1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineMemOperand.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetInstrInfo.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Target/TargetRegisterInfo.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 using namespace llvm; 46 47 static cl::opt<bool> PrintWholeRegMask( 48 "print-whole-regmask", 49 cl::desc("Print the full contents of regmask operands in IR dumps"), 50 cl::init(true), cl::Hidden); 51 52 //===----------------------------------------------------------------------===// 53 // MachineOperand Implementation 54 //===----------------------------------------------------------------------===// 55 56 void MachineOperand::setReg(unsigned Reg) { 57 if (getReg() == Reg) return; // No change. 58 59 // Otherwise, we have to change the register. If this operand is embedded 60 // into a machine function, we need to update the old and new register's 61 // use/def lists. 62 if (MachineInstr *MI = getParent()) 63 if (MachineBasicBlock *MBB = MI->getParent()) 64 if (MachineFunction *MF = MBB->getParent()) { 65 MachineRegisterInfo &MRI = MF->getRegInfo(); 66 MRI.removeRegOperandFromUseList(this); 67 SmallContents.RegNo = Reg; 68 MRI.addRegOperandToUseList(this); 69 return; 70 } 71 72 // Otherwise, just change the register, no problem. :) 73 SmallContents.RegNo = Reg; 74 } 75 76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 77 const TargetRegisterInfo &TRI) { 78 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 79 if (SubIdx && getSubReg()) 80 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 81 setReg(Reg); 82 if (SubIdx) 83 setSubReg(SubIdx); 84 } 85 86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 87 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 88 if (getSubReg()) { 89 Reg = TRI.getSubReg(Reg, getSubReg()); 90 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 91 // That won't happen in legal code. 92 setSubReg(0); 93 } 94 setReg(Reg); 95 } 96 97 /// Change a def to a use, or a use to a def. 98 void MachineOperand::setIsDef(bool Val) { 99 assert(isReg() && "Wrong MachineOperand accessor"); 100 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 101 if (IsDef == Val) 102 return; 103 // MRI may keep uses and defs in different list positions. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 MachineRegisterInfo &MRI = MF->getRegInfo(); 108 MRI.removeRegOperandFromUseList(this); 109 IsDef = Val; 110 MRI.addRegOperandToUseList(this); 111 return; 112 } 113 IsDef = Val; 114 } 115 116 // If this operand is currently a register operand, and if this is in a 117 // function, deregister the operand from the register's use/def list. 118 void MachineOperand::removeRegFromUses() { 119 if (!isReg() || !isOnRegUseList()) 120 return; 121 122 if (MachineInstr *MI = getParent()) { 123 if (MachineBasicBlock *MBB = MI->getParent()) { 124 if (MachineFunction *MF = MBB->getParent()) 125 MF->getRegInfo().removeRegOperandFromUseList(this); 126 } 127 } 128 } 129 130 /// ChangeToImmediate - Replace this operand with a new immediate operand of 131 /// the specified value. If an operand is known to be an immediate already, 132 /// the setImm method should be used. 133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 134 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 135 136 removeRegFromUses(); 137 138 OpKind = MO_Immediate; 139 Contents.ImmVal = ImmVal; 140 } 141 142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) { 143 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 144 145 removeRegFromUses(); 146 147 OpKind = MO_FPImmediate; 148 Contents.CFP = FPImm; 149 } 150 151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) { 152 assert((!isReg() || !isTied()) && 153 "Cannot change a tied operand into an external symbol"); 154 155 removeRegFromUses(); 156 157 OpKind = MO_ExternalSymbol; 158 Contents.OffsetedInfo.Val.SymbolName = SymName; 159 setOffset(0); // Offset is always 0. 160 setTargetFlags(TargetFlags); 161 } 162 163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) { 164 assert((!isReg() || !isTied()) && 165 "Cannot change a tied operand into an MCSymbol"); 166 167 removeRegFromUses(); 168 169 OpKind = MO_MCSymbol; 170 Contents.Sym = Sym; 171 } 172 173 /// ChangeToRegister - Replace this operand with a new register operand of 174 /// the specified value. If an operand is known to be an register already, 175 /// the setReg method should be used. 176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 177 bool isKill, bool isDead, bool isUndef, 178 bool isDebug) { 179 MachineRegisterInfo *RegInfo = nullptr; 180 if (MachineInstr *MI = getParent()) 181 if (MachineBasicBlock *MBB = MI->getParent()) 182 if (MachineFunction *MF = MBB->getParent()) 183 RegInfo = &MF->getRegInfo(); 184 // If this operand is already a register operand, remove it from the 185 // register's use/def lists. 186 bool WasReg = isReg(); 187 if (RegInfo && WasReg) 188 RegInfo->removeRegOperandFromUseList(this); 189 190 // Change this to a register and set the reg#. 191 OpKind = MO_Register; 192 SmallContents.RegNo = Reg; 193 SubReg_TargetFlags = 0; 194 IsDef = isDef; 195 IsImp = isImp; 196 IsKill = isKill; 197 IsDead = isDead; 198 IsUndef = isUndef; 199 IsInternalRead = false; 200 IsEarlyClobber = false; 201 IsDebug = isDebug; 202 // Ensure isOnRegUseList() returns false. 203 Contents.Reg.Prev = nullptr; 204 // Preserve the tie when the operand was already a register. 205 if (!WasReg) 206 TiedTo = 0; 207 208 // If this operand is embedded in a function, add the operand to the 209 // register's use/def list. 210 if (RegInfo) 211 RegInfo->addRegOperandToUseList(this); 212 } 213 214 /// isIdenticalTo - Return true if this operand is identical to the specified 215 /// operand. Note that this should stay in sync with the hash_value overload 216 /// below. 217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 218 if (getType() != Other.getType() || 219 getTargetFlags() != Other.getTargetFlags()) 220 return false; 221 222 switch (getType()) { 223 case MachineOperand::MO_Register: 224 return getReg() == Other.getReg() && isDef() == Other.isDef() && 225 getSubReg() == Other.getSubReg(); 226 case MachineOperand::MO_Immediate: 227 return getImm() == Other.getImm(); 228 case MachineOperand::MO_CImmediate: 229 return getCImm() == Other.getCImm(); 230 case MachineOperand::MO_FPImmediate: 231 return getFPImm() == Other.getFPImm(); 232 case MachineOperand::MO_MachineBasicBlock: 233 return getMBB() == Other.getMBB(); 234 case MachineOperand::MO_FrameIndex: 235 return getIndex() == Other.getIndex(); 236 case MachineOperand::MO_ConstantPoolIndex: 237 case MachineOperand::MO_TargetIndex: 238 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 239 case MachineOperand::MO_JumpTableIndex: 240 return getIndex() == Other.getIndex(); 241 case MachineOperand::MO_GlobalAddress: 242 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 243 case MachineOperand::MO_ExternalSymbol: 244 return !strcmp(getSymbolName(), Other.getSymbolName()) && 245 getOffset() == Other.getOffset(); 246 case MachineOperand::MO_BlockAddress: 247 return getBlockAddress() == Other.getBlockAddress() && 248 getOffset() == Other.getOffset(); 249 case MachineOperand::MO_RegisterMask: 250 case MachineOperand::MO_RegisterLiveOut: 251 return getRegMask() == Other.getRegMask(); 252 case MachineOperand::MO_MCSymbol: 253 return getMCSymbol() == Other.getMCSymbol(); 254 case MachineOperand::MO_CFIIndex: 255 return getCFIIndex() == Other.getCFIIndex(); 256 case MachineOperand::MO_Metadata: 257 return getMetadata() == Other.getMetadata(); 258 } 259 llvm_unreachable("Invalid machine operand type"); 260 } 261 262 // Note: this must stay exactly in sync with isIdenticalTo above. 263 hash_code llvm::hash_value(const MachineOperand &MO) { 264 switch (MO.getType()) { 265 case MachineOperand::MO_Register: 266 // Register operands don't have target flags. 