Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PPCISelLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCISelLowering.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPCCallingConv.h"
     17 #include "PPCMachineFunctionInfo.h"
     18 #include "PPCPerfectShuffle.h"
     19 #include "PPCTargetMachine.h"
     20 #include "PPCTargetObjectFile.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringSwitch.h"
     23 #include "llvm/ADT/Triple.h"
     24 #include "llvm/CodeGen/CallingConvLower.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineLoopInfo.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/SelectionDAG.h"
     31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DerivedTypes.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/Intrinsics.h"
     37 #include "llvm/Support/CommandLine.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/MathExtras.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 #include "llvm/Target/TargetOptions.h"
     42 
     43 using namespace llvm;
     44 
     45 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
     46 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
     47 
     48 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
     49 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
     50 
     51 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
     52 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
     53 
     54 // FIXME: Remove this once the bug has been fixed!
     55 extern cl::opt<bool> ANDIGlueBug;
     56 
     57 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
     58                                      const PPCSubtarget &STI)
     59     : TargetLowering(TM), Subtarget(STI) {
     60   // Use _setjmp/_longjmp instead of setjmp/longjmp.
     61   setUseUnderscoreSetJmp(true);
     62   setUseUnderscoreLongJmp(true);
     63 
     64   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
     65   // arguments are at least 4/8 bytes aligned.
     66   bool isPPC64 = Subtarget.isPPC64();
     67   setMinStackArgumentAlignment(isPPC64 ? 8:4);
     68 
     69   // Set up the register classes.
     70   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
     71   if (!Subtarget.useSoftFloat()) {
     72     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
     73     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
     74   }
     75 
     76   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
     77   for (MVT VT : MVT::integer_valuetypes()) {
     78     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
     79     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
     80   }
     81 
     82   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
     83 
     84   // PowerPC has pre-inc load and store's.
     85   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
     86   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
     87   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
     88   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
     89   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
     90   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
     91   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
     92   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
     93   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
     94   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
     95   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
     96   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
     97   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
     98   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
     99 
    100   if (Subtarget.useCRBits()) {
    101     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    102 
    103     if (isPPC64 || Subtarget.hasFPCVT()) {
    104       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
    105       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
    106                          isPPC64 ? MVT::i64 : MVT::i32);
    107       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
    108       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
    109                         isPPC64 ? MVT::i64 : MVT::i32);
    110     } else {
    111       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
    112       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
    113     }
    114 
    115     // PowerPC does not support direct load / store of condition registers
    116     setOperationAction(ISD::LOAD, MVT::i1, Custom);
    117     setOperationAction(ISD::STORE, MVT::i1, Custom);
    118 
    119     // FIXME: Remove this once the ANDI glue bug is fixed:
    120     if (ANDIGlueBug)
    121       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
    122 
    123     for (MVT VT : MVT::integer_valuetypes()) {
    124       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    125       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    126       setTruncStoreAction(VT, MVT::i1, Expand);
    127     }
    128 
    129     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
    130   }
    131 
    132   // This is used in the ppcf128->int sequence.  Note it has different semantics
    133   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
    134   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
    135 
    136   // We do not currently implement these libm ops for PowerPC.
    137   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
    138   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
    139   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
    140   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
    141   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
    142   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
    143 
    144   // PowerPC has no SREM/UREM instructions
    145   setOperationAction(ISD::SREM, MVT::i32, Expand);
    146   setOperationAction(ISD::UREM, MVT::i32, Expand);
    147   setOperationAction(ISD::SREM, MVT::i64, Expand);
    148   setOperationAction(ISD::UREM, MVT::i64, Expand);
    149 
    150   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
    151   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    152   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    153   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    154   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    155   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    156   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    157   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    158   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    159 
    160   // We don't support sin/cos/sqrt/fmod/pow
    161   setOperationAction(ISD::FSIN , MVT::f64, Expand);
    162   setOperationAction(ISD::FCOS , MVT::f64, Expand);
    163   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
    164   setOperationAction(ISD::FREM , MVT::f64, Expand);
    165   setOperationAction(ISD::FPOW , MVT::f64, Expand);
    166   setOperationAction(ISD::FMA  , MVT::f64, Legal);
    167   setOperationAction(ISD::FSIN , MVT::f32, Expand);
    168   setOperationAction(ISD::FCOS , MVT::f32, Expand);
    169   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
    170   setOperationAction(ISD::FREM , MVT::f32, Expand);
    171   setOperationAction(ISD::FPOW , MVT::f32, Expand);
    172   setOperationAction(ISD::FMA  , MVT::f32, Legal);
    173 
    174   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    175 
    176   // If we're enabling GP optimizations, use hardware square root
    177   if (!Subtarget.hasFSQRT() &&
    178       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
    179         Subtarget.hasFRE()))
    180     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
    181 
    182   if (!Subtarget.hasFSQRT() &&
    183       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
    184         Subtarget.hasFRES()))
    185     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
    186 
    187   if (Subtarget.hasFCPSGN()) {
    188     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
    189     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
    190   } else {
    191     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    192     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    193   }
    194 
    195   if (Subtarget.hasFPRND()) {
    196     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    197     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
    198     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    199     setOperationAction(ISD::FROUND, MVT::f64, Legal);
    200 
    201     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    202     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
    203     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    204     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    205   }
    206 
    207   // PowerPC does not have BSWAP, CTPOP or CTTZ
    208   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
    209   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
    210   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    211   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    212   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
    213   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
    214   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    215   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    216 
    217   if (Subtarget.hasPOPCNTD()) {
    218     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
    219     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
    220   } else {
    221     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
    222     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
    223   }
    224 
    225   // PowerPC does not have ROTR
    226   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
    227   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
    228 
    229   if (!Subtarget.useCRBits()) {
    230     // PowerPC does not have Select
    231     setOperationAction(ISD::SELECT, MVT::i32, Expand);
    232     setOperationAction(ISD::SELECT, MVT::i64, Expand);
    233     setOperationAction(ISD::SELECT, MVT::f32, Expand);
    234     setOperationAction(ISD::SELECT, MVT::f64, Expand);
    235   }
    236 
    237   // PowerPC wants to turn select_cc of FP into fsel when possible.
    238   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    239   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    240 
    241   // PowerPC wants to optimize integer setcc a bit
    242   if (!Subtarget.useCRBits())
    243     setOperationAction(ISD::SETCC, MVT::i32, Custom);
    244 
    245   // PowerPC does not have BRCOND which requires SetCC
    246   if (!Subtarget.useCRBits())
    247     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    248 
    249   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
    250 
    251   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
    252   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    253 
    254   // PowerPC does not have [U|S]INT_TO_FP
    255   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    256   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    257 
    258   if (Subtarget.hasDirectMove()) {
    259     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
    260     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
    261     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
    262     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
    263   } else {
    264     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
    265     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
    266     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
    267     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
    268   }
    269 
    270   // We cannot sextinreg(i1).  Expand to shifts.
    271   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    272 
    273   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
    274   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
    275   // support continuation, user-level threading, and etc.. As a result, no
    276   // other SjLj exception interfaces are implemented and please don't build
    277   // your own exception handling based on them.
    278   // LLVM/Clang supports zero-cost DWARF exception handling.
    279   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    280   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    281 
    282   // We want to legalize GlobalAddress and ConstantPool nodes into the
    283   // appropriate instructions to materialize the address.
    284   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    285   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    286   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
    287   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
    288   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
    289   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    290   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    291   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
    292   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
    293   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
    294 
    295   // TRAP is legal.
    296   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    297 
    298   // TRAMPOLINE is custom lowered.
    299   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    300   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    301 
    302   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    303   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    304 
    305   if (Subtarget.isSVR4ABI()) {
    306     if (isPPC64) {
    307       // VAARG always uses double-word chunks, so promote anything smaller.
    308       setOperationAction(ISD::VAARG, MVT::i1, Promote);
    309       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
    310       setOperationAction(ISD::VAARG, MVT::i8, Promote);
    311       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
    312       setOperationAction(ISD::VAARG, MVT::i16, Promote);
    313       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
    314       setOperationAction(ISD::VAARG, MVT::i32, Promote);
    315       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
    316       setOperationAction(ISD::VAARG, MVT::Other, Expand);
    317     } else {
    318       // VAARG is custom lowered with the 32-bit SVR4 ABI.
    319       setOperationAction(ISD::VAARG, MVT::Other, Custom);
    320       setOperationAction(ISD::VAARG, MVT::i64, Custom);
    321     }
    322   } else
    323     setOperationAction(ISD::VAARG, MVT::Other, Expand);
    324 
    325   if (Subtarget.isSVR4ABI() && !isPPC64)
    326     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
    327     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
    328   else
    329     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    330 
    331   // Use the default implementation.
    332   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    333   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    334   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
    335   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    336   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
    337   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
    338   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
    339 
    340   // We want to custom lower some of our intrinsics.
    341   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    342 
    343   // To handle counter-based loop conditions.
    344   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
    345 
    346   // Comparisons that require checking two conditions.
    347   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
    348   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
    349   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    350   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    351   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
    352   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
    353   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    354   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    355   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
    356   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
    357   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
    358   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
    359 
    360   if (Subtarget.has64BitSupport()) {
    361     // They also have instructions for converting between i64 and fp.
    362     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    363     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
    364     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    365     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    366     // This is just the low 32 bits of a (signed) fp->i64 conversion.
    367     // We cannot do this with Promote because i64 is not a legal type.
    368     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    369 
    370     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
    371       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    372   } else {
    373     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
    374     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    375   }
    376 
    377   // With the instructions enabled under FPCVT, we can do everything.
    378   if (Subtarget.hasFPCVT()) {
    379     if (Subtarget.has64BitSupport()) {
    380       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    381       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    382       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    383       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    384     }
    385 
    386     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    387     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    388     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    389     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    390   }
    391 
    392   if (Subtarget.use64BitRegs()) {
    393     // 64-bit PowerPC implementations can support i64 types directly
    394     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
    395     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
    396     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
    397     // 64-bit PowerPC wants to expand i128 shifts itself.
    398     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
    399     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
    400     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
    401   } else {
    402     // 32-bit PowerPC wants to expand i64 shifts itself.
    403     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    404     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    405     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    406   }
    407 
    408   if (Subtarget.hasAltivec()) {
    409     // First set operation action for all vector types to expand. Then we
    410     // will selectively turn on ones that can be effectively codegen'd.
    411     for (MVT VT : MVT::vector_valuetypes()) {
    412       // add/sub are legal for all supported vector VT's.
    413       setOperationAction(ISD::ADD, VT, Legal);
    414       setOperationAction(ISD::SUB, VT, Legal);
    415 
    416       // Vector instructions introduced in P8
    417       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
    418         setOperationAction(ISD::CTPOP, VT, Legal);
    419         setOperationAction(ISD::CTLZ, VT, Legal);
    420       }
    421       else {
    422         setOperationAction(ISD::CTPOP, VT, Expand);
    423         setOperationAction(ISD::CTLZ, VT, Expand);
    424       }
    425 
    426       // We promote all shuffles to v16i8.
    427       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
    428       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
    429 
    430       // We promote all non-typed operations to v4i32.
    431       setOperationAction(ISD::AND   , VT, Promote);
    432       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
    433       setOperationAction(ISD::OR    , VT, Promote);
    434       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
    435       setOperationAction(ISD::XOR   , VT, Promote);
    436       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
    437       setOperationAction(ISD::LOAD  , VT, Promote);
    438       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
    439       setOperationAction(ISD::SELECT, VT, Promote);
    440       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
    441       setOperationAction(ISD::SELECT_CC, VT, Promote);
    442       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
    443       setOperationAction(ISD::STORE, VT, Promote);
    444       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
    445 
    446       // No other operations are legal.
    447       setOperationAction(ISD::MUL , VT, Expand);
    448       setOperationAction(ISD::SDIV, VT, Expand);
    449       setOperationAction(ISD::SREM, VT, Expand);
    450       setOperationAction(ISD::UDIV, VT, Expand);
    451       setOperationAction(ISD::UREM, VT, Expand);
    452       setOperationAction(ISD::FDIV, VT, Expand);
    453       setOperationAction(ISD::FREM, VT, Expand);
    454       setOperationAction(ISD::FNEG, VT, Expand);
    455       setOperationAction(ISD::FSQRT, VT, Expand);
    456       setOperationAction(ISD::FLOG, VT, Expand);
    457       setOperationAction(ISD::FLOG10, VT, Expand);
    458       setOperationAction(ISD::FLOG2, VT, Expand);
    459       setOperationAction(ISD::FEXP, VT, Expand);
    460       setOperationAction(ISD::FEXP2, VT, Expand);
    461       setOperationAction(ISD::FSIN, VT, Expand);
    462       setOperationAction(ISD::FCOS, VT, Expand);
    463       setOperationAction(ISD::FABS, VT, Expand);
    464       setOperationAction(ISD::FPOWI, VT, Expand);
    465       setOperationAction(ISD::FFLOOR, VT, Expand);
    466       setOperationAction(ISD::FCEIL,  VT, Expand);
    467       setOperationAction(ISD::FTRUNC, VT, Expand);
    468       setOperationAction(ISD::FRINT,  VT, Expand);
    469       setOperationAction(ISD::FNEARBYINT, VT, Expand);
    470       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
    471       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
    472       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
    473       setOperationAction(ISD::MULHU, VT, Expand);
    474       setOperationAction(ISD::MULHS, VT, Expand);
    475       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    476       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    477       setOperationAction(ISD::UDIVREM, VT, Expand);
    478       setOperationAction(ISD::SDIVREM, VT, Expand);
    479       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
    480       setOperationAction(ISD::FPOW, VT, Expand);
    481       setOperationAction(ISD::BSWAP, VT, Expand);
    482       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    483       setOperationAction(ISD::CTTZ, VT, Expand);
    484       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    485       setOperationAction(ISD::VSELECT, VT, Expand);
    486       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    487       setOperationAction(ISD::ROTL, VT, Expand);
    488       setOperationAction(ISD::ROTR, VT, Expand);
    489 
    490       for (MVT InnerVT : MVT::vector_valuetypes()) {
    491         setTruncStoreAction(VT, InnerVT, Expand);
    492         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    493         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    494         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    495       }
    496     }
    497 
    498     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
    499     // with merges, splats, etc.
    500     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
    501 
    502     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
    503     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
    504     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
    505     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
    506     setOperationAction(ISD::SELECT, MVT::v4i32,
    507                        Subtarget.useCRBits() ? Legal : Expand);
    508     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
    509     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
    510     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
    511     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
    512     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
    513     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    514     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
    515     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    516     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
    517 
    518     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
    519     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
    520     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
    521     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
    522 
    523     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
    524     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
    525 
    526     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
    527       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    528       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    529     }
    530 
    531     if (Subtarget.hasP8Altivec())
    532       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
    533     else
    534       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    535 
    536     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    537     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
    538 
    539     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
    540     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
    541 
    542     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
    543     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
    544     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
    545     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    546 
    547     // Altivec does not contain unordered floating-point compare instructions
    548     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
    549     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
    550     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
    551     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
    552 
    553     if (Subtarget.hasVSX()) {
    554       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    555       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    556       if (Subtarget.hasP8Vector()) {
    557         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    558         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
    559       }
    560       if (Subtarget.hasDirectMove()) {
    561         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
    562         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
    563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
    564         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
    565         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
    566         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
    567         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
    568         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    569       }
    570       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
    571 
    572       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    573       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    574       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    575       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    576       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    577 
    578       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    579 
    580       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
    581       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    582 
    583       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    584       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    585 
    586       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
    587       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
    588       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
    589       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    590       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
    591 
    592       // Share the Altivec comparison restrictions.
    593       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
    594       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
    595       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
    596       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
    597 
    598       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
    599       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
    600 
    601       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
    602 
    603       if (Subtarget.hasP8Vector())
    604         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
    605 
    606       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
    607 
    608       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
    609       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
    610       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
    611 
    612       if (Subtarget.hasP8Altivec()) {
    613         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
    614         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
    615         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
    616 
    617         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
    618       }
    619       else {
    620         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
    621         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
    622         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
    623 
    624         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
    625 
    626         // VSX v2i64 only supports non-arithmetic operations.
    627         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
    628         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
    629       }
    630 
    631       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
    632       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
    633       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
    634       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
    635 
    636       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
    637 
    638       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    639       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    640       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    641       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    642 
    643       // Vector operation legalization checks the result type of
    644       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
    645       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
    646       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
    647       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
    648       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
    649 
    650       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
    651     }
    652 
    653     if (Subtarget.hasP8Altivec()) {
    654       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
    655       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
    656     }
    657   }
    658 
    659   if (Subtarget.hasQPX()) {
    660     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
    661     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
    662     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
    663     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
    664 
    665     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
    666     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
    667 
    668     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
    669     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
    670 
    671     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
    672     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
    673 
    674     if (!Subtarget.useCRBits())
    675       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
    676     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
    677 
    678     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
    679     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
    680     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
    681     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
    682     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
    683     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
    684     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
    685 
    686     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
    687     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
    688 
    689     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
    690     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
    691     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
    692 
    693     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
    694     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
    695     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
    696     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
    697     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
    698     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
    699     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
    700     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
    701     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
    702     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
    703     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
    704 
    705     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
    706     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
    707 
    708     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
    709     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
    710 
    711     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
    712 
    713     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
    714     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
    715     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
    716     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
    717 
    718     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
    719     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
    720 
    721     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
    722     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
    723 
    724     if (!Subtarget.useCRBits())
    725       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
    726     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
    727 
    728     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
    729     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
    730     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
    731     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
    732     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
    733     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    734     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
    735 
    736     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
    737     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
    738 
    739     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
    740     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
    741     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
    742     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
    743     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
    744     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
    745     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
    746     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
    747     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
    748     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
    749     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
    750 
    751     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    752     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    753 
    754     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
    755     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
    756 
    757     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
    758 
    759     setOperationAction(ISD::AND , MVT::v4i1, Legal);
    760     setOperationAction(ISD::OR , MVT::v4i1, Legal);
    761     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
    762 
    763     if (!Subtarget.useCRBits())
    764       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
    765     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
    766 
    767     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
    768     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
    769 
    770     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
    771     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
    772     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
    773     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
    774     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
    775     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
    776     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
    777 
    778     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
    779     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
    780 
    781     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
    782 
    783     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
    784     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
    785     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
    786     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
    787 
    788     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
    789     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
    790     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
    791     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
    792 
    793     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
    794     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    795 
    796     // These need to set FE_INEXACT, and so cannot be vectorized here.
    797     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
    798     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    799 
    800     if (TM.Options.UnsafeFPMath) {
    801       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
    802       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
    803 
    804       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
    805       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
    806     } else {
    807       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
    808       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
    809 
    810       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
    811       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    812     }
    813   }
    814 
    815   if (Subtarget.has64BitSupport())
    816     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
    817 
    818   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
    819 
    820   if (!isPPC64) {
    821     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
    822     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
    823   }
    824 
    825   setBooleanContents(ZeroOrOneBooleanContent);
    826 
    827   if (Subtarget.hasAltivec()) {
    828     // Altivec instructions set fields to all zeros or all ones.
    829     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    830   }
    831 
    832   if (!isPPC64) {
    833     // These libcalls are not available in 32-bit.
    834     setLibcallName(RTLIB::SHL_I128, nullptr);
    835     setLibcallName(RTLIB::SRL_I128, nullptr);
    836     setLibcallName(RTLIB::SRA_I128, nullptr);
    837   }
    838 
    839   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
    840 
    841   // We have target-specific dag combine patterns for the following nodes:
    842   setTargetDAGCombine(ISD::SINT_TO_FP);
    843   if (Subtarget.hasFPCVT())
    844     setTargetDAGCombine(ISD::UINT_TO_FP);
    845   setTargetDAGCombine(ISD::LOAD);
    846   setTargetDAGCombine(ISD::STORE);
    847   setTargetDAGCombine(ISD::BR_CC);
    848   if (Subtarget.useCRBits())
    849     setTargetDAGCombine(ISD::BRCOND);
    850   setTargetDAGCombine(ISD::BSWAP);
    851   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    852   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    853   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    854 
    855   setTargetDAGCombine(ISD::SIGN_EXTEND);
    856   setTargetDAGCombine(ISD::ZERO_EXTEND);
    857   setTargetDAGCombine(ISD::ANY_EXTEND);
    858 
    859   if (Subtarget.useCRBits()) {
    860     setTargetDAGCombine(ISD::TRUNCATE);
    861     setTargetDAGCombine(ISD::SETCC);
    862     setTargetDAGCombine(ISD::SELECT_CC);
    863   }
    864 
    865   // Use reciprocal estimates.
    866   if (TM.Options.UnsafeFPMath) {
    867     setTargetDAGCombine(ISD::FDIV);
    868     setTargetDAGCombine(ISD::FSQRT);
    869   }
    870 
    871   // Darwin long double math library functions have $LDBL128 appended.
    872   if (Subtarget.isDarwin()) {
    873     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
    874     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
    875     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
    876     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
    877     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
    878     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
    879     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
    880     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
    881     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
    882     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
    883   }
    884 
    885   // With 32 condition bits, we don't need to sink (and duplicate) compares
    886   // aggressively in CodeGenPrep.
    887   if (Subtarget.useCRBits()) {
    888     setHasMultipleConditionRegisters();
    889     setJumpIsExpensive();
    890   }
    891 
    892   setMinFunctionAlignment(2);
    893   if (Subtarget.isDarwin())
    894     setPrefFunctionAlignment(4);
    895 
    896   switch (Subtarget.getDarwinDirective()) {
    897   default: break;
    898   case PPC::DIR_970:
    899   case PPC::DIR_A2:
    900   case PPC::DIR_E500mc:
    901   case PPC::DIR_E5500:
    902   case PPC::DIR_PWR4:
    903   case PPC::DIR_PWR5:
    904   case PPC::DIR_PWR5X:
    905   case PPC::DIR_PWR6:
    906   case PPC::DIR_PWR6X:
    907   case PPC::DIR_PWR7:
    908   case PPC::DIR_PWR8:
    909     setPrefFunctionAlignment(4);
    910     setPrefLoopAlignment(4);
    911     break;
    912   }
    913 
    914   setInsertFencesForAtomic(true);
    915 
    916   if (Subtarget.enableMachineScheduler())
    917     setSchedulingPreference(Sched::Source);
    918   else
    919     setSchedulingPreference(Sched::Hybrid);
    920 
    921   computeRegisterProperties(STI.getRegisterInfo());
    922 
    923   // The Freescale cores do better with aggressive inlining of memcpy and
    924   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
    925   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
    926       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
    927     MaxStoresPerMemset = 32;
    928     MaxStoresPerMemsetOptSize = 16;
    929     MaxStoresPerMemcpy = 32;
    930     MaxStoresPerMemcpyOptSize = 8;
    931     MaxStoresPerMemmove = 32;
    932     MaxStoresPerMemmoveOptSize = 8;
    933   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
    934     // The A2 also benefits from (very) aggressive inlining of memcpy and
    935     // friends. The overhead of a the function call, even when warm, can be
    936     // over one hundred cycles.
    937     MaxStoresPerMemset = 128;
    938     MaxStoresPerMemcpy = 128;
    939     MaxStoresPerMemmove = 128;
    940   }
    941 }
    942 
    943 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
    944 /// the desired ByVal argument alignment.
    945 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
    946                              unsigned MaxMaxAlign) {
    947   if (MaxAlign == MaxMaxAlign)
    948     return;
    949   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    950     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
    951       MaxAlign = 32;
    952     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
    953       MaxAlign = 16;
    954   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    955     unsigned EltAlign = 0;
    956     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
    957     if (EltAlign > MaxAlign)
    958       MaxAlign = EltAlign;
    959   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    960     for (auto *EltTy : STy->elements()) {
    961       unsigned EltAlign = 0;
    962       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
    963       if (EltAlign > MaxAlign)
    964         MaxAlign = EltAlign;
    965       if (MaxAlign == MaxMaxAlign)
    966         break;
    967     }
    968   }
    969 }
    970 
    971 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    972 /// function arguments in the caller parameter area.
    973 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
    974                                                   const DataLayout &DL) const {
    975   // Darwin passes everything on 4 byte boundary.
    976   if (Subtarget.isDarwin())
    977     return 4;
    978 
    979   // 16byte and wider vectors are passed on 16byte boundary.
    980   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
    981   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
    982   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
    983     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
    984   return Align;
    985 }
    986 
    987 bool PPCTargetLowering::useSoftFloat() const {
    988   return Subtarget.useSoftFloat();
    989 }
    990 
    991 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
    992   switch ((PPCISD::NodeType)Opcode) {
    993   case PPCISD::FIRST_NUMBER:    break;
    994   case PPCISD::FSEL:            return "PPCISD::FSEL";
    995   case PPCISD::FCFID:           return "PPCISD::FCFID";
    996   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
    997   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
    998   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
    999   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
   1000   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
   1001   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
   1002   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
   1003   case PPCISD::FRE:             return "PPCISD::FRE";
   1004   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
   1005   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
   1006   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
   1007   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
   1008   case PPCISD::VPERM:           return "PPCISD::VPERM";
   1009   case PPCISD::CMPB:            return "PPCISD::CMPB";
   1010   case PPCISD::Hi:              return "PPCISD::Hi";
   1011   case PPCISD::Lo:              return "PPCISD::Lo";
   1012   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
   1013   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
   1014   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
   1015   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
   1016   case PPCISD::SRL:             return "PPCISD::SRL";
   1017   case PPCISD::SRA:             return "PPCISD::SRA";
   1018   case PPCISD::SHL:             return "PPCISD::SHL";
   1019   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
   1020   case PPCISD::CALL:            return "PPCISD::CALL";
   1021   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
   1022   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
   1023   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
   1024   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
   1025   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
   1026   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
   1027   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
   1028   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
   1029   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
   1030   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
   1031   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
   1032   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
   1033   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
   1034   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
   1035   case PPCISD::VCMP:            return "PPCISD::VCMP";
   1036   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
   1037   case PPCISD::LBRX:            return "PPCISD::LBRX";
   1038   case PPCISD::STBRX:           return "PPCISD::STBRX";
   1039   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
   1040   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
   1041   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
   1042   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
   1043   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
   1044   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
   1045   case PPCISD::BDZ:             return "PPCISD::BDZ";
   1046   case PPCISD::MFFS:            return "PPCISD::MFFS";
   1047   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
   1048   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
   1049   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
   1050   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
   1051   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
   1052   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
   1053   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
   1054   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
   1055   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
   1056   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
   1057   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
   1058   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
   1059   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
   1060   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
   1061   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
   1062   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
   1063   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
   1064   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
   1065   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
   1066   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
   1067   case PPCISD::SC:              return "PPCISD::SC";
   1068   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
   1069   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
   1070   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
   1071   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
   1072   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
   1073   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
   1074   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
   1075   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
   1076   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
   1077   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
   1078   }
   1079   return nullptr;
   1080 }
   1081 
   1082 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
   1083                                           EVT VT) const {
   1084   if (!VT.isVector())
   1085     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
   1086 
   1087   if (Subtarget.hasQPX())
   1088     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
   1089 
   1090   return VT.changeVectorElementTypeToInteger();
   1091 }
   1092 
   1093 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
   1094   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
   1095   return true;
   1096 }
   1097 
   1098 //===----------------------------------------------------------------------===//
   1099 // Node matching predicates, for use by the tblgen matching code.
   1100 //===----------------------------------------------------------------------===//
   1101 
   1102 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
   1103 static bool isFloatingPointZero(SDValue Op) {
   1104   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   1105     return CFP->getValueAPF().isZero();
   1106   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   1107     // Maybe this has already been legalized into the constant pool?
   1108     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
   1109       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   1110         return CFP->getValueAPF().isZero();
   1111   }
   1112   return false;
   1113 }
   1114 
   1115 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
   1116 /// true if Op is undef or if it matches the specified value.
   1117 static bool isConstantOrUndef(int Op, int Val) {
   1118   return Op < 0 || Op == Val;
   1119 }
   1120 
   1121 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
   1122 /// VPKUHUM instruction.
   1123 /// The ShuffleKind distinguishes between big-endian operations with
   1124 /// two different inputs (0), either-endian operations with two identical
   1125 /// inputs (1), and little-endian operations with two different inputs (2).
   1126 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1127 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1128                                SelectionDAG &DAG) {
   1129   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1130   if (ShuffleKind == 0) {
   1131     if (IsLE)
   1132       return false;
   1133     for (unsigned i = 0; i != 16; ++i)
   1134       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
   1135         return false;
   1136   } else if (ShuffleKind == 2) {
   1137     if (!IsLE)
   1138       return false;
   1139     for (unsigned i = 0; i != 16; ++i)
   1140       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
   1141         return false;
   1142   } else if (ShuffleKind == 1) {
   1143     unsigned j = IsLE ? 0 : 1;
   1144     for (unsigned i = 0; i != 8; ++i)
   1145       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
   1146           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
   1147         return false;
   1148   }
   1149   return true;
   1150 }
   1151 
   1152 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
   1153 /// VPKUWUM instruction.
   1154 /// The ShuffleKind distinguishes between big-endian operations with
   1155 /// two different inputs (0), either-endian operations with two identical
   1156 /// inputs (1), and little-endian operations with two different inputs (2).
   1157 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1158 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1159                                SelectionDAG &DAG) {
   1160   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1161   if (ShuffleKind == 0) {
   1162     if (IsLE)
   1163       return false;
   1164     for (unsigned i = 0; i != 16; i += 2)
   1165       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
   1166           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
   1167         return false;
   1168   } else if (ShuffleKind == 2) {
   1169     if (!IsLE)
   1170       return false;
   1171     for (unsigned i = 0; i != 16; i += 2)
   1172       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1173           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
   1174         return false;
   1175   } else if (ShuffleKind == 1) {
   1176     unsigned j = IsLE ? 0 : 2;
   1177     for (unsigned i = 0; i != 8; i += 2)
   1178       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1179           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1180           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1181           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
   1182         return false;
   1183   }
   1184   return true;
   1185 }
   1186 
   1187 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
   1188 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
   1189 /// current subtarget.
   1190 ///
   1191 /// The ShuffleKind distinguishes between big-endian operations with
   1192 /// two different inputs (0), either-endian operations with two identical
   1193 /// inputs (1), and little-endian operations with two different inputs (2).
   1194 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
   1195 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
   1196                                SelectionDAG &DAG) {
   1197   const PPCSubtarget& Subtarget =
   1198     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
   1199   if (!Subtarget.hasP8Vector())
   1200     return false;
   1201 
   1202   bool IsLE = DAG.getDataLayout().isLittleEndian();
   1203   if (ShuffleKind == 0) {
   1204     if (IsLE)
   1205       return false;
   1206     for (unsigned i = 0; i != 16; i += 4)
   1207       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
   1208           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
   1209           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
   1210           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
   1211         return false;
   1212   } else if (ShuffleKind == 2) {
   1213     if (!IsLE)
   1214       return false;
   1215     for (unsigned i = 0; i != 16; i += 4)
   1216       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
   1217           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
   1218           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
   1219           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
   1220         return false;
   1221   } else if (ShuffleKind == 1) {
   1222     unsigned j = IsLE ? 0 : 4;
   1223     for (unsigned i = 0; i != 8; i += 4)
   1224       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
   1225           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
   1226           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
   1227           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
   1228           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
   1229           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
   1230           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
   1231           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
   1232         return false;
   1233   }
   1234   return true;
   1235 }
   1236 
   1237 /// isVMerge - Common function, used to match vmrg* shuffles.
   1238 ///
   1239 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
   1240                      unsigned LHSStart, unsigned RHSStart) {
   1241   if (N->getValueType(0) != MVT::v16i8)
   1242     return false;
   1243   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
   1244          "Unsupported merge size!");
   1245 
   1246   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
   1247     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
   1248       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
   1249                              LHSStart+j+i*UnitSize) ||
   1250           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
   1251                              RHSStart+j+i*UnitSize))
   1252         return false;
   1253     }
   1254   return true;
   1255 }
   1256 
   1257 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
   1258 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
   1259 /// The ShuffleKind distinguishes between big-endian merges with two
   1260 /// different inputs (0), either-endian merges with two identical inputs (1),
   1261 /// and little-endian merges with two different inputs (2).  For the latter,
   1262 /// the input operands are swapped (see PPCInstrAltivec.td).
   1263 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1264                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1265   if (DAG.getDataLayout().isLittleEndian()) {
   1266     if (ShuffleKind == 1) // unary
   1267       return isVMerge(N, UnitSize, 0, 0);
   1268     else if (ShuffleKind == 2) // swapped
   1269       return isVMerge(N, UnitSize, 0, 16);
   1270     else
   1271       return false;
   1272   } else {
   1273     if (ShuffleKind == 1) // unary
   1274       return isVMerge(N, UnitSize, 8, 8);
   1275     else if (ShuffleKind == 0) // normal
   1276       return isVMerge(N, UnitSize, 8, 24);
   1277     else
   1278       return false;
   1279   }
   1280 }
   1281 
   1282 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
   1283 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
   1284 /// The ShuffleKind distinguishes between big-endian merges with two
   1285 /// different inputs (0), either-endian merges with two identical inputs (1),
   1286 /// and little-endian merges with two different inputs (2).  For the latter,
   1287 /// the input operands are swapped (see PPCInstrAltivec.td).
   1288 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   1289                              unsigned ShuffleKind, SelectionDAG &DAG) {
   1290   if (DAG.getDataLayout().isLittleEndian()) {
   1291     if (ShuffleKind == 1) // unary
   1292       return isVMerge(N, UnitSize, 8, 8);
   1293     else if (ShuffleKind == 2) // swapped
   1294       return isVMerge(N, UnitSize, 8, 24);
   1295     else
   1296       return false;
   1297   } else {
   1298     if (ShuffleKind == 1) // unary
   1299       return isVMerge(N, UnitSize, 0, 0);
   1300     else if (ShuffleKind == 0) // normal
   1301       return isVMerge(N, UnitSize, 0, 16);
   1302     else
   1303       return false;
   1304   }
   1305 }
   1306 
   1307 /**
   1308  * \brief Common function used to match vmrgew and vmrgow shuffles
   1309  *
   1310  * The indexOffset determines whether to look for even or odd words in
   1311  * the shuffle mask. This is based on the of the endianness of the target
   1312  * machine.
   1313  *   - Little Endian:
   1314  *     - Use offset of 0 to check for odd elements
   1315  *     - Use offset of 4 to check for even elements
   1316  *   - Big Endian:
   1317  *     - Use offset of 0 to check for even elements
   1318  *     - Use offset of 4 to check for odd elements
   1319  * A detailed description of the vector element ordering for little endian and
   1320  * big endian can be found at
   1321  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
   1322  * Targeting your applications - what little endian and big endian IBM XL C/C++
   1323  * compiler differences mean to you
   1324  *
   1325  * The mask to the shuffle vector instruction specifies the indices of the
   1326  * elements from the two input vectors to place in the result. The elements are
   1327  * numbered in array-access order, starting with the first vector. These vectors
   1328  * are always of type v16i8, thus each vector will contain 16 elements of size
   1329  * 8. More info on the shuffle vector can be found in the
   1330  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
   1331  * Language Reference.
   1332  *
   1333  * The RHSStartValue indicates whether the same input vectors are used (unary)
   1334  * or two different input vectors are used, based on the following:
   1335  *   - If the instruction uses the same vector for both inputs, the range of the
   1336  *     indices will be 0 to 15. In this case, the RHSStart value passed should
   1337  *     be 0.
   1338  *   - If the instruction has two different vectors then the range of the
   1339  *     indices will be 0 to 31. In this case, the RHSStart value passed should
   1340  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
   1341  *     to 31 specify elements in the second vector).
   1342  *
   1343  * \param[in] N The shuffle vector SD Node to analyze
   1344  * \param[in] IndexOffset Specifies whether to look for even or odd elements
   1345  * \param[in] RHSStartValue Specifies the starting index for the righthand input
   1346  * vector to the shuffle_vector instruction
   1347  * \return true iff this shuffle vector represents an even or odd word merge
   1348  */
   1349 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
   1350                      unsigned RHSStartValue) {
   1351   if (N->getValueType(0) != MVT::v16i8)
   1352     return false;
   1353 
   1354   for (unsigned i = 0; i < 2; ++i)
   1355     for (unsigned j = 0; j < 4; ++j)
   1356       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
   1357                              i*RHSStartValue+j+IndexOffset) ||
   1358           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
   1359                              i*RHSStartValue+j+IndexOffset+8))
   1360         return false;
   1361   return true;
   1362 }
   1363 
   1364 /**
   1365  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
   1366  * vmrgow instructions.
   1367  *
   1368  * \param[in] N The shuffle vector SD Node to analyze
   1369  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
   1370  * \param[in] ShuffleKind Identify the type of merge:
   1371  *   - 0 = big-endian merge with two different inputs;
   1372  *   - 1 = either-endian merge with two identical inputs;
   1373  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
   1374  *     little-endian merges).
   1375  * \param[in] DAG The current SelectionDAG
   1376  * \return true iff this shuffle mask
   1377  */
   1378 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
   1379                               unsigned ShuffleKind, SelectionDAG &DAG) {
   1380   if (DAG.getDataLayout().isLittleEndian()) {
   1381     unsigned indexOffset = CheckEven ? 4 : 0;
   1382     if (ShuffleKind == 1) // Unary
   1383       return isVMerge(N, indexOffset, 0);
   1384     else if (ShuffleKind == 2) // swapped
   1385       return isVMerge(N, indexOffset, 16);
   1386     else
   1387       return false;
   1388   }
   1389   else {
   1390     unsigned indexOffset = CheckEven ? 0 : 4;
   1391     if (ShuffleKind == 1) // Unary
   1392       return isVMerge(N, indexOffset, 0);
   1393     else if (ShuffleKind == 0) // Normal
   1394       return isVMerge(N, indexOffset, 16);
   1395     else
   1396       return false;
   1397   }
   1398   return false;
   1399 }
   1400 
   1401 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
   1402 /// amount, otherwise return -1.
   1403 /// The ShuffleKind distinguishes between big-endian operations with two
   1404 /// different inputs (0), either-endian operations with two identical inputs
   1405 /// (1), and little-endian operations with two different inputs (2).  For the
   1406 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
   1407 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
   1408                              SelectionDAG &DAG) {
   1409   if (N->getValueType(0) != MVT::v16i8)
   1410     return -1;
   1411 
   1412   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1413 
   1414   // Find the first non-undef value in the shuffle mask.
   1415   unsigned i;
   1416   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
   1417     /*search*/;
   1418 
   1419   if (i == 16) return -1;  // all undef.
   1420 
   1421   // Otherwise, check to see if the rest of the elements are consecutively
   1422   // numbered from this value.
   1423   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1424   if (ShiftAmt < i) return -1;
   1425 
   1426   ShiftAmt -= i;
   1427   bool isLE = DAG.getDataLayout().isLittleEndian();
   1428 
   1429   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
   1430     // Check the rest of the elements to see if they are consecutive.
   1431     for (++i; i != 16; ++i)
   1432       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1433         return -1;
   1434   } else if (ShuffleKind == 1) {
   1435     // Check the rest of the elements to see if they are consecutive.
   1436     for (++i; i != 16; ++i)
   1437       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
   1438         return -1;
   1439   } else
   1440     return -1;
   1441 
   1442   if (isLE)
   1443     ShiftAmt = 16 - ShiftAmt;
   1444 
   1445   return ShiftAmt;
   1446 }
   1447 
   1448 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
   1449 /// specifies a splat of a single element that is suitable for input to
   1450 /// VSPLTB/VSPLTH/VSPLTW.
   1451 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
   1452   assert(N->getValueType(0) == MVT::v16i8 &&
   1453          (EltSize == 1 || EltSize == 2 || EltSize == 4));
   1454 
   1455   // The consecutive indices need to specify an element, not part of two
   1456   // different elements.  So abandon ship early if this isn't the case.
   1457   if (N->getMaskElt(0) % EltSize != 0)
   1458     return false;
   1459 
   1460   // This is a splat operation if each element of the permute is the same, and
   1461   // if the value doesn't reference the second vector.
   1462   unsigned ElementBase = N->getMaskElt(0);
   1463 
   1464   // FIXME: Handle UNDEF elements too!
   1465   if (ElementBase >= 16)
   1466     return false;
   1467 
   1468   // Check that the indices are consecutive, in the case of a multi-byte element
   1469   // splatted with a v16i8 mask.
   1470   for (unsigned i = 1; i != EltSize; ++i)
   1471     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
   1472       return false;
   1473 
   1474   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
   1475     if (N->getMaskElt(i) < 0) continue;
   1476     for (unsigned j = 0; j != EltSize; ++j)
   1477       if (N->getMaskElt(i+j) != N->getMaskElt(j))
   1478         return false;
   1479   }
   1480   return true;
   1481 }
   1482 
   1483 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
   1484 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
   1485 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
   1486                                 SelectionDAG &DAG) {
   1487   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1488   assert(isSplatShuffleMask(SVOp, EltSize));
   1489   if (DAG.getDataLayout().isLittleEndian())
   1490     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
   1491   else
   1492     return SVOp->getMaskElt(0) / EltSize;
   1493 }
   1494 
   1495 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
   1496 /// by using a vspltis[bhw] instruction of the specified element size, return
   1497 /// the constant being splatted.  The ByteSize field indicates the number of
   1498 /// bytes of each element [124] -> [bhw].
   1499 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
   1500   SDValue OpVal(nullptr, 0);
   1501 
   1502   // If ByteSize of the splat is bigger than the element size of the
   1503   // build_vector, then we have a case where we are checking for a splat where
   1504   // multiple elements of the buildvector are folded together into a single
   1505   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
   1506   unsigned EltSize = 16/N->getNumOperands();
   1507   if (EltSize < ByteSize) {
   1508     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
   1509     SDValue UniquedVals[4];
   1510     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
   1511 
   1512     // See if all of the elements in the buildvector agree across.
   1513     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1514       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1515       // If the element isn't a constant, bail fully out.
   1516       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
   1517 
   1518 
   1519       if (!UniquedVals[i&(Multiple-1)].getNode())
   1520         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
   1521       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
   1522         return SDValue();  // no match.
   1523     }
   1524 
   1525     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
   1526     // either constant or undef values that are identical for each chunk.  See
   1527     // if these chunks can form into a larger vspltis*.
   1528 
   1529     // Check to see if all of the leading entries are either 0 or -1.  If
   1530     // neither, then this won't fit into the immediate field.
   1531     bool LeadingZero = true;
   1532     bool LeadingOnes = true;
   1533     for (unsigned i = 0; i != Multiple-1; ++i) {
   1534       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
   1535 
   1536       LeadingZero &= isNullConstant(UniquedVals[i]);
   1537       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
   1538     }
   1539     // Finally, check the least significant entry.
   1540     if (LeadingZero) {
   1541       if (!UniquedVals[Multiple-1].getNode())
   1542         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
   1543       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
   1544       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
   1545         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   1546     }
   1547     if (LeadingOnes) {
   1548       if (!UniquedVals[Multiple-1].getNode())
   1549         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
   1550       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
   1551       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
   1552         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
   1553     }
   1554 
   1555     return SDValue();
   1556   }
   1557 
   1558   // Check to see if this buildvec has a single non-undef value in its elements.
   1559   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   1560     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   1561     if (!OpVal.getNode())
   1562       OpVal = N->getOperand(i);
   1563     else if (OpVal != N->getOperand(i))
   1564       return SDValue();
   1565   }
   1566 
   1567   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
   1568 
   1569   unsigned ValSizeInBytes = EltSize;
   1570   uint64_t Value = 0;
   1571   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
   1572     Value = CN->getZExtValue();
   1573   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
   1574     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
   1575     Value = FloatToBits(CN->getValueAPF().convertToFloat());
   1576   }
   1577 
   1578   // If the splat value is larger than the element value, then we can never do
   1579   // this splat.  The only case that we could fit the replicated bits into our
   1580   // immediate field for would be zero, and we prefer to use vxor for it.
   1581   if (ValSizeInBytes < ByteSize) return SDValue();
   1582 
   1583   // If the element value is larger than the splat value, check if it consists
   1584   // of a repeated bit pattern of size ByteSize.
   1585   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
   1586     return SDValue();
   1587 
   1588   // Properly sign extend the value.
   1589   int MaskVal = SignExtend32(Value, ByteSize * 8);
   1590 
   1591   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
   1592   if (MaskVal == 0) return SDValue();
   1593 
   1594   // Finally, if this value fits in a 5 bit sext field, return it
   1595   if (SignExtend32<5>(MaskVal) == MaskVal)
   1596     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
   1597   return SDValue();
   1598 }
   1599 
   1600 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
   1601 /// amount, otherwise return -1.
   1602 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
   1603   EVT VT = N->getValueType(0);
   1604   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
   1605     return -1;
   1606 
   1607   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   1608 
   1609   // Find the first non-undef value in the shuffle mask.
   1610   unsigned i;
   1611   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
   1612     /*search*/;
   1613 
   1614   if (i == 4) return -1;  // all undef.
   1615 
   1616   // Otherwise, check to see if the rest of the elements are consecutively
   1617   // numbered from this value.
   1618   unsigned ShiftAmt = SVOp->getMaskElt(i);
   1619   if (ShiftAmt < i) return -1;
   1620   ShiftAmt -= i;
   1621 
   1622   // Check the rest of the elements to see if they are consecutive.
   1623   for (++i; i != 4; ++i)
   1624     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
   1625       return -1;
   1626 
   1627   return ShiftAmt;
   1628 }
   1629 
   1630 //===----------------------------------------------------------------------===//
   1631 //  Addressing Mode Selection
   1632 //===----------------------------------------------------------------------===//
   1633 
   1634 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
   1635 /// or 64-bit immediate, and if the value can be accurately represented as a
   1636 /// sign extension from a 16-bit value.  If so, this returns true and the
   1637 /// immediate.
   1638 static bool isIntS16Immediate(SDNode *N, short &Imm) {
   1639   if (!isa<ConstantSDNode>(N))
   1640     return false;
   1641 
   1642   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
   1643   if (N->getValueType(0) == MVT::i32)
   1644     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
   1645   else
   1646     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
   1647 }
   1648 static bool isIntS16Immediate(SDValue Op, short &Imm) {
   1649   return isIntS16Immediate(Op.getNode(), Imm);
   1650 }
   1651 
   1652 /// SelectAddressRegReg - Given the specified addressed, check to see if it
   1653 /// can be represented as an indexed [r+r] operation.  Returns false if it
   1654 /// can be more efficiently represented with [r+imm].
   1655 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
   1656                                             SDValue &Index,
   1657                                             SelectionDAG &DAG) const {
   1658   short imm = 0;
   1659   if (N.getOpcode() == ISD::ADD) {
   1660     if (isIntS16Immediate(N.getOperand(1), imm))
   1661       return false;    // r+i
   1662     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
   1663       return false;    // r+i
   1664 
   1665     Base = N.getOperand(0);
   1666     Index = N.getOperand(1);
   1667     return true;
   1668   } else if (N.getOpcode() == ISD::OR) {
   1669     if (isIntS16Immediate(N.getOperand(1), imm))
   1670       return false;    // r+i can fold it if we can.
   1671 
   1672     // If this is an or of disjoint bitfields, we can codegen this as an add
   1673     // (for better address arithmetic) if the LHS and RHS of the OR are provably
   1674     // disjoint.
   1675     APInt LHSKnownZero, LHSKnownOne;
   1676     APInt RHSKnownZero, RHSKnownOne;
   1677     DAG.computeKnownBits(N.getOperand(0),
   1678                          LHSKnownZero, LHSKnownOne);
   1679 
   1680     if (LHSKnownZero.getBoolValue()) {
   1681       DAG.computeKnownBits(N.getOperand(1),
   1682                            RHSKnownZero, RHSKnownOne);
   1683       // If all of the bits are known zero on the LHS or RHS, the add won't
   1684       // carry.
   1685       if (~(LHSKnownZero | RHSKnownZero) == 0) {
   1686         Base = N.getOperand(0);
   1687         Index = N.getOperand(1);
   1688         return true;
   1689       }
   1690     }
   1691   }
   1692 
   1693   return false;
   1694 }
   1695 
   1696 // If we happen to be doing an i64 load or store into a stack slot that has
   1697 // less than a 4-byte alignment, then the frame-index elimination may need to
   1698 // use an indexed load or store instruction (because the offset may not be a
   1699 // multiple of 4). The extra register needed to hold the offset comes from the
   1700 // register scavenger, and it is possible that the scavenger will need to use
   1701 // an emergency spill slot. As a result, we need to make sure that a spill slot
   1702 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
   1703 // stack slot.
