Home | History | Annotate | Download | only in CodeGen
      1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Methods common to all machine instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/MachineInstr.h"
     15 #include "llvm/ADT/FoldingSet.h"
     16 #include "llvm/ADT/Hashing.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/CodeGen/MachineConstantPool.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineMemOperand.h"
     21 #include "llvm/CodeGen/MachineModuleInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/PseudoSourceValue.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/DebugInfo.h"
     26 #include "llvm/IR/Function.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Metadata.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/IR/ModuleSlotTracker.h"
     32 #include "llvm/IR/Type.h"
     33 #include "llvm/IR/Value.h"
     34 #include "llvm/MC/MCInstrDesc.h"
     35 #include "llvm/MC/MCSymbol.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/MathExtras.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 #include "llvm/Target/TargetInstrInfo.h"
     42 #include "llvm/Target/TargetMachine.h"
     43 #include "llvm/Target/TargetRegisterInfo.h"
     44 #include "llvm/Target/TargetSubtargetInfo.h"
     45 using namespace llvm;
     46 
     47 static cl::opt<bool> PrintWholeRegMask(
     48     "print-whole-regmask",
     49     cl::desc("Print the full contents of regmask operands in IR dumps"),
     50     cl::init(true), cl::Hidden);
     51 
     52 //===----------------------------------------------------------------------===//
     53 // MachineOperand Implementation
     54 //===----------------------------------------------------------------------===//
     55 
     56 void MachineOperand::setReg(unsigned Reg) {
     57   if (getReg() == Reg) return; // No change.
     58 
     59   // Otherwise, we have to change the register.  If this operand is embedded
     60   // into a machine function, we need to update the old and new register's
     61   // use/def lists.
     62   if (MachineInstr *MI = getParent())
     63     if (MachineBasicBlock *MBB = MI->getParent())
     64       if (MachineFunction *MF = MBB->getParent()) {
     65         MachineRegisterInfo &MRI = MF->getRegInfo();
     66         MRI.removeRegOperandFromUseList(this);
     67         SmallContents.RegNo = Reg;
     68         MRI.addRegOperandToUseList(this);
     69         return;
     70       }
     71 
     72   // Otherwise, just change the register, no problem.  :)
     73   SmallContents.RegNo = Reg;
     74 }
     75 
     76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
     77                                   const TargetRegisterInfo &TRI) {
     78   assert(TargetRegisterInfo::isVirtualRegister(Reg));
     79   if (SubIdx && getSubReg())
     80     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
     81   setReg(Reg);
     82   if (SubIdx)
     83     setSubReg(SubIdx);
     84 }
     85 
     86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
     87   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
     88   if (getSubReg()) {
     89     Reg = TRI.getSubReg(Reg, getSubReg());
     90     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
     91     // That won't happen in legal code.
     92     setSubReg(0);
     93   }
     94   setReg(Reg);
     95 }
     96 
     97 /// Change a def to a use, or a use to a def.
     98 void MachineOperand::setIsDef(bool Val) {
     99   assert(isReg() && "Wrong MachineOperand accessor");
    100   assert((!Val || !isDebug()) && "Marking a debug operation as def");
    101   if (IsDef == Val)
    102     return;
    103   // MRI may keep uses and defs in different list positions.
    104   if (MachineInstr *MI = getParent())
    105     if (MachineBasicBlock *MBB = MI->getParent())
    106       if (MachineFunction *MF = MBB->getParent()) {
    107         MachineRegisterInfo &MRI = MF->getRegInfo();
    108         MRI.removeRegOperandFromUseList(this);
    109         IsDef = Val;
    110         MRI.addRegOperandToUseList(this);
    111         return;
    112       }
    113   IsDef = Val;
    114 }
    115 
    116 // If this operand is currently a register operand, and if this is in a
    117 // function, deregister the operand from the register's use/def list.
    118 void MachineOperand::removeRegFromUses() {
    119   if (!isReg() || !isOnRegUseList())
    120     return;
    121 
    122   if (MachineInstr *MI = getParent()) {
    123     if (MachineBasicBlock *MBB = MI->getParent()) {
    124       if (MachineFunction *MF = MBB->getParent())
    125         MF->getRegInfo().removeRegOperandFromUseList(this);
    126     }
    127   }
    128 }
    129 
    130 /// ChangeToImmediate - Replace this operand with a new immediate operand of
    131 /// the specified value.  If an operand is known to be an immediate already,
    132 /// the setImm method should be used.
    133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
    134   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
    135 
    136   removeRegFromUses();
    137 
    138   OpKind = MO_Immediate;
    139   Contents.ImmVal = ImmVal;
    140 }
    141 
    142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
    143   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
    144 
    145   removeRegFromUses();
    146 
    147   OpKind = MO_FPImmediate;
    148   Contents.CFP = FPImm;
    149 }
    150 
    151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
    152   assert((!isReg() || !isTied()) &&
    153          "Cannot change a tied operand into an external symbol");
    154 
    155   removeRegFromUses();
    156 
    157   OpKind = MO_ExternalSymbol;
    158   Contents.OffsetedInfo.Val.SymbolName = SymName;
    159   setOffset(0); // Offset is always 0.
    160   setTargetFlags(TargetFlags);
    161 }
    162 
    163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
    164   assert((!isReg() || !isTied()) &&
    165          "Cannot change a tied operand into an MCSymbol");
    166 
    167   removeRegFromUses();
    168 
    169   OpKind = MO_MCSymbol;
    170   Contents.Sym = Sym;
    171 }
    172 
    173 /// ChangeToRegister - Replace this operand with a new register operand of
    174 /// the specified value.  If an operand is known to be an register already,
    175 /// the setReg method should be used.
    176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
    177                                       bool isKill, bool isDead, bool isUndef,
    178                                       bool isDebug) {
    179   MachineRegisterInfo *RegInfo = nullptr;
    180   if (MachineInstr *MI = getParent())
    181     if (MachineBasicBlock *MBB = MI->getParent())
    182       if (MachineFunction *MF = MBB->getParent())
    183         RegInfo = &MF->getRegInfo();
    184   // If this operand is already a register operand, remove it from the
    185   // register's use/def lists.
    186   bool WasReg = isReg();
    187   if (RegInfo && WasReg)
    188     RegInfo->removeRegOperandFromUseList(this);
    189 
    190   // Change this to a register and set the reg#.
    191   OpKind = MO_Register;
    192   SmallContents.RegNo = Reg;
    193   SubReg_TargetFlags = 0;
    194   IsDef = isDef;
    195   IsImp = isImp;
    196   IsKill = isKill;
    197   IsDead = isDead;
    198   IsUndef = isUndef;
    199   IsInternalRead = false;
    200   IsEarlyClobber = false;
    201   IsDebug = isDebug;
    202   // Ensure isOnRegUseList() returns false.
    203   Contents.Reg.Prev = nullptr;
    204   // Preserve the tie when the operand was already a register.
    205   if (!WasReg)
    206     TiedTo = 0;
    207 
    208   // If this operand is embedded in a function, add the operand to the
    209   // register's use/def list.
    210   if (RegInfo)
    211     RegInfo->addRegOperandToUseList(this);
    212 }
    213 
    214 /// isIdenticalTo - Return true if this operand is identical to the specified
    215 /// operand. Note that this should stay in sync with the hash_value overload
    216 /// below.
    217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
    218   if (getType() != Other.getType() ||
    219       getTargetFlags() != Other.getTargetFlags())
    220     return false;
    221 
    222   switch (getType()) {
    223   case MachineOperand::MO_Register:
    224     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
    225            getSubReg() == Other.getSubReg();
    226   case MachineOperand::MO_Immediate:
    227     return getImm() == Other.getImm();
    228   case MachineOperand::MO_CImmediate:
    229     return getCImm() == Other.getCImm();
    230   case MachineOperand::MO_FPImmediate:
    231     return getFPImm() == Other.getFPImm();
    232   case MachineOperand::MO_MachineBasicBlock:
    233     return getMBB() == Other.getMBB();
    234   case MachineOperand::MO_FrameIndex:
    235     return getIndex() == Other.getIndex();
    236   case MachineOperand::MO_ConstantPoolIndex:
    237   case MachineOperand::MO_TargetIndex:
    238     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
    239   case MachineOperand::MO_JumpTableIndex:
    240     return getIndex() == Other.getIndex();
    241   case MachineOperand::MO_GlobalAddress:
    242     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
    243   case MachineOperand::MO_ExternalSymbol:
    244     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
    245            getOffset() == Other.getOffset();
    246   case MachineOperand::MO_BlockAddress:
    247     return getBlockAddress() == Other.getBlockAddress() &&
    248            getOffset() == Other.getOffset();
    249   case MachineOperand::MO_RegisterMask:
    250   case MachineOperand::MO_RegisterLiveOut:
    251     return getRegMask() == Other.getRegMask();
    252   case MachineOperand::MO_MCSymbol:
    253     return getMCSymbol() == Other.getMCSymbol();
    254   case MachineOperand::MO_CFIIndex:
    255     return getCFIIndex() == Other.getCFIIndex();
    256   case MachineOperand::MO_Metadata:
    257     return getMetadata() == Other.getMetadata();
    258   }
    259   llvm_unreachable("Invalid machine operand type");
    260 }
    261 
    262 // Note: this must stay exactly in sync with isIdenticalTo above.