267 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 268 case MachineOperand::MO_Immediate: 269 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 270 case MachineOperand::MO_CImmediate: 271 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 272 case MachineOperand::MO_FPImmediate: 273 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 274 case MachineOperand::MO_MachineBasicBlock: 275 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 276 case MachineOperand::MO_FrameIndex: 277 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 278 case MachineOperand::MO_ConstantPoolIndex: 279 case MachineOperand::MO_TargetIndex: 280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 281 MO.getOffset()); 282 case MachineOperand::MO_JumpTableIndex: 283 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 284 case MachineOperand::MO_ExternalSymbol: 285 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 286 MO.getSymbolName()); 287 case MachineOperand::MO_GlobalAddress: 288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 289 MO.getOffset()); 290 case MachineOperand::MO_BlockAddress: 291 return hash_combine(MO.getType(), MO.getTargetFlags(), 292 MO.getBlockAddress(), MO.getOffset()); 293 case MachineOperand::MO_RegisterMask: 294 case MachineOperand::MO_RegisterLiveOut: 295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 296 case MachineOperand::MO_Metadata: 297 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 298 case MachineOperand::MO_MCSymbol: 299 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 300 case MachineOperand::MO_CFIIndex: 301 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex()); 302 } 303 llvm_unreachable("Invalid machine operand type"); 304 } 305 306 void MachineOperand::print(raw_ostream &OS, 307 const TargetRegisterInfo *TRI) const { 308 ModuleSlotTracker DummyMST(nullptr); 309 print(OS, DummyMST, TRI); 310 } 311 312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST, 313 const TargetRegisterInfo *TRI) const { 314 switch (getType()) { 315 case MachineOperand::MO_Register: 316 OS << PrintReg(getReg(), TRI, getSubReg()); 317 318 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 319 isInternalRead() || isEarlyClobber() || isTied()) { 320 OS << '<'; 321 bool NeedComma = false; 322 if (isDef()) { 323 if (NeedComma) OS << ','; 324 if (isEarlyClobber()) 325 OS << "earlyclobber,"; 326 if (isImplicit()) 327 OS << "imp-"; 328 OS << "def"; 329 NeedComma = true; 330 // <def,read-undef> only makes sense when getSubReg() is set. 331 // Don't clutter the output otherwise. 332 if (isUndef() && getSubReg()) 333 OS << ",read-undef"; 334 } else if (isImplicit()) { 335 OS << "imp-use"; 336 NeedComma = true; 337 } 338 339 if (isKill()) { 340 if (NeedComma) OS << ','; 341 OS << "kill"; 342 NeedComma = true; 343 } 344 if (isDead()) { 345 if (NeedComma) OS << ','; 346 OS << "dead"; 347 NeedComma = true; 348 } 349 if (isUndef() && isUse()) { 350 if (NeedComma) OS << ','; 351 OS << "undef"; 352 NeedComma = true; 353 } 354 if (isInternalRead()) { 355 if (NeedComma) OS << ','; 356 OS << "internal"; 357 NeedComma = true; 358 } 359 if (isTied()) { 360 if (NeedComma) OS << ','; 361 OS << "tied"; 362 if (TiedTo != 15) 363 OS << unsigned(TiedTo - 1); 364 } 365 OS << '>'; 366 } 367 break; 368 case MachineOperand::MO_Immediate: 369 OS << getImm(); 370 break; 371 case MachineOperand::MO_CImmediate: 372 getCImm()->getValue().print(OS, false); 373 break; 374 case MachineOperand::MO_FPImmediate: 375 if (getFPImm()->getType()->isFloatTy()) 376 OS << getFPImm()->getValueAPF().convertToFloat(); 377 else 378 OS << getFPImm()->getValueAPF().convertToDouble(); 379 break; 380 case MachineOperand::MO_MachineBasicBlock: 381 OS << "<BB#" << getMBB()->getNumber() << ">"; 382 break; 383 case MachineOperand::MO_FrameIndex: 384 OS << "<fi#" << getIndex() << '>'; 385 break; 386 case MachineOperand::MO_ConstantPoolIndex: 387 OS << "<cp#" << getIndex(); 388 if (getOffset()) OS << "+" << getOffset(); 389 OS << '>'; 390 break; 391 case MachineOperand::MO_TargetIndex: 392 OS << "<ti#" << getIndex(); 393 if (getOffset()) OS << "+" << getOffset(); 394 OS << '>'; 395 break; 396 case MachineOperand::MO_JumpTableIndex: 397 OS << "<jt#" << getIndex() << '>'; 398 break; 399 case MachineOperand::MO_GlobalAddress: 400 OS << "<ga:"; 401 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST); 402 if (getOffset()) OS << "+" << getOffset(); 403 OS << '>'; 404 break; 405 case MachineOperand::MO_ExternalSymbol: 406 OS << "<es:" << getSymbolName(); 407 if (getOffset()) OS << "+" << getOffset(); 408 OS << '>'; 409 break; 410 case MachineOperand::MO_BlockAddress: 411 OS << '<'; 412 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST); 413 if (getOffset()) OS << "+" << getOffset(); 414 OS << '>'; 415 break; 416 case MachineOperand::MO_RegisterMask: { 417 unsigned NumRegsInMask = 0; 418 unsigned NumRegsEmitted = 0; 419 OS << "<regmask"; 420 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { 421 unsigned MaskWord = i / 32; 422 unsigned MaskBit = i % 32; 423 if (getRegMask()[MaskWord] & (1 << MaskBit)) { 424 if (PrintWholeRegMask || NumRegsEmitted <= 10) { 425 OS << " " << PrintReg(i, TRI); 426 NumRegsEmitted++; 427 } 428 NumRegsInMask++; 429 } 430 } 431 if (NumRegsEmitted != NumRegsInMask) 432 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more..."; 433 OS << ">"; 434 break; 435 } 436 case MachineOperand::MO_RegisterLiveOut: 437 OS << "<regliveout>"; 438 break; 439 case MachineOperand::MO_Metadata: 440 OS << '<'; 441 getMetadata()->printAsOperand(OS, MST); 442 OS << '>'; 443 break; 444 case MachineOperand::MO_MCSymbol: 445 OS << "<MCSym=" << *getMCSymbol() << '>'; 446 break; 447 case MachineOperand::MO_CFIIndex: 448 OS << "<call frame instruction>"; 449 break; 450 } 451 452 if (unsigned TF = getTargetFlags()) 453 OS << "[TF=" << TF << ']'; 454 } 455 456 //===----------------------------------------------------------------------===// 457 // MachineMemOperand Implementation 458 //===----------------------------------------------------------------------===// 459 460 /// getAddrSpace - Return the LLVM IR address space number that this pointer 461 /// points into. 462 unsigned MachinePointerInfo::getAddrSpace() const { 463 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0; 464 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace(); 465 } 466 467 /// getConstantPool - Return a MachinePointerInfo record that refers to the 468 /// constant pool. 469 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) { 470 return MachinePointerInfo(MF.getPSVManager().getConstantPool()); 471 } 472 473 /// getFixedStack - Return a MachinePointerInfo record that refers to the 474 /// the specified FrameIndex. 475 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF, 476 int FI, int64_t Offset) { 477 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset); 478 } 479 480 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) { 481 return MachinePointerInfo(MF.getPSVManager().getJumpTable()); 482 } 483 484 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) { 485 return MachinePointerInfo(MF.getPSVManager().getGOT()); 486 } 487 488 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF, 489 int64_t Offset) { 490 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset); 491 } 492 493 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 494 uint64_t s, unsigned int a, 495 const AAMDNodes &AAInfo, 496 const MDNode *Ranges) 497 : PtrInfo(ptrinfo), Size(s), 498 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 499 AAInfo(AAInfo), Ranges(Ranges) { 500 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() || 501 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) && 502 "invalid pointer value"); 503 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 504 assert((isLoad() || isStore()) && "Not a load/store!"); 505 } 506 507 /// Profile - Gather unique data for the object. 508 /// 509 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 510 ID.AddInteger(getOffset()); 511 ID.AddInteger(Size); 512 ID.AddPointer(getOpaqueValue()); 513 ID.AddInteger(Flags); 514 } 515 516 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 517 // The Value and Offset may differ due to CSE. But the flags and size 518 // should be the same. 519 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 520 assert(MMO->getSize() == getSize() && "Size mismatch!"); 521 522 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 523 // Update the alignment value. 524 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 525 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 526 // Also update the base and offset, because the new alignment may 527 // not be applicable with the old ones. 528 PtrInfo = MMO->PtrInfo; 529 } 530 } 531 532 /// getAlignment - Return the minimum known alignment in bytes of the 533 /// actual memory reference. 