   1704 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
   1705   // FIXME: This does not handle the LWA case.
   1706   if (VT != MVT::i64)
   1707     return;
   1708 
   1709   // NOTE: We'll exclude negative FIs here, which come from argument
   1710   // lowering, because there are no known test cases triggering this problem
   1711   // using packed structures (or similar). We can remove this exclusion if
   1712   // we find such a test case. The reason why this is so test-case driven is
   1713   // because this entire 'fixup' is only to prevent crashes (from the
   1714   // register scavenger) on not-really-valid inputs. For example, if we have:
   1715   //   %a = alloca i1
   1716   //   %b = bitcast i1* %a to i64*
   1717   //   store i64* a, i64 b
   1718   // then the store should really be marked as 'align 1', but is not. If it
   1719   // were marked as 'align 1' then the indexed form would have been
   1720   // instruction-selected initially, and the problem this 'fixup' is preventing
   1721   // won't happen regardless.
   1722   if (FrameIdx < 0)
   1723     return;
   1724 
   1725   MachineFunction &MF = DAG.getMachineFunction();
   1726   MachineFrameInfo *MFI = MF.getFrameInfo();
   1727 
   1728   unsigned Align = MFI->getObjectAlignment(FrameIdx);
   1729   if (Align >= 4)
   1730     return;
   1731 
   1732   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1733   FuncInfo->setHasNonRISpills();
   1734 }
   1735 
   1736 /// Returns true if the address N can be represented by a base register plus
   1737 /// a signed 16-bit displacement [r+imm], and if it is not better
   1738 /// represented as reg+reg.  If Aligned is true, only accept displacements
   1739 /// suitable for STD and friends, i.e. multiples of 4.
   1740 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
   1741                                             SDValue &Base,
   1742                                             SelectionDAG &DAG,
   1743                                             bool Aligned) const {
   1744   // FIXME dl should come from parent load or store, not from address
   1745   SDLoc dl(N);
   1746   // If this can be more profitably realized as r+r, fail.
   1747   if (SelectAddressRegReg(N, Disp, Base, DAG))
   1748     return false;
   1749 
   1750   if (N.getOpcode() == ISD::ADD) {
   1751     short imm = 0;
   1752     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1753         (!Aligned || (imm & 3) == 0)) {
   1754       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   1755       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1756         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1757         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1758       } else {
   1759         Base = N.getOperand(0);
   1760       }
   1761       return true; // [r+i]
   1762     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
   1763       // Match LOAD (ADD (X, Lo(G))).
   1764       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
   1765              && "Cannot handle constant offsets yet!");
   1766       Disp = N.getOperand(1).getOperand(0);  // The global address.
   1767       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
   1768              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
   1769              Disp.getOpcode() == ISD::TargetConstantPool ||
   1770              Disp.getOpcode() == ISD::TargetJumpTable);
   1771       Base = N.getOperand(0);
   1772       return true;  // [&g+r]
   1773     }
   1774   } else if (N.getOpcode() == ISD::OR) {
   1775     short imm = 0;
   1776     if (isIntS16Immediate(N.getOperand(1), imm) &&
   1777         (!Aligned || (imm & 3) == 0)) {
   1778       // If this is an or of disjoint bitfields, we can codegen this as an add
   1779       // (for better address arithmetic) if the LHS and RHS of the OR are
   1780       // provably disjoint.
   1781       APInt LHSKnownZero, LHSKnownOne;
   1782       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
   1783 
   1784       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
   1785         // If all of the bits are known zero on the LHS or RHS, the add won't
   1786         // carry.
   1787         if (FrameIndexSDNode *FI =
   1788               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
   1789           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1790           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1791         } else {
   1792           Base = N.getOperand(0);
   1793         }
   1794         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
   1795         return true;
   1796       }
   1797     }
   1798   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
   1799     // Loading from a constant address.
   1800 
   1801     // If this address fits entirely in a 16-bit sext immediate field, codegen
   1802     // this as "d, 0"
   1803     short Imm;
   1804     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
   1805       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
   1806       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1807                              CN->getValueType(0));
   1808       return true;
   1809     }
   1810 
   1811     // Handle 32-bit sext immediates with LIS + addr mode.
   1812     if ((CN->getValueType(0) == MVT::i32 ||
   1813          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
   1814         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
   1815       int Addr = (int)CN->getZExtValue();
   1816 
   1817       // Otherwise, break this down into an LIS + disp.
   1818       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
   1819 
   1820       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
   1821                                    MVT::i32);
   1822       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
   1823       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
   1824       return true;
   1825     }
   1826   }
   1827 
   1828   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
   1829   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
   1830     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
   1831     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
   1832   } else
   1833     Base = N;
   1834   return true;      // [r+0]
   1835 }
   1836 
   1837 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
   1838 /// represented as an indexed [r+r] operation.
   1839 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
   1840                                                 SDValue &Index,
   1841                                                 SelectionDAG &DAG) const {
   1842   // Check to see if we can easily represent this as an [r+r] address.  This
   1843   // will fail if it thinks that the address is more profitably represented as
   1844   // reg+imm, e.g. where imm = 0.
   1845   if (SelectAddressRegReg(N, Base, Index, DAG))
   1846     return true;
   1847 
   1848   // If the operand is an addition, always emit this as [r+r], since this is
   1849   // better (for code size, and execution, as the memop does the add for free)
   1850   // than emitting an explicit add.
   1851   if (N.getOpcode() == ISD::ADD) {
   1852     Base = N.getOperand(0);
   1853     Index = N.getOperand(1);
   1854     return true;
   1855   }
   1856 
   1857   // Otherwise, do it the hard way, using R0 as the base register.
   1858   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
   1859                          N.getValueType());
   1860   Index = N;
   1861   return true;
   1862 }
   1863 
   1864 /// getPreIndexedAddressParts - returns true by value, base pointer and
   1865 /// offset pointer and addressing mode by reference if the node's address
   1866 /// can be legally represented as pre-indexed load / store address.
   1867 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   1868                                                   SDValue &Offset,
   1869                                                   ISD::MemIndexedMode &AM,
   1870                                                   SelectionDAG &DAG) const {
   1871   if (DisablePPCPreinc) return false;
   1872 
   1873   bool isLoad = true;
   1874   SDValue Ptr;
   1875   EVT VT;
   1876   unsigned Alignment;
   1877   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1878     Ptr = LD->getBasePtr();
   1879     VT = LD->getMemoryVT();
   1880     Alignment = LD->getAlignment();
   1881   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   1882     Ptr = ST->getBasePtr();
   1883     VT  = ST->getMemoryVT();
   1884     Alignment = ST->getAlignment();
   1885     isLoad = false;
   1886   } else
   1887     return false;
   1888 
   1889   // PowerPC doesn't have preinc load/store instructions for vectors (except
   1890   // for QPX, which does have preinc r+r forms).
   1891   if (VT.isVector()) {
   1892     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
   1893       return false;
   1894     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
   1895       AM = ISD::PRE_INC;
   1896       return true;
   1897     }
   1898   }
   1899 
   1900   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
   1901 
   1902     // Common code will reject creating a pre-inc form if the base pointer
   1903     // is a frame index, or if N is a store and the base pointer is either
   1904     // the same as or a predecessor of the value being stored.  Check for
   1905     // those situations here, and try with swapped Base/Offset instead.
   1906     bool Swap = false;
   1907 
   1908     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
   1909       Swap = true;
   1910     else if (!isLoad) {
   1911       SDValue Val = cast<StoreSDNode>(N)->getValue();
   1912       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
   1913         Swap = true;
   1914     }
   1915 
   1916     if (Swap)
   1917       std::swap(Base, Offset);
   1918 
   1919     AM = ISD::PRE_INC;
   1920     return true;
   1921   }
   1922 
   1923   // LDU/STU can only handle immediates that are a multiple of 4.
   1924   if (VT != MVT::i64) {
   1925     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
   1926       return false;
   1927   } else {
   1928     // LDU/STU need an address with at least 4-byte alignment.
   1929     if (Alignment < 4)
   1930       return false;
   1931 
   1932     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
   1933       return false;
   1934   }
   1935 
   1936   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   1937     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
   1938     // sext i32 to i64 when addr mode is r+i.
   1939     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
   1940         LD->getExtensionType() == ISD::SEXTLOAD &&
   1941         isa<ConstantSDNode>(Offset))
   1942       return false;
   1943   }
   1944 
   1945   AM = ISD::PRE_INC;
   1946   return true;
   1947 }
   1948 
   1949 //===----------------------------------------------------------------------===//
   1950 //  LowerOperation implementation
   1951 //===----------------------------------------------------------------------===//
   1952 
   1953 /// GetLabelAccessInfo - Return true if we should reference labels using a
   1954 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
   1955 static bool GetLabelAccessInfo(const TargetMachine &TM,
   1956                                const PPCSubtarget &Subtarget,
   1957                                unsigned &HiOpFlags, unsigned &LoOpFlags,
   1958                                const GlobalValue *GV = nullptr) {
   1959   HiOpFlags = PPCII::MO_HA;
   1960   LoOpFlags = PPCII::MO_LO;
   1961 
   1962   // Don't use the pic base if not in PIC relocation model.
   1963   bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
   1964 
   1965   if (isPIC) {
   1966     HiOpFlags |= PPCII::MO_PIC_FLAG;
   1967     LoOpFlags |= PPCII::MO_PIC_FLAG;
   1968   }
   1969 
   1970   // If this is a reference to a global value that requires a non-lazy-ptr, make
   1971   // sure that instruction lowering adds it.
   1972   if (GV && Subtarget.hasLazyResolverStub(GV)) {
   1973     HiOpFlags |= PPCII::MO_NLP_FLAG;
   1974     LoOpFlags |= PPCII::MO_NLP_FLAG;
   1975 
   1976     if (GV->hasHiddenVisibility()) {
   1977       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1978       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
   1979     }
   1980   }
   1981 
   1982   return isPIC;
   1983 }
   1984 
   1985 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
   1986                              SelectionDAG &DAG) {
   1987   SDLoc DL(HiPart);
   1988   EVT PtrVT = HiPart.getValueType();
   1989   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
   1990 
   1991   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
   1992   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
   1993 
   1994   // With PIC, the first instruction is actually "GR+hi(&G)".
   1995   if (isPIC)
   1996     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
   1997                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
   1998 
   1999   // Generate non-pic code that has direct accesses to the constant pool.
   2000   // The address of the global is just (hi(&g)+lo(&g)).
   2001   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
   2002 }
   2003 
   2004 static void setUsesTOCBasePtr(MachineFunction &MF) {
   2005   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2006   FuncInfo->setUsesTOCBasePtr();
   2007 }
   2008 
   2009 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
   2010   setUsesTOCBasePtr(DAG.getMachineFunction());
   2011 }
   2012 
   2013 static SDValue getTOCEntry(SelectionDAG &DAG, SDLoc dl, bool Is64Bit,
   2014                            SDValue GA) {
   2015   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2016   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
   2017                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
   2018 
   2019   SDValue Ops[] = { GA, Reg };
   2020   return DAG.getMemIntrinsicNode(
   2021       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
   2022       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
   2023       false, 0);
   2024 }
   2025 
   2026 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
   2027                                              SelectionDAG &DAG) const {
   2028   EVT PtrVT = Op.getValueType();
   2029   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2030   const Constant *C = CP->getConstVal();
   2031 
   2032   // 64-bit SVR4 ABI code is always position-independent.
   2033   // The actual address of the GlobalValue is stored in the TOC.
   2034   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2035     setUsesTOCBasePtr(DAG);
   2036     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
   2037     return getTOCEntry(DAG, SDLoc(CP), true, GA);
   2038   }
   2039 
   2040   unsigned MOHiFlag, MOLoFlag;
   2041   bool isPIC =
   2042       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   2043 
   2044   if (isPIC && Subtarget.isSVR4ABI()) {
   2045     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
   2046                                            PPCII::MO_PIC_FLAG);
   2047     return getTOCEntry(DAG, SDLoc(CP), false, GA);
   2048   }
   2049 
   2050   SDValue CPIHi =
   2051     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
   2052   SDValue CPILo =
   2053     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
   2054   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
   2055 }
   2056 
   2057 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   2058   EVT PtrVT = Op.getValueType();
   2059   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   2060 
   2061   // 64-bit SVR4 ABI code is always position-independent.
   2062   // The actual address of the GlobalValue is stored in the TOC.
   2063   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2064     setUsesTOCBasePtr(DAG);
   2065     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2066     return getTOCEntry(DAG, SDLoc(JT), true, GA);
   2067   }
   2068 
   2069   unsigned MOHiFlag, MOLoFlag;
   2070   bool isPIC =
   2071       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   2072 
   2073   if (isPIC && Subtarget.isSVR4ABI()) {
   2074     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
   2075                                         PPCII::MO_PIC_FLAG);
   2076     return getTOCEntry(DAG, SDLoc(GA), false, GA);
   2077   }
   2078 
   2079   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
   2080   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
   2081   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
   2082 }
   2083 
   2084 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
   2085                                              SelectionDAG &DAG) const {
   2086   EVT PtrVT = Op.getValueType();
   2087   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
   2088   const BlockAddress *BA = BASDN->getBlockAddress();
   2089 
   2090   // 64-bit SVR4 ABI code is always position-independent.
   2091   // The actual BlockAddress is stored in the TOC.
   2092   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2093     setUsesTOCBasePtr(DAG);
   2094     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
   2095     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
   2096   }
   2097 
   2098   unsigned MOHiFlag, MOLoFlag;
   2099   bool isPIC =
   2100       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag);
   2101   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
   2102   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
   2103   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
   2104 }
   2105 
   2106 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
   2107                                               SelectionDAG &DAG) const {
   2108 
   2109   // FIXME: TLS addresses currently use medium model code sequences,
   2110   // which is the most useful form.  Eventually support for small and
   2111   // large models could be added if users need it, at the cost of
   2112   // additional complexity.
   2113   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2114   if (DAG.getTarget().Options.EmulatedTLS)
   2115     return LowerToTLSEmulatedModel(GA, DAG);
   2116 
   2117   SDLoc dl(GA);
   2118   const GlobalValue *GV = GA->getGlobal();
   2119   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2120   bool is64bit = Subtarget.isPPC64();
   2121   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
   2122   PICLevel::Level picLevel = M->getPICLevel();
   2123 
   2124   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
   2125 
   2126   if (Model == TLSModel::LocalExec) {
   2127     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2128                                                PPCII::MO_TPREL_HA);
   2129     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2130                                                PPCII::MO_TPREL_LO);
   2131     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
   2132                                      is64bit ? MVT::i64 : MVT::i32);
   2133     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
   2134     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
   2135   }
   2136 
   2137   if (Model == TLSModel::InitialExec) {
   2138     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2139     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
   2140                                                 PPCII::MO_TLS);
   2141     SDValue GOTPtr;
   2142     if (is64bit) {
   2143       setUsesTOCBasePtr(DAG);
   2144       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2145       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
   2146                            PtrVT, GOTReg, TGA);
   2147     } else
   2148       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
   2149     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
   2150                                    PtrVT, TGA, GOTPtr);
   2151     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
   2152   }
   2153 
   2154   if (Model == TLSModel::GeneralDynamic) {
   2155     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2156     SDValue GOTPtr;
   2157     if (is64bit) {
   2158       setUsesTOCBasePtr(DAG);
   2159       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2160       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
   2161                                    GOTReg, TGA);
   2162     } else {
   2163       if (picLevel == PICLevel::Small)
   2164         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2165       else
   2166         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2167     }
   2168     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
   2169                        GOTPtr, TGA, TGA);
   2170   }
   2171 
   2172   if (Model == TLSModel::LocalDynamic) {
   2173     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
   2174     SDValue GOTPtr;
   2175     if (is64bit) {
   2176       setUsesTOCBasePtr(DAG);
   2177       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
   2178       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
   2179                            GOTReg, TGA);
   2180     } else {
   2181       if (picLevel == PICLevel::Small)
   2182         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
   2183       else
   2184         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
   2185     }
   2186     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
   2187                                   PtrVT, GOTPtr, TGA, TGA);
   2188     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
   2189                                       PtrVT, TLSAddr, TGA);
   2190     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
   2191   }
   2192 
   2193   llvm_unreachable("Unknown TLS model!");
   2194 }
   2195 
   2196 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
   2197                                               SelectionDAG &DAG) const {
   2198   EVT PtrVT = Op.getValueType();
   2199   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
   2200   SDLoc DL(GSDN);
   2201   const GlobalValue *GV = GSDN->getGlobal();
   2202 
   2203   // 64-bit SVR4 ABI code is always position-independent.
   2204   // The actual address of the GlobalValue is stored in the TOC.
   2205   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
   2206     setUsesTOCBasePtr(DAG);
   2207     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
   2208     return getTOCEntry(DAG, DL, true, GA);
   2209   }
   2210 
   2211   unsigned MOHiFlag, MOLoFlag;
   2212   bool isPIC =
   2213       GetLabelAccessInfo(DAG.getTarget(), Subtarget, MOHiFlag, MOLoFlag, GV);
   2214 
   2215   if (isPIC && Subtarget.isSVR4ABI()) {
   2216     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
   2217                                             GSDN->getOffset(),
   2218                                             PPCII::MO_PIC_FLAG);
   2219     return getTOCEntry(DAG, DL, false, GA);
   2220   }
   2221 
   2222   SDValue GAHi =
   2223     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
   2224   SDValue GALo =
   2225     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
   2226 
   2227   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
   2228 
   2229   // If the global reference is actually to a non-lazy-pointer, we have to do an
   2230   // extra load to get the address of the global.
   2231   if (MOHiFlag & PPCII::MO_NLP_FLAG)
   2232     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
   2233                       false, false, false, 0);
   2234   return Ptr;
   2235 }
   2236 
   2237 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   2238   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2239   SDLoc dl(Op);
   2240 
   2241   if (Op.getValueType() == MVT::v2i64) {
   2242     // When the operands themselves are v2i64 values, we need to do something
   2243     // special because VSX has no underlying comparison operations for these.
   2244     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
   2245       // Equality can be handled by casting to the legal type for Altivec
   2246       // comparisons, everything else needs to be expanded.
   2247       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   2248         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   2249                  DAG.getSetCC(dl, MVT::v4i32,
   2250                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
   2251                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
   2252                    CC));
   2253       }
   2254 
   2255       return SDValue();
   2256     }
   2257 
   2258     // We handle most of these in the usual way.
   2259     return Op;
   2260   }
   2261 
   2262   // If we're comparing for equality to zero, expose the fact that this is
   2263   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
   2264   // fold the new nodes.
   2265   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   2266     if (C->isNullValue() && CC == ISD::SETEQ) {
   2267       EVT VT = Op.getOperand(0).getValueType();
   2268       SDValue Zext = Op.getOperand(0);
   2269       if (VT.bitsLT(MVT::i32)) {
   2270         VT = MVT::i32;
   2271         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
   2272       }
   2273       unsigned Log2b = Log2_32(VT.getSizeInBits());
   2274       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
   2275       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
   2276                                 DAG.getConstant(Log2b, dl, MVT::i32));
   2277       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
   2278     }
   2279     // Leave comparisons against 0 and -1 alone for now, since they're usually
   2280     // optimized.  FIXME: revisit this when we can custom lower all setcc
   2281     // optimizations.
   2282     if (C->isAllOnesValue() || C->isNullValue())
   2283       return SDValue();
   2284   }
   2285 
   2286   // If we have an integer seteq/setne, turn it into a compare against zero
   2287   // by xor'ing the rhs with the lhs, which is faster than setting a
   2288   // condition register, reading it back out, and masking the correct bit.  The
   2289   // normal approach here uses sub to do this instead of xor.  Using xor exposes
   2290   // the result to other bit-twiddling opportunities.
   2291   EVT LHSVT = Op.getOperand(0).getValueType();
   2292   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   2293     EVT VT = Op.getValueType();
   2294     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
   2295                                 Op.getOperand(1));
   2296     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
   2297   }
   2298   return SDValue();
   2299 }
   2300 
   2301 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
   2302                                       const PPCSubtarget &Subtarget) const {
   2303   SDNode *Node = Op.getNode();
   2304   EVT VT = Node->getValueType(0);
   2305   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   2306   SDValue InChain = Node->getOperand(0);
   2307   SDValue VAListPtr = Node->getOperand(1);
   2308   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
   2309   SDLoc dl(Node);
   2310 
   2311   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
   2312 
   2313   // gpr_index
   2314   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2315                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
   2316                                     false, false, false, 0);
   2317   InChain = GprIndex.getValue(1);
   2318 
   2319   if (VT == MVT::i64) {
   2320     // Check if GprIndex is even
   2321     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
   2322                                  DAG.getConstant(1, dl, MVT::i32));
   2323     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
   2324                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
   2325     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
   2326                                           DAG.getConstant(1, dl, MVT::i32));
   2327     // Align GprIndex to be even if it isn't
   2328     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
   2329                            GprIndex);
   2330   }
   2331 
   2332   // fpr index is 1 byte after gpr
   2333   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2334                                DAG.getConstant(1, dl, MVT::i32));
   2335 
   2336   // fpr
   2337   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
   2338                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
   2339                                     false, false, false, 0);
   2340   InChain = FprIndex.getValue(1);
   2341 
   2342   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2343                                        DAG.getConstant(8, dl, MVT::i32));
   2344 
   2345   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
   2346                                         DAG.getConstant(4, dl, MVT::i32));
   2347 
   2348   // areas
   2349   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
   2350                                      MachinePointerInfo(), false, false,
   2351                                      false, 0);
   2352   InChain = OverflowArea.getValue(1);
   2353 
   2354   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
   2355                                     MachinePointerInfo(), false, false,
   2356                                     false, 0);
   2357   InChain = RegSaveArea.getValue(1);
   2358 
   2359   // select overflow_area if index > 8
   2360   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
   2361                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
   2362 
   2363   // adjustment constant gpr_index * 4/8
   2364   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
   2365                                     VT.isInteger() ? GprIndex : FprIndex,
   2366                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
   2367                                                     MVT::i32));
   2368 
   2369   // OurReg = RegSaveArea + RegConstant
   2370   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
   2371                                RegConstant);
   2372 
   2373   // Floating types are 32 bytes into RegSaveArea
   2374   if (VT.isFloatingPoint())
   2375     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
   2376                          DAG.getConstant(32, dl, MVT::i32));
   2377 
   2378   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
   2379   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   2380                                    VT.isInteger() ? GprIndex : FprIndex,
   2381                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
   2382                                                    MVT::i32));
   2383 
   2384   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
   2385                               VT.isInteger() ? VAListPtr : FprPtr,
   2386                               MachinePointerInfo(SV),
   2387                               MVT::i8, false, false, 0);
   2388 
   2389   // determine if we should load from reg_save_area or overflow_area
   2390   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
   2391 
   2392   // increase overflow_area by 4/8 if gpr/fpr > 8
   2393   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
   2394                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
   2395                                           dl, MVT::i32));
   2396 
   2397   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
   2398                              OverflowAreaPlusN);
   2399 
   2400   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
   2401                               OverflowAreaPtr,
   2402                               MachinePointerInfo(),
   2403                               MVT::i32, false, false, 0);
   2404 
   2405   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
   2406                      false, false, false, 0);
   2407 }
   2408 
   2409 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
   2410                                        const PPCSubtarget &Subtarget) const {
   2411   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
   2412 
   2413   // We have to copy the entire va_list struct:
   2414   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
   2415   return DAG.getMemcpy(Op.getOperand(0), Op,
   2416                        Op.getOperand(1), Op.getOperand(2),
   2417                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
   2418                        false, MachinePointerInfo(), MachinePointerInfo());
   2419 }
   2420 
   2421 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   2422                                                   SelectionDAG &DAG) const {
   2423   return Op.getOperand(0);
   2424 }
   2425 
   2426 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   2427                                                 SelectionDAG &DAG) const {
   2428   SDValue Chain = Op.getOperand(0);
   2429   SDValue Trmp = Op.getOperand(1); // trampoline
   2430   SDValue FPtr = Op.getOperand(2); // nested function
   2431   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   2432   SDLoc dl(Op);
   2433 
   2434   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   2435   bool isPPC64 = (PtrVT == MVT::i64);
   2436   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
   2437 
   2438   TargetLowering::ArgListTy Args;
   2439   TargetLowering::ArgListEntry Entry;
   2440 
   2441   Entry.Ty = IntPtrTy;
   2442   Entry.Node = Trmp; Args.push_back(Entry);
   2443 
   2444   // TrampSize == (isPPC64 ? 48 : 40);
   2445   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
   2446                                isPPC64 ? MVT::i64 : MVT::i32);
   2447   Args.push_back(Entry);
   2448 
   2449   Entry.Node = FPtr; Args.push_back(Entry);
   2450   Entry.Node = Nest; Args.push_back(Entry);
   2451 
   2452   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
   2453   TargetLowering::CallLoweringInfo CLI(DAG);
   2454   CLI.setDebugLoc(dl).setChain(Chain)
   2455     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
   2456                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
   2457                std::move(Args), 0);
   2458 
   2459   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2460   return CallResult.second;
   2461 }
   2462 
   2463 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
   2464                                         const PPCSubtarget &Subtarget) const {
   2465   MachineFunction &MF = DAG.getMachineFunction();
   2466   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2467 
   2468   SDLoc dl(Op);
   2469 
   2470   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
   2471     // vastart just stores the address of the VarArgsFrameIndex slot into the
   2472     // memory location argument.
   2473     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   2474     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2475     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2476     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2477                         MachinePointerInfo(SV),
   2478                         false, false, 0);
   2479   }
   2480 
   2481   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
   2482   // We suppose the given va_list is already allocated.
   2483   //
   2484   // typedef struct {
   2485   //  char gpr;     /* index into the array of 8 GPRs
   2486   //                 * stored in the register save area
   2487   //                 * gpr=0 corresponds to r3,
   2488   //                 * gpr=1 to r4, etc.
   2489   //                 */
   2490   //  char fpr;     /* index into the array of 8 FPRs
   2491   //                 * stored in the register save area
   2492   //                 * fpr=0 corresponds to f1,
   2493   //                 * fpr=1 to f2, etc.
   2494   //                 */
   2495   //  char *overflow_arg_area;
   2496   //                /* location on stack that holds
   2497   //                 * the next overflow argument
   2498   //                 */
   2499   //  char *reg_save_area;
   2500   //               /* where r3:r10 and f1:f8 (if saved)
   2501   //                * are stored
   2502   //                */
   2503   // } va_list[1];
   2504 
   2505   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
   2506   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
   2507 
   2508   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   2509 
   2510   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
   2511                                             PtrVT);
   2512   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   2513                                  PtrVT);
   2514 
   2515   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
   2516   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
   2517 
   2518   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
   2519   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
   2520 
   2521   uint64_t FPROffset = 1;
   2522   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
   2523 
   2524   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2525 
   2526   // Store first byte : number of int regs
   2527   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
   2528                                          Op.getOperand(1),
   2529                                          MachinePointerInfo(SV),
   2530                                          MVT::i8, false, false, 0);
   2531   uint64_t nextOffset = FPROffset;
   2532   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
   2533                                   ConstFPROffset);
   2534 
   2535   // Store second byte : number of float regs
   2536   SDValue secondStore =
   2537     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
   2538                       MachinePointerInfo(SV, nextOffset), MVT::i8,
   2539                       false, false, 0);
   2540   nextOffset += StackOffset;
   2541   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
   2542 
   2543   // Store second word : arguments given on stack
   2544   SDValue thirdStore =
   2545     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
   2546                  MachinePointerInfo(SV, nextOffset),
   2547                  false, false, 0);
   2548   nextOffset += FrameOffset;
   2549   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
   2550 
   2551   // Store third word : arguments given in registers
   2552   return DAG.getStore(thirdStore, dl, FR, nextPtr,
   2553                       MachinePointerInfo(SV, nextOffset),
   2554                       false, false, 0);
   2555 
   2556 }
   2557 
   2558 #include "PPCGenCallingConv.inc"
   2559 
   2560 // Function whose sole purpose is to kill compiler warnings
   2561 // stemming from unused functions included from PPCGenCallingConv.inc.
   2562 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
   2563   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
   2564 }
   2565 
   2566 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
   2567                                       CCValAssign::LocInfo &LocInfo,
   2568                                       ISD::ArgFlagsTy &ArgFlags,
   2569                                       CCState &State) {
   2570   return true;
   2571 }
   2572 
   2573 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
   2574                                              MVT &LocVT,
   2575                                              CCValAssign::LocInfo &LocInfo,
   2576                                              ISD::ArgFlagsTy &ArgFlags,
   2577                                              CCState &State) {
   2578   static const MCPhysReg ArgRegs[] = {
   2579     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2580     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2581   };
   2582   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2583 
   2584   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2585 
   2586   // Skip one register if the first unallocated register has an even register
   2587   // number and there are still argument registers available which have not been
   2588   // allocated yet. RegNum is actually an index into ArgRegs, which means we
   2589   // need to skip a register if RegNum is odd.
   2590   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
   2591     State.AllocateReg(ArgRegs[RegNum]);
   2592   }
   2593 
   2594   // Always return false here, as this function only makes sure that the first
   2595   // unallocated register has an odd register number and does not actually
   2596   // allocate a register for the current argument.
   2597   return false;
   2598 }
   2599 
   2600 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
   2601                                                MVT &LocVT,
   2602                                                CCValAssign::LocInfo &LocInfo,
   2603                                                ISD::ArgFlagsTy &ArgFlags,
   2604                                                CCState &State) {
   2605   static const MCPhysReg ArgRegs[] = {
   2606     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2607     PPC::F8
   2608   };
   2609 
   2610   const unsigned NumArgRegs = array_lengthof(ArgRegs);
   2611 
   2612   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
   2613 
   2614   // If there is only one Floating-point register left we need to put both f64
   2615   // values of a split ppc_fp128 value on the stack.
   2616   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
   2617     State.AllocateReg(ArgRegs[RegNum]);
   2618   }
   2619 
   2620   // Always return false here, as this function only makes sure that the two f64
   2621   // values a ppc_fp128 value is split into are both passed in registers or both
   2622   // passed on the stack and does not actually allocate a register for the
   2623   // current argument.
   2624   return false;
   2625 }
   2626 
   2627 /// FPR - The set of FP registers that should be allocated for arguments,
   2628 /// on Darwin.
   2629 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
   2630                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
   2631                                 PPC::F11, PPC::F12, PPC::F13};
   2632 
   2633 /// QFPR - The set of QPX registers that should be allocated for arguments.
   2634 static const MCPhysReg QFPR[] = {
   2635     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
   2636     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
   2637 
   2638 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
   2639 /// the stack.
   2640 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
   2641                                        unsigned PtrByteSize) {
   2642   unsigned ArgSize = ArgVT.getStoreSize();
   2643   if (Flags.isByVal())
   2644     ArgSize = Flags.getByValSize();
   2645 
   2646   // Round up to multiples of the pointer size, except for array members,
   2647   // which are always packed.
   2648   if (!Flags.isInConsecutiveRegs())
   2649     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2650 
   2651   return ArgSize;
   2652 }
   2653 
   2654 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
   2655 /// on the stack.
   2656 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
   2657                                             ISD::ArgFlagsTy Flags,
   2658                                             unsigned PtrByteSize) {
   2659   unsigned Align = PtrByteSize;
   2660 
   2661   // Altivec parameters are padded to a 16 byte boundary.
   2662   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2663       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2664       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   2665       ArgVT == MVT::v1i128)
   2666     Align = 16;
   2667   // QPX vector types stored in double-precision are padded to a 32 byte
   2668   // boundary.
   2669   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
   2670     Align = 32;
   2671 
   2672   // ByVal parameters are aligned as requested.
   2673   if (Flags.isByVal()) {
   2674     unsigned BVAlign = Flags.getByValAlign();
   2675     if (BVAlign > PtrByteSize) {
   2676       if (BVAlign % PtrByteSize != 0)
   2677           llvm_unreachable(
   2678             "ByVal alignment is not a multiple of the pointer size");
   2679 
   2680       Align = BVAlign;
   2681     }
   2682   }
   2683 
   2684   // Array members are always packed to their original alignment.
   2685   if (Flags.isInConsecutiveRegs()) {
   2686     // If the array member was split into multiple registers, the first
   2687     // needs to be aligned to the size of the full type.  (Except for
   2688     // ppcf128, which is only aligned as its f64 components.)
   2689     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
   2690       Align = OrigVT.getStoreSize();
   2691     else
   2692       Align = ArgVT.getStoreSize();
   2693   }
   2694 
   2695   return Align;
   2696 }
   2697 
   2698 /// CalculateStackSlotUsed - Return whether this argument will use its
   2699 /// stack slot (instead of being passed in registers).  ArgOffset,
   2700 /// AvailableFPRs, and AvailableVRs must hold the current argument
   2701 /// position, and will be updated to account for this argument.
   2702 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
   2703                                    ISD::ArgFlagsTy Flags,
   2704                                    unsigned PtrByteSize,
   2705                                    unsigned LinkageSize,
   2706                                    unsigned ParamAreaSize,
   2707                                    unsigned &ArgOffset,
   2708                                    unsigned &AvailableFPRs,
   2709                                    unsigned &AvailableVRs, bool HasQPX) {
   2710   bool UseMemory = false;
   2711 
   2712   // Respect alignment of argument on the stack.
   2713   unsigned Align =
   2714     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   2715   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   2716   // If there's no space left in the argument save area, we must
   2717   // use memory (this check also catches zero-sized arguments).
   2718   if (ArgOffset >= LinkageSize + ParamAreaSize)
   2719     UseMemory = true;
   2720 
   2721   // Allocate argument on the stack.
   2722   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   2723   if (Flags.isInConsecutiveRegsLast())
   2724     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   2725   // If we overran the argument save area, we must use memory
   2726   // (this check catches arguments passed partially in memory)
   2727   if (ArgOffset > LinkageSize + ParamAreaSize)
   2728     UseMemory = true;
   2729 
   2730   // However, if the argument is actually passed in an FPR or a VR,
   2731   // we don't use memory after all.
   2732   if (!Flags.isByVal()) {
   2733     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
   2734         // QPX registers overlap with the scalar FP registers.
   2735         (HasQPX && (ArgVT == MVT::v4f32 ||
   2736                     ArgVT == MVT::v4f64 ||
   2737                     ArgVT == MVT::v4i1)))
   2738       if (AvailableFPRs > 0) {
   2739         --AvailableFPRs;
   2740         return false;
   2741       }
   2742     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   2743         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   2744         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
   2745         ArgVT == MVT::v1i128)
   2746       if (AvailableVRs > 0) {
   2747         --AvailableVRs;
   2748         return false;
   2749       }
   2750   }
   2751 
   2752   return UseMemory;
   2753 }
   2754 
   2755 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
   2756 /// ensure minimum alignment required for target.
   2757 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
   2758                                      unsigned NumBytes) {
   2759   unsigned TargetAlign = Lowering->getStackAlignment();
   2760   unsigned AlignMask = TargetAlign - 1;
   2761   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
   2762   return NumBytes;
   2763 }
   2764 
   2765 SDValue
   2766 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
   2767                                         CallingConv::ID CallConv, bool isVarArg,
   2768                                         const SmallVectorImpl<ISD::InputArg>
   2769                                           &Ins,
   2770                                         SDLoc dl, SelectionDAG &DAG,
   2771                                         SmallVectorImpl<SDValue> &InVals)
   2772                                           const {
   2773   if (Subtarget.isSVR4ABI()) {
   2774     if (Subtarget.isPPC64())
   2775       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
   2776                                          dl, DAG, InVals);
   2777     else
   2778       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
   2779                                          dl, DAG, InVals);
   2780   } else {
   2781     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
   2782                                        dl, DAG, InVals);
   2783   }
   2784 }
   2785 
   2786 SDValue
   2787 PPCTargetLowering::LowerFormalArguments_32SVR4(
   2788                                       SDValue Chain,
   2789                                       CallingConv::ID CallConv, bool isVarArg,
   2790                                       const SmallVectorImpl<ISD::InputArg>
   2791                                         &Ins,
   2792                                       SDLoc dl, SelectionDAG &DAG,
   2793                                       SmallVectorImpl<SDValue> &InVals) const {
   2794 
   2795   // 32-bit SVR4 ABI Stack Frame Layout:
   2796   //              +-----------------------------------+
   2797   //        +-->  |            Back chain             |
   2798   //        |     +-----------------------------------+
   2799   //        |     | Floating-point register save area |
   2800   //        |     +-----------------------------------+
   2801   //        |     |    General register save area     |
   2802   //        |     +-----------------------------------+
   2803   //        |     |          CR save word             |
   2804   //        |     +-----------------------------------+
   2805   //        |     |         VRSAVE save word          |
   2806   //        |     +-----------------------------------+
   2807   //        |     |         Alignment padding         |
   2808   //        |     +-----------------------------------+
   2809   //        |     |     Vector register save area     |
   2810   //        |     +-----------------------------------+
   2811   //        |     |       Local variable space        |
   2812   //        |     +-----------------------------------+
   2813   //        |     |        Parameter list area        |
   2814   //        |     +-----------------------------------+
   2815   //        |     |           LR save word            |
   2816   //        |     +-----------------------------------+
   2817   // SP-->  +---  |            Back chain             |
   2818   //              +-----------------------------------+
   2819   //
   2820   // Specifications:
   2821   //   System V Application Binary Interface PowerPC Processor Supplement
   2822   //   AltiVec Technology Programming Interface Manual
   2823 
   2824   MachineFunction &MF = DAG.getMachineFunction();
   2825   MachineFrameInfo *MFI = MF.getFrameInfo();
   2826   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   2827 
   2828   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   2829   // Potential tail calls could cause overwriting of argument stack slots.
   2830   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   2831                        (CallConv == CallingConv::Fast));
   2832   unsigned PtrByteSize = 4;
   2833 
   2834   // Assign locations to all of the incoming arguments.
   2835   SmallVector<CCValAssign, 16> ArgLocs;
   2836   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2837                  *DAG.getContext());
   2838 
   2839   // Reserve space for the linkage area on the stack.
   2840   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   2841   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
   2842 
   2843   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
   2844 
   2845   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2846     CCValAssign &VA = ArgLocs[i];
   2847 
   2848     // Arguments stored in registers.
   2849     if (VA.isRegLoc()) {
   2850       const TargetRegisterClass *RC;
   2851       EVT ValVT = VA.getValVT();
   2852 
   2853       switch (ValVT.getSimpleVT().SimpleTy) {
   2854         default:
   2855           llvm_unreachable("ValVT not supported by formal arguments Lowering");
   2856         case MVT::i1:
   2857         case MVT::i32:
   2858           RC = &PPC::GPRCRegClass;
   2859           break;
   2860         case MVT::f32:
   2861           if (Subtarget.hasP8Vector())
   2862             RC = &PPC::VSSRCRegClass;
   2863           else
   2864             RC = &PPC::F4RCRegClass;
   2865           break;
   2866         case MVT::f64:
   2867           if (Subtarget.hasVSX())
   2868             RC = &PPC::VSFRCRegClass;
   2869           else
   2870             RC = &PPC::F8RCRegClass;
   2871           break;
   2872         case MVT::v16i8:
   2873         case MVT::v8i16:
   2874         case MVT::v4i32:
   2875           RC = &PPC::VRRCRegClass;
   2876           break;
   2877         case MVT::v4f32:
   2878           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
   2879           break;
   2880         case MVT::v2f64:
   2881         case MVT::v2i64:
   2882           RC = &PPC::VSHRCRegClass;
   2883           break;
   2884         case MVT::v4f64:
   2885           RC = &PPC::QFRCRegClass;
   2886           break;
   2887         case MVT::v4i1:
   2888           RC = &PPC::QBRCRegClass;
   2889           break;
   2890       }
   2891 
   2892       // Transform the arguments stored in physical registers into virtual ones.
   2893       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2894       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
   2895                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
   2896 
   2897       if (ValVT == MVT::i1)
   2898         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
   2899 
   2900       InVals.push_back(ArgValue);
   2901     } else {
   2902       // Argument stored in memory.
   2903       assert(VA.isMemLoc());
   2904 
   2905       unsigned ArgSize = VA.getLocVT().getStoreSize();
   2906       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
   2907                                       isImmutable);
   2908 
   2909       // Create load nodes to retrieve arguments from the stack.
   2910       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   2911       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   2912                                    MachinePointerInfo(),
   2913                                    false, false, false, 0));
   2914     }
   2915   }
   2916 
   2917   // Assign locations to all of the incoming aggregate by value arguments.
   2918   // Aggregates passed by value are stored in the local variable space of the
   2919   // caller's stack frame, right above the parameter list area.
   2920   SmallVector<CCValAssign, 16> ByValArgLocs;
   2921   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   2922                       ByValArgLocs, *DAG.getContext());
   2923 
   2924   // Reserve stack space for the allocations in CCInfo.
   2925   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   2926 
   2927   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
   2928 
   2929   // Area that is at least reserved in the caller of this function.
   2930   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
   2931   MinReservedArea = std::max(MinReservedArea, LinkageSize);
   2932 
   2933   // Set the size that is at least reserved in caller of this function.  Tail
   2934   // call optimized function's reserved stack space needs to be aligned so that
   2935   // taking the difference between two stack areas will result in an aligned
   2936   // stack.
   2937   MinReservedArea =
   2938       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   2939   FuncInfo->setMinReservedArea(MinReservedArea);
   2940 
   2941   SmallVector<SDValue, 8> MemOps;
   2942 
   2943   // If the function takes variable number of arguments, make a frame index for
   2944   // the start of the first vararg value... for expansion of llvm.va_start.
   2945   if (isVarArg) {
   2946     static const MCPhysReg GPArgRegs[] = {
   2947       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   2948       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   2949     };
   2950     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
   2951 
   2952     static const MCPhysReg FPArgRegs[] = {
   2953       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
   2954       PPC::F8
   2955     };
   2956     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
   2957 
   2958     if (Subtarget.useSoftFloat())
   2959        NumFPArgRegs = 0;
   2960 
   2961     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
   2962     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
   2963 
   2964     // Make room for NumGPArgRegs and NumFPArgRegs.
   2965     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
   2966                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
   2967 
   2968     FuncInfo->setVarArgsStackOffset(
   2969       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   2970                              CCInfo.getNextStackOffset(), true));
   2971 
   2972     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
   2973     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2974 
   2975     // The fixed integer arguments of a variadic function are stored to the
   2976     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
   2977     // the result of va_next.
   2978     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
   2979       // Get an existing live-in vreg, or add a new one.
   2980       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
   2981       if (!VReg)
   2982         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
   2983 
   2984       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   2985       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2986                                    MachinePointerInfo(), false, false, 0);
   2987       MemOps.push_back(Store);
   2988       // Increment the address by four for the next argument to store
   2989       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   2990       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   2991     }
   2992 
   2993     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
   2994     // is set.
   2995     // The double arguments are stored to the VarArgsFrameIndex
   2996     // on the stack.
   2997     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
   2998       // Get an existing live-in vreg, or add a new one.
   2999       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
   3000       if (!VReg)
   3001         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
   3002 
   3003       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
   3004       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3005                                    MachinePointerInfo(), false, false, 0);
   3006       MemOps.push_back(Store);
   3007       // Increment the address by eight for the next argument to store
   3008       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
   3009                                          PtrVT);
   3010       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3011     }
   3012   }
   3013 
   3014   if (!MemOps.empty())
   3015     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3016 
   3017   return Chain;
   3018 }
   3019 
   3020 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3021 // value to MVT::i64 and then truncate to the correct register size.
   3022 SDValue
   3023 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
   3024                                      SelectionDAG &DAG, SDValue ArgVal,
   3025                                      SDLoc dl) const {
   3026   if (Flags.isSExt())
   3027     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
   3028                          DAG.getValueType(ObjectVT));
   3029   else if (Flags.isZExt())
   3030     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
   3031                          DAG.getValueType(ObjectVT));
   3032 
   3033   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
   3034 }
   3035 
   3036 SDValue
   3037 PPCTargetLowering::LowerFormalArguments_64SVR4(
   3038                                       SDValue Chain,
   3039                                       CallingConv::ID CallConv, bool isVarArg,
   3040                                       const SmallVectorImpl<ISD::InputArg>
   3041                                         &Ins,
   3042                                       SDLoc dl, SelectionDAG &DAG,
   3043                                       SmallVectorImpl<SDValue> &InVals) const {
   3044   // TODO: add description of PPC stack frame format, or at least some docs.
   3045   //
   3046   bool isELFv2ABI = Subtarget.isELFv2ABI();
   3047   bool isLittleEndian = Subtarget.isLittleEndian();
   3048   MachineFunction &MF = DAG.getMachineFunction();
   3049   MachineFrameInfo *MFI = MF.getFrameInfo();
   3050   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3051 
   3052   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   3053          "fastcc not supported on varargs functions");
   3054 
   3055   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   3056   // Potential tail calls could cause overwriting of argument stack slots.
   3057   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3058                        (CallConv == CallingConv::Fast));
   3059   unsigned PtrByteSize = 8;
   3060   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3061 
   3062   static const MCPhysReg GPR[] = {
   3063     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3064     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3065   };
   3066   static const MCPhysReg VR[] = {
   3067     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3068     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3069   };
   3070   static const MCPhysReg VSRH[] = {
   3071     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   3072     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   3073   };
   3074 
   3075   const unsigned Num_GPR_Regs = array_lengthof(GPR);
   3076   const unsigned Num_FPR_Regs = 13;
   3077   const unsigned Num_VR_Regs  = array_lengthof(VR);
   3078   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
   3079 
   3080   // Do a first pass over the arguments to determine whether the ABI
   3081   // guarantees that our caller has allocated the parameter save area
   3082   // on its stack frame.  In the ELFv1 ABI, this is always the case;
   3083   // in the ELFv2 ABI, it is true if this is a vararg function or if
   3084   // any parameter is located in a stack slot.
   3085 
   3086   bool HasParameterArea = !isELFv2ABI || isVarArg;
   3087   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
   3088   unsigned NumBytes = LinkageSize;
   3089   unsigned AvailableFPRs = Num_FPR_Regs;
   3090   unsigned AvailableVRs = Num_VR_Regs;
   3091   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   3092     if (Ins[i].Flags.isNest())
   3093       continue;
   3094 
   3095     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
   3096                                PtrByteSize, LinkageSize, ParamAreaSize,
   3097                                NumBytes, AvailableFPRs, AvailableVRs,
   3098                                Subtarget.hasQPX()))
   3099       HasParameterArea = true;
   3100   }
   3101 
   3102   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3103   // entry to a function on PPC, the arguments start after the linkage area,
   3104   // although the first ones are often in registers.
   3105 
   3106   unsigned ArgOffset = LinkageSize;
   3107   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3108   unsigned &QFPR_idx = FPR_idx;
   3109   SmallVector<SDValue, 8> MemOps;
   3110   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3111   unsigned CurArgIdx = 0;
   3112   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3113     SDValue ArgVal;
   3114     bool needsLoad = false;
   3115     EVT ObjectVT = Ins[ArgNo].VT;
   3116     EVT OrigVT = Ins[ArgNo].ArgVT;
   3117     unsigned ObjSize = ObjectVT.getStoreSize();
   3118     unsigned ArgSize = ObjSize;
   3119     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3120     if (Ins[ArgNo].isOrigArg()) {
   3121       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3122       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3123     }
   3124     // We re-align the argument offset for each argument, except when using the
   3125     // fast calling convention, when we need to make sure we do that only when
   3126     // we'll actually use a stack slot.
   3127     unsigned CurArgOffset, Align;
   3128     auto ComputeArgOffset = [&]() {
   3129       /* Respect alignment of argument on the stack.  */
   3130       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
   3131       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   3132       CurArgOffset = ArgOffset;
   3133     };
   3134 
   3135     if (CallConv != CallingConv::Fast) {
   3136       ComputeArgOffset();
   3137 
   3138       /* Compute GPR index associated with argument offset.  */
   3139       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3140       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
   3141     }
   3142 
   3143     // FIXME the codegen can be much improved in some cases.
   3144     // We do not have to keep everything in memory.
