1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic RegisterCoalescer interface which 11 // is used as the common interface used by all clients and 12 // implementations of register coalescing. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "RegisterCoalescer.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/Format.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 #include <cmath> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 STATISTIC(numJoins , "Number of interval joins performed"); 48 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 49 STATISTIC(numCommutes , "Number of instruction commuting performed"); 50 STATISTIC(numExtends , "Number of copies extended"); 51 STATISTIC(NumReMats , "Number of instructions re-materialized"); 52 STATISTIC(NumInflated , "Number of register classes inflated"); 53 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 54 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 55 56 static cl::opt<bool> 57 EnableJoining("join-liveintervals", 58 cl::desc("Coalesce copies (default=true)"), 59 cl::init(true)); 60 61 static cl::opt<bool> UseTerminalRule("terminal-rule", 62 cl::desc("Apply the terminal rule"), 63 cl::init(false)); 64 65 /// Temporary flag to test critical edge unsplitting. 66 static cl::opt<bool> 67 EnableJoinSplits("join-splitedges", 68 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 69 70 /// Temporary flag to test global copy optimization. 71 static cl::opt<cl::boolOrDefault> 72 EnableGlobalCopies("join-globalcopies", 73 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 74 cl::init(cl::BOU_UNSET), cl::Hidden); 75 76 static cl::opt<bool> 77 VerifyCoalescing("verify-coalescing", 78 cl::desc("Verify machine instrs before and after register coalescing"), 79 cl::Hidden); 80 81 namespace { 82 class RegisterCoalescer : public MachineFunctionPass, 83 private LiveRangeEdit::Delegate { 84 MachineFunction* MF; 85 MachineRegisterInfo* MRI; 86 const TargetMachine* TM; 87 const TargetRegisterInfo* TRI; 88 const TargetInstrInfo* TII; 89 LiveIntervals *LIS; 90 const MachineLoopInfo* Loops; 91 AliasAnalysis *AA; 92 RegisterClassInfo RegClassInfo; 93 94 /// A LaneMask to remember on which subregister live ranges we need to call 95 /// shrinkToUses() later. 96 unsigned ShrinkMask; 97 98 /// True if the main range of the currently coalesced intervals should be 99 /// checked for smaller live intervals. 100 bool ShrinkMainRange; 101 102 /// \brief True if the coalescer should aggressively coalesce global copies 103 /// in favor of keeping local copies. 104 bool JoinGlobalCopies; 105 106 /// \brief True if the coalescer should aggressively coalesce fall-thru 107 /// blocks exclusively containing copies. 108 bool JoinSplitEdges; 109 110 /// Copy instructions yet to be coalesced. 111 SmallVector<MachineInstr*, 8> WorkList; 112 SmallVector<MachineInstr*, 8> LocalWorkList; 113 114 /// Set of instruction pointers that have been erased, and 115 /// that may be present in WorkList. 116 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 117 118 /// Dead instructions that are about to be deleted. 119 SmallVector<MachineInstr*, 8> DeadDefs; 120 121 /// Virtual registers to be considered for register class inflation. 122 SmallVector<unsigned, 8> InflateRegs; 123 124 /// Recursively eliminate dead defs in DeadDefs. 125 void eliminateDeadDefs(); 126 127 /// LiveRangeEdit callback for eliminateDeadDefs(). 128 void LRE_WillEraseInstruction(MachineInstr *MI) override; 129 130 /// Coalesce the LocalWorkList. 131 void coalesceLocals(); 132 133 /// Join compatible live intervals 134 void joinAllIntervals(); 135 136 /// Coalesce copies in the specified MBB, putting 137 /// copies that cannot yet be coalesced into WorkList. 138 void copyCoalesceInMBB(MachineBasicBlock *MBB); 139 140 /// Tries to coalesce all copies in CurrList. Returns true if any progress 141 /// was made. 142 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 143 144 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 145 /// src/dst of the copy instruction CopyMI. This returns true if the copy 146 /// was successfully coalesced away. If it is not currently possible to 147 /// coalesce this interval, but it may be possible if other things get 148 /// coalesced, then it returns true by reference in 'Again'. 149 bool joinCopy(MachineInstr *TheCopy, bool &Again); 150 151 /// Attempt to join these two intervals. On failure, this 152 /// returns false. The output "SrcInt" will not have been modified, so we 153 /// can use this information below to update aliases. 154 bool joinIntervals(CoalescerPair &CP); 155 156 /// Attempt joining two virtual registers. Return true on success. 157 bool joinVirtRegs(CoalescerPair &CP); 158 159 /// Attempt joining with a reserved physreg. 160 bool joinReservedPhysReg(CoalescerPair &CP); 161 162 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 163 /// Subranges in @p LI which only partially interfere with the desired 164 /// LaneMask are split as necessary. @p LaneMask are the lanes that 165 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 166 /// lanemasks already adjusted to the coalesced register. 167 /// @returns false if live range conflicts couldn't get resolved. 168 bool mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 169 unsigned LaneMask, CoalescerPair &CP); 170 171 /// Join the liveranges of two subregisters. Joins @p RRange into 172 /// @p LRange, @p RRange may be invalid afterwards. 173 /// @returns false if live range conflicts couldn't get resolved. 174 bool joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 175 unsigned LaneMask, const CoalescerPair &CP); 176 177 /// We found a non-trivially-coalescable copy. If the source value number is 178 /// defined by a copy from the destination reg see if we can merge these two 179 /// destination reg valno# into a single value number, eliminating a copy. 180 /// This returns true if an interval was modified. 181 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 182 183 /// Return true if there are definitions of IntB 184 /// other than BValNo val# that can reach uses of AValno val# of IntA. 185 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 186 VNInfo *AValNo, VNInfo *BValNo); 187 188 /// We found a non-trivially-coalescable copy. 189 /// If the source value number is defined by a commutable instruction and 190 /// its other operand is coalesced to the copy dest register, see if we 191 /// can transform the copy into a noop by commuting the definition. 192 /// This returns true if an interval was modified. 193 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); 194 195 /// If the source of a copy is defined by a 196 /// trivial computation, replace the copy by rematerialize the definition. 197 bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI, 198 bool &IsDefCopy); 199 200 /// Return true if a copy involving a physreg should be joined. 201 bool canJoinPhys(const CoalescerPair &CP); 202 203 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 204 /// number if it is not zero. If DstReg is a physical register and the 205 /// existing subregister number of the def / use being updated is not zero, 206 /// make sure to set it to the correct physical subregister. 207 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); 208 209 /// Handle copies of undef values. 210 /// Returns true if @p CopyMI was a copy of an undef value and eliminated. 211 bool eliminateUndefCopy(MachineInstr *CopyMI); 212 213 /// Check whether or not we should apply the terminal rule on the 214 /// destination (Dst) of \p Copy. 215 /// When the terminal rule applies, Copy is not profitable to 216 /// coalesce. 217 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 218 /// at least one interference (Dst, Dst2). If Dst is terminal, the 219 /// terminal rule consists in checking that at least one of 220 /// interfering node, say Dst2, has an affinity of equal or greater 221 /// weight with Src. 222 /// In that case, Dst2 and Dst will not be able to be both coalesced 223 /// with Src. Since Dst2 exposes more coalescing opportunities than 224 /// Dst, we can drop \p Copy. 225 bool applyTerminalRule(const MachineInstr &Copy) const; 226 227 public: 228 static char ID; ///< Class identification, replacement for typeinfo 229 RegisterCoalescer() : MachineFunctionPass(ID) { 230 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 231 } 232 233 void getAnalysisUsage(AnalysisUsage &AU) const override; 234 235 void releaseMemory() override; 236 237 /// This is the pass entry point. 238 bool runOnMachineFunction(MachineFunction&) override; 239 240 /// Implement the dump method. 241 void print(raw_ostream &O, const Module* = nullptr) const override; 242 }; 243 } // end anonymous namespace 244 245 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 246 247 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 248 "Simple Register Coalescing", false, false) 249 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 250 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 251 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 252 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 253 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 254 "Simple Register Coalescing", false, false) 255 256 char RegisterCoalescer::ID = 0; 257 258 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, 259 unsigned &Src, unsigned &Dst, 260 unsigned &SrcSub, unsigned &DstSub) { 261 if (MI->isCopy()) { 262 Dst = MI->getOperand(0).getReg(); 263 DstSub = MI->getOperand(0).getSubReg(); 264 Src = MI->getOperand(1).getReg(); 265 SrcSub = MI->getOperand(1).getSubReg(); 266 } else if (MI->isSubregToReg()) { 267 Dst = MI->getOperand(0).getReg(); 268 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 269 MI->getOperand(3).getImm()); 270 Src = MI->getOperand(2).getReg(); 271 SrcSub = MI->getOperand(2).getSubReg(); 272 } else 273 return false; 274 return true; 275 } 276 277 /// Return true if this block should be vacated by the coalescer to eliminate 278 /// branches. The important cases to handle in the coalescer are critical edges 279 /// split during phi elimination which contain only copies. Simple blocks that 280 /// contain non-branches should also be vacated, but this can be handled by an 281 /// earlier pass similar to early if-conversion. 282 static bool isSplitEdge(const MachineBasicBlock *MBB) { 283 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 284 return false; 285 286 for (const auto &MI : *MBB) { 287 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 288 return false; 289 } 290 return true; 291 } 292 293 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 294 SrcReg = DstReg = 0; 295 SrcIdx = DstIdx = 0; 296 NewRC = nullptr; 297 Flipped = CrossClass = false; 298 299 unsigned Src, Dst, SrcSub, DstSub; 300 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 301 return false; 302 Partial = SrcSub || DstSub; 303 304 // If one register is a physreg, it must be Dst. 305 if (TargetRegisterInfo::isPhysicalRegister(Src)) { 306 if (TargetRegisterInfo::isPhysicalRegister(Dst)) 307 return false; 308 std::swap(Src, Dst); 309 std::swap(SrcSub, DstSub); 310 Flipped = true; 311 } 312 313 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 314 315 if (TargetRegisterInfo::isPhysicalRegister(Dst)) { 316 // Eliminate DstSub on a physreg. 317 if (DstSub) { 318 Dst = TRI.getSubReg(Dst, DstSub); 319 if (!Dst) return false; 320 DstSub = 0; 321 } 322 323 // Eliminate SrcSub by picking a corresponding Dst superregister. 324 if (SrcSub) { 325 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 326 if (!Dst) return false; 327 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 328 return false; 329 } 330 } else { 331 // Both registers are virtual. 332 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 333 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 334 335 // Both registers have subreg indices. 336 if (SrcSub && DstSub) { 337 // Copies between different sub-registers are never coalescable. 338 if (Src == Dst && SrcSub != DstSub) 339 return false; 340 341 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 342 SrcIdx, DstIdx); 343 if (!NewRC) 344 return false; 345 } else if (DstSub) { 346 // SrcReg will be merged with a sub-register of DstReg. 347 SrcIdx = DstSub; 348 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 349 } else if (SrcSub) { 350 // DstReg will be merged with a sub-register of SrcReg. 351 DstIdx = SrcSub; 352 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 353 } else { 354 // This is a straight copy without sub-registers. 355 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 356 } 357 358 // The combined constraint may be impossible to satisfy. 359 if (!NewRC) 360 return false; 361 362 // Prefer SrcReg to be a sub-register of DstReg. 363 // FIXME: Coalescer should support subregs symmetrically. 364 if (DstIdx && !SrcIdx) { 365 std::swap(Src, Dst); 366 std::swap(SrcIdx, DstIdx); 367 Flipped = !Flipped; 368 } 369 370 CrossClass = NewRC != DstRC || NewRC != SrcRC; 371 } 372 // Check our invariants 373 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); 374 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && 375 "Cannot have a physical SubIdx"); 376 SrcReg = Src; 377 DstReg = Dst; 378 return true; 379 } 380 381 bool CoalescerPair::flip() { 382 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) 383 return false; 384 std::swap(SrcReg, DstReg); 385 std::swap(SrcIdx, DstIdx); 386 Flipped = !Flipped; 387 return true; 388 } 389 390 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 391 if (!MI) 392 return false; 393 unsigned Src, Dst, SrcSub, DstSub; 394 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 395 return false; 396 397 // Find the virtual register that is SrcReg. 