    263 hash_code llvm::hash_value(const MachineOperand &MO) {
    264   switch (MO.getType()) {
    265   case MachineOperand::MO_Register:
    266     // Register operands don't have target flags.
    267     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
    268   case MachineOperand::MO_Immediate:
    269     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
    270   case MachineOperand::MO_CImmediate:
    271     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
    272   case MachineOperand::MO_FPImmediate:
    273     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
    274   case MachineOperand::MO_MachineBasicBlock:
    275     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
    276   case MachineOperand::MO_FrameIndex:
    277     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
    278   case MachineOperand::MO_ConstantPoolIndex:
    279   case MachineOperand::MO_TargetIndex:
    280     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
    281                         MO.getOffset());
    282   case MachineOperand::MO_JumpTableIndex:
    283     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
    284   case MachineOperand::MO_ExternalSymbol:
    285     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
    286                         MO.getSymbolName());
    287   case MachineOperand::MO_GlobalAddress:
    288     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
    289                         MO.getOffset());
    290   case MachineOperand::MO_BlockAddress:
    291     return hash_combine(MO.getType(), MO.getTargetFlags(),
    292                         MO.getBlockAddress(), MO.getOffset());
    293   case MachineOperand::MO_RegisterMask:
    294   case MachineOperand::MO_RegisterLiveOut:
    295     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
    296   case MachineOperand::MO_Metadata:
    297     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
    298   case MachineOperand::MO_MCSymbol:
    299     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
    300   case MachineOperand::MO_CFIIndex:
    301     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
    302   }
    303   llvm_unreachable("Invalid machine operand type");
    304 }
    305 
    306 void MachineOperand::print(raw_ostream &OS,
    307                            const TargetRegisterInfo *TRI) const {
    308   ModuleSlotTracker DummyMST(nullptr);
    309   print(OS, DummyMST, TRI);
    310 }
    311 
    312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
    313                            const TargetRegisterInfo *TRI) const {
    314   switch (getType()) {
    315   case MachineOperand::MO_Register:
    316     OS << PrintReg(getReg(), TRI, getSubReg());
    317 
    318     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
    319         isInternalRead() || isEarlyClobber() || isTied()) {
    320       OS << '<';
    321       bool NeedComma = false;
    322       if (isDef()) {
    323         if (NeedComma) OS << ',';
    324         if (isEarlyClobber())
    325           OS << "earlyclobber,";
    326         if (isImplicit())
    327           OS << "imp-";
    328         OS << "def";
    329         NeedComma = true;
    330         // <def,read-undef> only makes sense when getSubReg() is set.
    331         // Don't clutter the output otherwise.
    332         if (isUndef() && getSubReg())
    333           OS << ",read-undef";
    334       } else if (isImplicit()) {
    335         OS << "imp-use";
    336         NeedComma = true;
    337       }
    338 
    339       if (isKill()) {
    340         if (NeedComma) OS << ',';
    341         OS << "kill";
    342         NeedComma = true;
    343       }
    344       if (isDead()) {
    345         if (NeedComma) OS << ',';
    346         OS << "dead";
    347         NeedComma = true;
    348       }
    349       if (isUndef() && isUse()) {
    350         if (NeedComma) OS << ',';
    351         OS << "undef";
    352         NeedComma = true;
    353       }
    354       if (isInternalRead()) {
    355         if (NeedComma) OS << ',';
    356         OS << "internal";
    357         NeedComma = true;
    358       }
    359       if (isTied()) {
    360         if (NeedComma) OS << ',';
    361         OS << "tied";
    362         if (TiedTo != 15)
    363           OS << unsigned(TiedTo - 1);
    364       }
    365       OS << '>';
    366     }
    367     break;
    368   case MachineOperand::MO_Immediate:
    369     OS << getImm();
    370     break;
    371   case MachineOperand::MO_CImmediate:
    372     getCImm()->getValue().print(OS, false);
    373     break;
    374   case MachineOperand::MO_FPImmediate:
    375     if (getFPImm()->getType()->isFloatTy())
    376       OS << getFPImm()->getValueAPF().convertToFloat();
    377     else
    378       OS << getFPImm()->getValueAPF().convertToDouble();
    379     break;
    380   case MachineOperand::MO_MachineBasicBlock:
    381     OS << "<BB#" << getMBB()->getNumber() << ">";
    382     break;
    383   case MachineOperand::MO_FrameIndex:
    384     OS << "<fi#" << getIndex() << '>';
    385     break;
    386   case MachineOperand::MO_ConstantPoolIndex:
    387     OS << "<cp#" << getIndex();
    388     if (getOffset()) OS << "+" << getOffset();
    389     OS << '>';
    390     break;
    391   case MachineOperand::MO_TargetIndex:
    392     OS << "<ti#" << getIndex();
    393     if (getOffset()) OS << "+" << getOffset();
    394     OS << '>';
    395     break;
    396   case MachineOperand::MO_JumpTableIndex:
    397     OS << "<jt#" << getIndex() << '>';
    398     break;
    399   case MachineOperand::MO_GlobalAddress:
    400     OS << "<ga:";
    401     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
    402     if (getOffset()) OS << "+" << getOffset();
    403     OS << '>';
    404     break;
    405   case MachineOperand::MO_ExternalSymbol:
    406     OS << "<es:" << getSymbolName();
    407     if (getOffset()) OS << "+" << getOffset();
    408     OS << '>';
    409     break;
    410   case MachineOperand::MO_BlockAddress:
    411     OS << '<';
    412     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
    413     if (getOffset()) OS << "+" << getOffset();
    414     OS << '>';
    415     break;
    416   case MachineOperand::MO_RegisterMask: {
    417     unsigned NumRegsInMask = 0;
    418     unsigned NumRegsEmitted = 0;
    419     OS << "<regmask";
    420     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
    421       unsigned MaskWord = i / 32;
    422       unsigned MaskBit = i % 32;
    423       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
    424         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
    425           OS << " " << PrintReg(i, TRI);
    426           NumRegsEmitted++;
    427         }
    428         NumRegsInMask++;
    429       }
    430     }
    431     if (NumRegsEmitted != NumRegsInMask)
    432       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
    433     OS << ">";
    434     break;
    435   }
    436   case MachineOperand::MO_RegisterLiveOut:
    437     OS << "<regliveout>";
    438     break;
    439   case MachineOperand::MO_Metadata:
    440     OS << '<';
    441     getMetadata()->printAsOperand(OS, MST);
    442     OS << '>';
    443     break;
    444   case MachineOperand::MO_MCSymbol:
    445     OS << "<MCSym=" << *getMCSymbol() << '>';
    446     break;
    447   case MachineOperand::MO_CFIIndex:
    448     OS << "<call frame instruction>";
    449     break;
    450   }
    451 
    452   if (unsigned TF = getTargetFlags())
    453     OS << "[TF=" << TF << ']';
    454 }
    455 
    456 //===----------------------------------------------------------------------===//
    457 // MachineMemOperand Implementation
    458 //===----------------------------------------------------------------------===//
    459 
    460 /// getAddrSpace - Return the LLVM IR address space number that this pointer
    461 /// points into.
    462 unsigned MachinePointerInfo::getAddrSpace() const {
    463   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
    464   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
    465 }
    466 
    467 /// getConstantPool - Return a MachinePointerInfo record that refers to the
    468 /// constant pool.
    469 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
    470   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
    471 }
    472 
    473 /// getFixedStack - Return a MachinePointerInfo record that refers to the
    474 /// the specified FrameIndex.
    475 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
    476                                                      int FI, int64_t Offset) {
    477   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
    478 }
    479 
    480 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
    481   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
    482 }
    483 
    484 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
    485   return MachinePointerInfo(MF.getPSVManager().getGOT());
    486 }
    487 
    488 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
    489                                                 int64_t Offset) {
    490   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
    491 }
    492 
    493 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
    494                                      uint64_t s, unsigned int a,
    495                                      const AAMDNodes &AAInfo,
    496                                      const MDNode *Ranges)
    497   : PtrInfo(ptrinfo), Size(s),
    498     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
    499     AAInfo(AAInfo), Ranges(Ranges) {
    500   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
    501           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
    502          "invalid pointer value");
    503   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
    504   assert((isLoad() || isStore()) && "Not a load/store!");
    505 }
    506 
    507 /// Profile - Gather unique data for the object.