534 uint64_t MachineMemOperand::getAlignment() const { 535 return MinAlign(getBaseAlignment(), getOffset()); 536 } 537 538 void MachineMemOperand::print(raw_ostream &OS) const { 539 ModuleSlotTracker DummyMST(nullptr); 540 print(OS, DummyMST); 541 } 542 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const { 543 assert((isLoad() || isStore()) && 544 "SV has to be a load, store or both."); 545 546 if (isVolatile()) 547 OS << "Volatile "; 548 549 if (isLoad()) 550 OS << "LD"; 551 if (isStore()) 552 OS << "ST"; 553 OS << getSize(); 554 555 // Print the address information. 556 OS << "["; 557 if (const Value *V = getValue()) 558 V->printAsOperand(OS, /*PrintType=*/false, MST); 559 else if (const PseudoSourceValue *PSV = getPseudoValue()) 560 PSV->printCustom(OS); 561 else 562 OS << "<unknown>"; 563 564 unsigned AS = getAddrSpace(); 565 if (AS != 0) 566 OS << "(addrspace=" << AS << ')'; 567 568 // If the alignment of the memory reference itself differs from the alignment 569 // of the base pointer, print the base alignment explicitly, next to the base 570 // pointer. 571 if (getBaseAlignment() != getAlignment()) 572 OS << "(align=" << getBaseAlignment() << ")"; 573 574 if (getOffset() != 0) 575 OS << "+" << getOffset(); 576 OS << "]"; 577 578 // Print the alignment of the reference. 579 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize()) 580 OS << "(align=" << getAlignment() << ")"; 581 582 // Print TBAA info. 583 if (const MDNode *TBAAInfo = getAAInfo().TBAA) { 584 OS << "(tbaa="; 585 if (TBAAInfo->getNumOperands() > 0) 586 TBAAInfo->getOperand(0)->printAsOperand(OS, MST); 587 else 588 OS << "<unknown>"; 589 OS << ")"; 590 } 591 592 // Print AA scope info. 593 if (const MDNode *ScopeInfo = getAAInfo().Scope) { 594 OS << "(alias.scope="; 595 if (ScopeInfo->getNumOperands() > 0) 596 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) { 597 ScopeInfo->getOperand(i)->printAsOperand(OS, MST); 598 if (i != ie-1) 599 OS << ","; 600 } 601 else 602 OS << "<unknown>"; 603 OS << ")"; 604 } 605 606 // Print AA noalias scope info. 607 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) { 608 OS << "(noalias="; 609 if (NoAliasInfo->getNumOperands() > 0) 610 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) { 611 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST); 612 if (i != ie-1) 613 OS << ","; 614 } 615 else 616 OS << "<unknown>"; 617 OS << ")"; 618 } 619 620 // Print nontemporal info. 621 if (isNonTemporal()) 622 OS << "(nontemporal)"; 623 624 if (isInvariant()) 625 OS << "(invariant)"; 626 } 627 628 //===----------------------------------------------------------------------===// 629 // MachineInstr Implementation 630 //===----------------------------------------------------------------------===// 631 632 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 633 if (MCID->ImplicitDefs) 634 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 635 ++ImpDefs) 636 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 637 if (MCID->ImplicitUses) 638 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 639 ++ImpUses) 640 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 641 } 642 643 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 644 /// implicit operands. It reserves space for the number of operands specified by 645 /// the MCInstrDesc. 646 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 647 DebugLoc dl, bool NoImp) 648 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0), 649 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr), 650 debugLoc(std::move(dl)) { 651 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 652 653 // Reserve space for the expected number of operands. 654 if (unsigned NumOps = MCID->getNumOperands() + 655 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 656 CapOperands = OperandCapacity::get(NumOps); 657 Operands = MF.allocateOperandArray(CapOperands); 658 } 659 660 if (!NoImp) 661 addImplicitDefUseOperands(MF); 662 } 663 664 /// MachineInstr ctor - Copies MachineInstr arg exactly 665 /// 666 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 667 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0), 668 Flags(0), AsmPrinterFlags(0), 669 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 670 debugLoc(MI.getDebugLoc()) { 671 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 672 673 CapOperands = OperandCapacity::get(MI.getNumOperands()); 674 Operands = MF.allocateOperandArray(CapOperands); 675 676 // Copy operands. 677 for (const MachineOperand &MO : MI.operands()) 678 addOperand(MF, MO); 679 680 // Copy all the sensible flags. 681 setFlags(MI.Flags); 682 } 683 684 /// getRegInfo - If this instruction is embedded into a MachineFunction, 685 /// return the MachineRegisterInfo object for the current function, otherwise 686 /// return null. 687 MachineRegisterInfo *MachineInstr::getRegInfo() { 688 if (MachineBasicBlock *MBB = getParent()) 689 return &MBB->getParent()->getRegInfo(); 690 return nullptr; 691 } 692 693 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 694 /// this instruction from their respective use lists. This requires that the 695 /// operands already be on their use lists. 696 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 697 for (MachineOperand &MO : operands()) 698 if (MO.isReg()) 699 MRI.removeRegOperandFromUseList(&MO); 700 } 701 702 /// AddRegOperandsToUseLists - Add all of the register operands in 703 /// this instruction from their respective use lists. This requires that the 704 /// operands not be on their use lists yet. 705 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 706 for (MachineOperand &MO : operands()) 707 if (MO.isReg()) 708 MRI.addRegOperandToUseList(&MO); 709 } 710 711 void MachineInstr::addOperand(const MachineOperand &Op) { 712 MachineBasicBlock *MBB = getParent(); 713 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 714 MachineFunction *MF = MBB->getParent(); 715 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 716 addOperand(*MF, Op); 717 } 718 719 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 720 /// ranges. If MRI is non-null also update use-def chains. 721 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 722 unsigned NumOps, MachineRegisterInfo *MRI) { 723 if (MRI) 724 return MRI->moveOperands(Dst, Src, NumOps); 725 726 // MachineOperand is a trivially copyable type so we can just use memmove. 727 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 728 } 729 730 /// addOperand - Add the specified operand to the instruction. If it is an 731 /// implicit operand, it is added to the end of the operand list. If it is 732 /// an explicit operand it is added at the end of the explicit operand list 733 /// (before the first implicit operand). 734 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 735 assert(MCID && "Cannot add operands before providing an instr descriptor"); 736 737 // Check if we're adding one of our existing operands. 738 if (&Op >= Operands && &Op < Operands + NumOperands) { 739 // This is unusual: MI->addOperand(MI->getOperand(i)). 740 // If adding Op requires reallocating or moving existing operands around, 741 // the Op reference could go stale. Support it by copying Op. 742 MachineOperand CopyOp(Op); 743 return addOperand(MF, CopyOp); 744 } 745 746 // Find the insert location for the new operand. Implicit registers go at 747 // the end, everything else goes before the implicit regs. 748 // 749 // FIXME: Allow mixed explicit and implicit operands on inline asm. 750 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 751 // implicit-defs, but they must not be moved around. See the FIXME in 752 // InstrEmitter.cpp. 753 unsigned OpNo = getNumOperands(); 754 bool isImpReg = Op.isReg() && Op.isImplicit(); 755 if (!isImpReg && !isInlineAsm()) { 756 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 757 --OpNo; 758 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 759 } 760 } 761 762 #ifndef NDEBUG 763 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata; 764 // OpNo now points as the desired insertion point. Unless this is a variadic 765 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 766 // RegMask operands go between the explicit and implicit operands. 767 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 768 OpNo < MCID->getNumOperands() || isMetaDataOp) && 769 "Trying to add an operand to a machine instr that is already done!"); 770 #endif 771 772 MachineRegisterInfo *MRI = getRegInfo(); 773 774 // Determine if the Operands array needs to be reallocated. 775 // Save the old capacity and operand array. 776 OperandCapacity OldCap = CapOperands; 777 MachineOperand *OldOperands = Operands; 778 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 779 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 780 Operands = MF.allocateOperandArray(CapOperands); 781 // Move the operands before the insertion point. 