
   2722   assert(Copy.isCopyLike());
   2723   // Check if the destination of this copy as any other affinity.
   2724   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
   2725     if (&MI != &Copy && MI.isCopyLike())
   2726       return false;
   2727   return true;
   2728 }
   2729 
   2730 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
   2731   assert(Copy.isCopyLike());
   2732   if (!UseTerminalRule)
   2733     return false;
   2734   unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
   2735   isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
   2736   // Check if the destination of this copy has any other affinity.
   2737   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   2738       // If SrcReg is a physical register, the copy won't be coalesced.
   2739       // Ignoring it may have other side effect (like missing
   2740       // rematerialization). So keep it.
   2741       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
   2742       !isTerminalReg(DstReg, Copy, MRI))
   2743     return false;
   2744 
   2745   // DstReg is a terminal node. Check if it inteferes with any other
   2746   // copy involving SrcReg.
   2747   const MachineBasicBlock *OrigBB = Copy.getParent();
   2748   const LiveInterval &DstLI = LIS->getInterval(DstReg);
   2749   for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
   2750     // Technically we should check if the weight of the new copy is
   2751     // interesting compared to the other one and update the weight
   2752     // of the copies accordingly. However, this would only work if
   2753     // we would gather all the copies first then coalesce, whereas
   2754     // right now we interleave both actions.
   2755     // For now, just consider the copies that are in the same block.
   2756     if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
   2757       continue;
   2758     unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
   2759     isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
   2760                 OtherSubReg);
   2761     if (OtherReg == SrcReg)
   2762       OtherReg = OtherSrcReg;
   2763     // Check if OtherReg is a non-terminal.
   2764     if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
   2765         isTerminalReg(OtherReg, MI, MRI))
   2766       continue;
   2767     // Check that OtherReg interfere with DstReg.
   2768     if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
   2769       DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
   2770       return true;
   2771     }
   2772   }
   2773   return false;
   2774 }
   2775 
   2776 void
   2777 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
   2778   DEBUG(dbgs() << MBB->getName() << ":\n");
   2779 
   2780   // Collect all copy-like instructions in MBB. Don't start coalescing anything
   2781   // yet, it might invalidate the iterator.
   2782   const unsigned PrevSize = WorkList.size();
   2783   if (JoinGlobalCopies) {
   2784     SmallVector<MachineInstr*, 2> LocalTerminals;
   2785     SmallVector<MachineInstr*, 2> GlobalTerminals;
   2786     // Coalesce copies bottom-up to coalesce local defs before local uses. They
   2787     // are not inherently easier to resolve, but slightly preferable until we
   2788     // have local live range splitting. In particular this is required by
   2789     // cmp+jmp macro fusion.
   2790     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2791          MII != E; ++MII) {
   2792       if (!MII->isCopyLike())
   2793         continue;
   2794       bool ApplyTerminalRule = applyTerminalRule(*MII);
   2795       if (isLocalCopy(&(*MII), LIS)) {
   2796         if (ApplyTerminalRule)
   2797           LocalTerminals.push_back(&(*MII));
   2798         else
   2799           LocalWorkList.push_back(&(*MII));
   2800       } else {
   2801         if (ApplyTerminalRule)
   2802           GlobalTerminals.push_back(&(*MII));
   2803         else
   2804           WorkList.push_back(&(*MII));
   2805       }
   2806     }
   2807     // Append the copies evicted by the terminal rule at the end of the list.
   2808     LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
   2809     WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
   2810   }
   2811   else {
   2812     SmallVector<MachineInstr*, 2> Terminals;
   2813      for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2814           MII != E; ++MII)
   2815        if (MII->isCopyLike()) {
   2816         if (applyTerminalRule(*MII))
   2817           Terminals.push_back(&(*MII));
   2818         else
   2819           WorkList.push_back(MII);
   2820        }
   2821      // Append the copies evicted by the terminal rule at the end of the list.
   2822      WorkList.append(Terminals.begin(), Terminals.end());
   2823   }
   2824   // Try coalescing the collected copies immediately, and remove the nulls.
   2825   // This prevents the WorkList from getting too large since most copies are
   2826   // joinable on the first attempt.