398 if (Dst == SrcReg) { 399 std::swap(Src, Dst); 400 std::swap(SrcSub, DstSub); 401 } else if (Src != SrcReg) { 402 return false; 403 } 404 405 // Now check that Dst matches DstReg. 406 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 407 if (!TargetRegisterInfo::isPhysicalRegister(Dst)) 408 return false; 409 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 410 // DstSub could be set for a physreg from INSERT_SUBREG. 411 if (DstSub) 412 Dst = TRI.getSubReg(Dst, DstSub); 413 // Full copy of Src. 414 if (!SrcSub) 415 return DstReg == Dst; 416 // This is a partial register copy. Check that the parts match. 417 return TRI.getSubReg(DstReg, SrcSub) == Dst; 418 } else { 419 // DstReg is virtual. 420 if (DstReg != Dst) 421 return false; 422 // Registers match, do the subregisters line up? 423 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 424 TRI.composeSubRegIndices(DstIdx, DstSub); 425 } 426 } 427 428 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 429 AU.setPreservesCFG(); 430 AU.addRequired<AliasAnalysis>(); 431 AU.addRequired<LiveIntervals>(); 432 AU.addPreserved<LiveIntervals>(); 433 AU.addPreserved<SlotIndexes>(); 434 AU.addRequired<MachineLoopInfo>(); 435 AU.addPreserved<MachineLoopInfo>(); 436 AU.addPreservedID(MachineDominatorsID); 437 MachineFunctionPass::getAnalysisUsage(AU); 438 } 439 440 void RegisterCoalescer::eliminateDeadDefs() { 441 SmallVector<unsigned, 8> NewRegs; 442 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 443 nullptr, this).eliminateDeadDefs(DeadDefs); 444 } 445 446 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 447 // MI may be in WorkList. Make sure we don't visit it. 448 ErasedInstrs.insert(MI); 449 } 450 451 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 452 MachineInstr *CopyMI) { 453 assert(!CP.isPartial() && "This doesn't work for partial copies."); 454 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 455 456 LiveInterval &IntA = 457 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 458 LiveInterval &IntB = 459 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 460 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 461 462 // We have a non-trivially-coalescable copy with IntA being the source and 463 // IntB being the dest, thus this defines a value number in IntB. If the 464 // source value number (in IntA) is defined by a copy from B, see if we can 465 // merge these two pieces of B into a single value number, eliminating a copy. 466 // For example: 467 // 468 // A3 = B0 469 // ... 470 // B1 = A3 <- this copy 471 // 472 // In this case, B0 can be extended to where the B1 copy lives, allowing the 473 // B1 value number to be replaced with B0 (which simplifies the B 474 // liveinterval). 475 476 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 477 // the example above. 478 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 479 if (BS == IntB.end()) return false; 480 VNInfo *BValNo = BS->valno; 481 482 // Get the location that B is defined at. Two options: either this value has 483 // an unknown definition point or it is defined at CopyIdx. If unknown, we 484 // can't process it. 485 if (BValNo->def != CopyIdx) return false; 486 487 // AValNo is the value number in A that defines the copy, A3 in the example. 488 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 489 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 490 // The live segment might not exist after fun with physreg coalescing. 491 if (AS == IntA.end()) return false; 492 VNInfo *AValNo = AS->valno; 493 494 // If AValNo is defined as a copy from IntB, we can potentially process this. 495 // Get the instruction that defines this value number. 496 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 497 // Don't allow any partial copies, even if isCoalescable() allows them. 498 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 499 return false; 500 501 // Get the Segment in IntB that this value number starts with. 502 LiveInterval::iterator ValS = 503 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 504 if (ValS == IntB.end()) 505 return false; 506 507 // Make sure that the end of the live segment is inside the same block as 508 // CopyMI. 509 MachineInstr *ValSEndInst = 510 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 511 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 512 return false; 513 514 // Okay, we now know that ValS ends in the same block that the CopyMI 515 // live-range starts. If there are no intervening live segments between them 516 // in IntB, we can merge them. 517 if (ValS+1 != BS) return false; 518 519 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI)); 520 521 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 522 // We are about to delete CopyMI, so need to remove it as the 'instruction 523 // that defines this value #'. Update the valnum with the new defining 524 // instruction #. 525 BValNo->def = FillerStart; 526 527 // Okay, we can merge them. We need to insert a new liverange: 528 // [ValS.end, BS.begin) of either value number, then we merge the 529 // two value numbers. 530 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 531 532 // Okay, merge "B1" into the same value number as "B0". 533 if (BValNo != ValS->valno) 534 IntB.MergeValueNumberInto(BValNo, ValS->valno); 535 536 // Do the same for the subregister segments. 537 for (LiveInterval::SubRange &S : IntB.subranges()) { 538 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 539 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 540 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 541 if (SubBValNo != SubValSNo) 542 S.MergeValueNumberInto(SubBValNo, SubValSNo); 543 } 544 545 DEBUG(dbgs() << " result = " << IntB << '\n'); 546 547 // If the source instruction was killing the source register before the 548 // merge, unset the isKill marker given the live range has been extended. 549 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); 550 if (UIdx != -1) { 551 ValSEndInst->getOperand(UIdx).setIsKill(false); 552 } 553 554 // Rewrite the copy. If the copy instruction was killing the destination 555 // register before the merge, find the last use and trim the live range. That 556 // will also add the isKill marker. 557 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); 558 if (AS->end == CopyIdx) 559 LIS->shrinkToUses(&IntA); 560 561 ++numExtends; 562 return true; 563 } 564 565 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 566 LiveInterval &IntB, 567 VNInfo *AValNo, 568 VNInfo *BValNo) { 569 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 570 // the PHI values. 571 if (LIS->hasPHIKill(IntA, AValNo)) 572 return true; 573 574 for (LiveRange::Segment &ASeg : IntA.segments) { 575 if (ASeg.valno != AValNo) continue; 576 LiveInterval::iterator BI = 577 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); 578 if (BI != IntB.begin()) 579 --BI; 580 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 581 if (BI->valno == BValNo) 582 continue; 583 if (BI->start <= ASeg.start && BI->end > ASeg.start) 584 return true; 585 if (BI->start > ASeg.start && BI->start < ASeg.end) 586 return true; 587 } 588 } 589 return false; 590 } 591 592 /// Copy segements with value number @p SrcValNo from liverange @p Src to live 593 /// range @Dst and use value number @p DstValNo there. 594 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, 595 const LiveRange &Src, const VNInfo *SrcValNo) 596 { 597 for (const LiveRange::Segment &S : Src.segments) { 598 if (S.valno != SrcValNo) 599 continue; 600 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); 601 } 602 } 603 604 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 605 MachineInstr *CopyMI) { 606 assert(!CP.isPhys()); 607 608 LiveInterval &IntA = 609 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 610 LiveInterval &IntB = 611 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 612 613 // We found a non-trivially-coalescable copy with IntA being the source and 614 // IntB being the dest, thus this defines a value number in IntB. If the 615 // source value number (in IntA) is defined by a commutable instruction and 616 // its other operand is coalesced to the copy dest register, see if we can 617 // transform the copy into a noop by commuting the definition. For example, 618 // 619 // A3 = op A2 B0<kill> 620 // ... 621 // B1 = A3 <- this copy 622 // ... 623 // = op A3 <- more uses 624 // 625 // ==> 626 // 627 // B2 = op B0 A2<kill> 628 // ... 629 // B1 = B2 <- now an identity copy 630 // ... 631 // = op B2 <- more uses 632 633 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 634 // the example above. 635 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 636 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 637 assert(BValNo != nullptr && BValNo->def == CopyIdx); 638 639 // AValNo is the value number in A that defines the copy, A3 in the example. 640 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 641 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 642 if (AValNo->isPHIDef()) 643 return false; 644 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 645 if (!DefMI) 646 return false; 647 if (!DefMI->isCommutable()) 648 return false; 649 // If DefMI is a two-address instruction then commuting it will change the 650 // destination register. 651 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); 652 assert(DefIdx != -1); 653 unsigned UseOpIdx; 654 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 655 return false; 656 unsigned Op1, Op2, NewDstIdx; 657 if (!TII->findCommutedOpIndices(DefMI, Op1, Op2)) 658 return false; 659 if (Op1 == UseOpIdx) 660 NewDstIdx = Op2; 661 else if (Op2 == UseOpIdx) 662 NewDstIdx = Op1; 663 else 664 return false; 665 666 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 667 unsigned NewReg = NewDstMO.getReg(); 668 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) 669 return false; 670 671 // Make sure there are no other definitions of IntB that would reach the 672 // uses which the new definition can reach. 673 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 674 return false; 675 676 // If some of the uses of IntA.reg is already coalesced away, return false. 677 // It's not possible to determine whether it's safe to perform the coalescing. 678 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { 679 MachineInstr *UseMI = MO.getParent(); 680 unsigned OpNo = &MO - &UseMI->getOperand(0); 681 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI); 682 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 683 if (US == IntA.end() || US->valno != AValNo) 684 continue; 685 // If this use is tied to a def, we can't rewrite the register. 686 if (UseMI->isRegTiedToDefOperand(OpNo)) 687 return false; 688 } 689 690 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 691 << *DefMI); 692 693 // At this point we have decided that it is legal to do this 694 // transformation. Start by commuting the instruction. 695 MachineBasicBlock *MBB = DefMI->getParent(); 696 MachineInstr *NewMI = TII->commuteInstruction(DefMI); 697 if (!NewMI) 698 return false; 699 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && 700 TargetRegisterInfo::isVirtualRegister(IntB.reg) && 701 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) 702 return false; 703 if (NewMI != DefMI) { 704 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI); 705 MachineBasicBlock::iterator Pos = DefMI; 706 MBB->insert(Pos, NewMI); 707 MBB->erase(DefMI); 708 } 709 710 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 711 // A = or A, B 712 // ... 713 // B = A 714 // ... 715 // C = A<kill> 716 // ... 717 // = B 718 719 // Update uses of IntA of the specific Val# with IntB. 720 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), 721 UE = MRI->use_end(); 722 UI != UE; /* ++UI is below because of possible MI removal */) { 723 MachineOperand &UseMO = *UI; 724 ++UI; 725 if (UseMO.isUndef()) 726 continue; 727 MachineInstr *UseMI = UseMO.getParent(); 728 if (UseMI->isDebugValue()) { 729 // FIXME These don't have an instruction index. Not clear we have enough 730 // info to decide whether to do this replacement or not. For now do it. 731 UseMO.setReg(NewReg); 732 continue; 733 } 734 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true); 735 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 736 assert(US != IntA.end() && "Use must be live"); 737 if (US->valno != AValNo) 738 continue; 739 // Kill flags are no longer accurate. They are recomputed after RA. 740 UseMO.setIsKill(false); 741 if (TargetRegisterInfo::isPhysicalRegister(NewReg)) 742 UseMO.substPhysReg(NewReg, *TRI); 743 else 744 UseMO.setReg(NewReg); 745 if (UseMI == CopyMI) 746 continue; 747 if (!UseMI->isCopy()) 748 continue; 749 if (UseMI->getOperand(0).getReg() != IntB.reg || 750 UseMI->getOperand(0).getSubReg()) 751 continue; 752 753 // This copy will become a noop. If it's defining a new val#, merge it into 754 // BValNo. 755 SlotIndex DefIdx = UseIdx.getRegSlot(); 756 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 757 if (!DVNI) 758 continue; 759 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 760 assert(DVNI->def == DefIdx); 761 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 762 for (LiveInterval::SubRange &S : IntB.subranges()) { 763 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 764 if (!SubDVNI) 765 continue; 766 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 767 assert(SubBValNo->def == CopyIdx); 768 S.MergeValueNumberInto(SubDVNI, SubBValNo); 769 } 770 771 ErasedInstrs.insert(UseMI); 772 LIS->RemoveMachineInstrFromMaps(UseMI); 773 UseMI->eraseFromParent(); 774 } 775 776 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 777 // is updated. 