782 if (OpNo) 783 moveOperands(Operands, OldOperands, OpNo, MRI); 784 } 785 786 // Move the operands following the insertion point. 787 if (OpNo != NumOperands) 788 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 789 MRI); 790 ++NumOperands; 791 792 // Deallocate the old operand array. 793 if (OldOperands != Operands && OldOperands) 794 MF.deallocateOperandArray(OldCap, OldOperands); 795 796 // Copy Op into place. It still needs to be inserted into the MRI use lists. 797 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 798 NewMO->ParentMI = this; 799 800 // When adding a register operand, tell MRI about it. 801 if (NewMO->isReg()) { 802 // Ensure isOnRegUseList() returns false, regardless of Op's status. 803 NewMO->Contents.Reg.Prev = nullptr; 804 // Ignore existing ties. This is not a property that can be copied. 805 NewMO->TiedTo = 0; 806 // Add the new operand to MRI, but only for instructions in an MBB. 807 if (MRI) 808 MRI->addRegOperandToUseList(NewMO); 809 // The MCID operand information isn't accurate until we start adding 810 // explicit operands. The implicit operands are added first, then the 811 // explicits are inserted before them. 812 if (!isImpReg) { 813 // Tie uses to defs as indicated in MCInstrDesc. 814 if (NewMO->isUse()) { 815 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 816 if (DefIdx != -1) 817 tieOperands(DefIdx, OpNo); 818 } 819 // If the register operand is flagged as early, mark the operand as such. 820 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 821 NewMO->setIsEarlyClobber(true); 822 } 823 } 824 } 825 826 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 827 /// fewer operand than it started with. 828 /// 829 void MachineInstr::RemoveOperand(unsigned OpNo) { 830 assert(OpNo < getNumOperands() && "Invalid operand number"); 831 untieRegOperand(OpNo); 832 833 #ifndef NDEBUG 834 // Moving tied operands would break the ties. 835 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 836 if (Operands[i].isReg()) 837 assert(!Operands[i].isTied() && "Cannot move tied operands"); 838 #endif 839 840 MachineRegisterInfo *MRI = getRegInfo(); 841 if (MRI && Operands[OpNo].isReg()) 842 MRI->removeRegOperandFromUseList(Operands + OpNo); 843 844 // Don't call the MachineOperand destructor. A lot of this code depends on 845 // MachineOperand having a trivial destructor anyway, and adding a call here 846 // wouldn't make it 'destructor-correct'. 847 848 if (unsigned N = NumOperands - 1 - OpNo) 849 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 850 --NumOperands; 851 } 852 853 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 854 /// This function should be used only occasionally. The setMemRefs function 855 /// is the primary method for setting up a MachineInstr's MemRefs list. 856 void MachineInstr::addMemOperand(MachineFunction &MF, 857 MachineMemOperand *MO) { 858 mmo_iterator OldMemRefs = MemRefs; 859 unsigned OldNumMemRefs = NumMemRefs; 860 861 unsigned NewNum = NumMemRefs + 1; 862 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 863 864 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 865 NewMemRefs[NewNum - 1] = MO; 866 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 867 } 868 869 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 870 assert(!isBundledWithPred() && "Must be called on bundle header"); 871 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 872 if (MII->getDesc().getFlags() & Mask) { 873 if (Type == AnyInBundle) 874 return true; 875 } else { 876 if (Type == AllInBundle && !MII->isBundle()) 877 return false; 878 } 879 // This was the last instruction in the bundle. 880 if (!MII->isBundledWithSucc()) 881 return Type == AllInBundle; 882 } 883 } 884 885 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 886 MICheckType Check) const { 887 // If opcodes or number of operands are not the same then the two 888 // instructions are obviously not identical. 889 if (Other->getOpcode() != getOpcode() || 890 Other->getNumOperands() != getNumOperands()) 891 return false; 892 893 if (isBundle()) { 894 // Both instructions are bundles, compare MIs inside the bundle. 895 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 896 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 897 MachineBasicBlock::const_instr_iterator I2 = Other->getIterator(); 898 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 899 while (++I1 != E1 && I1->isInsideBundle()) { 900 ++I2; 901 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(&*I2, Check)) 902 return false; 903 } 904 } 905 906 // Check operands to make sure they match. 907 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 908 const MachineOperand &MO = getOperand(i); 909 const MachineOperand &OMO = Other->getOperand(i); 910 if (!MO.isReg()) { 911 if (!MO.isIdenticalTo(OMO)) 912 return false; 913 continue; 914 } 915 916 // Clients may or may not want to ignore defs when testing for equality. 917 // For example, machine CSE pass only cares about finding common 918 // subexpressions, so it's safe to ignore virtual register defs. 919 if (MO.isDef()) { 920 if (Check == IgnoreDefs) 921 continue; 922 else if (Check == IgnoreVRegDefs) { 923 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 924 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 925 if (MO.getReg() != OMO.getReg()) 926 return false; 927 } else { 928 if (!MO.isIdenticalTo(OMO)) 929 return false; 930 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 931 return false; 932 } 933 } else { 934 if (!MO.isIdenticalTo(OMO)) 935 return false; 936 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 937 return false; 938 } 939 } 940 // If DebugLoc does not match then two dbg.values are not identical. 941 if (isDebugValue()) 942 if (getDebugLoc() && Other->getDebugLoc() && 943 getDebugLoc() != Other->getDebugLoc()) 944 return false; 945 return true; 946 } 947 948 MachineInstr *MachineInstr::removeFromParent() { 949 assert(getParent() && "Not embedded in a basic block!"); 950 return getParent()->remove(this); 951 } 952 953 MachineInstr *MachineInstr::removeFromBundle() { 954 assert(getParent() && "Not embedded in a basic block!"); 955 return getParent()->remove_instr(this); 956 } 957 958 void MachineInstr::eraseFromParent() { 959 assert(getParent() && "Not embedded in a basic block!"); 960 getParent()->erase(this); 961 } 962 963 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 964 assert(getParent() && "Not embedded in a basic block!"); 965 MachineBasicBlock *MBB = getParent(); 966 MachineFunction *MF = MBB->getParent(); 967 assert(MF && "Not embedded in a function!"); 968 969 MachineInstr *MI = (MachineInstr *)this; 970 MachineRegisterInfo &MRI = MF->getRegInfo(); 971 972 for (const MachineOperand &MO : MI->operands()) { 973 if (!MO.isReg() || !MO.isDef()) 974 continue; 975 unsigned Reg = MO.getReg(); 976 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 977 continue; 978 MRI.markUsesInDebugValueAsUndef(Reg); 979 } 980 MI->eraseFromParent(); 981 } 982 983 void MachineInstr::eraseFromBundle() { 984 assert(getParent() && "Not embedded in a basic block!"); 985 getParent()->erase_instr(this); 986 } 987 988 /// getNumExplicitOperands - Returns the number of non-implicit operands. 