   3145     if (Flags.isByVal()) {
   3146       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3147 
   3148       if (CallConv == CallingConv::Fast)
   3149         ComputeArgOffset();
   3150 
   3151       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3152       ObjSize = Flags.getByValSize();
   3153       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3154       // Empty aggregate parameters do not take up registers.  Examples:
   3155       //   struct { } a;
   3156       //   union  { } b;
   3157       //   int c[0];
   3158       // etc.  However, we have to provide a place-holder in InVals, so
   3159       // pretend we have an 8-byte item at the current address for that
   3160       // purpose.
   3161       if (!ObjSize) {
   3162         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3163         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3164         InVals.push_back(FIN);
   3165         continue;
   3166       }
   3167 
   3168       // Create a stack object covering all stack doublewords occupied
   3169       // by the argument.  If the argument is (fully or partially) on
   3170       // the stack, or if the argument is fully in registers but the
   3171       // caller has allocated the parameter save anyway, we can refer
   3172       // directly to the caller's stack frame.  Otherwise, create a
   3173       // local copy in our own frame.
   3174       int FI;
   3175       if (HasParameterArea ||
   3176           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
   3177         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
   3178       else
   3179         FI = MFI->CreateStackObject(ArgSize, Align, false);
   3180       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3181 
   3182       // Handle aggregates smaller than 8 bytes.
   3183       if (ObjSize < PtrByteSize) {
   3184         // The value of the object is its address, which differs from the
   3185         // address of the enclosing doubleword on big-endian systems.
   3186         SDValue Arg = FIN;
   3187         if (!isLittleEndian) {
   3188           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
   3189           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
   3190         }
   3191         InVals.push_back(Arg);
   3192 
   3193         if (GPR_idx != Num_GPR_Regs) {
   3194           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3195           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3196           SDValue Store;
   3197 
   3198           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
   3199             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
   3200                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
   3201             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
   3202                                       MachinePointerInfo(&*FuncArg), ObjType,
   3203                                       false, false, 0);
   3204           } else {
   3205             // For sizes that don't fit a truncating store (3, 5, 6, 7),
   3206             // store the whole register as-is to the parameter save area
   3207             // slot.
   3208             Store =
   3209                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3210                              MachinePointerInfo(&*FuncArg), false, false, 0);
   3211           }
   3212 
   3213           MemOps.push_back(Store);
   3214         }
   3215         // Whether we copied from a register or not, advance the offset
   3216         // into the parameter save area by a full doubleword.
   3217         ArgOffset += PtrByteSize;
   3218         continue;
   3219       }
   3220 
   3221       // The value of the object is its address, which is the address of
   3222       // its first stack doubleword.
   3223       InVals.push_back(FIN);
   3224 
   3225       // Store whatever pieces of the object are in registers to memory.
   3226       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3227         if (GPR_idx == Num_GPR_Regs)
   3228           break;
   3229 
   3230         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3231         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3232         SDValue Addr = FIN;
   3233         if (j) {
   3234           SDValue Off = DAG.getConstant(j, dl, PtrVT);
   3235           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
   3236         }
   3237         SDValue Store =
   3238             DAG.getStore(Val.getValue(1), dl, Val, Addr,
   3239                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
   3240         MemOps.push_back(Store);
   3241         ++GPR_idx;
   3242       }
   3243       ArgOffset += ArgSize;
   3244       continue;
   3245     }
   3246 
   3247     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3248     default: llvm_unreachable("Unhandled argument type!");
   3249     case MVT::i1:
   3250     case MVT::i32:
   3251     case MVT::i64:
   3252       if (Flags.isNest()) {
   3253         // The 'nest' parameter, if any, is passed in R11.
   3254         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
   3255         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3256 
   3257         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3258           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3259 
   3260         break;
   3261       }
   3262 
   3263       // These can be scalar arguments or elements of an integer array type
   3264       // passed directly.  Clang may use those instead of "byval" aggregate
   3265       // types to avoid forcing arguments to memory unnecessarily.
   3266       if (GPR_idx != Num_GPR_Regs) {
   3267         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3268         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3269 
   3270         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3271           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3272           // value to MVT::i64 and then truncate to the correct register size.
   3273           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3274       } else {
   3275         if (CallConv == CallingConv::Fast)
   3276           ComputeArgOffset();
   3277 
   3278         needsLoad = true;
   3279         ArgSize = PtrByteSize;
   3280       }
   3281       if (CallConv != CallingConv::Fast || needsLoad)
   3282         ArgOffset += 8;
   3283       break;
   3284 
   3285     case MVT::f32:
   3286     case MVT::f64:
   3287       // These can be scalar arguments or elements of a float array type
   3288       // passed directly.  The latter are used to implement ELFv2 homogenous
   3289       // float aggregates.
   3290       if (FPR_idx != Num_FPR_Regs) {
   3291         unsigned VReg;
   3292 
   3293         if (ObjectVT == MVT::f32)
   3294           VReg = MF.addLiveIn(FPR[FPR_idx],
   3295                               Subtarget.hasP8Vector()
   3296                                   ? &PPC::VSSRCRegClass
   3297                                   : &PPC::F4RCRegClass);
   3298         else
   3299           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
   3300                                                 ? &PPC::VSFRCRegClass
   3301                                                 : &PPC::F8RCRegClass);
   3302 
   3303         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3304         ++FPR_idx;
   3305       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
   3306         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   3307         // once we support fp <-> gpr moves.
   3308 
   3309         // This can only ever happen in the presence of f32 array types,
   3310         // since otherwise we never run out of FPRs before running out
   3311         // of GPRs.
   3312         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
   3313         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3314 
   3315         if (ObjectVT == MVT::f32) {
   3316           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
   3317             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
   3318                                  DAG.getConstant(32, dl, MVT::i32));
   3319           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
   3320         }
   3321 
   3322         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
   3323       } else {
   3324         if (CallConv == CallingConv::Fast)
   3325           ComputeArgOffset();
   3326 
   3327         needsLoad = true;
   3328       }
   3329 
   3330       // When passing an array of floats, the array occupies consecutive
   3331       // space in the argument area; only round up to the next doubleword
   3332       // at the end of the array.  Otherwise, each float takes 8 bytes.
   3333       if (CallConv != CallingConv::Fast || needsLoad) {
   3334         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
   3335         ArgOffset += ArgSize;
   3336         if (Flags.isInConsecutiveRegsLast())
   3337           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3338       }
   3339       break;
   3340     case MVT::v4f32:
   3341     case MVT::v4i32:
   3342     case MVT::v8i16:
   3343     case MVT::v16i8:
   3344     case MVT::v2f64:
   3345     case MVT::v2i64:
   3346     case MVT::v1i128:
   3347       if (!Subtarget.hasQPX()) {
   3348       // These can be scalar arguments or elements of a vector array type
   3349       // passed directly.  The latter are used to implement ELFv2 homogenous
   3350       // vector aggregates.
   3351       if (VR_idx != Num_VR_Regs) {
   3352         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
   3353                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
   3354                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3355         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3356         ++VR_idx;
   3357       } else {
   3358         if (CallConv == CallingConv::Fast)
   3359           ComputeArgOffset();
   3360 
   3361         needsLoad = true;
   3362       }
   3363       if (CallConv != CallingConv::Fast || needsLoad)
   3364         ArgOffset += 16;
   3365       break;
   3366       } // not QPX
   3367 
   3368       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
   3369              "Invalid QPX parameter type");
   3370       /* fall through */
   3371 
   3372     case MVT::v4f64:
   3373     case MVT::v4i1:
   3374       // QPX vectors are treated like their scalar floating-point subregisters
   3375       // (except that they're larger).
   3376       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
   3377       if (QFPR_idx != Num_QFPR_Regs) {
   3378         const TargetRegisterClass *RC;
   3379         switch (ObjectVT.getSimpleVT().SimpleTy) {
   3380         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
   3381         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
   3382         default:         RC = &PPC::QBRCRegClass; break;
   3383         }
   3384 
   3385         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
   3386         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3387         ++QFPR_idx;
   3388       } else {
   3389         if (CallConv == CallingConv::Fast)
   3390           ComputeArgOffset();
   3391         needsLoad = true;
   3392       }
   3393       if (CallConv != CallingConv::Fast || needsLoad)
   3394         ArgOffset += Sz;
   3395       break;
   3396     }
   3397 
   3398     // We need to load the argument to a virtual register if we determined
   3399     // above that we ran out of physical registers of the appropriate type.
   3400     if (needsLoad) {
   3401       if (ObjSize < ArgSize && !isLittleEndian)
   3402         CurArgOffset += ArgSize - ObjSize;
   3403       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
   3404       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3405       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3406                            false, false, false, 0);
   3407     }
   3408 
   3409     InVals.push_back(ArgVal);
   3410   }
   3411 
   3412   // Area that is at least reserved in the caller of this function.
   3413   unsigned MinReservedArea;
   3414   if (HasParameterArea)
   3415     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
   3416   else
   3417     MinReservedArea = LinkageSize;
   3418 
   3419   // Set the size that is at least reserved in caller of this function.  Tail
   3420   // call optimized functions' reserved stack space needs to be aligned so that
   3421   // taking the difference between two stack areas will result in an aligned
   3422   // stack.
   3423   MinReservedArea =
   3424       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3425   FuncInfo->setMinReservedArea(MinReservedArea);
   3426 
   3427   // If the function takes variable number of arguments, make a frame index for
   3428   // the start of the first vararg value... for expansion of llvm.va_start.
   3429   if (isVarArg) {
   3430     int Depth = ArgOffset;
   3431 
   3432     FuncInfo->setVarArgsFrameIndex(
   3433       MFI->CreateFixedObject(PtrByteSize, Depth, true));
   3434     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3435 
   3436     // If this function is vararg, store any remaining integer argument regs
   3437     // to their spots on the stack so that they may be loaded by deferencing the
   3438     // result of va_next.
   3439     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   3440          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
   3441       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3442       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3443       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3444                                    MachinePointerInfo(), false, false, 0);
   3445       MemOps.push_back(Store);
   3446       // Increment the address by four for the next argument to store
   3447       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
   3448       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3449     }
   3450   }
   3451 
   3452   if (!MemOps.empty())
   3453     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3454 
   3455   return Chain;
   3456 }
   3457 
   3458 SDValue
   3459 PPCTargetLowering::LowerFormalArguments_Darwin(
   3460                                       SDValue Chain,
   3461                                       CallingConv::ID CallConv, bool isVarArg,
   3462                                       const SmallVectorImpl<ISD::InputArg>
   3463                                         &Ins,
   3464                                       SDLoc dl, SelectionDAG &DAG,
   3465                                       SmallVectorImpl<SDValue> &InVals) const {
   3466   // TODO: add description of PPC stack frame format, or at least some docs.
   3467   //
   3468   MachineFunction &MF = DAG.getMachineFunction();
   3469   MachineFrameInfo *MFI = MF.getFrameInfo();
   3470   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   3471 
   3472   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   3473   bool isPPC64 = PtrVT == MVT::i64;
   3474   // Potential tail calls could cause overwriting of argument stack slots.
   3475   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
   3476                        (CallConv == CallingConv::Fast));
   3477   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   3478   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   3479   unsigned ArgOffset = LinkageSize;
   3480   // Area that is at least reserved in caller of this function.
   3481   unsigned MinReservedArea = ArgOffset;
   3482 
   3483   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   3484     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   3485     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   3486   };
   3487   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   3488     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   3489     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   3490   };
   3491   static const MCPhysReg VR[] = {
   3492     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   3493     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   3494   };
   3495 
   3496   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
   3497   const unsigned Num_FPR_Regs = 13;
   3498   const unsigned Num_VR_Regs  = array_lengthof( VR);
   3499 
   3500   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   3501 
   3502   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   3503 
   3504   // In 32-bit non-varargs functions, the stack space for vectors is after the
   3505   // stack space for non-vectors.  We do not use this space unless we have
   3506   // too many vectors to fit in registers, something that only occurs in
   3507   // constructed examples:), but we have to walk the arglist to figure
   3508   // that out...for the pathological case, compute VecArgOffset as the
   3509   // start of the vector parameter area.  Computing VecArgOffset is the
   3510   // entire point of the following loop.
   3511   unsigned VecArgOffset = ArgOffset;
   3512   if (!isVarArg && !isPPC64) {
   3513     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
   3514          ++ArgNo) {
   3515       EVT ObjectVT = Ins[ArgNo].VT;
   3516       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3517 
   3518       if (Flags.isByVal()) {
   3519         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
   3520         unsigned ObjSize = Flags.getByValSize();
   3521         unsigned ArgSize =
   3522                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3523         VecArgOffset += ArgSize;
   3524         continue;
   3525       }
   3526 
   3527       switch(ObjectVT.getSimpleVT().SimpleTy) {
   3528       default: llvm_unreachable("Unhandled argument type!");
   3529       case MVT::i1:
   3530       case MVT::i32:
   3531       case MVT::f32:
   3532         VecArgOffset += 4;
   3533         break;
   3534       case MVT::i64:  // PPC64
   3535       case MVT::f64:
   3536         // FIXME: We are guaranteed to be !isPPC64 at this point.
   3537         // Does MVT::i64 apply?
   3538         VecArgOffset += 8;
   3539         break;
   3540       case MVT::v4f32:
   3541       case MVT::v4i32:
   3542       case MVT::v8i16:
   3543       case MVT::v16i8:
   3544         // Nothing to do, we're only looking at Nonvector args here.
   3545         break;
   3546       }
   3547     }
   3548   }
   3549   // We've found where the vector parameter area in memory is.  Skip the
   3550   // first 12 parameters; these don't use that memory.
   3551   VecArgOffset = ((VecArgOffset+15)/16)*16;
   3552   VecArgOffset += 12*16;
   3553 
   3554   // Add DAG nodes to load the arguments or copy them out of registers.  On
   3555   // entry to a function on PPC, the arguments start after the linkage area,
   3556   // although the first ones are often in registers.
   3557 
   3558   SmallVector<SDValue, 8> MemOps;
   3559   unsigned nAltivecParamsAtEnd = 0;
   3560   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
   3561   unsigned CurArgIdx = 0;
   3562   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
   3563     SDValue ArgVal;
   3564     bool needsLoad = false;
   3565     EVT ObjectVT = Ins[ArgNo].VT;
   3566     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
   3567     unsigned ArgSize = ObjSize;
   3568     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
   3569     if (Ins[ArgNo].isOrigArg()) {
   3570       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
   3571       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
   3572     }
   3573     unsigned CurArgOffset = ArgOffset;
   3574 
   3575     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
   3576     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
   3577         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
   3578       if (isVarArg || isPPC64) {
   3579         MinReservedArea = ((MinReservedArea+15)/16)*16;
   3580         MinReservedArea += CalculateStackSlotSize(ObjectVT,
   3581                                                   Flags,
   3582                                                   PtrByteSize);
   3583       } else  nAltivecParamsAtEnd++;
   3584     } else
   3585       // Calculate min reserved area.
   3586       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
   3587                                                 Flags,
   3588                                                 PtrByteSize);
   3589 
   3590     // FIXME the codegen can be much improved in some cases.
   3591     // We do not have to keep everything in memory.
   3592     if (Flags.isByVal()) {
   3593       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
   3594 
   3595       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
   3596       ObjSize = Flags.getByValSize();
   3597       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   3598       // Objects of size 1 and 2 are right justified, everything else is
   3599       // left justified.  This means the memory address is adjusted forwards.
   3600       if (ObjSize==1 || ObjSize==2) {
   3601         CurArgOffset = CurArgOffset + (4 - ObjSize);
   3602       }
   3603       // The value of the object is its address.
   3604       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
   3605       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3606       InVals.push_back(FIN);
   3607       if (ObjSize==1 || ObjSize==2) {
   3608         if (GPR_idx != Num_GPR_Regs) {
   3609           unsigned VReg;
   3610           if (isPPC64)
   3611             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3612           else
   3613             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3614           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3615           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
   3616           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
   3617                                             MachinePointerInfo(&*FuncArg),
   3618                                             ObjType, false, false, 0);
   3619           MemOps.push_back(Store);
   3620           ++GPR_idx;
   3621         }
   3622 
   3623         ArgOffset += PtrByteSize;
   3624 
   3625         continue;
   3626       }
   3627       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
   3628         // Store whatever pieces of the object are in registers
   3629         // to memory.  ArgOffset will be the address of the beginning
   3630         // of the object.
   3631         if (GPR_idx != Num_GPR_Regs) {
   3632           unsigned VReg;
   3633           if (isPPC64)
   3634             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3635           else
   3636             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3637           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
   3638           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3639           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3640           SDValue Store =
   3641               DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3642                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
   3643           MemOps.push_back(Store);
   3644           ++GPR_idx;
   3645           ArgOffset += PtrByteSize;
   3646         } else {
   3647           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
   3648           break;
   3649         }
   3650       }
   3651       continue;
   3652     }
   3653 
   3654     switch (ObjectVT.getSimpleVT().SimpleTy) {
   3655     default: llvm_unreachable("Unhandled argument type!");
   3656     case MVT::i1:
   3657     case MVT::i32:
   3658       if (!isPPC64) {
   3659         if (GPR_idx != Num_GPR_Regs) {
   3660           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3661           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3662 
   3663           if (ObjectVT == MVT::i1)
   3664             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
   3665 
   3666           ++GPR_idx;
   3667         } else {
   3668           needsLoad = true;
   3669           ArgSize = PtrByteSize;
   3670         }
   3671         // All int arguments reserve stack space in the Darwin ABI.
   3672         ArgOffset += PtrByteSize;
   3673         break;
   3674       }
   3675       // FALLTHROUGH
   3676     case MVT::i64:  // PPC64
   3677       if (GPR_idx != Num_GPR_Regs) {
   3678         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3679         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   3680 
   3681         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
   3682           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
   3683           // value to MVT::i64 and then truncate to the correct register size.
   3684           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
   3685 
   3686         ++GPR_idx;
   3687       } else {
   3688         needsLoad = true;
   3689         ArgSize = PtrByteSize;
   3690       }
   3691       // All int arguments reserve stack space in the Darwin ABI.
   3692       ArgOffset += 8;
   3693       break;
   3694 
   3695     case MVT::f32:
   3696     case MVT::f64:
   3697       // Every 4 bytes of argument space consumes one of the GPRs available for
   3698       // argument passing.
   3699       if (GPR_idx != Num_GPR_Regs) {
   3700         ++GPR_idx;
   3701         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
   3702           ++GPR_idx;
   3703       }
   3704       if (FPR_idx != Num_FPR_Regs) {
   3705         unsigned VReg;
   3706 
   3707         if (ObjectVT == MVT::f32)
   3708           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
   3709         else
   3710           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
   3711 
   3712         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3713         ++FPR_idx;
   3714       } else {
   3715         needsLoad = true;
   3716       }
   3717 
   3718       // All FP arguments reserve stack space in the Darwin ABI.
   3719       ArgOffset += isPPC64 ? 8 : ObjSize;
   3720       break;
   3721     case MVT::v4f32:
   3722     case MVT::v4i32:
   3723     case MVT::v8i16:
   3724     case MVT::v16i8:
   3725       // Note that vector arguments in registers don't reserve stack space,
   3726       // except in varargs functions.
   3727       if (VR_idx != Num_VR_Regs) {
   3728         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
   3729         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
   3730         if (isVarArg) {
   3731           while ((ArgOffset % 16) != 0) {
   3732             ArgOffset += PtrByteSize;
   3733             if (GPR_idx != Num_GPR_Regs)
   3734               GPR_idx++;
   3735           }
   3736           ArgOffset += 16;
   3737           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
   3738         }
   3739         ++VR_idx;
   3740       } else {
   3741         if (!isVarArg && !isPPC64) {
   3742           // Vectors go after all the nonvectors.
   3743           CurArgOffset = VecArgOffset;
   3744           VecArgOffset += 16;
   3745         } else {
   3746           // Vectors are aligned.
   3747           ArgOffset = ((ArgOffset+15)/16)*16;
   3748           CurArgOffset = ArgOffset;
   3749           ArgOffset += 16;
   3750         }
   3751         needsLoad = true;
   3752       }
   3753       break;
   3754     }
   3755 
   3756     // We need to load the argument to a virtual register if we determined above
   3757     // that we ran out of physical registers of the appropriate type.
   3758     if (needsLoad) {
   3759       int FI = MFI->CreateFixedObject(ObjSize,
   3760                                       CurArgOffset + (ArgSize - ObjSize),
   3761                                       isImmutable);
   3762       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3763       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
   3764                            false, false, false, 0);
   3765     }
   3766 
   3767     InVals.push_back(ArgVal);
   3768   }
   3769 
   3770   // Allow for Altivec parameters at the end, if needed.
   3771   if (nAltivecParamsAtEnd) {
   3772     MinReservedArea = ((MinReservedArea+15)/16)*16;
   3773     MinReservedArea += 16*nAltivecParamsAtEnd;
   3774   }
   3775 
   3776   // Area that is at least reserved in the caller of this function.
   3777   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
   3778 
   3779   // Set the size that is at least reserved in caller of this function.  Tail
   3780   // call optimized functions' reserved stack space needs to be aligned so that
   3781   // taking the difference between two stack areas will result in an aligned
   3782   // stack.
   3783   MinReservedArea =
   3784       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
   3785   FuncInfo->setMinReservedArea(MinReservedArea);
   3786 
   3787   // If the function takes variable number of arguments, make a frame index for
   3788   // the start of the first vararg value... for expansion of llvm.va_start.
   3789   if (isVarArg) {
   3790     int Depth = ArgOffset;
   3791 
   3792     FuncInfo->setVarArgsFrameIndex(
   3793       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
   3794                              Depth, true));
   3795     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   3796 
   3797     // If this function is vararg, store any remaining integer argument regs
   3798     // to their spots on the stack so that they may be loaded by deferencing the
   3799     // result of va_next.
   3800     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
   3801       unsigned VReg;
   3802 
   3803       if (isPPC64)
   3804         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
   3805       else
   3806         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
   3807 
   3808       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
   3809       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3810                                    MachinePointerInfo(), false, false, 0);
   3811       MemOps.push_back(Store);
   3812       // Increment the address by four for the next argument to store
   3813       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
   3814       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
   3815     }
   3816   }
   3817 
   3818   if (!MemOps.empty())
   3819     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3820 
   3821   return Chain;
   3822 }
   3823 
   3824 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
   3825 /// adjusted to accommodate the arguments for the tailcall.
   3826 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
   3827                                    unsigned ParamSize) {
   3828 
   3829   if (!isTailCall) return 0;
   3830 
   3831   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
   3832   unsigned CallerMinReservedArea = FI->getMinReservedArea();
   3833   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
   3834   // Remember only if the new adjustement is bigger.
   3835   if (SPDiff < FI->getTailCallSPDelta())
   3836     FI->setTailCallSPDelta(SPDiff);
   3837 
   3838   return SPDiff;
   3839 }
   3840 
   3841 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   3842 /// for tail call optimization. Targets which want to do tail call
   3843 /// optimization should implement this function.
   3844 bool
   3845 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   3846                                                      CallingConv::ID CalleeCC,
   3847                                                      bool isVarArg,
   3848                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   3849                                                      SelectionDAG& DAG) const {
   3850   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
   3851     return false;
   3852 
   3853   // Variable argument functions are not supported.
   3854   if (isVarArg)
   3855     return false;
   3856 
   3857   MachineFunction &MF = DAG.getMachineFunction();
   3858   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
   3859   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
   3860     // Functions containing by val parameters are not supported.
   3861     for (unsigned i = 0; i != Ins.size(); i++) {
   3862        ISD::ArgFlagsTy Flags = Ins[i].Flags;
   3863        if (Flags.isByVal()) return false;
   3864     }
   3865 
   3866     // Non-PIC/GOT tail calls are supported.
   3867     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
   3868       return true;
   3869 
   3870     // At the moment we can only do local tail calls (in same module, hidden
   3871     // or protected) if we are generating PIC.
   3872     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   3873       return G->getGlobal()->hasHiddenVisibility()
   3874           || G->getGlobal()->hasProtectedVisibility();
   3875   }
   3876 
   3877   return false;
   3878 }
   3879 
   3880 /// isCallCompatibleAddress - Return the immediate to use if the specified
   3881 /// 32-bit value is representable in the immediate field of a BxA instruction.
   3882 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
   3883   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   3884   if (!C) return nullptr;
   3885 
   3886   int Addr = C->getZExtValue();
   3887   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
   3888       SignExtend32<26>(Addr) != Addr)
   3889     return nullptr;  // Top 6 bits have to be sext of immediate.
   3890 
   3891   return DAG.getConstant((int)C->getZExtValue() >> 2, SDLoc(Op),
   3892                          DAG.getTargetLoweringInfo().getPointerTy(
   3893                              DAG.getDataLayout())).getNode();
   3894 }
   3895 
   3896 namespace {
   3897 
   3898 struct TailCallArgumentInfo {
   3899   SDValue Arg;
   3900   SDValue FrameIdxOp;
   3901   int       FrameIdx;
   3902 
   3903   TailCallArgumentInfo() : FrameIdx(0) {}
   3904 };
   3905 }
   3906 
   3907 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
   3908 static void
   3909 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
   3910                                            SDValue Chain,
   3911                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
   3912                    SmallVectorImpl<SDValue> &MemOpChains,
   3913                    SDLoc dl) {
   3914   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
   3915     SDValue Arg = TailCallArgs[i].Arg;
   3916     SDValue FIN = TailCallArgs[i].FrameIdxOp;
   3917     int FI = TailCallArgs[i].FrameIdx;
   3918     // Store relative to framepointer.
   3919     MemOpChains.push_back(DAG.getStore(
   3920         Chain, dl, Arg, FIN,
   3921         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
   3922         false, 0));
   3923   }
   3924 }
   3925 
   3926 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
   3927 /// the appropriate stack slot for the tail call optimized function call.
   3928 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
   3929                                                MachineFunction &MF,
   3930                                                SDValue Chain,
   3931                                                SDValue OldRetAddr,
   3932                                                SDValue OldFP,
   3933                                                int SPDiff,
   3934                                                bool isPPC64,
   3935                                                bool isDarwinABI,
   3936                                                SDLoc dl) {
   3937   if (SPDiff) {
   3938     // Calculate the new stack slot for the return address.
   3939     int SlotSize = isPPC64 ? 8 : 4;
   3940     const PPCFrameLowering *FL =
   3941         MF.getSubtarget<PPCSubtarget>().getFrameLowering();
   3942     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
   3943     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
   3944                                                           NewRetAddrLoc, true);
   3945     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3946     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
   3947     Chain = DAG.getStore(
   3948         Chain, dl, OldRetAddr, NewRetAddrFrIdx,
   3949         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewRetAddr),
   3950         false, false, 0);
   3951 
   3952     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
   3953     // slot as the FP is never overwritten.
   3954     if (isDarwinABI) {
   3955       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
   3956       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
   3957                                                           true);
   3958       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
   3959       Chain = DAG.getStore(
   3960           Chain, dl, OldFP, NewFramePtrIdx,
   3961           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
   3962           false, false, 0);
   3963     }
   3964   }
   3965   return Chain;
   3966 }
   3967 
   3968 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
   3969 /// the position of the argument.
   3970 static void
   3971 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
   3972                          SDValue Arg, int SPDiff, unsigned ArgOffset,
   3973                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
   3974   int Offset = ArgOffset + SPDiff;
   3975   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
   3976   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   3977   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
   3978   SDValue FIN = DAG.getFrameIndex(FI, VT);
   3979   TailCallArgumentInfo Info;
   3980   Info.Arg = Arg;
   3981   Info.FrameIdxOp = FIN;
   3982   Info.FrameIdx = FI;
   3983   TailCallArguments.push_back(Info);
   3984 }
   3985 
   3986 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
   3987 /// stack slot. Returns the chain as result and the loaded frame pointers in
   3988 /// LROpOut/FPOpout. Used when tail calling.
   3989 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
   3990                                                         int SPDiff,
   3991                                                         SDValue Chain,
   3992                                                         SDValue &LROpOut,
   3993                                                         SDValue &FPOpOut,
   3994                                                         bool isDarwinABI,
   3995                                                         SDLoc dl) const {
   3996   if (SPDiff) {
   3997     // Load the LR and FP stack slot for later adjusting.
   3998     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
   3999     LROpOut = getReturnAddrFrameIndex(DAG);
   4000     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
   4001                           false, false, false, 0);
   4002     Chain = SDValue(LROpOut.getNode(), 1);
   4003 
   4004     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
   4005     // slot as the FP is never overwritten.
   4006     if (isDarwinABI) {
   4007       FPOpOut = getFramePointerFrameIndex(DAG);
   4008       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
   4009                             false, false, false, 0);
   4010       Chain = SDValue(FPOpOut.getNode(), 1);
   4011     }
   4012   }
   4013   return Chain;
   4014 }
   4015 
   4016 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   4017 /// by "Src" to address "Dst" of size "Size".  Alignment information is
   4018 /// specified by the specific parameter attribute. The copy will be passed as
   4019 /// a byval function parameter.
   4020 /// Sometimes what we are copying is the end of a larger object, the part that
   4021 /// does not fit in registers.
   4022 static SDValue
   4023 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   4024                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   4025                           SDLoc dl) {
   4026   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
   4027   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   4028                        false, false, false, MachinePointerInfo(),
   4029                        MachinePointerInfo());
   4030 }
   4031 
   4032 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
   4033 /// tail calls.
   4034 static void
   4035 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
   4036                  SDValue Arg, SDValue PtrOff, int SPDiff,
   4037                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
   4038                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
   4039                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
   4040                  SDLoc dl) {
   4041   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4042   if (!isTailCall) {
   4043     if (isVector) {
   4044       SDValue StackPtr;
   4045       if (isPPC64)
   4046         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4047       else
   4048         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4049       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   4050                            DAG.getConstant(ArgOffset, dl, PtrVT));
   4051     }
   4052     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4053                                        MachinePointerInfo(), false, false, 0));
   4054   // Calculate and remember argument location.
   4055   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
   4056                                   TailCallArguments);
   4057 }
   4058 
   4059 static
   4060 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
   4061                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
   4062                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
   4063                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
   4064   MachineFunction &MF = DAG.getMachineFunction();
   4065 
   4066   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
   4067   // might overwrite each other in case of tail call optimization.
   4068   SmallVector<SDValue, 8> MemOpChains2;
   4069   // Do not flag preceding copytoreg stuff together with the following stuff.
   4070   InFlag = SDValue();
   4071   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
   4072                                     MemOpChains2, dl);
   4073   if (!MemOpChains2.empty())
   4074     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
   4075 
   4076   // Store the return address to the appropriate stack slot.
   4077   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
   4078                                         isPPC64, isDarwinABI, dl);
   4079 
   4080   // Emit callseq_end just before tailcall node.
   4081   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4082                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   4083   InFlag = Chain.getValue(1);
   4084 }
   4085 
   4086 // Is this global address that of a function that can be called by name? (as
   4087 // opposed to something that must hold a descriptor for an indirect call).
   4088 static bool isFunctionGlobalAddress(SDValue Callee) {
   4089   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   4090     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
   4091         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
   4092       return false;
   4093 
   4094     return G->getGlobal()->getType()->getElementType()->isFunctionTy();
   4095   }
   4096 
   4097   return false;
   4098 }
   4099 
   4100 static
   4101 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
   4102                      SDValue &Chain, SDValue CallSeqStart, SDLoc dl, int SPDiff,
   4103                      bool isTailCall, bool IsPatchPoint, bool hasNest,
   4104                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
   4105                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
   4106                      ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
   4107 
   4108   bool isPPC64 = Subtarget.isPPC64();
   4109   bool isSVR4ABI = Subtarget.isSVR4ABI();
   4110   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4111 
   4112   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4113   NodeTys.push_back(MVT::Other);   // Returns a chain
   4114   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
   4115 
   4116   unsigned CallOpc = PPCISD::CALL;
   4117 
   4118   bool needIndirectCall = true;
   4119   if (!isSVR4ABI || !isPPC64)
   4120     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
   4121       // If this is an absolute destination address, use the munged value.
   4122       Callee = SDValue(Dest, 0);
   4123       needIndirectCall = false;
   4124     }
   4125 
   4126   if (isFunctionGlobalAddress(Callee)) {
   4127     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
   4128     // A call to a TLS address is actually an indirect call to a
   4129     // thread-specific pointer.
   4130     unsigned OpFlags = 0;
   4131     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
   4132          (Subtarget.getTargetTriple().isMacOSX() &&
   4133           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
   4134          !G->getGlobal()->isStrongDefinitionForLinker()) ||
   4135         (Subtarget.isTargetELF() && !isPPC64 &&
   4136          !G->getGlobal()->hasLocalLinkage() &&
   4137          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   4138       // PC-relative references to external symbols should go through $stub,
   4139       // unless we're building with the leopard linker or later, which
   4140       // automatically synthesizes these stubs.
   4141       OpFlags = PPCII::MO_PLT_OR_STUB;
   4142     }
   4143 
   4144     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
   4145     // every direct call is) turn it into a TargetGlobalAddress /
   4146     // TargetExternalSymbol node so that legalize doesn't hack it.
   4147     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
   4148                                         Callee.getValueType(), 0, OpFlags);
   4149     needIndirectCall = false;
   4150   }
   4151 
   4152   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   4153     unsigned char OpFlags = 0;
   4154 
   4155     if ((DAG.getTarget().getRelocationModel() != Reloc::Static &&
   4156          (Subtarget.getTargetTriple().isMacOSX() &&
   4157           Subtarget.getTargetTriple().isMacOSXVersionLT(10, 5))) ||
   4158         (Subtarget.isTargetELF() && !isPPC64 &&
   4159          DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
   4160       // PC-relative references to external symbols should go through $stub,
   4161       // unless we're building with the leopard linker or later, which
   4162       // automatically synthesizes these stubs.
   4163       OpFlags = PPCII::MO_PLT_OR_STUB;
   4164     }
   4165 
   4166     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
   4167                                          OpFlags);
   4168     needIndirectCall = false;
   4169   }
   4170 
   4171   if (IsPatchPoint) {
   4172     // We'll form an invalid direct call when lowering a patchpoint; the full
   4173     // sequence for an indirect call is complicated, and many of the
   4174     // instructions introduced might have side effects (and, thus, can't be
   4175     // removed later). The call itself will be removed as soon as the
   4176     // argument/return lowering is complete, so the fact that it has the wrong
   4177     // kind of operands should not really matter.
   4178     needIndirectCall = false;
   4179   }
   4180 
   4181   if (needIndirectCall) {
   4182     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
   4183     // to do the call, we can't use PPCISD::CALL.
   4184     SDValue MTCTROps[] = {Chain, Callee, InFlag};
   4185 
   4186     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
   4187       // Function pointers in the 64-bit SVR4 ABI do not point to the function
   4188       // entry point, but to the function descriptor (the function entry point
   4189       // address is part of the function descriptor though).
   4190       // The function descriptor is a three doubleword structure with the
   4191       // following fields: function entry point, TOC base address and
   4192       // environment pointer.
   4193       // Thus for a call through a function pointer, the following actions need
   4194       // to be performed:
   4195       //   1. Save the TOC of the caller in the TOC save area of its stack
   4196       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
   4197       //   2. Load the address of the function entry point from the function
   4198       //      descriptor.
   4199       //   3. Load the TOC of the callee from the function descriptor into r2.
   4200       //   4. Load the environment pointer from the function descriptor into
   4201       //      r11.
   4202       //   5. Branch to the function entry point address.
   4203       //   6. On return of the callee, the TOC of the caller needs to be
   4204       //      restored (this is done in FinishCall()).
   4205       //
   4206       // The loads are scheduled at the beginning of the call sequence, and the
   4207       // register copies are flagged together to ensure that no other
   4208       // operations can be scheduled in between. E.g. without flagging the
   4209       // copies together, a TOC access in the caller could be scheduled between
   4210       // the assignment of the callee TOC and the branch to the callee, which
   4211       // results in the TOC access going through the TOC of the callee instead
   4212       // of going through the TOC of the caller, which leads to incorrect code.
   4213 
   4214       // Load the address of the function entry point from the function
   4215       // descriptor.
   4216       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
   4217       if (LDChain.getValueType() == MVT::Glue)
   4218         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
   4219 
   4220       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
   4221 
   4222       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
   4223       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
   4224                                         false, false, LoadsInv, 8);
   4225 
   4226       // Load environment pointer into r11.
   4227       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
   4228       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
   4229       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
   4230                                        MPI.getWithOffset(16), false, false,
   4231                                        LoadsInv, 8);
   4232 
   4233       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
   4234       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
   4235       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
   4236                                    MPI.getWithOffset(8), false, false,
   4237                                    LoadsInv, 8);
   4238 
   4239       setUsesTOCBasePtr(DAG);
   4240       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
   4241                                         InFlag);
   4242       Chain = TOCVal.getValue(0);
   4243       InFlag = TOCVal.getValue(1);
   4244 
   4245       // If the function call has an explicit 'nest' parameter, it takes the
   4246       // place of the environment pointer.
   4247       if (!hasNest) {
   4248         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
   4249                                           InFlag);
   4250 
   4251         Chain = EnvVal.getValue(0);
   4252         InFlag = EnvVal.getValue(1);
   4253       }
   4254 
   4255       MTCTROps[0] = Chain;
   4256       MTCTROps[1] = LoadFuncPtr;
   4257       MTCTROps[2] = InFlag;
   4258     }
   4259 
   4260     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
   4261                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
   4262     InFlag = Chain.getValue(1);
   4263 
   4264     NodeTys.clear();
   4265     NodeTys.push_back(MVT::Other);
   4266     NodeTys.push_back(MVT::Glue);
   4267     Ops.push_back(Chain);
   4268     CallOpc = PPCISD::BCTRL;
   4269     Callee.setNode(nullptr);
   4270     // Add use of X11 (holding environment pointer)
   4271     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
   4272       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
   4273     // Add CTR register as callee so a bctr can be emitted later.
   4274     if (isTailCall)
   4275       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
   4276   }
   4277 
   4278   // If this is a direct call, pass the chain and the callee.
   4279   if (Callee.getNode()) {
   4280     Ops.push_back(Chain);
   4281     Ops.push_back(Callee);
   4282   }
   4283   // If this is a tail call add stack pointer delta.
   4284   if (isTailCall)
   4285     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
   4286 
   4287   // Add argument registers to the end of the list so that they are known live
   4288   // into the call.
   4289   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   4290     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   4291                                   RegsToPass[i].second.getValueType()));
   4292 
   4293   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
   4294   // into the call.
   4295   if (isSVR4ABI && isPPC64 && !IsPatchPoint) {
   4296     setUsesTOCBasePtr(DAG);
   4297     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
   4298   }
   4299 
   4300   return CallOpc;
   4301 }
   4302 
   4303 static
   4304 bool isLocalCall(const SDValue &Callee)
   4305 {
   4306   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   4307     return G->getGlobal()->isStrongDefinitionForLinker();
   4308   return false;
   4309 }
   4310 
   4311 SDValue
   4312 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   4313                                    CallingConv::ID CallConv, bool isVarArg,
   4314                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   4315                                    SDLoc dl, SelectionDAG &DAG,
   4316                                    SmallVectorImpl<SDValue> &InVals) const {
   4317 
   4318   SmallVector<CCValAssign, 16> RVLocs;
   4319   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   4320                     *DAG.getContext());
   4321   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
   4322 
   4323   // Copy all of the result registers out of their specified physreg.
   4324   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   4325     CCValAssign &VA = RVLocs[i];
   4326     assert(VA.isRegLoc() && "Can only return in registers!");
   4327 
   4328     SDValue Val = DAG.getCopyFromReg(Chain, dl,
   4329                                      VA.getLocReg(), VA.getLocVT(), InFlag);
   4330     Chain = Val.getValue(1);
   4331     InFlag = Val.getValue(2);
   4332 
   4333     switch (VA.getLocInfo()) {
   4334     default: llvm_unreachable("Unknown loc info!");
   4335     case CCValAssign::Full: break;
   4336     case CCValAssign::AExt:
   4337       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4338       break;
   4339     case CCValAssign::ZExt:
   4340       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
   4341                         DAG.getValueType(VA.getValVT()));
   4342       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4343       break;
   4344     case CCValAssign::SExt:
   4345       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
   4346                         DAG.getValueType(VA.getValVT()));
   4347       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
   4348       break;
   4349     }
   4350 
   4351     InVals.push_back(Val);
   4352   }
   4353 
   4354   return Chain;
   4355 }
   4356 
   4357 SDValue
   4358 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
   4359                               bool isTailCall, bool isVarArg, bool IsPatchPoint,
   4360                               bool hasNest, SelectionDAG &DAG,
   4361                               SmallVector<std::pair<unsigned, SDValue>, 8>
   4362                                 &RegsToPass,
   4363                               SDValue InFlag, SDValue Chain,
   4364                               SDValue CallSeqStart, SDValue &Callee,
   4365                               int SPDiff, unsigned NumBytes,
   4366                               const SmallVectorImpl<ISD::InputArg> &Ins,
   4367                               SmallVectorImpl<SDValue> &InVals,
   4368                               ImmutableCallSite *CS) const {
   4369 
   4370   std::vector<EVT> NodeTys;
   4371   SmallVector<SDValue, 8> Ops;
   4372   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
   4373                                  SPDiff, isTailCall, IsPatchPoint, hasNest,
   4374                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
   4375 
   4376   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
   4377   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
   4378     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
   4379 
   4380   // When performing tail call optimization the callee pops its arguments off
   4381   // the stack. Account for this here so these bytes can be pushed back on in
   4382   // PPCFrameLowering::eliminateCallFramePseudoInstr.
   4383   int BytesCalleePops =
   4384     (CallConv == CallingConv::Fast &&
   4385      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
   4386 
   4387   // Add a register mask operand representing the call-preserved registers.
   4388   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   4389   const uint32_t *Mask =
   4390       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
   4391   assert(Mask && "Missing call preserved mask for calling convention");
   4392   Ops.push_back(DAG.getRegisterMask(Mask));
   4393 
   4394   if (InFlag.getNode())
   4395     Ops.push_back(InFlag);
   4396 
   4397   // Emit tail call.
   4398   if (isTailCall) {
   4399     assert(((Callee.getOpcode() == ISD::Register &&
   4400              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
   4401             Callee.getOpcode() == ISD::TargetExternalSymbol ||
   4402             Callee.getOpcode() == ISD::TargetGlobalAddress ||
   4403             isa<ConstantSDNode>(Callee)) &&
   4404     "Expecting an global address, external symbol, absolute value or register");
   4405 
   4406     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
   4407     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
   4408   }
   4409 
   4410   // Add a NOP immediately after the branch instruction when using the 64-bit
   4411   // SVR4 ABI. At link time, if caller and callee are in a different module and
   4412   // thus have a different TOC, the call will be replaced with a call to a stub
   4413   // function which saves the current TOC, loads the TOC of the callee and
   4414   // branches to the callee. The NOP will be replaced with a load instruction
   4415   // which restores the TOC of the caller from the TOC save slot of the current
   4416   // stack frame. If caller and callee belong to the same module (and have the
   4417   // same TOC), the NOP will remain unchanged.
   4418 
   4419   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
   4420       !IsPatchPoint) {
   4421     if (CallOpc == PPCISD::BCTRL) {
   4422       // This is a call through a function pointer.
   4423       // Restore the caller TOC from the save area into R2.
   4424       // See PrepareCall() for more information about calls through function
   4425       // pointers in the 64-bit SVR4 ABI.
   4426       // We are using a target-specific load with r2 hard coded, because the
   4427       // result of a target-independent load would never go directly into r2,
   4428       // since r2 is a reserved register (which prevents the register allocator
   4429       // from allocating it), resulting in an additional register being
   4430       // allocated and an unnecessary move instruction being generated.
   4431       CallOpc = PPCISD::BCTRL_LOAD_TOC;
   4432 
   4433       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4434       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
   4435       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   4436       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   4437       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
   4438 
   4439       // The address needs to go after the chain input but before the flag (or
   4440       // any other variadic arguments).
   4441       Ops.insert(std::next(Ops.begin()), AddTOC);
   4442     } else if ((CallOpc == PPCISD::CALL) &&
   4443                (!isLocalCall(Callee) ||
   4444                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
   4445       // Otherwise insert NOP for non-local calls.
   4446       CallOpc = PPCISD::CALL_NOP;
   4447   }
   4448 
   4449   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   4450   InFlag = Chain.getValue(1);
   4451 
   4452   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4453                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
   4454                              InFlag, dl);
   4455   if (!Ins.empty())
   4456     InFlag = Chain.getValue(1);
   4457 
   4458   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   4459                          Ins, dl, DAG, InVals);
   4460 }
   4461 
   4462 SDValue
   4463 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   4464                              SmallVectorImpl<SDValue> &InVals) const {
   4465   SelectionDAG &DAG                     = CLI.DAG;
   4466   SDLoc &dl                             = CLI.DL;
   4467   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   4468   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   4469   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   4470   SDValue Chain                         = CLI.Chain;
   4471   SDValue Callee                        = CLI.Callee;
   4472   bool &isTailCall                      = CLI.IsTailCall;
   4473   CallingConv::ID CallConv              = CLI.CallConv;
   4474   bool isVarArg                         = CLI.IsVarArg;
   4475   bool IsPatchPoint                     = CLI.IsPatchPoint;
   4476   ImmutableCallSite *CS                 = CLI.CS;
   4477 
   4478   if (isTailCall)
   4479     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
   4480                                                    Ins, DAG);
   4481 
   4482   if (!isTailCall && CS && CS->isMustTailCall())
   4483     report_fatal_error("failed to perform tail call elimination on a call "
   4484                        "site marked musttail");
   4485 
   4486   if (Subtarget.isSVR4ABI()) {
   4487     if (Subtarget.isPPC64())
   4488       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
   4489                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4490                               dl, DAG, InVals, CS);
   4491     else
   4492       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
   4493                               isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4494                               dl, DAG, InVals, CS);
   4495   }
   4496 
   4497   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
   4498                           isTailCall, IsPatchPoint, Outs, OutVals, Ins,
   4499                           dl, DAG, InVals, CS);
   4500 }
   4501 
   4502 SDValue
   4503 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
   4504                                     CallingConv::ID CallConv, bool isVarArg,
   4505                                     bool isTailCall, bool IsPatchPoint,
   4506                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4507                                     const SmallVectorImpl<SDValue> &OutVals,
   4508                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4509                                     SDLoc dl, SelectionDAG &DAG,
   4510                                     SmallVectorImpl<SDValue> &InVals,
   4511                                     ImmutableCallSite *CS) const {
   4512   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
   4513   // of the 32-bit SVR4 ABI stack frame layout.
   4514 
   4515   assert((CallConv == CallingConv::C ||
   4516           CallConv == CallingConv::Fast) && "Unknown calling convention!");
   4517 
   4518   unsigned PtrByteSize = 4;
   4519 
   4520   MachineFunction &MF = DAG.getMachineFunction();
   4521 
   4522   // Mark this function as potentially containing a function that contains a
   4523   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4524   // and restoring the callers stack pointer in this functions epilog. This is
   4525   // done because by tail calling the called function might overwrite the value
   4526   // in this function's (MF) stack pointer stack slot 0(SP).
   4527   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4528       CallConv == CallingConv::Fast)
   4529     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4530 
   4531   // Count how many bytes are to be pushed on the stack, including the linkage
   4532   // area, parameter list area and the part of the local variable space which
   4533   // contains copies of aggregates which are passed by value.
   4534 
   4535   // Assign locations to all of the outgoing arguments.
   4536   SmallVector<CCValAssign, 16> ArgLocs;
   4537   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   4538                  *DAG.getContext());
   4539 
   4540   // Reserve space for the linkage area on the stack.
   4541   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
   4542                        PtrByteSize);
   4543 
   4544   if (isVarArg) {
   4545     // Handle fixed and variable vector arguments differently.
   4546     // Fixed vector arguments go into registers as long as registers are
   4547     // available. Variable vector arguments always go into memory.