    508 ///
    509 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
    510   ID.AddInteger(getOffset());
    511   ID.AddInteger(Size);
    512   ID.AddPointer(getOpaqueValue());
    513   ID.AddInteger(Flags);
    514 }
    515 
    516 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
    517   // The Value and Offset may differ due to CSE. But the flags and size
    518   // should be the same.
    519   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
    520   assert(MMO->getSize() == getSize() && "Size mismatch!");
    521 
    522   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
    523     // Update the alignment value.
    524     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
    525       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
    526     // Also update the base and offset, because the new alignment may
    527     // not be applicable with the old ones.
    528     PtrInfo = MMO->PtrInfo;
    529   }
    530 }
    531 
    532 /// getAlignment - Return the minimum known alignment in bytes of the
    533 /// actual memory reference.
    534 uint64_t MachineMemOperand::getAlignment() const {
    535   return MinAlign(getBaseAlignment(), getOffset());
    536 }
    537 
    538 void MachineMemOperand::print(raw_ostream &OS) const {
    539   ModuleSlotTracker DummyMST(nullptr);
    540   print(OS, DummyMST);
    541 }
    542 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
    543   assert((isLoad() || isStore()) &&
    544          "SV has to be a load, store or both.");
    545 
    546   if (isVolatile())
    547     OS << "Volatile ";
    548 
    549   if (isLoad())
    550     OS << "LD";
    551   if (isStore())
    552     OS << "ST";
    553   OS << getSize();
    554 
    555   // Print the address information.
    556   OS << "[";
    557   if (const Value *V = getValue())
    558     V->printAsOperand(OS, /*PrintType=*/false, MST);
    559   else if (const PseudoSourceValue *PSV = getPseudoValue())
    560     PSV->printCustom(OS);
    561   else
    562     OS << "<unknown>";
    563 
    564   unsigned AS = getAddrSpace();
    565   if (AS != 0)
    566     OS << "(addrspace=" << AS << ')';
    567 
    568   // If the alignment of the memory reference itself differs from the alignment
    569   // of the base pointer, print the base alignment explicitly, next to the base
    570   // pointer.
    571   if (getBaseAlignment() != getAlignment())
    572     OS << "(align=" << getBaseAlignment() << ")";
    573 
    574   if (getOffset() != 0)
    575     OS << "+" << getOffset();
    576   OS << "]";
    577 
    578   // Print the alignment of the reference.
    579   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
    580     OS << "(align=" << getAlignment() << ")";
    581 
    582   // Print TBAA info.
    583   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
    584     OS << "(tbaa=";
    585     if (TBAAInfo->getNumOperands() > 0)
    586       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
    587     else
    588       OS << "<unknown>";
    589     OS << ")";
    590   }
    591 
    592   // Print AA scope info.
    593   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
    594     OS << "(alias.scope=";
    595     if (ScopeInfo->getNumOperands() > 0)
    596       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
    597         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
    598         if (i != ie-1)
    599           OS << ",";
    600       }
    601     else
    602       OS << "<unknown>";
    603     OS << ")";
    604   }
    605 
    606   // Print AA noalias scope info.
    607   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
    608     OS << "(noalias=";
    609     if (NoAliasInfo->getNumOperands() > 0)
    610       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
    611         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
    612         if (i != ie-1)
    613           OS << ",";
    614       }
    615     else
    616       OS << "<unknown>";
    617     OS << ")";
    618   }
    619 
    620   // Print nontemporal info.
    621   if (isNonTemporal())
    622     OS << "(nontemporal)";
    623 
    624   if (isInvariant())
    625     OS << "(invariant)";
    626 }
    627 
    628 //===----------------------------------------------------------------------===//
    629 // MachineInstr Implementation
    630 //===----------------------------------------------------------------------===//
    631 
    632 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
    633   if (MCID->ImplicitDefs)
    634     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
    635            ++ImpDefs)
    636       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
    637   if (MCID->ImplicitUses)
    638     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
    639            ++ImpUses)
    640       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
    641 }
    642 
    643 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
    644 /// implicit operands. It reserves space for the number of operands specified by
    645 /// the MCInstrDesc.
    646 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
    647                            DebugLoc dl, bool NoImp)
    648     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
    649       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
    650       debugLoc(std::move(dl)) {
    651   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    652 
    653   // Reserve space for the expected number of operands.
    654   if (unsigned NumOps = MCID->getNumOperands() +
    655     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
    656     CapOperands = OperandCapacity::get(NumOps);
    657     Operands = MF.allocateOperandArray(CapOperands);
    658   }
    659 
    660   if (!NoImp)
    661     addImplicitDefUseOperands(MF);
    662 }
    663 
    664 /// MachineInstr ctor - Copies MachineInstr arg exactly
    665 ///
    666 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
    667   : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
    668     Flags(0), AsmPrinterFlags(0),
    669     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
    670     debugLoc(MI.getDebugLoc()) {
    671   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    672 
    673   CapOperands = OperandCapacity::get(MI.getNumOperands());
    674   Operands = MF.allocateOperandArray(CapOperands);
    675 
    676   // Copy operands.
    677   for (const MachineOperand &MO : MI.operands())
    678     addOperand(MF, MO);
    679 
    680   // Copy all the sensible flags.
    681   setFlags(MI.Flags);
    682 }
    683 
    684 /// getRegInfo - If this instruction is embedded into a MachineFunction,
    685 /// return the MachineRegisterInfo object for the current function, otherwise
    686 /// return null.
    687 MachineRegisterInfo *MachineInstr::getRegInfo() {
    688   if (MachineBasicBlock *MBB = getParent())
    689     return &MBB->getParent()->getRegInfo();
    690   return nullptr;
    691 }
    692 
    693 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
    694 /// this instruction from their respective use lists.  This requires that the
    695 /// operands already be on their use lists.
    696 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
    697   for (MachineOperand &MO : operands())
    698     if (MO.isReg())
    699       MRI.removeRegOperandFromUseList(&MO);
    700 }
    701 
    702 /// AddRegOperandsToUseLists - Add all of the register operands in
    703 /// this instruction from their respective use lists.  This requires that the
    704 /// operands not be on their use lists yet.
    705 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
    706   for (MachineOperand &MO : operands())
    707     if (MO.isReg())
    708       MRI.addRegOperandToUseList(&MO);
    709 }
    710 
    711 void MachineInstr::addOperand(const MachineOperand &Op) {
    712   MachineBasicBlock *MBB = getParent();
    713   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
    714   MachineFunction *MF = MBB->getParent();
    715   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
    716   addOperand(*MF, Op);
    717 }
    718 
    719 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
    720 /// ranges. If MRI is non-null also update use-def chains.
    721 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
    722                          unsigned NumOps, MachineRegisterInfo *MRI) {
    723   if (MRI)
    724     return MRI->moveOperands(Dst, Src, NumOps);
    725 
    726   // MachineOperand is a trivially copyable type so we can just use memmove.
    727   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
    728 }
    729 
    730 /// addOperand - Add the specified operand to the instruction.  If it is an
    731 /// implicit operand, it is added to the end of the operand list.  If it is
    732 /// an explicit operand it is added at the end of the explicit operand list
    733 /// (before the first implicit operand).
    734 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
    735   assert(MCID && "Cannot add operands before providing an instr descriptor");
    736 
    737   // Check if we're adding one of our existing operands.
    738   if (&Op >= Operands && &Op < Operands + NumOperands) {
    739     // This is unusual: MI->addOperand(MI->getOperand(i)).
    740     // If adding Op requires reallocating or moving existing operands around,
    741     // the Op reference could go stale. Support it by copying Op.
    742     MachineOperand CopyOp(Op);
    743     return addOperand(MF, CopyOp);
    744   }
    745 
    746   // Find the insert location for the new operand.  Implicit registers go at
    747   // the end, everything else goes before the implicit regs.
    748   //
    749   // FIXME: Allow mixed explicit and implicit operands on inline asm.
    750   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
    751   // implicit-defs, but they must not be moved around.  See the FIXME in
    752   // InstrEmitter.cpp.
    753   unsigned OpNo = getNumOperands();
    754   bool isImpReg = Op.isReg() && Op.isImplicit();
    755   if (!isImpReg && !isInlineAsm()) {
    756     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
    757       --OpNo;
    758       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
    759     }
    760   }
    761 
    762 #ifndef NDEBUG
    763   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
    764   // OpNo now points as the desired insertion point.  Unless this is a variadic
    765   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
    766   // RegMask operands go between the explicit and implicit operands.
    767   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
    768           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
    769          "Trying to add an operand to a machine instr that is already done!");
    770 #endif
    771 
    772   MachineRegisterInfo *MRI = getRegInfo();
    773 
    774   // Determine if the Operands array needs to be reallocated.
    775   // Save the old capacity and operand array.
    776   OperandCapacity OldCap = CapOperands;
    777   MachineOperand *OldOperands = Operands;
    778   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
    779     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
    780     Operands = MF.allocateOperandArray(CapOperands);
    781     // Move the operands before the insertion point.