   2827   MutableArrayRef<MachineInstr*>
   2828     CurrList(WorkList.begin() + PrevSize, WorkList.end());
   2829   if (copyCoalesceWorkList(CurrList))
   2830     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
   2831                                (MachineInstr*)nullptr), WorkList.end());
   2832 }
   2833 
   2834 void RegisterCoalescer::coalesceLocals() {
   2835   copyCoalesceWorkList(LocalWorkList);
   2836   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
   2837     if (LocalWorkList[j])
   2838       WorkList.push_back(LocalWorkList[j]);
   2839   }
   2840   LocalWorkList.clear();
   2841 }
   2842 
   2843 void RegisterCoalescer::joinAllIntervals() {
   2844   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   2845   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
   2846 
   2847   std::vector<MBBPriorityInfo> MBBs;
   2848   MBBs.reserve(MF->size());
   2849   for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
   2850     MachineBasicBlock *MBB = I;
   2851     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
   2852                                    JoinSplitEdges && isSplitEdge(MBB)));
   2853   }
   2854   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
   2855 
   2856   // Coalesce intervals in MBB priority order.
   2857   unsigned CurrDepth = UINT_MAX;
   2858   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   2859     // Try coalescing the collected local copies for deeper loops.
   2860     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
   2861       coalesceLocals();
   2862       CurrDepth = MBBs[i].Depth;
   2863     }
   2864     copyCoalesceInMBB(MBBs[i].MBB);
   2865   }
   2866   coalesceLocals();
   2867 
   2868   // Joining intervals can allow other intervals to be joined.  Iteratively join
   2869   // until we make no progress.
   2870   while (copyCoalesceWorkList(WorkList))
   2871     /* empty */ ;
   2872 }
   2873 
   2874 void RegisterCoalescer::releaseMemory() {
   2875   ErasedInstrs.clear();
   2876   WorkList.clear();
   2877   DeadDefs.clear();
   2878   InflateRegs.clear();
   2879 }
   2880 
   2881 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   2882   MF = &fn;
   2883   MRI = &fn.getRegInfo();
   2884   TM = &fn.getTarget();
   2885   const TargetSubtargetInfo &STI = fn.getSubtarget();
   2886   TRI = STI.getRegisterInfo();
   2887   TII = STI.getInstrInfo();
   2888   LIS = &getAnalysis<LiveIntervals>();
   2889   AA = &getAnalysis<AliasAnalysis>();
   2890   Loops = &getAnalysis<MachineLoopInfo>();
   2891   if (EnableGlobalCopies == cl::BOU_UNSET)
   2892     JoinGlobalCopies = STI.enableJoinGlobalCopies();
   2893   else
   2894     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
   2895 
   2896   // The MachineScheduler does not currently require JoinSplitEdges. This will
   2897   // either be enabled unconditionally or replaced by a more general live range
   2898   // splitting optimization.
   2899   JoinSplitEdges = EnableJoinSplits;
   2900 
   2901   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   2902                << "********** Function: " << MF->getName() << '\n');
   2903 
   2904   if (VerifyCoalescing)
   2905     MF->verify(this, "Before register coalescing");
   2906 
   2907   RegClassInfo.runOnMachineFunction(fn);
   2908 
   2909   // Join (coalesce) intervals if requested.
   2910   if (EnableJoining)
   2911     joinAllIntervals();
   2912 
   2913   // After deleting a lot of copies, register classes may be less constrained.
   2914   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
   2915   // DPR inflation.
   2916   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   2917   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   2918                     InflateRegs.end());
   2919   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   2920   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   2921     unsigned Reg = InflateRegs[i];
   2922     if (MRI->reg_nodbg_empty(Reg))
   2923       continue;
   2924     if (MRI->recomputeRegClass(Reg)) {
   2925       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   2926                    << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
   2927       LiveInterval &LI = LIS->getInterval(Reg);
   2928       unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
   2929       if (MaxMask == 0) {
   2930         // If the inflated register class does not support subregisters anymore
   2931         // remove the subranges.
   2932         LI.clearSubRanges();
   2933       } else {
   2934 #ifndef NDEBUG
   2935         // If subranges are still supported, then the same subregs should still
   2936         // be supported.
   2937         for (LiveInterval::SubRange &S : LI.subranges()) {
   2938           assert ((S.LaneMask & ~MaxMask) == 0);
   2939         }
   2940 #endif
   2941       }
   2942       ++NumInflated;
   2943     }
   2944   }
   2945 
   2946   DEBUG(dump());
   2947   if (VerifyCoalescing)
   2948     MF->verify(this, "After register coalescing");
   2949   return true;
   2950 }
   2951 
   2952 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   2953    LIS->print(O, m);
   2954 }
   2955