   4548     unsigned NumArgs = Outs.size();
   4549 
   4550     for (unsigned i = 0; i != NumArgs; ++i) {
   4551       MVT ArgVT = Outs[i].VT;
   4552       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   4553       bool Result;
   4554 
   4555       if (Outs[i].IsFixed) {
   4556         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
   4557                                CCInfo);
   4558       } else {
   4559         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
   4560                                       ArgFlags, CCInfo);
   4561       }
   4562 
   4563       if (Result) {
   4564 #ifndef NDEBUG
   4565         errs() << "Call operand #" << i << " has unhandled type "
   4566              << EVT(ArgVT).getEVTString() << "\n";
   4567 #endif
   4568         llvm_unreachable(nullptr);
   4569       }
   4570     }
   4571   } else {
   4572     // All arguments are treated the same.
   4573     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
   4574   }
   4575 
   4576   // Assign locations to all of the outgoing aggregate by value arguments.
   4577   SmallVector<CCValAssign, 16> ByValArgLocs;
   4578   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   4579                       ByValArgLocs, *DAG.getContext());
   4580 
   4581   // Reserve stack space for the allocations in CCInfo.
   4582   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
   4583 
   4584   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
   4585 
   4586   // Size of the linkage area, parameter list area and the part of the local
   4587   // space variable where copies of aggregates which are passed by value are
   4588   // stored.
   4589   unsigned NumBytes = CCByValInfo.getNextStackOffset();
   4590 
   4591   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4592   // call optimization.
   4593   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4594 
   4595   // Adjust the stack pointer for the new arguments...
   4596   // These operations are automatically eliminated by the prolog/epilog pass
   4597   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4598                                dl);
   4599   SDValue CallSeqStart = Chain;
   4600 
   4601   // Load the return address and frame pointer so it can be moved somewhere else
   4602   // later.
   4603   SDValue LROp, FPOp;
   4604   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
   4605                                        dl);
   4606 
   4607   // Set up a copy of the stack pointer for use loading and storing any
   4608   // arguments that may not fit in the registers available for argument
   4609   // passing.
   4610   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   4611 
   4612   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4613   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4614   SmallVector<SDValue, 8> MemOpChains;
   4615 
   4616   bool seenFloatArg = false;
   4617   // Walk the register/memloc assignments, inserting copies/loads.
   4618   for (unsigned i = 0, j = 0, e = ArgLocs.size();
   4619        i != e;
   4620        ++i) {
   4621     CCValAssign &VA = ArgLocs[i];
   4622     SDValue Arg = OutVals[i];
   4623     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4624 
   4625     if (Flags.isByVal()) {
   4626       // Argument is an aggregate which is passed by value, thus we need to
   4627       // create a copy of it in the local variable space of the current stack
   4628       // frame (which is the stack frame of the caller) and pass the address of
   4629       // this copy to the callee.
   4630       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
   4631       CCValAssign &ByValVA = ByValArgLocs[j++];
   4632       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
   4633 
   4634       // Memory reserved in the local variable space of the callers stack frame.
   4635       unsigned LocMemOffset = ByValVA.getLocMemOffset();
   4636 
   4637       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   4638       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   4639                            StackPtr, PtrOff);
   4640 
   4641       // Create a copy of the argument in the local area of the current
   4642       // stack frame.
   4643       SDValue MemcpyCall =
   4644         CreateCopyOfByValArgument(Arg, PtrOff,
   4645                                   CallSeqStart.getNode()->getOperand(0),
   4646                                   Flags, DAG, dl);
   4647 
   4648       // This must go outside the CALLSEQ_START..END.
   4649       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4650                            CallSeqStart.getNode()->getOperand(1),
   4651                            SDLoc(MemcpyCall));
   4652       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4653                              NewCallSeqStart.getNode());
   4654       Chain = CallSeqStart = NewCallSeqStart;
   4655 
   4656       // Pass the address of the aggregate copy on the stack either in a
   4657       // physical register or in the parameter list area of the current stack
   4658       // frame to the callee.
   4659       Arg = PtrOff;
   4660     }
   4661 
   4662     if (VA.isRegLoc()) {
   4663       if (Arg.getValueType() == MVT::i1)
   4664         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
   4665 
   4666       seenFloatArg |= VA.getLocVT().isFloatingPoint();
   4667       // Put argument in a physical register.
   4668       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   4669     } else {
   4670       // Put argument in the parameter list area of the current stack frame.
   4671       assert(VA.isMemLoc());
   4672       unsigned LocMemOffset = VA.getLocMemOffset();
   4673 
   4674       if (!isTailCall) {
   4675         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   4676         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
   4677                              StackPtr, PtrOff);
   4678 
   4679         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
   4680                                            MachinePointerInfo(),
   4681                                            false, false, 0));
   4682       } else {
   4683         // Calculate and remember argument location.
   4684         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
   4685                                  TailCallArguments);
   4686       }
   4687     }
   4688   }
   4689 
   4690   if (!MemOpChains.empty())
   4691     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   4692 
   4693   // Build a sequence of copy-to-reg nodes chained together with token chain
   4694   // and flag operands which copy the outgoing args into the appropriate regs.
   4695   SDValue InFlag;
   4696   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   4697     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   4698                              RegsToPass[i].second, InFlag);
   4699     InFlag = Chain.getValue(1);
   4700   }
   4701 
   4702   // Set CR bit 6 to true if this is a vararg call with floating args passed in
   4703   // registers.
   4704   if (isVarArg) {
   4705     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   4706     SDValue Ops[] = { Chain, InFlag };
   4707 
   4708     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
   4709                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
   4710 
   4711     InFlag = Chain.getValue(1);
   4712   }
   4713 
   4714   if (isTailCall)
   4715     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
   4716                     false, TailCallArguments);
   4717 
   4718   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
   4719                     /* unused except on PPC64 ELFv1 */ false, DAG,
   4720                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   4721                     NumBytes, Ins, InVals, CS);
   4722 }
   4723 
   4724 // Copy an argument into memory, being careful to do this outside the
   4725 // call sequence for the call to which the argument belongs.
   4726 SDValue
   4727 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
   4728                                               SDValue CallSeqStart,
   4729                                               ISD::ArgFlagsTy Flags,
   4730                                               SelectionDAG &DAG,
   4731                                               SDLoc dl) const {
   4732   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
   4733                         CallSeqStart.getNode()->getOperand(0),
   4734                         Flags, DAG, dl);
   4735   // The MEMCPY must go outside the CALLSEQ_START..END.
   4736   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
   4737                              CallSeqStart.getNode()->getOperand(1),
   4738                              SDLoc(MemcpyCall));
   4739   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
   4740                          NewCallSeqStart.getNode());
   4741   return NewCallSeqStart;
   4742 }
   4743 
   4744 SDValue
   4745 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
   4746                                     CallingConv::ID CallConv, bool isVarArg,
   4747                                     bool isTailCall, bool IsPatchPoint,
   4748                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   4749                                     const SmallVectorImpl<SDValue> &OutVals,
   4750                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   4751                                     SDLoc dl, SelectionDAG &DAG,
   4752                                     SmallVectorImpl<SDValue> &InVals,
   4753                                     ImmutableCallSite *CS) const {
   4754 
   4755   bool isELFv2ABI = Subtarget.isELFv2ABI();
   4756   bool isLittleEndian = Subtarget.isLittleEndian();
   4757   unsigned NumOps = Outs.size();
   4758   bool hasNest = false;
   4759 
   4760   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   4761   unsigned PtrByteSize = 8;
   4762 
   4763   MachineFunction &MF = DAG.getMachineFunction();
   4764 
   4765   // Mark this function as potentially containing a function that contains a
   4766   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   4767   // and restoring the callers stack pointer in this functions epilog. This is
   4768   // done because by tail calling the called function might overwrite the value
   4769   // in this function's (MF) stack pointer stack slot 0(SP).
   4770   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4771       CallConv == CallingConv::Fast)
   4772     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   4773 
   4774   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
   4775          "fastcc not supported on varargs functions");
   4776 
   4777   // Count how many bytes are to be pushed on the stack, including the linkage
   4778   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
   4779   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
   4780   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
   4781   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   4782   unsigned NumBytes = LinkageSize;
   4783   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   4784   unsigned &QFPR_idx = FPR_idx;
   4785 
   4786   static const MCPhysReg GPR[] = {
   4787     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   4788     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   4789   };
   4790   static const MCPhysReg VR[] = {
   4791     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   4792     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   4793   };
   4794   static const MCPhysReg VSRH[] = {
   4795     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
   4796     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
   4797   };
   4798 
   4799   const unsigned NumGPRs = array_lengthof(GPR);
   4800   const unsigned NumFPRs = 13;
   4801   const unsigned NumVRs  = array_lengthof(VR);
   4802   const unsigned NumQFPRs = NumFPRs;
   4803 
   4804   // When using the fast calling convention, we don't provide backing for
   4805   // arguments that will be in registers.
   4806   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
   4807 
   4808   // Add up all the space actually used.
   4809   for (unsigned i = 0; i != NumOps; ++i) {
   4810     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4811     EVT ArgVT = Outs[i].VT;
   4812     EVT OrigVT = Outs[i].ArgVT;
   4813 
   4814     if (Flags.isNest())
   4815       continue;
   4816 
   4817     if (CallConv == CallingConv::Fast) {
   4818       if (Flags.isByVal())
   4819         NumGPRsUsed += (Flags.getByValSize()+7)/8;
   4820       else
   4821         switch (ArgVT.getSimpleVT().SimpleTy) {
   4822         default: llvm_unreachable("Unexpected ValueType for argument!");
   4823         case MVT::i1:
   4824         case MVT::i32:
   4825         case MVT::i64:
   4826           if (++NumGPRsUsed <= NumGPRs)
   4827             continue;
   4828           break;
   4829         case MVT::v4i32:
   4830         case MVT::v8i16:
   4831         case MVT::v16i8:
   4832         case MVT::v2f64:
   4833         case MVT::v2i64:
   4834         case MVT::v1i128:
   4835           if (++NumVRsUsed <= NumVRs)
   4836             continue;
   4837           break;
   4838         case MVT::v4f32:
   4839           // When using QPX, this is handled like a FP register, otherwise, it
   4840           // is an Altivec register.
   4841           if (Subtarget.hasQPX()) {
   4842             if (++NumFPRsUsed <= NumFPRs)
   4843               continue;
   4844           } else {
   4845             if (++NumVRsUsed <= NumVRs)
   4846               continue;
   4847           }
   4848           break;
   4849         case MVT::f32:
   4850         case MVT::f64:
   4851         case MVT::v4f64: // QPX
   4852         case MVT::v4i1:  // QPX
   4853           if (++NumFPRsUsed <= NumFPRs)
   4854             continue;
   4855           break;
   4856         }
   4857     }
   4858 
   4859     /* Respect alignment of argument on the stack.  */
   4860     unsigned Align =
   4861       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   4862     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
   4863 
   4864     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   4865     if (Flags.isInConsecutiveRegsLast())
   4866       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   4867   }
   4868 
   4869   unsigned NumBytesActuallyUsed = NumBytes;
   4870 
   4871   // The prolog code of the callee may store up to 8 GPR argument registers to
   4872   // the stack, allowing va_start to index over them in memory if its varargs.
   4873   // Because we cannot tell if this is needed on the caller side, we have to
   4874   // conservatively assume that it is needed.  As such, make sure we have at
   4875   // least enough stack space for the caller to store the 8 GPRs.
   4876   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
   4877   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   4878 
   4879   // Tail call needs the stack to be aligned.
   4880   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   4881       CallConv == CallingConv::Fast)
   4882     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   4883 
   4884   // Calculate by how many bytes the stack has to be adjusted in case of tail
   4885   // call optimization.
   4886   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   4887 
   4888   // To protect arguments on the stack from being clobbered in a tail call,
   4889   // force all the loads to happen before doing any other lowering.
   4890   if (isTailCall)
   4891     Chain = DAG.getStackArgumentTokenFactor(Chain);
   4892 
   4893   // Adjust the stack pointer for the new arguments...
   4894   // These operations are automatically eliminated by the prolog/epilog pass
   4895   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   4896                                dl);
   4897   SDValue CallSeqStart = Chain;
   4898 
   4899   // Load the return address and frame pointer so it can be move somewhere else
   4900   // later.
   4901   SDValue LROp, FPOp;
   4902   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   4903                                        dl);
   4904 
   4905   // Set up a copy of the stack pointer for use loading and storing any
   4906   // arguments that may not fit in the registers available for argument
   4907   // passing.
   4908   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   4909 
   4910   // Figure out which arguments are going to go in registers, and which in
   4911   // memory.  Also, if this is a vararg function, floating point operations
   4912   // must be stored to our stack, and loaded into integer regs as well, if
   4913   // any integer regs are available for argument passing.
   4914   unsigned ArgOffset = LinkageSize;
   4915 
   4916   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   4917   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   4918 
   4919   SmallVector<SDValue, 8> MemOpChains;
   4920   for (unsigned i = 0; i != NumOps; ++i) {
   4921     SDValue Arg = OutVals[i];
   4922     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   4923     EVT ArgVT = Outs[i].VT;
   4924     EVT OrigVT = Outs[i].ArgVT;
   4925 
   4926     // PtrOff will be used to store the current argument to the stack if a
   4927     // register cannot be found for it.
   4928     SDValue PtrOff;
   4929 
   4930     // We re-align the argument offset for each argument, except when using the
   4931     // fast calling convention, when we need to make sure we do that only when
   4932     // we'll actually use a stack slot.
   4933     auto ComputePtrOff = [&]() {
   4934       /* Respect alignment of argument on the stack.  */
   4935       unsigned Align =
   4936         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
   4937       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
   4938 
   4939       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   4940 
   4941       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   4942     };
   4943 
   4944     if (CallConv != CallingConv::Fast) {
   4945       ComputePtrOff();
   4946 
   4947       /* Compute GPR index associated with argument offset.  */
   4948       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
   4949       GPR_idx = std::min(GPR_idx, NumGPRs);
   4950     }
   4951 
   4952     // Promote integers to 64-bit values.
   4953     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
   4954       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   4955       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   4956       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   4957     }
   4958 
   4959     // FIXME memcpy is used way more than necessary.  Correctness first.
   4960     // Note: "by value" is code for passing a structure by value, not
   4961     // basic types.
   4962     if (Flags.isByVal()) {
   4963       // Note: Size includes alignment padding, so
   4964       //   struct x { short a; char b; }
   4965       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
   4966       // These are the proper values we need for right-justifying the
   4967       // aggregate in a parameter register.
   4968       unsigned Size = Flags.getByValSize();
   4969 
   4970       // An empty aggregate parameter takes up no storage and no
   4971       // registers.
   4972       if (Size == 0)
   4973         continue;
   4974 
   4975       if (CallConv == CallingConv::Fast)
   4976         ComputePtrOff();
   4977 
   4978       // All aggregates smaller than 8 bytes must be passed right-justified.
   4979       if (Size==1 || Size==2 || Size==4) {
   4980         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
   4981         if (GPR_idx != NumGPRs) {
   4982           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   4983                                         MachinePointerInfo(), VT,
   4984                                         false, false, false, 0);
   4985           MemOpChains.push_back(Load.getValue(1));
   4986           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   4987 
   4988           ArgOffset += PtrByteSize;
   4989           continue;
   4990         }
   4991       }
   4992 
   4993       if (GPR_idx == NumGPRs && Size < 8) {
   4994         SDValue AddPtr = PtrOff;
   4995         if (!isLittleEndian) {
   4996           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   4997                                           PtrOff.getValueType());
   4998           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   4999         }
   5000         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5001                                                           CallSeqStart,
   5002                                                           Flags, DAG, dl);
   5003         ArgOffset += PtrByteSize;
   5004         continue;
   5005       }
   5006       // Copy entire object into memory.  There are cases where gcc-generated
   5007       // code assumes it is there, even if it could be put entirely into
   5008       // registers.  (This is not what the doc says.)
   5009 
   5010       // FIXME: The above statement is likely due to a misunderstanding of the
   5011       // documents.  All arguments must be copied into the parameter area BY
   5012       // THE CALLEE in the event that the callee takes the address of any
   5013       // formal argument.  That has not yet been implemented.  However, it is
   5014       // reasonable to use the stack area as a staging area for the register
   5015       // load.
   5016 
   5017       // Skip this for small aggregates, as we will use the same slot for a
   5018       // right-justified copy, below.
   5019       if (Size >= 8)
   5020         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5021                                                           CallSeqStart,
   5022                                                           Flags, DAG, dl);
   5023 
   5024       // When a register is available, pass a small aggregate right-justified.
   5025       if (Size < 8 && GPR_idx != NumGPRs) {
   5026         // The easiest way to get this right-justified in a register
   5027         // is to copy the structure into the rightmost portion of a
   5028         // local variable slot, then load the whole slot into the
   5029         // register.
   5030         // FIXME: The memcpy seems to produce pretty awful code for
   5031         // small aggregates, particularly for packed ones.
   5032         // FIXME: It would be preferable to use the slot in the
   5033         // parameter save area instead of a new local variable.
   5034         SDValue AddPtr = PtrOff;
   5035         if (!isLittleEndian) {
   5036           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
   5037           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5038         }
   5039         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5040                                                           CallSeqStart,
   5041                                                           Flags, DAG, dl);
   5042 
   5043         // Load the slot into the register.
   5044         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
   5045                                    MachinePointerInfo(),
   5046                                    false, false, false, 0);
   5047         MemOpChains.push_back(Load.getValue(1));
   5048         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5049 
   5050         // Done with this argument.
   5051         ArgOffset += PtrByteSize;
   5052         continue;
   5053       }
   5054 
   5055       // For aggregates larger than PtrByteSize, copy the pieces of the
   5056       // object that fit into registers from the parameter save area.
   5057       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5058         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5059         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5060         if (GPR_idx != NumGPRs) {
   5061           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5062                                      MachinePointerInfo(),
   5063                                      false, false, false, 0);
   5064           MemOpChains.push_back(Load.getValue(1));
   5065           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5066           ArgOffset += PtrByteSize;
   5067         } else {
   5068           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5069           break;
   5070         }
   5071       }
   5072       continue;
   5073     }
   5074 
   5075     switch (Arg.getSimpleValueType().SimpleTy) {
   5076     default: llvm_unreachable("Unexpected ValueType for argument!");
   5077     case MVT::i1:
   5078     case MVT::i32:
   5079     case MVT::i64:
   5080       if (Flags.isNest()) {
   5081         // The 'nest' parameter, if any, is passed in R11.
   5082         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
   5083         hasNest = true;
   5084         break;
   5085       }
   5086 
   5087       // These can be scalar arguments or elements of an integer array type
   5088       // passed directly.  Clang may use those instead of "byval" aggregate
   5089       // types to avoid forcing arguments to memory unnecessarily.
   5090       if (GPR_idx != NumGPRs) {
   5091         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5092       } else {
   5093         if (CallConv == CallingConv::Fast)
   5094           ComputePtrOff();
   5095 
   5096         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5097                          true, isTailCall, false, MemOpChains,
   5098                          TailCallArguments, dl);
   5099         if (CallConv == CallingConv::Fast)
   5100           ArgOffset += PtrByteSize;
   5101       }
   5102       if (CallConv != CallingConv::Fast)
   5103         ArgOffset += PtrByteSize;
   5104       break;
   5105     case MVT::f32:
   5106     case MVT::f64: {
   5107       // These can be scalar arguments or elements of a float array type
   5108       // passed directly.  The latter are used to implement ELFv2 homogenous
   5109       // float aggregates.
   5110 
   5111       // Named arguments go into FPRs first, and once they overflow, the
   5112       // remaining arguments go into GPRs and then the parameter save area.
   5113       // Unnamed arguments for vararg functions always go to GPRs and
   5114       // then the parameter save area.  For now, put all arguments to vararg
   5115       // routines always in both locations (FPR *and* GPR or stack slot).
   5116       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
   5117       bool NeededLoad = false;
   5118 
   5119       // First load the argument into the next available FPR.
   5120       if (FPR_idx != NumFPRs)
   5121         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5122 
   5123       // Next, load the argument into GPR or stack slot if needed.
   5124       if (!NeedGPROrStack)
   5125         ;
   5126       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
   5127         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
   5128         // once we support fp <-> gpr moves.
   5129 
   5130         // In the non-vararg case, this can only ever happen in the
   5131         // presence of f32 array types, since otherwise we never run
   5132         // out of FPRs before running out of GPRs.
   5133         SDValue ArgVal;
   5134 
   5135         // Double values are always passed in a single GPR.
   5136         if (Arg.getValueType() != MVT::f32) {
   5137           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   5138 
   5139         // Non-array float values are extended and passed in a GPR.
   5140         } else if (!Flags.isInConsecutiveRegs()) {
   5141           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5142           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5143 
   5144         // If we have an array of floats, we collect every odd element
   5145         // together with its predecessor into one GPR.
   5146         } else if (ArgOffset % PtrByteSize != 0) {
   5147           SDValue Lo, Hi;
   5148           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
   5149           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5150           if (!isLittleEndian)
   5151             std::swap(Lo, Hi);
   5152           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   5153 
   5154         // The final element, if even, goes into the first half of a GPR.
   5155         } else if (Flags.isInConsecutiveRegsLast()) {
   5156           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
   5157           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
   5158           if (!isLittleEndian)
   5159             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
   5160                                  DAG.getConstant(32, dl, MVT::i32));
   5161 
   5162         // Non-final even elements are skipped; they will be handled
   5163         // together the with subsequent argument on the next go-around.
   5164         } else
   5165           ArgVal = SDValue();
   5166 
   5167         if (ArgVal.getNode())
   5168           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
   5169       } else {
   5170         if (CallConv == CallingConv::Fast)
   5171           ComputePtrOff();
   5172 
   5173         // Single-precision floating-point values are mapped to the
   5174         // second (rightmost) word of the stack doubleword.
   5175         if (Arg.getValueType() == MVT::f32 &&
   5176             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
   5177           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5178           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5179         }
   5180 
   5181         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5182                          true, isTailCall, false, MemOpChains,
   5183                          TailCallArguments, dl);
   5184 
   5185         NeededLoad = true;
   5186       }
   5187       // When passing an array of floats, the array occupies consecutive
   5188       // space in the argument area; only round up to the next doubleword
   5189       // at the end of the array.  Otherwise, each float takes 8 bytes.
   5190       if (CallConv != CallingConv::Fast || NeededLoad) {
   5191         ArgOffset += (Arg.getValueType() == MVT::f32 &&
   5192                       Flags.isInConsecutiveRegs()) ? 4 : 8;
   5193         if (Flags.isInConsecutiveRegsLast())
   5194           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
   5195       }
   5196       break;
   5197     }
   5198     case MVT::v4f32:
   5199     case MVT::v4i32:
   5200     case MVT::v8i16:
   5201     case MVT::v16i8:
   5202     case MVT::v2f64:
   5203     case MVT::v2i64:
   5204     case MVT::v1i128:
   5205       if (!Subtarget.hasQPX()) {
   5206       // These can be scalar arguments or elements of a vector array type
   5207       // passed directly.  The latter are used to implement ELFv2 homogenous
   5208       // vector aggregates.
   5209 
   5210       // For a varargs call, named arguments go into VRs or on the stack as
   5211       // usual; unnamed arguments always go to the stack or the corresponding
   5212       // GPRs when within range.  For now, we always put the value in both
   5213       // locations (or even all three).
   5214       if (isVarArg) {
   5215         // We could elide this store in the case where the object fits
   5216         // entirely in R registers.  Maybe later.
   5217         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5218                                      MachinePointerInfo(), false, false, 0);
   5219         MemOpChains.push_back(Store);
   5220         if (VR_idx != NumVRs) {
   5221           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5222                                      MachinePointerInfo(),
   5223                                      false, false, false, 0);
   5224           MemOpChains.push_back(Load.getValue(1));
   5225 
   5226           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5227                            Arg.getSimpleValueType() == MVT::v2i64) ?
   5228                           VSRH[VR_idx] : VR[VR_idx];
   5229           ++VR_idx;
   5230 
   5231           RegsToPass.push_back(std::make_pair(VReg, Load));
   5232         }
   5233         ArgOffset += 16;
   5234         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5235           if (GPR_idx == NumGPRs)
   5236             break;
   5237           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5238                                    DAG.getConstant(i, dl, PtrVT));
   5239           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5240                                      false, false, false, 0);
   5241           MemOpChains.push_back(Load.getValue(1));
   5242           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5243         }
   5244         break;
   5245       }
   5246 
   5247       // Non-varargs Altivec params go into VRs or on the stack.
   5248       if (VR_idx != NumVRs) {
   5249         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
   5250                          Arg.getSimpleValueType() == MVT::v2i64) ?
   5251                         VSRH[VR_idx] : VR[VR_idx];
   5252         ++VR_idx;
   5253 
   5254         RegsToPass.push_back(std::make_pair(VReg, Arg));
   5255       } else {
   5256         if (CallConv == CallingConv::Fast)
   5257           ComputePtrOff();
   5258 
   5259         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5260                          true, isTailCall, true, MemOpChains,
   5261                          TailCallArguments, dl);
   5262         if (CallConv == CallingConv::Fast)
   5263           ArgOffset += 16;
   5264       }
   5265 
   5266       if (CallConv != CallingConv::Fast)
   5267         ArgOffset += 16;
   5268       break;
   5269       } // not QPX
   5270 
   5271       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
   5272              "Invalid QPX parameter type");
   5273 
   5274       /* fall through */
   5275     case MVT::v4f64:
   5276     case MVT::v4i1: {
   5277       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
   5278       if (isVarArg) {
   5279         // We could elide this store in the case where the object fits
   5280         // entirely in R registers.  Maybe later.
   5281         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5282                                      MachinePointerInfo(), false, false, 0);
   5283         MemOpChains.push_back(Store);
   5284         if (QFPR_idx != NumQFPRs) {
   5285           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
   5286                                      Store, PtrOff, MachinePointerInfo(),
   5287                                      false, false, false, 0);
   5288           MemOpChains.push_back(Load.getValue(1));
   5289           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
   5290         }
   5291         ArgOffset += (IsF32 ? 16 : 32);
   5292         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
   5293           if (GPR_idx == NumGPRs)
   5294             break;
   5295           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5296                                    DAG.getConstant(i, dl, PtrVT));
   5297           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5298                                      false, false, false, 0);
   5299           MemOpChains.push_back(Load.getValue(1));
   5300           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5301         }
   5302         break;
   5303       }
   5304 
   5305       // Non-varargs QPX params go into registers or on the stack.
   5306       if (QFPR_idx != NumQFPRs) {
   5307         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
   5308       } else {
   5309         if (CallConv == CallingConv::Fast)
   5310           ComputePtrOff();
   5311 
   5312         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5313                          true, isTailCall, true, MemOpChains,
   5314                          TailCallArguments, dl);
   5315         if (CallConv == CallingConv::Fast)
   5316           ArgOffset += (IsF32 ? 16 : 32);
   5317       }
   5318 
   5319       if (CallConv != CallingConv::Fast)
   5320         ArgOffset += (IsF32 ? 16 : 32);
   5321       break;
   5322       }
   5323     }
   5324   }
   5325 
   5326   assert(NumBytesActuallyUsed == ArgOffset);
   5327   (void)NumBytesActuallyUsed;
   5328 
   5329   if (!MemOpChains.empty())
   5330     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5331 
   5332   // Check if this is an indirect call (MTCTR/BCTRL).
   5333   // See PrepareCall() for more information about calls through function
   5334   // pointers in the 64-bit SVR4 ABI.
   5335   if (!isTailCall && !IsPatchPoint &&
   5336       !isFunctionGlobalAddress(Callee) &&
   5337       !isa<ExternalSymbolSDNode>(Callee)) {
   5338     // Load r2 into a virtual register and store it to the TOC save area.
   5339     setUsesTOCBasePtr(DAG);
   5340     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
   5341     // TOC save area offset.
   5342     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
   5343     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
   5344     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5345     Chain = DAG.getStore(
   5346         Val.getValue(1), dl, Val, AddPtr,
   5347         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
   5348         false, false, 0);
   5349     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
   5350     // This does not mean the MTCTR instruction must use R12; it's easier
   5351     // to model this as an extra parameter, so do that.
   5352     if (isELFv2ABI && !IsPatchPoint)
   5353       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
   5354   }
   5355 
   5356   // Build a sequence of copy-to-reg nodes chained together with token chain
   5357   // and flag operands which copy the outgoing args into the appropriate regs.
   5358   SDValue InFlag;
   5359   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5360     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5361                              RegsToPass[i].second, InFlag);
   5362     InFlag = Chain.getValue(1);
   5363   }
   5364 
   5365   if (isTailCall)
   5366     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
   5367                     FPOp, true, TailCallArguments);
   5368 
   5369   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint, hasNest,
   5370                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
   5371                     SPDiff, NumBytes, Ins, InVals, CS);
   5372 }
   5373 
   5374 SDValue
   5375 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
   5376                                     CallingConv::ID CallConv, bool isVarArg,
   5377                                     bool isTailCall, bool IsPatchPoint,
   5378                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   5379                                     const SmallVectorImpl<SDValue> &OutVals,
   5380                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   5381                                     SDLoc dl, SelectionDAG &DAG,
   5382                                     SmallVectorImpl<SDValue> &InVals,
   5383                                     ImmutableCallSite *CS) const {
   5384 
   5385   unsigned NumOps = Outs.size();
   5386 
   5387   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   5388   bool isPPC64 = PtrVT == MVT::i64;
   5389   unsigned PtrByteSize = isPPC64 ? 8 : 4;
   5390 
   5391   MachineFunction &MF = DAG.getMachineFunction();
   5392 
   5393   // Mark this function as potentially containing a function that contains a
   5394   // tail call. As a consequence the frame pointer will be used for dynamicalloc
   5395   // and restoring the callers stack pointer in this functions epilog. This is
   5396   // done because by tail calling the called function might overwrite the value
   5397   // in this function's (MF) stack pointer stack slot 0(SP).
   5398   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5399       CallConv == CallingConv::Fast)
   5400     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
   5401 
   5402   // Count how many bytes are to be pushed on the stack, including the linkage
   5403   // area, and parameter passing area.  We start with 24/48 bytes, which is
   5404   // prereserved space for [SP][CR][LR][3 x unused].
   5405   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
   5406   unsigned NumBytes = LinkageSize;
   5407 
   5408   // Add up all the space actually used.
   5409   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
   5410   // they all go in registers, but we must reserve stack space for them for
   5411   // possible use by the caller.  In varargs or 64-bit calls, parameters are
   5412   // assigned stack space in order, with padding so Altivec parameters are
   5413   // 16-byte aligned.
   5414   unsigned nAltivecParamsAtEnd = 0;
   5415   for (unsigned i = 0; i != NumOps; ++i) {
   5416     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5417     EVT ArgVT = Outs[i].VT;
   5418     // Varargs Altivec parameters are padded to a 16 byte boundary.
   5419     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
   5420         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
   5421         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
   5422       if (!isVarArg && !isPPC64) {
   5423         // Non-varargs Altivec parameters go after all the non-Altivec
   5424         // parameters; handle those later so we know how much padding we need.
   5425         nAltivecParamsAtEnd++;
   5426         continue;
   5427       }
   5428       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
   5429       NumBytes = ((NumBytes+15)/16)*16;
   5430     }
   5431     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
   5432   }
   5433 
   5434   // Allow for Altivec parameters at the end, if needed.
   5435   if (nAltivecParamsAtEnd) {
   5436     NumBytes = ((NumBytes+15)/16)*16;
   5437     NumBytes += 16*nAltivecParamsAtEnd;
   5438   }
   5439 
   5440   // The prolog code of the callee may store up to 8 GPR argument registers to
   5441   // the stack, allowing va_start to index over them in memory if its varargs.
   5442   // Because we cannot tell if this is needed on the caller side, we have to
   5443   // conservatively assume that it is needed.  As such, make sure we have at
   5444   // least enough stack space for the caller to store the 8 GPRs.
   5445   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
   5446 
   5447   // Tail call needs the stack to be aligned.
   5448   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   5449       CallConv == CallingConv::Fast)
   5450     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
   5451 
   5452   // Calculate by how many bytes the stack has to be adjusted in case of tail
   5453   // call optimization.
   5454   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
   5455 
   5456   // To protect arguments on the stack from being clobbered in a tail call,
   5457   // force all the loads to happen before doing any other lowering.
   5458   if (isTailCall)
   5459     Chain = DAG.getStackArgumentTokenFactor(Chain);
   5460 
   5461   // Adjust the stack pointer for the new arguments...
   5462   // These operations are automatically eliminated by the prolog/epilog pass
   5463   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   5464                                dl);
   5465   SDValue CallSeqStart = Chain;
   5466 
   5467   // Load the return address and frame pointer so it can be move somewhere else
   5468   // later.
   5469   SDValue LROp, FPOp;
   5470   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
   5471                                        dl);
   5472 
   5473   // Set up a copy of the stack pointer for use loading and storing any
   5474   // arguments that may not fit in the registers available for argument
   5475   // passing.
   5476   SDValue StackPtr;
   5477   if (isPPC64)
   5478     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
   5479   else
   5480     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
   5481 
   5482   // Figure out which arguments are going to go in registers, and which in
   5483   // memory.  Also, if this is a vararg function, floating point operations
   5484   // must be stored to our stack, and loaded into integer regs as well, if
   5485   // any integer regs are available for argument passing.
   5486   unsigned ArgOffset = LinkageSize;
   5487   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
   5488 
   5489   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
   5490     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
   5491     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
   5492   };
   5493   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
   5494     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
   5495     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
   5496   };
   5497   static const MCPhysReg VR[] = {
   5498     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
   5499     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
   5500   };
   5501   const unsigned NumGPRs = array_lengthof(GPR_32);
   5502   const unsigned NumFPRs = 13;
   5503   const unsigned NumVRs  = array_lengthof(VR);
   5504 
   5505   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
   5506 
   5507   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   5508   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
   5509 
   5510   SmallVector<SDValue, 8> MemOpChains;
   5511   for (unsigned i = 0; i != NumOps; ++i) {
   5512     SDValue Arg = OutVals[i];
   5513     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   5514 
   5515     // PtrOff will be used to store the current argument to the stack if a
   5516     // register cannot be found for it.
   5517     SDValue PtrOff;
   5518 
   5519     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
   5520 
   5521     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
   5522 
   5523     // On PPC64, promote integers to 64-bit values.
   5524     if (isPPC64 && Arg.getValueType() == MVT::i32) {
   5525       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
   5526       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
   5527       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
   5528     }
   5529 
   5530     // FIXME memcpy is used way more than necessary.  Correctness first.
   5531     // Note: "by value" is code for passing a structure by value, not
   5532     // basic types.
   5533     if (Flags.isByVal()) {
   5534       unsigned Size = Flags.getByValSize();
   5535       // Very small objects are passed right-justified.  Everything else is
   5536       // passed left-justified.
   5537       if (Size==1 || Size==2) {
   5538         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
   5539         if (GPR_idx != NumGPRs) {
   5540           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
   5541                                         MachinePointerInfo(), VT,
   5542                                         false, false, false, 0);
   5543           MemOpChains.push_back(Load.getValue(1));
   5544           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5545 
   5546           ArgOffset += PtrByteSize;
   5547         } else {
   5548           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
   5549                                           PtrOff.getValueType());
   5550           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
   5551           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
   5552                                                             CallSeqStart,
   5553                                                             Flags, DAG, dl);
   5554           ArgOffset += PtrByteSize;
   5555         }
   5556         continue;
   5557       }
   5558       // Copy entire object into memory.  There are cases where gcc-generated
   5559       // code assumes it is there, even if it could be put entirely into
   5560       // registers.  (This is not what the doc says.)
   5561       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
   5562                                                         CallSeqStart,
   5563                                                         Flags, DAG, dl);
   5564 
   5565       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
   5566       // copy the pieces of the object that fit into registers from the
   5567       // parameter save area.
   5568       for (unsigned j=0; j<Size; j+=PtrByteSize) {
   5569         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
   5570         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   5571         if (GPR_idx != NumGPRs) {
   5572           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   5573                                      MachinePointerInfo(),
   5574                                      false, false, false, 0);
   5575           MemOpChains.push_back(Load.getValue(1));
   5576           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5577           ArgOffset += PtrByteSize;
   5578         } else {
   5579           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
   5580           break;
   5581         }
   5582       }
   5583       continue;
   5584     }
   5585 
   5586     switch (Arg.getSimpleValueType().SimpleTy) {
   5587     default: llvm_unreachable("Unexpected ValueType for argument!");
   5588     case MVT::i1:
   5589     case MVT::i32:
   5590     case MVT::i64:
   5591       if (GPR_idx != NumGPRs) {
   5592         if (Arg.getValueType() == MVT::i1)
   5593           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
   5594 
   5595         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
   5596       } else {
   5597         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5598                          isPPC64, isTailCall, false, MemOpChains,
   5599                          TailCallArguments, dl);
   5600       }
   5601       ArgOffset += PtrByteSize;
   5602       break;
   5603     case MVT::f32:
   5604     case MVT::f64:
   5605       if (FPR_idx != NumFPRs) {
   5606         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
   5607 
   5608         if (isVarArg) {
   5609           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5610                                        MachinePointerInfo(), false, false, 0);
   5611           MemOpChains.push_back(Store);
   5612 
   5613           // Float varargs are always shadowed in available integer registers
   5614           if (GPR_idx != NumGPRs) {
   5615             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5616                                        MachinePointerInfo(), false, false,
   5617                                        false, 0);
   5618             MemOpChains.push_back(Load.getValue(1));
   5619             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5620           }
   5621           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
   5622             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
   5623             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
   5624             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
   5625                                        MachinePointerInfo(),
   5626                                        false, false, false, 0);
   5627             MemOpChains.push_back(Load.getValue(1));
   5628             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5629           }
   5630         } else {
   5631           // If we have any FPRs remaining, we may also have GPRs remaining.
   5632           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
   5633           // GPRs.
   5634           if (GPR_idx != NumGPRs)
   5635             ++GPR_idx;
   5636           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
   5637               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
   5638             ++GPR_idx;
   5639         }
   5640       } else
   5641         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5642                          isPPC64, isTailCall, false, MemOpChains,
   5643                          TailCallArguments, dl);
   5644       if (isPPC64)
   5645         ArgOffset += 8;
   5646       else
   5647         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
   5648       break;
   5649     case MVT::v4f32:
   5650     case MVT::v4i32:
   5651     case MVT::v8i16:
   5652     case MVT::v16i8:
   5653       if (isVarArg) {
   5654         // These go aligned on the stack, or in the corresponding R registers
   5655         // when within range.  The Darwin PPC ABI doc claims they also go in
   5656         // V registers; in fact gcc does this only for arguments that are
   5657         // prototyped, not for those that match the ...  We do it for all
   5658         // arguments, seems to work.
   5659         while (ArgOffset % 16 !=0) {
   5660           ArgOffset += PtrByteSize;
   5661           if (GPR_idx != NumGPRs)
   5662             GPR_idx++;
   5663         }
   5664         // We could elide this store in the case where the object fits
   5665         // entirely in R registers.  Maybe later.
   5666         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
   5667                              DAG.getConstant(ArgOffset, dl, PtrVT));
   5668         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
   5669                                      MachinePointerInfo(), false, false, 0);
   5670         MemOpChains.push_back(Store);
   5671         if (VR_idx != NumVRs) {
   5672           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
   5673                                      MachinePointerInfo(),
   5674                                      false, false, false, 0);
   5675           MemOpChains.push_back(Load.getValue(1));
   5676           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
   5677         }
   5678         ArgOffset += 16;
   5679         for (unsigned i=0; i<16; i+=PtrByteSize) {
   5680           if (GPR_idx == NumGPRs)
   5681             break;
   5682           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
   5683                                    DAG.getConstant(i, dl, PtrVT));
   5684           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
   5685                                      false, false, false, 0);
   5686           MemOpChains.push_back(Load.getValue(1));
   5687           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
   5688         }
   5689         break;
   5690       }
   5691 
   5692       // Non-varargs Altivec params generally go in registers, but have
   5693       // stack space allocated at the end.
   5694       if (VR_idx != NumVRs) {
   5695         // Doesn't have GPR space allocated.
   5696         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
   5697       } else if (nAltivecParamsAtEnd==0) {
   5698         // We are emitting Altivec params in order.
   5699         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5700                          isPPC64, isTailCall, true, MemOpChains,
   5701                          TailCallArguments, dl);
   5702         ArgOffset += 16;
   5703       }
   5704       break;
   5705     }
   5706   }
   5707   // If all Altivec parameters fit in registers, as they usually do,
   5708   // they get stack space following the non-Altivec parameters.  We
   5709   // don't track this here because nobody below needs it.
   5710   // If there are more Altivec parameters than fit in registers emit
   5711   // the stores here.
   5712   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
   5713     unsigned j = 0;
   5714     // Offset is aligned; skip 1st 12 params which go in V registers.
   5715     ArgOffset = ((ArgOffset+15)/16)*16;
   5716     ArgOffset += 12*16;
   5717     for (unsigned i = 0; i != NumOps; ++i) {
   5718       SDValue Arg = OutVals[i];
   5719       EVT ArgType = Outs[i].VT;
   5720       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
   5721           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
   5722         if (++j > NumVRs) {
   5723           SDValue PtrOff;
   5724           // We are emitting Altivec params in order.
   5725           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
   5726                            isPPC64, isTailCall, true, MemOpChains,
   5727                            TailCallArguments, dl);
   5728           ArgOffset += 16;
   5729         }
   5730       }
   5731     }
   5732   }
   5733 
   5734   if (!MemOpChains.empty())
   5735     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   5736 
   5737   // On Darwin, R12 must contain the address of an indirect callee.  This does
   5738   // not mean the MTCTR instruction must use R12; it's easier to model this as
   5739   // an extra parameter, so do that.
   5740   if (!isTailCall &&
   5741       !isFunctionGlobalAddress(Callee) &&
   5742       !isa<ExternalSymbolSDNode>(Callee) &&
   5743       !isBLACompatibleAddress(Callee, DAG))
   5744     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
   5745                                                    PPC::R12), Callee));
   5746 
   5747   // Build a sequence of copy-to-reg nodes chained together with token chain
   5748   // and flag operands which copy the outgoing args into the appropriate regs.
   5749   SDValue InFlag;
   5750   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   5751     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   5752                              RegsToPass[i].second, InFlag);
   5753     InFlag = Chain.getValue(1);
   5754   }
   5755 
   5756   if (isTailCall)
   5757     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
   5758                     FPOp, true, TailCallArguments);
   5759 
   5760   return FinishCall(CallConv, dl, isTailCall, isVarArg, IsPatchPoint,
   5761                     /* unused except on PPC64 ELFv1 */ false, DAG,
   5762                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
   5763                     NumBytes, Ins, InVals, CS);
   5764 }
   5765 
   5766 bool
   5767 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   5768                                   MachineFunction &MF, bool isVarArg,
   5769                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   5770                                   LLVMContext &Context) const {
   5771   SmallVector<CCValAssign, 16> RVLocs;
   5772   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   5773   return CCInfo.CheckReturn(Outs, RetCC_PPC);
   5774 }
   5775 
   5776 SDValue
   5777 PPCTargetLowering::LowerReturn(SDValue Chain,
   5778                                CallingConv::ID CallConv, bool isVarArg,
   5779                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   5780                                const SmallVectorImpl<SDValue> &OutVals,
   5781                                SDLoc dl, SelectionDAG &DAG) const {
   5782 
   5783   SmallVector<CCValAssign, 16> RVLocs;
   5784   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   5785                  *DAG.getContext());
   5786   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
   5787 
   5788   SDValue Flag;
   5789   SmallVector<SDValue, 4> RetOps(1, Chain);
   5790 
   5791   // Copy the result values into the output registers.
   5792   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   5793     CCValAssign &VA = RVLocs[i];
   5794     assert(VA.isRegLoc() && "Can only return in registers!");
   5795 
   5796     SDValue Arg = OutVals[i];
   5797 
   5798     switch (VA.getLocInfo()) {
   5799     default: llvm_unreachable("Unknown loc info!");
   5800     case CCValAssign::Full: break;
   5801     case CCValAssign::AExt:
   5802       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   5803       break;
   5804     case CCValAssign::ZExt:
   5805       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   5806       break;
   5807     case CCValAssign::SExt:
   5808       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   5809       break;
   5810     }
   5811 
   5812     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   5813     Flag = Chain.getValue(1);
   5814     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   5815   }
   5816 
   5817   RetOps[0] = Chain;  // Update chain.
   5818 
   5819   // Add the flag if we have it.
   5820   if (Flag.getNode())
   5821     RetOps.push_back(Flag);
   5822 
   5823   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
   5824 }
   5825 
   5826 SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(
   5827     SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) const {
   5828   SDLoc dl(Op);
   5829 
   5830   // Get the corect type for integers.
   5831   EVT IntVT = Op.getValueType();
   5832 
   5833   // Get the inputs.
   5834   SDValue Chain = Op.getOperand(0);
   5835   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   5836   // Build a DYNAREAOFFSET node.
   5837   SDValue Ops[2] = {Chain, FPSIdx};
   5838   SDVTList VTs = DAG.getVTList(IntVT);
   5839   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
   5840 }
   5841 
   5842 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
   5843                                    const PPCSubtarget &Subtarget) const {
   5844   // When we pop the dynamic allocation we need to restore the SP link.
   5845   SDLoc dl(Op);
   5846 
   5847   // Get the corect type for pointers.
   5848   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   5849 
   5850   // Construct the stack pointer operand.
   5851   bool isPPC64 = Subtarget.isPPC64();
   5852   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
   5853   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
   5854 
   5855   // Get the operands for the STACKRESTORE.
   5856   SDValue Chain = Op.getOperand(0);
   5857   SDValue SaveSP = Op.getOperand(1);
   5858 
   5859   // Load the old link SP.
   5860   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
   5861                                    MachinePointerInfo(),
   5862                                    false, false, false, 0);
   5863 
   5864   // Restore the stack pointer.
   5865   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
   5866 
   5867   // Store the old link SP.
   5868   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
   5869                       false, false, 0);
   5870 }
   5871 
   5872 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
   5873   MachineFunction &MF = DAG.getMachineFunction();
   5874   bool isPPC64 = Subtarget.isPPC64();
   5875   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   5876 
   5877   // Get current frame pointer save index.  The users of this index will be
   5878   // primarily DYNALLOC instructions.
   5879   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   5880   int RASI = FI->getReturnAddrSaveIndex();
   5881 
   5882   // If the frame pointer save index hasn't been defined yet.
   5883   if (!RASI) {
   5884     // Find out what the fix offset of the frame pointer save area.
   5885     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
   5886     // Allocate the frame index for frame pointer save area.
   5887     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
   5888     // Save the result.
   5889     FI->setReturnAddrSaveIndex(RASI);
   5890   }
   5891   return DAG.getFrameIndex(RASI, PtrVT);
   5892 }
   5893 
   5894 SDValue
   5895 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
   5896   MachineFunction &MF = DAG.getMachineFunction();
   5897   bool isPPC64 = Subtarget.isPPC64();
   5898   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   5899 
   5900   // Get current frame pointer save index.  The users of this index will be
   5901   // primarily DYNALLOC instructions.
   5902   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
   5903   int FPSI = FI->getFramePointerSaveIndex();
   5904 
   5905   // If the frame pointer save index hasn't been defined yet.
   5906   if (!FPSI) {
   5907     // Find out what the fix offset of the frame pointer save area.
   5908     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
   5909     // Allocate the frame index for frame pointer save area.
   5910     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
   5911     // Save the result.
   5912     FI->setFramePointerSaveIndex(FPSI);
   5913   }
   5914   return DAG.getFrameIndex(FPSI, PtrVT);
   5915 }
   5916 
   5917 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   5918                                          SelectionDAG &DAG,
   5919                                          const PPCSubtarget &Subtarget) const {
   5920   // Get the inputs.
   5921   SDValue Chain = Op.getOperand(0);
   5922   SDValue Size  = Op.getOperand(1);
   5923   SDLoc dl(Op);
   5924 
   5925   // Get the corect type for pointers.
   5926   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   5927   // Negate the size.
   5928   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
   5929                                 DAG.getConstant(0, dl, PtrVT), Size);
   5930   // Construct a node for the frame pointer save index.
   5931   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
   5932   // Build a DYNALLOC node.