    782     if (OpNo)
    783       moveOperands(Operands, OldOperands, OpNo, MRI);
    784   }
    785 
    786   // Move the operands following the insertion point.
    787   if (OpNo != NumOperands)
    788     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
    789                  MRI);
    790   ++NumOperands;
    791 
    792   // Deallocate the old operand array.
    793   if (OldOperands != Operands && OldOperands)
    794     MF.deallocateOperandArray(OldCap, OldOperands);
    795 
    796   // Copy Op into place. It still needs to be inserted into the MRI use lists.
    797   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
    798   NewMO->ParentMI = this;
    799 
    800   // When adding a register operand, tell MRI about it.
    801   if (NewMO->isReg()) {
    802     // Ensure isOnRegUseList() returns false, regardless of Op's status.
    803     NewMO->Contents.Reg.Prev = nullptr;
    804     // Ignore existing ties. This is not a property that can be copied.
    805     NewMO->TiedTo = 0;
    806     // Add the new operand to MRI, but only for instructions in an MBB.
    807     if (MRI)
    808       MRI->addRegOperandToUseList(NewMO);
    809     // The MCID operand information isn't accurate until we start adding
    810     // explicit operands. The implicit operands are added first, then the
    811     // explicits are inserted before them.
    812     if (!isImpReg) {
    813       // Tie uses to defs as indicated in MCInstrDesc.
    814       if (NewMO->isUse()) {
    815         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
    816         if (DefIdx != -1)
    817           tieOperands(DefIdx, OpNo);
    818       }
    819       // If the register operand is flagged as early, mark the operand as such.
    820       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    821         NewMO->setIsEarlyClobber(true);
    822     }
    823   }
    824 }
    825 
    826 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    827 /// fewer operand than it started with.
    828 ///
    829 void MachineInstr::RemoveOperand(unsigned OpNo) {
    830   assert(OpNo < getNumOperands() && "Invalid operand number");
    831   untieRegOperand(OpNo);
    832 
    833 #ifndef NDEBUG
    834   // Moving tied operands would break the ties.
    835   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
    836     if (Operands[i].isReg())
    837       assert(!Operands[i].isTied() && "Cannot move tied operands");
    838 #endif
    839 
    840   MachineRegisterInfo *MRI = getRegInfo();
    841   if (MRI && Operands[OpNo].isReg())
    842     MRI->removeRegOperandFromUseList(Operands + OpNo);
    843 
    844   // Don't call the MachineOperand destructor. A lot of this code depends on
    845   // MachineOperand having a trivial destructor anyway, and adding a call here
    846   // wouldn't make it 'destructor-correct'.
    847 
    848   if (unsigned N = NumOperands - 1 - OpNo)
    849     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
    850   --NumOperands;
    851 }
    852 
    853 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    854 /// This function should be used only occasionally. The setMemRefs function
    855 /// is the primary method for setting up a MachineInstr's MemRefs list.
    856 void MachineInstr::addMemOperand(MachineFunction &MF,
    857                                  MachineMemOperand *MO) {
    858   mmo_iterator OldMemRefs = MemRefs;
    859   unsigned OldNumMemRefs = NumMemRefs;
    860 
    861   unsigned NewNum = NumMemRefs + 1;
    862   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
    863 
    864   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
    865   NewMemRefs[NewNum - 1] = MO;
    866   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
    867 }
    868 
    869 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
    870   assert(!isBundledWithPred() && "Must be called on bundle header");
    871   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
    872     if (MII->getDesc().getFlags() & Mask) {
    873       if (Type == AnyInBundle)
    874         return true;
    875     } else {
    876       if (Type == AllInBundle && !MII->isBundle())
    877         return false;
    878     }
    879     // This was the last instruction in the bundle.
    880     if (!MII->isBundledWithSucc())
    881       return Type == AllInBundle;
    882   }
    883 }
    884 
    885 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
    886                                  MICheckType Check) const {
    887   // If opcodes or number of operands are not the same then the two
    888   // instructions are obviously not identical.
    889   if (Other->getOpcode() != getOpcode() ||
    890       Other->getNumOperands() != getNumOperands())
    891     return false;
    892 
    893   if (isBundle()) {
    894     // Both instructions are bundles, compare MIs inside the bundle.
    895     MachineBasicBlock::const_instr_iterator I1 = getIterator();
    896     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
    897     MachineBasicBlock::const_instr_iterator I2 = Other->getIterator();
    898     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
    899     while (++I1 != E1 && I1->isInsideBundle()) {
    900       ++I2;
    901       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(&*I2, Check))
    902         return false;
    903     }
    904   }
    905 
    906   // Check operands to make sure they match.
    907   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    908     const MachineOperand &MO = getOperand(i);
    909     const MachineOperand &OMO = Other->getOperand(i);
    910     if (!MO.isReg()) {
    911       if (!MO.isIdenticalTo(OMO))
    912         return false;
    913       continue;
    914     }
    915 
    916     // Clients may or may not want to ignore defs when testing for equality.
    917     // For example, machine CSE pass only cares about finding common
    918     // subexpressions, so it's safe to ignore virtual register defs.
    919     if (MO.isDef()) {
    920       if (Check == IgnoreDefs)
    921         continue;
    922       else if (Check == IgnoreVRegDefs) {
    923         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
    924             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
    925           if (MO.getReg() != OMO.getReg())
    926             return false;
    927       } else {
    928         if (!MO.isIdenticalTo(OMO))
    929           return false;
    930         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
    931           return false;
    932       }
    933     } else {
    934       if (!MO.isIdenticalTo(OMO))
    935         return false;
    936       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
    937         return false;
    938     }
    939   }
    940   // If DebugLoc does not match then two dbg.values are not identical.
    941   if (isDebugValue())
    942     if (getDebugLoc() && Other->getDebugLoc() &&
    943         getDebugLoc() != Other->getDebugLoc())
    944       return false;
    945   return true;
    946 }
    947 
    948 MachineInstr *MachineInstr::removeFromParent() {
    949   assert(getParent() && "Not embedded in a basic block!");
    950   return getParent()->remove(this);
    951 }
    952 
    953 MachineInstr *MachineInstr::removeFromBundle() {
    954   assert(getParent() && "Not embedded in a basic block!");
    955   return getParent()->remove_instr(this);
    956 }
    957 
    958 void MachineInstr::eraseFromParent() {
    959   assert(getParent() && "Not embedded in a basic block!");
    960   getParent()->erase(this);
    961 }
    962 
    963 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
    964   assert(getParent() && "Not embedded in a basic block!");
    965   MachineBasicBlock *MBB = getParent();
    966   MachineFunction *MF = MBB->getParent();
    967   assert(MF && "Not embedded in a function!");
    968 
    969   MachineInstr *MI = (MachineInstr *)this;
    970   MachineRegisterInfo &MRI = MF->getRegInfo();
    971 
    972   for (const MachineOperand &MO : MI->operands()) {
    973     if (!MO.isReg() || !MO.isDef())
    974       continue;
    975     unsigned Reg = MO.getReg();
    976     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    977       continue;
    978     MRI.markUsesInDebugValueAsUndef(Reg);
    979   }
    980   MI->eraseFromParent();
    981 }
    982 
    983 void MachineInstr::eraseFromBundle() {
    984   assert(getParent() && "Not embedded in a basic block!");
    985   getParent()->erase_instr(this);
    986 }
    987 
    988 /// getNumExplicitOperands - Returns the number of non-implicit operands.
    989 ///
    990 unsigned MachineInstr::getNumExplicitOperands() const {
    991   unsigned NumOperands = MCID->getNumOperands();
    992   if (!MCID->isVariadic())
    993     return NumOperands;
    994 
    995   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
    996     const MachineOperand &MO = getOperand(i);
    997     if (!MO.isReg() || !MO.isImplicit())
    998       NumOperands++;
    999   }
   1000   return NumOperands;
   1001 }
   1002 
   1003 void MachineInstr::bundleWithPred() {
   1004   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
   1005   setFlag(BundledPred);
   1006   MachineBasicBlock::instr_iterator Pred = getIterator();
   1007   --Pred;
   1008   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
   1009   Pred->setFlag(BundledSucc);
   1010 }
   1011 
   1012 void MachineInstr::bundleWithSucc() {
   1013   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
   1014   setFlag(BundledSucc);
   1015   MachineBasicBlock::instr_iterator Succ = getIterator();
   1016   ++Succ;
   1017   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
   1018   Succ->setFlag(BundledPred);
   1019 }
   1020 
   1021 void MachineInstr::unbundleFromPred() {
   1022   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
   1023   clearFlag(BundledPred);
   1024   MachineBasicBlock::instr_iterator Pred = getIterator();
   1025   --Pred;
   1026   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
   1027   Pred->clearFlag(BundledSucc);
   1028 }
   1029 
   1030 void MachineInstr::unbundleFromSucc() {
   1031   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
   1032   clearFlag(BundledSucc);
   1033   MachineBasicBlock::instr_iterator Succ = getIterator();
   1034   ++Succ;
   1035   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
   1036   Succ->clearFlag(BundledPred);
   1037 }
   1038 
   1039 bool MachineInstr::isStackAligningInlineAsm() const {
   1040   if (isInlineAsm()) {
   1041     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1042     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
   1043       return true;
   1044   }
   1045   return false;
   1046 }
   1047 
   1048 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
   1049   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
   1050   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1051   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
   1052 }
   1053 
   1054 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
   1055                                        unsigned *GroupNo) const {
   1056   assert(isInlineAsm() && "Expected an inline asm instruction");
   1057   assert(OpIdx < getNumOperands() && "OpIdx out of range");
   1058 
   1059   // Ignore queries about the initial operands.