778 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 779 if (IntB.hasSubRanges()) { 780 if (!IntA.hasSubRanges()) { 781 unsigned Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); 782 IntA.createSubRangeFrom(Allocator, Mask, IntA); 783 } 784 SlotIndex AIdx = CopyIdx.getRegSlot(true); 785 for (LiveInterval::SubRange &SA : IntA.subranges()) { 786 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 787 assert(ASubValNo != nullptr); 788 789 unsigned AMask = SA.LaneMask; 790 for (LiveInterval::SubRange &SB : IntB.subranges()) { 791 unsigned BMask = SB.LaneMask; 792 unsigned Common = BMask & AMask; 793 if (Common == 0) 794 continue; 795 796 DEBUG( 797 dbgs() << format("\t\tCopy+Merge %04X into %04X\n", BMask, Common)); 798 unsigned BRest = BMask & ~AMask; 799 LiveInterval::SubRange *CommonRange; 800 if (BRest != 0) { 801 SB.LaneMask = BRest; 802 DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", BRest)); 803 // Duplicate SubRange for newly merged common stuff. 804 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB); 805 } else { 806 // We van reuse the L SubRange. 807 SB.LaneMask = Common; 808 CommonRange = &SB; 809 } 810 LiveRange RangeCopy(SB, Allocator); 811 812 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx); 813 assert(BSubValNo->def == CopyIdx); 814 BSubValNo->def = ASubValNo->def; 815 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo); 816 AMask &= ~BMask; 817 } 818 if (AMask != 0) { 819 DEBUG(dbgs() << format("\t\tNew Lane %04X\n", AMask)); 820 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask); 821 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator); 822 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo); 823 } 824 } 825 } 826 827 BValNo->def = AValNo->def; 828 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 829 DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 830 831 LIS->removeVRegDefAt(IntA, AValNo->def); 832 833 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 834 ++numCommutes; 835 return true; 836 } 837 838 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 839 /// defining a subregister. 840 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { 841 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && 842 "This code cannot handle physreg aliasing"); 843 for (const MachineOperand &Op : MI.operands()) { 844 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 845 continue; 846 // Return true if we define the full register or don't care about the value 847 // inside other subregisters. 848 if (Op.getSubReg() == 0 || Op.isUndef()) 849 return true; 850 } 851 return false; 852 } 853 854 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP, 855 MachineInstr *CopyMI, 856 bool &IsDefCopy) { 857 IsDefCopy = false; 858 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 859 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 860 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 861 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 862 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) 863 return false; 864 865 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 866 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 867 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 868 assert(ValNo && "CopyMI input register not live"); 869 if (ValNo->isPHIDef() || ValNo->isUnused()) 870 return false; 871 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 872 if (!DefMI) 873 return false; 874 if (DefMI->isCopyLike()) { 875 IsDefCopy = true; 876 return false; 877 } 878 if (!TII->isAsCheapAsAMove(DefMI)) 879 return false; 880 if (!TII->isTriviallyReMaterializable(DefMI, AA)) 881 return false; 882 if (!definesFullReg(*DefMI, SrcReg)) 883 return false; 884 bool SawStore = false; 885 if (!DefMI->isSafeToMove(TII, AA, SawStore)) 886 return false; 887 const MCInstrDesc &MCID = DefMI->getDesc(); 888 if (MCID.getNumDefs() != 1) 889 return false; 890 // Only support subregister destinations when the def is read-undef. 891 MachineOperand &DstOperand = CopyMI->getOperand(0); 892 unsigned CopyDstReg = DstOperand.getReg(); 893 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 894 return false; 895 896 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 897 // the register substantially (beyond both source and dest size). This is bad 898 // for performance since it can cascade through a function, introducing many 899 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 900 // around after a few subreg copies). 901 if (SrcIdx && DstIdx) 902 return false; 903 904 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 905 if (!DefMI->isImplicitDef()) { 906 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { 907 unsigned NewDstReg = DstReg; 908 909 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 910 DefMI->getOperand(0).getSubReg()); 911 if (NewDstIdx) 912 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 913 914 // Finally, make sure that the physical subregister that will be 915 // constructed later is permitted for the instruction. 916 if (!DefRC->contains(NewDstReg)) 917 return false; 918 } else { 919 // Theoretically, some stack frame reference could exist. Just make sure 920 // it hasn't actually happened. 921 assert(TargetRegisterInfo::isVirtualRegister(DstReg) && 922 "Only expect to deal with virtual or physical registers"); 923 } 924 } 925 926 MachineBasicBlock *MBB = CopyMI->getParent(); 927 MachineBasicBlock::iterator MII = 928 std::next(MachineBasicBlock::iterator(CopyMI)); 929 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI); 930 MachineInstr *NewMI = std::prev(MII); 931 932 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI); 933 CopyMI->eraseFromParent(); 934 ErasedInstrs.insert(CopyMI); 935 936 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 937 // We need to remember these so we can add intervals once we insert 938 // NewMI into SlotIndexes. 939 SmallVector<unsigned, 4> NewMIImplDefs; 940 for (unsigned i = NewMI->getDesc().getNumOperands(), 941 e = NewMI->getNumOperands(); i != e; ++i) { 942 MachineOperand &MO = NewMI->getOperand(i); 943 if (MO.isReg()) { 944 assert(MO.isDef() && MO.isImplicit() && MO.isDead() && 945 TargetRegisterInfo::isPhysicalRegister(MO.getReg())); 946 NewMIImplDefs.push_back(MO.getReg()); 947 } 948 } 949 950 if (TargetRegisterInfo::isVirtualRegister(DstReg)) { 951 const TargetRegisterClass *NewRC = CP.getNewRC(); 952 unsigned NewIdx = NewMI->getOperand(0).getSubReg(); 953 954 if (DefRC != nullptr) { 955 if (NewIdx) 956 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 957 else 958 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 959 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 960 } 961 MRI->setRegClass(DstReg, NewRC); 962 963 updateRegDefsUses(DstReg, DstReg, DstIdx); 964 NewMI->getOperand(0).setSubReg(NewIdx); 965 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) { 966 // The New instruction may be defining a sub-register of what's actually 967 // been asked for. If so it must implicitly define the whole thing. 968 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && 969 "Only expect virtual or physical registers in remat"); 970 NewMI->getOperand(0).setIsDead(true); 971 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg, 972 true /*IsDef*/, 973 true /*IsImp*/, 974 false /*IsKill*/)); 975 // Record small dead def live-ranges for all the subregisters 976 // of the destination register. 977 // Otherwise, variables that live through may miss some 978 // interferences, thus creating invalid allocation. 979 // E.g., i386 code: 980 // vreg1 = somedef ; vreg1 GR8 981 // vreg2 = remat ; vreg2 GR32 982 // CL = COPY vreg2.sub_8bit 983 // = somedef vreg1 ; vreg1 GR8 984 // => 985 // vreg1 = somedef ; vreg1 GR8 986 // ECX<def, dead> = remat ; CL<imp-def> 987 // = somedef vreg1 ; vreg1 GR8 988 // vreg1 will see the inteferences with CL but not with CH since 989 // no live-ranges would have been created for ECX. 990 // Fix that! 991 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 992 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI); 993 Units.isValid(); ++Units) 994 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 995 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 996 } 997 998 if (NewMI->getOperand(0).getSubReg()) 999 NewMI->getOperand(0).setIsUndef(); 1000 1001 // CopyMI may have implicit operands, transfer them over to the newly 1002 // rematerialized instruction. And update implicit def interval valnos. 1003 for (unsigned i = CopyMI->getDesc().getNumOperands(), 1004 e = CopyMI->getNumOperands(); i != e; ++i) { 1005 MachineOperand &MO = CopyMI->getOperand(i); 1006 if (MO.isReg()) { 1007 assert(MO.isImplicit() && "No explicit operands after implict operands."); 1008 // Discard VReg implicit defs. 1009 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 1010 NewMI->addOperand(MO); 1011 } 1012 } 1013 } 1014 1015 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1016 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1017 unsigned Reg = NewMIImplDefs[i]; 1018 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1019 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1020 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1021 } 1022 1023 DEBUG(dbgs() << "Remat: " << *NewMI); 1024 ++NumReMats; 1025 1026 // The source interval can become smaller because we removed a use. 1027 LIS->shrinkToUses(&SrcInt, &DeadDefs); 1028 if (!DeadDefs.empty()) { 1029 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1030 // to describe DstReg instead. 1031 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { 1032 MachineInstr *UseMI = UseMO.getParent(); 1033 if (UseMI->isDebugValue()) { 1034 UseMO.setReg(DstReg); 1035 DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1036 } 1037 } 1038 eliminateDeadDefs(); 1039 } 1040 1041 return true; 1042 } 1043 1044 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1045 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes 1046 // local variables. When we have a copy like: 1047 // 1048 // %vreg1 = COPY %vreg2<undef> 1049 // 1050 // We delete the copy and remove the corresponding value number from %vreg1. 1051 // Any uses of that value number are marked as <undef>. 1052 1053 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1054 // CoalescerPair may have a new register class with adjusted subreg indices 1055 // at this point. 1056 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; 1057 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); 1058 1059 SlotIndex Idx = LIS->getInstructionIndex(CopyMI); 1060 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1061 // CopyMI is undef iff SrcReg is not live before the instruction. 1062 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1063 unsigned SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1064 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1065 if ((SR.LaneMask & SrcMask) == 0) 1066 continue; 1067 if (SR.liveAt(Idx)) 1068 return false; 1069 } 1070 } else if (SrcLI.liveAt(Idx)) 1071 return false; 1072 1073 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1074 1075 // Remove any DstReg segments starting at the instruction. 1076 LiveInterval &DstLI = LIS->getInterval(DstReg); 1077 SlotIndex RegIndex = Idx.getRegSlot(); 1078 // Remove value or merge with previous one in case of a subregister def. 1079 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1080 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1081 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1082 1083 // The affected subregister segments can be removed. 1084 unsigned DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1085 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1086 if ((SR.LaneMask & DstMask) == 0) 1087 continue; 1088 1089 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1090 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1091 SR.removeValNo(SVNI); 1092 } 1093 DstLI.removeEmptySubRanges(); 1094 } else 1095 LIS->removeVRegDefAt(DstLI, RegIndex); 1096 1097 // Mark uses as undef. 1098 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1099 if (MO.isDef() /*|| MO.isUndef()*/) 1100 continue; 1101 const MachineInstr &MI = *MO.getParent(); 1102 SlotIndex UseIdx = LIS->getInstructionIndex(&MI); 1103 unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1104 bool isLive; 1105 if (UseMask != ~0u && DstLI.hasSubRanges()) { 1106 isLive = false; 1107 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1108 if ((SR.LaneMask & UseMask) == 0) 1109 continue; 1110 if (SR.liveAt(UseIdx)) { 1111 isLive = true; 1112 break; 1113 } 1114 } 1115 } else 1116 isLive = DstLI.liveAt(UseIdx); 1117 if (isLive) 1118 continue; 1119 MO.setIsUndef(true); 1120 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1121 } 1122 return true; 1123 } 1124 1125 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, 1126 unsigned DstReg, 1127 unsigned SubIdx) { 1128 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 1129 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1130 1131 SmallPtrSet<MachineInstr*, 8> Visited; 1132 for (MachineRegisterInfo::reg_instr_iterator 1133 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1134 I != E; ) { 1135 MachineInstr *UseMI = &*(I++); 1136 1137 // Each instruction can only be rewritten once because sub-register 1138 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1139 // the UseMI operands removes them from the SrcReg use-def chain, but when 1140 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1141 // operands mentioning the virtual register. 