989 /// 990 unsigned MachineInstr::getNumExplicitOperands() const { 991 unsigned NumOperands = MCID->getNumOperands(); 992 if (!MCID->isVariadic()) 993 return NumOperands; 994 995 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 996 const MachineOperand &MO = getOperand(i); 997 if (!MO.isReg() || !MO.isImplicit()) 998 NumOperands++; 999 } 1000 return NumOperands; 1001 } 1002 1003 void MachineInstr::bundleWithPred() { 1004 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 1005 setFlag(BundledPred); 1006 MachineBasicBlock::instr_iterator Pred = getIterator(); 1007 --Pred; 1008 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1009 Pred->setFlag(BundledSucc); 1010 } 1011 1012 void MachineInstr::bundleWithSucc() { 1013 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 1014 setFlag(BundledSucc); 1015 MachineBasicBlock::instr_iterator Succ = getIterator(); 1016 ++Succ; 1017 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1018 Succ->setFlag(BundledPred); 1019 } 1020 1021 void MachineInstr::unbundleFromPred() { 1022 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 1023 clearFlag(BundledPred); 1024 MachineBasicBlock::instr_iterator Pred = getIterator(); 1025 --Pred; 1026 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 1027 Pred->clearFlag(BundledSucc); 1028 } 1029 1030 void MachineInstr::unbundleFromSucc() { 1031 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 1032 clearFlag(BundledSucc); 1033 MachineBasicBlock::instr_iterator Succ = getIterator(); 1034 ++Succ; 1035 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 1036 Succ->clearFlag(BundledPred); 1037 } 1038 1039 bool MachineInstr::isStackAligningInlineAsm() const { 1040 if (isInlineAsm()) { 1041 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1042 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1043 return true; 1044 } 1045 return false; 1046 } 1047 1048 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 1049 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 1050 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1051 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 1052 } 1053 1054 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 1055 unsigned *GroupNo) const { 1056 assert(isInlineAsm() && "Expected an inline asm instruction"); 1057 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 1058 1059 // Ignore queries about the initial operands. 1060 if (OpIdx < InlineAsm::MIOp_FirstOperand) 1061 return -1; 1062 1063 unsigned Group = 0; 1064 unsigned NumOps; 1065 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1066 i += NumOps) { 1067 const MachineOperand &FlagMO = getOperand(i); 1068 // If we reach the implicit register operands, stop looking. 1069 if (!FlagMO.isImm()) 1070 return -1; 1071 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1072 if (i + NumOps > OpIdx) { 1073 if (GroupNo) 1074 *GroupNo = Group; 1075 return i; 1076 } 1077 ++Group; 1078 } 1079 return -1; 1080 } 1081 1082 const TargetRegisterClass* 1083 MachineInstr::getRegClassConstraint(unsigned OpIdx, 1084 const TargetInstrInfo *TII, 1085 const TargetRegisterInfo *TRI) const { 1086 assert(getParent() && "Can't have an MBB reference here!"); 1087 assert(getParent()->getParent() && "Can't have an MF reference here!"); 1088 const MachineFunction &MF = *getParent()->getParent(); 1089 1090 // Most opcodes have fixed constraints in their MCInstrDesc. 1091 if (!isInlineAsm()) 1092 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 1093 1094 if (!getOperand(OpIdx).isReg()) 1095 return nullptr; 1096 1097 // For tied uses on inline asm, get the constraint from the def. 1098 unsigned DefIdx; 1099 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 1100 OpIdx = DefIdx; 1101 1102 // Inline asm stores register class constraints in the flag word. 1103 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 1104 if (FlagIdx < 0) 1105 return nullptr; 1106 1107 unsigned Flag = getOperand(FlagIdx).getImm(); 1108 unsigned RCID; 1109 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 1110 return TRI->getRegClass(RCID); 1111 1112 // Assume that all registers in a memory operand are pointers. 1113 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 1114 return TRI->getPointerRegClass(MF); 1115 1116 return nullptr; 1117 } 1118 1119 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 1120 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 1121 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 1122 // Check every operands inside the bundle if we have 1123 // been asked to. 1124 if (ExploreBundle) 1125 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC; 1126 ++OpndIt) 1127 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 1128 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 1129 else 1130 // Otherwise, just check the current operands. 1131 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 1132 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 1133 return CurRC; 1134 } 1135 1136 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 1137 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1138 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1139 assert(CurRC && "Invalid initial register class"); 1140 // Check if Reg is constrained by some of its use/def from MI. 1141 const MachineOperand &MO = getOperand(OpIdx); 1142 if (!MO.isReg() || MO.getReg() != Reg) 1143 return CurRC; 1144 // If yes, accumulate the constraints through the operand. 1145 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 1146 } 1147 1148 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 1149 unsigned OpIdx, const TargetRegisterClass *CurRC, 1150 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 1151 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 1152 const MachineOperand &MO = getOperand(OpIdx); 1153 assert(MO.isReg() && 1154 "Cannot get register constraints for non-register operand"); 1155 assert(CurRC && "Invalid initial register class"); 1156 if (unsigned SubIdx = MO.getSubReg()) { 1157 if (OpRC) 1158 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 1159 else 1160 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 1161 } else if (OpRC) 1162 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 1163 return CurRC; 1164 } 1165 1166 /// Return the number of instructions inside the MI bundle, not counting the 1167 /// header instruction. 1168 unsigned MachineInstr::getBundleSize() const { 1169 MachineBasicBlock::const_instr_iterator I = getIterator(); 1170 unsigned Size = 0; 1171 while (I->isBundledWithSucc()) 1172 ++Size, ++I; 1173 return Size; 1174 } 1175 1176 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 1177 /// the specific register or -1 if it is not found. It further tightens 1178 /// the search criteria to a use that kills the register if isKill is true. 1179 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 1180 const TargetRegisterInfo *TRI) const { 1181 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1182 const MachineOperand &MO = getOperand(i); 1183 if (!MO.isReg() || !MO.isUse()) 1184 continue; 1185 unsigned MOReg = MO.getReg(); 1186 if (!MOReg) 1187 continue; 1188 if (MOReg == Reg || 1189 (TRI && 1190 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1191 TargetRegisterInfo::isPhysicalRegister(Reg) && 1192 TRI->isSubRegister(MOReg, Reg))) 1193 if (!isKill || MO.isKill()) 1194 return i; 1195 } 1196 return -1; 1197 } 1198 1199 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1200 /// indicating if this instruction reads or writes Reg. This also considers 1201 /// partial defines. 1202 std::pair<bool,bool> 1203 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1204 SmallVectorImpl<unsigned> *Ops) const { 1205 bool PartDef = false; // Partial redefine. 1206 bool FullDef = false; // Full define. 1207 bool Use = false; 1208 1209 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1210 const MachineOperand &MO = getOperand(i); 1211 if (!MO.isReg() || MO.getReg() != Reg) 1212 continue; 1213 if (Ops) 1214 Ops->push_back(i); 1215 if (MO.isUse()) 1216 Use |= !MO.isUndef(); 1217 else if (MO.getSubReg() && !MO.isUndef()) 1218 // A partial <def,undef> doesn't count as reading the register. 1219 PartDef = true; 1220 else 1221 FullDef = true; 1222 } 1223 // A partial redefine uses Reg unless there is also a full define. 1224 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1225 } 1226 1227 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1228 /// the specified register or -1 if it is not found. If isDead is true, defs 1229 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1230 /// also checks if there is a def of a super-register. 1231 int 1232 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1233 const TargetRegisterInfo *TRI) const { 1234 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1235 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1236 const MachineOperand &MO = getOperand(i); 1237 // Accept regmask operands when Overlap is set. 1238 // Ignore them when looking for a specific def operand (Overlap == false). 1239 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1240 return i; 1241 if (!MO.isReg() || !MO.isDef()) 1242 continue; 1243 unsigned MOReg = MO.getReg(); 1244 bool Found = (MOReg == Reg); 1245 if (!Found && TRI && isPhys && 1246 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1247 if (Overlap) 1248 Found = TRI->regsOverlap(MOReg, Reg); 1249 else 1250 Found = TRI->isSubRegister(MOReg, Reg); 1251 } 1252 if (Found && (!isDead || MO.isDead())) 1253 return i; 1254 } 1255 return -1; 1256 } 1257 1258 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1259 /// operand list that is used to represent the predicate. It returns -1 if 1260 /// none is found. 