   1060   if (OpIdx < InlineAsm::MIOp_FirstOperand)
   1061     return -1;
   1062 
   1063   unsigned Group = 0;
   1064   unsigned NumOps;
   1065   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
   1066        i += NumOps) {
   1067     const MachineOperand &FlagMO = getOperand(i);
   1068     // If we reach the implicit register operands, stop looking.
   1069     if (!FlagMO.isImm())
   1070       return -1;
   1071     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
   1072     if (i + NumOps > OpIdx) {
   1073       if (GroupNo)
   1074         *GroupNo = Group;
   1075       return i;
   1076     }
   1077     ++Group;
   1078   }
   1079   return -1;
   1080 }
   1081 
   1082 const TargetRegisterClass*
   1083 MachineInstr::getRegClassConstraint(unsigned OpIdx,
   1084                                     const TargetInstrInfo *TII,
   1085                                     const TargetRegisterInfo *TRI) const {
   1086   assert(getParent() && "Can't have an MBB reference here!");
   1087   assert(getParent()->getParent() && "Can't have an MF reference here!");
   1088   const MachineFunction &MF = *getParent()->getParent();
   1089 
   1090   // Most opcodes have fixed constraints in their MCInstrDesc.
   1091   if (!isInlineAsm())
   1092     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
   1093 
   1094   if (!getOperand(OpIdx).isReg())
   1095     return nullptr;
   1096 
   1097   // For tied uses on inline asm, get the constraint from the def.
   1098   unsigned DefIdx;
   1099   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
   1100     OpIdx = DefIdx;
   1101 
   1102   // Inline asm stores register class constraints in the flag word.
   1103   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
   1104   if (FlagIdx < 0)
   1105     return nullptr;
   1106 
   1107   unsigned Flag = getOperand(FlagIdx).getImm();
   1108   unsigned RCID;
   1109   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
   1110     return TRI->getRegClass(RCID);
   1111 
   1112   // Assume that all registers in a memory operand are pointers.
   1113   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
   1114     return TRI->getPointerRegClass(MF);
   1115 
   1116   return nullptr;
   1117 }
   1118 
   1119 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
   1120     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
   1121     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
   1122   // Check every operands inside the bundle if we have
   1123   // been asked to.
   1124   if (ExploreBundle)
   1125     for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
   1126          ++OpndIt)
   1127       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
   1128           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
   1129   else
   1130     // Otherwise, just check the current operands.
   1131     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
   1132       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
   1133   return CurRC;
   1134 }
   1135 
   1136 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
   1137     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1138     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
   1139   assert(CurRC && "Invalid initial register class");
   1140   // Check if Reg is constrained by some of its use/def from MI.
   1141   const MachineOperand &MO = getOperand(OpIdx);
   1142   if (!MO.isReg() || MO.getReg() != Reg)
   1143     return CurRC;
   1144   // If yes, accumulate the constraints through the operand.
   1145   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
   1146 }
   1147 
   1148 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
   1149     unsigned OpIdx, const TargetRegisterClass *CurRC,
   1150     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
   1151   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
   1152   const MachineOperand &MO = getOperand(OpIdx);
   1153   assert(MO.isReg() &&
   1154          "Cannot get register constraints for non-register operand");
   1155   assert(CurRC && "Invalid initial register class");
   1156   if (unsigned SubIdx = MO.getSubReg()) {
   1157     if (OpRC)
   1158       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
   1159     else
   1160       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
   1161   } else if (OpRC)
   1162     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
   1163   return CurRC;
   1164 }
   1165 
   1166 /// Return the number of instructions inside the MI bundle, not counting the
   1167 /// header instruction.
   1168 unsigned MachineInstr::getBundleSize() const {
   1169   MachineBasicBlock::const_instr_iterator I = getIterator();
   1170   unsigned Size = 0;
   1171   while (I->isBundledWithSucc())
   1172     ++Size, ++I;
   1173   return Size;
   1174 }
   1175 
   1176 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
   1177 /// the specific register or -1 if it is not found. It further tightens
   1178 /// the search criteria to a use that kills the register if isKill is true.
   1179 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
   1180                                           const TargetRegisterInfo *TRI) const {
   1181   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1182     const MachineOperand &MO = getOperand(i);
   1183     if (!MO.isReg() || !MO.isUse())
   1184       continue;
   1185     unsigned MOReg = MO.getReg();
   1186     if (!MOReg)
   1187       continue;
   1188     if (MOReg == Reg ||
   1189         (TRI &&
   1190          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
   1191          TargetRegisterInfo::isPhysicalRegister(Reg) &&
   1192          TRI->isSubRegister(MOReg, Reg)))
   1193       if (!isKill || MO.isKill())
   1194         return i;
   1195   }
   1196   return -1;
   1197 }
   1198 
   1199 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
   1200 /// indicating if this instruction reads or writes Reg. This also considers
   1201 /// partial defines.
   1202 std::pair<bool,bool>
   1203 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
   1204                                          SmallVectorImpl<unsigned> *Ops) const {
   1205   bool PartDef = false; // Partial redefine.
   1206   bool FullDef = false; // Full define.
   1207   bool Use = false;
   1208 
   1209   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1210     const MachineOperand &MO = getOperand(i);
   1211     if (!MO.isReg() || MO.getReg() != Reg)
   1212       continue;
   1213     if (Ops)
   1214       Ops->push_back(i);
   1215     if (MO.isUse())
   1216       Use |= !MO.isUndef();
   1217     else if (MO.getSubReg() && !MO.isUndef())
   1218       // A partial <def,undef> doesn't count as reading the register.
   1219       PartDef = true;
   1220     else
   1221       FullDef = true;
   1222   }
   1223   // A partial redefine uses Reg unless there is also a full define.
   1224   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
   1225 }
   1226 
   1227 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
   1228 /// the specified register or -1 if it is not found. If isDead is true, defs
   1229 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
   1230 /// also checks if there is a def of a super-register.
   1231 int
   1232 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
   1233                                         const TargetRegisterInfo *TRI) const {
   1234   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
   1235   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1236     const MachineOperand &MO = getOperand(i);
   1237     // Accept regmask operands when Overlap is set.
   1238     // Ignore them when looking for a specific def operand (Overlap == false).
   1239     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
   1240       return i;
   1241     if (!MO.isReg() || !MO.isDef())
   1242       continue;
   1243     unsigned MOReg = MO.getReg();
   1244     bool Found = (MOReg == Reg);
   1245     if (!Found && TRI && isPhys &&
   1246         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1247       if (Overlap)
   1248         Found = TRI->regsOverlap(MOReg, Reg);
   1249       else
   1250         Found = TRI->isSubRegister(MOReg, Reg);
   1251     }
   1252     if (Found && (!isDead || MO.isDead()))
   1253       return i;
   1254   }
   1255   return -1;
   1256 }
   1257 
   1258 /// findFirstPredOperandIdx() - Find the index of the first operand in the
   1259 /// operand list that is used to represent the predicate. It returns -1 if
   1260 /// none is found.
   1261 int MachineInstr::findFirstPredOperandIdx() const {
   1262   // Don't call MCID.findFirstPredOperandIdx() because this variant
   1263   // is sometimes called on an instruction that's not yet complete, and
   1264   // so the number of operands is less than the MCID indicates. In
   1265   // particular, the PTX target does this.
   1266   const MCInstrDesc &MCID = getDesc();
   1267   if (MCID.isPredicable()) {
   1268     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1269       if (MCID.OpInfo[i].isPredicate())
   1270         return i;
   1271   }
   1272 
   1273   return -1;
   1274 }
   1275 
   1276 // MachineOperand::TiedTo is 4 bits wide.
   1277 const unsigned TiedMax = 15;
   1278 
   1279 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
   1280 ///
   1281 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
   1282 /// field. TiedTo can have these values:
   1283 ///
   1284 /// 0:              Operand is not tied to anything.
   1285 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
   1286 /// TiedMax:        Tied to an operand >= TiedMax-1.
   1287 ///
   1288 /// The tied def must be one of the first TiedMax operands on a normal
   1289 /// instruction. INLINEASM instructions allow more tied defs.