1142 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1143 continue; 1144 1145 SmallVector<unsigned,8> Ops; 1146 bool Reads, Writes; 1147 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1148 1149 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1150 // because SrcReg is a sub-register. 1151 if (DstInt && !Reads && SubIdx) 1152 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI)); 1153 1154 // Replace SrcReg with DstReg in all UseMI operands. 1155 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1156 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1157 1158 // Adjust <undef> flags in case of sub-register joins. We don't want to 1159 // turn a full def into a read-modify-write sub-register def and vice 1160 // versa. 1161 if (SubIdx && MO.isDef()) 1162 MO.setIsUndef(!Reads); 1163 1164 // A subreg use of a partially undef (super) register may be a complete 1165 // undef use now and then has to be marked that way. 1166 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { 1167 if (!DstInt->hasSubRanges()) { 1168 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1169 unsigned Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); 1170 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); 1171 } 1172 unsigned Mask = TRI->getSubRegIndexLaneMask(SubIdx); 1173 bool IsUndef = true; 1174 SlotIndex MIIdx = UseMI->isDebugValue() 1175 ? LIS->getSlotIndexes()->getIndexBefore(UseMI) 1176 : LIS->getInstructionIndex(UseMI); 1177 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1178 for (LiveInterval::SubRange &S : DstInt->subranges()) { 1179 if ((S.LaneMask & Mask) == 0) 1180 continue; 1181 if (S.liveAt(UseIdx)) { 1182 IsUndef = false; 1183 break; 1184 } 1185 } 1186 if (IsUndef) { 1187 MO.setIsUndef(true); 1188 // We found out some subregister use is actually reading an undefined 1189 // value. In some cases the whole vreg has become undefined at this 1190 // point so we have to potentially shrink the main range if the 1191 // use was ending a live segment there. 1192 LiveQueryResult Q = DstInt->Query(MIIdx); 1193 if (Q.valueOut() == nullptr) 1194 ShrinkMainRange = true; 1195 } 1196 } 1197 1198 if (DstIsPhys) 1199 MO.substPhysReg(DstReg, *TRI); 1200 else 1201 MO.substVirtReg(DstReg, SubIdx, *TRI); 1202 } 1203 1204 DEBUG({ 1205 dbgs() << "\t\tupdated: "; 1206 if (!UseMI->isDebugValue()) 1207 dbgs() << LIS->getInstructionIndex(UseMI) << "\t"; 1208 dbgs() << *UseMI; 1209 }); 1210 } 1211 } 1212 1213 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1214 // Always join simple intervals that are defined by a single copy from a 1215 // reserved register. This doesn't increase register pressure, so it is 1216 // always beneficial. 1217 if (!MRI->isReserved(CP.getDstReg())) { 1218 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1219 return false; 1220 } 1221 1222 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1223 if (JoinVInt.containsOneValue()) 1224 return true; 1225 1226 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1227 return false; 1228 } 1229 1230 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1231 1232 Again = false; 1233 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI); 1234 1235 CoalescerPair CP(*TRI); 1236 if (!CP.setRegisters(CopyMI)) { 1237 DEBUG(dbgs() << "\tNot coalescable.\n"); 1238 return false; 1239 } 1240 1241 if (CP.getNewRC()) { 1242 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1243 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1244 unsigned SrcIdx = CP.getSrcIdx(); 1245 unsigned DstIdx = CP.getDstIdx(); 1246 if (CP.isFlipped()) { 1247 std::swap(SrcIdx, DstIdx); 1248 std::swap(SrcRC, DstRC); 1249 } 1250 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1251 CP.getNewRC())) { 1252 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1253 return false; 1254 } 1255 } 1256 1257 // Dead code elimination. This really should be handled by MachineDCE, but 1258 // sometimes dead copies slip through, and we can't generate invalid live 1259 // ranges. 1260 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1261 DEBUG(dbgs() << "\tCopy is dead.\n"); 1262 DeadDefs.push_back(CopyMI); 1263 eliminateDeadDefs(); 1264 return true; 1265 } 1266 1267 // Eliminate undefs. 1268 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) { 1269 LIS->RemoveMachineInstrFromMaps(CopyMI); 1270 CopyMI->eraseFromParent(); 1271 return false; // Not coalescable. 1272 } 1273 1274 // Coalesced copies are normally removed immediately, but transformations 1275 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1276 // When that happens, just join the values and remove the copy. 1277 if (CP.getSrcReg() == CP.getDstReg()) { 1278 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1279 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1280 const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI); 1281 LiveQueryResult LRQ = LI.Query(CopyIdx); 1282 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1283 VNInfo *ReadVNI = LRQ.valueIn(); 1284 assert(ReadVNI && "No value before copy and no <undef> flag."); 1285 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1286 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1287 1288 // Process subregister liveranges. 1289 for (LiveInterval::SubRange &S : LI.subranges()) { 1290 LiveQueryResult SLRQ = S.Query(CopyIdx); 1291 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1292 VNInfo *SReadVNI = SLRQ.valueIn(); 1293 S.MergeValueNumberInto(SDefVNI, SReadVNI); 1294 } 1295 } 1296 DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1297 } 1298 LIS->RemoveMachineInstrFromMaps(CopyMI); 1299 CopyMI->eraseFromParent(); 1300 return true; 1301 } 1302 1303 // Enforce policies. 1304 if (CP.isPhys()) { 1305 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI) 1306 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) 1307 << '\n'); 1308 if (!canJoinPhys(CP)) { 1309 // Before giving up coalescing, if definition of source is defined by 1310 // trivial computation, try rematerializing it. 1311 bool IsDefCopy; 1312 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1313 return true; 1314 if (IsDefCopy) 1315 Again = true; // May be possible to coalesce later. 1316 return false; 1317 } 1318 } else { 1319 // When possible, let DstReg be the larger interval. 1320 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 1321 LIS->getInterval(CP.getDstReg()).size()) 1322 CP.flip(); 1323 1324 DEBUG({ 1325 dbgs() << "\tConsidering merging to " 1326 << TRI->getRegClassName(CP.getNewRC()) << " with "; 1327 if (CP.getDstIdx() && CP.getSrcIdx()) 1328 dbgs() << PrintReg(CP.getDstReg()) << " in " 1329 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 1330 << PrintReg(CP.getSrcReg()) << " in " 1331 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 1332 else 1333 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in " 1334 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 1335 }); 1336 } 1337 1338 ShrinkMask = 0; 1339 ShrinkMainRange = false; 1340 1341 // Okay, attempt to join these two intervals. On failure, this returns false. 1342 // Otherwise, if one of the intervals being joined is a physreg, this method 1343 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 1344 // been modified, so we can use this information below to update aliases. 1345 if (!joinIntervals(CP)) { 1346 // Coalescing failed. 1347 1348 // If definition of source is defined by trivial computation, try 1349 // rematerializing it. 1350 bool IsDefCopy; 1351 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 1352 return true; 1353 1354 // If we can eliminate the copy without merging the live segments, do so 1355 // now. 1356 if (!CP.isPartial() && !CP.isPhys()) { 1357 if (adjustCopiesBackFrom(CP, CopyMI) || 1358 removeCopyByCommutingDef(CP, CopyMI)) { 1359 LIS->RemoveMachineInstrFromMaps(CopyMI); 1360 CopyMI->eraseFromParent(); 1361 DEBUG(dbgs() << "\tTrivial!\n"); 1362 return true; 1363 } 1364 } 1365 1366 // Otherwise, we are unable to join the intervals. 1367 DEBUG(dbgs() << "\tInterference!\n"); 1368 Again = true; // May be possible to coalesce later. 1369 return false; 1370 } 1371 1372 // Coalescing to a virtual register that is of a sub-register class of the 1373 // other. Make sure the resulting register is set to the right register class. 1374 if (CP.isCrossClass()) { 1375 ++numCrossRCs; 1376 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 1377 } 1378 1379 // Removing sub-register copies can ease the register class constraints. 1380 // Make sure we attempt to inflate the register class of DstReg. 1381 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 1382 InflateRegs.push_back(CP.getDstReg()); 1383 1384 // CopyMI has been erased by joinIntervals at this point. Remove it from 1385 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 1386 // to the work list. This keeps ErasedInstrs from growing needlessly. 1387 ErasedInstrs.erase(CopyMI); 1388 1389 // Rewrite all SrcReg operands to DstReg. 1390 // Also update DstReg operands to include DstIdx if it is set. 1391 if (CP.getDstIdx()) 1392 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 1393 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 1394 1395 // Shrink subregister ranges if necessary. 1396 if (ShrinkMask != 0) { 1397 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1398 for (LiveInterval::SubRange &S : LI.subranges()) { 1399 if ((S.LaneMask & ShrinkMask) == 0) 1400 continue; 1401 DEBUG(dbgs() << "Shrink LaneUses (Lane " 1402 << format("%04X", S.LaneMask) << ")\n"); 1403 LIS->shrinkToUses(S, LI.reg); 1404 } 1405 } 1406 if (ShrinkMainRange) { 1407 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 1408 LIS->shrinkToUses(&LI); 1409 } 1410 1411 // SrcReg is guaranteed to be the register whose live interval that is 1412 // being merged. 1413 LIS->removeInterval(CP.getSrcReg()); 1414 1415 // Update regalloc hint. 1416 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 1417 1418 DEBUG({ 1419 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 1420 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 1421 dbgs() << "\tResult = "; 1422 if (CP.isPhys()) 1423 dbgs() << PrintReg(CP.getDstReg(), TRI); 1424 else 1425 dbgs() << LIS->getInterval(CP.getDstReg()); 1426 dbgs() << '\n'; 1427 }); 1428 1429 ++numJoins; 1430 return true; 1431 } 1432 1433 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 1434 unsigned DstReg = CP.getDstReg(); 1435 assert(CP.isPhys() && "Must be a physreg copy"); 1436 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 1437 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 1438 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 1439 1440 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 1441 1442 // Optimization for reserved registers like ESP. We can only merge with a 1443 // reserved physreg if RHS has a single value that is a copy of DstReg. 1444 // The live range of the reserved register will look like a set of dead defs 1445 // - we don't properly track the live range of reserved registers. 1446 1447 // Deny any overlapping intervals. This depends on all the reserved 1448 // register live ranges to look like dead defs. 1449 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) 1450 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 1451 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n'); 1452 return false; 1453 } 1454 1455 // Skip any value computations, we are not adding new values to the 1456 // reserved register. Also skip merging the live ranges, the reserved 1457 // register live range doesn't need to be accurate as long as all the 1458 // defs are there. 1459 1460 // Delete the identity copy. 1461 MachineInstr *CopyMI; 1462 if (CP.isFlipped()) { 1463 CopyMI = MRI->getVRegDef(RHS.reg); 1464 } else { 1465 if (!MRI->hasOneNonDBGUse(RHS.reg)) { 1466 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 1467 return false; 1468 } 1469 1470 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg); 1471 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg); 1472 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(); 1473 const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 1474 1475 // We checked above that there are no interfering defs of the physical 1476 // register. However, for this case, where we intent to move up the def of 1477 // the physical register, we also need to check for interfering uses. 1478 SlotIndexes *Indexes = LIS->getSlotIndexes(); 1479 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 1480 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 1481 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 1482 if (MI->readsRegister(DstReg, TRI)) { 1483 DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 1484 return false; 1485 } 1486 } 1487 1488 // We're going to remove the copy which defines a physical reserved 1489 // register, so remove its valno, etc. 1490 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at " 1491 << CopyRegIdx << "\n"); 1492 1493 LIS->removePhysRegDefAt(DstReg, CopyRegIdx); 1494 // Create a new dead def at the new def location. 1495 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 1496 LiveRange &LR = LIS->getRegUnit(*UI); 1497 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 1498 } 1499 } 1500 1501 LIS->RemoveMachineInstrFromMaps(CopyMI); 1502 CopyMI->eraseFromParent(); 1503 1504 // We don't track kills for reserved registers. 1505 MRI->clearKillFlags(CP.getSrcReg()); 1506 1507 return true; 1508 } 1509 1510 //===----------------------------------------------------------------------===// 1511 // Interference checking and interval joining 1512 //===----------------------------------------------------------------------===// 1513 // 1514 // In the easiest case, the two live ranges being joined are disjoint, and 1515 // there is no interference to consider. It is quite common, though, to have 1516 // overlapping live ranges, and we need to check if the interference can be 1517 // resolved. 