   5933   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
   5934   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
   5935   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
   5936 }
   5937 
   5938 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
   5939                                                SelectionDAG &DAG) const {
   5940   SDLoc DL(Op);
   5941   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
   5942                      DAG.getVTList(MVT::i32, MVT::Other),
   5943                      Op.getOperand(0), Op.getOperand(1));
   5944 }
   5945 
   5946 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
   5947                                                 SelectionDAG &DAG) const {
   5948   SDLoc DL(Op);
   5949   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
   5950                      Op.getOperand(0), Op.getOperand(1));
   5951 }
   5952 
   5953 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   5954   if (Op.getValueType().isVector())
   5955     return LowerVectorLoad(Op, DAG);
   5956 
   5957   assert(Op.getValueType() == MVT::i1 &&
   5958          "Custom lowering only for i1 loads");
   5959 
   5960   // First, load 8 bits into 32 bits, then truncate to 1 bit.
   5961 
   5962   SDLoc dl(Op);
   5963   LoadSDNode *LD = cast<LoadSDNode>(Op);
   5964 
   5965   SDValue Chain = LD->getChain();
   5966   SDValue BasePtr = LD->getBasePtr();
   5967   MachineMemOperand *MMO = LD->getMemOperand();
   5968 
   5969   SDValue NewLD =
   5970       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
   5971                      BasePtr, MVT::i8, MMO);
   5972   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
   5973 
   5974   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
   5975   return DAG.getMergeValues(Ops, dl);
   5976 }
   5977 
   5978 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   5979   if (Op.getOperand(1).getValueType().isVector())
   5980     return LowerVectorStore(Op, DAG);
   5981 
   5982   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
   5983          "Custom lowering only for i1 stores");
   5984 
   5985   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
   5986 
   5987   SDLoc dl(Op);
   5988   StoreSDNode *ST = cast<StoreSDNode>(Op);
   5989 
   5990   SDValue Chain = ST->getChain();
   5991   SDValue BasePtr = ST->getBasePtr();
   5992   SDValue Value = ST->getValue();
   5993   MachineMemOperand *MMO = ST->getMemOperand();
   5994 
   5995   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
   5996                       Value);
   5997   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
   5998 }
   5999 
   6000 // FIXME: Remove this once the ANDI glue bug is fixed:
   6001 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
   6002   assert(Op.getValueType() == MVT::i1 &&
   6003          "Custom lowering only for i1 results");
   6004 
   6005   SDLoc DL(Op);
   6006   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
   6007                      Op.getOperand(0));
   6008 }
   6009 
   6010 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
   6011 /// possible.
   6012 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   6013   // Not FP? Not a fsel.
   6014   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
   6015       !Op.getOperand(2).getValueType().isFloatingPoint())
   6016     return Op;
   6017 
   6018   // We might be able to do better than this under some circumstances, but in
   6019   // general, fsel-based lowering of select is a finite-math-only optimization.
   6020   // For more information, see section F.3 of the 2.06 ISA specification.
   6021   if (!DAG.getTarget().Options.NoInfsFPMath ||
   6022       !DAG.getTarget().Options.NoNaNsFPMath)
   6023     return Op;
   6024   // TODO: Propagate flags from the select rather than global settings.
   6025   SDNodeFlags Flags;
   6026   Flags.setNoInfs(true);
   6027   Flags.setNoNaNs(true);
   6028 
   6029   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   6030 
   6031   EVT ResVT = Op.getValueType();
   6032   EVT CmpVT = Op.getOperand(0).getValueType();
   6033   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   6034   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
   6035   SDLoc dl(Op);
   6036 
   6037   // If the RHS of the comparison is a 0.0, we don't need to do the
   6038   // subtraction at all.
   6039   SDValue Sel1;
   6040   if (isFloatingPointZero(RHS))
   6041     switch (CC) {
   6042     default: break;       // SETUO etc aren't handled by fsel.
   6043     case ISD::SETNE:
   6044       std::swap(TV, FV);
   6045     case ISD::SETEQ:
   6046       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6047         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6048       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   6049       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6050         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   6051       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6052                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
   6053     case ISD::SETULT:
   6054     case ISD::SETLT:
   6055       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   6056     case ISD::SETOGE:
   6057     case ISD::SETGE:
   6058       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6059         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6060       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
   6061     case ISD::SETUGT:
   6062     case ISD::SETGT:
   6063       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
   6064     case ISD::SETOLE:
   6065     case ISD::SETLE:
   6066       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6067         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
   6068       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6069                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
   6070     }
   6071 
   6072   SDValue Cmp;
   6073   switch (CC) {
   6074   default: break;       // SETUO etc aren't handled by fsel.
   6075   case ISD::SETNE:
   6076     std::swap(TV, FV);
   6077   case ISD::SETEQ:
   6078     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
   6079     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6080       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6081     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6082     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6083       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
   6084     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
   6085                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
   6086   case ISD::SETULT:
   6087   case ISD::SETLT:
   6088     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
   6089     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6090       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6091     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   6092   case ISD::SETOGE:
   6093   case ISD::SETGE:
   6094     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
   6095     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6096       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6097     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6098   case ISD::SETUGT:
   6099   case ISD::SETGT:
   6100     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
   6101     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6102       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6103     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
   6104   case ISD::SETOLE:
   6105   case ISD::SETLE:
   6106     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
   6107     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
   6108       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
   6109     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
   6110   }
   6111   return Op;
   6112 }
   6113 
   6114 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
   6115                                                SelectionDAG &DAG,
   6116                                                SDLoc dl) const {
   6117   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   6118   SDValue Src = Op.getOperand(0);
   6119   if (Src.getValueType() == MVT::f32)
   6120     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   6121 
   6122   SDValue Tmp;
   6123   switch (Op.getSimpleValueType().SimpleTy) {
   6124   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   6125   case MVT::i32:
   6126     Tmp = DAG.getNode(
   6127         Op.getOpcode() == ISD::FP_TO_SINT
   6128             ? PPCISD::FCTIWZ
   6129             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   6130         dl, MVT::f64, Src);
   6131     break;
   6132   case MVT::i64:
   6133     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   6134            "i64 FP_TO_UINT is supported only with FPCVT");
   6135     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   6136                                                         PPCISD::FCTIDUZ,
   6137                       dl, MVT::f64, Src);
   6138     break;
   6139   }
   6140 
   6141   // Convert the FP value to an int value through memory.
   6142   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
   6143     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
   6144   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
   6145   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
   6146   MachinePointerInfo MPI =
   6147       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
   6148 
   6149   // Emit a store to the stack slot.
   6150   SDValue Chain;
   6151   if (i32Stack) {
   6152     MachineFunction &MF = DAG.getMachineFunction();
   6153     MachineMemOperand *MMO =
   6154       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
   6155     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
   6156     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   6157               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
   6158   } else
   6159     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
   6160                          MPI, false, false, 0);
   6161 
   6162   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
   6163   // add in a bias.
   6164   if (Op.getValueType() == MVT::i32 && !i32Stack) {
   6165     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
   6166                         DAG.getConstant(4, dl, FIPtr.getValueType()));
   6167     MPI = MPI.getWithOffset(4);
   6168   }
   6169 
   6170   RLI.Chain = Chain;
   6171   RLI.Ptr = FIPtr;
   6172   RLI.MPI = MPI;
   6173 }
   6174 
   6175 /// \brief Custom lowers floating point to integer conversions to use
   6176 /// the direct move instructions available in ISA 2.07 to avoid the
   6177 /// need for load/store combinations.
   6178 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
   6179                                                     SelectionDAG &DAG,
   6180                                                     SDLoc dl) const {
   6181   assert(Op.getOperand(0).getValueType().isFloatingPoint());
   6182   SDValue Src = Op.getOperand(0);
   6183 
   6184   if (Src.getValueType() == MVT::f32)
   6185     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   6186 
   6187   SDValue Tmp;
   6188   switch (Op.getSimpleValueType().SimpleTy) {
   6189   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
   6190   case MVT::i32:
   6191     Tmp = DAG.getNode(
   6192         Op.getOpcode() == ISD::FP_TO_SINT
   6193             ? PPCISD::FCTIWZ
   6194             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
   6195         dl, MVT::f64, Src);
   6196     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
   6197     break;
   6198   case MVT::i64:
   6199     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
   6200            "i64 FP_TO_UINT is supported only with FPCVT");
   6201     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   6202                                                         PPCISD::FCTIDUZ,
   6203                       dl, MVT::f64, Src);
   6204     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
   6205     break;
   6206   }
   6207   return Tmp;
   6208 }
   6209 
   6210 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
   6211                                           SDLoc dl) const {
   6212   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
   6213     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
   6214 
   6215   ReuseLoadInfo RLI;
   6216   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   6217 
   6218   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
   6219                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
   6220                      RLI.Ranges);
   6221 }
   6222 
   6223 // We're trying to insert a regular store, S, and then a load, L. If the
   6224 // incoming value, O, is a load, we might just be able to have our load use the
   6225 // address used by O. However, we don't know if anything else will store to
   6226 // that address before we can load from it. To prevent this situation, we need
   6227 // to insert our load, L, into the chain as a peer of O. To do this, we give L
   6228 // the same chain operand as O, we create a token factor from the chain results
   6229 // of O and L, and we replace all uses of O's chain result with that token
   6230 // factor (see spliceIntoChain below for this last part).
   6231 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
   6232                                             ReuseLoadInfo &RLI,
   6233                                             SelectionDAG &DAG,
   6234                                             ISD::LoadExtType ET) const {
   6235   SDLoc dl(Op);
   6236   if (ET == ISD::NON_EXTLOAD &&
   6237       (Op.getOpcode() == ISD::FP_TO_UINT ||
   6238        Op.getOpcode() == ISD::FP_TO_SINT) &&
   6239       isOperationLegalOrCustom(Op.getOpcode(),
   6240                                Op.getOperand(0).getValueType())) {
   6241 
   6242     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
   6243     return true;
   6244   }
   6245 
   6246   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
   6247   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
   6248       LD->isNonTemporal())
   6249     return false;
   6250   if (LD->getMemoryVT() != MemVT)
   6251     return false;
   6252 
   6253   RLI.Ptr = LD->getBasePtr();
   6254   if (LD->isIndexed() && LD->getOffset().getOpcode() != ISD::UNDEF) {
   6255     assert(LD->getAddressingMode() == ISD::PRE_INC &&
   6256            "Non-pre-inc AM on PPC?");
   6257     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
   6258                           LD->getOffset());
   6259   }
   6260 
   6261   RLI.Chain = LD->getChain();
   6262   RLI.MPI = LD->getPointerInfo();
   6263   RLI.IsInvariant = LD->isInvariant();
   6264   RLI.Alignment = LD->getAlignment();
   6265   RLI.AAInfo = LD->getAAInfo();
   6266   RLI.Ranges = LD->getRanges();
   6267 
   6268   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
   6269   return true;
   6270 }
   6271 
   6272 // Given the head of the old chain, ResChain, insert a token factor containing
   6273 // it and NewResChain, and make users of ResChain now be users of that token
   6274 // factor.
   6275 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
   6276                                         SDValue NewResChain,
   6277                                         SelectionDAG &DAG) const {
   6278   if (!ResChain)
   6279     return;
   6280 
   6281   SDLoc dl(NewResChain);
   6282 
   6283   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   6284                            NewResChain, DAG.getUNDEF(MVT::Other));
   6285   assert(TF.getNode() != NewResChain.getNode() &&
   6286          "A new TF really is required here");
   6287 
   6288   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
   6289   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
   6290 }
   6291 
   6292 /// \brief Custom lowers integer to floating point conversions to use
   6293 /// the direct move instructions available in ISA 2.07 to avoid the
   6294 /// need for load/store combinations.
   6295 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
   6296                                                     SelectionDAG &DAG,
   6297                                                     SDLoc dl) const {
   6298   assert((Op.getValueType() == MVT::f32 ||
   6299           Op.getValueType() == MVT::f64) &&
   6300          "Invalid floating point type as target of conversion");
   6301   assert(Subtarget.hasFPCVT() &&
   6302          "Int to FP conversions with direct moves require FPCVT");
   6303   SDValue FP;
   6304   SDValue Src = Op.getOperand(0);
   6305   bool SinglePrec = Op.getValueType() == MVT::f32;
   6306   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
   6307   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
   6308   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
   6309                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
   6310 
   6311   if (WordInt) {
   6312     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
   6313                      dl, MVT::f64, Src);
   6314     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   6315   }
   6316   else {
   6317     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
   6318     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
   6319   }
   6320 
   6321   return FP;
   6322 }
   6323 
   6324 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
   6325                                           SelectionDAG &DAG) const {
   6326   SDLoc dl(Op);
   6327 
   6328   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
   6329     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
   6330       return SDValue();
   6331 
   6332     SDValue Value = Op.getOperand(0);
   6333     // The values are now known to be -1 (false) or 1 (true). To convert this
   6334     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   6335     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   6336     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   6337 
   6338     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
   6339     FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64, FPHalfs, FPHalfs,
   6340                           FPHalfs, FPHalfs);
   6341 
   6342     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   6343 
   6344     if (Op.getValueType() != MVT::v4f64)
   6345       Value = DAG.getNode(ISD::FP_ROUND, dl,
   6346                           Op.getValueType(), Value,
   6347                           DAG.getIntPtrConstant(1, dl));
   6348     return Value;
   6349   }
   6350 
   6351   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
   6352   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   6353     return SDValue();
   6354 
   6355   if (Op.getOperand(0).getValueType() == MVT::i1)
   6356     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
   6357                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
   6358                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
   6359 
   6360   // If we have direct moves, we can do all the conversion, skip the store/load
   6361   // however, without FPCVT we can't do most conversions.
   6362   if (Subtarget.hasDirectMove() && Subtarget.isPPC64() && Subtarget.hasFPCVT())
   6363     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
   6364 
   6365   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   6366          "UINT_TO_FP is supported only with FPCVT");
   6367 
   6368   // If we have FCFIDS, then use it when converting to single-precision.
   6369   // Otherwise, convert to double-precision and then round.
   6370   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   6371                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   6372                                                             : PPCISD::FCFIDS)
   6373                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   6374                                                             : PPCISD::FCFID);
   6375   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   6376                   ? MVT::f32
   6377                   : MVT::f64;
   6378 
   6379   if (Op.getOperand(0).getValueType() == MVT::i64) {
   6380     SDValue SINT = Op.getOperand(0);
   6381     // When converting to single-precision, we actually need to convert
   6382     // to double-precision first and then round to single-precision.
   6383     // To avoid double-rounding effects during that operation, we have
   6384     // to prepare the input operand.  Bits that might be truncated when
   6385     // converting to double-precision are replaced by a bit that won't
   6386     // be lost at this stage, but is below the single-precision rounding
   6387     // position.
   6388     //
   6389     // However, if -enable-unsafe-fp-math is in effect, accept double
   6390     // rounding to avoid the extra overhead.
   6391     if (Op.getValueType() == MVT::f32 &&
   6392         !Subtarget.hasFPCVT() &&
   6393         !DAG.getTarget().Options.UnsafeFPMath) {
   6394 
   6395       // Twiddle input to make sure the low 11 bits are zero.  (If this
   6396       // is the case, we are guaranteed the value will fit into the 53 bit
   6397       // mantissa of an IEEE double-precision value without rounding.)
   6398       // If any of those low 11 bits were not zero originally, make sure
   6399       // bit 12 (value 2048) is set instead, so that the final rounding
   6400       // to single-precision gets the correct result.
   6401       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   6402                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
   6403       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
   6404                           Round, DAG.getConstant(2047, dl, MVT::i64));
   6405       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
   6406       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
   6407                           Round, DAG.getConstant(-2048, dl, MVT::i64));
   6408 
   6409       // However, we cannot use that value unconditionally: if the magnitude
   6410       // of the input value is small, the bit-twiddling we did above might
   6411       // end up visibly changing the output.  Fortunately, in that case, we
   6412       // don't need to twiddle bits since the original input will convert
   6413       // exactly to double-precision floating-point already.  Therefore,
   6414       // construct a conditional to use the original value if the top 11
   6415       // bits are all sign-bit copies, and use the rounded value computed
   6416       // above otherwise.
   6417       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
   6418                                  SINT, DAG.getConstant(53, dl, MVT::i32));
   6419       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
   6420                          Cond, DAG.getConstant(1, dl, MVT::i64));
   6421       Cond = DAG.getSetCC(dl, MVT::i32,
   6422                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
   6423 
   6424       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
   6425     }
   6426 
   6427     ReuseLoadInfo RLI;
   6428     SDValue Bits;
   6429 
   6430     MachineFunction &MF = DAG.getMachineFunction();
   6431     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
   6432       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
   6433                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
   6434                          RLI.Ranges);
   6435       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6436     } else if (Subtarget.hasLFIWAX() &&
   6437                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
   6438       MachineMemOperand *MMO =
   6439         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6440                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6441       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6442       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
   6443                                      DAG.getVTList(MVT::f64, MVT::Other),
   6444                                      Ops, MVT::i32, MMO);
   6445       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6446     } else if (Subtarget.hasFPCVT() &&
   6447                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
   6448       MachineMemOperand *MMO =
   6449         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6450                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6451       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6452       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
   6453                                      DAG.getVTList(MVT::f64, MVT::Other),
   6454                                      Ops, MVT::i32, MMO);
   6455       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
   6456     } else if (((Subtarget.hasLFIWAX() &&
   6457                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
   6458                 (Subtarget.hasFPCVT() &&
   6459                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
   6460                SINT.getOperand(0).getValueType() == MVT::i32) {
   6461       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   6462       EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   6463 
   6464       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   6465       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6466 
   6467       SDValue Store = DAG.getStore(
   6468           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
   6469           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6470           false, false, 0);
   6471 
   6472       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   6473              "Expected an i32 store");
   6474 
   6475       RLI.Ptr = FIdx;
   6476       RLI.Chain = Store;
   6477       RLI.MPI =
   6478           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   6479       RLI.Alignment = 4;
   6480 
   6481       MachineMemOperand *MMO =
   6482         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6483                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6484       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6485       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
   6486                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
   6487                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
   6488                                      Ops, MVT::i32, MMO);
   6489     } else
   6490       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
   6491 
   6492     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
   6493 
   6494     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   6495       FP = DAG.getNode(ISD::FP_ROUND, dl,
   6496                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
   6497     return FP;
   6498   }
   6499 
   6500   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
   6501          "Unhandled INT_TO_FP type in custom expander!");
   6502   // Since we only generate this in 64-bit mode, we can take advantage of
   6503   // 64-bit registers.  In particular, sign extend the input value into the
   6504   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
   6505   // then lfd it and fcfid it.
   6506   MachineFunction &MF = DAG.getMachineFunction();
   6507   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
   6508   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   6509 
   6510   SDValue Ld;
   6511   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
   6512     ReuseLoadInfo RLI;
   6513     bool ReusingLoad;
   6514     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
   6515                                             DAG))) {
   6516       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
   6517       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6518 
   6519       SDValue Store = DAG.getStore(
   6520           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
   6521           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6522           false, false, 0);
   6523 
   6524       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
   6525              "Expected an i32 store");
   6526 
   6527       RLI.Ptr = FIdx;
   6528       RLI.Chain = Store;
   6529       RLI.MPI =
   6530           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   6531       RLI.Alignment = 4;
   6532     }
   6533 
   6534     MachineMemOperand *MMO =
   6535       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
   6536                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
   6537     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
   6538     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
   6539                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
   6540                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
   6541                                  Ops, MVT::i32, MMO);
   6542     if (ReusingLoad)
   6543       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
   6544   } else {
   6545     assert(Subtarget.isPPC64() &&
   6546            "i32->FP without LFIWAX supported only on PPC64");
   6547 
   6548     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
   6549     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6550 
   6551     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
   6552                                 Op.getOperand(0));
   6553 
   6554     // STD the extended value into the stack slot.
   6555     SDValue Store = DAG.getStore(
   6556         DAG.getEntryNode(), dl, Ext64, FIdx,
   6557         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6558         false, false, 0);
   6559 
   6560     // Load the value as a double.
   6561     Ld = DAG.getLoad(
   6562         MVT::f64, dl, Store, FIdx,
   6563         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
   6564         false, false, false, 0);
   6565   }
   6566 
   6567   // FCFID it and return it.
   6568   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
   6569   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
   6570     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
   6571                      DAG.getIntPtrConstant(0, dl));
   6572   return FP;
   6573 }
   6574 
   6575 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   6576                                             SelectionDAG &DAG) const {
   6577   SDLoc dl(Op);
   6578   /*
   6579    The rounding mode is in bits 30:31 of FPSR, and has the following
   6580    settings:
   6581      00 Round to nearest
   6582      01 Round to 0
   6583      10 Round to +inf
   6584      11 Round to -inf
   6585 
   6586   FLT_ROUNDS, on the other hand, expects the following:
   6587     -1 Undefined
   6588      0 Round to 0
   6589      1 Round to nearest
   6590      2 Round to +inf
   6591      3 Round to -inf
   6592 
   6593   To perform the conversion, we do:
   6594     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
   6595   */
   6596 
   6597   MachineFunction &MF = DAG.getMachineFunction();
   6598   EVT VT = Op.getValueType();
   6599   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   6600 
   6601   // Save FP Control Word to register
   6602   EVT NodeTys[] = {
   6603     MVT::f64,    // return register
   6604     MVT::Glue    // unused in this context
   6605   };
   6606   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
   6607 
   6608   // Save FP register to stack slot
   6609   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
   6610   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
   6611   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
   6612                                StackSlot, MachinePointerInfo(), false, false,0);
   6613 
   6614   // Load FP Control Word from low 32 bits of stack slot.
   6615   SDValue Four = DAG.getConstant(4, dl, PtrVT);
   6616   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
   6617   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
   6618                             false, false, false, 0);
   6619 
   6620   // Transform as necessary
   6621   SDValue CWD1 =
   6622     DAG.getNode(ISD::AND, dl, MVT::i32,
   6623                 CWD, DAG.getConstant(3, dl, MVT::i32));
   6624   SDValue CWD2 =
   6625     DAG.getNode(ISD::SRL, dl, MVT::i32,
   6626                 DAG.getNode(ISD::AND, dl, MVT::i32,
   6627                             DAG.getNode(ISD::XOR, dl, MVT::i32,
   6628                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
   6629                             DAG.getConstant(3, dl, MVT::i32)),
   6630                 DAG.getConstant(1, dl, MVT::i32));
   6631 
   6632   SDValue RetVal =
   6633     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
   6634 
   6635   return DAG.getNode((VT.getSizeInBits() < 16 ?
   6636                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
   6637 }
   6638 
   6639 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6640   EVT VT = Op.getValueType();
   6641   unsigned BitWidth = VT.getSizeInBits();
   6642   SDLoc dl(Op);
   6643   assert(Op.getNumOperands() == 3 &&
   6644          VT == Op.getOperand(1).getValueType() &&
   6645          "Unexpected SHL!");
   6646 
   6647   // Expand into a bunch of logical ops.  Note that these ops
   6648   // depend on the PPC behavior for oversized shift amounts.
   6649   SDValue Lo = Op.getOperand(0);
   6650   SDValue Hi = Op.getOperand(1);
   6651   SDValue Amt = Op.getOperand(2);
   6652   EVT AmtVT = Amt.getValueType();
   6653 
   6654   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6655                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   6656   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
   6657   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
   6658   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
   6659   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6660                              DAG.getConstant(-BitWidth, dl, AmtVT));
   6661   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
   6662   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   6663   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
   6664   SDValue OutOps[] = { OutLo, OutHi };
   6665   return DAG.getMergeValues(OutOps, dl);
   6666 }
   6667 
   6668 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6669   EVT VT = Op.getValueType();
   6670   SDLoc dl(Op);
   6671   unsigned BitWidth = VT.getSizeInBits();
   6672   assert(Op.getNumOperands() == 3 &&
   6673          VT == Op.getOperand(1).getValueType() &&
   6674          "Unexpected SRL!");
   6675 
   6676   // Expand into a bunch of logical ops.  Note that these ops
   6677   // depend on the PPC behavior for oversized shift amounts.
   6678   SDValue Lo = Op.getOperand(0);
   6679   SDValue Hi = Op.getOperand(1);
   6680   SDValue Amt = Op.getOperand(2);
   6681   EVT AmtVT = Amt.getValueType();
   6682 
   6683   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6684                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   6685   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   6686   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   6687   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   6688   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6689                              DAG.getConstant(-BitWidth, dl, AmtVT));
   6690   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
   6691   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
   6692   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
   6693   SDValue OutOps[] = { OutLo, OutHi };
   6694   return DAG.getMergeValues(OutOps, dl);
   6695 }
   6696 
   6697 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
   6698   SDLoc dl(Op);
   6699   EVT VT = Op.getValueType();
   6700   unsigned BitWidth = VT.getSizeInBits();
   6701   assert(Op.getNumOperands() == 3 &&
   6702          VT == Op.getOperand(1).getValueType() &&
   6703          "Unexpected SRA!");
   6704 
   6705   // Expand into a bunch of logical ops, followed by a select_cc.
   6706   SDValue Lo = Op.getOperand(0);
   6707   SDValue Hi = Op.getOperand(1);
   6708   SDValue Amt = Op.getOperand(2);
   6709   EVT AmtVT = Amt.getValueType();
   6710 
   6711   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
   6712                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
   6713   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
   6714   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
   6715   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
   6716   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
   6717                              DAG.getConstant(-BitWidth, dl, AmtVT));
   6718   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
   6719   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
   6720   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
   6721                                   Tmp4, Tmp6, ISD::SETLE);
   6722   SDValue OutOps[] = { OutLo, OutHi };
   6723   return DAG.getMergeValues(OutOps, dl);
   6724 }
   6725 
   6726 //===----------------------------------------------------------------------===//
   6727 // Vector related lowering.
   6728 //
   6729 
   6730 /// BuildSplatI - Build a canonical splati of Val with an element size of
   6731 /// SplatSize.  Cast the result to VT.
   6732 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
   6733                              SelectionDAG &DAG, SDLoc dl) {
   6734   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
   6735 
   6736   static const MVT VTys[] = { // canonical VT to use for each size.
   6737     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
   6738   };
   6739 
   6740   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
   6741 
   6742   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
   6743   if (Val == -1)
   6744     SplatSize = 1;
   6745 
   6746   EVT CanonicalVT = VTys[SplatSize-1];
   6747 
   6748   // Build a canonical splat for this value.
   6749   SDValue Elt = DAG.getConstant(Val, dl, MVT::i32);
   6750   SmallVector<SDValue, 8> Ops;
   6751   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
   6752   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
   6753   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
   6754 }
   6755 
   6756 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
   6757 /// specified intrinsic ID.
   6758 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
   6759                                 SelectionDAG &DAG, SDLoc dl,
   6760                                 EVT DestVT = MVT::Other) {
   6761   if (DestVT == MVT::Other) DestVT = Op.getValueType();
   6762   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   6763                      DAG.getConstant(IID, dl, MVT::i32), Op);
   6764 }
   6765 
   6766 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
   6767 /// specified intrinsic ID.
   6768 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
   6769                                 SelectionDAG &DAG, SDLoc dl,
   6770                                 EVT DestVT = MVT::Other) {
   6771   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
   6772   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   6773                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
   6774 }
   6775 
   6776 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
   6777 /// specified intrinsic ID.
   6778 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
   6779                                 SDValue Op2, SelectionDAG &DAG,
   6780                                 SDLoc dl, EVT DestVT = MVT::Other) {
   6781   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
   6782   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   6783                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
   6784 }
   6785 
   6786 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
   6787 /// amount.  The result has the specified value type.
   6788 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
   6789                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
   6790   // Force LHS/RHS to be the right type.
   6791   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
   6792   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
   6793 
   6794   int Ops[16];
   6795   for (unsigned i = 0; i != 16; ++i)
   6796     Ops[i] = i + Amt;
   6797   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
   6798   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   6799 }
   6800 
   6801 // If this is a case we can't handle, return null and let the default
   6802 // expansion code take care of it.  If we CAN select this case, and if it
   6803 // selects to a single instruction, return Op.  Otherwise, if we can codegen
   6804 // this case more efficiently than a constant pool load, lower it to the
   6805 // sequence of ops that should be used.
   6806 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   6807                                              SelectionDAG &DAG) const {
   6808   SDLoc dl(Op);
   6809   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   6810   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
   6811 
   6812   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
   6813     // We first build an i32 vector, load it into a QPX register,
   6814     // then convert it to a floating-point vector and compare it
   6815     // to a zero vector to get the boolean result.
   6816     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6817     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   6818     MachinePointerInfo PtrInfo =
   6819         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   6820     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   6821     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   6822 
   6823     assert(BVN->getNumOperands() == 4 &&
   6824       "BUILD_VECTOR for v4i1 does not have 4 operands");
   6825 
   6826     bool IsConst = true;
   6827     for (unsigned i = 0; i < 4; ++i) {
   6828       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   6829       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
   6830         IsConst = false;
   6831         break;
   6832       }
   6833     }
   6834 
   6835     if (IsConst) {
   6836       Constant *One =
   6837         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
   6838       Constant *NegOne =
   6839         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
   6840 
   6841       SmallVector<Constant*, 4> CV(4, NegOne);
   6842       for (unsigned i = 0; i < 4; ++i) {
   6843         if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
   6844           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
   6845         else if (isNullConstant(BVN->getOperand(i)))
   6846           continue;
   6847         else
   6848           CV[i] = One;
   6849       }
   6850 
   6851       Constant *CP = ConstantVector::get(CV);
   6852       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
   6853                                           16 /* alignment */);
   6854 
   6855       SmallVector<SDValue, 2> Ops;
   6856       Ops.push_back(DAG.getEntryNode());
   6857       Ops.push_back(CPIdx);
   6858 
   6859       SmallVector<EVT, 2> ValueVTs;
   6860       ValueVTs.push_back(MVT::v4i1);
   6861       ValueVTs.push_back(MVT::Other); // chain
   6862       SDVTList VTs = DAG.getVTList(ValueVTs);
   6863 
   6864       return DAG.getMemIntrinsicNode(
   6865           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
   6866           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
   6867     }
   6868 
   6869     SmallVector<SDValue, 4> Stores;
   6870     for (unsigned i = 0; i < 4; ++i) {
   6871       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) continue;
   6872 
   6873       unsigned Offset = 4*i;
   6874       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   6875       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   6876 
   6877       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
   6878       if (StoreSize > 4) {
   6879         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
   6880                                            BVN->getOperand(i), Idx,
   6881                                            PtrInfo.getWithOffset(Offset),
   6882                                            MVT::i32, false, false, 0));
   6883       } else {
   6884         SDValue StoreValue = BVN->getOperand(i);
   6885         if (StoreSize < 4)
   6886           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
   6887 
   6888         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
   6889                                       StoreValue, Idx,
   6890                                       PtrInfo.getWithOffset(Offset),
   6891                                       false, false, 0));
   6892       }
   6893     }
   6894 
   6895     SDValue StoreChain;
   6896     if (!Stores.empty())
   6897       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   6898     else
   6899       StoreChain = DAG.getEntryNode();
   6900 
   6901     // Now load from v4i32 into the QPX register; this will extend it to
   6902     // v4i64 but not yet convert it to a floating point. Nevertheless, this
   6903     // is typed as v4f64 because the QPX register integer states are not
   6904     // explicitly represented.
   6905 
   6906     SmallVector<SDValue, 2> Ops;
   6907     Ops.push_back(StoreChain);
   6908     Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32));
   6909     Ops.push_back(FIdx);
   6910 
   6911     SmallVector<EVT, 2> ValueVTs;
   6912     ValueVTs.push_back(MVT::v4f64);
   6913     ValueVTs.push_back(MVT::Other); // chain
   6914     SDVTList VTs = DAG.getVTList(ValueVTs);
   6915 
   6916     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
   6917       dl, VTs, Ops, MVT::v4i32, PtrInfo);
   6918     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   6919       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
   6920       LoadedVect);
   6921 
   6922     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::f64);
   6923     FPZeros = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   6924                           FPZeros, FPZeros, FPZeros, FPZeros);
   6925 
   6926     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
   6927   }
   6928 
   6929   // All other QPX vectors are handled by generic code.
   6930   if (Subtarget.hasQPX())
   6931     return SDValue();
   6932 
   6933   // Check if this is a splat of a constant value.
   6934   APInt APSplatBits, APSplatUndef;
   6935   unsigned SplatBitSize;
   6936   bool HasAnyUndefs;
   6937   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
   6938                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
   6939       SplatBitSize > 32)
   6940     return SDValue();
   6941 
   6942   unsigned SplatBits = APSplatBits.getZExtValue();
   6943   unsigned SplatUndef = APSplatUndef.getZExtValue();
   6944   unsigned SplatSize = SplatBitSize / 8;
   6945 
   6946   // First, handle single instruction cases.
   6947 
   6948   // All zeros?
   6949   if (SplatBits == 0) {
   6950     // Canonicalize all zero vectors to be v4i32.
   6951     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
   6952       SDValue Z = DAG.getConstant(0, dl, MVT::i32);
   6953       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
   6954       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
   6955     }
   6956     return Op;
   6957   }
   6958 
   6959   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
   6960   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
   6961                     (32-SplatBitSize));
   6962   if (SextVal >= -16 && SextVal <= 15)
   6963     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
   6964 
   6965   // Two instruction sequences.
   6966 
   6967   // If this value is in the range [-32,30] and is even, use:
   6968   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
   6969   // If this value is in the range [17,31] and is odd, use:
   6970   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
   6971   // If this value is in the range [-31,-17] and is odd, use:
   6972   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
   6973   // Note the last two are three-instruction sequences.
   6974   if (SextVal >= -32 && SextVal <= 31) {
   6975     // To avoid having these optimizations undone by constant folding,
   6976     // we convert to a pseudo that will be expanded later into one of
   6977     // the above forms.
   6978     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
   6979     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
   6980               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
   6981     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
   6982     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
   6983     if (VT == Op.getValueType())
   6984       return RetVal;
   6985     else
   6986       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
   6987   }
   6988 
   6989   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
   6990   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
   6991   // for fneg/fabs.
   6992   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
   6993     // Make -1 and vspltisw -1:
   6994     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
   6995 
   6996     // Make the VSLW intrinsic, computing 0x8000_0000.
   6997     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
   6998                                    OnesV, DAG, dl);
   6999 
   7000     // xor by OnesV to invert it.
   7001     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
   7002     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7003   }
   7004 
   7005   // Check to see if this is a wide variety of vsplti*, binop self cases.
   7006   static const signed char SplatCsts[] = {
   7007     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
   7008     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
   7009   };
   7010 
   7011   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
   7012     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
   7013     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
   7014     int i = SplatCsts[idx];
   7015 
   7016     // Figure out what shift amount will be used by altivec if shifted by i in
   7017     // this splat size.
   7018     unsigned TypeShiftAmt = i & (SplatBitSize-1);
   7019 
   7020     // vsplti + shl self.
   7021     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
   7022       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7023       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7024         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
   7025         Intrinsic::ppc_altivec_vslw
   7026       };
   7027       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7028       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7029     }
   7030 
   7031     // vsplti + srl self.
   7032     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   7033       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7034       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7035         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
   7036         Intrinsic::ppc_altivec_vsrw
   7037       };
   7038       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7039       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7040     }
   7041 
   7042     // vsplti + sra self.
   7043     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
   7044       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7045       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7046         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
   7047         Intrinsic::ppc_altivec_vsraw
   7048       };
   7049       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7050       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7051     }
   7052 
   7053     // vsplti + rol self.
   7054     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
   7055                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
   7056       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
   7057       static const unsigned IIDs[] = { // Intrinsic to use for each size.
   7058         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
   7059         Intrinsic::ppc_altivec_vrlw
   7060       };
   7061       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
   7062       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
   7063     }
   7064 
   7065     // t = vsplti c, result = vsldoi t, t, 1
   7066     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
   7067       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   7068       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
   7069       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   7070     }
   7071     // t = vsplti c, result = vsldoi t, t, 2
   7072     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
   7073       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   7074       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
   7075       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   7076     }
   7077     // t = vsplti c, result = vsldoi t, t, 3
   7078     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
   7079       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
   7080       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
   7081       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
   7082     }
   7083   }
   7084 
   7085   return SDValue();
   7086 }
   7087 
   7088 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   7089 /// the specified operations to build the shuffle.
   7090 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   7091                                       SDValue RHS, SelectionDAG &DAG,
   7092                                       SDLoc dl) {
   7093   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   7094   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   7095   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   7096 
   7097   enum {
   7098     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   7099     OP_VMRGHW,
   7100     OP_VMRGLW,
   7101     OP_VSPLTISW0,
   7102     OP_VSPLTISW1,
   7103     OP_VSPLTISW2,
   7104     OP_VSPLTISW3,
   7105     OP_VSLDOI4,
   7106     OP_VSLDOI8,
   7107     OP_VSLDOI12
   7108   };
   7109 
   7110   if (OpNum == OP_COPY) {
   7111     if (LHSID == (1*9+2)*9+3) return LHS;
   7112     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   7113     return RHS;
   7114   }
   7115 
   7116   SDValue OpLHS, OpRHS;
   7117   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   7118   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   7119 
   7120   int ShufIdxs[16];
   7121   switch (OpNum) {
   7122   default: llvm_unreachable("Unknown i32 permute!");
   7123   case OP_VMRGHW:
   7124     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
   7125     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
   7126     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
   7127     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
   7128     break;
   7129   case OP_VMRGLW:
   7130     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
   7131     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
   7132     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
   7133     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
   7134     break;
   7135   case OP_VSPLTISW0:
   7136     for (unsigned i = 0; i != 16; ++i)
   7137       ShufIdxs[i] = (i&3)+0;
   7138     break;
   7139   case OP_VSPLTISW1:
   7140     for (unsigned i = 0; i != 16; ++i)
   7141       ShufIdxs[i] = (i&3)+4;
   7142     break;
   7143   case OP_VSPLTISW2:
   7144     for (unsigned i = 0; i != 16; ++i)
   7145       ShufIdxs[i] = (i&3)+8;
   7146     break;
   7147   case OP_VSPLTISW3:
   7148     for (unsigned i = 0; i != 16; ++i)
   7149       ShufIdxs[i] = (i&3)+12;
   7150     break;
   7151   case OP_VSLDOI4:
   7152     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
   7153   case OP_VSLDOI8:
   7154     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
   7155   case OP_VSLDOI12:
   7156     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
   7157   }
   7158   EVT VT = OpLHS.getValueType();
   7159   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
   7160   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
   7161   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
   7162   return DAG.getNode(ISD::BITCAST, dl, VT, T);
   7163 }
   7164 
   7165 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
   7166 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
   7167 /// return the code it can be lowered into.  Worst case, it can always be
   7168 /// lowered into a vperm.
   7169 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
   7170                                                SelectionDAG &DAG) const {
   7171   SDLoc dl(Op);
   7172   SDValue V1 = Op.getOperand(0);
   7173   SDValue V2 = Op.getOperand(1);
   7174   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   7175   EVT VT = Op.getValueType();
   7176   bool isLittleEndian = Subtarget.isLittleEndian();
   7177 
   7178   if (Subtarget.hasQPX()) {
   7179     if (VT.getVectorNumElements() != 4)
   7180       return SDValue();
   7181 
   7182     if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   7183 
   7184     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
   7185     if (AlignIdx != -1) {
   7186       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
   7187                          DAG.getConstant(AlignIdx, dl, MVT::i32));
   7188     } else if (SVOp->isSplat()) {
   7189       int SplatIdx = SVOp->getSplatIndex();
   7190       if (SplatIdx >= 4) {
   7191         std::swap(V1, V2);
   7192         SplatIdx -= 4;
   7193       }
   7194 
   7195       // FIXME: If SplatIdx == 0 and the input came from a load, then there is
   7196       // nothing to do.
   7197 
   7198       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
   7199                          DAG.getConstant(SplatIdx, dl, MVT::i32));
   7200     }
   7201 
   7202     // Lower this into a qvgpci/qvfperm pair.
   7203 
   7204     // Compute the qvgpci literal
   7205     unsigned idx = 0;
   7206     for (unsigned i = 0; i < 4; ++i) {
   7207       int m = SVOp->getMaskElt(i);
   7208       unsigned mm = m >= 0 ? (unsigned) m : i;
   7209       idx |= mm << (3-i)*3;
   7210     }
   7211 
   7212     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
   7213                              DAG.getConstant(idx, dl, MVT::i32));
   7214     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
   7215   }
   7216 
   7217   // Cases that are handled by instructions that take permute immediates
   7218   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
   7219   // selected by the instruction selector.
   7220   if (V2.getOpcode() == ISD::UNDEF) {
   7221     if (PPC::isSplatShuffleMask(SVOp, 1) ||
   7222         PPC::isSplatShuffleMask(SVOp, 2) ||
   7223         PPC::isSplatShuffleMask(SVOp, 4) ||
   7224         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
   7225         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
   7226         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
   7227         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
   7228         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
   7229         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
   7230         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
   7231         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
   7232         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
   7233         (Subtarget.hasP8Altivec() && (
   7234          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
   7235          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
   7236          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
   7237       return Op;
   7238     }
   7239   }
   7240 
   7241   // Altivec has a variety of "shuffle immediates" that take two vector inputs
   7242   // and produce a fixed permutation.  If any of these match, do not lower to
   7243   // VPERM.
   7244   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
   7245   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   7246       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   7247       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
   7248       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   7249       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   7250       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   7251       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
   7252       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
   7253       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
   7254       (Subtarget.hasP8Altivec() && (
   7255        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
   7256        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
   7257        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
   7258     return Op;
   7259 
   7260   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
   7261   // perfect shuffle table to emit an optimal matching sequence.
   7262   ArrayRef<int> PermMask = SVOp->getMask();
   7263 
   7264   unsigned PFIndexes[4];
   7265   bool isFourElementShuffle = true;
   7266   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
   7267     unsigned EltNo = 8;   // Start out undef.
   7268     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
   7269       if (PermMask[i*4+j] < 0)
   7270         continue;   // Undef, ignore it.
   7271 
   7272       unsigned ByteSource = PermMask[i*4+j];
   7273       if ((ByteSource & 3) != j) {
   7274         isFourElementShuffle = false;
   7275         break;
   7276       }
   7277 
   7278       if (EltNo == 8) {
   7279         EltNo = ByteSource/4;
   7280       } else if (EltNo != ByteSource/4) {
   7281         isFourElementShuffle = false;
   7282         break;
   7283       }
   7284     }
   7285     PFIndexes[i] = EltNo;
   7286   }
   7287 
   7288   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
   7289   // perfect shuffle vector to determine if it is cost effective to do this as
   7290   // discrete instructions, or whether we should use a vperm.
   7291   // For now, we skip this for little endian until such time as we have a
   7292   // little-endian perfect shuffle table.
   7293   if (isFourElementShuffle && !isLittleEndian) {
   7294     // Compute the index in the perfect shuffle table.
   7295     unsigned PFTableIndex =
   7296       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   7297 
   7298     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   7299     unsigned Cost  = (PFEntry >> 30);
   7300 
   7301     // Determining when to avoid vperm is tricky.  Many things affect the cost
   7302     // of vperm, particularly how many times the perm mask needs to be computed.
   7303     // For example, if the perm mask can be hoisted out of a loop or is already
   7304     // used (perhaps because there are multiple permutes with the same shuffle
   7305     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
   7306     // the loop requires an extra register.
   7307     //
   7308     // As a compromise, we only emit discrete instructions if the shuffle can be
   7309     // generated in 3 or fewer operations.  When we have loop information
   7310     // available, if this block is within a loop, we should avoid using vperm
   7311     // for 3-operation perms and use a constant pool load instead.
   7312     if (Cost < 3)
   7313       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   7314   }
   7315 
   7316   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
   7317   // vector that will get spilled to the constant pool.
   7318   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
   7319 
   7320   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
   7321   // that it is in input element units, not in bytes.  Convert now.
   7322 
   7323   // For little endian, the order of the input vectors is reversed, and
   7324   // the permutation mask is complemented with respect to 31.  This is
   7325   // necessary to produce proper semantics with the big-endian-biased vperm
   7326   // instruction.
   7327   EVT EltVT = V1.getValueType().getVectorElementType();
   7328   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
   7329 
   7330   SmallVector<SDValue, 16> ResultMask;
   7331   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   7332     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
   7333 
   7334     for (unsigned j = 0; j != BytesPerElement; ++j)
   7335       if (isLittleEndian)
   7336         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
   7337                                              dl, MVT::i32));
   7338       else
   7339         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
   7340                                              MVT::i32));
   7341   }
   7342 
   7343   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
   7344                                   ResultMask);
   7345   if (isLittleEndian)
   7346     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   7347                        V2, V1, VPermMask);
   7348   else
   7349     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
   7350                        V1, V2, VPermMask);
   7351 }
   7352 
   7353 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
   7354 /// vector comparison.  If it is, return true and fill in Opc/isDot with
   7355 /// information about the intrinsic.
   7356 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
   7357                                  bool &isDot, const PPCSubtarget &Subtarget) {
   7358   unsigned IntrinsicID =
   7359     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
   7360   CompareOpc = -1;
   7361   isDot = false;
   7362   switch (IntrinsicID) {
   7363   default: return false;
   7364     // Comparison predicates.
   7365   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
   7366   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
   7367   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
   7368   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
   7369   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
   7370   case Intrinsic::ppc_altivec_vcmpequd_p:
   7371     if (Subtarget.hasP8Altivec()) {
   7372       CompareOpc = 199;
   7373       isDot = 1;
   7374     } else
   7375       return false;
   7376 
   7377     break;
   7378   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
   7379   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
   7380   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
   7381   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
   7382   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
   7383   case Intrinsic::ppc_altivec_vcmpgtsd_p:
   7384     if (Subtarget.hasP8Altivec()) {
   7385       CompareOpc = 967;
   7386       isDot = 1;
   7387     } else
   7388       return false;
   7389 
   7390     break;
   7391   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
   7392   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
   7393   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
   7394   case Intrinsic::ppc_altivec_vcmpgtud_p:
   7395     if (Subtarget.hasP8Altivec()) {
   7396       CompareOpc = 711;
   7397       isDot = 1;
   7398     } else
   7399       return false;
   7400 
   7401     break;
   7402     // VSX predicate comparisons use the same infrastructure
   7403   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
   7404   case Intrinsic::ppc_vsx_xvcmpgedp_p:
   7405   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
   7406   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
   7407   case Intrinsic::ppc_vsx_xvcmpgesp_p:
   7408   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
   7409     if (Subtarget.hasVSX()) {
   7410       switch (IntrinsicID) {
   7411       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
   7412       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
   7413       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
   7414       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
   7415       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
   7416       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
   7417       }
   7418       isDot = 1;
   7419     }
   7420     else
   7421       return false;
   7422 
   7423     break;
   7424 
   7425     // Normal Comparisons.
   7426   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
   7427   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
   7428   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
   7429   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
   7430   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
   7431   case Intrinsic::ppc_altivec_vcmpequd:
   7432     if (Subtarget.hasP8Altivec()) {
   7433       CompareOpc = 199;
   7434       isDot = 0;
   7435     } else
   7436       return false;
   7437 
   7438     break;
   7439   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
   7440   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
   7441   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
   7442   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
   7443   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
   7444   case Intrinsic::ppc_altivec_vcmpgtsd:
   7445     if (Subtarget.hasP8Altivec()) {
   7446       CompareOpc = 967;
   7447       isDot = 0;
   7448     } else
   7449       return false;
   7450 
   7451     break;
   7452   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
   7453   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
   7454   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
   7455   case Intrinsic::ppc_altivec_vcmpgtud:
   7456     if (Subtarget.hasP8Altivec()) {
   7457       CompareOpc = 711;
   7458       isDot = 0;
   7459     } else
   7460       return false;
   7461 
   7462     break;
   7463   }
   7464   return true;
   7465 }
   7466 
   7467 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
   7468 /// lower, do it, otherwise return null.
   7469 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
   7470                                                    SelectionDAG &DAG) const {
   7471   // If this is a lowered altivec predicate compare, CompareOpc is set to the
   7472   // opcode number of the comparison.
   7473   SDLoc dl(Op);
   7474   int CompareOpc;
   7475   bool isDot;
   7476   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
   7477     return SDValue();    // Don't custom lower most intrinsics.
   7478 
   7479   // If this is a non-dot comparison, make the VCMP node and we are done.
   7480   if (!isDot) {
   7481     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
   7482                               Op.getOperand(1), Op.getOperand(2),
   7483                               DAG.getConstant(CompareOpc, dl, MVT::i32));
   7484     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
   7485   }
   7486 
   7487   // Create the PPCISD altivec 'dot' comparison node.