   1290 ///
   1291 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
   1292   MachineOperand &DefMO = getOperand(DefIdx);
   1293   MachineOperand &UseMO = getOperand(UseIdx);
   1294   assert(DefMO.isDef() && "DefIdx must be a def operand");
   1295   assert(UseMO.isUse() && "UseIdx must be a use operand");
   1296   assert(!DefMO.isTied() && "Def is already tied to another use");
   1297   assert(!UseMO.isTied() && "Use is already tied to another def");
   1298 
   1299   if (DefIdx < TiedMax)
   1300     UseMO.TiedTo = DefIdx + 1;
   1301   else {
   1302     // Inline asm can use the group descriptors to find tied operands, but on
   1303     // normal instruction, the tied def must be within the first TiedMax
   1304     // operands.
   1305     assert(isInlineAsm() && "DefIdx out of range");
   1306     UseMO.TiedTo = TiedMax;
   1307   }
   1308 
   1309   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
   1310   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
   1311 }
   1312 
   1313 /// Given the index of a tied register operand, find the operand it is tied to.
   1314 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
   1315 /// which must exist.
   1316 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
   1317   const MachineOperand &MO = getOperand(OpIdx);
   1318   assert(MO.isTied() && "Operand isn't tied");
   1319 
   1320   // Normally TiedTo is in range.
   1321   if (MO.TiedTo < TiedMax)
   1322     return MO.TiedTo - 1;
   1323 
   1324   // Uses on normal instructions can be out of range.
   1325   if (!isInlineAsm()) {
   1326     // Normal tied defs must be in the 0..TiedMax-1 range.
   1327     if (MO.isUse())
   1328       return TiedMax - 1;
   1329     // MO is a def. Search for the tied use.
   1330     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
   1331       const MachineOperand &UseMO = getOperand(i);
   1332       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
   1333         return i;
   1334     }
   1335     llvm_unreachable("Can't find tied use");
   1336   }
   1337 
   1338   // Now deal with inline asm by parsing the operand group descriptor flags.
   1339   // Find the beginning of each operand group.
   1340   SmallVector<unsigned, 8> GroupIdx;
   1341   unsigned OpIdxGroup = ~0u;
   1342   unsigned NumOps;
   1343   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
   1344        i += NumOps) {
   1345     const MachineOperand &FlagMO = getOperand(i);
   1346     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
   1347     unsigned CurGroup = GroupIdx.size();
   1348     GroupIdx.push_back(i);
   1349     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
   1350     // OpIdx belongs to this operand group.
   1351     if (OpIdx > i && OpIdx < i + NumOps)
   1352       OpIdxGroup = CurGroup;
   1353     unsigned TiedGroup;
   1354     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
   1355       continue;
   1356     // Operands in this group are tied to operands in TiedGroup which must be
   1357     // earlier. Find the number of operands between the two groups.
   1358     unsigned Delta = i - GroupIdx[TiedGroup];
   1359 
   1360     // OpIdx is a use tied to TiedGroup.
   1361     if (OpIdxGroup == CurGroup)
   1362       return OpIdx - Delta;
   1363 
   1364     // OpIdx is a def tied to this use group.
   1365     if (OpIdxGroup == TiedGroup)
   1366       return OpIdx + Delta;
   1367   }
   1368   llvm_unreachable("Invalid tied operand on inline asm");
   1369 }
   1370 
   1371 /// clearKillInfo - Clears kill flags on all operands.
   1372 ///
   1373 void MachineInstr::clearKillInfo() {
   1374   for (MachineOperand &MO : operands()) {
   1375     if (MO.isReg() && MO.isUse())
   1376       MO.setIsKill(false);
   1377   }
   1378 }
   1379 
   1380 void MachineInstr::substituteRegister(unsigned FromReg,
   1381                                       unsigned ToReg,
   1382                                       unsigned SubIdx,
   1383                                       const TargetRegisterInfo &RegInfo) {
   1384   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
   1385     if (SubIdx)
   1386       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
   1387     for (MachineOperand &MO : operands()) {
   1388       if (!MO.isReg() || MO.getReg() != FromReg)
   1389         continue;
   1390       MO.substPhysReg(ToReg, RegInfo);
   1391     }
   1392   } else {
   1393     for (MachineOperand &MO : operands()) {
   1394       if (!MO.isReg() || MO.getReg() != FromReg)
   1395         continue;
   1396       MO.substVirtReg(ToReg, SubIdx, RegInfo);
   1397     }
   1398   }
   1399 }
   1400 
   1401 /// isSafeToMove - Return true if it is safe to move this instruction. If
   1402 /// SawStore is set to true, it means that there is a store (or call) between
   1403 /// the instruction's location and its intended destination.
   1404 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
   1405   // Ignore stuff that we obviously can't move.
   1406   //
   1407   // Treat volatile loads as stores. This is not strictly necessary for
   1408   // volatiles, but it is required for atomic loads. It is not allowed to move
   1409   // a load across an atomic load with Ordering > Monotonic.
   1410   if (mayStore() || isCall() ||
   1411       (mayLoad() && hasOrderedMemoryRef())) {
   1412     SawStore = true;
   1413     return false;
   1414   }
   1415 
   1416   if (isPosition() || isDebugValue() || isTerminator() ||
   1417       hasUnmodeledSideEffects())
   1418     return false;
   1419 
   1420   // See if this instruction does a load.  If so, we have to guarantee that the
   1421   // loaded value doesn't change between the load and the its intended
   1422   // destination. The check for isInvariantLoad gives the targe the chance to
   1423   // classify the load as always returning a constant, e.g. a constant pool
   1424   // load.
   1425   if (mayLoad() && !isInvariantLoad(AA))
   1426     // Otherwise, this is a real load.  If there is a store between the load and
   1427     // end of block, we can't move it.
   1428     return !SawStore;
   1429 
   1430   return true;
   1431 }
   1432 
   1433 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
   1434 /// or volatile memory reference, or if the information describing the memory
   1435 /// reference is not available. Return false if it is known to have no ordered
   1436 /// memory references.
   1437 bool MachineInstr::hasOrderedMemoryRef() const {
   1438   // An instruction known never to access memory won't have a volatile access.
   1439   if (!mayStore() &&
   1440       !mayLoad() &&
   1441       !isCall() &&
   1442       !hasUnmodeledSideEffects())
   1443     return false;
   1444 
   1445   // Otherwise, if the instruction has no memory reference information,
   1446   // conservatively assume it wasn't preserved.
   1447   if (memoperands_empty())
   1448     return true;
   1449 
   1450   // Check the memory reference information for ordered references.
   1451   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
   1452     if (!(*I)->isUnordered())
   1453       return true;
   1454 
   1455   return false;
   1456 }
   1457 
   1458 /// isInvariantLoad - Return true if this instruction is loading from a
   1459 /// location whose value is invariant across the function.  For example,
   1460 /// loading a value from the constant pool or from the argument area
   1461 /// of a function if it does not change.  This should only return true of
   1462 /// *all* loads the instruction does are invariant (if it does multiple loads).
   1463 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
   1464   // If the instruction doesn't load at all, it isn't an invariant load.
   1465   if (!mayLoad())
   1466     return false;
   1467 
   1468   // If the instruction has lost its memoperands, conservatively assume that
   1469   // it may not be an invariant load.
   1470   if (memoperands_empty())
   1471     return false;
   1472 
   1473   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
   1474 
   1475   for (mmo_iterator I = memoperands_begin(),
   1476        E = memoperands_end(); I != E; ++I) {
   1477     if ((*I)->isVolatile()) return false;
   1478     if ((*I)->isStore()) return false;
   1479     if ((*I)->isInvariant()) return true;
   1480 
   1481 
   1482     // A load from a constant PseudoSourceValue is invariant.
   1483     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
   1484       if (PSV->isConstant(MFI))
   1485         continue;
   1486 
   1487     if (const Value *V = (*I)->getValue()) {
   1488       // If we have an AliasAnalysis, ask it whether the memory is constant.
   1489       if (AA &&
   1490           AA->pointsToConstantMemory(
   1491               MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo())))
   1492         continue;
   1493     }
   1494 
   1495     // Otherwise assume conservatively.
   1496     return false;
   1497   }
   1498 
   1499   // Everything checks out.
   1500   return true;
   1501 }
   1502 
   1503 /// isConstantValuePHI - If the specified instruction is a PHI that always
   1504 /// merges together the same virtual register, return the register, otherwise
   1505 /// return 0.