1518 // 1519 // The live range of a single SSA value forms a sub-tree of the dominator tree. 1520 // This means that two SSA values overlap if and only if the def of one value 1521 // is contained in the live range of the other value. As a special case, the 1522 // overlapping values can be defined at the same index. 1523 // 1524 // The interference from an overlapping def can be resolved in these cases: 1525 // 1526 // 1. Coalescable copies. The value is defined by a copy that would become an 1527 // identity copy after joining SrcReg and DstReg. The copy instruction will 1528 // be removed, and the value will be merged with the source value. 1529 // 1530 // There can be several copies back and forth, causing many values to be 1531 // merged into one. We compute a list of ultimate values in the joined live 1532 // range as well as a mappings from the old value numbers. 1533 // 1534 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 1535 // predecessors have a live out value. It doesn't cause real interference, 1536 // and can be merged into the value it overlaps. Like a coalescable copy, it 1537 // can be erased after joining. 1538 // 1539 // 3. Copy of external value. The overlapping def may be a copy of a value that 1540 // is already in the other register. This is like a coalescable copy, but 1541 // the live range of the source register must be trimmed after erasing the 1542 // copy instruction: 1543 // 1544 // %src = COPY %ext 1545 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 1546 // 1547 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 1548 // defining one lane at a time: 1549 // 1550 // %dst:ssub0<def,read-undef> = FOO 1551 // %src = BAR 1552 // %dst:ssub1<def> = COPY %src 1553 // 1554 // The live range of %src overlaps the %dst value defined by FOO, but 1555 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 1556 // which was undef anyway. 1557 // 1558 // The value mapping is more complicated in this case. The final live range 1559 // will have different value numbers for both FOO and BAR, but there is no 1560 // simple mapping from old to new values. It may even be necessary to add 1561 // new PHI values. 1562 // 1563 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 1564 // is live, but never read. This can happen because we don't compute 1565 // individual live ranges per lane. 1566 // 1567 // %dst<def> = FOO 1568 // %src = BAR 1569 // %dst:ssub1<def> = COPY %src 1570 // 1571 // This kind of interference is only resolved locally. If the clobbered 1572 // lane value escapes the block, the join is aborted. 1573 1574 namespace { 1575 /// Track information about values in a single virtual register about to be 1576 /// joined. Objects of this class are always created in pairs - one for each 1577 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 1578 /// pair) 1579 class JoinVals { 1580 /// Live range we work on. 1581 LiveRange &LR; 1582 /// (Main) register we work on. 1583 const unsigned Reg; 1584 1585 /// Reg (and therefore the values in this liverange) will end up as 1586 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 1587 /// CP.SrcIdx. 1588 const unsigned SubIdx; 1589 /// The LaneMask that this liverange will occupy the coalesced register. May 1590 /// be smaller than the lanemask produced by SubIdx when merging subranges. 1591 const unsigned LaneMask; 1592 1593 /// This is true when joining sub register ranges, false when joining main 1594 /// ranges. 1595 const bool SubRangeJoin; 1596 /// Whether the current LiveInterval tracks subregister liveness. 1597 const bool TrackSubRegLiveness; 1598 1599 /// Values that will be present in the final live range. 1600 SmallVectorImpl<VNInfo*> &NewVNInfo; 1601 1602 const CoalescerPair &CP; 1603 LiveIntervals *LIS; 1604 SlotIndexes *Indexes; 1605 const TargetRegisterInfo *TRI; 1606 1607 /// Value number assignments. Maps value numbers in LI to entries in 1608 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 1609 SmallVector<int, 8> Assignments; 1610 1611 /// Conflict resolution for overlapping values. 1612 enum ConflictResolution { 1613 /// No overlap, simply keep this value. 1614 CR_Keep, 1615 1616 /// Merge this value into OtherVNI and erase the defining instruction. 1617 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 1618 /// values. 1619 CR_Erase, 1620 1621 /// Merge this value into OtherVNI but keep the defining instruction. 1622 /// This is for the special case where OtherVNI is defined by the same 1623 /// instruction. 1624 CR_Merge, 1625 1626 /// Keep this value, and have it replace OtherVNI where possible. This 1627 /// complicates value mapping since OtherVNI maps to two different values 1628 /// before and after this def. 1629 /// Used when clobbering undefined or dead lanes. 1630 CR_Replace, 1631 1632 /// Unresolved conflict. Visit later when all values have been mapped. 1633 CR_Unresolved, 1634 1635 /// Unresolvable conflict. Abort the join. 1636 CR_Impossible 1637 }; 1638 1639 /// Per-value info for LI. The lane bit masks are all relative to the final 1640 /// joined register, so they can be compared directly between SrcReg and 1641 /// DstReg. 1642 struct Val { 1643 ConflictResolution Resolution; 1644 1645 /// Lanes written by this def, 0 for unanalyzed values. 1646 unsigned WriteLanes; 1647 1648 /// Lanes with defined values in this register. Other lanes are undef and 1649 /// safe to clobber. 1650 unsigned ValidLanes; 1651 1652 /// Value in LI being redefined by this def. 1653 VNInfo *RedefVNI; 1654 1655 /// Value in the other live range that overlaps this def, if any. 1656 VNInfo *OtherVNI; 1657 1658 /// Is this value an IMPLICIT_DEF that can be erased? 1659 /// 1660 /// IMPLICIT_DEF values should only exist at the end of a basic block that 1661 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 1662 /// safely erased if they are overlapping a live value in the other live 1663 /// interval. 1664 /// 1665 /// Weird control flow graphs and incomplete PHI handling in 1666 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 1667 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 1668 /// normal values. 1669 bool ErasableImplicitDef; 1670 1671 /// True when the live range of this value will be pruned because of an 1672 /// overlapping CR_Replace value in the other live range. 1673 bool Pruned; 1674 1675 /// True once Pruned above has been computed. 1676 bool PrunedComputed; 1677 1678 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0), 1679 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false), 1680 Pruned(false), PrunedComputed(false) {} 1681 1682 bool isAnalyzed() const { return WriteLanes != 0; } 1683 }; 1684 1685 /// One entry per value number in LI. 1686 SmallVector<Val, 8> Vals; 1687 1688 /// Compute the bitmask of lanes actually written by DefMI. 1689 /// Set Redef if there are any partial register definitions that depend on the 1690 /// previous value of the register. 1691 unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 1692 1693 /// Find the ultimate value that VNI was copied from. 1694 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; 1695 1696 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const; 1697 1698 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 1699 /// Return a conflict resolution when possible, but leave the hard cases as 1700 /// CR_Unresolved. 1701 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 1702 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 1703 /// The recursion always goes upwards in the dominator tree, making loops 1704 /// impossible. 1705 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 1706 1707 /// Compute the value assignment for ValNo in RI. 1708 /// This may be called recursively by analyzeValue(), but never for a ValNo on 1709 /// the stack. 1710 void computeAssignment(unsigned ValNo, JoinVals &Other); 1711 1712 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 1713 /// the extent of the tainted lanes in the block. 1714 /// 1715 /// Multiple values in Other.LR can be affected since partial redefinitions 1716 /// can preserve previously tainted lanes. 1717 /// 1718 /// 1 %dst = VLOAD <-- Define all lanes in %dst 1719 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 1720 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 1721 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 1722 /// 1723 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 1724 /// entry to TaintedVals. 1725 /// 1726 /// Returns false if the tainted lanes extend beyond the basic block. 1727 bool taintExtent(unsigned, unsigned, JoinVals&, 1728 SmallVectorImpl<std::pair<SlotIndex, unsigned> >&); 1729 1730 /// Return true if MI uses any of the given Lanes from Reg. 1731 /// This does not include partial redefinitions of Reg. 1732 bool usesLanes(const MachineInstr *MI, unsigned, unsigned, unsigned) const; 1733 1734 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 1735 /// be pruned: 1736 /// 1737 /// %dst = COPY %src 1738 /// %src = COPY %dst <-- This value to be pruned. 1739 /// %dst = COPY %src <-- This value is a copy of a pruned value. 1740 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 1741 1742 public: 1743 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, unsigned LaneMask, 1744 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, 1745 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 1746 bool TrackSubRegLiveness) 1747 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 1748 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 1749 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 1750 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) 1751 {} 1752 1753 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 1754 /// Returns false if any conflicts were impossible to resolve. 1755 bool mapValues(JoinVals &Other); 1756 1757 /// Try to resolve conflicts that require all values to be mapped. 1758 /// Returns false if any conflicts were impossible to resolve. 1759 bool resolveConflicts(JoinVals &Other); 1760 1761 /// Prune the live range of values in Other.LR where they would conflict with 1762 /// CR_Replace values in LR. Collect end points for restoring the live range 1763 /// after joining. 1764 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 1765 bool changeInstrs); 1766 1767 /// Removes subranges starting at copies that get removed. This sometimes 1768 /// happens when undefined subranges are copied around. These ranges contain 1769 /// no usefull information and can be removed. 1770 void pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask); 1771 1772 /// Erase any machine instructions that have been coalesced away. 1773 /// Add erased instructions to ErasedInstrs. 1774 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 1775 /// the erased instrs. 1776 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 1777 SmallVectorImpl<unsigned> &ShrinkRegs); 1778 1779 /// Remove liverange defs at places where implicit defs will be removed. 1780 void removeImplicitDefs(); 1781 1782 /// Get the value assignments suitable for passing to LiveInterval::join. 1783 const int *getAssignments() const { return Assignments.data(); } 1784 }; 1785 } // end anonymous namespace 1786 1787 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 1788 const { 1789 unsigned L = 0; 1790 for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) { 1791 if (!MO->isReg() || MO->getReg() != Reg || !MO->isDef()) 1792 continue; 1793 L |= TRI->getSubRegIndexLaneMask( 1794 TRI->composeSubRegIndices(SubIdx, MO->getSubReg())); 1795 if (MO->readsReg()) 1796 Redef = true; 1797 } 1798 return L; 1799 } 1800 1801 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( 1802 const VNInfo *VNI) const { 1803 unsigned Reg = this->Reg; 1804 1805 while (!VNI->isPHIDef()) { 1806 SlotIndex Def = VNI->def; 1807 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 1808 assert(MI && "No defining instruction"); 1809 if (!MI->isFullCopy()) 1810 return std::make_pair(VNI, Reg); 1811 unsigned SrcReg = MI->getOperand(1).getReg(); 1812 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1813 return std::make_pair(VNI, Reg); 1814 1815 const LiveInterval &LI = LIS->getInterval(SrcReg); 1816 const VNInfo *ValueIn; 1817 // No subrange involved. 1818 if (!SubRangeJoin || !LI.hasSubRanges()) { 1819 LiveQueryResult LRQ = LI.Query(Def); 1820 ValueIn = LRQ.valueIn(); 1821 } else { 1822 // Query subranges. Pick the first matching one. 1823 ValueIn = nullptr; 1824 for (const LiveInterval::SubRange &S : LI.subranges()) { 1825 // Transform lanemask to a mask in the joined live interval. 1826 unsigned SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 1827 if ((SMask & LaneMask) == 0) 1828 continue; 1829 LiveQueryResult LRQ = S.Query(Def); 1830 ValueIn = LRQ.valueIn(); 1831 break; 1832 } 1833 } 1834 if (ValueIn == nullptr) 1835 break; 1836 VNI = ValueIn; 1837 Reg = SrcReg; 1838 } 1839 return std::make_pair(VNI, Reg); 1840 } 1841 1842 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 1843 const JoinVals &Other) const { 1844 const VNInfo *Orig0; 1845 unsigned Reg0; 1846 std::tie(Orig0, Reg0) = followCopyChain(Value0); 1847 if (Orig0 == Value1) 1848 return true; 1849 1850 const VNInfo *Orig1; 1851 unsigned Reg1; 1852 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 1853 1854 // The values are equal if they are defined at the same place and use the 1855 // same register. Note that we cannot compare VNInfos directly as some of 1856 // them might be from a copy created in mergeSubRangeInto() while the other 1857 // is from the original LiveInterval. 