1261 int MachineInstr::findFirstPredOperandIdx() const { 1262 // Don't call MCID.findFirstPredOperandIdx() because this variant 1263 // is sometimes called on an instruction that's not yet complete, and 1264 // so the number of operands is less than the MCID indicates. In 1265 // particular, the PTX target does this. 1266 const MCInstrDesc &MCID = getDesc(); 1267 if (MCID.isPredicable()) { 1268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1269 if (MCID.OpInfo[i].isPredicate()) 1270 return i; 1271 } 1272 1273 return -1; 1274 } 1275 1276 // MachineOperand::TiedTo is 4 bits wide. 1277 const unsigned TiedMax = 15; 1278 1279 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1280 /// 1281 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1282 /// field. TiedTo can have these values: 1283 /// 1284 /// 0: Operand is not tied to anything. 1285 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1286 /// TiedMax: Tied to an operand >= TiedMax-1. 1287 /// 1288 /// The tied def must be one of the first TiedMax operands on a normal 1289 /// instruction. INLINEASM instructions allow more tied defs. 1290 /// 1291 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1292 MachineOperand &DefMO = getOperand(DefIdx); 1293 MachineOperand &UseMO = getOperand(UseIdx); 1294 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1295 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1296 assert(!DefMO.isTied() && "Def is already tied to another use"); 1297 assert(!UseMO.isTied() && "Use is already tied to another def"); 1298 1299 if (DefIdx < TiedMax) 1300 UseMO.TiedTo = DefIdx + 1; 1301 else { 1302 // Inline asm can use the group descriptors to find tied operands, but on 1303 // normal instruction, the tied def must be within the first TiedMax 1304 // operands. 1305 assert(isInlineAsm() && "DefIdx out of range"); 1306 UseMO.TiedTo = TiedMax; 1307 } 1308 1309 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1310 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1311 } 1312 1313 /// Given the index of a tied register operand, find the operand it is tied to. 1314 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1315 /// which must exist. 1316 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1317 const MachineOperand &MO = getOperand(OpIdx); 1318 assert(MO.isTied() && "Operand isn't tied"); 1319 1320 // Normally TiedTo is in range. 1321 if (MO.TiedTo < TiedMax) 1322 return MO.TiedTo - 1; 1323 1324 // Uses on normal instructions can be out of range. 1325 if (!isInlineAsm()) { 1326 // Normal tied defs must be in the 0..TiedMax-1 range. 1327 if (MO.isUse()) 1328 return TiedMax - 1; 1329 // MO is a def. Search for the tied use. 1330 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1331 const MachineOperand &UseMO = getOperand(i); 1332 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1333 return i; 1334 } 1335 llvm_unreachable("Can't find tied use"); 1336 } 1337 1338 // Now deal with inline asm by parsing the operand group descriptor flags. 1339 // Find the beginning of each operand group. 1340 SmallVector<unsigned, 8> GroupIdx; 1341 unsigned OpIdxGroup = ~0u; 1342 unsigned NumOps; 1343 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1344 i += NumOps) { 1345 const MachineOperand &FlagMO = getOperand(i); 1346 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1347 unsigned CurGroup = GroupIdx.size(); 1348 GroupIdx.push_back(i); 1349 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1350 // OpIdx belongs to this operand group. 1351 if (OpIdx > i && OpIdx < i + NumOps) 1352 OpIdxGroup = CurGroup; 1353 unsigned TiedGroup; 1354 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1355 continue; 1356 // Operands in this group are tied to operands in TiedGroup which must be 1357 // earlier. Find the number of operands between the two groups. 1358 unsigned Delta = i - GroupIdx[TiedGroup]; 1359 1360 // OpIdx is a use tied to TiedGroup. 1361 if (OpIdxGroup == CurGroup) 1362 return OpIdx - Delta; 1363 1364 // OpIdx is a def tied to this use group. 1365 if (OpIdxGroup == TiedGroup) 1366 return OpIdx + Delta; 1367 } 1368 llvm_unreachable("Invalid tied operand on inline asm"); 1369 } 1370 1371 /// clearKillInfo - Clears kill flags on all operands. 1372 /// 1373 void MachineInstr::clearKillInfo() { 1374 for (MachineOperand &MO : operands()) { 1375 if (MO.isReg() && MO.isUse()) 1376 MO.setIsKill(false); 1377 } 1378 } 1379 1380 void MachineInstr::substituteRegister(unsigned FromReg, 1381 unsigned ToReg, 1382 unsigned SubIdx, 1383 const TargetRegisterInfo &RegInfo) { 1384 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1385 if (SubIdx) 1386 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1387 for (MachineOperand &MO : operands()) { 1388 if (!MO.isReg() || MO.getReg() != FromReg) 1389 continue; 1390 MO.substPhysReg(ToReg, RegInfo); 1391 } 1392 } else { 1393 for (MachineOperand &MO : operands()) { 1394 if (!MO.isReg() || MO.getReg() != FromReg) 1395 continue; 1396 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1397 } 1398 } 1399 } 1400 1401 /// isSafeToMove - Return true if it is safe to move this instruction. If 1402 /// SawStore is set to true, it means that there is a store (or call) between 1403 /// the instruction's location and its intended destination. 1404 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const { 1405 // Ignore stuff that we obviously can't move. 1406 // 1407 // Treat volatile loads as stores. This is not strictly necessary for 1408 // volatiles, but it is required for atomic loads. It is not allowed to move 1409 // a load across an atomic load with Ordering > Monotonic. 1410 if (mayStore() || isCall() || 1411 (mayLoad() && hasOrderedMemoryRef())) { 1412 SawStore = true; 1413 return false; 1414 } 1415 1416 if (isPosition() || isDebugValue() || isTerminator() || 1417 hasUnmodeledSideEffects()) 1418 return false; 1419 1420 // See if this instruction does a load. If so, we have to guarantee that the 1421 // loaded value doesn't change between the load and the its intended 1422 // destination. The check for isInvariantLoad gives the targe the chance to 1423 // classify the load as always returning a constant, e.g. a constant pool 1424 // load. 1425 if (mayLoad() && !isInvariantLoad(AA)) 1426 // Otherwise, this is a real load. If there is a store between the load and 1427 // end of block, we can't move it. 1428 return !SawStore; 1429 1430 return true; 1431 } 1432 1433 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1434 /// or volatile memory reference, or if the information describing the memory 1435 /// reference is not available. Return false if it is known to have no ordered 1436 /// memory references. 1437 bool MachineInstr::hasOrderedMemoryRef() const { 1438 // An instruction known never to access memory won't have a volatile access. 1439 if (!mayStore() && 1440 !mayLoad() && 1441 !isCall() && 1442 !hasUnmodeledSideEffects()) 1443 return false; 1444 1445 // Otherwise, if the instruction has no memory reference information, 1446 // conservatively assume it wasn't preserved. 1447 if (memoperands_empty()) 1448 return true; 1449 1450 // Check the memory reference information for ordered references. 1451 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1452 if (!(*I)->isUnordered()) 1453 return true; 1454 1455 return false; 1456 } 1457 1458 /// isInvariantLoad - Return true if this instruction is loading from a 1459 /// location whose value is invariant across the function. For example, 1460 /// loading a value from the constant pool or from the argument area 1461 /// of a function if it does not change. This should only return true of 1462 /// *all* loads the instruction does are invariant (if it does multiple loads). 1463 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1464 // If the instruction doesn't load at all, it isn't an invariant load. 1465 if (!mayLoad()) 1466 return false; 1467 1468 // If the instruction has lost its memoperands, conservatively assume that 1469 // it may not be an invariant load. 1470 if (memoperands_empty()) 1471 return false; 1472 1473 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1474 1475 for (mmo_iterator I = memoperands_begin(), 1476 E = memoperands_end(); I != E; ++I) { 1477 if ((*I)->isVolatile()) return false; 1478 if ((*I)->isStore()) return false; 1479 if ((*I)->isInvariant()) return true; 1480 1481 1482 // A load from a constant PseudoSourceValue is invariant. 