   1506 unsigned MachineInstr::isConstantValuePHI() const {
   1507   if (!isPHI())
   1508     return 0;
   1509   assert(getNumOperands() >= 3 &&
   1510          "It's illegal to have a PHI without source operands");
   1511 
   1512   unsigned Reg = getOperand(1).getReg();
   1513   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
   1514     if (getOperand(i).getReg() != Reg)
   1515       return 0;
   1516   return Reg;
   1517 }
   1518 
   1519 bool MachineInstr::hasUnmodeledSideEffects() const {
   1520   if (hasProperty(MCID::UnmodeledSideEffects))
   1521     return true;
   1522   if (isInlineAsm()) {
   1523     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1524     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1525       return true;
   1526   }
   1527 
   1528   return false;
   1529 }
   1530 
   1531 bool MachineInstr::isLoadFoldBarrier() const {
   1532   return mayStore() || isCall() || hasUnmodeledSideEffects();
   1533 }
   1534 
   1535 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1536 ///
   1537 bool MachineInstr::allDefsAreDead() const {
   1538   for (const MachineOperand &MO : operands()) {
   1539     if (!MO.isReg() || MO.isUse())
   1540       continue;
   1541     if (!MO.isDead())
   1542       return false;
   1543   }
   1544   return true;
   1545 }
   1546 
   1547 /// copyImplicitOps - Copy implicit register operands from specified
   1548 /// instruction to this instruction.
   1549 void MachineInstr::copyImplicitOps(MachineFunction &MF,
   1550                                    const MachineInstr *MI) {
   1551   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
   1552        i != e; ++i) {
   1553     const MachineOperand &MO = MI->getOperand(i);
   1554     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
   1555       addOperand(MF, MO);
   1556   }
   1557 }
   1558 
   1559 void MachineInstr::dump() const {
   1560 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1561   dbgs() << "  " << *this;
   1562 #endif
   1563 }
   1564 
   1565 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
   1566   const Module *M = nullptr;
   1567   if (const MachineBasicBlock *MBB = getParent())
   1568     if (const MachineFunction *MF = MBB->getParent())
   1569       M = MF->getFunction()->getParent();
   1570 
   1571   ModuleSlotTracker MST(M);
   1572   print(OS, MST, SkipOpers);
   1573 }
   1574 
   1575 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
   1576                          bool SkipOpers) const {
   1577   // We can be a bit tidier if we know the MachineFunction.
   1578   const MachineFunction *MF = nullptr;
   1579   const TargetRegisterInfo *TRI = nullptr;
   1580   const MachineRegisterInfo *MRI = nullptr;
   1581   const TargetInstrInfo *TII = nullptr;
   1582   if (const MachineBasicBlock *MBB = getParent()) {
   1583     MF = MBB->getParent();
   1584     if (MF) {
   1585       MRI = &MF->getRegInfo();
   1586       TRI = MF->getSubtarget().getRegisterInfo();
   1587       TII = MF->getSubtarget().getInstrInfo();
   1588     }
   1589   }
   1590 
   1591   // Save a list of virtual registers.
   1592   SmallVector<unsigned, 8> VirtRegs;
   1593 
   1594   // Print explicitly defined operands on the left of an assignment syntax.
   1595   unsigned StartOp = 0, e = getNumOperands();
   1596   for (; StartOp < e && getOperand(StartOp).isReg() &&
   1597          getOperand(StartOp).isDef() &&
   1598          !getOperand(StartOp).isImplicit();
   1599        ++StartOp) {
   1600     if (StartOp != 0) OS << ", ";
   1601     getOperand(StartOp).print(OS, MST, TRI);
   1602     unsigned Reg = getOperand(StartOp).getReg();
   1603     if (TargetRegisterInfo::isVirtualRegister(Reg))
   1604       VirtRegs.push_back(Reg);
   1605   }
   1606 
   1607   if (StartOp != 0)
   1608     OS << " = ";
   1609 
   1610   // Print the opcode name.
   1611   if (TII)
   1612     OS << TII->getName(getOpcode());
   1613   else
   1614     OS << "UNKNOWN";
   1615 
   1616   if (SkipOpers)
   1617     return;
   1618 
   1619   // Print the rest of the operands.
   1620   bool OmittedAnyCallClobbers = false;
   1621   bool FirstOp = true;
   1622   unsigned AsmDescOp = ~0u;
   1623   unsigned AsmOpCount = 0;
   1624 
   1625   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
   1626     // Print asm string.
   1627     OS << " ";
   1628     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
   1629 
   1630     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
   1631     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1632     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1633       OS << " [sideeffect]";
   1634     if (ExtraInfo & InlineAsm::Extra_MayLoad)
   1635       OS << " [mayload]";
   1636     if (ExtraInfo & InlineAsm::Extra_MayStore)
   1637       OS << " [maystore]";
   1638     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
   1639       OS << " [alignstack]";
   1640     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
   1641       OS << " [attdialect]";
   1642     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
   1643       OS << " [inteldialect]";
   1644 
   1645     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
   1646     FirstOp = false;
   1647   }
   1648 
   1649   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
   1650     const MachineOperand &MO = getOperand(i);
   1651 
   1652     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1653       VirtRegs.push_back(MO.getReg());
   1654 
   1655     // Omit call-clobbered registers which aren't used anywhere. This makes
   1656     // call instructions much less noisy on targets where calls clobber lots
   1657     // of registers. Don't rely on MO.isDead() because we may be called before
   1658     // LiveVariables is run, or we may be looking at a non-allocatable reg.
   1659     if (MRI && isCall() &&
   1660         MO.isReg() && MO.isImplicit() && MO.isDef()) {
   1661       unsigned Reg = MO.getReg();
   1662       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1663         if (MRI->use_empty(Reg)) {
   1664           bool HasAliasLive = false;
   1665           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
   1666             unsigned AliasReg = *AI;
   1667             if (!MRI->use_empty(AliasReg)) {
   1668               HasAliasLive = true;
   1669               break;
   1670             }
   1671           }
   1672           if (!HasAliasLive) {
   1673             OmittedAnyCallClobbers = true;
   1674             continue;
   1675           }
   1676         }
   1677       }
   1678     }
   1679 
   1680     if (FirstOp) FirstOp = false; else OS << ",";
   1681     OS << " ";
   1682     if (i < getDesc().NumOperands) {
   1683       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
   1684       if (MCOI.isPredicate())
   1685         OS << "pred:";
   1686       if (MCOI.isOptionalDef())
   1687         OS << "opt:";
   1688     }
   1689     if (isDebugValue() && MO.isMetadata()) {
   1690       // Pretty print DBG_VALUE instructions.
   1691       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
   1692       if (DIV && !DIV->getName().empty())
   1693         OS << "!\"" << DIV->getName() << '\"';
   1694       else
   1695         MO.print(OS, MST, TRI);
   1696     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
   1697       OS << TRI->getSubRegIndexName(MO.getImm());
   1698     } else if (i == AsmDescOp && MO.isImm()) {
   1699       // Pretty print the inline asm operand descriptor.
   1700       OS << '$' << AsmOpCount++;
   1701       unsigned Flag = MO.getImm();
   1702       switch (InlineAsm::getKind(Flag)) {
   1703       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
   1704       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
   1705       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
   1706       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
   1707       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
   1708       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
   1709       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
   1710       }
   1711 
   1712       unsigned RCID = 0;
   1713       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
   1714         if (TRI) {
   1715           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
   1716         } else
   1717           OS << ":RC" << RCID;
   1718       }
   1719 
   1720       unsigned TiedTo = 0;
   1721       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
   1722         OS << " tiedto:$" << TiedTo;
   1723 
   1724       OS << ']';
   1725 
   1726       // Compute the index of the next operand descriptor.
   1727       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
   1728     } else
   1729       MO.print(OS, MST, TRI);
   1730   }
   1731 
   1732   // Briefly indicate whether any call clobbers were omitted.
   1733   if (OmittedAnyCallClobbers) {
   1734     if (!FirstOp) OS << ",";
   1735     OS << " ...";
   1736   }
   1737 
   1738   bool HaveSemi = false;
   1739   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
   1740   if (Flags & PrintableFlags) {
   1741     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1742     OS << " flags: ";
   1743 
   1744     if (Flags & FrameSetup)
   1745       OS << "FrameSetup";
   1746 
   1747     if (Flags & FrameDestroy)
   1748       OS << "FrameDestroy";
   1749   }
   1750 
   1751   if (!memoperands_empty()) {
   1752     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1753 
   1754     OS << " mem:";
   1755     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
   1756          i != e; ++i) {
   1757       (*i)->print(OS, MST);
   1758       if (std::next(i) != e)
   1759         OS << " ";
   1760     }
   1761   }
   1762 
   1763   // Print the regclass of any virtual registers encountered.
   1764   if (MRI && !VirtRegs.empty()) {
   1765     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1766     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
   1767       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
   1768       OS << " " << TRI->getRegClassName(RC)
   1769          << ':' << PrintReg(VirtRegs[i]);
   1770       for (unsigned j = i+1; j != VirtRegs.size();) {
   1771         if (MRI->getRegClass(VirtRegs[j]) != RC) {
   1772           ++j;
   1773           continue;
   1774         }
   1775         if (VirtRegs[i] != VirtRegs[j])
   1776           OS << "," << PrintReg(VirtRegs[j]);
   1777         VirtRegs.erase(VirtRegs.begin()+j);
   1778       }
   1779     }
   1780   }
   1781 
   1782   // Print debug location information.