   7488   SDValue Ops[] = {
   7489     Op.getOperand(2),  // LHS
   7490     Op.getOperand(3),  // RHS
   7491     DAG.getConstant(CompareOpc, dl, MVT::i32)
   7492   };
   7493   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
   7494   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   7495 
   7496   // Now that we have the comparison, emit a copy from the CR to a GPR.
   7497   // This is flagged to the above dot comparison.
   7498   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
   7499                                 DAG.getRegister(PPC::CR6, MVT::i32),
   7500                                 CompNode.getValue(1));
   7501 
   7502   // Unpack the result based on how the target uses it.
   7503   unsigned BitNo;   // Bit # of CR6.
   7504   bool InvertBit;   // Invert result?
   7505   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
   7506   default:  // Can't happen, don't crash on invalid number though.
   7507   case 0:   // Return the value of the EQ bit of CR6.
   7508     BitNo = 0; InvertBit = false;
   7509     break;
   7510   case 1:   // Return the inverted value of the EQ bit of CR6.
   7511     BitNo = 0; InvertBit = true;
   7512     break;
   7513   case 2:   // Return the value of the LT bit of CR6.
   7514     BitNo = 2; InvertBit = false;
   7515     break;
   7516   case 3:   // Return the inverted value of the LT bit of CR6.
   7517     BitNo = 2; InvertBit = true;
   7518     break;
   7519   }
   7520 
   7521   // Shift the bit into the low position.
   7522   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
   7523                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
   7524   // Isolate the bit.
   7525   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
   7526                       DAG.getConstant(1, dl, MVT::i32));
   7527 
   7528   // If we are supposed to, toggle the bit.
   7529   if (InvertBit)
   7530     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
   7531                         DAG.getConstant(1, dl, MVT::i32));
   7532   return Flags;
   7533 }
   7534 
   7535 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   7536                                                   SelectionDAG &DAG) const {
   7537   SDLoc dl(Op);
   7538   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
   7539   // instructions), but for smaller types, we need to first extend up to v2i32
   7540   // before doing going farther.
   7541   if (Op.getValueType() == MVT::v2i64) {
   7542     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   7543     if (ExtVT != MVT::v2i32) {
   7544       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
   7545       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
   7546                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
   7547                                         ExtVT.getVectorElementType(), 4)));
   7548       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
   7549       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
   7550                        DAG.getValueType(MVT::v2i32));
   7551     }
   7552 
   7553     return Op;
   7554   }
   7555 
   7556   return SDValue();
   7557 }
   7558 
   7559 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
   7560                                                    SelectionDAG &DAG) const {
   7561   SDLoc dl(Op);
   7562   // Create a stack slot that is 16-byte aligned.
   7563   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7564   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7565   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7566   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7567 
   7568   // Store the input value into Value#0 of the stack slot.
   7569   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
   7570                                Op.getOperand(0), FIdx, MachinePointerInfo(),
   7571                                false, false, 0);
   7572   // Load it out.
   7573   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
   7574                      false, false, false, 0);
   7575 }
   7576 
   7577 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   7578                                                    SelectionDAG &DAG) const {
   7579   SDLoc dl(Op);
   7580   SDNode *N = Op.getNode();
   7581 
   7582   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
   7583          "Unknown extract_vector_elt type");
   7584 
   7585   SDValue Value = N->getOperand(0);
   7586 
   7587   // The first part of this is like the store lowering except that we don't
   7588   // need to track the chain.
   7589 
   7590   // The values are now known to be -1 (false) or 1 (true). To convert this
   7591   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   7592   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   7593   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   7594 
   7595   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   7596   // understand how to form the extending load.
   7597   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
   7598   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   7599                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
   7600 
   7601   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   7602 
   7603   // Now convert to an integer and store.
   7604   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7605     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
   7606     Value);
   7607 
   7608   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7609   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7610   MachinePointerInfo PtrInfo =
   7611       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7613   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7614 
   7615   SDValue StoreChain = DAG.getEntryNode();
   7616   SmallVector<SDValue, 2> Ops;
   7617   Ops.push_back(StoreChain);
   7618   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
   7619   Ops.push_back(Value);
   7620   Ops.push_back(FIdx);
   7621 
   7622   SmallVector<EVT, 2> ValueVTs;
   7623   ValueVTs.push_back(MVT::Other); // chain
   7624   SDVTList VTs = DAG.getVTList(ValueVTs);
   7625 
   7626   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   7627     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7628 
   7629   // Extract the value requested.
   7630   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   7631   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   7632   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7633 
   7634   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   7635                                PtrInfo.getWithOffset(Offset),
   7636                                false, false, false, 0);
   7637 
   7638   if (!Subtarget.useCRBits())
   7639     return IntVal;
   7640 
   7641   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
   7642 }
   7643 
   7644 /// Lowering for QPX v4i1 loads
   7645 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
   7646                                            SelectionDAG &DAG) const {
   7647   SDLoc dl(Op);
   7648   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
   7649   SDValue LoadChain = LN->getChain();
   7650   SDValue BasePtr = LN->getBasePtr();
   7651 
   7652   if (Op.getValueType() == MVT::v4f64 ||
   7653       Op.getValueType() == MVT::v4f32) {
   7654     EVT MemVT = LN->getMemoryVT();
   7655     unsigned Alignment = LN->getAlignment();
   7656 
   7657     // If this load is properly aligned, then it is legal.
   7658     if (Alignment >= MemVT.getStoreSize())
   7659       return Op;
   7660 
   7661     EVT ScalarVT = Op.getValueType().getScalarType(),
   7662         ScalarMemVT = MemVT.getScalarType();
   7663     unsigned Stride = ScalarMemVT.getStoreSize();
   7664 
   7665     SmallVector<SDValue, 8> Vals, LoadChains;
   7666     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   7667       SDValue Load;
   7668       if (ScalarVT != ScalarMemVT)
   7669         Load =
   7670           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
   7671                          BasePtr,
   7672                          LN->getPointerInfo().getWithOffset(Idx*Stride),
   7673                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
   7674                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
   7675                          LN->getAAInfo());
   7676       else
   7677         Load =
   7678           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
   7679                        LN->getPointerInfo().getWithOffset(Idx*Stride),
   7680                        LN->isVolatile(), LN->isNonTemporal(),
   7681                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
   7682                        LN->getAAInfo());
   7683 
   7684       if (Idx == 0 && LN->isIndexed()) {
   7685         assert(LN->getAddressingMode() == ISD::PRE_INC &&
   7686                "Unknown addressing mode on vector load");
   7687         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
   7688                                   LN->getAddressingMode());
   7689       }
   7690 
   7691       Vals.push_back(Load);
   7692       LoadChains.push_back(Load.getValue(1));
   7693 
   7694       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   7695                             DAG.getConstant(Stride, dl,
   7696                                             BasePtr.getValueType()));
   7697     }
   7698 
   7699     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   7700     SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
   7701                                 Op.getValueType(), Vals);
   7702 
   7703     if (LN->isIndexed()) {
   7704       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
   7705       return DAG.getMergeValues(RetOps, dl);
   7706     }
   7707 
   7708     SDValue RetOps[] = { Value, TF };
   7709     return DAG.getMergeValues(RetOps, dl);
   7710   }
   7711 
   7712   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
   7713   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
   7714 
   7715   // To lower v4i1 from a byte array, we load the byte elements of the
   7716   // vector and then reuse the BUILD_VECTOR logic.
   7717 
   7718   SmallVector<SDValue, 4> VectElmts, VectElmtChains;
   7719   for (unsigned i = 0; i < 4; ++i) {
   7720     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
   7721     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   7722 
   7723     VectElmts.push_back(DAG.getExtLoad(ISD::EXTLOAD,
   7724                         dl, MVT::i32, LoadChain, Idx,
   7725                         LN->getPointerInfo().getWithOffset(i),
   7726                         MVT::i8 /* memory type */,
   7727                         LN->isVolatile(), LN->isNonTemporal(),
   7728                         LN->isInvariant(),
   7729                         1 /* alignment */, LN->getAAInfo()));
   7730     VectElmtChains.push_back(VectElmts[i].getValue(1));
   7731   }
   7732 
   7733   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
   7734   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i1, VectElmts);
   7735 
   7736   SDValue RVals[] = { Value, LoadChain };
   7737   return DAG.getMergeValues(RVals, dl);
   7738 }
   7739 
   7740 /// Lowering for QPX v4i1 stores
   7741 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
   7742                                             SelectionDAG &DAG) const {
   7743   SDLoc dl(Op);
   7744   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
   7745   SDValue StoreChain = SN->getChain();
   7746   SDValue BasePtr = SN->getBasePtr();
   7747   SDValue Value = SN->getValue();
   7748 
   7749   if (Value.getValueType() == MVT::v4f64 ||
   7750       Value.getValueType() == MVT::v4f32) {
   7751     EVT MemVT = SN->getMemoryVT();
   7752     unsigned Alignment = SN->getAlignment();
   7753 
   7754     // If this store is properly aligned, then it is legal.
   7755     if (Alignment >= MemVT.getStoreSize())
   7756       return Op;
   7757 
   7758     EVT ScalarVT = Value.getValueType().getScalarType(),
   7759         ScalarMemVT = MemVT.getScalarType();
   7760     unsigned Stride = ScalarMemVT.getStoreSize();
   7761 
   7762     SmallVector<SDValue, 8> Stores;
   7763     for (unsigned Idx = 0; Idx < 4; ++Idx) {
   7764       SDValue Ex = DAG.getNode(
   7765           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
   7766           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
   7767       SDValue Store;
   7768       if (ScalarVT != ScalarMemVT)
   7769         Store =
   7770           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
   7771                             SN->getPointerInfo().getWithOffset(Idx*Stride),
   7772                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
   7773                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
   7774       else
   7775         Store =
   7776           DAG.getStore(StoreChain, dl, Ex, BasePtr,
   7777                        SN->getPointerInfo().getWithOffset(Idx*Stride),
   7778                        SN->isVolatile(), SN->isNonTemporal(),
   7779                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
   7780 
   7781       if (Idx == 0 && SN->isIndexed()) {
   7782         assert(SN->getAddressingMode() == ISD::PRE_INC &&
   7783                "Unknown addressing mode on vector store");
   7784         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
   7785                                     SN->getAddressingMode());
   7786       }
   7787 
   7788       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   7789                             DAG.getConstant(Stride, dl,
   7790                                             BasePtr.getValueType()));
   7791       Stores.push_back(Store);
   7792     }
   7793 
   7794     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   7795 
   7796     if (SN->isIndexed()) {
   7797       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
   7798       return DAG.getMergeValues(RetOps, dl);
   7799     }
   7800 
   7801     return TF;
   7802   }
   7803 
   7804   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
   7805   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
   7806 
   7807   // The values are now known to be -1 (false) or 1 (true). To convert this
   7808   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
   7809   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
   7810   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
   7811 
   7812   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
   7813   // understand how to form the extending load.
   7814   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::f64);
   7815   FPHalfs = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f64,
   7816                         FPHalfs, FPHalfs, FPHalfs, FPHalfs);
   7817 
   7818   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
   7819 
   7820   // Now convert to an integer and store.
   7821   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
   7822     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
   7823     Value);
   7824 
   7825   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   7826   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
   7827   MachinePointerInfo PtrInfo =
   7828       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
   7829   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   7830   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
   7831 
   7832   SmallVector<SDValue, 2> Ops;
   7833   Ops.push_back(StoreChain);
   7834   Ops.push_back(DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32));
   7835   Ops.push_back(Value);
   7836   Ops.push_back(FIdx);
   7837 
   7838   SmallVector<EVT, 2> ValueVTs;
   7839   ValueVTs.push_back(MVT::Other); // chain
   7840   SDVTList VTs = DAG.getVTList(ValueVTs);
   7841 
   7842   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
   7843     dl, VTs, Ops, MVT::v4i32, PtrInfo);
   7844 
   7845   // Move data into the byte array.
   7846   SmallVector<SDValue, 4> Loads, LoadChains;
   7847   for (unsigned i = 0; i < 4; ++i) {
   7848     unsigned Offset = 4*i;
   7849     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
   7850     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
   7851 
   7852     Loads.push_back(DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
   7853                                    PtrInfo.getWithOffset(Offset),
   7854                                    false, false, false, 0));
   7855     LoadChains.push_back(Loads[i].getValue(1));
   7856   }
   7857 
   7858   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
   7859 
   7860   SmallVector<SDValue, 4> Stores;
   7861   for (unsigned i = 0; i < 4; ++i) {
   7862     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
   7863     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
   7864 
   7865     Stores.push_back(DAG.getTruncStore(
   7866         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
   7867         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
   7868         1 /* alignment */, SN->getAAInfo()));
   7869   }
   7870 
   7871   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
   7872 
   7873   return StoreChain;
   7874 }
   7875 
   7876 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   7877   SDLoc dl(Op);
   7878   if (Op.getValueType() == MVT::v4i32) {
   7879     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   7880 
   7881     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
   7882     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
   7883 
   7884     SDValue RHSSwap =   // = vrlw RHS, 16
   7885       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
   7886 
   7887     // Shrinkify inputs to v8i16.
   7888     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
   7889     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
   7890     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
   7891 
   7892     // Low parts multiplied together, generating 32-bit results (we ignore the
   7893     // top parts).
   7894     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
   7895                                         LHS, RHS, DAG, dl, MVT::v4i32);
   7896 
   7897     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
   7898                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
   7899     // Shift the high parts up 16 bits.
   7900     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
   7901                               Neg16, DAG, dl);
   7902     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
   7903   } else if (Op.getValueType() == MVT::v8i16) {
   7904     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   7905 
   7906     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
   7907 
   7908     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
   7909                             LHS, RHS, Zero, DAG, dl);
   7910   } else if (Op.getValueType() == MVT::v16i8) {
   7911     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
   7912     bool isLittleEndian = Subtarget.isLittleEndian();
   7913 
   7914     // Multiply the even 8-bit parts, producing 16-bit sums.
   7915     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
   7916                                            LHS, RHS, DAG, dl, MVT::v8i16);
   7917     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
   7918 
   7919     // Multiply the odd 8-bit parts, producing 16-bit sums.
   7920     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
   7921                                           LHS, RHS, DAG, dl, MVT::v8i16);
   7922     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
   7923 
   7924     // Merge the results together.  Because vmuleub and vmuloub are
   7925     // instructions with a big-endian bias, we must reverse the
   7926     // element numbering and reverse the meaning of "odd" and "even"
   7927     // when generating little endian code.
   7928     int Ops[16];
   7929     for (unsigned i = 0; i != 8; ++i) {
   7930       if (isLittleEndian) {
   7931         Ops[i*2  ] = 2*i;
   7932         Ops[i*2+1] = 2*i+16;
   7933       } else {
   7934         Ops[i*2  ] = 2*i+1;
   7935         Ops[i*2+1] = 2*i+1+16;
   7936       }
   7937     }
   7938     if (isLittleEndian)
   7939       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
   7940     else
   7941       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
   7942   } else {
   7943     llvm_unreachable("Unknown mul to lower!");
   7944   }
   7945 }
   7946 
   7947 /// LowerOperation - Provide custom lowering hooks for some operations.
   7948 ///
   7949 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   7950   switch (Op.getOpcode()) {
   7951   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
   7952   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   7953   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   7954   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   7955   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   7956   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   7957   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   7958   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   7959   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   7960   case ISD::VASTART:
   7961     return LowerVASTART(Op, DAG, Subtarget);
   7962 
   7963   case ISD::VAARG:
   7964     return LowerVAARG(Op, DAG, Subtarget);
   7965 
   7966   case ISD::VACOPY:
   7967     return LowerVACOPY(Op, DAG, Subtarget);
   7968 
   7969   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, Subtarget);
   7970   case ISD::DYNAMIC_STACKALLOC:
   7971     return LowerDYNAMIC_STACKALLOC(Op, DAG, Subtarget);
   7972   case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG, Subtarget);
   7973 
   7974   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
   7975   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
   7976 
   7977   case ISD::LOAD:               return LowerLOAD(Op, DAG);
   7978   case ISD::STORE:              return LowerSTORE(Op, DAG);
   7979   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
   7980   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
   7981   case ISD::FP_TO_UINT:
   7982   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
   7983                                                       SDLoc(Op));
   7984   case ISD::UINT_TO_FP:
   7985   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
   7986   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   7987 
   7988   // Lower 64-bit shifts.
   7989   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
   7990   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
   7991   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
   7992 
   7993   // Vector-related lowering.
   7994   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   7995   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   7996   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   7997   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   7998   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
   7999   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   8000   case ISD::MUL:                return LowerMUL(Op, DAG);
   8001 
   8002   // For counter-based loop handling.
   8003   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
   8004 
   8005   // Frame & Return address.
   8006   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   8007   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   8008   }
   8009 }
   8010 
   8011 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
   8012                                            SmallVectorImpl<SDValue>&Results,
   8013                                            SelectionDAG &DAG) const {
   8014   SDLoc dl(N);
   8015   switch (N->getOpcode()) {
   8016   default:
   8017     llvm_unreachable("Do not know how to custom type legalize this operation!");
   8018   case ISD::READCYCLECOUNTER: {
   8019     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   8020     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
   8021 
   8022     Results.push_back(RTB);
   8023     Results.push_back(RTB.getValue(1));
   8024     Results.push_back(RTB.getValue(2));
   8025     break;
   8026   }
   8027   case ISD::INTRINSIC_W_CHAIN: {
   8028     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
   8029         Intrinsic::ppc_is_decremented_ctr_nonzero)
   8030       break;
   8031 
   8032     assert(N->getValueType(0) == MVT::i1 &&
   8033            "Unexpected result type for CTR decrement intrinsic");
   8034     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   8035                                  N->getValueType(0));
   8036     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
   8037     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
   8038                                  N->getOperand(1));
   8039 
   8040     Results.push_back(NewInt);
   8041     Results.push_back(NewInt.getValue(1));
   8042     break;
   8043   }
   8044   case ISD::VAARG: {
   8045     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
   8046       return;
   8047 
   8048     EVT VT = N->getValueType(0);
   8049 
   8050     if (VT == MVT::i64) {
   8051       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, Subtarget);
   8052 
   8053       Results.push_back(NewNode);
   8054       Results.push_back(NewNode.getValue(1));
   8055     }
   8056     return;
   8057   }
   8058   case ISD::FP_ROUND_INREG: {
   8059     assert(N->getValueType(0) == MVT::ppcf128);
   8060     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
   8061     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   8062                              MVT::f64, N->getOperand(0),
   8063                              DAG.getIntPtrConstant(0, dl));
   8064     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
   8065                              MVT::f64, N->getOperand(0),
   8066                              DAG.getIntPtrConstant(1, dl));
   8067 
   8068     // Add the two halves of the long double in round-to-zero mode.
   8069     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
   8070 
   8071     // We know the low half is about to be thrown away, so just use something
   8072     // convenient.
   8073     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
   8074                                 FPreg, FPreg));
   8075     return;
   8076   }
   8077   case ISD::FP_TO_SINT:
   8078   case ISD::FP_TO_UINT:
   8079     // LowerFP_TO_INT() can only handle f32 and f64.
   8080     if (N->getOperand(0).getValueType() == MVT::ppcf128)
   8081       return;
   8082     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
   8083     return;
   8084   }
   8085 }
   8086 
   8087 //===----------------------------------------------------------------------===//
   8088 //  Other Lowering Code
   8089 //===----------------------------------------------------------------------===//
   8090 
   8091 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
   8092   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   8093   Function *Func = Intrinsic::getDeclaration(M, Id);
   8094   return Builder.CreateCall(Func, {});
   8095 }
   8096 
   8097 // The mappings for emitLeading/TrailingFence is taken from
   8098 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   8099 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   8100                                          AtomicOrdering Ord, bool IsStore,
   8101                                          bool IsLoad) const {
   8102   if (Ord == SequentiallyConsistent)
   8103     return callIntrinsic(Builder, Intrinsic::ppc_sync);
   8104   if (isAtLeastRelease(Ord))
   8105     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   8106   return nullptr;
   8107 }
   8108 
   8109 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   8110                                           AtomicOrdering Ord, bool IsStore,
   8111                                           bool IsLoad) const {
   8112   if (IsLoad && isAtLeastAcquire(Ord))
   8113     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
   8114   // FIXME: this is too conservative, a dependent branch + isync is enough.
   8115   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
   8116   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
   8117   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
   8118   return nullptr;
   8119 }
   8120 
   8121 MachineBasicBlock *
   8122 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
   8123                                     unsigned AtomicSize,
   8124                                     unsigned BinOpcode) const {
   8125   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   8126   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8127 
   8128   auto LoadMnemonic = PPC::LDARX;
   8129   auto StoreMnemonic = PPC::STDCX;
   8130   switch (AtomicSize) {
   8131   default:
   8132     llvm_unreachable("Unexpected size of atomic entity");
   8133   case 1:
   8134     LoadMnemonic = PPC::LBARX;
   8135     StoreMnemonic = PPC::STBCX;
   8136     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   8137     break;
   8138   case 2:
   8139     LoadMnemonic = PPC::LHARX;
   8140     StoreMnemonic = PPC::STHCX;
   8141     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
   8142     break;
   8143   case 4:
   8144     LoadMnemonic = PPC::LWARX;
   8145     StoreMnemonic = PPC::STWCX;
   8146     break;
   8147   case 8:
   8148     LoadMnemonic = PPC::LDARX;
   8149     StoreMnemonic = PPC::STDCX;
   8150     break;
   8151   }
   8152 
   8153   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8154   MachineFunction *F = BB->getParent();
   8155   MachineFunction::iterator It = ++BB->getIterator();
   8156 
   8157   unsigned dest = MI->getOperand(0).getReg();
   8158   unsigned ptrA = MI->getOperand(1).getReg();
   8159   unsigned ptrB = MI->getOperand(2).getReg();
   8160   unsigned incr = MI->getOperand(3).getReg();
   8161   DebugLoc dl = MI->getDebugLoc();
   8162 
   8163   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8164   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8165   F->insert(It, loopMBB);
   8166   F->insert(It, exitMBB);
   8167   exitMBB->splice(exitMBB->begin(), BB,
   8168                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8169   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8170 
   8171   MachineRegisterInfo &RegInfo = F->getRegInfo();
   8172   unsigned TmpReg = (!BinOpcode) ? incr :
   8173     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
   8174                                            : &PPC::GPRCRegClass);
   8175 
   8176   //  thisMBB:
   8177   //   ...
   8178   //   fallthrough --> loopMBB
   8179   BB->addSuccessor(loopMBB);
   8180 
   8181   //  loopMBB:
   8182   //   l[wd]arx dest, ptr
   8183   //   add r0, dest, incr
   8184   //   st[wd]cx. r0, ptr
   8185   //   bne- loopMBB
   8186   //   fallthrough --> exitMBB
   8187   BB = loopMBB;
   8188   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   8189     .addReg(ptrA).addReg(ptrB);
   8190   if (BinOpcode)
   8191     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
   8192   BuildMI(BB, dl, TII->get(StoreMnemonic))
   8193     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
   8194   BuildMI(BB, dl, TII->get(PPC::BCC))
   8195     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   8196   BB->addSuccessor(loopMBB);
   8197   BB->addSuccessor(exitMBB);
   8198 
   8199   //  exitMBB:
   8200   //   ...
   8201   BB = exitMBB;
   8202   return BB;
   8203 }
   8204 
   8205 MachineBasicBlock *
   8206 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
   8207                                             MachineBasicBlock *BB,
   8208                                             bool is8bit,    // operation
   8209                                             unsigned BinOpcode) const {
   8210   // If we support part-word atomic mnemonics, just use them
   8211   if (Subtarget.hasPartwordAtomics())
   8212     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
   8213 
   8214   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
   8215   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8216   // In 64 bit mode we have to use 64 bits for addresses, even though the
   8217   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
   8218   // registers without caring whether they're 32 or 64, but here we're
   8219   // doing actual arithmetic on the addresses.
   8220   bool is64bit = Subtarget.isPPC64();
   8221   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   8222 
   8223   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8224   MachineFunction *F = BB->getParent();
   8225   MachineFunction::iterator It = ++BB->getIterator();
   8226 
   8227   unsigned dest = MI->getOperand(0).getReg();
   8228   unsigned ptrA = MI->getOperand(1).getReg();
   8229   unsigned ptrB = MI->getOperand(2).getReg();
   8230   unsigned incr = MI->getOperand(3).getReg();
   8231   DebugLoc dl = MI->getDebugLoc();
   8232 
   8233   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8234   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8235   F->insert(It, loopMBB);
   8236   F->insert(It, exitMBB);
   8237   exitMBB->splice(exitMBB->begin(), BB,
   8238                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8239   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8240 
   8241   MachineRegisterInfo &RegInfo = F->getRegInfo();
   8242   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   8243                                           : &PPC::GPRCRegClass;
   8244   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   8245   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   8246   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   8247   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
   8248   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   8249   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   8250   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   8251   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   8252   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
   8253   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   8254   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   8255   unsigned Ptr1Reg;
   8256   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
   8257 
   8258   //  thisMBB:
   8259   //   ...
   8260   //   fallthrough --> loopMBB
   8261   BB->addSuccessor(loopMBB);
   8262 
   8263   // The 4-byte load must be aligned, while a char or short may be
   8264   // anywhere in the word.  Hence all this nasty bookkeeping code.
   8265   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   8266   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   8267   //   xori shift, shift1, 24 [16]
   8268   //   rlwinm ptr, ptr1, 0, 0, 29
   8269   //   slw incr2, incr, shift
   8270   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   8271   //   slw mask, mask2, shift
   8272   //  loopMBB:
   8273   //   lwarx tmpDest, ptr
   8274   //   add tmp, tmpDest, incr2
   8275   //   andc tmp2, tmpDest, mask
   8276   //   and tmp3, tmp, mask
   8277   //   or tmp4, tmp3, tmp2
   8278   //   stwcx. tmp4, ptr
   8279   //   bne- loopMBB
   8280   //   fallthrough --> exitMBB
   8281   //   srw dest, tmpDest, shift
   8282   if (ptrA != ZeroReg) {
   8283     Ptr1Reg = RegInfo.createVirtualRegister(RC);
   8284     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   8285       .addReg(ptrA).addReg(ptrB);
   8286   } else {
   8287     Ptr1Reg = ptrB;
   8288   }
   8289   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   8290       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   8291   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   8292       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   8293   if (is64bit)
   8294     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   8295       .addReg(Ptr1Reg).addImm(0).addImm(61);
   8296   else
   8297     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   8298       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   8299   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
   8300       .addReg(incr).addReg(ShiftReg);
   8301   if (is8bit)
   8302     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   8303   else {
   8304     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   8305     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
   8306   }
   8307   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   8308       .addReg(Mask2Reg).addReg(ShiftReg);
   8309 
   8310   BB = loopMBB;
   8311   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   8312     .addReg(ZeroReg).addReg(PtrReg);
   8313   if (BinOpcode)
   8314     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
   8315       .addReg(Incr2Reg).addReg(TmpDestReg);
   8316   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
   8317     .addReg(TmpDestReg).addReg(MaskReg);
   8318   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
   8319     .addReg(TmpReg).addReg(MaskReg);
   8320   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
   8321     .addReg(Tmp3Reg).addReg(Tmp2Reg);
   8322   BuildMI(BB, dl, TII->get(PPC::STWCX))
   8323     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
   8324   BuildMI(BB, dl, TII->get(PPC::BCC))
   8325     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
   8326   BB->addSuccessor(loopMBB);
   8327   BB->addSuccessor(exitMBB);
   8328 
   8329   //  exitMBB:
   8330   //   ...
   8331   BB = exitMBB;
   8332   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
   8333     .addReg(ShiftReg);
   8334   return BB;
   8335 }
   8336 
   8337 llvm::MachineBasicBlock*
   8338 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
   8339                                     MachineBasicBlock *MBB) const {
   8340   DebugLoc DL = MI->getDebugLoc();
   8341   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8342 
   8343   MachineFunction *MF = MBB->getParent();
   8344   MachineRegisterInfo &MRI = MF->getRegInfo();
   8345 
   8346   const BasicBlock *BB = MBB->getBasicBlock();
   8347   MachineFunction::iterator I = ++MBB->getIterator();
   8348 
   8349   // Memory Reference
   8350   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   8351   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   8352 
   8353   unsigned DstReg = MI->getOperand(0).getReg();
   8354   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
   8355   assert(RC->hasType(MVT::i32) && "Invalid destination!");
   8356   unsigned mainDstReg = MRI.createVirtualRegister(RC);
   8357   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
   8358 
   8359   MVT PVT = getPointerTy(MF->getDataLayout());
   8360   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   8361          "Invalid Pointer Size!");
   8362   // For v = setjmp(buf), we generate
   8363   //
   8364   // thisMBB:
   8365   //  SjLjSetup mainMBB
   8366   //  bl mainMBB
   8367   //  v_restore = 1
   8368   //  b sinkMBB
   8369   //
   8370   // mainMBB:
   8371   //  buf[LabelOffset] = LR
   8372   //  v_main = 0
   8373   //
   8374   // sinkMBB:
   8375   //  v = phi(main, restore)
   8376   //
   8377 
   8378   MachineBasicBlock *thisMBB = MBB;
   8379   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
   8380   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
   8381   MF->insert(I, mainMBB);
   8382   MF->insert(I, sinkMBB);
   8383 
   8384   MachineInstrBuilder MIB;
   8385 
   8386   // Transfer the remainder of BB and its successor edges to sinkMBB.
   8387   sinkMBB->splice(sinkMBB->begin(), MBB,
   8388                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   8389   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
   8390 
   8391   // Note that the structure of the jmp_buf used here is not compatible
   8392   // with that used by libc, and is not designed to be. Specifically, it
   8393   // stores only those 'reserved' registers that LLVM does not otherwise
   8394   // understand how to spill. Also, by convention, by the time this
   8395   // intrinsic is called, Clang has already stored the frame address in the
   8396   // first slot of the buffer and stack address in the third. Following the
   8397   // X86 target code, we'll store the jump address in the second slot. We also
   8398   // need to save the TOC pointer (R2) to handle jumps between shared
   8399   // libraries, and that will be stored in the fourth slot. The thread
   8400   // identifier (R13) is not affected.
   8401 
   8402   // thisMBB:
   8403   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   8404   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   8405   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   8406 
   8407   // Prepare IP either in reg.
   8408   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
   8409   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
   8410   unsigned BufReg = MI->getOperand(1).getReg();
   8411 
   8412   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
   8413     setUsesTOCBasePtr(*MBB->getParent());
   8414     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
   8415             .addReg(PPC::X2)
   8416             .addImm(TOCOffset)
   8417             .addReg(BufReg);
   8418     MIB.setMemRefs(MMOBegin, MMOEnd);
   8419   }
   8420 
   8421   // Naked functions never have a base pointer, and so we use r1. For all
   8422   // other functions, this decision must be delayed until during PEI.
   8423   unsigned BaseReg;
   8424   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
   8425     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
   8426   else
   8427     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
   8428 
   8429   MIB = BuildMI(*thisMBB, MI, DL,
   8430                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
   8431             .addReg(BaseReg)
   8432             .addImm(BPOffset)
   8433             .addReg(BufReg);
   8434   MIB.setMemRefs(MMOBegin, MMOEnd);
   8435 
   8436   // Setup
   8437   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
   8438   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
   8439   MIB.addRegMask(TRI->getNoPreservedMask());
   8440 
   8441   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
   8442 
   8443   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
   8444           .addMBB(mainMBB);
   8445   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
   8446 
   8447   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
   8448   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
   8449 
   8450   // mainMBB:
   8451   //  mainDstReg = 0
   8452   MIB =
   8453       BuildMI(mainMBB, DL,
   8454               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
   8455 
   8456   // Store IP
   8457   if (Subtarget.isPPC64()) {
   8458     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
   8459             .addReg(LabelReg)
   8460             .addImm(LabelOffset)
   8461             .addReg(BufReg);
   8462   } else {
   8463     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
   8464             .addReg(LabelReg)
   8465             .addImm(LabelOffset)
   8466             .addReg(BufReg);
   8467   }
   8468 
   8469   MIB.setMemRefs(MMOBegin, MMOEnd);
   8470 
   8471   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
   8472   mainMBB->addSuccessor(sinkMBB);
   8473 
   8474   // sinkMBB:
   8475   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   8476           TII->get(PPC::PHI), DstReg)
   8477     .addReg(mainDstReg).addMBB(mainMBB)
   8478     .addReg(restoreDstReg).addMBB(thisMBB);
   8479 
   8480   MI->eraseFromParent();
   8481   return sinkMBB;
   8482 }
   8483 
   8484 MachineBasicBlock *
   8485 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
   8486                                      MachineBasicBlock *MBB) const {
   8487   DebugLoc DL = MI->getDebugLoc();
   8488   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8489 
   8490   MachineFunction *MF = MBB->getParent();
   8491   MachineRegisterInfo &MRI = MF->getRegInfo();
   8492 
   8493   // Memory Reference
   8494   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   8495   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   8496 
   8497   MVT PVT = getPointerTy(MF->getDataLayout());
   8498   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
   8499          "Invalid Pointer Size!");
   8500 
   8501   const TargetRegisterClass *RC =
   8502     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
   8503   unsigned Tmp = MRI.createVirtualRegister(RC);
   8504   // Since FP is only updated here but NOT referenced, it's treated as GPR.
   8505   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
   8506   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
   8507   unsigned BP =
   8508       (PVT == MVT::i64)
   8509           ? PPC::X30
   8510           : (Subtarget.isSVR4ABI() &&
   8511                      MF->getTarget().getRelocationModel() == Reloc::PIC_
   8512                  ? PPC::R29
   8513                  : PPC::R30);
   8514 
   8515   MachineInstrBuilder MIB;
   8516 
   8517   const int64_t LabelOffset = 1 * PVT.getStoreSize();
   8518   const int64_t SPOffset    = 2 * PVT.getStoreSize();
   8519   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
   8520   const int64_t BPOffset    = 4 * PVT.getStoreSize();
   8521 
   8522   unsigned BufReg = MI->getOperand(0).getReg();
   8523 
   8524   // Reload FP (the jumped-to function may not have had a
   8525   // frame pointer, and if so, then its r31 will be restored
   8526   // as necessary).
   8527   if (PVT == MVT::i64) {
   8528     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
   8529             .addImm(0)
   8530             .addReg(BufReg);
   8531   } else {
   8532     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
   8533             .addImm(0)
   8534             .addReg(BufReg);
   8535   }
   8536   MIB.setMemRefs(MMOBegin, MMOEnd);
   8537 
   8538   // Reload IP
   8539   if (PVT == MVT::i64) {
   8540     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
   8541             .addImm(LabelOffset)
   8542             .addReg(BufReg);
   8543   } else {
   8544     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
   8545             .addImm(LabelOffset)
   8546             .addReg(BufReg);
   8547   }
   8548   MIB.setMemRefs(MMOBegin, MMOEnd);
   8549 
   8550   // Reload SP
   8551   if (PVT == MVT::i64) {
   8552     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
   8553             .addImm(SPOffset)
   8554             .addReg(BufReg);
   8555   } else {
   8556     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
   8557             .addImm(SPOffset)
   8558             .addReg(BufReg);
   8559   }
   8560   MIB.setMemRefs(MMOBegin, MMOEnd);
   8561 
   8562   // Reload BP
   8563   if (PVT == MVT::i64) {
   8564     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
   8565             .addImm(BPOffset)
   8566             .addReg(BufReg);
   8567   } else {
   8568     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
   8569             .addImm(BPOffset)
   8570             .addReg(BufReg);
   8571   }
   8572   MIB.setMemRefs(MMOBegin, MMOEnd);
   8573 
   8574   // Reload TOC
   8575   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
   8576     setUsesTOCBasePtr(*MBB->getParent());
   8577     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
   8578             .addImm(TOCOffset)
   8579             .addReg(BufReg);
   8580 
   8581     MIB.setMemRefs(MMOBegin, MMOEnd);
   8582   }
   8583 
   8584   // Jump
   8585   BuildMI(*MBB, MI, DL,
   8586           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
   8587   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
   8588 
   8589   MI->eraseFromParent();
   8590   return MBB;
   8591 }
   8592 
   8593 MachineBasicBlock *
   8594 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   8595                                                MachineBasicBlock *BB) const {
   8596   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
   8597       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
   8598     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
   8599         MI->getOpcode() == TargetOpcode::PATCHPOINT) {
   8600       // Call lowering should have added an r2 operand to indicate a dependence
   8601       // on the TOC base pointer value. It can't however, because there is no
   8602       // way to mark the dependence as implicit there, and so the stackmap code
   8603       // will confuse it with a regular operand. Instead, add the dependence
   8604       // here.
   8605       setUsesTOCBasePtr(*BB->getParent());
   8606       MI->addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
   8607     }
   8608 
   8609     return emitPatchPoint(MI, BB);
   8610   }
   8611 
   8612   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
   8613       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
   8614     return emitEHSjLjSetJmp(MI, BB);
   8615   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
   8616              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
   8617     return emitEHSjLjLongJmp(MI, BB);
   8618   }
   8619 
   8620   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   8621 
   8622   // To "insert" these instructions we actually have to insert their
   8623   // control-flow patterns.
   8624   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8625   MachineFunction::iterator It = ++BB->getIterator();
   8626 
   8627   MachineFunction *F = BB->getParent();
   8628 
   8629   if (Subtarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   8630                               MI->getOpcode() == PPC::SELECT_CC_I8 ||
   8631                               MI->getOpcode() == PPC::SELECT_I4 ||
   8632                               MI->getOpcode() == PPC::SELECT_I8)) {
   8633     SmallVector<MachineOperand, 2> Cond;
   8634     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   8635         MI->getOpcode() == PPC::SELECT_CC_I8)
   8636       Cond.push_back(MI->getOperand(4));
   8637     else
   8638       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
   8639     Cond.push_back(MI->getOperand(1));
   8640 
   8641     DebugLoc dl = MI->getDebugLoc();
   8642     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
   8643                       Cond, MI->getOperand(2).getReg(),
   8644                       MI->getOperand(3).getReg());
   8645   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
   8646              MI->getOpcode() == PPC::SELECT_CC_I8 ||
   8647              MI->getOpcode() == PPC::SELECT_CC_F4 ||
   8648              MI->getOpcode() == PPC::SELECT_CC_F8 ||
   8649              MI->getOpcode() == PPC::SELECT_CC_QFRC ||
   8650              MI->getOpcode() == PPC::SELECT_CC_QSRC ||
   8651              MI->getOpcode() == PPC::SELECT_CC_QBRC ||
   8652              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
   8653              MI->getOpcode() == PPC::SELECT_CC_VSFRC ||
   8654              MI->getOpcode() == PPC::SELECT_CC_VSSRC ||
   8655              MI->getOpcode() == PPC::SELECT_CC_VSRC ||
   8656              MI->getOpcode() == PPC::SELECT_I4 ||
   8657              MI->getOpcode() == PPC::SELECT_I8 ||
   8658              MI->getOpcode() == PPC::SELECT_F4 ||
   8659              MI->getOpcode() == PPC::SELECT_F8 ||
   8660              MI->getOpcode() == PPC::SELECT_QFRC ||
   8661              MI->getOpcode() == PPC::SELECT_QSRC ||
   8662              MI->getOpcode() == PPC::SELECT_QBRC ||
   8663              MI->getOpcode() == PPC::SELECT_VRRC ||
   8664              MI->getOpcode() == PPC::SELECT_VSFRC ||
   8665              MI->getOpcode() == PPC::SELECT_VSSRC ||
   8666              MI->getOpcode() == PPC::SELECT_VSRC) {
   8667     // The incoming instruction knows the destination vreg to set, the
   8668     // condition code register to branch on, the true/false values to
   8669     // select between, and a branch opcode to use.
   8670 
   8671     //  thisMBB:
   8672     //  ...
   8673     //   TrueVal = ...
   8674     //   cmpTY ccX, r1, r2
   8675     //   bCC copy1MBB
   8676     //   fallthrough --> copy0MBB
   8677     MachineBasicBlock *thisMBB = BB;
   8678     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8679     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8680     DebugLoc dl = MI->getDebugLoc();
   8681     F->insert(It, copy0MBB);
   8682     F->insert(It, sinkMBB);
   8683 
   8684     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8685     sinkMBB->splice(sinkMBB->begin(), BB,
   8686                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8687     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   8688 
   8689     // Next, add the true and fallthrough blocks as its successors.
   8690     BB->addSuccessor(copy0MBB);
   8691     BB->addSuccessor(sinkMBB);
   8692 
   8693     if (MI->getOpcode() == PPC::SELECT_I4 ||
   8694         MI->getOpcode() == PPC::SELECT_I8 ||
   8695         MI->getOpcode() == PPC::SELECT_F4 ||
   8696         MI->getOpcode() == PPC::SELECT_F8 ||
   8697         MI->getOpcode() == PPC::SELECT_QFRC ||
   8698         MI->getOpcode() == PPC::SELECT_QSRC ||
   8699         MI->getOpcode() == PPC::SELECT_QBRC ||
   8700         MI->getOpcode() == PPC::SELECT_VRRC ||
   8701         MI->getOpcode() == PPC::SELECT_VSFRC ||
   8702         MI->getOpcode() == PPC::SELECT_VSSRC ||
   8703         MI->getOpcode() == PPC::SELECT_VSRC) {
   8704       BuildMI(BB, dl, TII->get(PPC::BC))
   8705         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   8706     } else {
   8707       unsigned SelectPred = MI->getOperand(4).getImm();
   8708       BuildMI(BB, dl, TII->get(PPC::BCC))
   8709         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   8710     }
   8711 
   8712     //  copy0MBB:
   8713     //   %FalseValue = ...
   8714     //   # fallthrough to sinkMBB
   8715     BB = copy0MBB;
   8716 
   8717     // Update machine-CFG edges
   8718     BB->addSuccessor(sinkMBB);
   8719 
   8720     //  sinkMBB:
   8721     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   8722     //  ...
   8723     BB = sinkMBB;
   8724     BuildMI(*BB, BB->begin(), dl,
   8725             TII->get(PPC::PHI), MI->getOperand(0).getReg())
   8726       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   8727       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   8728   } else if (MI->getOpcode() == PPC::ReadTB) {
   8729     // To read the 64-bit time-base register on a 32-bit target, we read the
   8730     // two halves. Should the counter have wrapped while it was being read, we
   8731     // need to try again.
   8732     // ...
   8733     // readLoop:
   8734     // mfspr Rx,TBU # load from TBU
   8735     // mfspr Ry,TB  # load from TB
   8736     // mfspr Rz,TBU # load from TBU
   8737     // cmpw crX,Rx,Rz # check if 'old'='new'
   8738     // bne readLoop   # branch if they're not equal
   8739     // ...
   8740 
   8741     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8742     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8743     DebugLoc dl = MI->getDebugLoc();
   8744     F->insert(It, readMBB);
   8745     F->insert(It, sinkMBB);
   8746 
   8747     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8748     sinkMBB->splice(sinkMBB->begin(), BB,
   8749                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8750     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   8751 
   8752     BB->addSuccessor(readMBB);
   8753     BB = readMBB;
   8754 
   8755     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8756     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
   8757     unsigned LoReg = MI->getOperand(0).getReg();
   8758     unsigned HiReg = MI->getOperand(1).getReg();
   8759 
   8760     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
   8761     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
   8762     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
   8763 
   8764     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   8765 
   8766     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
   8767       .addReg(HiReg).addReg(ReadAgainReg);
   8768     BuildMI(BB, dl, TII->get(PPC::BCC))
   8769       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
   8770 
   8771     BB->addSuccessor(readMBB);
   8772     BB->addSuccessor(sinkMBB);
   8773   }
   8774   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
   8775     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
   8776   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
   8777     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
   8778   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
   8779     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
   8780   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
   8781     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
   8782 
   8783   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
   8784     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
   8785   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
   8786     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
   8787   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
   8788     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
   8789   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
   8790     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
   8791 
   8792   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
   8793     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
   8794   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
   8795     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
   8796   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
   8797     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
   8798   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
   8799     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
   8800 
   8801   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
   8802     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
   8803   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
   8804     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
   8805   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
   8806     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
   8807   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
   8808     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
   8809 
   8810   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
   8811     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
   8812   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
   8813     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
   8814   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
   8815     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
   8816   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
   8817     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
   8818 
   8819   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
   8820     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
   8821   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
   8822     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
   8823   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
   8824     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
   8825   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
   8826     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
   8827 
   8828   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
   8829     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
   8830   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
   8831     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
   8832   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
   8833     BB = EmitAtomicBinary(MI, BB, 4, 0);
   8834   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
   8835     BB = EmitAtomicBinary(MI, BB, 8, 0);
   8836 
   8837   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
   8838            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
   8839            (Subtarget.hasPartwordAtomics() &&
   8840             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
   8841            (Subtarget.hasPartwordAtomics() &&
   8842             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
   8843     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
   8844 
   8845     auto LoadMnemonic = PPC::LDARX;
   8846     auto StoreMnemonic = PPC::STDCX;
   8847     switch(MI->getOpcode()) {
   8848     default:
   8849       llvm_unreachable("Compare and swap of unknown size");
   8850     case PPC::ATOMIC_CMP_SWAP_I8:
   8851       LoadMnemonic = PPC::LBARX;
   8852       StoreMnemonic = PPC::STBCX;
   8853       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   8854       break;
   8855     case PPC::ATOMIC_CMP_SWAP_I16:
   8856       LoadMnemonic = PPC::LHARX;
   8857       StoreMnemonic = PPC::STHCX;
   8858       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
   8859       break;
   8860     case PPC::ATOMIC_CMP_SWAP_I32:
   8861       LoadMnemonic = PPC::LWARX;
   8862       StoreMnemonic = PPC::STWCX;
   8863       break;
   8864     case PPC::ATOMIC_CMP_SWAP_I64:
   8865       LoadMnemonic = PPC::LDARX;
   8866       StoreMnemonic = PPC::STDCX;
   8867       break;
   8868     }
   8869     unsigned dest   = MI->getOperand(0).getReg();
   8870     unsigned ptrA   = MI->getOperand(1).getReg();
   8871     unsigned ptrB   = MI->getOperand(2).getReg();
   8872     unsigned oldval = MI->getOperand(3).getReg();
   8873     unsigned newval = MI->getOperand(4).getReg();
   8874     DebugLoc dl     = MI->getDebugLoc();
   8875 
   8876     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8877     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8878     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8879     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8880     F->insert(It, loop1MBB);
   8881     F->insert(It, loop2MBB);
   8882     F->insert(It, midMBB);
   8883     F->insert(It, exitMBB);
   8884     exitMBB->splice(exitMBB->begin(), BB,
   8885                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8886     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8887 
   8888     //  thisMBB:
   8889     //   ...
   8890     //   fallthrough --> loopMBB
   8891     BB->addSuccessor(loop1MBB);
   8892 
   8893     // loop1MBB:
   8894     //   l[bhwd]arx dest, ptr
   8895     //   cmp[wd] dest, oldval
   8896     //   bne- midMBB
   8897     // loop2MBB:
   8898     //   st[bhwd]cx. newval, ptr
   8899     //   bne- loopMBB
   8900     //   b exitBB
   8901     // midMBB:
   8902     //   st[bhwd]cx. dest, ptr
   8903     // exitBB:
   8904     BB = loop1MBB;
   8905     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
   8906       .addReg(ptrA).addReg(ptrB);
   8907     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
   8908       .addReg(oldval).addReg(dest);
   8909     BuildMI(BB, dl, TII->get(PPC::BCC))
   8910       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   8911     BB->addSuccessor(loop2MBB);
   8912     BB->addSuccessor(midMBB);
   8913 
   8914     BB = loop2MBB;
   8915     BuildMI(BB, dl, TII->get(StoreMnemonic))
   8916       .addReg(newval).addReg(ptrA).addReg(ptrB);
   8917     BuildMI(BB, dl, TII->get(PPC::BCC))
   8918       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   8919     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   8920     BB->addSuccessor(loop1MBB);
   8921     BB->addSuccessor(exitMBB);
   8922 
   8923     BB = midMBB;
   8924     BuildMI(BB, dl, TII->get(StoreMnemonic))
   8925       .addReg(dest).addReg(ptrA).addReg(ptrB);
   8926     BB->addSuccessor(exitMBB);
   8927 
   8928     //  exitMBB:
   8929     //   ...