1858 return Orig0->def == Orig1->def && Reg0 == Reg1; 1859 } 1860 1861 JoinVals::ConflictResolution 1862 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 1863 Val &V = Vals[ValNo]; 1864 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 1865 VNInfo *VNI = LR.getValNumInfo(ValNo); 1866 if (VNI->isUnused()) { 1867 V.WriteLanes = ~0u; 1868 return CR_Keep; 1869 } 1870 1871 // Get the instruction defining this value, compute the lanes written. 1872 const MachineInstr *DefMI = nullptr; 1873 if (VNI->isPHIDef()) { 1874 // Conservatively assume that all lanes in a PHI are valid. 1875 unsigned Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx); 1876 V.ValidLanes = V.WriteLanes = Lanes; 1877 } else { 1878 DefMI = Indexes->getInstructionFromIndex(VNI->def); 1879 assert(DefMI != nullptr); 1880 if (SubRangeJoin) { 1881 // We don't care about the lanes when joining subregister ranges. 1882 V.WriteLanes = V.ValidLanes = 1; 1883 if (DefMI->isImplicitDef()) { 1884 V.ValidLanes = 0; 1885 V.ErasableImplicitDef = true; 1886 } 1887 } else { 1888 bool Redef = false; 1889 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 1890 1891 // If this is a read-modify-write instruction, there may be more valid 1892 // lanes than the ones written by this instruction. 1893 // This only covers partial redef operands. DefMI may have normal use 1894 // operands reading the register. They don't contribute valid lanes. 1895 // 1896 // This adds ssub1 to the set of valid lanes in %src: 1897 // 1898 // %src:ssub1<def> = FOO 1899 // 1900 // This leaves only ssub1 valid, making any other lanes undef: 1901 // 1902 // %src:ssub1<def,read-undef> = FOO %src:ssub2 1903 // 1904 // The <read-undef> flag on the def operand means that old lane values are 1905 // not important. 1906 if (Redef) { 1907 V.RedefVNI = LR.Query(VNI->def).valueIn(); 1908 assert((TrackSubRegLiveness || V.RedefVNI) && 1909 "Instruction is reading nonexistent value"); 1910 if (V.RedefVNI != nullptr) { 1911 computeAssignment(V.RedefVNI->id, Other); 1912 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 1913 } 1914 } 1915 1916 // An IMPLICIT_DEF writes undef values. 1917 if (DefMI->isImplicitDef()) { 1918 // We normally expect IMPLICIT_DEF values to be live only until the end 1919 // of their block. If the value is really live longer and gets pruned in 1920 // another block, this flag is cleared again. 1921 V.ErasableImplicitDef = true; 1922 V.ValidLanes &= ~V.WriteLanes; 1923 } 1924 } 1925 } 1926 1927 // Find the value in Other that overlaps VNI->def, if any. 1928 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 1929 1930 // It is possible that both values are defined by the same instruction, or 1931 // the values are PHIs defined in the same block. When that happens, the two 1932 // values should be merged into one, but not into any preceding value. 1933 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 1934 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 1935 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 1936 1937 // One value stays, the other is merged. Keep the earlier one, or the first 1938 // one we see. 1939 if (OtherVNI->def < VNI->def) 1940 Other.computeAssignment(OtherVNI->id, *this); 1941 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 1942 // This is an early-clobber def overlapping a live-in value in the other 1943 // register. Not mergeable. 1944 V.OtherVNI = OtherLRQ.valueIn(); 1945 return CR_Impossible; 1946 } 1947 V.OtherVNI = OtherVNI; 1948 Val &OtherV = Other.Vals[OtherVNI->id]; 1949 // Keep this value, check for conflicts when analyzing OtherVNI. 1950 if (!OtherV.isAnalyzed()) 1951 return CR_Keep; 1952 // Both sides have been analyzed now. 1953 // Allow overlapping PHI values. Any real interference would show up in a 1954 // predecessor, the PHI itself can't introduce any conflicts. 1955 if (VNI->isPHIDef()) 1956 return CR_Merge; 1957 if (V.ValidLanes & OtherV.ValidLanes) 1958 // Overlapping lanes can't be resolved. 1959 return CR_Impossible; 1960 else 1961 return CR_Merge; 1962 } 1963 1964 // No simultaneous def. Is Other live at the def? 1965 V.OtherVNI = OtherLRQ.valueIn(); 1966 if (!V.OtherVNI) 1967 // No overlap, no conflict. 1968 return CR_Keep; 1969 1970 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 1971 1972 // We have overlapping values, or possibly a kill of Other. 1973 // Recursively compute assignments up the dominator tree. 1974 Other.computeAssignment(V.OtherVNI->id, *this); 1975 Val &OtherV = Other.Vals[V.OtherVNI->id]; 1976 1977 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 1978 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 1979 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 1980 // technically. 1981 // 1982 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try 1983 // to erase the IMPLICIT_DEF instruction. 1984 if (OtherV.ErasableImplicitDef && DefMI && 1985 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 1986 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 1987 << " extends into BB#" << DefMI->getParent()->getNumber() 1988 << ", keeping it.\n"); 1989 OtherV.ErasableImplicitDef = false; 1990 } 1991 1992 // Allow overlapping PHI values. Any real interference would show up in a 1993 // predecessor, the PHI itself can't introduce any conflicts. 1994 if (VNI->isPHIDef()) 1995 return CR_Replace; 1996 1997 // Check for simple erasable conflicts. 1998 if (DefMI->isImplicitDef()) { 1999 // We need the def for the subregister if there is nothing else live at the 2000 // subrange at this point. 2001 if (TrackSubRegLiveness 2002 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0) 2003 return CR_Replace; 2004 return CR_Erase; 2005 } 2006 2007 // Include the non-conflict where DefMI is a coalescable copy that kills 2008 // OtherVNI. We still want the copy erased and value numbers merged. 2009 if (CP.isCoalescable(DefMI)) { 2010 // Some of the lanes copied from OtherVNI may be undef, making them undef 2011 // here too. 2012 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2013 return CR_Erase; 2014 } 2015 2016 // This may not be a real conflict if DefMI simply kills Other and defines 2017 // VNI. 2018 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2019 return CR_Keep; 2020 2021 // Handle the case where VNI and OtherVNI can be proven to be identical: 2022 // 2023 // %other = COPY %ext 2024 // %this = COPY %ext <-- Erase this copy 2025 // 2026 if (DefMI->isFullCopy() && !CP.isPartial() 2027 && valuesIdentical(VNI, V.OtherVNI, Other)) 2028 return CR_Erase; 2029 2030 // If the lanes written by this instruction were all undef in OtherVNI, it is 2031 // still safe to join the live ranges. This can't be done with a simple value 2032 // mapping, though - OtherVNI will map to multiple values: 2033 // 2034 // 1 %dst:ssub0 = FOO <-- OtherVNI 2035 // 2 %src = BAR <-- VNI 2036 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy. 2037 // 4 BAZ %dst<kill> 2038 // 5 QUUX %src<kill> 2039 // 2040 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2041 // handles this complex value mapping. 2042 if ((V.WriteLanes & OtherV.ValidLanes) == 0) 2043 return CR_Replace; 2044 2045 // If the other live range is killed by DefMI and the live ranges are still 2046 // overlapping, it must be because we're looking at an early clobber def: 2047 // 2048 // %dst<def,early-clobber> = ASM %src<kill> 2049 // 2050 // In this case, it is illegal to merge the two live ranges since the early 2051 // clobber def would clobber %src before it was read. 2052 if (OtherLRQ.isKill()) { 2053 // This case where the def doesn't overlap the kill is handled above. 2054 assert(VNI->def.isEarlyClobber() && 2055 "Only early clobber defs can overlap a kill"); 2056 return CR_Impossible; 2057 } 2058 2059 // VNI is clobbering live lanes in OtherVNI, but there is still the 2060 // possibility that no instructions actually read the clobbered lanes. 2061 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2062 // Otherwise Other.RI wouldn't be live here. 2063 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0) 2064 return CR_Impossible; 2065 2066 // We need to verify that no instructions are reading the clobbered lanes. To 2067 // save compile time, we'll only check that locally. Don't allow the tainted 2068 // value to escape the basic block. 2069 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2070 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2071 return CR_Impossible; 2072 2073 // There are still some things that could go wrong besides clobbered lanes 2074 // being read, for example OtherVNI may be only partially redefined in MBB, 2075 // and some clobbered lanes could escape the block. Save this analysis for 2076 // resolveConflicts() when all values have been mapped. We need to know 2077 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2078 // that now - the recursive analyzeValue() calls must go upwards in the 2079 // dominator tree. 2080 return CR_Unresolved; 2081 } 2082 2083 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2084 Val &V = Vals[ValNo]; 2085 if (V.isAnalyzed()) { 2086 // Recursion should always move up the dominator tree, so ValNo is not 2087 // supposed to reappear before it has been assigned. 2088 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2089 return; 2090 } 2091 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2092 case CR_Erase: 2093 case CR_Merge: 2094 // Merge this ValNo into OtherVNI. 2095 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2096 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2097 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2098 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@' 2099 << LR.getValNumInfo(ValNo)->def << " into " 2100 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2101 << V.OtherVNI->def << " --> @" 2102 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2103 break; 2104 case CR_Replace: 2105 case CR_Unresolved: { 2106 // The other value is going to be pruned if this join is successful. 2107 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2108 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2109 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2110 // its lanes. 2111 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness) 2112 OtherV.ErasableImplicitDef = false; 2113 OtherV.Pruned = true; 2114 } 2115 // Fall through. 2116 default: 2117 // This value number needs to go in the final joined live range. 2118 Assignments[ValNo] = NewVNInfo.size(); 2119 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2120 break; 2121 } 2122 } 2123 2124 bool JoinVals::mapValues(JoinVals &Other) { 2125 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2126 computeAssignment(i, Other); 2127 if (Vals[i].Resolution == CR_Impossible) { 2128 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i 2129 << '@' << LR.getValNumInfo(i)->def << '\n'); 2130 return false; 2131 } 2132 } 2133 return true; 2134 } 2135 2136 bool JoinVals:: 2137 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other, 2138 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) { 2139 VNInfo *VNI = LR.getValNumInfo(ValNo); 2140 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2141 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2142 2143 // Scan Other.LR from VNI.def to MBBEnd. 2144 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2145 assert(OtherI != Other.LR.end() && "No conflict?"); 2146 do { 2147 // OtherI is pointing to a tainted value. Abort the join if the tainted 2148 // lanes escape the block. 2149 SlotIndex End = OtherI->end; 2150 if (End >= MBBEnd) { 2151 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':' 2152 << OtherI->valno->id << '@' << OtherI->start << '\n'); 2153 return false; 2154 } 2155 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':' 2156 << OtherI->valno->id << '@' << OtherI->start 2157 << " to " << End << '\n'); 2158 // A dead def is not a problem. 2159 if (End.isDead()) 2160 break; 2161 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 2162 2163 // Check for another def in the MBB. 2164 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 2165 break; 2166 2167 // Lanes written by the new def are no longer tainted. 2168 const Val &OV = Other.Vals[OtherI->valno->id]; 2169 TaintedLanes &= ~OV.WriteLanes; 2170 if (!OV.RedefVNI) 2171 break; 2172 } while (TaintedLanes); 2173 return true; 2174 } 2175 2176 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx, 2177 unsigned Lanes) const { 2178 if (MI->isDebugValue()) 2179 return false; 2180 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 2181 if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg) 2182 continue; 2183 if (!MO->readsReg()) 2184 continue; 2185 if (Lanes & TRI->getSubRegIndexLaneMask( 2186 TRI->composeSubRegIndices(SubIdx, MO->getSubReg()))) 2187 return true; 2188 } 2189 return false; 2190 } 2191 2192 bool JoinVals::resolveConflicts(JoinVals &Other) { 2193 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2194 Val &V = Vals[i]; 2195 assert (V.Resolution != CR_Impossible && "Unresolvable conflict"); 2196 if (V.Resolution != CR_Unresolved) 2197 continue; 2198 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i 2199 << '@' << LR.getValNumInfo(i)->def << '\n'); 2200 if (SubRangeJoin) 2201 return false; 2202 2203 ++NumLaneConflicts; 2204 assert(V.OtherVNI && "Inconsistent conflict resolution."); 2205 VNInfo *VNI = LR.getValNumInfo(i); 2206 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 2207 2208 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 2209 // join, those lanes will be tainted with a wrong value. Get the extent of 2210 // the tainted lanes. 2211 unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 2212 SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent; 2213 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 2214 // Tainted lanes would extend beyond the basic block. 