   1783   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
   1784     if (!HaveSemi) OS << ";";
   1785     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
   1786     OS << " line no:" <<  DV->getLine();
   1787     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
   1788       DebugLoc InlinedAtDL(InlinedAt);
   1789       if (InlinedAtDL && MF) {
   1790         OS << " inlined @[ ";
   1791         InlinedAtDL.print(OS);
   1792         OS << " ]";
   1793       }
   1794     }
   1795     if (isIndirectDebugValue())
   1796       OS << " indirect";
   1797   } else if (debugLoc && MF) {
   1798     if (!HaveSemi) OS << ";";
   1799     OS << " dbg:";
   1800     debugLoc.print(OS);
   1801   }
   1802 
   1803   OS << '\n';
   1804 }
   1805 
   1806 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
   1807                                      const TargetRegisterInfo *RegInfo,
   1808                                      bool AddIfNotFound) {
   1809   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1810   bool hasAliases = isPhysReg &&
   1811     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
   1812   bool Found = false;
   1813   SmallVector<unsigned,4> DeadOps;
   1814   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1815     MachineOperand &MO = getOperand(i);
   1816     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
   1817       continue;
   1818     unsigned Reg = MO.getReg();
   1819     if (!Reg)
   1820       continue;
   1821 
   1822     if (Reg == IncomingReg) {
   1823       if (!Found) {
   1824         if (MO.isKill())
   1825           // The register is already marked kill.
   1826           return true;
   1827         if (isPhysReg && isRegTiedToDefOperand(i))
   1828           // Two-address uses of physregs must not be marked kill.
   1829           return true;
   1830         MO.setIsKill();
   1831         Found = true;
   1832       }
   1833     } else if (hasAliases && MO.isKill() &&
   1834                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1835       // A super-register kill already exists.
   1836       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1837         return true;
   1838       if (RegInfo->isSubRegister(IncomingReg, Reg))
   1839         DeadOps.push_back(i);
   1840     }
   1841   }
   1842 
   1843   // Trim unneeded kill operands.
   1844   while (!DeadOps.empty()) {
   1845     unsigned OpIdx = DeadOps.back();
   1846     if (getOperand(OpIdx).isImplicit())
   1847       RemoveOperand(OpIdx);
   1848     else
   1849       getOperand(OpIdx).setIsKill(false);
   1850     DeadOps.pop_back();
   1851   }
   1852 
   1853   // If not found, this means an alias of one of the operands is killed. Add a
   1854   // new implicit operand if required.
   1855   if (!Found && AddIfNotFound) {
   1856     addOperand(MachineOperand::CreateReg(IncomingReg,
   1857                                          false /*IsDef*/,
   1858                                          true  /*IsImp*/,
   1859                                          true  /*IsKill*/));
   1860     return true;
   1861   }
   1862   return Found;
   1863 }
   1864 
   1865 void MachineInstr::clearRegisterKills(unsigned Reg,
   1866                                       const TargetRegisterInfo *RegInfo) {
   1867   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
   1868     RegInfo = nullptr;
   1869   for (MachineOperand &MO : operands()) {
   1870     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
   1871       continue;
   1872     unsigned OpReg = MO.getReg();
   1873     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
   1874       MO.setIsKill(false);
   1875   }
   1876 }
   1877 
   1878 bool MachineInstr::addRegisterDead(unsigned Reg,
   1879                                    const TargetRegisterInfo *RegInfo,
   1880                                    bool AddIfNotFound) {
   1881   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
   1882   bool hasAliases = isPhysReg &&
   1883     MCRegAliasIterator(Reg, RegInfo, false).isValid();
   1884   bool Found = false;
   1885   SmallVector<unsigned,4> DeadOps;
   1886   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1887     MachineOperand &MO = getOperand(i);
   1888     if (!MO.isReg() || !MO.isDef())
   1889       continue;
   1890     unsigned MOReg = MO.getReg();
   1891     if (!MOReg)
   1892       continue;
   1893 
   1894     if (MOReg == Reg) {
   1895       MO.setIsDead();
   1896       Found = true;
   1897     } else if (hasAliases && MO.isDead() &&
   1898                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1899       // There exists a super-register that's marked dead.
   1900       if (RegInfo->isSuperRegister(Reg, MOReg))
   1901         return true;
   1902       if (RegInfo->isSubRegister(Reg, MOReg))
   1903         DeadOps.push_back(i);
   1904     }
   1905   }
   1906 
   1907   // Trim unneeded dead operands.
   1908   while (!DeadOps.empty()) {
   1909     unsigned OpIdx = DeadOps.back();
   1910     if (getOperand(OpIdx).isImplicit())
   1911       RemoveOperand(OpIdx);
   1912     else
   1913       getOperand(OpIdx).setIsDead(false);
   1914     DeadOps.pop_back();
   1915   }
   1916 
   1917   // If not found, this means an alias of one of the operands is dead. Add a
   1918   // new implicit operand if required.
   1919   if (Found || !AddIfNotFound)
   1920     return Found;
   1921 
   1922   addOperand(MachineOperand::CreateReg(Reg,
   1923                                        true  /*IsDef*/,
   1924                                        true  /*IsImp*/,
   1925                                        false /*IsKill*/,
   1926                                        true  /*IsDead*/));
   1927   return true;
   1928 }
   1929 
   1930 void MachineInstr::clearRegisterDeads(unsigned Reg) {
   1931   for (MachineOperand &MO : operands()) {
   1932     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
   1933       continue;
   1934     MO.setIsDead(false);
   1935   }
   1936 }
   1937 
   1938 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
   1939   for (MachineOperand &MO : operands()) {
   1940     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
   1941       continue;
   1942     MO.setIsUndef(IsUndef);
   1943   }
   1944 }
   1945 
   1946 void MachineInstr::addRegisterDefined(unsigned Reg,
   1947                                       const TargetRegisterInfo *RegInfo) {
   1948   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1949     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
   1950     if (MO)
   1951       return;
   1952   } else {
   1953     for (const MachineOperand &MO : operands()) {
   1954       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
   1955           MO.getSubReg() == 0)
   1956         return;
   1957     }
   1958   }
   1959   addOperand(MachineOperand::CreateReg(Reg,
   1960                                        true  /*IsDef*/,
   1961                                        true  /*IsImp*/));
   1962 }
   1963 
   1964 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1965                                          const TargetRegisterInfo &TRI) {
   1966   bool HasRegMask = false;
   1967   for (MachineOperand &MO : operands()) {
   1968     if (MO.isRegMask()) {
   1969       HasRegMask = true;
   1970       continue;
   1971     }
   1972     if (!MO.isReg() || !MO.isDef()) continue;
   1973     unsigned Reg = MO.getReg();
   1974     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
   1975     // If there are no uses, including partial uses, the def is dead.
   1976     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
   1977                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
   1978       MO.setIsDead();
   1979   }
   1980 
   1981   // This is a call with a register mask operand.
   1982   // Mask clobbers are always dead, so add defs for the non-dead defines.
   1983   if (HasRegMask)
   1984     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
   1985          I != E; ++I)
   1986       addRegisterDefined(*I, &TRI);
   1987 }
   1988 
   1989 unsigned
   1990 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
   1991   // Build up a buffer of hash code components.
   1992   SmallVector<size_t, 8> HashComponents;
   1993   HashComponents.reserve(MI->getNumOperands() + 1);
   1994   HashComponents.push_back(MI->getOpcode());
   1995   for (const MachineOperand &MO : MI->operands()) {
   1996     if (MO.isReg() && MO.isDef() &&
   1997         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1998       continue;  // Skip virtual register defs.
   1999 
   2000     HashComponents.push_back(hash_value(MO));
   2001   }
   2002   return hash_combine_range(HashComponents.begin(), HashComponents.end());
   2003 }
   2004 
   2005 void MachineInstr::emitError(StringRef Msg) const {
   2006   // Find the source location cookie.
   2007   unsigned LocCookie = 0;
   2008   const MDNode *LocMD = nullptr;
   2009   for (unsigned i = getNumOperands(); i != 0; --i) {
   2010     if (getOperand(i-1).isMetadata() &&
   2011         (LocMD = getOperand(i-1).getMetadata()) &&
   2012         LocMD->getNumOperands() != 0) {
   2013       if (const ConstantInt *CI =
   2014               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
   2015         LocCookie = CI->getZExtValue();
   2016         break;
   2017       }
   2018     }
   2019   }
   2020 
   2021   if (const MachineBasicBlock *MBB = getParent())
   2022     if (const MachineFunction *MF = MBB->getParent())
   2023       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
   2024   report_fatal_error(Msg);
   2025 }
   2026