1483 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) 1484 if (PSV->isConstant(MFI)) 1485 continue; 1486 1487 if (const Value *V = (*I)->getValue()) { 1488 // If we have an AliasAnalysis, ask it whether the memory is constant. 1489 if (AA && 1490 AA->pointsToConstantMemory( 1491 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo()))) 1492 continue; 1493 } 1494 1495 // Otherwise assume conservatively. 1496 return false; 1497 } 1498 1499 // Everything checks out. 1500 return true; 1501 } 1502 1503 /// isConstantValuePHI - If the specified instruction is a PHI that always 1504 /// merges together the same virtual register, return the register, otherwise 1505 /// return 0. 1506 unsigned MachineInstr::isConstantValuePHI() const { 1507 if (!isPHI()) 1508 return 0; 1509 assert(getNumOperands() >= 3 && 1510 "It's illegal to have a PHI without source operands"); 1511 1512 unsigned Reg = getOperand(1).getReg(); 1513 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1514 if (getOperand(i).getReg() != Reg) 1515 return 0; 1516 return Reg; 1517 } 1518 1519 bool MachineInstr::hasUnmodeledSideEffects() const { 1520 if (hasProperty(MCID::UnmodeledSideEffects)) 1521 return true; 1522 if (isInlineAsm()) { 1523 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1524 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1525 return true; 1526 } 1527 1528 return false; 1529 } 1530 1531 bool MachineInstr::isLoadFoldBarrier() const { 1532 return mayStore() || isCall() || hasUnmodeledSideEffects(); 1533 } 1534 1535 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1536 /// 1537 bool MachineInstr::allDefsAreDead() const { 1538 for (const MachineOperand &MO : operands()) { 1539 if (!MO.isReg() || MO.isUse()) 1540 continue; 1541 if (!MO.isDead()) 1542 return false; 1543 } 1544 return true; 1545 } 1546 1547 /// copyImplicitOps - Copy implicit register operands from specified 1548 /// instruction to this instruction. 1549 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1550 const MachineInstr *MI) { 1551 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1552 i != e; ++i) { 1553 const MachineOperand &MO = MI->getOperand(i); 1554 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1555 addOperand(MF, MO); 1556 } 1557 } 1558 1559 void MachineInstr::dump() const { 1560 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1561 dbgs() << " " << *this; 1562 #endif 1563 } 1564 1565 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const { 1566 const Module *M = nullptr; 1567 if (const MachineBasicBlock *MBB = getParent()) 1568 if (const MachineFunction *MF = MBB->getParent()) 1569 M = MF->getFunction()->getParent(); 1570 1571 ModuleSlotTracker MST(M); 1572 print(OS, MST, SkipOpers); 1573 } 1574 1575 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1576 bool SkipOpers) const { 1577 // We can be a bit tidier if we know the MachineFunction. 1578 const MachineFunction *MF = nullptr; 1579 const TargetRegisterInfo *TRI = nullptr; 1580 const MachineRegisterInfo *MRI = nullptr; 1581 const TargetInstrInfo *TII = nullptr; 1582 if (const MachineBasicBlock *MBB = getParent()) { 1583 MF = MBB->getParent(); 1584 if (MF) { 1585 MRI = &MF->getRegInfo(); 1586 TRI = MF->getSubtarget().getRegisterInfo(); 1587 TII = MF->getSubtarget().getInstrInfo(); 1588 } 1589 } 1590 1591 // Save a list of virtual registers. 1592 SmallVector<unsigned, 8> VirtRegs; 1593 1594 // Print explicitly defined operands on the left of an assignment syntax. 1595 unsigned StartOp = 0, e = getNumOperands(); 1596 for (; StartOp < e && getOperand(StartOp).isReg() && 1597 getOperand(StartOp).isDef() && 1598 !getOperand(StartOp).isImplicit(); 1599 ++StartOp) { 1600 if (StartOp != 0) OS << ", "; 1601 getOperand(StartOp).print(OS, MST, TRI); 1602 unsigned Reg = getOperand(StartOp).getReg(); 1603 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1604 VirtRegs.push_back(Reg); 1605 } 1606 1607 if (StartOp != 0) 1608 OS << " = "; 1609 1610 // Print the opcode name. 1611 if (TII) 1612 OS << TII->getName(getOpcode()); 1613 else 1614 OS << "UNKNOWN"; 1615 1616 if (SkipOpers) 1617 return; 1618 1619 // Print the rest of the operands. 1620 bool OmittedAnyCallClobbers = false; 1621 bool FirstOp = true; 1622 unsigned AsmDescOp = ~0u; 1623 unsigned AsmOpCount = 0; 1624 1625 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1626 // Print asm string. 1627 OS << " "; 1628 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI); 1629 1630 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1631 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1632 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1633 OS << " [sideeffect]"; 1634 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1635 OS << " [mayload]"; 1636 if (ExtraInfo & InlineAsm::Extra_MayStore) 1637 OS << " [maystore]"; 1638 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1639 OS << " [alignstack]"; 1640 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1641 OS << " [attdialect]"; 1642 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1643 OS << " [inteldialect]"; 1644 1645 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1646 FirstOp = false; 1647 } 1648 1649 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1650 const MachineOperand &MO = getOperand(i); 1651 1652 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1653 VirtRegs.push_back(MO.getReg()); 1654 1655 // Omit call-clobbered registers which aren't used anywhere. This makes 1656 // call instructions much less noisy on targets where calls clobber lots 1657 // of registers. Don't rely on MO.isDead() because we may be called before 1658 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1659 if (MRI && isCall() && 1660 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1661 unsigned Reg = MO.getReg(); 1662 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1663 if (MRI->use_empty(Reg)) { 1664 bool HasAliasLive = false; 1665 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 1666 unsigned AliasReg = *AI; 1667 if (!MRI->use_empty(AliasReg)) { 1668 HasAliasLive = true; 1669 break; 1670 } 1671 } 1672 if (!HasAliasLive) { 1673 OmittedAnyCallClobbers = true; 1674 continue; 1675 } 1676 } 1677 } 1678 } 1679 1680 if (FirstOp) FirstOp = false; else OS << ","; 1681 OS << " "; 1682 if (i < getDesc().NumOperands) { 1683 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1684 if (MCOI.isPredicate()) 1685 OS << "pred:"; 1686 if (MCOI.isOptionalDef()) 1687 OS << "opt:"; 1688 } 1689 if (isDebugValue() && MO.isMetadata()) { 1690 // Pretty print DBG_VALUE instructions. 1691 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1692 if (DIV && !DIV->getName().empty()) 1693 OS << "!\"" << DIV->getName() << '\"'; 1694 else 1695 MO.print(OS, MST, TRI); 1696 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1697 OS << TRI->getSubRegIndexName(MO.getImm()); 1698 } else if (i == AsmDescOp && MO.isImm()) { 1699 // Pretty print the inline asm operand descriptor. 1700 OS << '$' << AsmOpCount++; 1701 unsigned Flag = MO.getImm(); 1702 switch (InlineAsm::getKind(Flag)) { 1703 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1704 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1705 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1706 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1707 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1708 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1709 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1710 } 1711 1712 unsigned RCID = 0; 1713 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1714 if (TRI) { 1715 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1716 } else 1717 OS << ":RC" << RCID; 1718 } 1719 1720 unsigned TiedTo = 0; 1721 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1722 OS << " tiedto:$" << TiedTo; 1723 1724 OS << ']'; 1725 1726 // Compute the index of the next operand descriptor. 1727 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1728 } else 1729 MO.print(OS, MST, TRI); 1730 } 1731 1732 // Briefly indicate whether any call clobbers were omitted. 1733 if (OmittedAnyCallClobbers) { 1734 if (!FirstOp) OS << ","; 1735 OS << " ..."; 1736 } 1737 1738 bool HaveSemi = false; 1739 const unsigned PrintableFlags = FrameSetup | FrameDestroy; 1740 if (Flags & PrintableFlags) { 1741 if (!HaveSemi) OS << ";"; HaveSemi = true; 1742 OS << " flags: "; 1743 1744 if (Flags & FrameSetup) 1745 OS << "FrameSetup"; 1746 1747 if (Flags & FrameDestroy) 1748 OS << "FrameDestroy"; 1749 } 1750 1751 if (!memoperands_empty()) { 1752 if (!HaveSemi) OS << ";"; HaveSemi = true; 1753 1754 OS << " mem:"; 1755 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1756 i != e; ++i) { 1757 (*i)->print(OS, MST); 1758 if (std::next(i) != e) 1759 OS << " "; 1760 } 1761 } 1762 1763 // Print the regclass of any virtual registers encountered. 