2215 return false; 2216 2217 assert(!TaintExtent.empty() && "There should be at least one conflict."); 2218 2219 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 2220 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2221 MachineBasicBlock::iterator MI = MBB->begin(); 2222 if (!VNI->isPHIDef()) { 2223 MI = Indexes->getInstructionFromIndex(VNI->def); 2224 // No need to check the instruction defining VNI for reads. 2225 ++MI; 2226 } 2227 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 2228 "Interference ends on VNI->def. Should have been handled earlier"); 2229 MachineInstr *LastMI = 2230 Indexes->getInstructionFromIndex(TaintExtent.front().first); 2231 assert(LastMI && "Range must end at a proper instruction"); 2232 unsigned TaintNum = 0; 2233 for(;;) { 2234 assert(MI != MBB->end() && "Bad LastMI"); 2235 if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 2236 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 2237 return false; 2238 } 2239 // LastMI is the last instruction to use the current value. 2240 if (&*MI == LastMI) { 2241 if (++TaintNum == TaintExtent.size()) 2242 break; 2243 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 2244 assert(LastMI && "Range must end at a proper instruction"); 2245 TaintedLanes = TaintExtent[TaintNum].second; 2246 } 2247 ++MI; 2248 } 2249 2250 // The tainted lanes are unused. 2251 V.Resolution = CR_Replace; 2252 ++NumLaneResolves; 2253 } 2254 return true; 2255 } 2256 2257 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 2258 Val &V = Vals[ValNo]; 2259 if (V.Pruned || V.PrunedComputed) 2260 return V.Pruned; 2261 2262 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 2263 return V.Pruned; 2264 2265 // Follow copies up the dominator tree and check if any intermediate value 2266 // has been pruned. 2267 V.PrunedComputed = true; 2268 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 2269 return V.Pruned; 2270 } 2271 2272 void JoinVals::pruneValues(JoinVals &Other, 2273 SmallVectorImpl<SlotIndex> &EndPoints, 2274 bool changeInstrs) { 2275 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2276 SlotIndex Def = LR.getValNumInfo(i)->def; 2277 switch (Vals[i].Resolution) { 2278 case CR_Keep: 2279 break; 2280 case CR_Replace: { 2281 // This value takes precedence over the value in Other.LR. 2282 LIS->pruneValue(Other.LR, Def, &EndPoints); 2283 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 2284 // instructions are only inserted to provide a live-out value for PHI 2285 // predecessors, so the instruction should simply go away once its value 2286 // has been replaced. 2287 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 2288 bool EraseImpDef = OtherV.ErasableImplicitDef && 2289 OtherV.Resolution == CR_Keep; 2290 if (!Def.isBlock()) { 2291 if (changeInstrs) { 2292 // Remove <def,read-undef> flags. This def is now a partial redef. 2293 // Also remove <def,dead> flags since the joined live range will 2294 // continue past this instruction. 2295 for (MIOperands MO(Indexes->getInstructionFromIndex(Def)); 2296 MO.isValid(); ++MO) { 2297 if (MO->isReg() && MO->isDef() && MO->getReg() == Reg) { 2298 MO->setIsUndef(EraseImpDef); 2299 MO->setIsDead(false); 2300 } 2301 } 2302 } 2303 // This value will reach instructions below, but we need to make sure 2304 // the live range also reaches the instruction at Def. 2305 if (!EraseImpDef) 2306 EndPoints.push_back(Def); 2307 } 2308 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def 2309 << ": " << Other.LR << '\n'); 2310 break; 2311 } 2312 case CR_Erase: 2313 case CR_Merge: 2314 if (isPrunedValue(i, Other)) { 2315 // This value is ultimately a copy of a pruned value in LR or Other.LR. 2316 // We can no longer trust the value mapping computed by 2317 // computeAssignment(), the value that was originally copied could have 2318 // been replaced. 2319 LIS->pruneValue(LR, Def, &EndPoints); 2320 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at " 2321 << Def << ": " << LR << '\n'); 2322 } 2323 break; 2324 case CR_Unresolved: 2325 case CR_Impossible: 2326 llvm_unreachable("Unresolved conflicts"); 2327 } 2328 } 2329 } 2330 2331 void JoinVals::pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask) 2332 { 2333 // Look for values being erased. 2334 bool DidPrune = false; 2335 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2336 if (Vals[i].Resolution != CR_Erase) 2337 continue; 2338 2339 // Check subranges at the point where the copy will be removed. 2340 SlotIndex Def = LR.getValNumInfo(i)->def; 2341 for (LiveInterval::SubRange &S : LI.subranges()) { 2342 LiveQueryResult Q = S.Query(Def); 2343 2344 // If a subrange starts at the copy then an undefined value has been 2345 // copied and we must remove that subrange value as well. 2346 VNInfo *ValueOut = Q.valueOutOrDead(); 2347 if (ValueOut != nullptr && Q.valueIn() == nullptr) { 2348 DEBUG(dbgs() << "\t\tPrune sublane " << format("%04X", S.LaneMask) 2349 << " at " << Def << "\n"); 2350 LIS->pruneValue(S, Def, nullptr); 2351 DidPrune = true; 2352 // Mark value number as unused. 2353 ValueOut->markUnused(); 2354 continue; 2355 } 2356 // If a subrange ends at the copy, then a value was copied but only 2357 // partially used later. Shrink the subregister range apropriately. 2358 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { 2359 DEBUG(dbgs() << "\t\tDead uses at sublane " 2360 << format("%04X", S.LaneMask) << " at " << Def << "\n"); 2361 ShrinkMask |= S.LaneMask; 2362 } 2363 } 2364 } 2365 if (DidPrune) 2366 LI.removeEmptySubRanges(); 2367 } 2368 2369 void JoinVals::removeImplicitDefs() { 2370 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2371 Val &V = Vals[i]; 2372 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 2373 continue; 2374 2375 VNInfo *VNI = LR.getValNumInfo(i); 2376 VNI->markUnused(); 2377 LR.removeValNo(VNI); 2378 } 2379 } 2380 2381 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2382 SmallVectorImpl<unsigned> &ShrinkRegs) { 2383 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2384 // Get the def location before markUnused() below invalidates it. 2385 SlotIndex Def = LR.getValNumInfo(i)->def; 2386 switch (Vals[i].Resolution) { 2387 case CR_Keep: { 2388 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 2389 // longer. The IMPLICIT_DEF instructions are only inserted by 2390 // PHIElimination to guarantee that all PHI predecessors have a value. 2391 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 2392 break; 2393 // Remove value number i from LR. 2394 VNInfo *VNI = LR.getValNumInfo(i); 2395 LR.removeValNo(VNI); 2396 // Note that this VNInfo is reused and still referenced in NewVNInfo, 2397 // make it appear like an unused value number. 2398 VNI->markUnused(); 2399 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'); 2400 // FALL THROUGH. 2401 } 2402 2403 case CR_Erase: { 2404 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2405 assert(MI && "No instruction to erase"); 2406 if (MI->isCopy()) { 2407 unsigned Reg = MI->getOperand(1).getReg(); 2408 if (TargetRegisterInfo::isVirtualRegister(Reg) && 2409 Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 2410 ShrinkRegs.push_back(Reg); 2411 } 2412 ErasedInstrs.insert(MI); 2413 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 2414 LIS->RemoveMachineInstrFromMaps(MI); 2415 MI->eraseFromParent(); 2416 break; 2417 } 2418 default: 2419 break; 2420 } 2421 } 2422 } 2423 2424 bool RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 2425 unsigned LaneMask, 2426 const CoalescerPair &CP) { 2427 SmallVector<VNInfo*, 16> NewVNInfo; 2428 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 2429 NewVNInfo, CP, LIS, TRI, true, true); 2430 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 2431 NewVNInfo, CP, LIS, TRI, true, true); 2432 2433 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 2434 // We should be able to resolve all conflicts here as we could successfully do 2435 // it on the mainrange already. There is however a problem when multiple 2436 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 2437 // interferences. 2438 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 2439 DEBUG(dbgs() << "*** Couldn't join subrange!\n"); 2440 return false; 2441 } 2442 if (!LHSVals.resolveConflicts(RHSVals) || 2443 !RHSVals.resolveConflicts(LHSVals)) { 2444 DEBUG(dbgs() << "*** Couldn't join subrange!\n"); 2445 return false; 2446 } 2447 2448 // The merging algorithm in LiveInterval::join() can't handle conflicting 2449 // value mappings, so we need to remove any live ranges that overlap a 2450 // CR_Replace resolution. Collect a set of end points that can be used to 2451 // restore the live range after joining. 2452 SmallVector<SlotIndex, 8> EndPoints; 2453 LHSVals.pruneValues(RHSVals, EndPoints, false); 2454 RHSVals.pruneValues(LHSVals, EndPoints, false); 2455 2456 LHSVals.removeImplicitDefs(); 2457 RHSVals.removeImplicitDefs(); 2458 2459 LRange.verify(); 2460 RRange.verify(); 2461 2462 // Join RRange into LHS. 2463 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 2464 NewVNInfo); 2465 2466 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n"); 2467 if (EndPoints.empty()) 2468 return true; 2469 2470 // Recompute the parts of the live range we had to remove because of 2471 // CR_Replace conflicts. 2472 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2473 << " points: " << LRange << '\n'); 2474 LIS->extendToIndices(LRange, EndPoints); 2475 return true; 2476 } 2477 2478 bool RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 2479 const LiveRange &ToMerge, 2480 unsigned LaneMask, CoalescerPair &CP) { 2481 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2482 for (LiveInterval::SubRange &R : LI.subranges()) { 2483 unsigned RMask = R.LaneMask; 2484 // LaneMask of subregisters common to subrange R and ToMerge. 2485 unsigned Common = RMask & LaneMask; 2486 // There is nothing to do without common subregs. 2487 if (Common == 0) 2488 continue; 2489 2490 DEBUG(dbgs() << format("\t\tCopy+Merge %04X into %04X\n", RMask, Common)); 2491 // LaneMask of subregisters contained in the R range but not in ToMerge, 2492 // they have to split into their own subrange. 2493 unsigned LRest = RMask & ~LaneMask; 2494 LiveInterval::SubRange *CommonRange; 2495 if (LRest != 0) { 2496 R.LaneMask = LRest; 2497 DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", LRest)); 2498 // Duplicate SubRange for newly merged common stuff. 2499 CommonRange = LI.createSubRangeFrom(Allocator, Common, R); 2500 } else { 2501 // Reuse the existing range. 2502 R.LaneMask = Common; 2503 CommonRange = &R; 2504 } 2505 LiveRange RangeCopy(ToMerge, Allocator); 2506 if (!joinSubRegRanges(*CommonRange, RangeCopy, Common, CP)) 2507 return false; 2508 LaneMask &= ~RMask; 2509 } 2510 2511 if (LaneMask != 0) { 2512 DEBUG(dbgs() << format("\t\tNew Lane %04X\n", LaneMask)); 2513 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge); 2514 } 2515 return true; 2516 } 2517 2518 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 2519 SmallVector<VNInfo*, 16> NewVNInfo; 2520 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 2521 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 2522 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 2523 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS, 2524 TRI, false, TrackSubRegLiveness); 2525 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS, 2526 TRI, false, TrackSubRegLiveness); 2527 2528 DEBUG(dbgs() << "\t\tRHS = " << RHS 2529 << "\n\t\tLHS = " << LHS 2530 << '\n'); 2531 2532 // First compute NewVNInfo and the simple value mappings. 2533 // Detect impossible conflicts early. 2534 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 2535 return false; 2536 2537 // Some conflicts can only be resolved after all values have been mapped. 2538 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 2539 return false; 2540 2541 // All clear, the live ranges can be merged. 2542 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 2543 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 2544 2545 // Transform lanemasks from the LHS to masks in the coalesced register and 2546 // create initial subranges if necessary. 2547 unsigned DstIdx = CP.getDstIdx(); 2548 if (!LHS.hasSubRanges()) { 2549 unsigned Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 2550 : TRI->getSubRegIndexLaneMask(DstIdx); 2551 // LHS must support subregs or we wouldn't be in this codepath. 2552 assert(Mask != 0); 2553 LHS.createSubRangeFrom(Allocator, Mask, LHS); 2554 } else if (DstIdx != 0) { 2555 // Transform LHS lanemasks to new register class if necessary. 2556 for (LiveInterval::SubRange &R : LHS.subranges()) { 2557 unsigned Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 2558 R.LaneMask = Mask; 2559 } 2560 } 2561 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg()) 2562 << ' ' << LHS << '\n'); 2563 2564 // Determine lanemasks of RHS in the coalesced register and merge subranges. 2565 unsigned SrcIdx = CP.getSrcIdx(); 2566 bool Abort = false; 2567 if (!RHS.hasSubRanges()) { 2568 unsigned Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 2569 : TRI->getSubRegIndexLaneMask(SrcIdx); 2570 if (!mergeSubRangeInto(LHS, RHS, Mask, CP)) 2571 Abort = true; 2572 } else { 2573 // Pair up subranges and merge. 2574 for (LiveInterval::SubRange &R : RHS.subranges()) { 2575 unsigned Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 2576 if (!mergeSubRangeInto(LHS, R, Mask, CP)) { 2577 Abort = true; 2578 break; 2579 } 2580 } 2581 } 2582 if (Abort) { 2583 // This shouldn't have happened :-( 2584 // However we are aware of at least one existing problem where we 2585 // can't merge subranges when multiple ranges end up in the 2586 // "overflow bit" 32. As a workaround we drop all subregister ranges 2587 // which means we loose some precision but are back to a well defined 2588 // state. 