   8930     BB = exitMBB;
   8931   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
   8932              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
   8933     // We must use 64-bit registers for addresses when targeting 64-bit,
   8934     // since we're actually doing arithmetic on them.  Other registers
   8935     // can be 32-bit.
   8936     bool is64bit = Subtarget.isPPC64();
   8937     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
   8938 
   8939     unsigned dest   = MI->getOperand(0).getReg();
   8940     unsigned ptrA   = MI->getOperand(1).getReg();
   8941     unsigned ptrB   = MI->getOperand(2).getReg();
   8942     unsigned oldval = MI->getOperand(3).getReg();
   8943     unsigned newval = MI->getOperand(4).getReg();
   8944     DebugLoc dl     = MI->getDebugLoc();
   8945 
   8946     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8947     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
   8948     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8949     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
   8950     F->insert(It, loop1MBB);
   8951     F->insert(It, loop2MBB);
   8952     F->insert(It, midMBB);
   8953     F->insert(It, exitMBB);
   8954     exitMBB->splice(exitMBB->begin(), BB,
   8955                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8956     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   8957 
   8958     MachineRegisterInfo &RegInfo = F->getRegInfo();
   8959     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
   8960                                             : &PPC::GPRCRegClass;
   8961     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
   8962     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
   8963     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
   8964     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
   8965     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
   8966     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
   8967     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
   8968     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
   8969     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
   8970     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
   8971     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
   8972     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
   8973     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
   8974     unsigned Ptr1Reg;
   8975     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
   8976     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
   8977     //  thisMBB:
   8978     //   ...
   8979     //   fallthrough --> loopMBB
   8980     BB->addSuccessor(loop1MBB);
   8981 
   8982     // The 4-byte load must be aligned, while a char or short may be
   8983     // anywhere in the word.  Hence all this nasty bookkeeping code.
   8984     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
   8985     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
   8986     //   xori shift, shift1, 24 [16]
   8987     //   rlwinm ptr, ptr1, 0, 0, 29
   8988     //   slw newval2, newval, shift
   8989     //   slw oldval2, oldval,shift
   8990     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
   8991     //   slw mask, mask2, shift
   8992     //   and newval3, newval2, mask
   8993     //   and oldval3, oldval2, mask
   8994     // loop1MBB:
   8995     //   lwarx tmpDest, ptr
   8996     //   and tmp, tmpDest, mask
   8997     //   cmpw tmp, oldval3
   8998     //   bne- midMBB
   8999     // loop2MBB:
   9000     //   andc tmp2, tmpDest, mask
   9001     //   or tmp4, tmp2, newval3
   9002     //   stwcx. tmp4, ptr
   9003     //   bne- loop1MBB
   9004     //   b exitBB
   9005     // midMBB:
   9006     //   stwcx. tmpDest, ptr
   9007     // exitBB:
   9008     //   srw dest, tmpDest, shift
   9009     if (ptrA != ZeroReg) {
   9010       Ptr1Reg = RegInfo.createVirtualRegister(RC);
   9011       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
   9012         .addReg(ptrA).addReg(ptrB);
   9013     } else {
   9014       Ptr1Reg = ptrB;
   9015     }
   9016     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
   9017         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
   9018     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
   9019         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
   9020     if (is64bit)
   9021       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
   9022         .addReg(Ptr1Reg).addImm(0).addImm(61);
   9023     else
   9024       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
   9025         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
   9026     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
   9027         .addReg(newval).addReg(ShiftReg);
   9028     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
   9029         .addReg(oldval).addReg(ShiftReg);
   9030     if (is8bit)
   9031       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
   9032     else {
   9033       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
   9034       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
   9035         .addReg(Mask3Reg).addImm(65535);
   9036     }
   9037     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
   9038         .addReg(Mask2Reg).addReg(ShiftReg);
   9039     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
   9040         .addReg(NewVal2Reg).addReg(MaskReg);
   9041     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
   9042         .addReg(OldVal2Reg).addReg(MaskReg);
   9043 
   9044     BB = loop1MBB;
   9045     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
   9046         .addReg(ZeroReg).addReg(PtrReg);
   9047     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
   9048         .addReg(TmpDestReg).addReg(MaskReg);
   9049     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
   9050         .addReg(TmpReg).addReg(OldVal3Reg);
   9051     BuildMI(BB, dl, TII->get(PPC::BCC))
   9052         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
   9053     BB->addSuccessor(loop2MBB);
   9054     BB->addSuccessor(midMBB);
   9055 
   9056     BB = loop2MBB;
   9057     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
   9058         .addReg(TmpDestReg).addReg(MaskReg);
   9059     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
   9060         .addReg(Tmp2Reg).addReg(NewVal3Reg);
   9061     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
   9062         .addReg(ZeroReg).addReg(PtrReg);
   9063     BuildMI(BB, dl, TII->get(PPC::BCC))
   9064       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
   9065     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
   9066     BB->addSuccessor(loop1MBB);
   9067     BB->addSuccessor(exitMBB);
   9068 
   9069     BB = midMBB;
   9070     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
   9071       .addReg(ZeroReg).addReg(PtrReg);
   9072     BB->addSuccessor(exitMBB);
   9073 
   9074     //  exitMBB:
   9075     //   ...
   9076     BB = exitMBB;
   9077     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
   9078       .addReg(ShiftReg);
   9079   } else if (MI->getOpcode() == PPC::FADDrtz) {
   9080     // This pseudo performs an FADD with rounding mode temporarily forced
   9081     // to round-to-zero.  We emit this via custom inserter since the FPSCR
   9082     // is not modeled at the SelectionDAG level.
   9083     unsigned Dest = MI->getOperand(0).getReg();
   9084     unsigned Src1 = MI->getOperand(1).getReg();
   9085     unsigned Src2 = MI->getOperand(2).getReg();
   9086     DebugLoc dl   = MI->getDebugLoc();
   9087 
   9088     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9089     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
   9090 
   9091     // Save FPSCR value.
   9092     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
   9093 
   9094     // Set rounding mode to round-to-zero.
   9095     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
   9096     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
   9097 
   9098     // Perform addition.
   9099     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
   9100 
   9101     // Restore FPSCR value.
   9102     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
   9103   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   9104              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
   9105              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   9106              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
   9107     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
   9108                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
   9109                       PPC::ANDIo8 : PPC::ANDIo;
   9110     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
   9111                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
   9112 
   9113     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9114     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
   9115                                                   &PPC::GPRCRegClass :
   9116                                                   &PPC::G8RCRegClass);
   9117 
   9118     DebugLoc dl   = MI->getDebugLoc();
   9119     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
   9120       .addReg(MI->getOperand(1).getReg()).addImm(1);
   9121     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
   9122             MI->getOperand(0).getReg())
   9123       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
   9124   } else if (MI->getOpcode() == PPC::TCHECK_RET) {
   9125     DebugLoc Dl = MI->getDebugLoc();
   9126     MachineRegisterInfo &RegInfo = F->getRegInfo();
   9127     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
   9128     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
   9129     return BB;
   9130   } else {
   9131     llvm_unreachable("Unexpected instr type to insert");
   9132   }
   9133 
   9134   MI->eraseFromParent();   // The pseudo instruction is gone now.
   9135   return BB;
   9136 }
   9137 
   9138 //===----------------------------------------------------------------------===//
   9139 // Target Optimization Hooks
   9140 //===----------------------------------------------------------------------===//
   9141 
   9142 static std::string getRecipOp(const char *Base, EVT VT) {
   9143   std::string RecipOp(Base);
   9144   if (VT.getScalarType() == MVT::f64)
   9145     RecipOp += "d";
   9146   else
   9147     RecipOp += "f";
   9148 
   9149   if (VT.isVector())
   9150     RecipOp = "vec-" + RecipOp;
   9151 
   9152   return RecipOp;
   9153 }
   9154 
   9155 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
   9156                                             DAGCombinerInfo &DCI,
   9157                                             unsigned &RefinementSteps,
   9158                                             bool &UseOneConstNR) const {
   9159   EVT VT = Operand.getValueType();
   9160   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
   9161       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
   9162       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   9163       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   9164       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   9165       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   9166     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
   9167     std::string RecipOp = getRecipOp("sqrt", VT);
   9168     if (!Recips.isEnabled(RecipOp))
   9169       return SDValue();
   9170 
   9171     RefinementSteps = Recips.getRefinementSteps(RecipOp);
   9172     UseOneConstNR = true;
   9173     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
   9174   }
   9175   return SDValue();
   9176 }
   9177 
   9178 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
   9179                                             DAGCombinerInfo &DCI,
   9180                                             unsigned &RefinementSteps) const {
   9181   EVT VT = Operand.getValueType();
   9182   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
   9183       (VT == MVT::f64 && Subtarget.hasFRE()) ||
   9184       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
   9185       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
   9186       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
   9187       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
   9188     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
   9189     std::string RecipOp = getRecipOp("div", VT);
   9190     if (!Recips.isEnabled(RecipOp))
   9191       return SDValue();
   9192 
   9193     RefinementSteps = Recips.getRefinementSteps(RecipOp);
   9194     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
   9195   }
   9196   return SDValue();
   9197 }
   9198 
   9199 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
   9200   // Note: This functionality is used only when unsafe-fp-math is enabled, and
   9201   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
   9202   // enabled for division), this functionality is redundant with the default
   9203   // combiner logic (once the division -> reciprocal/multiply transformation
   9204   // has taken place). As a result, this matters more for older cores than for
   9205   // newer ones.
   9206 
   9207   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
   9208   // reciprocal if there are two or more FDIVs (for embedded cores with only
   9209   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
   9210   switch (Subtarget.getDarwinDirective()) {
   9211   default:
   9212     return 3;
   9213   case PPC::DIR_440:
   9214   case PPC::DIR_A2:
   9215   case PPC::DIR_E500mc:
   9216   case PPC::DIR_E5500:
   9217     return 2;
   9218   }
   9219 }
   9220 
   9221 // isConsecutiveLSLoc needs to work even if all adds have not yet been
   9222 // collapsed, and so we need to look through chains of them.
   9223 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
   9224                                      int64_t& Offset, SelectionDAG &DAG) {
   9225   if (DAG.isBaseWithConstantOffset(Loc)) {
   9226     Base = Loc.getOperand(0);
   9227     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
   9228 
   9229     // The base might itself be a base plus an offset, and if so, accumulate
   9230     // that as well.
   9231     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
   9232   }
   9233 }
   9234 
   9235 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
   9236                             unsigned Bytes, int Dist,
   9237                             SelectionDAG &DAG) {
   9238   if (VT.getSizeInBits() / 8 != Bytes)
   9239     return false;
   9240 
   9241   SDValue BaseLoc = Base->getBasePtr();
   9242   if (Loc.getOpcode() == ISD::FrameIndex) {
   9243     if (BaseLoc.getOpcode() != ISD::FrameIndex)
   9244       return false;
   9245     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   9246     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
   9247     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
   9248     int FS  = MFI->getObjectSize(FI);
   9249     int BFS = MFI->getObjectSize(BFI);
   9250     if (FS != BFS || FS != (int)Bytes) return false;
   9251     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
   9252   }
   9253 
   9254   SDValue Base1 = Loc, Base2 = BaseLoc;
   9255   int64_t Offset1 = 0, Offset2 = 0;
   9256   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
   9257   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
   9258   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
   9259     return true;
   9260 
   9261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9262   const GlobalValue *GV1 = nullptr;
   9263   const GlobalValue *GV2 = nullptr;
   9264   Offset1 = 0;
   9265   Offset2 = 0;
   9266   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
   9267   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
   9268   if (isGA1 && isGA2 && GV1 == GV2)
   9269     return Offset1 == (Offset2 + Dist*Bytes);
   9270   return false;
   9271 }
   9272 
   9273 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
   9274 // not enforce equality of the chain operands.
   9275 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
   9276                             unsigned Bytes, int Dist,
   9277                             SelectionDAG &DAG) {
   9278   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
   9279     EVT VT = LS->getMemoryVT();
   9280     SDValue Loc = LS->getBasePtr();
   9281     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
   9282   }
   9283 
   9284   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
   9285     EVT VT;
   9286     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9287     default: return false;
   9288     case Intrinsic::ppc_qpx_qvlfd:
   9289     case Intrinsic::ppc_qpx_qvlfda:
   9290       VT = MVT::v4f64;
   9291       break;
   9292     case Intrinsic::ppc_qpx_qvlfs:
   9293     case Intrinsic::ppc_qpx_qvlfsa:
   9294       VT = MVT::v4f32;
   9295       break;
   9296     case Intrinsic::ppc_qpx_qvlfcd:
   9297     case Intrinsic::ppc_qpx_qvlfcda:
   9298       VT = MVT::v2f64;
   9299       break;
   9300     case Intrinsic::ppc_qpx_qvlfcs:
   9301     case Intrinsic::ppc_qpx_qvlfcsa:
   9302       VT = MVT::v2f32;
   9303       break;
   9304     case Intrinsic::ppc_qpx_qvlfiwa:
   9305     case Intrinsic::ppc_qpx_qvlfiwz:
   9306     case Intrinsic::ppc_altivec_lvx:
   9307     case Intrinsic::ppc_altivec_lvxl:
   9308     case Intrinsic::ppc_vsx_lxvw4x:
   9309       VT = MVT::v4i32;
   9310       break;
   9311     case Intrinsic::ppc_vsx_lxvd2x:
   9312       VT = MVT::v2f64;
   9313       break;
   9314     case Intrinsic::ppc_altivec_lvebx:
   9315       VT = MVT::i8;
   9316       break;
   9317     case Intrinsic::ppc_altivec_lvehx:
   9318       VT = MVT::i16;
   9319       break;
   9320     case Intrinsic::ppc_altivec_lvewx:
   9321       VT = MVT::i32;
   9322       break;
   9323     }
   9324 
   9325     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
   9326   }
   9327 
   9328   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
   9329     EVT VT;
   9330     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9331     default: return false;
   9332     case Intrinsic::ppc_qpx_qvstfd:
   9333     case Intrinsic::ppc_qpx_qvstfda:
   9334       VT = MVT::v4f64;
   9335       break;
   9336     case Intrinsic::ppc_qpx_qvstfs:
   9337     case Intrinsic::ppc_qpx_qvstfsa:
   9338       VT = MVT::v4f32;
   9339       break;
   9340     case Intrinsic::ppc_qpx_qvstfcd:
   9341     case Intrinsic::ppc_qpx_qvstfcda:
   9342       VT = MVT::v2f64;
   9343       break;
   9344     case Intrinsic::ppc_qpx_qvstfcs:
   9345     case Intrinsic::ppc_qpx_qvstfcsa:
   9346       VT = MVT::v2f32;
   9347       break;
   9348     case Intrinsic::ppc_qpx_qvstfiw:
   9349     case Intrinsic::ppc_qpx_qvstfiwa:
   9350     case Intrinsic::ppc_altivec_stvx:
   9351     case Intrinsic::ppc_altivec_stvxl:
   9352     case Intrinsic::ppc_vsx_stxvw4x:
   9353       VT = MVT::v4i32;
   9354       break;
   9355     case Intrinsic::ppc_vsx_stxvd2x:
   9356       VT = MVT::v2f64;
   9357       break;
   9358     case Intrinsic::ppc_altivec_stvebx:
   9359       VT = MVT::i8;
   9360       break;
   9361     case Intrinsic::ppc_altivec_stvehx:
   9362       VT = MVT::i16;
   9363       break;
   9364     case Intrinsic::ppc_altivec_stvewx:
   9365       VT = MVT::i32;
   9366       break;
   9367     }
   9368 
   9369     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
   9370   }
   9371 
   9372   return false;
   9373 }
   9374 
   9375 // Return true is there is a nearyby consecutive load to the one provided
   9376 // (regardless of alignment). We search up and down the chain, looking though
   9377 // token factors and other loads (but nothing else). As a result, a true result
   9378 // indicates that it is safe to create a new consecutive load adjacent to the
   9379 // load provided.
   9380 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
   9381   SDValue Chain = LD->getChain();
   9382   EVT VT = LD->getMemoryVT();
   9383 
   9384   SmallSet<SDNode *, 16> LoadRoots;
   9385   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
   9386   SmallSet<SDNode *, 16> Visited;
   9387 
   9388   // First, search up the chain, branching to follow all token-factor operands.
   9389   // If we find a consecutive load, then we're done, otherwise, record all
   9390   // nodes just above the top-level loads and token factors.
   9391   while (!Queue.empty()) {
   9392     SDNode *ChainNext = Queue.pop_back_val();
   9393     if (!Visited.insert(ChainNext).second)
   9394       continue;
   9395 
   9396     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
   9397       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   9398         return true;
   9399 
   9400       if (!Visited.count(ChainLD->getChain().getNode()))
   9401         Queue.push_back(ChainLD->getChain().getNode());
   9402     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
   9403       for (const SDUse &O : ChainNext->ops())
   9404         if (!Visited.count(O.getNode()))
   9405           Queue.push_back(O.getNode());
   9406     } else
   9407       LoadRoots.insert(ChainNext);
   9408   }
   9409 
   9410   // Second, search down the chain, starting from the top-level nodes recorded
   9411   // in the first phase. These top-level nodes are the nodes just above all
   9412   // loads and token factors. Starting with their uses, recursively look though
   9413   // all loads (just the chain uses) and token factors to find a consecutive
   9414   // load.
   9415   Visited.clear();
   9416   Queue.clear();
   9417 
   9418   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
   9419        IE = LoadRoots.end(); I != IE; ++I) {
   9420     Queue.push_back(*I);
   9421 
   9422     while (!Queue.empty()) {
   9423       SDNode *LoadRoot = Queue.pop_back_val();
   9424       if (!Visited.insert(LoadRoot).second)
   9425         continue;
   9426 
   9427       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
   9428         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
   9429           return true;
   9430 
   9431       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
   9432            UE = LoadRoot->use_end(); UI != UE; ++UI)
   9433         if (((isa<MemSDNode>(*UI) &&
   9434             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
   9435             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
   9436           Queue.push_back(*UI);
   9437     }
   9438   }
   9439 
   9440   return false;
   9441 }
   9442 
   9443 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
   9444                                                   DAGCombinerInfo &DCI) const {
   9445   SelectionDAG &DAG = DCI.DAG;
   9446   SDLoc dl(N);
   9447 
   9448   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
   9449   // If we're tracking CR bits, we need to be careful that we don't have:
   9450   //   trunc(binary-ops(zext(x), zext(y)))
   9451   // or
   9452   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
   9453   // such that we're unnecessarily moving things into GPRs when it would be
   9454   // better to keep them in CR bits.
   9455 
   9456   // Note that trunc here can be an actual i1 trunc, or can be the effective
   9457   // truncation that comes from a setcc or select_cc.
   9458   if (N->getOpcode() == ISD::TRUNCATE &&
   9459       N->getValueType(0) != MVT::i1)
   9460     return SDValue();
   9461 
   9462   if (N->getOperand(0).getValueType() != MVT::i32 &&
   9463       N->getOperand(0).getValueType() != MVT::i64)
   9464     return SDValue();
   9465 
   9466   if (N->getOpcode() == ISD::SETCC ||
   9467       N->getOpcode() == ISD::SELECT_CC) {
   9468     // If we're looking at a comparison, then we need to make sure that the
   9469     // high bits (all except for the first) don't matter the result.
   9470     ISD::CondCode CC =
   9471       cast<CondCodeSDNode>(N->getOperand(
   9472         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
   9473     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
   9474 
   9475     if (ISD::isSignedIntSetCC(CC)) {
   9476       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
   9477           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
   9478         return SDValue();
   9479     } else if (ISD::isUnsignedIntSetCC(CC)) {
   9480       if (!DAG.MaskedValueIsZero(N->getOperand(0),
   9481                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
   9482           !DAG.MaskedValueIsZero(N->getOperand(1),
   9483                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
   9484         return SDValue();
   9485     } else {
   9486       // This is neither a signed nor an unsigned comparison, just make sure
   9487       // that the high bits are equal.
   9488       APInt Op1Zero, Op1One;
   9489       APInt Op2Zero, Op2One;
   9490       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
   9491       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
   9492 
   9493       // We don't really care about what is known about the first bit (if
   9494       // anything), so clear it in all masks prior to comparing them.
   9495       Op1Zero.clearBit(0); Op1One.clearBit(0);
   9496       Op2Zero.clearBit(0); Op2One.clearBit(0);
   9497 
   9498       if (Op1Zero != Op2Zero || Op1One != Op2One)
   9499         return SDValue();
   9500     }
   9501   }
   9502 
   9503   // We now know that the higher-order bits are irrelevant, we just need to
   9504   // make sure that all of the intermediate operations are bit operations, and
   9505   // all inputs are extensions.
   9506   if (N->getOperand(0).getOpcode() != ISD::AND &&
   9507       N->getOperand(0).getOpcode() != ISD::OR  &&
   9508       N->getOperand(0).getOpcode() != ISD::XOR &&
   9509       N->getOperand(0).getOpcode() != ISD::SELECT &&
   9510       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
   9511       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
   9512       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
   9513       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
   9514       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
   9515     return SDValue();
   9516 
   9517   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
   9518       N->getOperand(1).getOpcode() != ISD::AND &&
   9519       N->getOperand(1).getOpcode() != ISD::OR  &&
   9520       N->getOperand(1).getOpcode() != ISD::XOR &&
   9521       N->getOperand(1).getOpcode() != ISD::SELECT &&
   9522       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
   9523       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
   9524       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
   9525       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
   9526       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
   9527     return SDValue();
   9528 
   9529   SmallVector<SDValue, 4> Inputs;
   9530   SmallVector<SDValue, 8> BinOps, PromOps;
   9531   SmallPtrSet<SDNode *, 16> Visited;
   9532 
   9533   for (unsigned i = 0; i < 2; ++i) {
   9534     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9535           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9536           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   9537           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   9538         isa<ConstantSDNode>(N->getOperand(i)))
   9539       Inputs.push_back(N->getOperand(i));
   9540     else
   9541       BinOps.push_back(N->getOperand(i));
   9542 
   9543     if (N->getOpcode() == ISD::TRUNCATE)
   9544       break;
   9545   }
   9546 
   9547   // Visit all inputs, collect all binary operations (and, or, xor and
   9548   // select) that are all fed by extensions.
   9549   while (!BinOps.empty()) {
   9550     SDValue BinOp = BinOps.back();
   9551     BinOps.pop_back();
   9552 
   9553     if (!Visited.insert(BinOp.getNode()).second)
   9554       continue;
   9555 
   9556     PromOps.push_back(BinOp);
   9557 
   9558     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   9559       // The condition of the select is not promoted.
   9560       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   9561         continue;
   9562       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   9563         continue;
   9564 
   9565       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9566             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9567             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
   9568            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
   9569           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   9570         Inputs.push_back(BinOp.getOperand(i));
   9571       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   9572                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   9573                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   9574                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   9575                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
   9576                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   9577                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
   9578                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
   9579                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
   9580         BinOps.push_back(BinOp.getOperand(i));
   9581       } else {
   9582         // We have an input that is not an extension or another binary
   9583         // operation; we'll abort this transformation.
   9584         return SDValue();
   9585       }
   9586     }
   9587   }
   9588 
   9589   // Make sure that this is a self-contained cluster of operations (which
   9590   // is not quite the same thing as saying that everything has only one
   9591   // use).
   9592   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9593     if (isa<ConstantSDNode>(Inputs[i]))
   9594       continue;
   9595 
   9596     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   9597                               UE = Inputs[i].getNode()->use_end();
   9598          UI != UE; ++UI) {
   9599       SDNode *User = *UI;
   9600       if (User != N && !Visited.count(User))
   9601         return SDValue();
   9602 
   9603       // Make sure that we're not going to promote the non-output-value
   9604       // operand(s) or SELECT or SELECT_CC.
   9605       // FIXME: Although we could sometimes handle this, and it does occur in
   9606       // practice that one of the condition inputs to the select is also one of
   9607       // the outputs, we currently can't deal with this.
   9608       if (User->getOpcode() == ISD::SELECT) {
   9609         if (User->getOperand(0) == Inputs[i])
   9610           return SDValue();
   9611       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9612         if (User->getOperand(0) == Inputs[i] ||
   9613             User->getOperand(1) == Inputs[i])
   9614           return SDValue();
   9615       }
   9616     }
   9617   }
   9618 
   9619   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   9620     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   9621                               UE = PromOps[i].getNode()->use_end();
   9622          UI != UE; ++UI) {
   9623       SDNode *User = *UI;
   9624       if (User != N && !Visited.count(User))
   9625         return SDValue();
   9626 
   9627       // Make sure that we're not going to promote the non-output-value
   9628       // operand(s) or SELECT or SELECT_CC.
   9629       // FIXME: Although we could sometimes handle this, and it does occur in
   9630       // practice that one of the condition inputs to the select is also one of
   9631       // the outputs, we currently can't deal with this.
   9632       if (User->getOpcode() == ISD::SELECT) {
   9633         if (User->getOperand(0) == PromOps[i])
   9634           return SDValue();
   9635       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9636         if (User->getOperand(0) == PromOps[i] ||
   9637             User->getOperand(1) == PromOps[i])
   9638           return SDValue();
   9639       }
   9640     }
   9641   }
   9642 
   9643   // Replace all inputs with the extension operand.
   9644   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9645     // Constants may have users outside the cluster of to-be-promoted nodes,
   9646     // and so we need to replace those as we do the promotions.
   9647     if (isa<ConstantSDNode>(Inputs[i]))
   9648       continue;
   9649     else
   9650       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
   9651   }
   9652 
   9653   // Replace all operations (these are all the same, but have a different
   9654   // (i1) return type). DAG.getNode will validate that the types of
   9655   // a binary operator match, so go through the list in reverse so that
   9656   // we've likely promoted both operands first. Any intermediate truncations or
   9657   // extensions disappear.
   9658   while (!PromOps.empty()) {
   9659     SDValue PromOp = PromOps.back();
   9660     PromOps.pop_back();
   9661 
   9662     if (PromOp.getOpcode() == ISD::TRUNCATE ||
   9663         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
   9664         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
   9665         PromOp.getOpcode() == ISD::ANY_EXTEND) {
   9666       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
   9667           PromOp.getOperand(0).getValueType() != MVT::i1) {
   9668         // The operand is not yet ready (see comment below).
   9669         PromOps.insert(PromOps.begin(), PromOp);
   9670         continue;
   9671       }
   9672 
   9673       SDValue RepValue = PromOp.getOperand(0);
   9674       if (isa<ConstantSDNode>(RepValue))
   9675         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
   9676 
   9677       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
   9678       continue;
   9679     }
   9680 
   9681     unsigned C;
   9682     switch (PromOp.getOpcode()) {
   9683     default:             C = 0; break;
   9684     case ISD::SELECT:    C = 1; break;
   9685     case ISD::SELECT_CC: C = 2; break;
   9686     }
   9687 
   9688     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   9689          PromOp.getOperand(C).getValueType() != MVT::i1) ||
   9690         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   9691          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
   9692       // The to-be-promoted operands of this node have not yet been
   9693       // promoted (this should be rare because we're going through the
   9694       // list backward, but if one of the operands has several users in
   9695       // this cluster of to-be-promoted nodes, it is possible).
   9696       PromOps.insert(PromOps.begin(), PromOp);
   9697       continue;
   9698     }
   9699 
   9700     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   9701                                 PromOp.getNode()->op_end());
   9702 
   9703     // If there are any constant inputs, make sure they're replaced now.
   9704     for (unsigned i = 0; i < 2; ++i)
   9705       if (isa<ConstantSDNode>(Ops[C+i]))
   9706         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
   9707 
   9708     DAG.ReplaceAllUsesOfValueWith(PromOp,
   9709       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
   9710   }
   9711 
   9712   // Now we're left with the initial truncation itself.
   9713   if (N->getOpcode() == ISD::TRUNCATE)
   9714     return N->getOperand(0);
   9715 
   9716   // Otherwise, this is a comparison. The operands to be compared have just
   9717   // changed type (to i1), but everything else is the same.
   9718   return SDValue(N, 0);
   9719 }
   9720 
   9721 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
   9722                                                   DAGCombinerInfo &DCI) const {
   9723   SelectionDAG &DAG = DCI.DAG;
   9724   SDLoc dl(N);
   9725 
   9726   // If we're tracking CR bits, we need to be careful that we don't have:
   9727   //   zext(binary-ops(trunc(x), trunc(y)))
   9728   // or
   9729   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
   9730   // such that we're unnecessarily moving things into CR bits that can more
   9731   // efficiently stay in GPRs. Note that if we're not certain that the high
   9732   // bits are set as required by the final extension, we still may need to do
   9733   // some masking to get the proper behavior.
   9734 
   9735   // This same functionality is important on PPC64 when dealing with
   9736   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
   9737   // the return values of functions. Because it is so similar, it is handled
   9738   // here as well.
   9739 
   9740   if (N->getValueType(0) != MVT::i32 &&
   9741       N->getValueType(0) != MVT::i64)
   9742     return SDValue();
   9743 
   9744   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
   9745         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
   9746     return SDValue();
   9747 
   9748   if (N->getOperand(0).getOpcode() != ISD::AND &&
   9749       N->getOperand(0).getOpcode() != ISD::OR  &&
   9750       N->getOperand(0).getOpcode() != ISD::XOR &&
   9751       N->getOperand(0).getOpcode() != ISD::SELECT &&
   9752       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
   9753     return SDValue();
   9754 
   9755   SmallVector<SDValue, 4> Inputs;
   9756   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
   9757   SmallPtrSet<SDNode *, 16> Visited;
   9758 
   9759   // Visit all inputs, collect all binary operations (and, or, xor and
   9760   // select) that are all fed by truncations.
   9761   while (!BinOps.empty()) {
   9762     SDValue BinOp = BinOps.back();
   9763     BinOps.pop_back();
   9764 
   9765     if (!Visited.insert(BinOp.getNode()).second)
   9766       continue;
   9767 
   9768     PromOps.push_back(BinOp);
   9769 
   9770     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
   9771       // The condition of the select is not promoted.
   9772       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
   9773         continue;
   9774       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
   9775         continue;
   9776 
   9777       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
   9778           isa<ConstantSDNode>(BinOp.getOperand(i))) {
   9779         Inputs.push_back(BinOp.getOperand(i));
   9780       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
   9781                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
   9782                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
   9783                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
   9784                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
   9785         BinOps.push_back(BinOp.getOperand(i));
   9786       } else {
   9787         // We have an input that is not a truncation or another binary
   9788         // operation; we'll abort this transformation.
   9789         return SDValue();
   9790       }
   9791     }
   9792   }
   9793 
   9794   // The operands of a select that must be truncated when the select is
   9795   // promoted because the operand is actually part of the to-be-promoted set.
   9796   DenseMap<SDNode *, EVT> SelectTruncOp[2];
   9797 
   9798   // Make sure that this is a self-contained cluster of operations (which
   9799   // is not quite the same thing as saying that everything has only one
   9800   // use).
   9801   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9802     if (isa<ConstantSDNode>(Inputs[i]))
   9803       continue;
   9804 
   9805     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
   9806                               UE = Inputs[i].getNode()->use_end();
   9807          UI != UE; ++UI) {
   9808       SDNode *User = *UI;
   9809       if (User != N && !Visited.count(User))
   9810         return SDValue();
   9811 
   9812       // If we're going to promote the non-output-value operand(s) or SELECT or
   9813       // SELECT_CC, record them for truncation.
   9814       if (User->getOpcode() == ISD::SELECT) {
   9815         if (User->getOperand(0) == Inputs[i])
   9816           SelectTruncOp[0].insert(std::make_pair(User,
   9817                                     User->getOperand(0).getValueType()));
   9818       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9819         if (User->getOperand(0) == Inputs[i])
   9820           SelectTruncOp[0].insert(std::make_pair(User,
   9821                                     User->getOperand(0).getValueType()));
   9822         if (User->getOperand(1) == Inputs[i])
   9823           SelectTruncOp[1].insert(std::make_pair(User,
   9824                                     User->getOperand(1).getValueType()));
   9825       }
   9826     }
   9827   }
   9828 
   9829   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
   9830     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
   9831                               UE = PromOps[i].getNode()->use_end();
   9832          UI != UE; ++UI) {
   9833       SDNode *User = *UI;
   9834       if (User != N && !Visited.count(User))
   9835         return SDValue();
   9836 
   9837       // If we're going to promote the non-output-value operand(s) or SELECT or
   9838       // SELECT_CC, record them for truncation.
   9839       if (User->getOpcode() == ISD::SELECT) {
   9840         if (User->getOperand(0) == PromOps[i])
   9841           SelectTruncOp[0].insert(std::make_pair(User,
   9842                                     User->getOperand(0).getValueType()));
   9843       } else if (User->getOpcode() == ISD::SELECT_CC) {
   9844         if (User->getOperand(0) == PromOps[i])
   9845           SelectTruncOp[0].insert(std::make_pair(User,
   9846                                     User->getOperand(0).getValueType()));
   9847         if (User->getOperand(1) == PromOps[i])
   9848           SelectTruncOp[1].insert(std::make_pair(User,
   9849                                     User->getOperand(1).getValueType()));
   9850       }
   9851     }
   9852   }
   9853 
   9854   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
   9855   bool ReallyNeedsExt = false;
   9856   if (N->getOpcode() != ISD::ANY_EXTEND) {
   9857     // If all of the inputs are not already sign/zero extended, then
   9858     // we'll still need to do that at the end.
   9859     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9860       if (isa<ConstantSDNode>(Inputs[i]))
   9861         continue;
   9862 
   9863       unsigned OpBits =
   9864         Inputs[i].getOperand(0).getValueSizeInBits();
   9865       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
   9866 
   9867       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
   9868            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
   9869                                   APInt::getHighBitsSet(OpBits,
   9870                                                         OpBits-PromBits))) ||
   9871           (N->getOpcode() == ISD::SIGN_EXTEND &&
   9872            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
   9873              (OpBits-(PromBits-1)))) {
   9874         ReallyNeedsExt = true;
   9875         break;
   9876       }
   9877     }
   9878   }
   9879 
   9880   // Replace all inputs, either with the truncation operand, or a
   9881   // truncation or extension to the final output type.
   9882   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
   9883     // Constant inputs need to be replaced with the to-be-promoted nodes that
   9884     // use them because they might have users outside of the cluster of
   9885     // promoted nodes.
   9886     if (isa<ConstantSDNode>(Inputs[i]))
   9887       continue;
   9888 
   9889     SDValue InSrc = Inputs[i].getOperand(0);
   9890     if (Inputs[i].getValueType() == N->getValueType(0))
   9891       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
   9892     else if (N->getOpcode() == ISD::SIGN_EXTEND)
   9893       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   9894         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
   9895     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   9896       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   9897         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
   9898     else
   9899       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
   9900         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
   9901   }
   9902 
   9903   // Replace all operations (these are all the same, but have a different
   9904   // (promoted) return type). DAG.getNode will validate that the types of
   9905   // a binary operator match, so go through the list in reverse so that
   9906   // we've likely promoted both operands first.
   9907   while (!PromOps.empty()) {
   9908     SDValue PromOp = PromOps.back();
   9909     PromOps.pop_back();
   9910 
   9911     unsigned C;
   9912     switch (PromOp.getOpcode()) {
   9913     default:             C = 0; break;
   9914     case ISD::SELECT:    C = 1; break;
   9915     case ISD::SELECT_CC: C = 2; break;
   9916     }
   9917 
   9918     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
   9919          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
   9920         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
   9921          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
   9922       // The to-be-promoted operands of this node have not yet been
   9923       // promoted (this should be rare because we're going through the
   9924       // list backward, but if one of the operands has several users in
   9925       // this cluster of to-be-promoted nodes, it is possible).
   9926       PromOps.insert(PromOps.begin(), PromOp);
   9927       continue;
   9928     }
   9929 
   9930     // For SELECT and SELECT_CC nodes, we do a similar check for any
   9931     // to-be-promoted comparison inputs.
   9932     if (PromOp.getOpcode() == ISD::SELECT ||
   9933         PromOp.getOpcode() == ISD::SELECT_CC) {
   9934       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
   9935            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
   9936           (SelectTruncOp[1].count(PromOp.getNode()) &&
   9937            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
   9938         PromOps.insert(PromOps.begin(), PromOp);
   9939         continue;
   9940       }
   9941     }
   9942 
   9943     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
   9944                                 PromOp.getNode()->op_end());
   9945 
   9946     // If this node has constant inputs, then they'll need to be promoted here.
   9947     for (unsigned i = 0; i < 2; ++i) {
   9948       if (!isa<ConstantSDNode>(Ops[C+i]))
   9949         continue;
   9950       if (Ops[C+i].getValueType() == N->getValueType(0))
   9951         continue;
   9952 
   9953       if (N->getOpcode() == ISD::SIGN_EXTEND)
   9954         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   9955       else if (N->getOpcode() == ISD::ZERO_EXTEND)
   9956         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   9957       else
   9958         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
   9959     }
   9960 
   9961     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
   9962     // truncate them again to the original value type.
   9963     if (PromOp.getOpcode() == ISD::SELECT ||
   9964         PromOp.getOpcode() == ISD::SELECT_CC) {
   9965       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
   9966       if (SI0 != SelectTruncOp[0].end())
   9967         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
   9968       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
   9969       if (SI1 != SelectTruncOp[1].end())
   9970         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
   9971     }
   9972 
   9973     DAG.ReplaceAllUsesOfValueWith(PromOp,
   9974       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
   9975   }
   9976 
   9977   // Now we're left with the initial extension itself.
   9978   if (!ReallyNeedsExt)
   9979     return N->getOperand(0);
   9980 
   9981   // To zero extend, just mask off everything except for the first bit (in the
   9982   // i1 case).
   9983   if (N->getOpcode() == ISD::ZERO_EXTEND)
   9984     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
   9985                        DAG.getConstant(APInt::getLowBitsSet(
   9986                                          N->getValueSizeInBits(0), PromBits),
   9987                                        dl, N->getValueType(0)));
   9988 
   9989   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
   9990          "Invalid extension type");
   9991   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
   9992   SDValue ShiftCst =
   9993       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
   9994   return DAG.getNode(
   9995       ISD::SRA, dl, N->getValueType(0),
   9996       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
   9997       ShiftCst);
   9998 }
   9999 
   10000 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
   10001                                               DAGCombinerInfo &DCI) const {
   10002   assert((N->getOpcode() == ISD::SINT_TO_FP ||
   10003           N->getOpcode() == ISD::UINT_TO_FP) &&
   10004          "Need an int -> FP conversion node here");
   10005 
   10006   if (!Subtarget.has64BitSupport())
   10007     return SDValue();
   10008 
   10009   SelectionDAG &DAG = DCI.DAG;
   10010   SDLoc dl(N);
   10011   SDValue Op(N, 0);
   10012 
   10013   // Don't handle ppc_fp128 here or i1 conversions.
   10014   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
   10015     return SDValue();
   10016   if (Op.getOperand(0).getValueType() == MVT::i1)
   10017     return SDValue();
   10018 
   10019   // For i32 intermediate values, unfortunately, the conversion functions
   10020   // leave the upper 32 bits of the value are undefined. Within the set of
   10021   // scalar instructions, we have no method for zero- or sign-extending the
   10022   // value. Thus, we cannot handle i32 intermediate values here.
   10023   if (Op.getOperand(0).getValueType() == MVT::i32)
   10024     return SDValue();
   10025 
   10026   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
   10027          "UINT_TO_FP is supported only with FPCVT");
   10028 
   10029   // If we have FCFIDS, then use it when converting to single-precision.
   10030   // Otherwise, convert to double-precision and then round.
   10031   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   10032                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
   10033                                                             : PPCISD::FCFIDS)
   10034                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
   10035                                                             : PPCISD::FCFID);
   10036   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
   10037                   ? MVT::f32
   10038                   : MVT::f64;
   10039 
   10040   // If we're converting from a float, to an int, and back to a float again,
   10041   // then we don't need the store/load pair at all.
   10042   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
   10043        Subtarget.hasFPCVT()) ||
   10044       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
   10045     SDValue Src = Op.getOperand(0).getOperand(0);
   10046     if (Src.getValueType() == MVT::f32) {
   10047       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
   10048       DCI.AddToWorklist(Src.getNode());
   10049     } else if (Src.getValueType() != MVT::f64) {
   10050       // Make sure that we don't pick up a ppc_fp128 source value.
   10051       return SDValue();
   10052     }
   10053 
   10054     unsigned FCTOp =
   10055       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
   10056                                                         PPCISD::FCTIDUZ;
   10057 
   10058     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
   10059     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
   10060 
   10061     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
   10062       FP = DAG.getNode(ISD::FP_ROUND, dl,
   10063                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
   10064       DCI.AddToWorklist(FP.getNode());
   10065     }
   10066 
   10067     return FP;
   10068   }
   10069 
   10070   return SDValue();
   10071 }
   10072 
   10073 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
   10074 // builtins) into loads with swaps.
   10075 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
   10076                                               DAGCombinerInfo &DCI) const {
   10077   SelectionDAG &DAG = DCI.DAG;
   10078   SDLoc dl(N);
   10079   SDValue Chain;
   10080   SDValue Base;
   10081   MachineMemOperand *MMO;
   10082 
   10083   switch (N->getOpcode()) {
   10084   default:
   10085     llvm_unreachable("Unexpected opcode for little endian VSX load");
   10086   case ISD::LOAD: {
   10087     LoadSDNode *LD = cast<LoadSDNode>(N);
   10088     Chain = LD->getChain();
   10089     Base = LD->getBasePtr();
   10090     MMO = LD->getMemOperand();
   10091     // If the MMO suggests this isn't a load of a full vector, leave
   10092     // things alone.  For a built-in, we have to make the change for
   10093     // correctness, so if there is a size problem that will be a bug.
   10094     if (MMO->getSize() < 16)
   10095       return SDValue();
   10096     break;
   10097   }
   10098   case ISD::INTRINSIC_W_CHAIN: {
   10099     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   10100     Chain = Intrin->getChain();
   10101     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
   10102     // us what we want. Get operand 2 instead.
   10103     Base = Intrin->getOperand(2);
   10104     MMO = Intrin->getMemOperand();
   10105     break;
   10106   }
   10107   }
   10108 
   10109   MVT VecTy = N->getValueType(0).getSimpleVT();
   10110   SDValue LoadOps[] = { Chain, Base };
   10111   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
   10112                                          DAG.getVTList(VecTy, MVT::Other),
   10113                                          LoadOps, VecTy, MMO);
   10114   DCI.AddToWorklist(Load.getNode());
   10115   Chain = Load.getValue(1);
   10116   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
   10117                              DAG.getVTList(VecTy, MVT::Other), Chain, Load);
   10118   DCI.AddToWorklist(Swap.getNode());
   10119   return Swap;
   10120 }
   10121 
   10122 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
   10123 // builtins) into stores with swaps.
   10124 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
   10125                                                DAGCombinerInfo &DCI) const {
   10126   SelectionDAG &DAG = DCI.DAG;
   10127   SDLoc dl(N);
   10128   SDValue Chain;
   10129   SDValue Base;
   10130   unsigned SrcOpnd;
   10131   MachineMemOperand *MMO;
   10132 
   10133   switch (N->getOpcode()) {
   10134   default:
   10135     llvm_unreachable("Unexpected opcode for little endian VSX store");
   10136   case ISD::STORE: {
   10137     StoreSDNode *ST = cast<StoreSDNode>(N);
   10138     Chain = ST->getChain();
   10139     Base = ST->getBasePtr();
   10140     MMO = ST->getMemOperand();
   10141     SrcOpnd = 1;
   10142     // If the MMO suggests this isn't a store of a full vector, leave
   10143     // things alone.  For a built-in, we have to make the change for
   10144     // correctness, so if there is a size problem that will be a bug.
   10145     if (MMO->getSize() < 16)
   10146       return SDValue();
   10147     break;
   10148   }
   10149   case ISD::INTRINSIC_VOID: {
   10150     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
   10151     Chain = Intrin->getChain();
   10152     // Intrin->getBasePtr() oddly does not get what we want.
   10153     Base = Intrin->getOperand(3);
   10154     MMO = Intrin->getMemOperand();
   10155     SrcOpnd = 2;
   10156     break;
   10157   }
   10158   }
   10159 
   10160   SDValue Src = N->getOperand(SrcOpnd);
   10161   MVT VecTy = Src.getValueType().getSimpleVT();
   10162   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
   10163                              DAG.getVTList(VecTy, MVT::Other), Chain, Src);
   10164   DCI.AddToWorklist(Swap.getNode());
   10165   Chain = Swap.getValue(1);
   10166   SDValue StoreOps[] = { Chain, Swap, Base };
   10167   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
   10168                                           DAG.getVTList(MVT::Other),
   10169                                           StoreOps, VecTy, MMO);
   10170   DCI.AddToWorklist(Store.getNode());
   10171   return Store;
   10172 }
   10173 
   10174 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
   10175                                              DAGCombinerInfo &DCI) const {
   10176   SelectionDAG &DAG = DCI.DAG;
   10177   SDLoc dl(N);
   10178   switch (N->getOpcode()) {
   10179   default: break;
   10180   case PPCISD::SHL:
   10181     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
   10182         return N->getOperand(0);
   10183     break;
   10184   case PPCISD::SRL:
   10185     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
   10186         return N->getOperand(0);
   10187     break;
   10188   case PPCISD::SRA:
   10189     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
   10190       if (C->isNullValue() ||   //  0 >>s V -> 0.
   10191           C->isAllOnesValue())    // -1 >>s V -> -1.
   10192         return N->getOperand(0);
   10193     }
   10194     break;
   10195   case ISD::SIGN_EXTEND:
   10196   case ISD::ZERO_EXTEND:
   10197   case ISD::ANY_EXTEND:
   10198     return DAGCombineExtBoolTrunc(N, DCI);
   10199   case ISD::TRUNCATE:
   10200   case ISD::SETCC:
   10201   case ISD::SELECT_CC:
   10202     return DAGCombineTruncBoolExt(N, DCI);
   10203   case ISD::SINT_TO_FP:
   10204   case ISD::UINT_TO_FP:
   10205     return combineFPToIntToFP(N, DCI);
   10206   case ISD::STORE: {
   10207     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
   10208     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
   10209         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
   10210         N->getOperand(1).getValueType() == MVT::i32 &&
   10211         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
   10212       SDValue Val = N->getOperand(1).getOperand(0);
   10213       if (Val.getValueType() == MVT::f32) {
   10214         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
   10215         DCI.AddToWorklist(Val.getNode());
   10216       }
   10217       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
   10218       DCI.AddToWorklist(Val.getNode());
   10219 
   10220       SDValue Ops[] = {
   10221         N->getOperand(0), Val, N->getOperand(2),
   10222         DAG.getValueType(N->getOperand(1).getValueType())
   10223       };
   10224 
   10225       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
   10226               DAG.getVTList(MVT::Other), Ops,
   10227               cast<StoreSDNode>(N)->getMemoryVT(),
   10228               cast<StoreSDNode>(N)->getMemOperand());
   10229       DCI.AddToWorklist(Val.getNode());
   10230       return Val;
   10231     }
   10232 
   10233     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
   10234     if (cast<StoreSDNode>(N)->isUnindexed() &&
   10235         N->getOperand(1).getOpcode() == ISD::BSWAP &&
   10236         N->getOperand(1).getNode()->hasOneUse() &&
   10237         (N->getOperand(1).getValueType() == MVT::i32 ||
   10238          N->getOperand(1).getValueType() == MVT::i16 ||
   10239          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   10240           N->getOperand(1).getValueType() == MVT::i64))) {
   10241       SDValue BSwapOp = N->getOperand(1).getOperand(0);
   10242       // Do an any-extend to 32-bits if this is a half-word input.
   10243       if (BSwapOp.getValueType() == MVT::i16)
   10244         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
   10245 
   10246       SDValue Ops[] = {
   10247         N->getOperand(0), BSwapOp, N->getOperand(2),
   10248         DAG.getValueType(N->getOperand(1).getValueType())
   10249       };
   10250       return
   10251         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
   10252                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
   10253                                 cast<StoreSDNode>(N)->getMemOperand());
   10254     }
   10255 
   10256     // For little endian, VSX stores require generating xxswapd/lxvd2x.