1764 if (MRI && !VirtRegs.empty()) { 1765 if (!HaveSemi) OS << ";"; HaveSemi = true; 1766 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1767 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1768 OS << " " << TRI->getRegClassName(RC) 1769 << ':' << PrintReg(VirtRegs[i]); 1770 for (unsigned j = i+1; j != VirtRegs.size();) { 1771 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1772 ++j; 1773 continue; 1774 } 1775 if (VirtRegs[i] != VirtRegs[j]) 1776 OS << "," << PrintReg(VirtRegs[j]); 1777 VirtRegs.erase(VirtRegs.begin()+j); 1778 } 1779 } 1780 } 1781 1782 // Print debug location information. 1783 if (isDebugValue() && getOperand(e - 2).isMetadata()) { 1784 if (!HaveSemi) OS << ";"; 1785 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); 1786 OS << " line no:" << DV->getLine(); 1787 if (auto *InlinedAt = debugLoc->getInlinedAt()) { 1788 DebugLoc InlinedAtDL(InlinedAt); 1789 if (InlinedAtDL && MF) { 1790 OS << " inlined @[ "; 1791 InlinedAtDL.print(OS); 1792 OS << " ]"; 1793 } 1794 } 1795 if (isIndirectDebugValue()) 1796 OS << " indirect"; 1797 } else if (debugLoc && MF) { 1798 if (!HaveSemi) OS << ";"; 1799 OS << " dbg:"; 1800 debugLoc.print(OS); 1801 } 1802 1803 OS << '\n'; 1804 } 1805 1806 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1807 const TargetRegisterInfo *RegInfo, 1808 bool AddIfNotFound) { 1809 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1810 bool hasAliases = isPhysReg && 1811 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1812 bool Found = false; 1813 SmallVector<unsigned,4> DeadOps; 1814 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1815 MachineOperand &MO = getOperand(i); 1816 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1817 continue; 1818 unsigned Reg = MO.getReg(); 1819 if (!Reg) 1820 continue; 1821 1822 if (Reg == IncomingReg) { 1823 if (!Found) { 1824 if (MO.isKill()) 1825 // The register is already marked kill. 1826 return true; 1827 if (isPhysReg && isRegTiedToDefOperand(i)) 1828 // Two-address uses of physregs must not be marked kill. 1829 return true; 1830 MO.setIsKill(); 1831 Found = true; 1832 } 1833 } else if (hasAliases && MO.isKill() && 1834 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1835 // A super-register kill already exists. 1836 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1837 return true; 1838 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1839 DeadOps.push_back(i); 1840 } 1841 } 1842 1843 // Trim unneeded kill operands. 1844 while (!DeadOps.empty()) { 1845 unsigned OpIdx = DeadOps.back(); 1846 if (getOperand(OpIdx).isImplicit()) 1847 RemoveOperand(OpIdx); 1848 else 1849 getOperand(OpIdx).setIsKill(false); 1850 DeadOps.pop_back(); 1851 } 1852 1853 // If not found, this means an alias of one of the operands is killed. Add a 1854 // new implicit operand if required. 1855 if (!Found && AddIfNotFound) { 1856 addOperand(MachineOperand::CreateReg(IncomingReg, 1857 false /*IsDef*/, 1858 true /*IsImp*/, 1859 true /*IsKill*/)); 1860 return true; 1861 } 1862 return Found; 1863 } 1864 1865 void MachineInstr::clearRegisterKills(unsigned Reg, 1866 const TargetRegisterInfo *RegInfo) { 1867 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1868 RegInfo = nullptr; 1869 for (MachineOperand &MO : operands()) { 1870 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1871 continue; 1872 unsigned OpReg = MO.getReg(); 1873 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1874 MO.setIsKill(false); 1875 } 1876 } 1877 1878 bool MachineInstr::addRegisterDead(unsigned Reg, 1879 const TargetRegisterInfo *RegInfo, 1880 bool AddIfNotFound) { 1881 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg); 1882 bool hasAliases = isPhysReg && 1883 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1884 bool Found = false; 1885 SmallVector<unsigned,4> DeadOps; 1886 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1887 MachineOperand &MO = getOperand(i); 1888 if (!MO.isReg() || !MO.isDef()) 1889 continue; 1890 unsigned MOReg = MO.getReg(); 1891 if (!MOReg) 1892 continue; 1893 1894 if (MOReg == Reg) { 1895 MO.setIsDead(); 1896 Found = true; 1897 } else if (hasAliases && MO.isDead() && 1898 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1899 // There exists a super-register that's marked dead. 1900 if (RegInfo->isSuperRegister(Reg, MOReg)) 1901 return true; 1902 if (RegInfo->isSubRegister(Reg, MOReg)) 1903 DeadOps.push_back(i); 1904 } 1905 } 1906 1907 // Trim unneeded dead operands. 1908 while (!DeadOps.empty()) { 1909 unsigned OpIdx = DeadOps.back(); 1910 if (getOperand(OpIdx).isImplicit()) 1911 RemoveOperand(OpIdx); 1912 else 1913 getOperand(OpIdx).setIsDead(false); 1914 DeadOps.pop_back(); 1915 } 1916 1917 // If not found, this means an alias of one of the operands is dead. Add a 1918 // new implicit operand if required. 1919 if (Found || !AddIfNotFound) 1920 return Found; 1921 1922 addOperand(MachineOperand::CreateReg(Reg, 1923 true /*IsDef*/, 1924 true /*IsImp*/, 1925 false /*IsKill*/, 1926 true /*IsDead*/)); 1927 return true; 1928 } 1929 1930 void MachineInstr::clearRegisterDeads(unsigned Reg) { 1931 for (MachineOperand &MO : operands()) { 1932 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 1933 continue; 1934 MO.setIsDead(false); 1935 } 1936 } 1937 1938 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) { 1939 for (MachineOperand &MO : operands()) { 1940 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 1941 continue; 1942 MO.setIsUndef(IsUndef); 1943 } 1944 } 1945 1946 void MachineInstr::addRegisterDefined(unsigned Reg, 1947 const TargetRegisterInfo *RegInfo) { 1948 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1949 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo); 1950 if (MO) 1951 return; 1952 } else { 1953 for (const MachineOperand &MO : operands()) { 1954 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 1955 MO.getSubReg() == 0) 1956 return; 1957 } 1958 } 1959 addOperand(MachineOperand::CreateReg(Reg, 1960 true /*IsDef*/, 1961 true /*IsImp*/)); 1962 } 1963 1964 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1965 const TargetRegisterInfo &TRI) { 1966 bool HasRegMask = false; 1967 for (MachineOperand &MO : operands()) { 1968 if (MO.isRegMask()) { 1969 HasRegMask = true; 1970 continue; 1971 } 1972 if (!MO.isReg() || !MO.isDef()) continue; 1973 unsigned Reg = MO.getReg(); 1974 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1975 // If there are no uses, including partial uses, the def is dead. 1976 if (std::none_of(UsedRegs.begin(), UsedRegs.end(), 1977 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); })) 1978 MO.setIsDead(); 1979 } 1980 1981 // This is a call with a register mask operand. 1982 // Mask clobbers are always dead, so add defs for the non-dead defines. 1983 if (HasRegMask) 1984 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1985 I != E; ++I) 1986 addRegisterDefined(*I, &TRI); 1987 } 1988 1989 unsigned 1990 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1991 // Build up a buffer of hash code components. 1992 SmallVector<size_t, 8> HashComponents; 1993 HashComponents.reserve(MI->getNumOperands() + 1); 1994 HashComponents.push_back(MI->getOpcode()); 1995 for (const MachineOperand &MO : MI->operands()) { 1996 if (MO.isReg() && MO.isDef() && 1997 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1998 continue; // Skip virtual register defs. 1999 2000 HashComponents.push_back(hash_value(MO)); 2001 } 2002 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2003 } 2004 2005 void MachineInstr::emitError(StringRef Msg) const { 2006 // Find the source location cookie. 2007 unsigned LocCookie = 0; 2008 const MDNode *LocMD = nullptr; 2009 for (unsigned i = getNumOperands(); i != 0; --i) { 2010 if (getOperand(i-1).isMetadata() && 2011 (LocMD = getOperand(i-1).getMetadata()) && 2012 LocMD->getNumOperands() != 0) { 2013 if (const ConstantInt *CI = 2014 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2015 LocCookie = CI->getZExtValue(); 2016 break; 2017 } 2018 } 2019 } 2020 2021 if (const MachineBasicBlock *MBB = getParent()) 2022 if (const MachineFunction *MF = MBB->getParent()) 2023 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2024 report_fatal_error(Msg); 2025 } 2026