2589 assert((CP.getNewRC()->getLaneMask() & 0x80000000u) 2590 && "SubRange merge should only fail when merging into bit 32."); 2591 DEBUG(dbgs() << "\tSubrange join aborted!\n"); 2592 LHS.clearSubRanges(); 2593 RHS.clearSubRanges(); 2594 } else { 2595 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 2596 2597 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 2598 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 2599 } 2600 } 2601 2602 // The merging algorithm in LiveInterval::join() can't handle conflicting 2603 // value mappings, so we need to remove any live ranges that overlap a 2604 // CR_Replace resolution. Collect a set of end points that can be used to 2605 // restore the live range after joining. 2606 SmallVector<SlotIndex, 8> EndPoints; 2607 LHSVals.pruneValues(RHSVals, EndPoints, true); 2608 RHSVals.pruneValues(LHSVals, EndPoints, true); 2609 2610 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 2611 // registers to require trimming. 2612 SmallVector<unsigned, 8> ShrinkRegs; 2613 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2614 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 2615 while (!ShrinkRegs.empty()) 2616 LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 2617 2618 // Join RHS into LHS. 2619 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 2620 2621 // Kill flags are going to be wrong if the live ranges were overlapping. 2622 // Eventually, we should simply clear all kill flags when computing live 2623 // ranges. They are reinserted after register allocation. 2624 MRI->clearKillFlags(LHS.reg); 2625 MRI->clearKillFlags(RHS.reg); 2626 2627 if (!EndPoints.empty()) { 2628 // Recompute the parts of the live range we had to remove because of 2629 // CR_Replace conflicts. 2630 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size() 2631 << " points: " << LHS << '\n'); 2632 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 2633 } 2634 2635 return true; 2636 } 2637 2638 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 2639 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 2640 } 2641 2642 namespace { 2643 /// Information concerning MBB coalescing priority. 2644 struct MBBPriorityInfo { 2645 MachineBasicBlock *MBB; 2646 unsigned Depth; 2647 bool IsSplit; 2648 2649 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 2650 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 2651 }; 2652 } 2653 2654 /// C-style comparator that sorts first based on the loop depth of the basic 2655 /// block (the unsigned), and then on the MBB number. 2656 /// 2657 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 2658 static int compareMBBPriority(const MBBPriorityInfo *LHS, 2659 const MBBPriorityInfo *RHS) { 2660 // Deeper loops first 2661 if (LHS->Depth != RHS->Depth) 2662 return LHS->Depth > RHS->Depth ? -1 : 1; 2663 2664 // Try to unsplit critical edges next. 2665 if (LHS->IsSplit != RHS->IsSplit) 2666 return LHS->IsSplit ? -1 : 1; 2667 2668 // Prefer blocks that are more connected in the CFG. This takes care of 2669 // the most difficult copies first while intervals are short. 2670 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 2671 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 2672 if (cl != cr) 2673 return cl > cr ? -1 : 1; 2674 2675 // As a last resort, sort by block number. 2676 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 2677 } 2678 2679 /// \returns true if the given copy uses or defines a local live range. 2680 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 2681 if (!Copy->isCopy()) 2682 return false; 2683 2684 if (Copy->getOperand(1).isUndef()) 2685 return false; 2686 2687 unsigned SrcReg = Copy->getOperand(1).getReg(); 2688 unsigned DstReg = Copy->getOperand(0).getReg(); 2689 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) 2690 || TargetRegisterInfo::isPhysicalRegister(DstReg)) 2691 return false; 2692 2693 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 2694 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 2695 } 2696 2697 bool RegisterCoalescer:: 2698 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 2699 bool Progress = false; 2700 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { 2701 if (!CurrList[i]) 2702 continue; 2703 // Skip instruction pointers that have already been erased, for example by 2704 // dead code elimination. 2705 if (ErasedInstrs.erase(CurrList[i])) { 2706 CurrList[i] = nullptr; 2707 continue; 2708 } 2709 bool Again = false; 2710 bool Success = joinCopy(CurrList[i], Again); 2711 Progress |= Success; 2712 if (Success || !Again) 2713 CurrList[i] = nullptr; 2714 } 2715 return Progress; 2716 } 2717 2718 /// Check if DstReg is a terminal node. 2719 /// I.e., it does not have any affinity other than \p Copy. 2720 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, 2721 const MachineRegisterInfo *MRI) { 2722 assert(Copy.isCopyLike()); 2723 // Check if the destination of this copy as any other affinity. 2724 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 2725 if (&MI != &Copy && MI.isCopyLike()) 2726 return false; 2727 return true; 2728 } 2729 2730 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 2731 assert(Copy.isCopyLike()); 2732 if (!UseTerminalRule) 2733 return false; 2734 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; 2735 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); 2736 // Check if the destination of this copy has any other affinity. 2737 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 2738 // If SrcReg is a physical register, the copy won't be coalesced. 2739 // Ignoring it may have other side effect (like missing 2740 // rematerialization). So keep it. 2741 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 2742 !isTerminalReg(DstReg, Copy, MRI)) 2743 return false; 2744 2745 // DstReg is a terminal node. Check if it inteferes with any other 2746 // copy involving SrcReg. 2747 const MachineBasicBlock *OrigBB = Copy.getParent(); 2748 const LiveInterval &DstLI = LIS->getInterval(DstReg); 2749 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 2750 // Technically we should check if the weight of the new copy is 2751 // interesting compared to the other one and update the weight 2752 // of the copies accordingly. However, this would only work if 2753 // we would gather all the copies first then coalesce, whereas 2754 // right now we interleave both actions. 2755 // For now, just consider the copies that are in the same block. 2756 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 2757 continue; 2758 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; 2759 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 2760 OtherSubReg); 2761 if (OtherReg == SrcReg) 2762 OtherReg = OtherSrcReg; 2763 // Check if OtherReg is a non-terminal. 2764 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || 2765 isTerminalReg(OtherReg, MI, MRI)) 2766 continue; 2767 // Check that OtherReg interfere with DstReg. 2768 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 2769 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n'); 2770 return true; 2771 } 2772 } 2773 return false; 2774 } 2775 2776 void 2777 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 2778 DEBUG(dbgs() << MBB->getName() << ":\n"); 2779 2780 // Collect all copy-like instructions in MBB. Don't start coalescing anything 2781 // yet, it might invalidate the iterator. 2782 const unsigned PrevSize = WorkList.size(); 2783 if (JoinGlobalCopies) { 2784 SmallVector<MachineInstr*, 2> LocalTerminals; 2785 SmallVector<MachineInstr*, 2> GlobalTerminals; 2786 // Coalesce copies bottom-up to coalesce local defs before local uses. They 2787 // are not inherently easier to resolve, but slightly preferable until we 2788 // have local live range splitting. In particular this is required by 2789 // cmp+jmp macro fusion. 2790 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2791 MII != E; ++MII) { 2792 if (!MII->isCopyLike()) 2793 continue; 2794 bool ApplyTerminalRule = applyTerminalRule(*MII); 2795 if (isLocalCopy(&(*MII), LIS)) { 2796 if (ApplyTerminalRule) 2797 LocalTerminals.push_back(&(*MII)); 2798 else 2799 LocalWorkList.push_back(&(*MII)); 2800 } else { 2801 if (ApplyTerminalRule) 2802 GlobalTerminals.push_back(&(*MII)); 2803 else 2804 WorkList.push_back(&(*MII)); 2805 } 2806 } 2807 // Append the copies evicted by the terminal rule at the end of the list. 2808 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 2809 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 2810 } 2811 else { 2812 SmallVector<MachineInstr*, 2> Terminals; 2813 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); 2814 MII != E; ++MII) 2815 if (MII->isCopyLike()) { 2816 if (applyTerminalRule(*MII)) 2817 Terminals.push_back(&(*MII)); 2818 else 2819 WorkList.push_back(MII); 2820 } 2821 // Append the copies evicted by the terminal rule at the end of the list. 2822 WorkList.append(Terminals.begin(), Terminals.end()); 2823 } 2824 // Try coalescing the collected copies immediately, and remove the nulls. 2825 // This prevents the WorkList from getting too large since most copies are 2826 // joinable on the first attempt. 2827 MutableArrayRef<MachineInstr*> 2828 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 2829 if (copyCoalesceWorkList(CurrList)) 2830 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 2831 (MachineInstr*)nullptr), WorkList.end()); 2832 } 2833 2834 void RegisterCoalescer::coalesceLocals() { 2835 copyCoalesceWorkList(LocalWorkList); 2836 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 2837 if (LocalWorkList[j]) 2838 WorkList.push_back(LocalWorkList[j]); 2839 } 2840 LocalWorkList.clear(); 2841 } 2842 2843 void RegisterCoalescer::joinAllIntervals() { 2844 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 2845 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 2846 2847 std::vector<MBBPriorityInfo> MBBs; 2848 MBBs.reserve(MF->size()); 2849 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){ 2850 MachineBasicBlock *MBB = I; 2851 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), 2852 JoinSplitEdges && isSplitEdge(MBB))); 2853 } 2854 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 2855 2856 // Coalesce intervals in MBB priority order. 2857 unsigned CurrDepth = UINT_MAX; 2858 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 2859 // Try coalescing the collected local copies for deeper loops. 2860 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { 2861 coalesceLocals(); 2862 CurrDepth = MBBs[i].Depth; 2863 } 2864 copyCoalesceInMBB(MBBs[i].MBB); 2865 } 2866 coalesceLocals(); 2867 2868 // Joining intervals can allow other intervals to be joined. Iteratively join 2869 // until we make no progress. 2870 while (copyCoalesceWorkList(WorkList)) 2871 /* empty */ ; 2872 } 2873 2874 void RegisterCoalescer::releaseMemory() { 2875 ErasedInstrs.clear(); 2876 WorkList.clear(); 2877 DeadDefs.clear(); 2878 InflateRegs.clear(); 2879 } 2880 2881 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 2882 MF = &fn; 2883 MRI = &fn.getRegInfo(); 2884 TM = &fn.getTarget(); 2885 const TargetSubtargetInfo &STI = fn.getSubtarget(); 2886 TRI = STI.getRegisterInfo(); 2887 TII = STI.getInstrInfo(); 2888 LIS = &getAnalysis<LiveIntervals>(); 2889 AA = &getAnalysis<AliasAnalysis>(); 2890 Loops = &getAnalysis<MachineLoopInfo>(); 2891 if (EnableGlobalCopies == cl::BOU_UNSET) 2892 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 2893 else 2894 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 2895 2896 // The MachineScheduler does not currently require JoinSplitEdges. This will 2897 // either be enabled unconditionally or replaced by a more general live range 2898 // splitting optimization. 2899 JoinSplitEdges = EnableJoinSplits; 2900 2901 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 2902 << "********** Function: " << MF->getName() << '\n'); 2903 2904 if (VerifyCoalescing) 2905 MF->verify(this, "Before register coalescing"); 2906 2907 RegClassInfo.runOnMachineFunction(fn); 2908 2909 // Join (coalesce) intervals if requested. 2910 if (EnableJoining) 2911 joinAllIntervals(); 2912 2913 // After deleting a lot of copies, register classes may be less constrained. 2914 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 2915 // DPR inflation. 2916 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 2917 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 2918 InflateRegs.end()); 2919 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); 2920 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 2921 unsigned Reg = InflateRegs[i]; 2922 if (MRI->reg_nodbg_empty(Reg)) 2923 continue; 2924 if (MRI->recomputeRegClass(Reg)) { 2925 DEBUG(dbgs() << PrintReg(Reg) << " inflated to " 2926 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 2927 LiveInterval &LI = LIS->getInterval(Reg); 2928 unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2929 if (MaxMask == 0) { 2930 // If the inflated register class does not support subregisters anymore 2931 // remove the subranges. 2932 LI.clearSubRanges(); 2933 } else { 2934 #ifndef NDEBUG 2935 // If subranges are still supported, then the same subregs should still 2936 // be supported. 2937 for (LiveInterval::SubRange &S : LI.subranges()) { 2938 assert ((S.LaneMask & ~MaxMask) == 0); 2939 } 2940 #endif 2941 } 2942 ++NumInflated; 2943 } 2944 } 2945 2946 DEBUG(dump()); 2947 if (VerifyCoalescing) 2948 MF->verify(this, "After register coalescing"); 2949 return true; 2950 } 2951 2952 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 2953 LIS->print(O, m); 2954 } 2955