   10257     EVT VT = N->getOperand(1).getValueType();
   10258     if (VT.isSimple()) {
   10259       MVT StoreVT = VT.getSimpleVT();
   10260       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
   10261           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
   10262            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
   10263         return expandVSXStoreForLE(N, DCI);
   10264     }
   10265     break;
   10266   }
   10267   case ISD::LOAD: {
   10268     LoadSDNode *LD = cast<LoadSDNode>(N);
   10269     EVT VT = LD->getValueType(0);
   10270 
   10271     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   10272     if (VT.isSimple()) {
   10273       MVT LoadVT = VT.getSimpleVT();
   10274       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
   10275           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
   10276            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
   10277         return expandVSXLoadForLE(N, DCI);
   10278     }
   10279 
   10280     EVT MemVT = LD->getMemoryVT();
   10281     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
   10282     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
   10283     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
   10284     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
   10285     if (LD->isUnindexed() && VT.isVector() &&
   10286         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
   10287           // P8 and later hardware should just use LOAD.
   10288           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
   10289                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
   10290          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
   10291           LD->getAlignment() >= ScalarABIAlignment)) &&
   10292         LD->getAlignment() < ABIAlignment) {
   10293       // This is a type-legal unaligned Altivec or QPX load.
   10294       SDValue Chain = LD->getChain();
   10295       SDValue Ptr = LD->getBasePtr();
   10296       bool isLittleEndian = Subtarget.isLittleEndian();
   10297 
   10298       // This implements the loading of unaligned vectors as described in
   10299       // the venerable Apple Velocity Engine overview. Specifically:
   10300       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
   10301       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
   10302       //
   10303       // The general idea is to expand a sequence of one or more unaligned
   10304       // loads into an alignment-based permutation-control instruction (lvsl
   10305       // or lvsr), a series of regular vector loads (which always truncate
   10306       // their input address to an aligned address), and a series of
   10307       // permutations.  The results of these permutations are the requested
   10308       // loaded values.  The trick is that the last "extra" load is not taken
   10309       // from the address you might suspect (sizeof(vector) bytes after the
   10310       // last requested load), but rather sizeof(vector) - 1 bytes after the
   10311       // last requested vector. The point of this is to avoid a page fault if
   10312       // the base address happened to be aligned. This works because if the
   10313       // base address is aligned, then adding less than a full vector length
   10314       // will cause the last vector in the sequence to be (re)loaded.
   10315       // Otherwise, the next vector will be fetched as you might suspect was
   10316       // necessary.
   10317 
   10318       // We might be able to reuse the permutation generation from
   10319       // a different base address offset from this one by an aligned amount.
   10320       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
   10321       // optimization later.
   10322       Intrinsic::ID Intr, IntrLD, IntrPerm;
   10323       MVT PermCntlTy, PermTy, LDTy;
   10324       if (Subtarget.hasAltivec()) {
   10325         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
   10326                                  Intrinsic::ppc_altivec_lvsl;
   10327         IntrLD = Intrinsic::ppc_altivec_lvx;
   10328         IntrPerm = Intrinsic::ppc_altivec_vperm;
   10329         PermCntlTy = MVT::v16i8;
   10330         PermTy = MVT::v4i32;
   10331         LDTy = MVT::v4i32;
   10332       } else {
   10333         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
   10334                                        Intrinsic::ppc_qpx_qvlpcls;
   10335         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
   10336                                        Intrinsic::ppc_qpx_qvlfs;
   10337         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
   10338         PermCntlTy = MVT::v4f64;
   10339         PermTy = MVT::v4f64;
   10340         LDTy = MemVT.getSimpleVT();
   10341       }
   10342 
   10343       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
   10344 
   10345       // Create the new MMO for the new base load. It is like the original MMO,
   10346       // but represents an area in memory almost twice the vector size centered
   10347       // on the original address. If the address is unaligned, we might start
   10348       // reading up to (sizeof(vector)-1) bytes below the address of the
   10349       // original unaligned load.
   10350       MachineFunction &MF = DAG.getMachineFunction();
   10351       MachineMemOperand *BaseMMO =
   10352         MF.getMachineMemOperand(LD->getMemOperand(),
   10353                                 -(long)MemVT.getStoreSize()+1,
   10354                                 2*MemVT.getStoreSize()-1);
   10355 
   10356       // Create the new base load.
   10357       SDValue LDXIntID =
   10358           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
   10359       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
   10360       SDValue BaseLoad =
   10361         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   10362                                 DAG.getVTList(PermTy, MVT::Other),
   10363                                 BaseLoadOps, LDTy, BaseMMO);
   10364 
   10365       // Note that the value of IncOffset (which is provided to the next
   10366       // load's pointer info offset value, and thus used to calculate the
   10367       // alignment), and the value of IncValue (which is actually used to
   10368       // increment the pointer value) are different! This is because we
   10369       // require the next load to appear to be aligned, even though it
   10370       // is actually offset from the base pointer by a lesser amount.
   10371       int IncOffset = VT.getSizeInBits() / 8;
   10372       int IncValue = IncOffset;
   10373 
   10374       // Walk (both up and down) the chain looking for another load at the real
   10375       // (aligned) offset (the alignment of the other load does not matter in
   10376       // this case). If found, then do not use the offset reduction trick, as
   10377       // that will prevent the loads from being later combined (as they would
   10378       // otherwise be duplicates).
   10379       if (!findConsecutiveLoad(LD, DAG))
   10380         --IncValue;
   10381 
   10382       SDValue Increment =
   10383           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
   10384       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   10385 
   10386       MachineMemOperand *ExtraMMO =
   10387         MF.getMachineMemOperand(LD->getMemOperand(),
   10388                                 1, 2*MemVT.getStoreSize()-1);
   10389       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
   10390       SDValue ExtraLoad =
   10391         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
   10392                                 DAG.getVTList(PermTy, MVT::Other),
   10393                                 ExtraLoadOps, LDTy, ExtraMMO);
   10394 
   10395       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   10396         BaseLoad.getValue(1), ExtraLoad.getValue(1));
   10397 
   10398       // Because vperm has a big-endian bias, we must reverse the order
   10399       // of the input vectors and complement the permute control vector
   10400       // when generating little endian code.  We have already handled the
   10401       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
   10402       // and ExtraLoad here.
   10403       SDValue Perm;
   10404       if (isLittleEndian)
   10405         Perm = BuildIntrinsicOp(IntrPerm,
   10406                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
   10407       else
   10408         Perm = BuildIntrinsicOp(IntrPerm,
   10409                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
   10410 
   10411       if (VT != PermTy)
   10412         Perm = Subtarget.hasAltivec() ?
   10413                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
   10414                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
   10415                                DAG.getTargetConstant(1, dl, MVT::i64));
   10416                                // second argument is 1 because this rounding
   10417                                // is always exact.
   10418 
   10419       // The output of the permutation is our loaded result, the TokenFactor is
   10420       // our new chain.
   10421       DCI.CombineTo(N, Perm, TF);
   10422       return SDValue(N, 0);
   10423     }
   10424     }
   10425     break;
   10426     case ISD::INTRINSIC_WO_CHAIN: {
   10427       bool isLittleEndian = Subtarget.isLittleEndian();
   10428       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   10429       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
   10430                                            : Intrinsic::ppc_altivec_lvsl);
   10431       if ((IID == Intr ||
   10432            IID == Intrinsic::ppc_qpx_qvlpcld  ||
   10433            IID == Intrinsic::ppc_qpx_qvlpcls) &&
   10434         N->getOperand(1)->getOpcode() == ISD::ADD) {
   10435         SDValue Add = N->getOperand(1);
   10436 
   10437         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
   10438                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
   10439 
   10440         if (DAG.MaskedValueIsZero(
   10441                 Add->getOperand(1),
   10442                 APInt::getAllOnesValue(Bits /* alignment */)
   10443                     .zext(
   10444                         Add.getValueType().getScalarType().getSizeInBits()))) {
   10445           SDNode *BasePtr = Add->getOperand(0).getNode();
   10446           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   10447                                     UE = BasePtr->use_end();
   10448                UI != UE; ++UI) {
   10449             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10450                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
   10451               // We've found another LVSL/LVSR, and this address is an aligned
   10452               // multiple of that one. The results will be the same, so use the
   10453               // one we've just found instead.
   10454 
   10455               return SDValue(*UI, 0);
   10456             }
   10457           }
   10458         }
   10459 
   10460         if (isa<ConstantSDNode>(Add->getOperand(1))) {
   10461           SDNode *BasePtr = Add->getOperand(0).getNode();
   10462           for (SDNode::use_iterator UI = BasePtr->use_begin(),
   10463                UE = BasePtr->use_end(); UI != UE; ++UI) {
   10464             if (UI->getOpcode() == ISD::ADD &&
   10465                 isa<ConstantSDNode>(UI->getOperand(1)) &&
   10466                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
   10467                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
   10468                 (1ULL << Bits) == 0) {
   10469               SDNode *OtherAdd = *UI;
   10470               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
   10471                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
   10472                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10473                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
   10474                   return SDValue(*VI, 0);
   10475                 }
   10476               }
   10477             }
   10478           }
   10479         }
   10480       }
   10481     }
   10482 
   10483     break;
   10484   case ISD::INTRINSIC_W_CHAIN: {
   10485     // For little endian, VSX loads require generating lxvd2x/xxswapd.
   10486     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
   10487       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10488       default:
   10489         break;
   10490       case Intrinsic::ppc_vsx_lxvw4x:
   10491       case Intrinsic::ppc_vsx_lxvd2x:
   10492         return expandVSXLoadForLE(N, DCI);
   10493       }
   10494     }
   10495     break;
   10496   }
   10497   case ISD::INTRINSIC_VOID: {
   10498     // For little endian, VSX stores require generating xxswapd/stxvd2x.
   10499     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
   10500       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10501       default:
   10502         break;
   10503       case Intrinsic::ppc_vsx_stxvw4x:
   10504       case Intrinsic::ppc_vsx_stxvd2x:
   10505         return expandVSXStoreForLE(N, DCI);
   10506       }
   10507     }
   10508     break;
   10509   }
   10510   case ISD::BSWAP:
   10511     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
   10512     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
   10513         N->getOperand(0).hasOneUse() &&
   10514         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
   10515          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
   10516           N->getValueType(0) == MVT::i64))) {
   10517       SDValue Load = N->getOperand(0);
   10518       LoadSDNode *LD = cast<LoadSDNode>(Load);
   10519       // Create the byte-swapping load.
   10520       SDValue Ops[] = {
   10521         LD->getChain(),    // Chain
   10522         LD->getBasePtr(),  // Ptr
   10523         DAG.getValueType(N->getValueType(0)) // VT
   10524       };
   10525       SDValue BSLoad =
   10526         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
   10527                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
   10528                                               MVT::i64 : MVT::i32, MVT::Other),
   10529                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
   10530 
   10531       // If this is an i16 load, insert the truncate.
   10532       SDValue ResVal = BSLoad;
   10533       if (N->getValueType(0) == MVT::i16)
   10534         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
   10535 
   10536       // First, combine the bswap away.  This makes the value produced by the
   10537       // load dead.
   10538       DCI.CombineTo(N, ResVal);
   10539 
   10540       // Next, combine the load away, we give it a bogus result value but a real
   10541       // chain result.  The result value is dead because the bswap is dead.
   10542       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
   10543 
   10544       // Return N so it doesn't get rechecked!
   10545       return SDValue(N, 0);
   10546     }
   10547 
   10548     break;
   10549   case PPCISD::VCMP: {
   10550     // If a VCMPo node already exists with exactly the same operands as this
   10551     // node, use its result instead of this node (VCMPo computes both a CR6 and
   10552     // a normal output).
   10553     //
   10554     if (!N->getOperand(0).hasOneUse() &&
   10555         !N->getOperand(1).hasOneUse() &&
   10556         !N->getOperand(2).hasOneUse()) {
   10557 
   10558       // Scan all of the users of the LHS, looking for VCMPo's that match.
   10559       SDNode *VCMPoNode = nullptr;
   10560 
   10561       SDNode *LHSN = N->getOperand(0).getNode();
   10562       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
   10563            UI != E; ++UI)
   10564         if (UI->getOpcode() == PPCISD::VCMPo &&
   10565             UI->getOperand(1) == N->getOperand(1) &&
   10566             UI->getOperand(2) == N->getOperand(2) &&
   10567             UI->getOperand(0) == N->getOperand(0)) {
   10568           VCMPoNode = *UI;
   10569           break;
   10570         }
   10571 
   10572       // If there is no VCMPo node, or if the flag value has a single use, don't
   10573       // transform this.
   10574       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
   10575         break;
   10576 
   10577       // Look at the (necessarily single) use of the flag value.  If it has a
   10578       // chain, this transformation is more complex.  Note that multiple things
   10579       // could use the value result, which we should ignore.
   10580       SDNode *FlagUser = nullptr;
   10581       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
   10582            FlagUser == nullptr; ++UI) {
   10583         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
   10584         SDNode *User = *UI;
   10585         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
   10586           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
   10587             FlagUser = User;
   10588             break;
   10589           }
   10590         }
   10591       }
   10592 
   10593       // If the user is a MFOCRF instruction, we know this is safe.
   10594       // Otherwise we give up for right now.
   10595       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
   10596         return SDValue(VCMPoNode, 0);
   10597     }
   10598     break;
   10599   }
   10600   case ISD::BRCOND: {
   10601     SDValue Cond = N->getOperand(1);
   10602     SDValue Target = N->getOperand(2);
   10603 
   10604     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   10605         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
   10606           Intrinsic::ppc_is_decremented_ctr_nonzero) {
   10607 
   10608       // We now need to make the intrinsic dead (it cannot be instruction
   10609       // selected).
   10610       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
   10611       assert(Cond.getNode()->hasOneUse() &&
   10612              "Counter decrement has more than one use");
   10613 
   10614       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
   10615                          N->getOperand(0), Target);
   10616     }
   10617   }
   10618   break;
   10619   case ISD::BR_CC: {
   10620     // If this is a branch on an altivec predicate comparison, lower this so
   10621     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
   10622     // lowering is done pre-legalize, because the legalizer lowers the predicate
   10623     // compare down to code that is difficult to reassemble.
   10624     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   10625     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
   10626 
   10627     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
   10628     // value. If so, pass-through the AND to get to the intrinsic.
   10629     if (LHS.getOpcode() == ISD::AND &&
   10630         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   10631         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
   10632           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   10633         isa<ConstantSDNode>(LHS.getOperand(1)) &&
   10634         !isNullConstant(LHS.getOperand(1)))
   10635       LHS = LHS.getOperand(0);
   10636 
   10637     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   10638         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
   10639           Intrinsic::ppc_is_decremented_ctr_nonzero &&
   10640         isa<ConstantSDNode>(RHS)) {
   10641       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
   10642              "Counter decrement comparison is not EQ or NE");
   10643 
   10644       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   10645       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
   10646                     (CC == ISD::SETNE && !Val);
   10647 
   10648       // We now need to make the intrinsic dead (it cannot be instruction
   10649       // selected).
   10650       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
   10651       assert(LHS.getNode()->hasOneUse() &&
   10652              "Counter decrement has more than one use");
   10653 
   10654       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
   10655                          N->getOperand(0), N->getOperand(4));
   10656     }
   10657 
   10658     int CompareOpc;
   10659     bool isDot;
   10660 
   10661     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   10662         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
   10663         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
   10664       assert(isDot && "Can't compare against a vector result!");
   10665 
   10666       // If this is a comparison against something other than 0/1, then we know
   10667       // that the condition is never/always true.
   10668       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
   10669       if (Val != 0 && Val != 1) {
   10670         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
   10671           return N->getOperand(0);
   10672         // Always !=, turn it into an unconditional branch.
   10673         return DAG.getNode(ISD::BR, dl, MVT::Other,
   10674                            N->getOperand(0), N->getOperand(4));
   10675       }
   10676 
   10677       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
   10678 
   10679       // Create the PPCISD altivec 'dot' comparison node.
   10680       SDValue Ops[] = {
   10681         LHS.getOperand(2),  // LHS of compare
   10682         LHS.getOperand(3),  // RHS of compare
   10683         DAG.getConstant(CompareOpc, dl, MVT::i32)
   10684       };
   10685       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
   10686       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
   10687 
   10688       // Unpack the result based on how the target uses it.
   10689       PPC::Predicate CompOpc;
   10690       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
   10691       default:  // Can't happen, don't crash on invalid number though.
   10692       case 0:   // Branch on the value of the EQ bit of CR6.
   10693         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
   10694         break;
   10695       case 1:   // Branch on the inverted value of the EQ bit of CR6.
   10696         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
   10697         break;
   10698       case 2:   // Branch on the value of the LT bit of CR6.
   10699         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
   10700         break;
   10701       case 3:   // Branch on the inverted value of the LT bit of CR6.
   10702         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
   10703         break;
   10704       }
   10705 
   10706       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
   10707                          DAG.getConstant(CompOpc, dl, MVT::i32),
   10708                          DAG.getRegister(PPC::CR6, MVT::i32),
   10709                          N->getOperand(4), CompNode.getValue(1));
   10710     }
   10711     break;
   10712   }
   10713   }
   10714 
   10715   return SDValue();
   10716 }
   10717 
   10718 SDValue
   10719 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   10720                                   SelectionDAG &DAG,
   10721                                   std::vector<SDNode *> *Created) const {
   10722   // fold (sdiv X, pow2)
   10723   EVT VT = N->getValueType(0);
   10724   if (VT == MVT::i64 && !Subtarget.isPPC64())
   10725     return SDValue();
   10726   if ((VT != MVT::i32 && VT != MVT::i64) ||
   10727       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
   10728     return SDValue();
   10729 
   10730   SDLoc DL(N);
   10731   SDValue N0 = N->getOperand(0);
   10732 
   10733   bool IsNegPow2 = (-Divisor).isPowerOf2();
   10734   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
   10735   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
   10736 
   10737   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
   10738   if (Created)
   10739     Created->push_back(Op.getNode());
   10740 
   10741   if (IsNegPow2) {
   10742     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
   10743     if (Created)
   10744       Created->push_back(Op.getNode());
   10745   }
   10746 
   10747   return Op;
   10748 }
   10749 
   10750 //===----------------------------------------------------------------------===//
   10751 // Inline Assembly Support
   10752 //===----------------------------------------------------------------------===//
   10753 
   10754 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   10755                                                       APInt &KnownZero,
   10756                                                       APInt &KnownOne,
   10757                                                       const SelectionDAG &DAG,
   10758                                                       unsigned Depth) const {
   10759   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   10760   switch (Op.getOpcode()) {
   10761   default: break;
   10762   case PPCISD::LBRX: {
   10763     // lhbrx is known to have the top bits cleared out.
   10764     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
   10765       KnownZero = 0xFFFF0000;
   10766     break;
   10767   }
   10768   case ISD::INTRINSIC_WO_CHAIN: {
   10769     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   10770     default: break;
   10771     case Intrinsic::ppc_altivec_vcmpbfp_p:
   10772     case Intrinsic::ppc_altivec_vcmpeqfp_p:
   10773     case Intrinsic::ppc_altivec_vcmpequb_p:
   10774     case Intrinsic::ppc_altivec_vcmpequh_p:
   10775     case Intrinsic::ppc_altivec_vcmpequw_p:
   10776     case Intrinsic::ppc_altivec_vcmpequd_p:
   10777     case Intrinsic::ppc_altivec_vcmpgefp_p:
   10778     case Intrinsic::ppc_altivec_vcmpgtfp_p:
   10779     case Intrinsic::ppc_altivec_vcmpgtsb_p:
   10780     case Intrinsic::ppc_altivec_vcmpgtsh_p:
   10781     case Intrinsic::ppc_altivec_vcmpgtsw_p:
   10782     case Intrinsic::ppc_altivec_vcmpgtsd_p:
   10783     case Intrinsic::ppc_altivec_vcmpgtub_p:
   10784     case Intrinsic::ppc_altivec_vcmpgtuh_p:
   10785     case Intrinsic::ppc_altivec_vcmpgtuw_p:
   10786     case Intrinsic::ppc_altivec_vcmpgtud_p:
   10787       KnownZero = ~1U;  // All bits but the low one are known to be zero.
   10788       break;
   10789     }
   10790   }
   10791   }
   10792 }
   10793 
   10794 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
   10795   switch (Subtarget.getDarwinDirective()) {
   10796   default: break;
   10797   case PPC::DIR_970:
   10798   case PPC::DIR_PWR4:
   10799   case PPC::DIR_PWR5:
   10800   case PPC::DIR_PWR5X:
   10801   case PPC::DIR_PWR6:
   10802   case PPC::DIR_PWR6X:
   10803   case PPC::DIR_PWR7:
   10804   case PPC::DIR_PWR8: {
   10805     if (!ML)
   10806       break;
   10807 
   10808     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
   10809 
   10810     // For small loops (between 5 and 8 instructions), align to a 32-byte
   10811     // boundary so that the entire loop fits in one instruction-cache line.
   10812     uint64_t LoopSize = 0;
   10813     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
   10814       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
   10815         LoopSize += TII->GetInstSizeInBytes(J);
   10816         if (LoopSize > 32)
   10817           break;
   10818       }
   10819 
   10820     if (LoopSize > 16 && LoopSize <= 32)
   10821       return 5;
   10822 
   10823     break;
   10824   }
   10825   }
   10826 
   10827   return TargetLowering::getPrefLoopAlignment(ML);
   10828 }
   10829 
   10830 /// getConstraintType - Given a constraint, return the type of
   10831 /// constraint it is for this target.
   10832 PPCTargetLowering::ConstraintType
   10833 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
   10834   if (Constraint.size() == 1) {
   10835     switch (Constraint[0]) {
   10836     default: break;
   10837     case 'b':
   10838     case 'r':
   10839     case 'f':
   10840     case 'v':
   10841     case 'y':
   10842       return C_RegisterClass;
   10843     case 'Z':
   10844       // FIXME: While Z does indicate a memory constraint, it specifically
   10845       // indicates an r+r address (used in conjunction with the 'y' modifier
   10846       // in the replacement string). Currently, we're forcing the base
   10847       // register to be r0 in the asm printer (which is interpreted as zero)
   10848       // and forming the complete address in the second register. This is
   10849       // suboptimal.
   10850       return C_Memory;
   10851     }
   10852   } else if (Constraint == "wc") { // individual CR bits.
   10853     return C_RegisterClass;
   10854   } else if (Constraint == "wa" || Constraint == "wd" ||
   10855              Constraint == "wf" || Constraint == "ws") {
   10856     return C_RegisterClass; // VSX registers.
   10857   }
   10858   return TargetLowering::getConstraintType(Constraint);
   10859 }
   10860 
   10861 /// Examine constraint type and operand type and determine a weight value.
   10862 /// This object must already have been set up with the operand type
   10863 /// and the current alternative constraint selected.
   10864 TargetLowering::ConstraintWeight
   10865 PPCTargetLowering::getSingleConstraintMatchWeight(
   10866     AsmOperandInfo &info, const char *constraint) const {
   10867   ConstraintWeight weight = CW_Invalid;
   10868   Value *CallOperandVal = info.CallOperandVal;
   10869     // If we don't have a value, we can't do a match,
   10870     // but allow it at the lowest weight.
   10871   if (!CallOperandVal)
   10872     return CW_Default;
   10873   Type *type = CallOperandVal->getType();
   10874 
   10875   // Look at the constraint type.
   10876   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
   10877     return CW_Register; // an individual CR bit.
   10878   else if ((StringRef(constraint) == "wa" ||
   10879             StringRef(constraint) == "wd" ||
   10880             StringRef(constraint) == "wf") &&
   10881            type->isVectorTy())
   10882     return CW_Register;
   10883   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
   10884     return CW_Register;
   10885 
   10886   switch (*constraint) {
   10887   default:
   10888     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   10889     break;
   10890   case 'b':
   10891     if (type->isIntegerTy())
   10892       weight = CW_Register;
   10893     break;
   10894   case 'f':
   10895     if (type->isFloatTy())
   10896       weight = CW_Register;
   10897     break;
   10898   case 'd':
   10899     if (type->isDoubleTy())
   10900       weight = CW_Register;
   10901     break;
   10902   case 'v':
   10903     if (type->isVectorTy())
   10904       weight = CW_Register;
   10905     break;
   10906   case 'y':
   10907     weight = CW_Register;
   10908     break;
   10909   case 'Z':
   10910     weight = CW_Memory;
   10911     break;
   10912   }
   10913   return weight;
   10914 }
   10915 
   10916 std::pair<unsigned, const TargetRegisterClass *>
   10917 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   10918                                                 StringRef Constraint,
   10919                                                 MVT VT) const {
   10920   if (Constraint.size() == 1) {
   10921     // GCC RS6000 Constraint Letters
   10922     switch (Constraint[0]) {
   10923     case 'b':   // R1-R31
   10924       if (VT == MVT::i64 && Subtarget.isPPC64())
   10925         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
   10926       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
   10927     case 'r':   // R0-R31
   10928       if (VT == MVT::i64 && Subtarget.isPPC64())
   10929         return std::make_pair(0U, &PPC::G8RCRegClass);
   10930       return std::make_pair(0U, &PPC::GPRCRegClass);
   10931     case 'f':
   10932       if (VT == MVT::f32 || VT == MVT::i32)
   10933         return std::make_pair(0U, &PPC::F4RCRegClass);
   10934       if (VT == MVT::f64 || VT == MVT::i64)
   10935         return std::make_pair(0U, &PPC::F8RCRegClass);
   10936       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   10937         return std::make_pair(0U, &PPC::QFRCRegClass);
   10938       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   10939         return std::make_pair(0U, &PPC::QSRCRegClass);
   10940       break;
   10941     case 'v':
   10942       if (VT == MVT::v4f64 && Subtarget.hasQPX())
   10943         return std::make_pair(0U, &PPC::QFRCRegClass);
   10944       if (VT == MVT::v4f32 && Subtarget.hasQPX())
   10945         return std::make_pair(0U, &PPC::QSRCRegClass);
   10946       if (Subtarget.hasAltivec())
   10947         return std::make_pair(0U, &PPC::VRRCRegClass);
   10948     case 'y':   // crrc
   10949       return std::make_pair(0U, &PPC::CRRCRegClass);
   10950     }
   10951   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
   10952     // An individual CR bit.
   10953     return std::make_pair(0U, &PPC::CRBITRCRegClass);
   10954   } else if ((Constraint == "wa" || Constraint == "wd" ||
   10955              Constraint == "wf") && Subtarget.hasVSX()) {
   10956     return std::make_pair(0U, &PPC::VSRCRegClass);
   10957   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
   10958     if (VT == MVT::f32 && Subtarget.hasP8Vector())
   10959       return std::make_pair(0U, &PPC::VSSRCRegClass);
   10960     else
   10961       return std::make_pair(0U, &PPC::VSFRCRegClass);
   10962   }
   10963 
   10964   std::pair<unsigned, const TargetRegisterClass *> R =
   10965       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   10966 
   10967   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
   10968   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
   10969   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
   10970   // register.
   10971   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
   10972   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
   10973   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
   10974       PPC::GPRCRegClass.contains(R.first))
   10975     return std::make_pair(TRI->getMatchingSuperReg(R.first,
   10976                             PPC::sub_32, &PPC::G8RCRegClass),
   10977                           &PPC::G8RCRegClass);
   10978 
   10979   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
   10980   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
   10981     R.first = PPC::CR0;
   10982     R.second = &PPC::CRRCRegClass;
   10983   }
   10984 
   10985   return R;
   10986 }
   10987 
   10988 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   10989 /// vector.  If it is invalid, don't add anything to Ops.
   10990 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   10991                                                      std::string &Constraint,
   10992                                                      std::vector<SDValue>&Ops,
   10993                                                      SelectionDAG &DAG) const {
   10994   SDValue Result;
   10995 
   10996   // Only support length 1 constraints.
   10997   if (Constraint.length() > 1) return;
   10998 
   10999   char Letter = Constraint[0];
   11000   switch (Letter) {
   11001   default: break;
   11002   case 'I':
   11003   case 'J':
   11004   case 'K':
   11005   case 'L':
   11006   case 'M':
   11007   case 'N':
   11008   case 'O':
   11009   case 'P': {
   11010     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
   11011     if (!CST) return; // Must be an immediate to match.
   11012     SDLoc dl(Op);
   11013     int64_t Value = CST->getSExtValue();
   11014     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
   11015                          // numbers are printed as such.
   11016     switch (Letter) {
   11017     default: llvm_unreachable("Unknown constraint letter!");
   11018     case 'I':  // "I" is a signed 16-bit constant.
   11019       if (isInt<16>(Value))
   11020         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11021       break;
   11022     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
   11023       if (isShiftedUInt<16, 16>(Value))
   11024         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11025       break;
   11026     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
   11027       if (isShiftedInt<16, 16>(Value))
   11028         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11029       break;
   11030     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
   11031       if (isUInt<16>(Value))
   11032         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11033       break;
   11034     case 'M':  // "M" is a constant that is greater than 31.
   11035       if (Value > 31)
   11036         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11037       break;
   11038     case 'N':  // "N" is a positive constant that is an exact power of two.
   11039       if (Value > 0 && isPowerOf2_64(Value))
   11040         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11041       break;
   11042     case 'O':  // "O" is the constant zero.
   11043       if (Value == 0)
   11044         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11045       break;
   11046     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
   11047       if (isInt<16>(-Value))
   11048         Result = DAG.getTargetConstant(Value, dl, TCVT);
   11049       break;
   11050     }
   11051     break;
   11052   }
   11053   }
   11054 
   11055   if (Result.getNode()) {
   11056     Ops.push_back(Result);
   11057     return;
   11058   }
   11059 
   11060   // Handle standard constraint letters.
   11061   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   11062 }
   11063 
   11064 // isLegalAddressingMode - Return true if the addressing mode represented
   11065 // by AM is legal for this target, for a load/store of the specified type.
   11066 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   11067                                               const AddrMode &AM, Type *Ty,
   11068                                               unsigned AS) const {
   11069   // PPC does not allow r+i addressing modes for vectors!
   11070   if (Ty->isVectorTy() && AM.BaseOffs != 0)
   11071     return false;
   11072 
   11073   // PPC allows a sign-extended 16-bit immediate field.
   11074   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   11075     return false;
   11076 
   11077   // No global is ever allowed as a base.
   11078   if (AM.BaseGV)
   11079     return false;
   11080 
   11081   // PPC only support r+r,
   11082   switch (AM.Scale) {
   11083   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   11084     break;
   11085   case 1:
   11086     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   11087       return false;
   11088     // Otherwise we have r+r or r+i.
   11089     break;
   11090   case 2:
   11091     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   11092       return false;
   11093     // Allow 2*r as r+r.
   11094     break;
   11095   default:
   11096     // No other scales are supported.
   11097     return false;
   11098   }
   11099 
   11100   return true;
   11101 }
   11102 
   11103 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
   11104                                            SelectionDAG &DAG) const {
   11105   MachineFunction &MF = DAG.getMachineFunction();
   11106   MachineFrameInfo *MFI = MF.getFrameInfo();
   11107   MFI->setReturnAddressIsTaken(true);
   11108 
   11109   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   11110     return SDValue();
   11111 
   11112   SDLoc dl(Op);
   11113   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11114 
   11115   // Make sure the function does not optimize away the store of the RA to
   11116   // the stack.
   11117   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   11118   FuncInfo->setLRStoreRequired();
   11119   bool isPPC64 = Subtarget.isPPC64();
   11120   auto PtrVT = getPointerTy(MF.getDataLayout());
   11121 
   11122   if (Depth > 0) {
   11123     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   11124     SDValue Offset =
   11125         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
   11126                         isPPC64 ? MVT::i64 : MVT::i32);
   11127     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   11128                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
   11129                        MachinePointerInfo(), false, false, false, 0);
   11130   }
   11131 
   11132   // Just load the return address off the stack.
   11133   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
   11134   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
   11135                      MachinePointerInfo(), false, false, false, 0);
   11136 }
   11137 
   11138 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
   11139                                           SelectionDAG &DAG) const {
   11140   SDLoc dl(Op);
   11141   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   11142 
   11143   MachineFunction &MF = DAG.getMachineFunction();
   11144   MachineFrameInfo *MFI = MF.getFrameInfo();
   11145   MFI->setFrameAddressIsTaken(true);
   11146 
   11147   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(MF.getDataLayout());
   11148   bool isPPC64 = PtrVT == MVT::i64;
   11149 
   11150   // Naked functions never have a frame pointer, and so we use r1. For all
   11151   // other functions, this decision must be delayed until during PEI.
   11152   unsigned FrameReg;
   11153   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
   11154     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
   11155   else
   11156     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
   11157 
   11158   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
   11159                                          PtrVT);
   11160   while (Depth--)
   11161     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
   11162                             FrameAddr, MachinePointerInfo(), false, false,
   11163                             false, 0);
   11164   return FrameAddr;
   11165 }
   11166 
   11167 // FIXME? Maybe this could be a TableGen attribute on some registers and
   11168 // this table could be generated automatically from RegInfo.
   11169 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   11170                                               SelectionDAG &DAG) const {
   11171   bool isPPC64 = Subtarget.isPPC64();
   11172   bool isDarwinABI = Subtarget.isDarwinABI();
   11173 
   11174   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
   11175       (!isPPC64 && VT != MVT::i32))
   11176     report_fatal_error("Invalid register global variable type");
   11177 
   11178   bool is64Bit = isPPC64 && VT == MVT::i64;
   11179   unsigned Reg = StringSwitch<unsigned>(RegName)
   11180                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
   11181                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
   11182                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
   11183                                   (is64Bit ? PPC::X13 : PPC::R13))
   11184                    .Default(0);
   11185 
   11186   if (Reg)
   11187     return Reg;
   11188   report_fatal_error("Invalid register name global variable");
   11189 }
   11190 
   11191 bool
   11192 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   11193   // The PowerPC target isn't yet aware of offsets.
   11194   return false;
   11195 }
   11196 
   11197 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   11198                                            const CallInst &I,
   11199                                            unsigned Intrinsic) const {
   11200 
   11201   switch (Intrinsic) {
   11202   case Intrinsic::ppc_qpx_qvlfd:
   11203   case Intrinsic::ppc_qpx_qvlfs:
   11204   case Intrinsic::ppc_qpx_qvlfcd:
   11205   case Intrinsic::ppc_qpx_qvlfcs:
   11206   case Intrinsic::ppc_qpx_qvlfiwa:
   11207   case Intrinsic::ppc_qpx_qvlfiwz:
   11208   case Intrinsic::ppc_altivec_lvx:
   11209   case Intrinsic::ppc_altivec_lvxl:
   11210   case Intrinsic::ppc_altivec_lvebx:
   11211   case Intrinsic::ppc_altivec_lvehx:
   11212   case Intrinsic::ppc_altivec_lvewx:
   11213   case Intrinsic::ppc_vsx_lxvd2x:
   11214   case Intrinsic::ppc_vsx_lxvw4x: {
   11215     EVT VT;
   11216     switch (Intrinsic) {
   11217     case Intrinsic::ppc_altivec_lvebx:
   11218       VT = MVT::i8;
   11219       break;
   11220     case Intrinsic::ppc_altivec_lvehx:
   11221       VT = MVT::i16;
   11222       break;
   11223     case Intrinsic::ppc_altivec_lvewx:
   11224       VT = MVT::i32;
   11225       break;
   11226     case Intrinsic::ppc_vsx_lxvd2x:
   11227       VT = MVT::v2f64;
   11228       break;
   11229     case Intrinsic::ppc_qpx_qvlfd:
   11230       VT = MVT::v4f64;
   11231       break;
   11232     case Intrinsic::ppc_qpx_qvlfs:
   11233       VT = MVT::v4f32;
   11234       break;
   11235     case Intrinsic::ppc_qpx_qvlfcd:
   11236       VT = MVT::v2f64;
   11237       break;
   11238     case Intrinsic::ppc_qpx_qvlfcs:
   11239       VT = MVT::v2f32;
   11240       break;
   11241     default:
   11242       VT = MVT::v4i32;
   11243       break;
   11244     }
   11245 
   11246     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11247     Info.memVT = VT;
   11248     Info.ptrVal = I.getArgOperand(0);
   11249     Info.offset = -VT.getStoreSize()+1;
   11250     Info.size = 2*VT.getStoreSize()-1;
   11251     Info.align = 1;
   11252     Info.vol = false;
   11253     Info.readMem = true;
   11254     Info.writeMem = false;
   11255     return true;
   11256   }
   11257   case Intrinsic::ppc_qpx_qvlfda:
   11258   case Intrinsic::ppc_qpx_qvlfsa:
   11259   case Intrinsic::ppc_qpx_qvlfcda:
   11260   case Intrinsic::ppc_qpx_qvlfcsa:
   11261   case Intrinsic::ppc_qpx_qvlfiwaa:
   11262   case Intrinsic::ppc_qpx_qvlfiwza: {
   11263     EVT VT;
   11264     switch (Intrinsic) {
   11265     case Intrinsic::ppc_qpx_qvlfda:
   11266       VT = MVT::v4f64;
   11267       break;
   11268     case Intrinsic::ppc_qpx_qvlfsa:
   11269       VT = MVT::v4f32;
   11270       break;
   11271     case Intrinsic::ppc_qpx_qvlfcda:
   11272       VT = MVT::v2f64;
   11273       break;
   11274     case Intrinsic::ppc_qpx_qvlfcsa:
   11275       VT = MVT::v2f32;
   11276       break;
   11277     default:
   11278       VT = MVT::v4i32;
   11279       break;
   11280     }
   11281 
   11282     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11283     Info.memVT = VT;
   11284     Info.ptrVal = I.getArgOperand(0);
   11285     Info.offset = 0;
   11286     Info.size = VT.getStoreSize();
   11287     Info.align = 1;
   11288     Info.vol = false;
   11289     Info.readMem = true;
   11290     Info.writeMem = false;
   11291     return true;
   11292   }
   11293   case Intrinsic::ppc_qpx_qvstfd:
   11294   case Intrinsic::ppc_qpx_qvstfs:
   11295   case Intrinsic::ppc_qpx_qvstfcd:
   11296   case Intrinsic::ppc_qpx_qvstfcs:
   11297   case Intrinsic::ppc_qpx_qvstfiw:
   11298   case Intrinsic::ppc_altivec_stvx:
   11299   case Intrinsic::ppc_altivec_stvxl:
   11300   case Intrinsic::ppc_altivec_stvebx:
   11301   case Intrinsic::ppc_altivec_stvehx:
   11302   case Intrinsic::ppc_altivec_stvewx:
   11303   case Intrinsic::ppc_vsx_stxvd2x:
   11304   case Intrinsic::ppc_vsx_stxvw4x: {
   11305     EVT VT;
   11306     switch (Intrinsic) {
   11307     case Intrinsic::ppc_altivec_stvebx:
   11308       VT = MVT::i8;
   11309       break;
   11310     case Intrinsic::ppc_altivec_stvehx:
   11311       VT = MVT::i16;
   11312       break;
   11313     case Intrinsic::ppc_altivec_stvewx:
   11314       VT = MVT::i32;
   11315       break;
   11316     case Intrinsic::ppc_vsx_stxvd2x:
   11317       VT = MVT::v2f64;
   11318       break;
   11319     case Intrinsic::ppc_qpx_qvstfd:
   11320       VT = MVT::v4f64;
   11321       break;
   11322     case Intrinsic::ppc_qpx_qvstfs:
   11323       VT = MVT::v4f32;
   11324       break;
   11325     case Intrinsic::ppc_qpx_qvstfcd:
   11326       VT = MVT::v2f64;
   11327       break;
   11328     case Intrinsic::ppc_qpx_qvstfcs:
   11329       VT = MVT::v2f32;
   11330       break;
   11331     default:
   11332       VT = MVT::v4i32;
   11333       break;
   11334     }
   11335 
   11336     Info.opc = ISD::INTRINSIC_VOID;
   11337     Info.memVT = VT;
   11338     Info.ptrVal = I.getArgOperand(1);
   11339     Info.offset = -VT.getStoreSize()+1;
   11340     Info.size = 2*VT.getStoreSize()-1;
   11341     Info.align = 1;
   11342     Info.vol = false;
   11343     Info.readMem = false;
   11344     Info.writeMem = true;
   11345     return true;
   11346   }
   11347   case Intrinsic::ppc_qpx_qvstfda:
   11348   case Intrinsic::ppc_qpx_qvstfsa:
   11349   case Intrinsic::ppc_qpx_qvstfcda:
   11350   case Intrinsic::ppc_qpx_qvstfcsa:
   11351   case Intrinsic::ppc_qpx_qvstfiwa: {
   11352     EVT VT;
   11353     switch (Intrinsic) {
   11354     case Intrinsic::ppc_qpx_qvstfda:
   11355       VT = MVT::v4f64;
   11356       break;
   11357     case Intrinsic::ppc_qpx_qvstfsa:
   11358       VT = MVT::v4f32;
   11359       break;
   11360     case Intrinsic::ppc_qpx_qvstfcda:
   11361       VT = MVT::v2f64;
   11362       break;
   11363     case Intrinsic::ppc_qpx_qvstfcsa:
   11364       VT = MVT::v2f32;
   11365       break;
   11366     default:
   11367       VT = MVT::v4i32;
   11368       break;
   11369     }
   11370 
   11371     Info.opc = ISD::INTRINSIC_VOID;
   11372     Info.memVT = VT;
   11373     Info.ptrVal = I.getArgOperand(1);
   11374     Info.offset = 0;
   11375     Info.size = VT.getStoreSize();
   11376     Info.align = 1;
   11377     Info.vol = false;
   11378     Info.readMem = false;
   11379     Info.writeMem = true;
   11380     return true;
   11381   }
   11382   default:
   11383     break;
   11384   }
   11385 
   11386   return false;
   11387 }
   11388 
   11389 /// getOptimalMemOpType - Returns the target specific optimal type for load
   11390 /// and store operations as a result of memset, memcpy, and memmove
   11391 /// lowering. If DstAlign is zero that means it's safe to destination
   11392 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   11393 /// means there isn't a need to check it against alignment requirement,
   11394 /// probably because the source does not need to be loaded. If 'IsMemset' is
   11395 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
   11396 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
   11397 /// source is constant so it does not need to be loaded.
   11398 /// It returns EVT::Other if the type should be determined using generic
   11399 /// target-independent logic.
   11400 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
   11401                                            unsigned DstAlign, unsigned SrcAlign,
   11402                                            bool IsMemset, bool ZeroMemset,
   11403                                            bool MemcpyStrSrc,
   11404                                            MachineFunction &MF) const {
   11405   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
   11406     const Function *F = MF.getFunction();
   11407     // When expanding a memset, require at least two QPX instructions to cover
   11408     // the cost of loading the value to be stored from the constant pool.
   11409     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
   11410        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
   11411         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   11412       return MVT::v4f64;
   11413     }
   11414 
   11415     // We should use Altivec/VSX loads and stores when available. For unaligned
   11416     // addresses, unaligned VSX loads are only fast starting with the P8.
   11417     if (Subtarget.hasAltivec() && Size >= 16 &&
   11418         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
   11419          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
   11420       return MVT::v4i32;
   11421   }
   11422 
   11423   if (Subtarget.isPPC64()) {
   11424     return MVT::i64;
   11425   }
   11426 
   11427   return MVT::i32;
   11428 }
   11429 
   11430 /// \brief Returns true if it is beneficial to convert a load of a constant
   11431 /// to just the constant itself.
   11432 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   11433                                                           Type *Ty) const {
   11434   assert(Ty->isIntegerTy());
   11435 
   11436   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   11437   if (BitSize == 0 || BitSize > 64)
   11438     return false;
   11439   return true;
   11440 }
   11441 
   11442 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   11443   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   11444     return false;
   11445   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   11446   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   11447   return NumBits1 == 64 && NumBits2 == 32;
   11448 }
   11449 
   11450 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   11451   if (!VT1.isInteger() || !VT2.isInteger())
   11452     return false;
   11453   unsigned NumBits1 = VT1.getSizeInBits();
   11454   unsigned NumBits2 = VT2.getSizeInBits();
   11455   return NumBits1 == 64 && NumBits2 == 32;
   11456 }
   11457 
   11458 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   11459   // Generally speaking, zexts are not free, but they are free when they can be
   11460   // folded with other operations.
   11461   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
   11462     EVT MemVT = LD->getMemoryVT();
   11463     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
   11464          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
   11465         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
   11466          LD->getExtensionType() == ISD::ZEXTLOAD))
   11467       return true;
   11468   }
   11469 
   11470   // FIXME: Add other cases...
   11471   //  - 32-bit shifts with a zext to i64
   11472   //  - zext after ctlz, bswap, etc.
   11473   //  - zext after and by a constant mask
   11474 
   11475   return TargetLowering::isZExtFree(Val, VT2);
   11476 }
   11477 
   11478 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
   11479   assert(VT.isFloatingPoint());
   11480   return true;
   11481 }
   11482 
   11483 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   11484   return isInt<16>(Imm) || isUInt<16>(Imm);
   11485 }
   11486 
   11487 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   11488   return isInt<16>(Imm) || isUInt<16>(Imm);
   11489 }
   11490 
   11491 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   11492                                                        unsigned,
   11493                                                        unsigned,
   11494                                                        bool *Fast) const {
   11495   if (DisablePPCUnaligned)
   11496     return false;
   11497 
   11498   // PowerPC supports unaligned memory access for simple non-vector types.
   11499   // Although accessing unaligned addresses is not as efficient as accessing
   11500   // aligned addresses, it is generally more efficient than manual expansion,
   11501   // and generally only traps for software emulation when crossing page
   11502   // boundaries.
   11503 
   11504   if (!VT.isSimple())
   11505     return false;
   11506 
   11507   if (VT.getSimpleVT().isVector()) {
   11508     if (Subtarget.hasVSX()) {
   11509       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
   11510           VT != MVT::v4f32 && VT != MVT::v4i32)
   11511         return false;
   11512     } else {
   11513       return false;
   11514     }
   11515   }
   11516 
   11517   if (VT == MVT::ppcf128)
   11518     return false;
   11519 
   11520   if (Fast)
   11521     *Fast = true;
   11522 
   11523   return true;
   11524 }
   11525 
   11526 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
   11527   VT = VT.getScalarType();
   11528 
   11529   if (!VT.isSimple())
   11530     return false;
   11531 
   11532   switch (VT.getSimpleVT().SimpleTy) {
   11533   case MVT::f32:
   11534   case MVT::f64:
   11535     return true;
   11536   default:
   11537     break;
   11538   }
   11539 
   11540   return false;
   11541 }
   11542 
   11543 const MCPhysReg *
   11544 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
   11545   // LR is a callee-save register, but we must treat it as clobbered by any call
   11546   // site. Hence we include LR in the scratch registers, which are in turn added
   11547   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
   11548   // to CTR, which is used by any indirect call.
   11549   static const MCPhysReg ScratchRegs[] = {
   11550     PPC::X12, PPC::LR8, PPC::CTR8, 0
   11551   };
   11552 
   11553   return ScratchRegs;
   11554 }
   11555 
   11556 unsigned PPCTargetLowering::getExceptionPointerRegister(
   11557     const Constant *PersonalityFn) const {
   11558   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
   11559 }
   11560 
   11561 unsigned PPCTargetLowering::getExceptionSelectorRegister(
   11562     const Constant *PersonalityFn) const {
   11563   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
   11564 }
   11565 
   11566 bool
   11567 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
   11568                      EVT VT , unsigned DefinedValues) const {
   11569   if (VT == MVT::v2i64)
   11570     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
   11571 
   11572   if (Subtarget.hasQPX()) {
   11573     if (VT == MVT::v4f32 || VT == MVT::v4f64 || VT == MVT::v4i1)
   11574       return true;
   11575   }
   11576 
   11577   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
   11578 }
   11579 
   11580 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
   11581   if (DisableILPPref || Subtarget.enableMachineScheduler())
   11582     return TargetLowering::getSchedulingPreference(N);
   11583 
   11584   return Sched::ILP;
   11585 }
   11586 
   11587 // Create a fast isel object.
   11588 FastISel *
   11589 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
   11590                                   const TargetLibraryInfo *LibInfo) const {
   11591   return PPC::createFastISel(FuncInfo, LibInfo);
   11592 }
   11593